WorldWideScience

Sample records for based sensor systems

  1. Adaptive Sensing Based on Profiles for Sensor Systems

    Directory of Open Access Journals (Sweden)

    Yoshiteru Ishida

    2009-10-01

    Full Text Available This paper proposes a profile-based sensing framework for adaptive sensor systems based on models that relate possibly heterogeneous sensor data and profiles generated by the models to detect events. With these concepts, three phases for building the sensor systems are extracted from two examples: a combustion control sensor system for an automobile engine, and a sensor system for home security. The three phases are: modeling, profiling, and managing trade-offs. Designing and building a sensor system involves mapping the signals to a model to achieve a given mission.

  2. Sensor-based material tagging system

    International Nuclear Information System (INIS)

    Vercellotti, L.C.; Cox, R.W.; Ravas, R.J.; Schlotterer, J.C.

    1991-01-01

    Electronic identification tags are being developed for tracking material and personnel. In applying electronic identification tags to radioactive materials safeguards, it is important to measure attributes of the material to ensure that the tag remains with the material. The addition of a microcontroller with an on-board analog-to-digital converter to an electronic identification tag application-specific integrated-circuit has been demonstrated as means to provide the tag with sensor data. Each tag is assembled into a housing, which serves as a scale for measuring the weight of a paint-can-sized container and its contents. Temperature rise of the can above ambient is also measured, and a piezoelectric detector detects disturbances and immediately puts the tag into its alarm and beacon mode. Radiation measurement was also considered, but the background from nearby containers was found to be excessive. The sensor-based tagging system allows tracking of the material in cans as it is stored in vaults or is moved through the manufacturing process. The paper presents details of the sensor-based material tagging system and describes a demonstration system

  3. Patient Posture Monitoring System Based on Flexible Sensors

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2017-03-01

    Full Text Available Monitoring patients using vision cameras can cause privacy intrusion problems. In this paper, we propose a patient position monitoring system based on a patient cloth with unobtrusive sensors. We use flexible sensors based on polyvinylidene fluoride, which is a flexible piezoelectric material. Theflexiblesensorsareinsertedintopartsclosetothekneeandhipoftheloosepatientcloth. We measure electrical signals from the sensors caused by the piezoelectric effect when the knee and hip in the cloth are bent. The measured sensor outputs are transferred to a computer via Bluetooth. We use a custom-made program to detect the position of the patient through a rule-based algorithm and the sensor outputs. The detectable postures are based on six human motions in and around a bed. The proposed system can detect the patient positions with a success rate over 88 percent for three patients.

  4. Progress in triboluminescence-based smart optical sensor system

    International Nuclear Information System (INIS)

    Olawale, David O.; Dickens, Tarik; Sullivan, William G.; Okoli, Okenwa I.; Sobanjo, John O.; Wang, Ben

    2011-01-01

    Extensive research work has been done in recent times to apply the triboluminescence (TL) phenomenon for damage detection in engineering structures. Of particular note are the various attempts to apply it in the detection of impact damages in composites and aerospace structures. This is because TL-based sensor systems have a great potential for wireless, in-situ and distributed (WID) structural health monitoring when fully developed. This review article highlights development and the current state-of-the-art in the application of TL-based sensor systems. The underlying mechanisms believed to be responsible for triboluminescence, particularly in zinc sulfide manganese, a highly triboluminescent material, are discussed. The challenges militating against the full exploitation and field application of TL sensor systems are also identified. Finally, viable solutions and approaches to address these challenges are enumerated. - Highlights: → The underlying mechanisms believed to be responsible for triboluminescence. → State-of-the-art in the development and application of TL-based sensor systems. → The challenges militating against the full exploitation and field application of TL sensor systems are identified. → Viable solutions and approaches to address these challenges are enumerated.

  5. Wearable PPG sensor based alertness scoring system.

    Science.gov (United States)

    Dey, Jishnu; Bhowmik, Tanmoy; Sahoo, Saswata; Tiwari, Vijay Narayan

    2017-07-01

    Quantifying mental alertness in today's world is important as it enables the person to adopt lifestyle changes for better work efficiency. Miniaturized sensors in wearable devices have facilitated detection/monitoring of mental alertness. Photoplethysmography (PPG) sensors through Heart Rate Variability (HRV) offer one such opportunity by providing information about one's daily alertness levels without requiring any manual interference from the user. In this paper, a smartwatch based alertness estimation system is proposed. Data collected from PPG sensor of smartwatch is processed and fed to machine learning based model to get a continuous alertness score. Utility functions are designed based on statistical analysis to give a quality score on different stages of alertness such as awake, long sleep and short duration power nap. An intelligent data collection approach is proposed in collaboration with the motion sensor in the smartwatch to reduce battery drainage. Overall, our proposed wearable based system provides a detailed analysis of alertness over a period in a systematic and optimized manner. We were able to achieve an accuracy of 80.1% for sleep/awake classification along with alertness score. This opens up the possibility for quantifying alertness levels using a single PPG sensor for better management of health related activities including sleep.

  6. Toward Sensor-Based Context Aware Systems

    Directory of Open Access Journals (Sweden)

    Kouhei Takada

    2012-01-01

    Full Text Available This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information.

  7. A smart sensor-based vision system: implementation and evaluation

    International Nuclear Information System (INIS)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R

    2006-01-01

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations

  8. A smart sensor-based vision system: implementation and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R [Institute of Fundamental Electronics, Bat. 220, Paris XI University, 91405 Orsay (France)

    2006-04-21

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations.

  9. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  10. Development of sensor system for indoor location based service implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Joo Heon; Lee, Kyung Ho [Kookmin Univ., Seoul (Korea, Republic of)

    2012-11-15

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

  11. Development of sensor system for indoor location based service implementation

    International Nuclear Information System (INIS)

    Cha, Joo Heon; Lee, Kyung Ho

    2012-01-01

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment

  12. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  13. Structural health monitoring system for bridges based on skin-like sensor

    Science.gov (United States)

    Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd

    2017-09-01

    Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.

  14. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  15. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  16. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Haoting Liu

    2017-02-01

    Full Text Available An imaging sensor-based intelligent Light Emitting Diode (LED lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  17. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  18. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  19. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  20. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  1. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  2. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  3. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  4. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  5. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Science.gov (United States)

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  6. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Directory of Open Access Journals (Sweden)

    Iván González

    2015-07-01

    Full Text Available A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.

  7. Bayesian based design of real-time sensor systems for high-risk indoor contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Priya [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system

  8. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  9. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  10. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  11. Monitoring the Como Railway Bridge based on dynamic FBG sensor system

    Science.gov (United States)

    Zhang, Jianzhong; Sun, Weimin; Peng, G. D.; Yuan, Libo

    2007-07-01

    A FBG-based dynamic strain sensor system, whose responding frequency and resolution can be high as 16Hz and ~1μɛ respectively, is described and the system is applied to monitor the dynamic strain of Como Railway Bridge in Australia. The results of one-month long measurement show that the system can figure out all dynamic strain caused by passed trains and also prove the stability of the sensor system.

  12. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  13. Therapeutic hypertension system based on a microbreathing pressure sensor system

    Directory of Open Access Journals (Sweden)

    Diao Z

    2011-05-01

    Full Text Available Ziji Diao1, Hongying Liu1, Lan Zhu1, Xiaoqiang Gao1, Suwen Zhao1, Xitian Pi1,2, Xiaolin Zheng1,21Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing; 2Key Laboratories for National Defense Science and Technology of Innovative Micronano Devices and System Technology, Chongqing, People’s Republic of ChinaBackground and methods: A novel therapeutic system for the treatment of hypertension was developed on the basis of a slow-breath training mechanism, using a microbreathing pressure sensor device for the detection of human respiratory signals attached to the abdomen. The system utilizes a single-chip AT89C51 microcomputer as a core processor, programmed by Microsoft Visual C++6.0 to communicate with a PC via a full-speed PDIUSBD12 interface chip. The programming is based on a slow-breath guided algorithm in which the respiratory signal serves as a physiological feedback parameter. Inhalation and exhalation by the subject is guided by music signals.Results and conclusion: Our study indicates that this microbreathing sensor system may assist in slow-breath training and may help to decrease blood pressure.Keywords: hypertension, microbreathing sensor, single-chip microcomputer, slow-pace breathing

  14. Thermostatic system of sensor in NIR spectrometer based on PID control

    Science.gov (United States)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  15. Unobtrusive measurement of indoor energy expenditure using an infrared sensor-based activity monitoring system.

    Science.gov (United States)

    Hwang, Bosun; Han, Jonghee; Choi, Jong Min; Park, Kwang Suk

    2008-11-01

    The purpose of this study was to develop an unobtrusive energy expenditure (EE) measurement system using an infrared (IR) sensor-based activity monitoring system to measure indoor activities and to estimate individual quantitative EE. IR-sensor activation counts were measured with a Bluetooth-based monitoring system and the standard EE was calculated using an established regression equation. Ten male subjects participated in the experiment and three different EE measurement systems (gas analyzer, accelerometer, IR sensor) were used simultaneously in order to determine the regression equation and evaluate the performance. As a standard measurement, oxygen consumption was simultaneously measured by a portable metabolic system (Metamax 3X, Cortex, Germany). A single room experiment was performed to develop a regression model of the standard EE measurement from the proposed IR sensor-based measurement system. In addition, correlation and regression analyses were done to compare the performance of the IR system with that of the Actigraph system. We determined that our proposed IR-based EE measurement system shows a similar correlation to the Actigraph system with the standard measurement system.

  16. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  17. Direct sensor orientation of a land-based mobile mapping system.

    Science.gov (United States)

    Rau, Jiann-Yeou; Habib, Ayman F; Kersting, Ana P; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  18. System-Level Modelling and Simulation of MEMS-Based Sensors

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan; Shafique, Mohammad

    2005-01-01

    The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration with the......The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration...... with the existing embedded system design methodologies is possible. In this paper, we present a MEMS design methodology that uses VHDL-AMS based system-level model of a MEMS device as a starting point and combines the top-down and bottom-up design approaches for design, verification, and optimization...

  19. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  20. pH measurements of FET-based (bio)chemical sensors using portable measurement system.

    Science.gov (United States)

    Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G

    2015-01-01

    In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.

  1. Methods and Systems for Configuring Sensor Acquisition Based on Pressure Steps

    Science.gov (United States)

    DeDonato, Mathew (Inventor)

    2015-01-01

    Technologies are provided for underwater measurements. A system includes an underwater vessels including: a plurality of sensors disposed thereon for measuring underwater properties; and a programmable controller configured to selectively activate the plurality of sensors based at least in part on underwater pressure. A user may program at what pressure ranges certain sensors are activated to measure selected properties, and may also program the ascent/descent rate of the underwater vessel, which is correlated with the underwater pressure.

  2. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  3. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Yu-Hua Li

    2011-07-01

    Full Text Available A land-based mobile mapping system (MMS is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS. The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters. In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  4. Integrated Instrumentation and Sensor Systems Enabling Condition-Based Maintenance of Aerospace Equipment

    Directory of Open Access Journals (Sweden)

    Richard C. Millar

    2012-01-01

    Full Text Available The objective of the work reported herein was to use a systems engineering approach to guide development of integrated instrumentation/sensor systems (IISS incorporating communications, interconnections, and signal acquisition. These require enhanced suitability and effectiveness for diagnostics and health management of aerospace equipment governed by the principles of Condition-based maintenance (CBM. It is concluded that the systems engineering approach to IISS definition provided clear benefits in identifying overall system requirements and an architectural framework for categorizing and evaluating alternative architectures, relative to a bottom up focus on sensor technology blind to system level user needs. CBM IISS imperatives identified include factors such as tolerance of the bulk of aerospace equipment operational environments, low intrusiveness, rapid reconfiguration, and affordable life cycle costs. The functional features identified include interrogation of the variety of sensor types and interfaces common in aerospace equipment applications over multiplexed communication media with flexibility to allow rapid system reconfiguration to adapt to evolving sensor needs. This implies standardized interfaces at the sensor location (preferably to open standards, reduced wire/connector pin count in harnesses (or their elimination through use of wireless communications.

  5. System on chip thermal vacuum sensor based on standard CMOS process

    International Nuclear Information System (INIS)

    Li Jinfeng; Tang Zhenan; Wang Jiaqi

    2009-01-01

    An on-chip microelectromechanical system was fabricated in a 0.5 μm standard CMOS process for gas pressure detection. The sensor was based on a micro-hotplate (MHP) and had been integrated with a rail to rail operational amplifier and an 8-bit successive approximation register (SAR) A/D converter. A tungsten resistor was manufactured on the MHP as the sensing element, and the sacrificial layer of the sensor was made from polysilicon and etched by surface-micromachining technology. The operational amplifier was configured to make the sensor operate in constant current mode. A digital bit stream was provided as the system output. The measurement results demonstrate that the gas pressure sensitive range of the vacuum sensor extends from 1 to 10 5 Pa. In the gas pressure range from 1 to 100 Pa, the sensitivity of the sensor is 0.23 mV/ Pa, the linearity is 4.95%, and the hysteresis is 8.69%. The operational amplifier can drive 200 ω resistors distortionlessly, and the SAR A/D converter achieves a resolution of 7.4 bit with 100 kHz sample rate. The performance of the operational amplifier and the SAR A/D converter meets the requirements of the sensor system.

  6. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    Science.gov (United States)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  7. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.

    Science.gov (United States)

    Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue

    2018-05-25

    A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.

  8. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Boyang Xing

    2018-05-01

    Full Text Available A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland. Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB beacon and lidar to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV visual localization and robotics control.

  9. A radiographic imaging system based upon a 2-D silicon microstrip sensor

    CERN Document Server

    Papanestis, A; Corrin, E; Raymond, M; Hall, G; Triantis, F A; Manthos, N; Evagelou, I; Van den Stelt, P; Tarrant, T; Speller, R D; Royle, G F

    2000-01-01

    A high resolution, direct-digital detector system based upon a 2-D silicon microstrip sensor has been designed, built and is undergoing evaluation for applications in dentistry and mammography. The sensor parameters and image requirements were selected using Monte Carlo simulations. Sensors selected for evaluation have a strip pitch of 50mum on the p-side and 80mum on the n-side. Front-end electronics and data acquisition are based on the APV6 chip and were adapted from systems used at CERN for high-energy physics experiments. The APV6 chip is not self-triggering so data acquisition is done at a fixed trigger rate. This paper describes the mammographic evaluation of the double sided microstrip sensor. Raw data correction procedures were implemented to remove the effects of dead strips and non-uniform response. Standard test objects (TORMAX) were used to determine limiting spatial resolution and detectability. MTFs were determined using the edge response. The results indicate that the spatial resolution of the...

  10. Real-Time Monitoring System Using Smartphone-Based Sensors and NoSQL Database for Perishable Supply Chain

    Directory of Open Access Journals (Sweden)

    Ganjar Alfian

    2017-11-01

    Full Text Available Since customer attention is increasing due to growing customer health awareness, it is important for the perishable food supply chain to monitor food quality and safety. This study proposes a real-time monitoring system that utilizes smartphone-based sensors and a big data platform. Firstly, we develop a smartphone-based sensor to gather temperature, humidity, GPS, and image data. The IoT-generated sensor on the smartphone has characteristics such as a large amount of storage, an unstructured format, and continuous data generation. Thus, in this study, we propose an effective big data platform design to handle IoT-generated sensor data. Furthermore, the abnormal sensor data generated by failed sensors is called outliers and may arise in real cases. The proposed system utilizes outlier detection based on statistical and clustering approaches to filter out the outlier data. The proposed system was evaluated for system and gateway performance and tested on the kimchi supply chain in Korea. The results showed that the proposed system is capable of processing a massive input/output of sensor data efficiently when the number of sensors and clients increases. The current commercial smartphones are sufficiently capable of combining their normal operations with simultaneous performance as gateways for transmitting sensor data to the server. In addition, the outlier detection based on the 3-sigma and DBSCAN were used to successfully detect/classify outlier data as separate from normal sensor data. This study is expected to help those who are responsible for developing the real-time monitoring system and implementing critical strategies related to the perishable supply chain.

  11. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Kyeonghwan Park

    2017-04-01

    Full Text Available This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  12. Design and implementation of PAVEMON: A GIS web-based pavement monitoring system based on large amounts of heterogeneous sensors data

    Science.gov (United States)

    Shahini Shamsabadi, Salar

    A web-based PAVEment MONitoring system, PAVEMON, is a GIS oriented platform for accommodating, representing, and leveraging data from a multi-modal mobile sensor system. Stated sensor system consists of acoustic, optical, electromagnetic, and GPS sensors and is capable of producing as much as 1 Terabyte of data per day. Multi-channel raw sensor data (microphone, accelerometer, tire pressure sensor, video) and processed results (road profile, crack density, international roughness index, micro texture depth, etc.) are outputs of this sensor system. By correlating the sensor measurements and positioning data collected in tight time synchronization, PAVEMON attaches a spatial component to all the datasets. These spatially indexed outputs are placed into an Oracle database which integrates seamlessly with PAVEMON's web-based system. The web-based system of PAVEMON consists of two major modules: 1) a GIS module for visualizing and spatial analysis of pavement condition information layers, and 2) a decision-support module for managing maintenance and repair (Mℝ) activities and predicting future budget needs. PAVEMON weaves together sensor data with third-party climate and traffic information from the National Oceanic and Atmospheric Administration (NOAA) and Long Term Pavement Performance (LTPP) databases for an organized data driven approach to conduct pavement management activities. PAVEMON deals with heterogeneous and redundant observations by fusing them for jointly-derived higher-confidence results. A prominent example of the fusion algorithms developed within PAVEMON is a data fusion algorithm used for estimating the overall pavement conditions in terms of ASTM's Pavement Condition Index (PCI). PAVEMON predicts PCI by undertaking a statistical fusion approach and selecting a subset of all the sensor measurements. Other fusion algorithms include noise-removal algorithms to remove false negatives in the sensor data in addition to fusion algorithms developed for

  13. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  14. System for Malicious Node Detection in IPv6-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kresimir Grgic

    2016-01-01

    Full Text Available The trend of implementing the IPv6 into wireless sensor networks (WSNs has recently occurred as a consequence of a tendency of their integration with other types of IP-based networks. The paper deals with the security aspects of these IPv6-based WSNs. A brief analysis of security threats and attacks which are present in the IPv6-based WSN is given. The solution to an adaptive distributed system for malicious node detection in the IPv6-based WSN is proposed. The proposed intrusion detection system is based on distributed algorithms and a collective decision-making process. It introduces an innovative concept of probability estimation for malicious behaviour of sensor nodes. The proposed system is implemented and tested through several different scenarios in three different network topologies. Finally, the performed analysis showed that the proposed system is energy efficient and has a good capability to detect malicious nodes.

  15. An Accelerometer-Based Sensor System for Real-Time Bridge Scour Monitoring

    Directory of Open Access Journals (Sweden)

    Yi-Jie Hsieh

    2015-11-01

    Full Text Available With the fast global climate change, many bridge structures are facing the nature disasters such as earthquakes and floods. The damage of bridges can cause the severe cost of human life and property. The heavy rain brought by the typhoon in July and August in Taiwan causes the bridge scour and makes the damage or collapse for bridges. Since scour is one of the major causes for bridge failure, how to monitor the bridge scour becomes an important task in Taiwan. This paper presents a real-time bridge scour monitoring system based on accelerometer sensors. The presented sensor network consists of a gateway node and under-water sensor nodes with the wired RS-485 communication protocol. The proposed master-slave architecture of the bridge scour monitoring system owns the scalability and flexibility and is setup in the field currently. The experimental results in the field show the presented sensor system can detect the bridge scour effectively with our proposed scour detection algorithm in real time.

  16. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    Science.gov (United States)

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  17. A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors

    Science.gov (United States)

    Schlageter, Vincent; Drljaca, Predrag; Popovic, Radivoje S.; KuČERA, Pavel

    A tracking system with five degrees of freedom based on a 2D-array of 16 Hall sensors and a permanent magnet is presented in this paper. The sensitivity of the Hall sensors is increased by integrated micro- and external macro-flux-concentrators. Detection distance larger than 20cm (during one hour without calibration) is achieved using a magnet of 0.2cm3. This corresponds to a resolution of the sensors of 0.05µTrms. The position and orientation of the marker is displayed in real time at least 20 times per second. The sensing system is small enough to be hand-held and can be used in a normal environment. This presented tracking system has been successfully applied to follow a small swallowed magnet through the entire human digestive tube. This approach is extremely promising as a new non-invasive diagnostic technique in gastro-enterology.

  18. SMA-Based System for Environmental Sensors Released from an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Lorenzo Pellone

    2017-01-01

    Full Text Available In the work at hand, a shape memory alloy (SMA-based system is presented. The system, conceived for releasing environmental sensors from ground or small unmanned aerial vehicles, UAV (often named UAS, unmanned aerial system, is made of a door, integrated into the bottom of the fuselage, a device distributor, operated by a couple of antagonistic SMA springs, and a kinematic chain, to synchronize the deployment operation with the system movement. On the basis of the specifications (weight, available space, energy supply, sensors size, etc., the system design was addressed. After having identified the main system characteristics, a representative mock-up was manufactured, featuring the bottom part of the reference fuselage. Functionality tests were performed to prove the system capability to release the sensors; a detailed characterization was finally carried out, mainly finalized at correlating the kinematic chain displacement with the SMA spring temperature and the supplied electrical power. A comparison between theoretical predictions and experimental outcomes showed good agreement.

  19. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  20. Measurement system for nitrous oxide based on amperometric gas sensor

    Science.gov (United States)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  1. Development of Smart Sensors System Based on Formal Concept Analysis and Ontology Model

    Directory of Open Access Journals (Sweden)

    Hongsheng Xu

    2013-06-01

    Full Text Available The smart sensor is the product of the combination of one or more sensitive components, precision analog circuits, digital circuits, microprocessor, communication interface, intelligent software systems and hardware integration in a packaging component. Formal concept analysis is from the given data to automatically extract the classification relationship between the entire hidden concept and concept, formation of concept model. Ontology is a set of relations between concepts of the specific domain and concept, and it can effectively express the general knowledge of specific field. The paper proposes development of smart sensors system based on formal concept analysis and ontology model. Smart sensor is a micro processor, sensor with information detection, information processing, information memory, logical thinking and judging function. The methods can improve the effect of the smart sensors.

  2. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  3. Model-based sensor diagnosis

    International Nuclear Information System (INIS)

    Milgram, J.; Dormoy, J.L.

    1994-09-01

    Running a nuclear power plant involves monitoring data provided by the installation's sensors. Operators and computerized systems then use these data to establish a diagnostic of the plant. However, the instrumentation system is complex, and is not immune to faults and failures. This paper presents a system for detecting sensor failures using a topological description of the installation and a set of component models. This model of the plant implicitly contains relations between sensor data. These relations must always be checked if all the components are functioning correctly. The failure detection task thus consists of checking these constraints. The constraints are extracted in two stages. Firstly, a qualitative model of their existence is built using structural analysis. Secondly, the models are formally handled according to the results of the structural analysis, in order to establish the constraints on the sensor data. This work constitutes an initial step in extending model-based diagnosis, as the information on which it is based is suspect. This work will be followed by surveillance of the detection system. When the instrumentation is assumed to be sound, the unverified constraints indicate errors on the plant model. (authors). 8 refs., 4 figs

  4. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG

    Directory of Open Access Journals (Sweden)

    Wenquan Jin

    2018-02-01

    Full Text Available Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.

  5. Cantilever-based bio-chemical sensor integrated in a microliquid handling system

    DEFF Research Database (Denmark)

    Thaysen, Jacob; Marie, Rodolphe; Boisen, Anja

    2001-01-01

    The cantilevers have integrated piezoresistive readout which, compared to optical readout, enables simple measurements on even non-transparent liquids, such as blood. First, we introduce a simple theory for using piezoresistive cantilevers as surface stress sensors. Then, the sensor fabrication...... based on conventional microfabrication is described and the sensor characterization is discussed. During the characterization we found a stress sensitivity of (ΔR/R)=4.6:10 -4 (N/m)-1 and a minimum detectable surface stress change of 2.6 mN/m. Aqua regia etch of gold on top of the cantilevers has been...... monitored, and immobilization of single-stranded thiol modified DNA-oligos has been detected by the sensor. Finally, it is demonstrated that it is possible to analyze two samples simultaneously by utilizing the laminar flow in the microliquid handling system....

  6. Performance of UWB Array-Based Radar Sensor in a Multi-Sensor Vehicle-Based Suit for Landmine Detection

    NARCIS (Netherlands)

    Yarovoy, A.; Savelyev, T.; Zhuge, X.; Aubry, P.; Ligthart, L.; Schavemaker, J.G.M.; Tettelaar, P.; Breejen, E. de

    2008-01-01

    In this paper, integration of an UWB array-based timedomain radar sensor in a vehicle-mounted multi-sensor system for landmine detection is described. Dedicated real-time signal processing algorithms are developed to compute the radar sensor confidence map which is used for sensor fusion.

  7. Observability-Based Guidance and Sensor Placement

    Science.gov (United States)

    Hinson, Brian T.

    Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.

  8. A microfluidic glucose sensor incorporating a novel thread-based electrode system.

    Science.gov (United States)

    Gaines, Michelle; Gonzalez-Guerrero, Maria Jose; Uchida, Kathryn; Gomez, Frank A

    2018-05-01

    An electrochemical sensor for the detection of glucose using thread-based electrodes and fabric is described. This device is relatively simple to fabricate and can be used for multiple readings after washing with ethanol. The fabrication of the chip consisted of two steps. First, three thread-based electrodes (reference, working, and counter) were fabricated by painting pieces of nylon thread with either layered silver ink and carbon ink or silver/silver chloride ink. The threads were then woven into a fabric chip with a beeswax barrier molded around the edges in order to prevent leaks from the tested solutions. A thread-based working electrode consisting of one layer of silver underneath two layers of carbon was selected to fabricate the final sensor system. Using the chip, a PBS solution containing glucose oxidase (GOx) (10 mg/mL), potassium ferricyanide (K 3 [Fe(CN) 6 ]) (10 mg/mL) as mediator, and different concentrations of glucose (0-25 mM), was measured by cyclic voltammetry (CV). It was found that the current output from the oxidation of glucose was proportional to the glucose concentrations. This thread-based electrode system is a viable sensor platform for detecting glucose in the physiological range. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. A comparative study of sensor fault diagnosis methods based on observer for ECAS system

    Science.gov (United States)

    Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli

    2017-03-01

    The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.

  10. Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network

    OpenAIRE

    Bo, Cheng; Xin, Cheng; Zhongyi, Zhai; Chengwen, Zhang; Junliang, Chen

    2014-01-01

    Frequent accidents have occurred in coal mine enterprises; therefore, raising the technological level of coal mine safety monitoring systems is an urgent problem. Wireless sensor networks (WSN), as a new field of research, have broad application prospects. This paper proposes a Web of Things- (WoT-) based remote monitoring system that takes full advantage of wireless sensor networks in combination with the CAN bus communication technique that abstracts the underground sensor data and capabili...

  11. Fuzzy-Based Sensor Fusion for Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Jalil Piran

    2015-01-01

    Full Text Available In wireless sensor networks, sensor fusion is employed to integrate the acquired data from diverse sensors to provide a unified interpretation. The best and most salient advantage of sensor fusion is to obtain high-level information in both statistical and definitive aspects, which cannot be attained by a single sensor. In this paper, we propose a novel sensor fusion technique based on fuzzy theory for our earlier proposed Cognitive Radio-based Vehicular Ad Hoc and Sensor Networks (CR-VASNET. In the proposed technique, we considered four input sensor readings (antecedents and one output (consequent. The employed mobile nodes in CR-VASNET are supposed to be equipped with diverse sensors, which cater to our antecedent variables, for example, The Jerk, Collision Intensity, and Temperature and Inclination Degree. Crash_Severity is considered as the consequent variable. The processing and fusion of the diverse sensory signals are carried out by fuzzy logic scenario. Accuracy and reliability of the proposed protocol, demonstrated by the simulation results, introduce it as an applicable system to be employed to reduce the causalities rate of the vehicles’ crashes.

  12. Wireless network system based multi-non-invasive sensors for smart home

    Science.gov (United States)

    Issa Ahmed, Rudhwan

    There are several techniques that have been implemented for smart homes usage; however, most of these techniques are limited to a few sensors. Many of these methods neither meet the needs of the user nor are cost-effective. This thesis discusses the design, development, and implementation of a wireless network system, based on multi-non-invasive sensors for smart home environments. This system has the potential to be used as a means to accurately, and remotely, determine the activities of daily living by continuously monitoring relatively simple parameters that measure the interaction between users and their surrounding environment. We designed and developed a prototype system to meet the specific needs of the elderly population. Unlike audio-video based health monitoring systems (which have associated problems such as the encroachment of privacy), the developed system's distinct features ensure privacy and are almost invisible to the occupants, thus increasing the acceptance levels of this system in household environments. The developed system not only achieved high levels of accuracy, but it is also portable, easy to use, cost-effective, and requires low data rates and less power compared to other wireless devices such as Wi-Fi, Bluetooth, wireless USB, Ultra wideband (UWB), or Infrared (IR) wireless. Field testing of the prototype system was conducted at different locations inside and outside of the Minto Building (Centre for Advanced Studies in Engineering at Carleton University) as well as other locations, such as the washroom, kitchen, and living room of a prototype apartment. The main goal of the testing was to determine the range of the prototype system and the functionality of each sensor in different environments. After it was verified that the system operated well in all of the tested environments, data were then collected at the different locations for analysis and interpretation in order to identify the activities of daily living of an occupant.

  13. Obstacle avoidance test using a sensor-based autonomous robotic system

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Suzuki, Katsuo

    1998-12-01

    From a viewpoint of reducing personnel radiation exposure of plant staffs working in the high radiation area of nuclear facilities, it is often said to be necessary to develop remote robotic systems, which have great potential of performing various tasks in nuclear facilities. Hence, we developed an advanced remote robotic system, consisting of redundant manipulator and environment-sensing systems, which can be applied to complicated handling tasks under unstructured environment. In the robotic system, various types of sensors for environment-sensing are mounted on the redundant manipulator and sensor-based autonomous capabilities are incorporated. This report describes the results of autonomous obstacle avoidance test which was carried out as follows: manipulating valves at the rear-side of wall, through a narrow window of the wall, with the redundant manipulator mounted on an x-axis driving mechanism. From this test, it is confirmed that the developed robotic system can autonomously achieve handling tasks in limited space as avoiding obstacles, which is supposed to be difficult by a non-redundant manipulator. (author)

  14. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang; Zhang, Yingchen

    2016-11-14

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vector regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.

  15. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  16. On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System

    Directory of Open Access Journals (Sweden)

    Wen-Yuah Shih

    2013-04-01

    Full Text Available Many studies utilize the signal strength of short-range radio systems (such as WiFi, ultrasound and infrared to build a radio map for indoor localization, by deploying a large number of beacon nodes within a building. The drawback of such an infrastructure-based approach is that the deployment and calibration of the system are costly and labor-intensive. Some prior studies proposed the use of Pedestrian Dead Reckoning (PDR for indoor localization, which does not require the deployment of beacon nodes. In a PDR system, a small number of sensors are put on the pedestrian. These sensors (such as a G-sensor and gyroscope are used to estimate the distance and direction that a user travels. The effectiveness of a PDR system lies in its success in accurately estimating the user’s moving distance and direction. In this work, we propose a novel waist-mounted based PDR that can measure the user’s step lengths with a high accuracy. We utilize vertical acceleration of the body to calculate the user’s change in height during walking. Based on the Pythagorean Theorem, we can then estimate each step length using this data. Furthermore, we design a map matching algorithm to calibrate the direction errors from the gyro using building floor plans. The results of our experiment show that we can achieve about 98.26% accuracy in estimating the user’s walking distance, with an overall location error of about 0.48 m.

  17. A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System

    Science.gov (United States)

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    Wireless Sensor Network (WSN) technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system. PMID:22163543

  18. Feasibility of an ingestible sensor-based system for monitoring adherence to tuberculosis therapy.

    Directory of Open Access Journals (Sweden)

    Robert Belknap

    Full Text Available Poor adherence to tuberculosis (TB treatment hinders the individual's recovery and threatens public health. Currently, directly observed therapy (DOT is the standard of care; however, high sustaining costs limit its availability, creating a need for more practical adherence confirmation methods. Techniques such as video monitoring and devices to time-register the opening of pill bottles are unable to confirm actual medication ingestions. A novel approach developed by Proteus Digital Health, Inc. consists of an ingestible sensor and an on-body wearable sensor; together, they electronically confirm unique ingestions and record the date/time of the ingestion. A feasibility study using an early prototype was conducted in active TB patients to determine the system's accuracy and safety in confirming co-ingestion of TB medications with sensors. Thirty patients completed 10 DOT visits and 1,080 co-ingestion events; the system showed 95.0% (95% CI 93.5-96.2% positive detection accuracy, defined as the number of detected sensors divided by the number of transmission capable sensors administered. The specificity was 99.7% [95% CI 99.2-99.9%] based on three false signals recorded by receivers. The system's identification accuracy, defined as the number of correctly identified ingestible sensors divided by the number of sensors detected, was 100%. Of 11 adverse events, four were deemed related or possibly related to the device; three mild skin rashes and one complaint of nausea. The system's positive detection accuracy was not affected by the subjects' Body Mass Index (p = 0.7309. Study results suggest the system is capable of correctly identifying ingestible sensors with high accuracy, poses a low risk to users, and may have high patient acceptance. The system has the potential to confirm medication specific treatment compliance on a dose-by-dose basis. When coupled with mobile technology, the system could allow wirelessly observed therapy (WOT for

  19. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Science.gov (United States)

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  20. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs. The procedure for sensor configuration is based on simultaneous perturbation stochastic approximation (SPSA). SPSA avoids the need for detailed modeling of the sensor response by simply......Considers the problem of sensor configuration for complex systems. Our approach involves definition of an appropriate optimality criterion or performance measure, and description of an efficient and practical algorithm for achieving the optimality objective. The criterion for optimal sensor...... relying on observed responses as obtained by limited experimentation with test sensor configurations. We illustrate the approach with the optimal placement of acoustic sensors for signal detection in structures. This includes both a computer simulation study for an aluminum plate, and real...

  1. Porous TiO₂-Based Gas Sensors for Cyber Chemical Systems to Provide Security and Medical Diagnosis.

    Science.gov (United States)

    Galstyan, Vardan

    2017-12-19

    Gas sensors play an important role in our life, providing control and security of technical processes, environment, transportation and healthcare. Consequently, the development of high performance gas sensor devices is the subject of intense research. TiO₂, with its excellent physical and chemical properties, is a very attractive material for the fabrication of chemical sensors. Meanwhile, the emerging technologies are focused on the fabrication of more flexible and smart systems for precise monitoring and diagnosis in real-time. The proposed cyber chemical systems in this paper are based on the integration of cyber elements with the chemical sensor devices. These systems may have a crucial effect on the environmental and industrial safety, control of carriage of dangerous goods and medicine. This review highlights the recent developments on fabrication of porous TiO₂-based chemical gas sensors for their application in cyber chemical system showing the convenience and feasibility of such a model to provide the security and to perform the diagnostics. The most of reports have demonstrated that the fabrication of doped, mixed and composite structures based on porous TiO₂ may drastically improve its sensing performance. In addition, each component has its unique effect on the sensing properties of material.

  2. Development of Weeds Density Evaluation System Based on RGB Sensor

    Science.gov (United States)

    Solahudin, M.; Slamet, W.; Wahyu, W.

    2018-05-01

    Weeds are plant competitors which potentially reduce the yields due to competition for sunlight, water and soil nutrients. Recently, for chemical-based weed control, site-specific weed management that accommodates spatial and temporal diversity of weeds attack in determining the appropriate dose of herbicide based on Variable Rate Technology (VRT) is preferable than traditional approach with single dose herbicide application. In such application, determination of the level of weed density is an important task. Several methods have been studied to evaluate the density of weed attack. The objective of this study is to develop a system that is able to evaluate weed density based on RGB (Red, Green, and Blue) sensors. RGB sensor was used to acquire the RGB values of the surface of the field. An artificial neural network (ANN) model was then used for determining the weed density. In this study the ANN model was trained with 280 training data (70%), 60 validation data (15%), and 60 testing data (15%). Based on the field test, using the proposed method the weed density could be evaluated with an accuracy of 83.75%.

  3. Development of a Torque Sensor-Based Test Bed for Attitude Control System Verification and Validation

    Science.gov (United States)

    2017-12-30

    AFRL-RV-PS- AFRL-RV-PS- TR-2018-0008 TR-2018-0008 DEVELOPMENT OF A TORQUE SENSOR- BASED TEST BED FOR ATTITUDE CONTROL SYSTEM VERIFICATION AND...Sensor-Based Test Bed for Attitude Control System Verification & Validation 5a. CONTRACT NUMBER FA9453-15-1-0315 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...NUMBER 62601F 6. AUTHOR(S) Norman Fitz-Coy 5d. PROJECT NUMBER 4846 5e. TASK NUMBER PPM00015968 5f. WORK UNIT NUMBER EF125135 7. PERFORMING

  4. RFID sensor-tags feeding a context-aware rule-based healthcare monitoring system.

    Science.gov (United States)

    Catarinucci, Luca; Colella, Riccardo; Esposito, Alessandra; Tarricone, Luciano; Zappatore, Marco

    2012-12-01

    Along with the growing of the aging population and the necessity of efficient wellness systems, there is a mounting demand for new technological solutions able to support remote and proactive healthcare. An answer to this need could be provided by the joint use of the emerging Radio Frequency Identification (RFID) technologies and advanced software choices. This paper presents a proposal for a context-aware infrastructure for ubiquitous and pervasive monitoring of heterogeneous healthcare-related scenarios, fed by RFID-based wireless sensors nodes. The software framework is based on a general purpose architecture exploiting three key implementation choices: ontology representation, multi-agent paradigm and rule-based logic. From the hardware point of view, the sensing and gathering of context-data is demanded to a new Enhanced RFID Sensor-Tag. This new device, de facto, makes possible the easy integration between RFID and generic sensors, guaranteeing flexibility and preserving the benefits in terms of simplicity of use and low cost of UHF RFID technology. The system is very efficient and versatile and its customization to new scenarios requires a very reduced effort, substantially limited to the update/extension of the ontology codification. Its effectiveness is demonstrated by reporting both customization effort and performance results obtained from validation in two different healthcare monitoring contexts.

  5. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    . The procedure for sensor configuration is based on the simultaneous perturbation stochastic approximation (SPSA) algorithm. SPSA avoids the need for detailed modeling of the sensor response by simply relying on the observed responses obtained by limited experimentation with test sensor configurations. We......The paper considers the problem of sensor configuration for complex systems with the aim of maximizing the useful information about certain quantities of interest. Our approach involves: 1) definition of an appropriate optimality criterion or performance measure; and 2) description of an efficient...... and practical algorithm for achieving the optimality objective. The criterion for optimal sensor configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs, so as to minimize the redundant information being provided by the multiple sensors...

  6. Early Warning System of Flood Disaster Based on Ultrasonic Sensors and Wireless Technology

    Science.gov (United States)

    Indrasari, W.; Iswanto, B. H.; Andayani, M.

    2018-04-01

    A flood disaster provides considerable losses to the people who live around the river. To mitigate losses of material due to flood disaster required an early warning system of flood disaster. For that reason, it necessary to design a system that provide alert to the people prior the flood disaster. And this paper describes development of a device for early detection system of flood disasters. This device consists of two ultrasonic sensors as a water level detector, and a water flow sensor as a water flow velocity sensor. The wireless technology and GSM is used as an information medium. The system is designed based on water level conditions in the Katulampa Dam, Bogor. Characterization of water level detector showed that the device effectively works in a range of water level of 14-250 cm, with a maximum relative error of 4.3%. Meanwhile the wireless works properly as far as 75 m, and the SMS transmission time is 8.20 second.

  7. Proximity sensor system development. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  8. Proximity sensor system development. CRADA final report

    International Nuclear Information System (INIS)

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors

  9. Modelling of coulometric sensor-actuator systems based on ISFETs with a porous actuator covering the gate

    NARCIS (Netherlands)

    Luo, J.; Luo, J.; Olthuis, Wouter; Bergveld, Piet; Bos, M.; van der Linden, W.E.

    1993-01-01

    The ion-selective field effect transistor (ISFET)-based coulometric sensor¿actuator systems have found applications in acid¿base titration and in the construction of a low-drift carbon dioxide and a pH-static enzyme sensor. In this paper a brief review is given of the previously developed

  10. Blind system identification of two-thermocouple sensor based on cross-relation method

    Science.gov (United States)

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  11. Multi-rate sensor fusion-based adaptive discrete finite-time synergetic control for flexible-joint mechanical systems

    International Nuclear Information System (INIS)

    Xue Guang-Yue; Ren Xue-Mei; Xia Yuan-Qing

    2013-01-01

    This paper proposes an adaptive discrete finite-time synergetic control (ADFTSC) scheme based on a multi-rate sensor fusion estimator for flexible-joint mechanical systems in the presence of unmeasured states and dynamic uncertainties. Multi-rate sensors are employed to observe the system states which cannot be directly obtained by encoders due to the existence of joint flexibilities. By using an extended Kalman filter (EKF), the finite-time synergetic controller is designed based on a sensor fusion estimator which estimates states and parameters of the mechanical system with multi-rate measurements. The proposed controller can guarantee the finite-time convergence of tracking errors by the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach. (general)

  12. A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System

    Directory of Open Access Journals (Sweden)

    Jeonghwan Hwang

    2010-12-01

    Full Text Available Wireless Sensor Network (WSN technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system.

  13. A Solar Position Sensor Based on Image Vision.

    Science.gov (United States)

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José

    2017-07-29

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.

  14. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  15. A sensor-based automation system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool

  16. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  17. IEEE 1451.2 based Smart sensor system using ADuc847

    Science.gov (United States)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  18. WALS: A sensor-based robotic system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system to enhance system safety, flexibility, and robustness and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and too release mechanisms were designed to prevent payload mishandling. An extensive failure modes and effects analysis (FMEA) of the automation system was developed as a safety design analysis tool

  19. Toward a multipoint optical fibre sensor system for use in process water systems based on artificial neural network pattern recognition

    International Nuclear Information System (INIS)

    King, D; Lyons, W B; Flanagan, C; Lewis, E

    2005-01-01

    An optical fibre sensor capable of detecting various concentrations of ethanol in water supplies is reported. The sensor is based on a U-bend sensor configuration and is incorporated into a 170-metre length of silica cladding silica core optical fibre. The sensor is interrogated using Optical Time Domain Reflectometry (OTDR) and it is proposed to apply artificial neural network (ANN) pattern recognition techniques to the resulting OTDR signals to accurately classify the sensor test conditions. It is also proposed that additional U-bend configuration sensors will be added to the fibre measurement length, in order to implement a multipoint optical fibre sensor system

  20. Porous TiO2-Based Gas Sensors for Cyber Chemical Systems to Provide Security and Medical Diagnosis

    Science.gov (United States)

    2017-01-01

    Gas sensors play an important role in our life, providing control and security of technical processes, environment, transportation and healthcare. Consequently, the development of high performance gas sensor devices is the subject of intense research. TiO2, with its excellent physical and chemical properties, is a very attractive material for the fabrication of chemical sensors. Meanwhile, the emerging technologies are focused on the fabrication of more flexible and smart systems for precise monitoring and diagnosis in real-time. The proposed cyber chemical systems in this paper are based on the integration of cyber elements with the chemical sensor devices. These systems may have a crucial effect on the environmental and industrial safety, control of carriage of dangerous goods and medicine. This review highlights the recent developments on fabrication of porous TiO2-based chemical gas sensors for their application in cyber chemical system showing the convenience and feasibility of such a model to provide the security and to perform the diagnostics. The most of reports have demonstrated that the fabrication of doped, mixed and composite structures based on porous TiO2 may drastically improve its sensing performance. In addition, each component has its unique effect on the sensing properties of material. PMID:29257076

  1. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  2. ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability

    Directory of Open Access Journals (Sweden)

    Milos Bogdanovic

    2013-08-01

    Full Text Available Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.

  3. ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.

    Science.gov (United States)

    Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja

    2013-08-15

    Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.

  4. ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability

    Science.gov (United States)

    Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja

    2013-01-01

    Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application. PMID:23955435

  5. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.

    Science.gov (United States)

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-08-04

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  6. Distributed Event-Based Set-Membership Filtering for a Class of Nonlinear Systems With Sensor Saturations Over Sensor Networks.

    Science.gov (United States)

    Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos

    2017-11-01

    In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.

  7. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  8. POSITIONING BASED ON INTEGRATION OF MUTI-SENSOR SYSTEMS USING KALMAN FILTER AND LEAST SQUARE ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    M. Omidalizarandi

    2013-09-01

    Full Text Available Sensor fusion is to combine different sensor data from different sources in order to make a more accurate model. In this research, different sensors (Optical Speed Sensor, Bosch Sensor, Odometer, XSENS, Silicon and GPS receiver have been utilized to obtain different kinds of datasets to implement the multi-sensor system and comparing the accuracy of the each sensor with other sensors. The scope of this research is to estimate the current position and orientation of the Van. The Van's position can also be estimated by integrating its velocity and direction over time. To make these components work, it needs an interface that can bridge each other in a data acquisition module. The interface of this research has been developed based on using Labview software environment. Data have been transferred to PC via A/D convertor (LabJack and make a connection to PC. In order to synchronize all the sensors, calibration parameters of each sensor is determined in preparatory step. Each sensor delivers result in a sensor specific coordinate system that contains different location on the object, different definition of coordinate axes and different dimensions and units. Different test scenarios (Straight line approach and Circle approach with different algorithms (Kalman Filter, Least square Adjustment have been examined and the results of the different approaches are compared together.

  9. DEVELOPMENT OF A PEDESTRIAN INDOOR NAVIGATION SYSTEM BASED ON MULTI-SENSOR FUSION AND FUZZY LOGIC ESTIMATION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Y. C. Lai

    2015-05-01

    Full Text Available This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS. There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system

  10. Development of a Pedestrian Indoor Navigation System Based on Multi-Sensor Fusion and Fuzzy Logic Estimation Algorithms

    Science.gov (United States)

    Lai, Y. C.; Chang, C. C.; Tsai, C. M.; Lin, S. Y.; Huang, S. C.

    2015-05-01

    This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS). There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system to extend its

  11. Research on continuous environmental radiation monitoring system for NPP based on wireless sensor network

    International Nuclear Information System (INIS)

    Fu Hailong; Jia Mingchun; Peng Guichu

    2010-01-01

    According to the characteristics of environmental gamma radiation monitoring and the requirement of nuclear power plant (NPP) developing, a new continuous environmental radiation monitoring system based on wireless sensor network (WSN) was presented. The basic concepts and application of WSN were introduced firstly. And then the characteristics of the new system were analyzed. At the same time the configuration of the WSN and the whole structure of the system were built. Finally, the crucial techniques used in system designing, such as the design of sensor node, the choice of communication mode and protocol, the time synchronization and space location, the security of the network and the faults tolerance were introduced. (authors)

  12. AN INTEROPERABLE ARCHITECTURE FOR AIR POLLUTION EARLY WARNING SYSTEM BASED ON SENSOR WEB

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE framework of the Open Geospatial Consortium (OGC, which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research

  13. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    Science.gov (United States)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  14. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  15. Pollution Monitoring System Using Gas Sensor based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2016-01-01

    Full Text Available Carbon monoxide (CO and carbon dioxide (CO2 gases are classified as colorless and odorless gas so we need special tools to monitor their concentration in the air. Concentration of air pollution of CO and CO2 that are high in the air will give serious effects for health status. CO is a poisonous gas that damages the circulation of oxygen in the blood when inhaled, while CO2 is one of the gases that causes global warming. In this paper, we developed an integrated pollution monitoring (IPOM system to monitor the concentration of air pollution. This research implemented three sensor nodes (end-device which each node contains CO and CO2 sensors on the gas sensors board to perform sensing from the environment. Furthermore, the data taken from the environment by the sensor will be sent to the meshlium gateway using IEEE 802.15.4 Zigbee communications and processed by the gateway in order to be sent to the computer server. The data is stored in meshlium gateway using MySQL database as a backup, and it will be synchronized to the MySQL database in the computer server. We provide services for public to access the information in database server through a desktop and website application.

  16. Modular finger and hand motion capturing system based on inertial and magnetic sensors

    Directory of Open Access Journals (Sweden)

    Valtin Markus

    2017-03-01

    Full Text Available The assessment of hand posture and kinematics is increasingly important in various fields. This includes the rehabilitation of stroke survivors with restricted hand function. This paper presents a modular, ambulatory measurement system for the assement of the remaining hand function and for closed-loop controlled therapy. The device is based on inertial sensors and utilizes up to five interchangeable sensor strips to achieve modularity and to simplify the sensor attachment. We introduce the modular hardware design and describe algorithms used to calculate the joint angles. Measurements with two experimental setups demonstrate the feasibility and the potential of such a tracking device.

  17. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  18. A Multiobjective Fuzzy Inference System based Deployment Strategy for a Distributed Mobile Sensor Network

    Directory of Open Access Journals (Sweden)

    Amol P. Bhondekar

    2010-03-01

    Full Text Available Sensor deployment scheme highly governs the effectiveness of distributed wireless sensor network. Issues such as energy conservation and clustering make the deployment problem much more complex. A multiobjective Fuzzy Inference System based strategy for mobile sensor deployment is presented in this paper. This strategy gives a synergistic combination of energy capacity, clustering and peer-to-peer deployment. Performance of our strategy is evaluated in terms of coverage, uniformity, speed and clustering. Our algorithm is compared against a modified distributed self-spreading algorithm to exhibit better performance.

  19. Muscular condition monitoring system using fiber bragg grating sensors

    International Nuclear Information System (INIS)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun

    2014-01-01

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  20. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  1. Reviewing Automated Sensor-Based Visitor Tracking Studies

    DEFF Research Database (Denmark)

    Mygind, Lærke; Bentsen, Peter

    2017-01-01

    The method of timing and tracking has a long history within visitor studies and exhibition evaluation. With an increase in indoor tracking research, sensor-based positioning tool usage in museums has grown, as have expectations regarding the efficacy of technological sensing systems. This literat......The method of timing and tracking has a long history within visitor studies and exhibition evaluation. With an increase in indoor tracking research, sensor-based positioning tool usage in museums has grown, as have expectations regarding the efficacy of technological sensing systems...... methods in terms of obtained level of detail, accuracy, level of obtrusiveness, automation of data entry, ability to time concurrent behaviors, and amount of observer training needed. Although individual sensor-based and traditional, observational methods had both strengths and weaknesses, all sensor......-based timing and tracking methods provided automated data entry and the opportunity to track a number of visitors simultaneously regardless of the available personnel....

  2. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  3. Wi-Fi and GSM Based Motion Sensor for Home Security System Apllication

    Science.gov (United States)

    Huzaimy Jusoh, Mohamad; Jamali, Muhammad Firdaus Bin; Zainal Abidin, Ahmad Faizal bin; Asari Sulaiman, Ahmad; Fahmi Hussin, Mohamad

    2015-11-01

    The Wi-Fi and GSM based home security system is a system designed to reduce the high rates of crimes in most personal housing. The overall project consists of three major parts; the input part that consists of sensors, the software part that operates the entire hardware structure, and the output part, which consists of camera, alarm system, and micro secure digital (SD) data storage card. It is based on the principle of infrared radiation generated by a human body heat which trigger the passive infrared (PIR) sensor. The microcontroller processes the received signal, then trigger the buzzer alarm, camera and alerts the home owner through an SMS. Once triggered, the camera will capture the image of the intruder and the image will be saved in SD card. As alert to the user (away), the Global System for Mobile Communication (GSM) will send the Short Message Service (SMS) from the device to the user's mobile phone. The image will be sent to Dropbox data cloud storage via Wi-Fi for further clarification. The prototype was successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Malaysia.

  4. A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Directory of Open Access Journals (Sweden)

    Gabriel J. García

    2014-03-01

    Full Text Available The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc., reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

  5. A survey on FPGA-based sensor systems: towards intelligent and reconfigurable low-power sensors for computer vision, control and signal processing.

    Science.gov (United States)

    García, Gabriel J; Jara, Carlos A; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M; Torres, Fernando

    2014-03-31

    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

  6. Development of a hybrid earthquake early warning system based on single sensor technique

    International Nuclear Information System (INIS)

    Gravirov, V.V.; Kislov, K.V.

    2012-01-01

    There are two methods to earthquake early warning system: the method based on a network of seismic stations and the single-sensor method. Both have advantages and drawbacks. The current systems rely on high density seismic networks. Attempts at implementing techniques based on the single-station principle encounter difficulties in the identification of earthquake in noise. The noise may be very diverse, from stationary to impulsive. It seems a promising line of research to develop hybrid warning systems with single-sensors being incorporated in the overall early warning network. This will permit using all advantages and will help reduce the radius of the hazardous zone where no earthquake warning can be produced. The main problems are highlighted and the solutions of these are discussed. The system is implemented to include three detection processes in parallel. The first is based on the study of the co-occurrence matrix of the signal wavelet transform. The second consists in using the method of a change point in a random process and signal detection in a moving time window. The third uses artificial neural networks. Further, applying a decision rule out the final earthquake detection is carried out and estimate its reliability. (author)

  7. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network

    Directory of Open Access Journals (Sweden)

    Susel Fernandez

    2016-08-01

    Full Text Available Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  8. Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory

    Directory of Open Access Journals (Sweden)

    Qian Ding

    2014-10-01

    Full Text Available Multi-sensor and information fusion technology based on Dempster-Shafer evidence theory is applied in the system of a building fire alarm to realize early detecting and alarming. By using a multi-sensor to monitor the parameters of the fire process, such as light, smoke, temperature, gas and moisture, the range of fire monitoring in space and time is expanded compared with a single-sensor system. Then, the D-S evidence theory is applied to fuse the information from the multi-sensor with the specific fire model, and the fire alarm is more accurate and timely. The proposed method can avoid the failure of the monitoring data effectively, deal with the conflicting evidence from the multi-sensor robustly and improve the reliability of fire warning significantly.

  9. Chemical Sensors Based on Metal Oxide Nanostructures

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  10. Study on the Road Traffic Survey System Based on Micro-ferromagnetic Induction Coil Sensor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2014-05-01

    Full Text Available Road traffic information is the basis of road traffic management and control. Due to the special design of the sensor coil and ferromagnetic core, traffic survey system which uses micro ferromagnetic inductive coil vehicle detector, not only has the features of small size, simple installation and little road surface damage, but also has the advantages of output signal strength, simple signal processing circuit and obvious characteristics for output waveform corresponding vehicle feature. Based on the introduction of the sensor working principle, the construction of hardware and signal processing circuit for the traffic survey system is described in detail in the paper. Combined with the characteristics of the sensor output waveform, adaptive nearest neighbor clustering RBF neural network algorithm used to classify the vehicles is proposed and verified by experimental method. The result has a high vehicle classification rate and demonstrates the feasibility of the system.

  11. Burr formation detector for fiber laser cutting based on a photodiode sensor system

    Science.gov (United States)

    Schleier, Max; Adelmann, Benedikt; Neumeier, Benedikt; Hellmann, Ralf

    2017-11-01

    We report a unique sensor system based on a InGaAs photodiode to detect the formation of burr during near infrared fiber laser cutting. The sensor approach encompasses the measurement of the thermal radiation form the process zone, optical filtering, digitalized sampling at 20 kHz, digital filtering using an elliptical band-pass filter 12th order and calculation of the standard deviation. We find a linear correlation between the deduced sensor signal and the generated burr height with this functionality being experimentally confirmed for laser cutting of mild and stainless steel of different thicknesses. The underlying mechanism of this transducer concept is attributed to the melt flow dynamics inside the cut kerf.

  12. Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems.

    Science.gov (United States)

    Munera, Eduardo; Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Noguera, Juan Fco Blanes

    2015-07-24

    The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are constrained by the client's requirements and the capacity of the system. An embedded sensor with advanced processing and communications capabilities supplies high level information, abstracting from the data acquisition process and objects recognition mechanisms. The implementation of an embedded sensor/actuator as a Smart Resource permits clients to access sensor information through distributed network services. Smart resources can offer sensor services as well as computing, communications and peripheral access by implementing a self-aware based adaptation mechanism which adapts the execution profile to the context. On the other hand, information integrity must be ensured when computing processes are dynamically adapted. Therefore, the processing must be adapted to perform tasks in a certain lapse of time but always ensuring a minimum process quality. In the same way, communications must try to reduce the data traffic without excluding relevant information. The main objective of the paper is to present a dynamic configuration mechanism to adapt the sensor processing and communication to the client's requirements in the DCS. This paper describes an implementation of a smart resource based on a Red, Green, Blue, and Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.

  13. Chemical Sensors Based on Cyclodextrin Derivatives.

    Science.gov (United States)

    Ogoshi, Tomoki; Harada, Akira

    2008-08-25

    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

  14. The Design of Wireless Sensor Network System Based on ZigBee Technology for Greenhouse

    International Nuclear Information System (INIS)

    Zhu, Y W; Zhong, X X; Shi, J F

    2006-01-01

    Wireless sensor network is a new research field. It can be used in some special situation for signal collection, processing and transmitting. Zigbee is a new Wireless sensor network technology characteristic of less distance and low speed. It is a new wireless network protocol stack of IEEE 802.15.4. Lately traditional system to collects parameters for Greenhouse is widely used in agriculture. The traditional system adopts wired way wiring, which makes the system complex and expensive. Generally modern Greenhouse has hundreds of square meters and they may plant variety of plants depending on different seasons. So we need to adjust the sensors which collect parameters for Greenhouse to a better place to work more efficient. Adopting wireless way wiring is convenient and economical. This paper developed a wireless sensor network system based on ZigBee technology for greenhouse. It offers flexibility and mobility to save cost and energy spent on wiring. The framework hardware and software structure, related programming are also discussed in this paper. Comparing the system which uses ZigBee technology with traditional wired network system for greenhouse, it has advantage of low cost..low power and wider coverage. Additionally it complies with IEEE802.15.4 protocol, which makes it convenient to communicate with other products that comply with the protocol too

  15. Experimental Investigation on Admittance-Based Piezoelectric Sensor Diagnostic Process

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyejin; Park, Tongil; Park, Gyuhae [Chonnam National University, Gwangju (Korea, Republic of)

    2015-01-15

    Structural health monitoring (SHM) techniques based on the use of active-sensing piezoelectric (PZT) materials have received considerable attention. The validation of the PZT functionality during SHM operation is critical to successfully implementing a reliable SHM system. In this study, we investigated several parameters that affect the admittance-based sensor diagnostic process. We experimentally identified the temperature dependency of the active-sensor diagnostic process. We found that the admittance-based sensor diagnostic process can differentiate the adhesion conditions of bonding materials that are used to install a PZT on a structure, which is important when designing a sensor diagnostic process for an SHM system.

  16. Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method

    International Nuclear Information System (INIS)

    Jiang Zheng-Xian; Cui Bao-Tong; Lou Xu-Yang; Zhuang Bo

    2017-01-01

    In this paper, the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method. Firstly, a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems. The mobile agents, each of which is affixed with a controller and an actuator, can provide the observer-based control for the target systems. By using Lyapunov stability arguments, the stability for the estimation error system and distributed parameter control system is proved, meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance. A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches. (paper)

  17. FPGA-based multimodal embedded sensor system integrating low- and mid-level vision.

    Science.gov (United States)

    Botella, Guillermo; Martín H, José Antonio; Santos, Matilde; Meyer-Baese, Uwe

    2011-01-01

    Motion estimation is a low-level vision task that is especially relevant due to its wide range of applications in the real world. Many of the best motion estimation algorithms include some of the features that are found in mammalians, which would demand huge computational resources and therefore are not usually available in real-time. In this paper we present a novel bioinspired sensor based on the synergy between optical flow and orthogonal variant moments. The bioinspired sensor has been designed for Very Large Scale Integration (VLSI) using properties of the mammalian cortical motion pathway. This sensor combines low-level primitives (optical flow and image moments) in order to produce a mid-level vision abstraction layer. The results are described trough experiments showing the validity of the proposed system and an analysis of the computational resources and performance of the applied algorithms.

  18. Sensor selection of helicopter transmission systems based on physical model and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Lyu Kehong

    2014-06-01

    Full Text Available In the helicopter transmission systems, it is important to monitor and track the tooth damage evolution using lots of sensors and detection methods. This paper develops a novel approach for sensor selection based on physical model and sensitivity analysis. Firstly, a physical model of tooth damage and mesh stiffness is built. Secondly, some effective condition indicators (CIs are presented, and the optimal CIs set is selected by comparing their test statistics according to Mann–Kendall test. Afterwards, the selected CIs are used to generate a health indicator (HI through sen slop estimator. Then, the sensors are selected according to the monotonic relevance and sensitivity to the damage levels. Finally, the proposed method is verified by the simulation and experimental data. The results show that the approach can provide a guide for health monitoring of helicopter transmission systems, and it is effective to reduce the test cost and improve the system’s reliability.

  19. Estimation of Temporal Gait Parameters Using a Wearable Microphone-Sensor-Based System

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-12-01

    Full Text Available Most existing wearable gait analysis methods focus on the analysis of data obtained from inertial sensors. This paper proposes a novel, low-cost, wireless and wearable gait analysis system which uses microphone sensors to collect footstep sound signals during walking. This is the first time a microphone sensor is used as a wearable gait analysis device as far as we know. Based on this system, a gait analysis algorithm for estimating the temporal parameters of gait is presented. The algorithm fully uses the fusion of two feet footstep sound signals and includes three stages: footstep detection, heel-strike event and toe-on event detection, and calculation of gait temporal parameters. Experimental results show that with a total of 240 data sequences and 1732 steps collected using three different gait data collection strategies from 15 healthy subjects, the proposed system achieves an average 0.955 F1-measure for footstep detection, an average 94.52% accuracy rate for heel-strike detection and 94.25% accuracy rate for toe-on detection. Using these detection results, nine temporal related gait parameters are calculated and these parameters are consistent with their corresponding normal gait temporal parameters and labeled data calculation results. The results verify the effectiveness of our proposed system and algorithm for temporal gait parameter estimation.

  20. Business model for sensor-based fall recognition systems.

    Science.gov (United States)

    Fachinger, Uwe; Schöpke, Birte

    2014-01-01

    AAL systems require, in addition to sophisticated and reliable technology, adequate business models for their launch and sustainable establishment. This paper presents the basic features of alternative business models for a sensor-based fall recognition system which was developed within the context of the "Lower Saxony Research Network Design of Environments for Ageing" (GAL). The models were developed parallel to the R&D process with successive adaptation and concretization. An overview of the basic features (i.e. nine partial models) of the business model is given and the mutual exclusive alternatives for each partial model are presented. The partial models are interconnected and the combinations of compatible alternatives lead to consistent alternative business models. However, in the current state, only initial concepts of alternative business models can be deduced. The next step will be to gather additional information to work out more detailed models.

  1. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  2. Enhanced FBG sensor-based system performance assessment for monitoring strain along a prestressed CFRP rod in structural monitoring

    DEFF Research Database (Denmark)

    Kerrouche, A.; Boyle, W.J.O.; Sun, T.

    2009-01-01

    of the existing FBG-based system and the evaluation of the software developed to be compatible with a resolution reaching as high as +/- 0.15 mu epsilon is presented. The system has been tested under particular conditions where a prestressed CFRP (carbon fiber reinforced polymer) rod to which a FBG sensor......Fiber Bragg grating (FBG) sensor-based systems have been widely used for many engineering applications including most recently a number of applications in structural health monitoring. It is well known that strain and temperature both affect the FBG spectrum which in the interrogation system...

  3. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  4. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention.

    Science.gov (United States)

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop's surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control.

  5. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    Science.gov (United States)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  6. A Vehicle Steering Recognition System Based on Low-Cost Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2017-03-01

    Full Text Available Recognizing how a vehicle is steered and then alerting drivers in real time is of utmost importance to the vehicle and driver’s safety, since fatal accidents are often caused by dangerous vehicle maneuvers, such as rapid turns, fast lane-changes, etc. Existing solutions using video or in-vehicle sensors have been employed to identify dangerous vehicle maneuvers, but these methods are subject to the effects of the environmental elements or the hardware is very costly. In the mobile computing era, smartphones have become key tools to develop innovative mobile context-aware systems. In this paper, we present a recognition system for dangerous vehicle steering based on the low-cost sensors found in a smartphone: i.e., the gyroscope and the accelerometer. To identify vehicle steering maneuvers, we focus on the vehicle’s angular velocity, which is characterized by gyroscope data from a smartphone mounted in the vehicle. Three steering maneuvers including turns, lane-changes and U-turns are defined, and a vehicle angular velocity matching algorithm based on Fast Dynamic Time Warping (FastDTW is adopted to recognize the vehicle steering. The results of extensive experiments show that the average accuracy rate of the presented recognition reaches 95%, which implies that the proposed smartphone-based method is suitable for recognizing dangerous vehicle steering maneuvers.

  7. Integrating soft sensor systems using conductive thread

    Science.gov (United States)

    Teng, Lijun; Jeronimo, Karina; Wei, Tianqi; Nemitz, Markus P.; Lyu, Geng; Stokes, Adam A.

    2018-05-01

    We are part of a growing community of researchers who are developing a new class of soft machines. By using mechanically soft materials (MPa modulus) we can design systems which overcome the bulk-mechanical mismatches between soft biological systems and hard engineered components. To develop fully integrated soft machines—which include power, communications, and control sub-systems—the research community requires methods for interconnecting between soft and hard electronics. Sensors based upon eutectic gallium alloys in microfluidic channels can be used to measure normal and strain forces, but integrating these sensors into systems of heterogeneous Young’s modulus is difficult due the complexity of finding a material which is electrically conductive, mechanically flexible, and stable over prolonged periods of time. Many existing gallium-based liquid alloy sensors are not mechanically or electrically robust, and have poor stability over time. We present the design and fabrication of a high-resolution pressure-sensor soft system that can transduce normal force into a digital output. In this soft system, which is built on a monolithic silicone substrate, a galinstan-based microfluidic pressure sensor is integrated with a flexible printed circuit board. We used conductive thread as the interconnect and found that this method alleviates problems arising due to the mechanical mismatch between conventional metal wires and soft or liquid materials. Conductive thread is low-cost, it is readily wetted by the liquid metal, it produces little bending moment into the microfluidic channel, and it can be connected directly onto the copper bond-pads of the flexible printed circuit board. We built a bridge-system to provide stable readings from the galinstan pressure sensor. This system gives linear measurement results between 500-3500 Pa of applied pressure. We anticipate that integrated systems of this type will find utility in soft-robotic systems as used for wearable

  8. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  9. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-01-01

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831

  10. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-12-30

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  11. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Sandeep Pirbhulal

    2016-12-01

    Full Text Available Wireless sensor networks (WSNs provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP to develop the Internet of Things (IoT for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  12. Design and research of intelligent mobile robot environment detection system based on multi-sensor technology

    International Nuclear Information System (INIS)

    Chen Yu; Wen Xinling

    2007-01-01

    The intelligent mobile robot environment detection system is researched based on SCM MC68HC908GP3 as core of control system. The four groups of detection systems constituted by ultrasonic sensors and infrared sensors gather information of forward, behind, left and right different directions, solve the problem of blind spot, and make up each other shortage. The distance measurement precision is improved rapidly and the detection precision is less than ±1% through using the way of the pulse shooting, the signal chooses circuit, and the temperature compensation. The system design method and the hardware circuit are introduced in detail. Simultaneity, the system adopts the single chip control technology, it makes the system possess favorable expansibility and gains the practicability in engineering field. (authors)

  13. POTENTIALS OF RAMAN BASED SENSOR SYSTEM FOR AN ONLINE ANALYSIS OF HUMAN INHALE AND EXHALE

    Directory of Open Access Journals (Sweden)

    T. Seeger

    2015-11-01

    Full Text Available A gas sensor based on spontaneous Raman scattering is proposed for the compositional analysis of single breath events. A description of the sensor as well as of the calibration procedure, which also allows the quantification of condensable gases, is presented. Moreover, a comprehensive characterization of the system is carried out in order to determine the measurement uncertainty. Finally, the sensor is applied to consecutive breath events and allowed measurements with 250 ms time resolution. The Raman sensor is able to detect all the major gas components, i.e. N2, O2, CO2, and H2O at ambient pressure with a high temporal resolution. Concentration fluctuations within a single breath event could be resolved.

  14. Design and Development of a Mobile Sensor Based the Blind Assistance Wayfinding System

    Science.gov (United States)

    Barati, F.; Delavar, M. R.

    2015-12-01

    The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  15. DESIGN AND DEVELOPMENT OF A MOBILE SENSOR BASED THE BLIND ASSISTANCE WAYFINDING SYSTEM

    Directory of Open Access Journals (Sweden)

    F. Barati

    2015-12-01

    Full Text Available The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  16. Multistream sensor fusion-based prognostics model for systems with single failure modes

    International Nuclear Information System (INIS)

    Fang, Xiaolei; Paynabar, Kamran; Gebraeel, Nagi

    2017-01-01

    Advances in sensor technology have facilitated the capability of monitoring the degradation of complex engineering systems through the analysis of multistream degradation signals. However, the varying levels of correlation with physical degradation process for different sensors, high-dimensionality of the degradation signals and cross-correlation among different signal streams pose significant challenges in monitoring and prognostics of such systems. To address the foregoing challenges, we develop a three-step multi-sensor prognostic methodology that utilizes multistream signals to predict residual useful lifetimes of partially degraded systems. We first identify the informative sensors via the penalized (log)-location-scale regression. Then, we fuse the degradation signals of the informative sensors using multivariate functional principal component analysis, which is capable of modeling the cross-correlation of signal streams. Finally, the third step focuses on utilizing the fused signal features for prognostics via adaptive penalized (log)-location-scale regression. We validate our multi-sensor prognostic methodology using simulation study as well as a case study of aircraft turbofan engines available from NASA repository.

  17. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    . These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...... also describe the design and implementation of the COUGAR sensor database system....

  18. Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention

    Science.gov (United States)

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813

  19. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Science.gov (United States)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  20. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  1. Integrated tunneling sensor for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Sadewasser, S.; Abadal, G.; Barniol, N.

    2006-01-01

    Transducers based on quantum mechanical tunneling provide an extremely sensitive sensor principle, especially for nanoelectromechanical systems. For proper operation a gap between the electrodes of below 1 nm is essential, requiring the use of structures with a mobile electrode. At such small...... distances, attractive van der Waals and capillary forces become sizable, possibly resulting in snap-in of the electrodes. The authors present a comprehensive analysis and evaluation of the interplay between the involved forces and identify requirements for the design of tunneling sensors. Based...... on this analysis, a tunneling sensor is fabricated by Si micromachining technology and its proper operation is demonstrated. (c) 2006 American Institute of Physics....

  2. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  3. Physiological roles of acid-base sensors.

    Science.gov (United States)

    Levin, Lonny R; Buck, Jochen

    2015-01-01

    Acid-base homeostasis is essential for life. The macromolecules upon which living organisms depend are sensitive to pH changes, and physiological systems use the equilibrium between carbon dioxide, bicarbonate, and protons to buffer their pH. Biological processes and environmental insults are constantly challenging an organism's pH; therefore, to maintain a consistent and proper pH, organisms need sensors that measure pH and that elicit appropriate responses. Mammals use multiple sensors for measuring both intracellular and extracellular pH, and although some mammalian pH sensors directly measure protons, it has recently become apparent that many pH-sensing systems measure pH via bicarbonate-sensing soluble adenylyl cyclase.

  4. 3D printing of wearable fractal-based sensor systems for neurocardiology and healthcare

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2017-04-01

    Neurocardiology is the pathophysiological interplay of nervous and cardiovascular systems. The communication between the heart and brain has revealed various methodologies in healthcare that could be investigated to study the heart-brain interactions and other cardiovascular and neurological diseases. A textile based wearable nanosensor system in the form of e-bra, e-shirt, e-headband, e-brief, underwear etc, was presented in this SPIE conferences earlier for noninvasive recording of EEG and EKG, and showing the correlation between the brain and heart signals. In this paper, the technology is expanded further using fractal based geometries using 3D printing system for low cost and flexible wearable sensor system for healthcare.

  5. Graphene-Paper Based Electrochemical Sensors

    DEFF Research Database (Denmark)

    Zhang, Minwei; Halder, Arnab; Cao, Xianyi

    2017-01-01

    in electrochemical sensors and energy technologies amongothers. In this chapter, we present some examples to overview recent advances in theresearch and development of two-dimensional (2D) graphene papers as new materialsfor electrochemical sensors. The chapter covers the design, fabrication, functionalizationand...... functionalization ofgraphene papers with polymer and nanoscale functional building blocks for electrochemical-sensing purposes. In terms of electrochemical-sensing applications, the emphasis ison enzyme-graphene and nanoparticle-graphene paper-based systems for the detectionof glucose. We finally conclude...

  6. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  7. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  8. A resonant force sensor based on ionic polymer metal composites

    International Nuclear Information System (INIS)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-01-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors

  9. A resonant force sensor based on ionic polymer metal composites

    Science.gov (United States)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-02-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors.

  10. Distributed Sensor Coordination for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States)

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  11. Information-based self-organization of sensor nodes of a sensor network

    Science.gov (United States)

    Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  12. Model-Based Sensor Placement for Component Condition Monitoring and Fault Diagnosis in Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mobed, Parham [Texas Tech Univ., Lubbock, TX (United States); Pednekar, Pratik [West Virginia Univ., Morgantown, WV (United States); Bhattacharyya, Debangsu [West Virginia Univ., Morgantown, WV (United States); Turton, Richard [West Virginia Univ., Morgantown, WV (United States); Rengaswamy, Raghunathan [Texas Tech Univ., Lubbock, TX (United States)

    2016-01-29

    Design and operation of energy producing, near “zero-emission” coal plants has become a national imperative. This report on model-based sensor placement describes a transformative two-tier approach to identify the optimum placement, number, and type of sensors for condition monitoring and fault diagnosis in fossil energy system operations. The algorithms are tested on a high fidelity model of the integrated gasification combined cycle (IGCC) plant. For a condition monitoring network, whether equipment should be considered at a unit level or a systems level depends upon the criticality of the process equipment, its likeliness to fail, and the level of resolution desired for any specific failure. Because of the presence of a high fidelity model at the unit level, a sensor network can be designed to monitor the spatial profile of the states and estimate fault severity levels. In an IGCC plant, besides the gasifier, the sour water gas shift (WGS) reactor plays an important role. In view of this, condition monitoring of the sour WGS reactor is considered at the unit level, while a detailed plant-wide model of gasification island, including sour WGS reactor and the Selexol process, is considered for fault diagnosis at the system-level. Finally, the developed algorithms unify the two levels and identifies an optimal sensor network that maximizes the effectiveness of the overall system-level fault diagnosis and component-level condition monitoring. This work could have a major impact on the design and operation of future fossil energy plants, particularly at the grassroots level where the sensor network is yet to be identified. In addition, the same algorithms developed in this report can be further enhanced to be used in retrofits, where the objectives could be upgrade (addition of more sensors) and relocation of existing sensors.

  13. A general framework for sensor-based human activity recognition.

    Science.gov (United States)

    Köping, Lukas; Shirahama, Kimiaki; Grzegorzek, Marcin

    2018-04-01

    Today's wearable devices like smartphones, smartwatches and intelligent glasses collect a large amount of data from their built-in sensors like accelerometers and gyroscopes. These data can be used to identify a person's current activity and in turn can be utilised for applications in the field of personal fitness assistants or elderly care. However, developing such systems is subject to certain restrictions: (i) since more and more new sensors will be available in the future, activity recognition systems should be able to integrate these new sensors with a small amount of manual effort and (ii) such systems should avoid high acquisition costs for computational power. We propose a general framework that achieves an effective data integration based on the following two characteristics: Firstly, a smartphone is used to gather and temporally store data from different sensors and transfer these data to a central server. Thus, various sensors can be integrated into the system as long as they have programming interfaces to communicate with the smartphone. The second characteristic is a codebook-based feature learning approach that can encode data from each sensor into an effective feature vector only by tuning a few intuitive parameters. In the experiments, the framework is realised as a real-time activity recognition system that integrates eight sensors from a smartphone, smartwatch and smartglasses, and its effectiveness is validated from different perspectives such as accuracies, sensor combinations and sampling rates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhang Qian

    2018-01-01

    Full Text Available This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  15. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.

    Science.gov (United States)

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-07-28

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.

  16. A MEMS SOI-based piezoresistive fluid flow sensor

    Science.gov (United States)

    Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.

    2018-02-01

    In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.

  17. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  18. GNSS-based multi-sensor system for structural monitoring applications

    Science.gov (United States)

    Bogusz, Janusz; Figurski, Mariusz; Nykiel, Grzegorz; Szolucha, Marcin; Wrona, Maciej

    2012-03-01

    In 2007 the Centre of Applied Geomatics of the Military University of Technology started measurements aimed at the monitoring of the dynamic state of the engineering structures using GNSS. The complexity of the problem forced us to apply an integrated system architecture. This concept is based on simultaneous measuring some selected elements of the structure using various types of sensors. Measurement information from numerous instruments is numerically integrated for determining the investigated parameter, e.g., the displacement vector. The CAG team performed the tests using such a system on the two permanent 500-meters long bridges, the temporary bridge crossing for military purposes and the 300-meters high chimney of the CHP station. The information about displacement vector together with the characteristic frequencies of the structure were determined using different techniques for increasing of its reliability. This paper presents the results of such tests, gives description of the integrated system designed in the CAG and brings forward with the plans for the future.

  19. Third-generation imaging sensor system concepts

    Science.gov (United States)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  20. Wearable computing from modeling to implementation of wearable systems based on body sensor networks

    CERN Document Server

    Fortino, Giancarlo; Galzarano, Stefano

    2018-01-01

    This book provides the most up-to-date research and development on wearable computing, wireless body sensor networks, wearable systems integrated with mobile computing, wireless networking and cloud computing. This book has a specific focus on advanced methods for programming Body Sensor Networks (BSNs) based on the reference SPINE project. It features an on-line website (http://spine.deis.unical.it) to support readers in developing their own BSN application/systems and covers new emerging topics on BSNs such as collaborative BSNs, BSN design methods, autonomic BSNs, integration of BSNs and pervasive environments, and integration of BSNs with cloud computing. The book provides a description of real BSN prototypes with the possibility to see on-line demos and download the software to test them on specific sensor platforms and includes case studies for more practical applications. * Provides a future roadmap by learning advanced technology and open research issues * Gathers the background knowledge to tackl...

  1. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    Science.gov (United States)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Park, June; Jhon, Young Min; Seong, Maeng-Je; Hong, Seunghun

    2010-02-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ~1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  2. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Hong, Seunghun [Department of Physics and Astronomy, Seoul National University, Shilim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Park, June; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Jhon, Young Min, E-mail: mseong@cau.ac.kr, E-mail: shong@phya.snu.ac.kr [Korea Institute of Science and Technology, Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791 (Korea, Republic of)

    2010-02-05

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of {approx}1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  3. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    International Nuclear Information System (INIS)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Hong, Seunghun; Park, June; Seong, Maeng-Je; Jhon, Young Min

    2010-01-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ∼1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  4. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  5. Optimal Sensor Selection for Health Monitoring Systems

    Science.gov (United States)

    Santi, L. Michael; Sowers, T. Shane; Aguilar, Robert B.

    2005-01-01

    Sensor data are the basis for performance and health assessment of most complex systems. Careful selection and implementation of sensors is critical to enable high fidelity system health assessment. A model-based procedure that systematically selects an optimal sensor suite for overall health assessment of a designated host system is described. This procedure, termed the Systematic Sensor Selection Strategy (S4), was developed at NASA John H. Glenn Research Center in order to enhance design phase planning and preparations for in-space propulsion health management systems (HMS). Information and capabilities required to utilize the S4 approach in support of design phase development of robust health diagnostics are outlined. A merit metric that quantifies diagnostic performance and overall risk reduction potential of individual sensor suites is introduced. The conceptual foundation for this merit metric is presented and the algorithmic organization of the S4 optimization process is described. Representative results from S4 analyses of a boost stage rocket engine previously under development as part of NASA's Next Generation Launch Technology (NGLT) program are presented.

  6. Development of an equipment diagnostic system that evaluates sensor drift

    International Nuclear Information System (INIS)

    Kanada, Masaki; Arita, Setsuo; Tada, Nobuo; Yokota, Katsuo

    2011-01-01

    The importance of condition monitoring technology for equipment has increased with the introduction of condition-based maintenance in nuclear power plants. We are developing a diagnostic system using process signals for plant equipment, such as pumps and motors. It is important to enable the diagnostic system to distinguish sensor drift and equipment failure. We have developed a sensor drift diagnostic method that combines some highly correlative sensor signals by using the MT (Mahalanobis-Taguchi) method. Furthermore, we have developed an equipment failure diagnostic method that measures the Mahalanobis distance from the normal state of equipment by the MT method. These methods can respectively detect sensor drift and equipment failure, but there are the following problems. In the sensor drift diagnosis, there is a possibility of misjudging the sensor drift when the equipment failure occurs and the process signal changes because the behavior of the process signal is the same as that of the sensor drift. Oppositely, in the equipment failure diagnosis, there is a possibility of misjudging the equipment failure when the sensor drift occurs because the sensor drift influences the change of process signal. To solve these problems, we propose a diagnostic method combining the sensor drift diagnosis and the equipment failure diagnosis by the MT method. Firstly, the sensor drift values are estimated by the sensor drift diagnosis, and the sensor drift is removed from the process signal. It is necessary to judge the validity of the estimated sensor drift values before removing the sensor drift from the process signal. We developed a method for judging the validity of the estimated sensor drift values by using the drift distribution based on the sensor calibration data. And then, the equipment failure is diagnosed by using the process signals after removal of the sensor drifts. To verify the developed diagnostic system, several sets of simulation data based on abnormal cases

  7. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyi [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Zhu, Yong, E-mail: y.zhu@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Chen, Youping; Song, Han; Huang, Pengcheng [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Dao, Dzung Viet [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia)

    2017-06-15

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  8. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    International Nuclear Information System (INIS)

    Wang, Boyi; Zhu, Yong; Chen, Youping; Song, Han; Huang, Pengcheng; Dao, Dzung Viet

    2017-01-01

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  9. Development of a Simple Traffic Sensor and System with Vehicle Classification Based on PVDF Film Element

    Directory of Open Access Journals (Sweden)

    D. R. SANTOSO

    2011-03-01

    Full Text Available In this paper, piezoelectric sensor system for measuring traffic flow with vehicle classification is proposed and investigated. Sensing element is made of PVDF film, which on both sides plastered with sheets of metal electrodes for making electrical connections. This sensor will generate electric voltage when subjected to mechanical pressure by the wheels of the vehicle. The signal conditioning is required to make sensor output voltage in the range of 0-5 Volts. To classify the types of vehicles crossing the sensor, three-level comparator is used, with specifications of a low voltage reference for motorcycles, medium voltage reference for a family vehicle, and a high voltage reference for buses, trucks and the like. Output of the comparators are already a logic '0' or '1' is then processed by a microcontroller based data acquisition system that the output shows the number and type of vehicles that crossed the road in the form of digital code. These data then transmitted to a control centre that was built based on a PC. At the control centre, traffic data tabulated in the form of measurement database and stored for further analysis.

  10. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  11. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  12. Application of wireless sensor network technology in logistics information system

    Science.gov (United States)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  13. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  14. Context-Aware Based Efficient Training System Using Augmented Reality and Gravity Sensor for Healthcare Services

    Science.gov (United States)

    Kim, Seoksoo; Jung, Sungmo; Song, Jae-Gu; Kang, Byong-Ho

    As augmented reality and a gravity sensor is of growing interest, siginificant developement is being made on related technology, which allows application of the technology in a variety of areas with greater expectations. In applying Context-aware to augmented reality, it can make useful programs. A traning system suggested in this study helps a user to understand an effcienct training method using augmented reality and make sure if his exercise is being done propery based on the data collected by a gravity sensor. Therefore, this research aims to suggest an efficient training environment that can enhance previous training methods by applying augmented reality and a gravity sensor.

  15. MEMS-based sensors for post-earthquake damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, M; Zonta, D; Trapani, D [DIMS, University of Trento, Via Mesiano 77, 38123, Trento (Italy); Athanasopoulos, N; Garetsos, A; Stratakos, Y E [Advanced Microwave Systems Ltd, 2, 25th Martiou Street, 17778 Athens (Greece); Amditis, A J; Bimpas, M [ICCS, National Technical University of Athens, 9 Iroon Polytechniou Street, 15773 Zografou (Greece); Ulieru, D, E-mail: daniele.zonta@unitn.it [SITEX 45 SRL, 114 Ghica Tei Blvd, 72235 Bucharest (Romania)

    2011-07-19

    The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims to produce small size sensing nodes for measurement of strain and acceleration, integrating Micro-Electro-Mechanical Systems (MEMS) based sensors and Radio Frequency Identification (RFID) tags in a single package that will be attached to reinforced concrete buildings and will transmit data using a wireless interface. During the first phase of the project completed so far, sensor prototypes were produced by assembling preexisting components. This paper outlines the device operating principles, production scheme and operation at both unit and network levels. It also reports on validation campaigns conducted in the laboratory to assess system performance. Accelerometer sensors were tested on a reduced scale metal frame mounted on a shaking table, while strain sensors were embedded in both reduced and full-scale reinforced concrete specimens undergoing increasing deformation cycles up to extensive damage and collapse. The performance of the sensors developed for the project and their applicability to long-term seismic monitoring are discussed.

  16. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  17. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    International Nuclear Information System (INIS)

    Santos, José; Ramos, Pedro M; Janeiro, Fernando M

    2015-01-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed. (paper)

  18. A Secure Automated Elevator Management System and Pressure Sensor based Floor Estimation for Indoor Mobile Robot Transportation

    Directory of Open Access Journals (Sweden)

    Ali Abduljalil Abdulla

    2017-08-01

    Full Text Available In this paper, a secure elevator handling system is presented to enable a flexible movement of wheeled mobile robots among laboratories distributed in different floors. The automated handling system consists mainly of an ADAM module which has the ability to call the elevator to the robot’s current floor and to request the destination floor. The LPS25HP pressure sensor attached to an STM32F411 microcontroller is utilized as a height measurement system to estimate the robot’s current floor inside the elevator. The ultrasonic sensor is used to recognize the elevator’s door status. Many challenges have to be solved to realize a stable height measurement system based on pressure sensor readings. The difference of the pressure sensor readings before and after soldering is realized by comparing the reading after soldering with an accurate barometric reading. In addition, the sensor output signal shows oscillation and wide variation of the same floor pressure sensor readings at different times. The oscillation in the output signal has been handled using a first order FIR smoothing filter. The first order filter was selected to balance between the stability and the elapsed time to receive the updated values. An auto-calibration stage is established to maintain the wide variation in the atmospheric pressure readings by calibrating the sensor readings with the robot’s current floor before entering the elevator. An error handling management system is utilized to guarantee a stable automated elevator management system performance. Many experiments to assess and verify the performance of the automated elevator management system and robot’s current floor estimation are reported. The experimental results show that the proposed methods and sub-systems developed for the mobile robot are effective and efficient in providing a transportation service in multiple-floor life sciences laboratories.

  19. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  20. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system

    International Nuclear Information System (INIS)

    Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen

    2017-01-01

    This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from  −100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was  −0.967 kHz hPa −1 , namely  −0.69 ppm hPa −1 , which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than  ±0.35%, while that of the existing sensor was  ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of  ±0.015 °C and power of 20 mW. (paper)

  1. Reputation-based secure sensor localization in wireless sensor networks.

    Science.gov (United States)

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments.

  2. Research on Bridge Sensor Validation Based on Correlation in Cluster

    Directory of Open Access Journals (Sweden)

    Huang Xiaowei

    2016-01-01

    Full Text Available In order to avoid the false alarm and alarm failure caused by sensor malfunction or failure, it has been critical to diagnose the fault and analyze the failure of the sensor measuring system in major infrastructures. Based on the real time monitoring of bridges and the study on the correlation probability distribution between multisensors adopted in the fault diagnosis system, a clustering algorithm based on k-medoid is proposed, by dividing sensors of the same type into k clusters. Meanwhile, the value of k is optimized by a specially designed evaluation function. Along with the further study of the correlation of sensors within the same cluster, this paper presents the definition and corresponding calculation algorithm of the sensor’s validation. The algorithm is applied to the analysis of the sensor data from an actual health monitoring system. The result reveals that the algorithm can not only accurately measure the failure degree and orientate the malfunction in time domain but also quantitatively evaluate the performance of sensors and eliminate error of diagnosis caused by the failure of the reference sensor.

  3. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    Science.gov (United States)

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  4. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  5. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2014-08-01

    Full Text Available This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  6. Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Muda, R; Lewis, E; O' Keeffe, S; Dooly, G; Clifford, J, E-mail: razali.muda@ul.i [Optical Fibre Sensors Research Centre, Electronic and Computer Engineering Department, University of Limerick (Ireland)

    2009-07-01

    A novel and highly compact optical fibre based sensor system for measurement of high concentrations CO{sub 2} gas emissions in modern automotive exhaust is presented. The sensor system works based on the principle of open-path direct absorption spectroscopy in the mid-infrared wavelength range. The sensor system, which comprises low cost components and is compact in design, is well suited for applications in monitoring CO{sub 2} emissions from the exhaust of automotive vehicles. The sensor system utilises calcium fluoride (CaF{sub 2}) lenses and a narrow band pass (NBP) filter for detection of CO{sub 2} gas. The response of the sensor to high concentrations of CO{sub 2} gas is presented and the result is compared with that of a commercial flue gas analyser. The sensor shows response times of 5.2s and demonstrates minimal susceptibility to cross interferences of other gases present in the exhaust system.

  7. SERS-based pesticide detection by using nanofinger sensors

    Science.gov (United States)

    Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong

    2015-01-01

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  8. Indoor air quality inspection and analysis system based on gas sensor array

    Science.gov (United States)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  9. A Depth Video Sensor-Based Life-Logging Human Activity Recognition System for Elderly Care in Smart Indoor Environments

    Directory of Open Access Journals (Sweden)

    Ahmad Jalal

    2014-07-01

    Full Text Available Recent advancements in depth video sensors technologies have made human activity recognition (HAR realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.

  10. A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments.

    Science.gov (United States)

    Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin

    2014-07-02

    Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.

  11. Sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage.

    Science.gov (United States)

    Weng, Falu; Liu, Mingxin; Mao, Weijie; Ding, Yuanchun; Liu, Feifei

    2018-05-10

    The problem of sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage is investigated in this paper. The objective of designing controllers is to guarantee the stability and anti-disturbance performance of the closed-loop systems while some sensor outages happen. Firstly, based on matrix transformation, the state-space model of structural systems with sensor outages and uncertainties appearing in the mass, damping and stiffness matrices is established. Secondly, by considering most of those earthquakes or strong winds happen in a very short time, and it is often the peak values make the structures damaged, the finite-time stability analysis method is introduced to constrain the state responses in a given time interval, and the H-infinity stability is adopted in the controller design to make sure that the closed-loop system has a prescribed level of disturbance attenuation performance during the whole control process. Furthermore, all stabilization conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using the LMI Toolbox. Finally, numerical examples are given to demonstrate the effectiveness of the proposed theorems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.

    Science.gov (United States)

    Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo

    2018-03-02

    Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.

  13. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors

    Directory of Open Access Journals (Sweden)

    Minglin Wu

    2016-10-01

    Full Text Available In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects.

  14. Design of Early Warning System Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Gan Bo

    2018-01-01

    Full Text Available In order to solve the shortcomings of the landslide monitoring technology method, a set of landslides monitoring and early warning system is designed. It can achieve real-time sensor data acquisition, remote transmission and query display. In addition, aiming at the harsh environment of landslide monitoring and the performance requirements of the monitoring system, an improved minimum hop routing protocol is proposed. It can reduce network energy consumption, enhance network robustness, and improve node layout and networking flexibility. In order to realize the remote transmission of data, GPRS wireless communication is used to transmit monitoring data. Combined with remote monitoring center, real-time data display, query, preservation and landslide warning and prediction are realized. The results show that the sensor data acquisition system is accurate, the system is stable, and the node network is flexible. Therefore, the monitoring system has a good use value.

  15. Internetting tactical security sensor systems

    Science.gov (United States)

    Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.

    1998-08-01

    The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control

  16. Three neural network based sensor systems for environmental monitoring

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1994-05-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. One of the missions of the Pacific Northwest Laboratory is to examine and develop new technologies for environmental restoration and waste management at the Hanford Site. In this paper, three prototype sensing systems are discussed. These prototypes are composed of sensing elements, data acquisition system, computer, and neural network implemented in software, and are capable of automatically identifying contaminants. The first system employs an array of tin-oxide gas sensors and is used to identify chemical vapors. The second system employs an array of optical sensors and is used to identify the composition of chemical dyes in liquids. The third system contains a portable gamma-ray spectrometer and is used to identify radioactive isotopes. In these systems, the neural network is used to identify the composition of the sensed contaminant. With a neural network, the intense computation takes place during the training process. Once the network is trained, operation consists of propagating the data through the network. Since the computation involved during operation consists of vector-matrix multiplication and application of look-up tables unknown samples can be rapidly identified in the field

  17. Sensor Selection and Data Validation for Reliable Integrated System Health Management

    Science.gov (United States)

    Garg, Sanjay; Melcher, Kevin J.

    2008-01-01

    For new access to space systems with challenging mission requirements, effective implementation of integrated system health management (ISHM) must be available early in the program to support the design of systems that are safe, reliable, highly autonomous. Early ISHM availability is also needed to promote design for affordable operations; increased knowledge of functional health provided by ISHM supports construction of more efficient operations infrastructure. Lack of early ISHM inclusion in the system design process could result in retrofitting health management systems to augment and expand operational and safety requirements; thereby increasing program cost and risk due to increased instrumentation and computational complexity. Having the right sensors generating the required data to perform condition assessment, such as fault detection and isolation, with a high degree of confidence is critical to reliable operation of ISHM. Also, the data being generated by the sensors needs to be qualified to ensure that the assessments made by the ISHM is not based on faulty data. NASA Glenn Research Center has been developing technologies for sensor selection and data validation as part of the FDDR (Fault Detection, Diagnosis, and Response) element of the Upper Stage project of the Ares 1 launch vehicle development. This presentation will provide an overview of the GRC approach to sensor selection and data quality validation and will present recent results from applications that are representative of the complexity of propulsion systems for access to space vehicles. A brief overview of the sensor selection and data quality validation approaches is provided below. The NASA GRC developed Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively selecting an optimal sensor suite to provide overall health assessment of a host system. S4 can be logically partitioned into three major subdivisions: the knowledge base, the down

  18. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  19. Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Zhang Yingjun

    2015-02-01

    Full Text Available In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total distance travelled.

  20. CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.

    Science.gov (United States)

    Yao, Lei; Yung, Ka Yi; Khan, Rifat; Chodavarapu, Vamsy P; Bright, Frank V

    2010-12-01

    We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O 2 ) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O 2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp) 3 ] 2+ and ([Ru(bpy) 3 ] 2+ ) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.

  1. WIRELESS SENSOR SYSTEM FOR IMPLEMENTATION OF SMART SPACES

    Directory of Open Access Journals (Sweden)

    Gerardo Cázarez-Ayala

    2014-01-01

    Full Text Available This paper describes the design, implementation and application of a smart sensor system based in wireless communication protocol, which was developed with the main objective of facilitate the implementation of smart places, whereby monitoring and supervision of environmental physical variables in a residence or commercial buildings. Based in this system, we want to co-help taking advantage and save electric energy, optimizing the use of the lighting systems and air conditioner only in the schedules and under pre-established conditions for the final user. The system is based in a variety of nodes o modules of sensors like temperature, humidity, light, carbon monoxide, noise and LP gas which have the ability to work collaboratively in networks with topologies like star, tree and mesh.

  2. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  3. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  4. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  5. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  6. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  7. Transparent Fingerprint Sensor System for Large Flat Panel Display.

    Science.gov (United States)

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee

    2018-01-19

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.

  8. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  9. Model based, sensor directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  10. Geographically distributed environmental sensor system

    Science.gov (United States)

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  11. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  12. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Science.gov (United States)

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  13. A near-optimal low complexity sensor fusion technique for accurate indoor localization based on ultrasound time of arrival measurements from low-quality sensors

    Science.gov (United States)

    Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.

    2009-05-01

    A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.

  14. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungwon Lee

    2009-05-01

    Full Text Available TheIP-based Ubiquitous Sensor Network (IP-USN is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System called RIDES (Robust Intrusion DEtection System for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  15. Environmental information system and odour monitoring based on citizen and technology innovative sensors

    International Nuclear Information System (INIS)

    Ledent, Philippe; Stevenot, Bernard; Delva, Julien

    2013-01-01

    The challenge is the integration of citizens as ''community-based'' observation providers, giving the odour perception and discomfort and getting feed-back in real time from a learning monitoring system. The level of annoyance depends on how odours are emitted and in what intensity, their dispersion under ambient atmospheric conditions and finally on citizens' exposure and perception. The Environmental Information System and Odour Monitoring developed in the project OMNISCIENTIS funded by the EU brings together state of the art technologies and open communication capabilities in order to mitigate odour annoyance. The project allows for citizen feedback, deepens knowledge on odour measurement and management and aims to support harmonised legislation at EU level. Moreover the project results can provide savings to industries. The core is an information system allowing inhabitants to serve as human sensors, acting according to sociological patterns, which influence odour perception, discomfort and nuisance. It provides a dedicated tool to consider odour acceptability, based on a community-based opinion. Due to the subjective nature of odour perception, odour monitoring and fast modelling is used to assist and adjust the information citizens provide via Smartphone and obtained by e-nose and modelling. Innovative in-situ sensors are improved to monitor ambient odour exposures. A specific odour dispersion model system is developed to obtain interrelated spatial odour exposure levels. This fast and innovative model system helps us to evaluate the performance of measures taken at the very moment odours are emitted and with respect to the way in which these occur. The Living Lab approach ensures stakeholder involvement, citizens' participation in decision-making and supports dissemination activities. The results are conveyed to stakeholders and general public. (orig.)

  16. Heimdall System for MSSS Sensor Tasking

    Science.gov (United States)

    Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.

    coordinated sensor usage, and tasking schedules driven by catalog improvement goals (reduced overall covariance, etc.). The improved performance also enables more responsive sensor tasking to address external events, newly detected objects, newly detected object activity, and sensor anomalies. Instead of having to wait until the next day's scheduling phase, events can be addressed with new tasking schedules immediately (within seconds or minutes). Perhaps the most important benefit is improved SSA based on an overall improvement to the quality of the space catalog. By driving sensor tasking and scheduling based on predicted Information Gain and other relevant factors, better decisions are made in the application of available sensor resources, leading to an improved catalog and better information about the objects of most interest. The Heimdall software solution provides a configurable, automated system to improve sensor tasking efficiency and responsiveness for SSA applications. The FISST algorithms for Track Prioritization, SSA specific task and resource attributes, Scheduler algorithms, and configurable SSA-specific Figure-of-Merit together provide optimized and tunable scheduling for the Maui Space Surveillance Site and possibly other sites and organizations across the U.S. military and for allies around the world.

  17. Wearable Sensor Systems for Infants

    Directory of Open Access Journals (Sweden)

    Zhihua Zhu

    2015-02-01

    Full Text Available Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  18. Smart container UWB sensor system for situational awareness of intrusion alarms

    Science.gov (United States)

    Romero, Carlos E.; Haugen, Peter C.; Zumstein, James M.; Leach, Jr., Richard R.; Vigars, Mark L.

    2013-06-11

    An in-container monitoring sensor system is based on an UWB radar intrusion detector positioned in a container and having a range gate set to the farthest wall of the container from the detector. Multipath reflections within the container make every point on or in the container appear to be at the range gate, allowing intrusion detection anywhere in the container. The system also includes other sensors to provide false alarm discrimination, and may include other sensors to monitor other parameters, e.g. radiation. The sensor system also includes a control subsystem for controlling system operation. Communications and information extraction capability may also be included. A method of detecting intrusion into a container uses UWB radar, and may also include false alarm discrimination. A secure container has an UWB based monitoring system

  19. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    Science.gov (United States)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  20. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  1. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  2. Signal transmission in a human body medium-based body sensor network using a Mach-Zehnder electro-optical sensor.

    Science.gov (United States)

    Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He

    2012-11-30

    The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  3. Automated wireless monitoring system for cable tension using smart sensors

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  4. A one-step colorimetric acid-base titration sensor using a complementary color changing coordination system.

    Science.gov (United States)

    Cho, Hui Hun; Kim, Si Hyun; Heo, Jun Hyuk; Moon, Young Eel; Choi, Young Hun; Lim, Dong Cheol; Han, Kwon-Hoon; Lee, Jung Heon

    2016-06-21

    We report the development of a colorimetric sensor that allows for the quantitative measurement of the acid content via acid-base titration in a single-step. In order to create the sensor, we used a cobalt coordination system (Co-complex sensor) that changes from greenish blue colored Co(H2O)4(OH)2 to pink colored Co(H2O)6(2+) after neutralization. Greenish blue and pink are two complementary colors with a strong contrast. As a certain amount of acid is introduced to the Co-complex sensor, a portion of greenish blue colored Co(H2O)4(OH)2 changes to pink colored Co(H2O)6(2+), producing a different color. As the ratio of greenish blue and pink in the Co-complex sensor is determined by the amount of neutralization reaction occurring between Co(H2O)4(OH)2 and an acid, the sensor produced a spectrum of green, yellow green, brown, orange, and pink colors depending on the acid content. In contrast, the color change appeared only beyond the end point for normal acid-base titration. When we mixed this Co-complex sensor with different concentrations of citric acid, tartaric acid, and malic acid, three representative organic acids in fruits, we observed distinct color changes for each sample. This color change could also be observed in real fruit juice. When we treated the Co-complex sensor with real tangerine juice, it generated diverse colors depending on the concentration of citric acid in each sample. These results provide a new angle on simple but quantitative measurements of analytes for on-site usage in various applications, such as in food, farms, and the drug industry.

  5. Enhanced technologies for unattended ground sensor systems

    Science.gov (United States)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  6. Sensor-based supporting mobile system Parkinson disease clinical tests utilising biomedical and RFID technologies

    Directory of Open Access Journals (Sweden)

    Chmielewski Mariusz

    2017-01-01

    Full Text Available This paper discusses method and tool for assisting clinical tests of pharmaceutical drugs utilising sensors and mobile technologies. Emerging sensor and mobile technologies deliver new opportunities to gather and process medical data. Presented analytical approach implements such observations and delivers new, convenient means for remote patient monitoring. Clinical tests are highly specialised process requiring methodology and tools to support such research. Currently available methods rely mostly on analogue approach (booklets, requiring the clinical test participant to fill in health state daily. Such approach often can be biased by unpunctual, not precise reporting. The mobile device can support this process by automatic scheduling and recording an actual time of reports and most of all it can record the inertial and biometric sensor data during the survey process. Presented analytical method (tremors recognition and mobile tool offers consistent approach to clinical test assistance transforming and Android smartphone into remote reporting and notification tool. The tool offers additionally features for sensor based diagnostics support for PD tremor recognition as well as specific clonic and tonic symptoms (dedicated for further system extensions towards epilepsy. Capabilities of the system delivers also RFID mechanisms for efficient on-site clinical test authorisation and configuration. This feature simplifies application installation and automatic set-up considering the participant, clinical test configuration, schedule, smartphone and sensor data. Such a composition delivers convenient and reliable tool which can assist patients and medical staff during the process objectifying the clinical tests results and helping to ensure good quality of the data, quickly available and easily accessible.

  7. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  8. Implementation of Asset Management System Based on Wireless Sensor Technology

    Directory of Open Access Journals (Sweden)

    Nan WANG

    2014-02-01

    Full Text Available RFID technology is regarded as one of the top ten key technologies in the 21st century, which has extensive application prospect in various fields, including asset management, public safety and so on. Through analyzing the current problems existing in asset management, this paper proposes to apply RFID technology in device management to effectively improve the level of automation and informatization of device management, and designs the scheme of equipment monitoring system based on 433 MHz RFID electronic tag and reader. The hardware part of monitoring system consists of the RFID sensor terminals attached in the device and the readers distributed in each monitoring site. The reader uploads the information collected by tag to the backend server and the management system, so as to allow managers and decision makers to understand the usage rate and location of the experimental instruments and to provide managers with a scientific basis for decision making, which effectively solves the relatively backward status quo of current device management level.

  9. Mobility-based Time References for Wireless Sensor Networks

    CERN Document Server

    Sebastiano, Fabio; Makinwa, Kofi A A

    2013-01-01

     This book describes the use of low-power low-cost and extremely small radios to provide essential time reference for wireless sensor networks.  The authors explain how to integrate such radios in a standard CMOS process to reduce both cost and size, while focusing on the challenge of designing a fully integrated time reference for such radios. To enable the integration of the time reference, system techniques are proposed and analyzed, several kinds of integrated time references are reviewed, and mobility-based references are identified as viable candidates to provide the required accuracy at low-power consumption. Practical implementations of a mobility-based oscillator and a temperature sensor are also presented, which demonstrate the required accuracy over a wide temperature range, while drawing 51-uW from a 1.2-V supply in a 65-nm CMOS process. Provides system analysis to understand requirements for time/frequency accuracy in wireless sensor networks; Describes system optimization for time references i...

  10. An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks

    Directory of Open Access Journals (Sweden)

    Keun Ho Ryu

    2012-03-01

    Full Text Available In a wireless sensor network, sensors collect data about natural phenomena and transmit them to a server in real-time. Many studies have been conducted focusing on the processing of continuous queries in an approximate form. However, this approach is difficult to apply to environmental applications which require the correct data to be stored. In this paper, we propose a weather monitoring system for handling and storing the sensor data stream in real-time in order to support continuous spatial and/or temporal queries. In our system, we exploit two time-based insertion methods to store the sensor data stream and reduce the number of managed tuples, without losing any of the raw data which are useful for queries, by using the sensors’ temporal attributes. In addition, we offer a method for reducing the cost of the join operations used in processing spatiotemporal queries by filtering out a list of irrelevant sensors from query range before making a join operation. In the results of the performance evaluation, the number of tuples obtained from the data stream is reduced by about 30% in comparison to a naïve approach, thereby decreasing the query execution time.

  11. Vehicle Fault Diagnose Based on Smart Sensor

    Science.gov (United States)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  12. Laser beam welding quality monitoring system based in high-speed (10 kHz) uncooled MWIR imaging sensors

    Science.gov (United States)

    Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo

    2015-05-01

    The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self

  13. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  14. Potential use of ground-based sensor technologies for weed detection.

    Science.gov (United States)

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  15. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    International Nuclear Information System (INIS)

    Qing, Xinlin P; Beard, Shawn J; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-01-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H 2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment

  16. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  17. Study of photoconductor-based radiological image sensors

    International Nuclear Information System (INIS)

    Beaumont, Francois

    1989-01-01

    Because of the evolution of medical imaging techniques to digital Systems, it is necessary to replace radiological film which has many drawbacks, by a detector quite as efficient and quickly giving a digitizable signal. The purpose of this thesis is to find new X-ray digital imaging processes using photoconductor materials such as amorphous selenium. After reviewing the principle of direct radiology and functions to be served by the X-ray sensor (i.e. detection, memory, assignment, visualization), we explain specification. We especially show the constraints due to the object to be radiographed (condition of minimal exposure), and to the reading signal (electronic noise detection associated with a reading frequency). As a result of this study, a first photoconductor sensor could be designed. Its principle is based on photo-carrier trapping at dielectric-photoconductor structure interface. The reading System needs the scanning of a laser beam upon the sensor surface. The dielectric-photoconductor structure enabled us to estimate the possibilities offered by the sensor and to build a complete x-ray imaging System. The originality of thermo-dielectric sensor, that was next studied, is to allow a thermal assignment reading. The chosen System consists in varying the ferroelectric polymer capacity whose dielectric permittivity is weak at room temperature. The thermo-dielectric material was studied by thermal or Joule effect stimulation. During our experiments, trapping was found in a sensor made of amorphous selenium between two electrodes. This new effect was performed and enabled us to expose a first interpretation. Eventually, the comparison of these new sensor concepts with radiological film shows the advantage of the proposed solution. (author) [fr

  18. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  19. Auxiliary Sensor-Based Borehole Transient Electromagnetic System for the Nondestructive Inspection of Multipipe Strings

    Directory of Open Access Journals (Sweden)

    Bo Dang

    2017-08-01

    Full Text Available Transient electromagnetic (TEM techniques are widely used in the field of geophysical prospecting. In borehole detection, the nondestructive inspection (NDI of a metal pipe can be performed efficiently using the properties of eddy currents. However, with increasing concern for safety in oil and gas production, more than one string of pipe is used to protect wellbores, which complicates data interpretation. In this paper, an auxiliary sensor-based borehole TEM system for the NDI of multipipe strings is presented. On the basis of the characteristics of the borehole TEM model, we investigate the principle behind the NDI of multipipe strings using multiple time slices of induced electromotive force (EMF in a single sensor. The results show that the detection performance of NDI is strongly influenced by eddy-current diffusion in the longitudinal direction. To solve this problem, we used time slices of the induced EMF in both the main and auxiliary sensors. The performance of the proposed system was verified by applying it to an oil well with a production casing and liner. Moreover, field experiments were conducted, and the results demonstrate the effectiveness of the proposed method.

  20. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  1. A capacitive rf power sensor based on mems technology

    NARCIS (Netherlands)

    Fernandez, L.J.

    2005-01-01

    Existing power sensors for RF signals are based on thermistors, diodes and thermocouples. These power sensors are used as terminating devices and therefore they dissipate the complete incoming signal. Furthermore, new telecommunication systems require low weight, volume and power consumption and a

  2. Transparent Fingerprint Sensor System for Large Flat Panel Display

    Directory of Open Access Journals (Sweden)

    Wonkuk Seo

    2018-01-01

    Full Text Available In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO TFT sensor array and associated custom Read-Out IC (ROIC are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC. To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array.

  3. Circuits and Systems for Low-Power Miniaturized Wireless Sensors

    Science.gov (United States)

    Nagaraju, Manohar

    The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.

  4. Observability analysis for model-based fault detection and sensor selection in induction motors

    International Nuclear Information System (INIS)

    Nakhaeinejad, Mohsen; Bryant, Michael D

    2011-01-01

    Sensors in different types and configurations provide information on the dynamics of a system. For a specific task, the question is whether measurements have enough information or whether the sensor configuration can be changed to improve the performance or to reduce costs. Observability analysis may answer the questions. This paper presents a general algorithm of nonlinear observability analysis with application to model-based diagnostics and sensor selection in three-phase induction motors. A bond graph model of the motor is developed and verified with experiments. A nonlinear observability matrix based on Lie derivatives is obtained from state equations. An observability index based on the singular value decomposition of the observability matrix is obtained. Singular values and singular vectors are used to identify the most and least observable configurations of sensors and parameters. A complex step derivative technique is used in the calculation of Jacobians to improve the computational performance of the observability analysis. The proposed algorithm of observability analysis can be applied to any nonlinear system to select the best configuration of sensors for applications of model-based diagnostics, observer-based controller, or to determine the level of sensor redundancy. Observability analysis on induction motors provides various sensor configurations with corresponding observability indices. Results show the redundancy levels for different sensors, and provide a sensor selection guideline for model-based diagnostics, and for observer-based controllers. The results can also be used for sensor fault detection and to improve the reliability of the system by increasing the redundancy level in measurements

  5. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  6. Impedance-based damage assessment using piezoelectric sensors

    Science.gov (United States)

    Rim, Mi-Sun; Yoo, Seung-Jae; Lee, In; Song, Jae-Hoon; Yang, Jae-Won

    2011-04-01

    Recently structural health monitoring (SHM) systems are being focused because they make it possible to assess the health of structures at real-time in many application fields such as aircraft, aerospace, civil and so on. Piezoelectric materials are widely used for sensors of SHM system to monitor damage of critical parts such as bolted joints. Bolted joints could be loosened by vibration, thermal cycling, shock, corrosion, and they cause serious mechanical failures. In this paper, impedance-based method using piezoelectric sensors was applied for real-time SHM. A steel beam specimen fastened by bolts was tested, and polymer type piezoelectric materials, PVDFs were used for sensors to monitor the condition of bolted joint connections. When structure has some damage, for example loose bolts, the impedance of PVDF sensors showed different tendency with normal structure which has no loose bolts. In the case of loose bolts, impedance values are decreased and admittance values are increased.

  7. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  8. Development of low cost and accurate homemade sensor system based on Surface Plasmon Resonance (SPR)

    Science.gov (United States)

    Laksono, F. D.; Supardianningsih; Arifin, M.; Abraha, K.

    2018-04-01

    In this paper, we developed homemade and computerized sensor system based on Surface Plasmon Resonance (SPR). The developed systems consist of mechanical system instrument, laser power sensor, and user interface. The mechanical system development that uses anti-backlash gear design was successfully able to enhance the angular resolution angle of incidence laser up to 0.01°. In this system, the laser detector acquisition system and stepper motor controller utilizing Arduino Uno which is easy to program, flexible, and low cost, was used. Furthermore, we employed LabView’s user interface as the virtual instrument for facilitating the sample measurement and for transforming the data recording directly into the digital form. The test results using gold-deposited half-cylinder prism showed the Total Internal Reflection (TIR) angle of 41,34°± 0,01° and SPR angle of 44,20°± 0,01°, respectively. The result demonstrated that the developed system managed to reduce the measurement duration and data recording errors caused by human error. Also, the test results also concluded that the system’s measurement is repeatable and accurate.

  9. Evaluation of the MEMS based portable respiratory training system with a tactile sensor for respiratory-gated radiotherapy

    Science.gov (United States)

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2017-10-01

    In respiratory-gated radiotherapy, it is important to maintain the regular respiratory cycles of patients. If patients undergo respiration training, their regular breathing pattern is affected. Therefore, we developed a respiratory training system based on a micro electromechanical system (MEMS) and evaluated the feasibility of the MEMS in radiotherapy. By comparing the measured signal before and after radiation exposure, we confirmed the effects of radiation. By evaluating the period of the electric signal emitted by a tactile sensor and its constancy, the performance of the tactile sensor was confirmed. Moreover, by comparing the delay between the motion of the MEMS and the electric signal from the tactile sensor, we confirmed the reaction time of the tactile sensor. The results showed that a baseline shift occurred for an accumulated dose of 400 Gy in the sensor, and both the amplitude and period changed. The period of the signal released by the tactile sensor was 5.39 and its standard deviation was 0.06. Considering the errors from the motion phantom, a standard deviation of 0.06 was desirable. The delay time was within 0.5 s and not distinguishable by a patient. We confirmed the performance of the MEMS and concluded that MEMS could be applied to patients for respiratory-gated radiotherapy.

  10. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems.

    Science.gov (United States)

    Stenz, Ulrich; Hartmann, Jens; Paffenholz, Jens-André; Neumann, Ingo

    2017-08-16

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less.

  11. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    Science.gov (United States)

    Scardelletti, Maximilian C.; Zorman, Christian A.

    2016-01-01

    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  12. Applying Sensor-Based Technology to Improve Construction Safety Management.

    Science.gov (United States)

    Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng

    2017-08-11

    Construction sites are dynamic and complicated systems. The movement and interaction of people, goods and energy make construction safety management extremely difficult. Due to the ever-increasing amount of information, traditional construction safety management has operated under difficult circumstances. As an effective way to collect, identify and process information, sensor-based technology is deemed to provide new generation of methods for advancing construction safety management. It makes the real-time construction safety management with high efficiency and accuracy a reality and provides a solid foundation for facilitating its modernization, and informatization. Nowadays, various sensor-based technologies have been adopted for construction safety management, including locating sensor-based technology, vision-based sensing and wireless sensor networks. This paper provides a systematic and comprehensive review of previous studies in this field to acknowledge useful findings, identify the research gaps and point out future research directions.

  13. Environmental information system and odour monitoring based on citizen and technology innovative sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ledent, Philippe [SPACEBEL S.A., Angleur (Belgium); Stevenot, Bernard [APS Technology, Namur (Belgium); Delva, Julien [ODOMETRIC SA, Meix-Devant-Virton (Belgium); and others

    2013-07-01

    The challenge is the integration of citizens as ''community-based'' observation providers, giving the odour perception and discomfort and getting feed-back in real time from a learning monitoring system. The level of annoyance depends on how odours are emitted and in what intensity, their dispersion under ambient atmospheric conditions and finally on citizens' exposure and perception. The Environmental Information System and Odour Monitoring developed in the project OMNISCIENTIS funded by the EU brings together state of the art technologies and open communication capabilities in order to mitigate odour annoyance. The project allows for citizen feedback, deepens knowledge on odour measurement and management and aims to support harmonised legislation at EU level. Moreover the project results can provide savings to industries. The core is an information system allowing inhabitants to serve as human sensors, acting according to sociological patterns, which influence odour perception, discomfort and nuisance. It provides a dedicated tool to consider odour acceptability, based on a community-based opinion. Due to the subjective nature of odour perception, odour monitoring and fast modelling is used to assist and adjust the information citizens provide via Smartphone and obtained by e-nose and modelling. Innovative in-situ sensors are improved to monitor ambient odour exposures. A specific odour dispersion model system is developed to obtain interrelated spatial odour exposure levels. This fast and innovative model system helps us to evaluate the performance of measures taken at the very moment odours are emitted and with respect to the way in which these occur. The Living Lab approach ensures stakeholder involvement, citizens' participation in decision-making and supports dissemination activities. The results are conveyed to stakeholders and general public. (orig.)

  14. Evaluation of passenger health risk assessment of sustainable indoor air quality monitoring in metro systems based on a non-Gaussian dynamic sensor validation method.

    Science.gov (United States)

    Kim, MinJeong; Liu, Hongbin; Kim, Jeong Tai; Yoo, ChangKyoo

    2014-08-15

    Sensor faults in metro systems provide incorrect information to indoor air quality (IAQ) ventilation systems, resulting in the miss-operation of ventilation systems and adverse effects on passenger health. In this study, a new sensor validation method is proposed to (1) detect, identify and repair sensor faults and (2) evaluate the influence of sensor reliability on passenger health risk. To address the dynamic non-Gaussianity problem of IAQ data, dynamic independent component analysis (DICA) is used. To detect and identify sensor faults, the DICA-based squared prediction error and sensor validity index are used, respectively. To restore the faults to normal measurements, a DICA-based iterative reconstruction algorithm is proposed. The comprehensive indoor air-quality index (CIAI) that evaluates the influence of the current IAQ on passenger health is then compared using the faulty and reconstructed IAQ data sets. Experimental results from a metro station showed that the DICA-based method can produce an improved IAQ level in the metro station and reduce passenger health risk since it more accurately validates sensor faults than do conventional methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Rehabilitation System based on the Use of Biomechanical Analysis and Videogames through the Kinect Sensor

    Directory of Open Access Journals (Sweden)

    John E. Muñoz-Cardona

    2013-11-01

    Full Text Available This paper presents development of a novel system for physical rehabilitation of patients with multiple pathologies, through dynamic with exercise videogames (exergames and analysis of the movements of patients using developed software. This system is based on the use of the Kinect sensor for both purposes: amusing the patient in therapy through of specialist exergames and provide a tool to record and analyze MoCap data taken through the Kinect sensor and processed using biomechanical analysis through Euler angles. All interactive system is installed in a rehabilitation center and works with different pathologies (stroke, IMOC, craneoencephallic trauma, etc., patients interact with the platform while the specialist records data for later analysis, which is performed by software designed for this purpose. The motion graphics are shown in the sagittal, frontal and rotationalplanefrom20 points distributed in the body. The final system is portable, non-invasive, inexpensive, natural interaction with the patient and easily implemented for medical purposes.

  16. One-port portable SAW sensor system

    Science.gov (United States)

    Hoa Nguyen, Vu; Peters, Oliver; Schnakenberg, Uwe

    2018-01-01

    A portable device using the SAW-based impedance sensor type based on one interdigital transducer simultaneously as SAW generator and sensor element (1-port approach) is introduced. As a novelty, the so far required expensive vector network analyzer (VNA) is replaced by a hand-held device to measure the impedance spectrum of the SAW sensor by RF-gain-phase meters. Hence, some of the best features from the conventional oscillator and VNA approaches are combined to develop a low-cost and self-contained measurement system, including signal in- and output ability for real-time measurements. The pivotal aspect of the portable system is the transfer of the sophisticated high frequency approach into a quasi-static one. This enables the use of simple lumped electronics without the need of impedance matching circuits. Proof-of-concept was carried out by measuring conductivities of phosphate-buffered solutions and viscosities of glycerin. Sensitivities for temperature of 0.3%/°C, viscosity of 10.1% (mPa s)-1 and conductivity of 0.5% (S cm)-1 have been determined, respectively, which are competitive results compared to the benchmark approaches.

  17. Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377

  18. Design and implementation of a wireless sensor network-based remote water-level monitoring system.

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).

  19. Noncontact on-machine measurement system based on capacitive displacement sensors for single-point diamond turning

    Science.gov (United States)

    Li, Xingchang; Zhang, Zhiyu; Hu, Haifei; Li, Yingjie; Xiong, Ling; Zhang, Xuejun; Yan, Jiwang

    2018-04-01

    On-machine measurements can improve the form accuracy of optical surfaces in single-point diamond turning applications; however, commercially available linear variable differential transformer sensors are inaccurate and can potentially scratch the surface. We present an on-machine measurement system based on capacitive displacement sensors for high-precision optical surfaces. In the proposed system, a position-trigger method of measurement was developed to ensure strict correspondence between the measurement points and the measurement data with no intervening time-delay. In addition, a double-sensor measurement was proposed to reduce the electric signal noise during spindle rotation. Using the proposed system, the repeatability of 80-nm peak-to-valley (PV) and 8-nm root-mean-square (RMS) was achieved through analyzing four successive measurement results. The accuracy of 109-nm PV and 14-nm RMS was obtained by comparing with the interferometer measurement result. An aluminum spherical mirror with a diameter of 300 mm was fabricated, and the resulting measured form error after one compensation cut was decreased to 254 nm in PV and 52 nm in RMS. These results confirm that the measurements of the surface form errors were successfully used to modify the cutting tool path during the compensation cut, thereby ensuring that the diamond turning process was more deterministic. In addition, the results show that the noise level was significantly reduced with the reference sensor even under a high rotational speed.

  20. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  1. Optical stimulator for vision-based sensors

    DEFF Research Database (Denmark)

    Rössler, Dirk; Pedersen, David Arge Klevang; Benn, Mathias

    2014-01-01

    We have developed an optical stimulator system for vision-based sensors. The stimulator is an efficient tool for stimulating a camera during on-ground testing with scenes representative of spacecraft flights. Such scenes include starry sky, planetary objects, and other spacecraft. The optical...

  2. An IR Sensor Based Smart System to Approximate Core Body Temperature.

    Science.gov (United States)

    Ray, Partha Pratim

    2017-08-01

    Herein demonstrated experiment studies two methods, namely convection and body resistance, to approximate human core body temperature. The proposed system is highly energy efficient that consumes only 165 mW power and runs on 5 VDC source. The implemented solution employs an IR thermographic sensor of industry grade along with AT Mega 328 breakout board. Ordinarily, the IR sensor is placed 1.5-30 cm away from human forehead (i.e., non-invasive) and measured the raw data in terms of skin and ambient temperature which is then converted using appropriate approximation formula to find out core body temperature. The raw data is plotted, visualized, and stored instantaneously in a local machine by means of two tools such as Makerplot, and JAVA-JAR. The test is performed when human object is in complete rest and after 10 min of walk. Achieved results are compared with the CoreTemp CM-210 sensor (by Terumo, Japan) which is calculated to be 0.7 °F different from the average value of BCT, obtained by the proposed IR sensor system. Upon a slight modification, the presented model can be connected with a remotely placed Internet of Things cloud service, which may be useful to inform and predict the user's core body temperature through a probabilistic view. It is also comprehended that such system can be useful as wearable device to be worn on at the hat attachable way.

  3. Vision communications based on LED array and imaging sensor

    Science.gov (United States)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  4. Calibrating a novel multi-sensor physical activity measurement system

    International Nuclear Information System (INIS)

    John, D; Sasaki, J E; Howe, C A; Freedson, P S; Liu, S; Gao, R X; Staudenmayer, J

    2011-01-01

    Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA measurement system' (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors versus outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance the feasibility of free-living use are proposed and refinement of the prediction techniques is discussed

  5. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  6. Investigation based on nano-electromechanical system double Si3N4 resonant beam pressure sensor.

    Science.gov (United States)

    Yang, Chuan; Guo, Can; Yuan, Xiaowei

    2011-12-01

    This paper presents a type of NEMS (Nano-Electromechanical System) double Si3N4 resonant beams pressure sensor. The mathematical models are established in allusion to the Si3N4 resonant beams and pressure sensitive diaphragm. The distribution state of stress has been analyzed theoretically based on the mathematical model of pressure sensitive diaphragm; from the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm was optimized and then the dominance observed after the double resonant beams are adopted is illustrated. From the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm is optimized, illustrating advantages in the adoption of double resonant beams. The capability of the optimized sensor was generally analyzed using the ANSYS software of finite element analysis. The range of measured pressure is 0-400 Kpa, the coefficient of linearity correlation is 0.99346, and the sensitivity of the sensor is 498.24 Hz/Kpa, higher than the traditional sensors. Finally the processing techniques of the sensor chip have been designed with sample being successfully processed.

  7. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  8. Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system

    Science.gov (United States)

    Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen

    2018-02-01

    In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.

  9. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  10. Development of chipless, wireless current sensor system based on giant magnetoimpedance magnetic sensor and surface acoustic wave transponder.

    Science.gov (United States)

    Kondalkar, Vijay V; Li, Xiang; Park, Ikmo; Yang, Sang Sik; Lee, Keekeun

    2018-02-05

    A chipless, wireless current sensor system was developed using a giant magnetoimpedance (GMI) magnetic sensor and one-port surface acoustic wave (SAW) reflective delay line for real-time power monitoring in a current-carrying conductor. The GMI sensor has a high-quality crystalline structure in each layer, which contributes to a high sensitivity and good linearity in a magnetic field of 3-16 Oe. A 400 MHz RF energy generated from the interdigital transducer (IDT)-type reflector on the one-port SAW delay line was used as an activation source for the GMI magnetic sensor. The one-port SAW delay line replaces the presently existing transceiver system, which is composed of thousands of transistors, thus enabling chipless and wireless operation. We confirmed a large variation in the amplitude of the SAW reflection peak with a change in the impedance of the GMI sensor caused by the current flow through the conductor. Good linearity and sensitivity of ~0.691 dB/A were observed for currents in the range 1-12 A. Coupling of Mode (COM) modeling and impedance matching analysis were also performed to predict the device performance in advance and these were compared with the experimental results.

  11. Laser-based gas sensors keep moisture out of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-15

    Natural gas often contains contaminants that cause corrosion, and long-term deterioration, and must be cleaned and brought to pipeline standards before it can be delivered to high-pressure, long-distance pipelines. Many older sensors produce false data that can result in contaminated gas getting through. This article presented details of the SpectraSensor, a new laser-based sensor technology used by the El Paso Natural Gas Company (EPNG). The SpectraSensor is comprised of a tunable diode laser (TDL) based technology developed by the National American Space Agency (NASA). The gas analyzer provides non-contact measurement of moisture, carbon dioxide, and other corrosives in natural gas pipelines, and the tunable laser-based gas sensors are fast, accurate, and flexible. Producers can monitor El Paso's gas analyzer readings by capturing the electronic signal from El Paso's unit via a SCADA system and view the readings from control rooms. While initial purchase price is higher than more problematic surface-based gas sensors, an evaluation of the technology has indicated that maintenance savings alone may provide an almost immediate return on investments. Unlike electrochemical and crystal gas sensors, laser-based gas analyzers do not come into direct contact with any substances, a fact which practically eliminates maintenance and operational costs. Studies have shown that the cost of operating conventional electrochemical sensors can result in a cumulative annual expense exceeding $50,000 per unit including labour; recalibration and rebuilding; back-up sensor heads; and gas dehydration and tariffs. 1 fig.

  12. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  13. S3: School Zone Safety System Based on Wireless Sensor Network

    Science.gov (United States)

    Yoo, Seong-eun; Chong, Poh Kit; Kim, Daeyoung

    2009-01-01

    School zones are areas near schools that have lower speed limits and where illegally parked vehicles pose a threat to school children by obstructing them from the view of drivers. However, these laws are regularly flouted. Thus, we propose a novel wireless sensor network application called School zone Safety System (S3) to help regulate the speed limit and to prevent illegal parking in school zones. S3 detects illegally parked vehicles, and warns the driver and records the license plate number. To reduce the traveling speed of vehicles in a school zone, S3 measures the speed of vehicles and displays the speed to the driver via an LED display, and also captures the image of the speeding vehicle with a speed camera. We developed a state machine based vehicle detection algorithm for S3. From extensive experiments in our testbeds and data from a real school zone, it is shown that the system can detect all kinds of vehicles, and has an accuracy of over 95% for speed measurement. We modeled the battery life time of a sensor node and validated the model with a downscaled measurement; we estimate the battery life time to be over 2 years. We have deployed S3 in 15 school zones in 2007, and we have demonstrated the robustness of S3 by operating them for over 1 year. PMID:22454567

  14. A Method of Data Aggregation for Wearable Sensor Systems

    Directory of Open Access Journals (Sweden)

    Bo Shen

    2016-06-01

    Full Text Available Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources.

  15. A Wearable Respiratory Biofeedback System Based on Generalized Body Sensor Network

    Science.gov (United States)

    Liu, Guan-Zheng; Huang, Bang-Yu

    2011-01-01

    Abstract Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities. PMID:21545293

  16. Smart sensors and systems innovations for medical, environmental, and IoT applications

    CERN Document Server

    Yasuura, Hiroto; Liu, Yongpan; Lin, Youn-Long

    2017-01-01

    This book describes the technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, and big data domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms. Profiles active research on smart sensors based on CMOS microelectronics; Describes applications of sensors and sensor systems in cyber physical systems, the social information infrastructure in our modern world; Includes coverage of a variety of related information technologies supporting the application of sensors; Discusses the integration of computation, networking, actuation, database...

  17. Remote powering platform for implantable sensor systems at 2.45 GHz.

    Science.gov (United States)

    Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine

    2014-01-01

    Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.

  18. CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System

    Science.gov (United States)

    Lazarus, Nathan S.

    Integrating chemical sensors with testing electronics is a powerful technique with the potential to lower power and cost and allow for lower system limits of detection. This thesis explores the possibility of creating an integrated sensor system intended to be embedded within respirator cartridges to notify the user that hazardous chemicals will soon leak into the face mask. For a chemical sensor designer, this application is particularly challenging due to the need for a very sensitive and cheap sensor that will be exposed to widely varying environmental conditions during use. An octanethiol-coated gold nanoparticle chemiresistor to detect industrial solvents is developed, focusing on characterizing the environmental stability and limits of detection of the sensor. Since the chemiresistor was found to be highly sensitive to water vapor, a series of highly sensitive humidity sensor topologies were developed, with sensitivities several times previous integrated capacitive humidity sensors achieved. Circuit techniques were then explored to reduce the humidity sensor limits of detection, including the analysis of noise, charge injection, jitter and clock feedthrough in a charge-based capacitance measurement (CBCM) circuit and the design of a low noise Colpitts LC oscillator. The characterization of high resistance gold nanoclusters for capacitive chemical sensing was also performed. In the final section, a preconcentrator, a heater element intended to release a brief concentrated pulse of analate, was developed and tested for the purposes of lowering the system limit of detection.

  19. Compact, self-contained enhanced-vision system (EVS) sensor simulator

    Science.gov (United States)

    Tiana, Carlo

    2007-04-01

    We describe the model SIM-100 PC-based simulator, for imaging sensors used, or planned for use, in Enhanced Vision System (EVS) applications. Typically housed in a small-form-factor PC, it can be easily integrated into existing out-the-window visual simulators for fixed-wing or rotorcraft, to add realistic sensor imagery to the simulator cockpit. Multiple bands of infrared (short-wave, midwave, extended-midwave and longwave) as well as active millimeter-wave RADAR systems can all be simulated in real time. Various aspects of physical and electronic image formation and processing in the sensor are accurately (and optionally) simulated, including sensor random and fixed pattern noise, dead pixels, blooming, B-C scope transformation (MMWR). The effects of various obscurants (fog, rain, etc.) on the sensor imagery are faithfully represented and can be selected by an operator remotely and in real-time. The images generated by the system are ideally suited for many applications, ranging from sensor development engineering tradeoffs (Field Of View, resolution, etc.), to pilot familiarization and operational training, and certification support. The realistic appearance of the simulated images goes well beyond that of currently deployed systems, and beyond that required by certification authorities; this level of realism will become necessary as operational experience with EVS systems grows.

  20. Bulk disk resonator based ultrasensitive mass sensor

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Davis, Zachary James

    2009-01-01

    range. The sensor has been characterized in terms of sensitivity both for distributed mass detection, performing six consecutive depositions of e-beam evaporated Au, and localized mass detection, depositing approximately 7.5 pg of Pt/Ga/C three times consecutively with a Focused Ion Beam system......In the framework of developing an innovative label-free sensor for multiarrayed biodetection applications, we present a novel bulk resonator based mass sensor. The sensor is a polysilicon disk which shows a Q-factor of 6400 in air at 68.8 MHz, resulting in mass resolutions down in the femtogram....... The sensor has an extremely high distributed mass to frequency shift sensitivity of 60104 Hzcm2/¿g and shows a localized mass to frequency sensitivity up to 4405 Hz/pg with a localized mass resolution down to 15 fg. The device has been fabricated with a new microfabrication process that uses only two...

  1. Design of external sensors board based on Bluetooth interface of smart phones for structural health monitoring system

    Science.gov (United States)

    Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping

    2016-04-01

    As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.

  2. A High Precision Approach to Calibrate a Structured Light Vision Sensor in a Robot-Based Three-Dimensional Measurement System

    Directory of Open Access Journals (Sweden)

    Defeng Wu

    2016-08-01

    Full Text Available A robot-based three-dimensional (3D measurement system is presented. In the presented system, a structured light vision sensor is mounted on the arm of an industrial robot. Measurement accuracy is one of the most important aspects of any 3D measurement system. To improve the measuring accuracy of the structured light vision sensor, a novel sensor calibration approach is proposed to improve the calibration accuracy. The approach is based on a number of fixed concentric circles manufactured in a calibration target. The concentric circle is employed to determine the real projected centres of the circles. Then, a calibration point generation procedure is used with the help of the calibrated robot. When enough calibration points are ready, the radial alignment constraint (RAC method is adopted to calibrate the camera model. A multilayer perceptron neural network (MLPNN is then employed to identify the calibration residuals after the application of the RAC method. Therefore, the hybrid pinhole model and the MLPNN are used to represent the real camera model. Using a standard ball to validate the effectiveness of the presented technique, the experimental results demonstrate that the proposed novel calibration approach can achieve a highly accurate model of the structured light vision sensor.

  3. A multi-agent system architecture for sensor networks.

    Science.gov (United States)

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  4. Sense, decide, act, communicate (SDAC): next generation of smart sensor systems

    Science.gov (United States)

    Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian

    2004-09-01

    The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.

  5. Development of a commercially viable piezoelectric force sensor system for static force measurement

    Science.gov (United States)

    Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan

    2017-09-01

    A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.

  6. Laboratory test of an APS-based sun sensor prototype

    Science.gov (United States)

    Rufino, Giancarlo; Perrotta, Alessandro; Grassi, Michele

    2017-11-01

    This paper deals with design and prototype development of an Active Pixel Sensor - based miniature sun sensor and a laboratory facility for its indoor test and calibration. The miniature sun sensor is described and the laboratory test facility is presented in detail. The major focus of the paper is on tests and calibration of the sensor. Two different calibration functions have been adopted. They are based, respectively, on a geometrical model, which has required least-squares optimisation of system physical parameters estimates, and on neural networks. Calibration results are presented for the above solutions, showing that accuracy in the order of 0.01° has been achieved. Neural calibration functions have attained better performance thanks to their intrinsic auto-adaptive structure.

  7. An Orientation Sensor-Based Head Tracking System for Driver Behaviour Monitoring

    Directory of Open Access Journals (Sweden)

    Yifan Zhao

    2017-11-01

    Full Text Available Although at present legislation does not allow drivers in a Level 3 autonomous vehicle to engage in a secondary task, there may become a time when it does. Monitoring the behaviour of drivers engaging in various non-driving activities (NDAs is crucial to decide how well the driver will be able to take over control of the vehicle. One limitation of the commonly used face-based head tracking system, using cameras, is that sufficient features of the face must be visible, which limits the detectable angle of head movement and thereby measurable NDAs, unless multiple cameras are used. This paper proposes a novel orientation sensor based head tracking system that includes twin devices, one of which measures the movement of the vehicle while the other measures the absolute movement of the head. Measurement error in the shaking and nodding axes were less than 0.4°, while error in the rolling axis was less than 2°. Comparison with a camera-based system, through in-house tests and on-road tests, showed that the main advantage of the proposed system is the ability to detect angles larger than 20° in the shaking and nodding axes. Finally, a case study demonstrated that the measurement of the shaking and nodding angles, produced from the proposed system, can effectively characterise the drivers’ behaviour while engaged in the NDAs of chatting to a passenger and playing on a smartphone.

  8. COAP BASED ACUTE PARKING LOT MONITORING SYSTEM USING SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    R. Aarthi

    2014-06-01

    Full Text Available Vehicle parking is the act of temporarily maneuvering a vehicle in to a certain location. To deal with parking monitoring system issue such as traffic, this paper proposes a vision of improvements in monitoring the vehicles in parking lots based on sensor networks. Most of the existing paper deals with that of the automated parking which is of cluster based and each has its own overheads like high power, less energy efficiency, incompatible size of lots, space. The novel idea in this work is usage of CoAP (Constrained Application Protocol which is recently created by IETF (draft-ietf-core-coap-18, June 28, 2013, CoRE group to develop RESTful application layer protocol for communications within embedded wireless networks. This paper deals with the enhanced CoAP protocol using multi hop flat topology, which makes the acuters feel soothe towards parking vehicles. We aim to minimize the time consumed for finding free parking lot as well as increase the energy efficiency

  9. Open-loop magneto-resistance sensor-based DC current transformer for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, Eman; Hofmann, Klaus [Technical University Darmstadt (Germany); Reeg, Hansjoerg; Schwickert, Marcus [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2016-07-01

    A Novel DC Current Transformer (N-DCCT) is currently under development for FAIR. The N-DCCT is going to be installed inside the SIS100 synchrotron. The proposed system is no longer based on magnetic modulation principle of the conventional DCCT. Instead, a Magneto-resistance sensor is utilized to detect the magnetic field of the ion-beam. For a first prototype the N-DCCT is realized as an open-loop system. It consists of a high permeability slotted ring core and up to two MR sensors. The maximum ion-beam current magnetic field is concentrated inside the ring core air gaps. MR sensors are placed inside the core air gaps. The sensor output voltage is directly proportional to the ion-beam current. The system is implemented using commercial Tunneling MR sensors. Measurements using one single sensor, as well as the application of two sensors are presented in this work. The sensitivity of the proposed N-DCCT is 0.566 [V/A] for one single MR sensor and 1.56 [V/A] when two sensors are implemented.

  10. A multi-axis MEMS sensor with integrated carbon nanotube-based piezoresistors for nanonewton level force metrology

    International Nuclear Information System (INIS)

    Cullinan, Michael A; Panas, Robert M; Culpepper, Martin L

    2012-01-01

    This paper presents the design and fabrication of a multi-axis microelectromechanical system (MEMS) force sensor with integrated carbon nanotube (CNT)-based piezoresistive sensors. Through the use of proper CNT selection and sensor fabrication techniques, the performance of the CNT-based MEMS force sensor was increased by approximately two orders of magnitude as compared to current CNT-based sensor systems. The range and resolution of the force sensor were determined as 84 μN and 5.6 nN, respectively. The accuracy of the force sensor was measured to be better than 1% over the device’s full range. (paper)

  11. Development of an NDIR CO₂ sensor-based system for assessing soil toxicity using substrate-induced respiration.

    Science.gov (United States)

    Kaur, Jasmeen; Adamchuk, Viacheslav I; Whalen, Joann K; Ismail, Ashraf A

    2015-02-26

    The eco-toxicological indicators used to evaluate soil quality complement the physico-chemical criteria employed in contaminated site remediation, but their cost, time, sophisticated analytical methods and in-situ inapplicability pose a major challenge to rapidly detect and map the extent of soil contamination. This paper describes a sensor-based approach for measuring potential (substrate-induced) microbial respiration in diesel-contaminated and non-contaminated soil and hence, indirectly evaluates their microbial activity. A simple CO2 sensing system was developed using an inexpensive non-dispersive infrared (NDIR) CO2 sensor and was successfully deployed to differentiate the control and diesel-contaminated soils in terms of CO2 emission after glucose addition. Also, the sensor system distinguished glucose-induced CO2 emission from sterile and control soil samples (p ≤ 0.0001). Significant effects of diesel contamination (p ≤ 0.0001) and soil type (p ≤ 0.0001) on glucose-induced CO2 emission were also found. The developed sensing system can provide in-situ evaluation of soil microbial activity, an indicator of soil quality. The system can be a promising tool for the initial screening of contaminated environmental sites to create high spatial density maps at a relatively low cost.

  12. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  13. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  14. Design of a sensor network system with a self-maintenance function for homeland security applications

    International Nuclear Information System (INIS)

    Fujiwara, Takeshi; Takahashi, Hiroyuki; Iyomoto, Naoko

    2008-01-01

    In this study, we develop a new concept of a robust wireless sensor network for homeland security applications. The sensor system consists of intelligent radiation sensors that can communicate each other through the wireless network. This structure can cover a wide area with a flexible geometry which is suitable for detecting a moving object with a detectable radiation source. Also, it has a tolerance against both the partial node's failure and packet errors; realized by a Self-Maintenance function. The Self-maintenance function is a function that enables an artifact to find, diagnosis and fix the trouble automatically and maintain itself. So far some approaches have been tried to realize robust monitoring system by applying the idea of multiplex system, based on ''2 out of 3'', but this requires a large amount of the hardware and is not suitable for sensor network systems. We designed a sensor network system with Self-Maintenance function based on qualitative reasoning technique for robust wireless sensor network system, and an instrument network based on ZigBee has been set up for investigations. CsI(Tl) gamma-ray detectors are used as sensors. The network system picks up correlation signals from sensors even some of sensors send false signals, which can be used as a reliable detection system for practical use. (author)

  15. Patients’ Heart Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Sollu, T. S.; Alamsyah; Bachtiar, M.; Sooai, A. G.

    2018-04-01

    Wireless sensor network (WSN) has been utilized to support the health field such as monitoring the patient’s heartbeat. Heart health monitoring is essential in maintaining health, especially in the elderly. Such an arrangement is needed to understand the patient’s heart characteristics. The increasing number of patients certainly will enhance the burdens of doctors or nurses in dealing with the condition of the patients. Therefore, required a solution that could help doctors or nurses in monitoring the progress of patients’ health at a real time. This research proposes a design and application of a patient heart monitoring system based on WSN. This system with using electrocardiograph (ECG) mounted on the patients’ body and sent to the server through the ZigBee. The results indicated that the retrieval of data for 15 seconds in male patients, with the age of 25 years was 17 times rate or equal to 68 bpm. For 884 data packets sent for 15 minutes using ZigBee produce a data as much as 4488 bytes, throughput of 2.39 Kbps, and 0.24486 seconds of average delay. The measurement of the communication coverage based on the open space conditions within 15 seconds through ZigBee resulting throughput value of 4.19 Kbps, packet loss of 0 %, and 6.667 seconds of average delay. While, the measurement of communication range based on closed space condition through ZigBee resulting throughput of 4.27 Kbps, packet loss of 0 %, and 6.55 seconds of average delay.

  16. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  17. Space-based infrared sensors of space target imaging effect analysis

    Science.gov (United States)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  18. A Nonlinear Attitude Estimator for Attitude and Heading Reference Systems Based on MEMS Sensors

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper, a nonlinear attitude estimator is designed for an Attitude Heading and Reference System (AHRS) based on Micro Electro-Mechanical Systems (MEMS) sensors. The design process of the attitude estimator is stated with detail, and the equilibrium point of the estimator error model...... the problems in previous research works. Moreover, the estimation of MEMS gyroscope bias is also inclueded in this estimator. The designed nonlinear attitude estimator is firstly tested in simulation environment and then implemented in an AHRS hardware for further experiments. Finally, the attitude estimation...

  19. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.

    Science.gov (United States)

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-11-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.

  20. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  1. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  2. Advances in Sensors-Centric Microprocessors and System-on-Chip

    Directory of Open Access Journals (Sweden)

    Juan A. Gómez-Pulido

    2012-04-01

    Full Text Available Sensors-based systems are nowadays an extended technology for many markets due to their great potential in the collection of data from the environment and the processing of such data for different purposes. A typical example is the wireless sensor devices, where the outer temperature, humidity, luminosity and many other parameters can be acquired, measured and processed in order to build useful and fascinating applications that contribute to human welfare. In this scenario, the processing architectures of the sensors-based systems play a very important role. The requirements that are necessary for many such applications (real-time processing, low-power consumption, reduced size, reliability, security and many others means that research on advanced architectures of Microprocessors and System-on-Chips (SoC is needed to design and implement a successful product. In this sense, there are many challenges and open questions in this area that need to be addressed. [...

  3. Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.

  4. Recent Advances in Paper-Based Sensors

    Directory of Open Access Journals (Sweden)

    Edith Chow

    2012-08-01

    Full Text Available Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed.

  5. A ph sensor based on a flexible substrate

    Science.gov (United States)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  6. A Multi-Agent System Architecture for Sensor Networks

    Directory of Open Access Journals (Sweden)

    María Guijarro

    2009-12-01

    Full Text Available The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  7. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Directory of Open Access Journals (Sweden)

    Peter Kampmann

    2014-04-01

    Full Text Available With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach.

  8. A community-based event delivery protocol in publish/subscribe systems for delay tolerant sensor networks.

    Science.gov (United States)

    Liu, Nianbo; Liu, Ming; Zhu, Jinqi; Gong, Haigang

    2009-01-01

    The basic operation of a Delay Tolerant Sensor Network (DTSN) is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short) paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  9. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information...

  10. Bio-Inspired PVDF-Based, Mouse Whisker Mimicking, Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Mohsin Islam Tiwana

    2016-10-01

    Full Text Available The design and fabrication of a Polyvinylidene fluoride (PVDF based, mouse (or rodent whisker mimicking, tactile sensor is presented. Unlike previous designs reported in the literature, this sensor mimics the mouse whisker not only mechanically, but it also makes macro movements just like a real mouse whisker in a natural environment. We have developed a mathematical model and performed finite element analysis using COMSOL, in order to optimise the whisker to have the same natural frequency as that of a biological whisker. Similarly, we have developed a control system that enables the whisker mimicking sensor to vibrate at variable frequencies and conducted practical experiments to validate the response of the sensor. The natural frequency of the whisker can be designed anywhere between 35 and 110 Hz, the same as a biological whisker, by choosing different materials and physical dimensions. The control system of this sensor enables the whisker to vibrate between 5 and 236 Hz.

  11. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    Science.gov (United States)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  12. Micro technology based sun sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Pedersen, Martin; Fléron, René

    2003-01-01

    various payloads and platforms. The conventional and commercial actuators and attitude sensors are in most cases not suited for these satellites, which again lead to new design considerations. Another important property is the launch cost, which can be kept relatively low as a result of the concept....... This fact enables students to get hands-on experience with satellite systems design and project management. This paper describes the attitude control and determination system of a Danish student satellite (DTUsat), with main focus on the two-axis MOEMS sun sensor developed. On the magnetotorquer controlled...... DTUsat sun sensors are needed along with a magnetometer to obtain unambiguous attitude determination for the ACDS and the payloads - an electrodynamic tether and a camera. The accuracy needed was not obtainable by employing conventional attitude sensors. Hence a linear slit sensor was designed...

  13. Sensor system for multi-point monitoring using bending loss of single mode optical fiber

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dae Hyun

    2015-01-01

    Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

  14. Research on a Denial of Service (DoS Detection System Based on Global Interdependent Behaviors in a Sensor Network Environment

    Directory of Open Access Journals (Sweden)

    Seoksoo Kim

    2010-11-01

    Full Text Available This research suggests a Denial of Service (DoS detection method based on the collection of interdependent behavior data in a sensor network environment. In order to collect the interdependent behavior data, we use a base station to analyze traffic and behaviors among nodes and introduce methods of detecting changes in the environment with precursor symptoms. The study presents a DoS Detection System based on Global Interdependent Behaviors and shows the result of detecting a sensor carrying out DoS attacks through the test-bed.

  15. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  16. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    Science.gov (United States)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  17. Relational-Based Sensor Data Cleansing

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Nordbjerg, Finn Ebertsen

    2015-01-01

    cleansing approaches, such as classification, prediction and moving average are not suited for embedded sensor devices, due to the limited storage and processing capabilities. In this paper, we propose a sensor data cleansing approach using the relational-based technologies, including constraints, triggers...... and granularity-based data aggregation. The proposed approach is simple but effective to cleanse different types of dirty data, including delayed data, incomplete data, incorrect data, duplicate data and missing data. We evaluate the proposed strategy to verify its efficiency, effectiveness and adaptability.......Today sensors are widely used in many monitoring applications. Due to some random environmental effects and/or sensing failures, the collected sensor data is typically noisy. Thus, it is critical to cleanse the sensor data before using it to answer queries or conduct data analysis. Popular data...

  18. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  19. Automated mode shape estimation in agent-based wireless sensor networks

    Science.gov (United States)

    Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    Recent advances in wireless sensing technology have made it possible to deploy dense networks of sensing transducers within large structural systems. Because these networks leverage the embedded computing power and agent-based abilities integral to many wireless sensing devices, it is possible to analyze sensor data autonomously and in-network. In this study, market-based techniques are used to autonomously estimate mode shapes within a network of agent-based wireless sensors. Specifically, recent work in both decentralized Frequency Domain Decomposition and market-based resource allocation is leveraged to create a mode shape estimation algorithm derived from free-market principles. This algorithm allows an agent-based wireless sensor network to autonomously shift emphasis between improving mode shape accuracy and limiting the consumption of certain scarce network resources: processing time, storage capacity, and power consumption. The developed algorithm is validated by successfully estimating mode shapes using a network of wireless sensor prototypes deployed on the mezzanine balcony of Hill Auditorium, located on the University of Michigan campus.

  20. Boronic acid-based chemical sensors for saccharides.

    Science.gov (United States)

    Zhang, Xiao-Tai; Liu, Guang-Jian; Ning, Zhang-Wei; Xing, Guo-Wen

    2017-11-27

    During the past decades, the interaction between boronic acids-functionalized sensors and saccharides is of great interest in the frontier domain of the interdiscipline concerning both biology and chemistry. Various boronic acid-based sensing systems have been developed to detect saccharides and corresponding derivatives in vitro as well as in vivo, which embrace unimolecular sensors, two-component sensing ensembles, functional assemblies, and boronic acid-loaded nanomaterials or surfaces. New sensing strategies emerge in endlessly with excellent selectivity and sensitivity. In this review, several typical sensing systems were introduced and some promising examples were highlighted to enable the deep insight of saccharides sensing on the basis of boronic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Santesteban, Daniel; Falcone, Francisco

    2016-08-30

    The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  2. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2016-08-01

    Full Text Available The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN. Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  3. A sensitive, handheld vapor sensor based on microcantilevers

    Science.gov (United States)

    Pinnaduwage, L. A.; Hedden, D. L.; Gehl, A.; Boiadjiev, V. I.; Hawk, J. E.; Farahi, R. H.; Thundat, T.; Houser, E. J.; Stepnowski, S.; McGill, R. A.; Deel, L.; Lareau, R. T.

    2004-11-01

    We report the development of a handheld sensor based on piezoresistive microcantilevers that does not depend on optical detection, yet has high detection sensitivity. The sensor is able to detect vapors from the plastic explosives pentaerythritol tetranitrate and hexahydro-1,3,5-triazine at levels below 10 parts per trillion within few seconds of exposure under ambient conditions. A differential measurement technique has yielded a rugged sensor that is unaffected by vibration and is able to function as a "sniffer." The microelectromechanical system sensor design allows for the incorporation of hundreds of microcantilevers with suitable coatings in order to achieve sufficient selectivity in the future, and thus could provide an inexpensive, unique platform for the detection of chemical, biological, and explosive materials.

  4. Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Raimundo García-Olcina

    2011-07-01

    Full Text Available The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE is presented. The system, by means of two specials valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.

  5. Novel wireless sensor system for dynamic characterization of borehole heat exchangers.

    Science.gov (United States)

    Martos, Julio; Montero, Álvaro; Torres, José; Soret, Jesús; Martínez, Guillermo; García-Olcina, Raimundo

    2011-01-01

    The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two special valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way.

  6. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    Science.gov (United States)

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  7. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  8. Novel Hall sensors developed for magnetic field imaging systems

    International Nuclear Information System (INIS)

    Cambel, Vladimir; Karapetrov, Goran; Novosad, Valentyn; Bartolome, Elena; Gregusova, Dagmar; Fedor, Jan; Kudela, Robert; Soltys, Jan

    2007-01-01

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat

  9. AN/FSY-3 Space Fence SystemSensor Site One/Operations Center Integration Status and Sensor Site Two Planned Capability

    Science.gov (United States)

    Fonder, G. P.; Hack, P. J.; Hughes, M. R.

    This paper covers two topics related to Space Fence System development: Sensor Site One / Operations Center construction and integration status including risk reduction integration and test efforts at the Moorestown, NJ Integrated Test Bed (ITB); and the planned capability of Sensor Site Two. The AN/FSY-3 Space Fence System is a ground-based system of S-band radars integrated with an Operations Center designed to greatly enhance the Air Force Space Surveillance network. The radar architecture is based on Digital Beam-forming. This capability permits tremendous user-defined flexibility to customize volume surveillance and track sectors instantaneously without impacting routine surveillance functions. Space Fence provides unprecedented sensitivity, coverage and tracking accuracy, and contributes to key mission threads with the ability to detect, track and catalog small objects in LEO, MEO and GEO. The system is net-centric and will seamlessly integrate into the existing Space Surveillance Network, providing services to external users—such as JSpOC—and coordinating handoffs to other SSN sites. Sensor Site One construction on the Kwajalein Atoll is in progress and nearing completion. The Operations Center in Huntsville, Alabama has been configured and will be integrated with Sensor Site One in the coming months. System hardware, firmware, and software is undergoing integration testing at the Mooretown, NJ ITB and will be deployed at Sensor Site One and the Operations Center. The preliminary design for Sensor Site Two is complete and will provide critical coverage, timeliness, and operational flexibility to the overall system.

  10. Implementation of software-based sensor linearization algorithms on low-cost microcontrollers.

    Science.gov (United States)

    Erdem, Hamit

    2010-10-01

    Nonlinear sensors and microcontrollers are used in many embedded system designs. As the input-output characteristic of most sensors is nonlinear in nature, obtaining data from a nonlinear sensor by using an integer microcontroller has always been a design challenge. This paper discusses the implementation of six software-based sensor linearization algorithms for low-cost microcontrollers. The comparative study of the linearization algorithms is performed by using a nonlinear optical distance-measuring sensor. The performance of the algorithms is examined with respect to memory space usage, linearization accuracy and algorithm execution time. The implementation and comparison results can be used for selection of a linearization algorithm based on the sensor transfer function, expected linearization accuracy and microcontroller capacity. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation.

    Science.gov (United States)

    Boissy, Patrick; Genest, Jonathan; Patenaude, Johanne; Poirier, Marie-Sol; Chenel, Vanessa; Béland, Jean-Pierre; Legault, Georges-Auguste; Bernier, Louise; Tapin, Danielle; Beauvais, Jacques

    2011-01-01

    This paper presents an overview of the functioning principles of CNTs and their electrical and mechanical properties when used as strain sensors and describes a system embodiment for a wearable monitoring and biofeedback platform for use in pressure ulcer prevention and rehabilitation. Two type of CNTs films (multi-layered CNTs film vs purified film) were characterized electrically and mechanically for potential use as source material. The loosely woven CNTs film (multi-layered) showed substantial less sensitivity than the purified CNTs film but had an almost linear response to stress and better mechanical properties. CNTs have the potential to achieve a much higher sensitivity to strain than other piezoresistors based on regular of conductive particles such as commercially available resistive inks and could become an innovative source material for wearable strain sensors. We are currently continuing the characterization of CNTs based strain sensors and exploring their use in a design for 3-axis strain sensors.

  12. Development of basic system for sensor calibration support in nuclear power plants

    International Nuclear Information System (INIS)

    Kusumi, Naohiro; Ohga, Yukiharu; Fukuda, Mitsuko; Ishizaki, Yuuichi; Koyama, Mikio; Maeda, Akihiko

    2004-01-01

    It is strongly desirable to reduce maintenance costs and shorten the time of periodic inspections in nuclear power plants. Therefore, it is important to reduce the amount of maintenance work during the inspection. In Japan, sensor calibration is usually performed at every periodic inspection, and the sensor calibration requires a large amount of work. A system for sensor calibration support has been developed to reduce sensor calibration work. The system is composed of two subsystems: a statistical analysis subsystem and a drift detection subsystem, as well as a human-machine interface, which offers support information. The statistical analysis subsystem supports the decision of the sensor calibration intervals based on the statistical analysis of sensor calibration data. There is the possibility that sensor drift increases beyond an allowance value before the sensor calibration intervals determined by the statistical analysis subsystem because of malfunctions, etc. To cope with this, the drift detection subsystem detects the sensor drift online during the plant operation. By combining the statistical analysis subsystem and the drift detection subsystem, a reliable sensor calibration support system is realized. The basic system composed of two subsystems was developed and evaluated using real plant data. The results showed that the sensor calibration intervals can be extended beyond current intervals and that the system is capable of detecting the sensor drift online. (author)

  13. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System

    Directory of Open Access Journals (Sweden)

    Hyundo Choi

    2018-02-01

    Full Text Available In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  14. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.

    Science.gov (United States)

    Choi, Hyundo; Seo, Keehong; Hyung, Seungyong; Shim, Youngbo; Lim, Soo-Chul

    2018-02-13

    In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors) sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  15. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    Science.gov (United States)

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  16. Sensor-guided threat countermeasure system

    Science.gov (United States)

    Stuart, Brent C.; Hackel, Lloyd A.; Hermann, Mark R.; Armstrong, James P.

    2012-12-25

    A countermeasure system for use by a target to protect against an incoming sensor-guided threat. The system includes a laser system for producing a broadband beam and means for directing the broadband beam from the target to the threat. The countermeasure system comprises the steps of producing a broadband beam and directing the broad band beam from the target to blind or confuse the incoming sensor-guided threat.

  17. Bayesian Belief Networks (BBN) and Expert Systems for supporting model based sensor fault detection analysis of smart building systems

    NARCIS (Netherlands)

    Schagen, J.D.; Taal, A.; Itard, L.C.M.; Heiselberg, Per Kvols

    2016-01-01

    The Hague University in Delft uses an advanced climate control system. All sensors and actuators are monitored and deviations from the sensor data are reported daily. The building manager will have to combine the information from the sensor data in order to draw the right conclusions. In this paper,

  18. Research on Water Velocity Measurement of Reservoir Based on Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhao

    2014-11-01

    Full Text Available To address the problem that pressure sensor can only measure the liquid level in reservoir, we designed a current velocity measurement system of reservoir based on pressure sensor, analyzed the error of current velocity measurement system, and proposed the error processing method and corresponding program. Several tests and experimental results show that in this measurement system, the liquid level measurement standard deviation is no more than 0.01 cm, and the current velocity measurement standard deviation is no more than 0.35 mL/s, which proves that the pressure sensor can measure both liquid level and current velocity synchronously.

  19. All-plastic fiber-based pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, Richard; Leon-Saval, Sergio

    2016-01-01

    We present a feasibility study and a prototype of an all-plastic fiber-based pressure sensor. The sensor is based on long period gratings inscribed for the first time to the best of our knowledge by a CO2 laser in polymethyl methacrylate (PMMA) microstructured fibers and coupled to a pod......-like transducer that converts pressure to strain. The sensor prototype was characterized for pressures up to 150 mbars, and various parameters related to its construction were also characterized in order to enhance sensitivity. We consider this sensor in the context of future applications in endoscopic pressure...... sensors....

  20. Secure Data Exchange in Environmental Health Monitoring System through Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Amang Sudarsono

    2016-04-01

    Full Text Available Recently, disseminating latest sensory information regarding the status of environmental health in the surroundings of human life is one of very important circumstances which must be known by everyone. These circumstances should be accessible at anytime and anywhere by everyone through any type of end-user devices, both fixed and mobile devices, i.e., Desktop PCs, Laptop PCs, and Smartphones. Wireless Sensor Network (WSN is one of the networks which deals with data sensors distribution from sensor nodes to the gateway node toward a Data Center Server. However, there is a big possibility for many adversaries to intercept and even manipulate data sensors crossing the network. Hence, a secure data sensor exchange in the system would be strongly desirable. In this research, we propose an environmental health conditions monitoring system through WSN and its implementation with considering secure data sensor exchange within the network and secure data sensor access. This work may contribute to support a part of smart cities and take in part the Internet of Thing (IoT technology. In our proposed system, we collect some environmental health information such as temperature, humidity, luminosity, noise, carbon monoxide (CO and carbon dioxide (CO2 from sensor nodes. We keep the confidentiality and integrity of transmitted data sensors propagating through IEEE802.15.4-based communication toward a gateway node. Further, the collected data sensors in the gateway are synchronized to the Data Center Server through a secure TCP/IP connection for permanently storing. At anytime and anywhere, only legitimated users who successfully pass-through an attribute-based authentication system are able to access the data sensors.

  1. Sensor system for web inspection

    Science.gov (United States)

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  2. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  3. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System.

    Science.gov (United States)

    Mouapi, Alex; Hakem, Nadir

    2018-01-05

    Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS). To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN), techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments), the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM) band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS) to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN) has 100 nodes evenly spread over an area of 300 × 300 m 2 and

  4. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Alex Mouapi

    2018-01-01

    Full Text Available Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS. To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN, techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments, the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN has 100 nodes evenly spread over an area of 300

  5. Smart architecture for stable multipoint fiber Bragg grating sensor system

    Science.gov (United States)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung

    2017-12-01

    In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.

  6. A Sensor-based System for Monitoring Hard-shoulder Incursions: Review of Technologies and Selection Criteria

    Directory of Open Access Journals (Sweden)

    Michalaki Paraskevi

    2016-01-01

    Full Text Available According to safety observations from motorway operators in the United Kingdom, the hard-shoulder is occasionally violated by road users travelling in the nearside lane. These unintentional movements (hard-shoulder incursions can impose risk to operatives performing activities on the network. To further investigate these events, a sensor-based system can be used for monitoring them and collecting related data such as severity of incursion and vehicle classification. A review of vehicle detection technologies that could be applied for this purpose is presented, along with the criteria for selection of the most suitable technology and implementation sites. Two potential non-intrusive systems are also described, a laser- and a radar-based systems, which provide different levels of flexibility and data.

  7. Developing a Framework for E-Manufacturing Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xu Xi

    2013-06-01

    Full Text Available This paper analyzes the current situation of business environment and business intelligence systems integration at first. With emerging applications of internet and wireless communication technologies, e-manufacturing is focused on the use of internet, monitoring and communications technologies to make things happen collaboratively on a global basis. A wireless sensor network based data acquisition system gives enormous benefits such as ease and flexibility of deployment in addition to low maintenance and deployment costs. This paper reviews wireless sensor network and its application for e-manufacturing. To provide a dependable, non-intrusive, secure, real-time automated health monitoring, a distributed reconfigurable sensor network is introduced which consists of real and virtual sensor nodes over a communication wireless sensor network using Mica2 motes.

  8. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    OpenAIRE

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-01-01

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object...

  9. Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control

    Directory of Open Access Journals (Sweden)

    Lipi Chhaya

    2017-01-01

    Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.

  10. Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System.

    Science.gov (United States)

    Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang

    2017-12-06

    This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.

  11. Cardiorespiratory system monitoring using a developed acoustic sensor.

    Science.gov (United States)

    Abbasi-Kesbi, Reza; Valipour, Atefeh; Imani, Khadije

    2018-02-01

    This Letter proposes a wireless acoustic sensor for monitoring heartbeat and respiration rate based on phonocardiogram (PCG). The developed sensor comprises a processor, a transceiver which operates at industrial, scientific and medical band and the frequency of 2.54 GHz as well as two capacitor microphones which one for recording the heartbeat and another one for respiration rate. To evaluate the precision of the presented sensor in estimating heartbeat and respiration rate, the sensor is tested on the different volunteers and the obtained results are compared with a gold standard as a reference. The results reveal that root-mean-square error are determined sensor estimate sounds of [Formula: see text] to [Formula: see text] obtained PCG signal with sensitivity and specificity 98.1% and 98.3% in turn that make 3% improvement than previous works. The results prove that the sensor can be appropriate candidate for recognising abnormal condition in the cardiorespiratory system.

  12. Case-Based Multi-Sensor Intrusion Detection

    Science.gov (United States)

    Schwartz, Daniel G.; Long, Jidong

    2009-08-01

    Multi-sensor intrusion detection systems (IDSs) combine the alerts raised by individual IDSs and possibly other kinds of devices such as firewalls and antivirus software. A critical issue in building a multi-sensor IDS is alert-correlation, i.e., determining which alerts are caused by the same attack. This paper explores a novel approach to alert correlation using case-based reasoning (CBR). Each case in the CBR system's library contains a pattern of alerts raised by some known attack type, together with the identity of the attack. Then during run time, the alert streams gleaned from the sensors are compared with the patterns in the cases, and a match indicates that the attack described by that case has occurred. For this purpose the design of a fast and accurate matching algorithm is imperative. Two such algorithms were explored: (i) the well-known Hungarian algorithm, and (ii) an order-preserving matching of our own device. Tests were conducted using the DARPA Grand Challenge Problem attack simulator. These showed that the both matching algorithms are effective in detecting attacks; but the Hungarian algorithm is inefficient; whereas the order-preserving one is very efficient, in fact runs in linear time.

  13. Bioinspired optical sensors for unmanned aerial systems

    Science.gov (United States)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  14. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  15. VLC-based indoor location awareness using LED light and image sensors

    Science.gov (United States)

    Lee, Seok-Ju; Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    Recently, indoor LED lighting can be considered for constructing green infra with energy saving and additionally providing LED-IT convergence services such as visible light communication (VLC) based location awareness and navigation services. For example, in case of large complex shopping mall, location awareness to navigate the destination is very important issue. However, the conventional navigation using GPS is not working indoors. Alternative location service based on WLAN has a problem that the position accuracy is low. For example, it is difficult to estimate the height exactly. If the position error of the height is greater than the height between floors, it may cause big problem. Therefore, conventional navigation is inappropriate for indoor navigation. Alternative possible solution for indoor navigation is VLC based location awareness scheme. Because indoor LED infra will be definitely equipped for providing lighting functionality, indoor LED lighting has a possibility to provide relatively high accuracy of position estimation combined with VLC technology. In this paper, we provide a new VLC based positioning system using visible LED lights and image sensors. Our system uses location of image sensor lens and location of reception plane. By using more than two image sensor, we can determine transmitter position less than 1m position error. Through simulation, we verify the validity of the proposed VLC based new positioning system using visible LED light and image sensors.

  16. Sensor-based whole-arm obstacle avoidance utilizing ASIC technology

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Ericson, M.N.; Babcock, S.M.; Armstrong, G.A.; Britton, C.L. Jr.; Butler, P.L.; Hamel, W.R.; Newport, D.F.

    1993-01-01

    Operation of manipulator systems in poorly defined work environments often presents a significant hazard to both the robotic assembly and the environment. In applications relating to the Environmental Restoration and Waste Management (ER ampersand WM) Program, many of the environments are considered hazardous, both, in the structure and composition of the environment Use of a sensing system that provides information to the manipulator control unit regarding obstacles in close proximity will provide protection against collisions. In this paper, a hierarchical design and implementation of a whole-arm obstacle avoidance system is presented. The system is based on capacitive sensors configured as bracelets for proximity sensing. Each bracelet contains a number of sensor nodes and a processor for sensor node control and readout, and communications with a higher level host, common to all bracelets. The host controls the entire sensing network and communicates proximity information to the manipulator controller. The overall architecture of this system is discussed with detail on the individual system modules. Details of an application specific integrated circuit (ASIC) designed to implement the sensor node electronics are presented. Justifications for the general measurement methods and associated implementation are discussed. Additionally, the current state of development including measured dam is presented

  17. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  18. A Method to Increase Drivers' Trust in Collision Warning Systems Based on Reliability Information of Sensor

    Science.gov (United States)

    Tsutsumi, Shigeyoshi; Wada, Takahiro; Akita, Tokihiko; Doi, Shun'ichi

    Driver's workload tends to be increased during driving under complicated traffic environments like a lane change. In such cases, rear collision warning is effective for reduction of cognitive workload. On the other hand, it is pointed out that false alarm or missing alarm caused by sensor errors leads to decrease of driver' s trust in the warning system and it can result in low efficiency of the system. Suppose that reliability information of the sensor is provided in real-time. In this paper, we propose a new warning method to increase driver' s trust in the system even with low sensor reliability utilizing the sensor reliability information. The effectiveness of the warning methods is shown by driving simulator experiments.

  19. Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery.

    Science.gov (United States)

    Sun, Xinyao; Byrns, Simon; Cheng, Irene; Zheng, Bin; Basu, Anup

    2017-02-01

    We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.

  20. Sensitivity Enhancement of FBG-Based Strain Sensor.

    Science.gov (United States)

    Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian

    2018-05-17

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.

  1. Bluetooth-based distributed measurement system

    International Nuclear Information System (INIS)

    Tang Baoping; Chen Zhuo; Wei Yuguo; Qin Xiaofeng

    2007-01-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit

  2. Bluetooth-based distributed measurement system

    Science.gov (United States)

    Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng

    2007-07-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  3. Bluetooth-based distributed measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Chen Zhuo; Wei Yuguo; Qin Xiaofeng [Department of Mechatronics, College of Mechanical Engineering, Chongqing University, Chongqing, 400030 (China)

    2007-07-15

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  4. A multimodal image sensor system for identifying water stress in grapevines

    Science.gov (United States)

    Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong

    2012-11-01

    Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.

  5. A Fine-Grained Data Access Control System in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Boniface K. Alese

    2015-12-01

    Full Text Available The evolving realities of Wireless Sensor Network (WSN deployed to various terrain of life require serving multiple applications. As large amount of sensed data are distributed and stored in individual sensors nodes, the illegal access to these sensitive data can be devastating. Consequently, data insecurity becomes a big concern. This study, therefore, proposes a fine-grained access control system which only requires the right set of users to access a particular data, based on their access privileges in the sensor networks. It is designed using Priccess Protocol with Access policy formulation adopting the principle of Bell Lapadula model as well as Attribute-Based Encryption (ABE to control access to sensor data. The functionality of the proposed system is simulated using Netbeans. The performance analysis of the proposed system using execution time and size of the key show that the higher the key size, the harder it becomes for the attacker to hack the system. Additionally, the time taken for the proposed work is lesser which makes the work faster than the existing work. Consequently, a well secure interactive web-based application that could facilitates the field officers access to stored data in safe and secure manner is developed.

  6. A Blade Tip Timing Method Based on a Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Jilong Zhang

    2017-05-01

    Full Text Available Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy.

  7. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.

    Science.gov (United States)

    Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador

    2017-10-02

    This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.

  8. Gesture recognition based on computer vision and glove sensor for remote working environments

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Sung Il; Kim, In Chul; Baek, Yung Mok; Kim, Dong Su; Jeong, Jee Won; Shin, Kug [Kyungpook National University, Taegu (Korea)

    1998-04-01

    In this research, we defined a gesture set needed for remote monitoring and control of a manless system in atomic power station environments. Here, we define a command as the loci of a gesture. We aim at the development of an algorithm using a vision sensor and glove sensors in order to implement the gesture recognition system. The gesture recognition system based on computer vision tracks a hand by using cross correlation of PDOE image. To recognize the gesture word, the 8 direction code is employed as the input symbol for discrete HMM. Another gesture recognition based on sensor has introduced Pinch glove and Polhemus sensor as an input device. The extracted feature through preprocessing now acts as an input signal of the recognizer. For recognition 3D loci of Polhemus sensor, discrete HMM is also adopted. The alternative approach of two foregoing recognition systems uses the vision and and glove sensors together. The extracted mesh feature and 8 direction code from the locus tracking are introduced for further enhancing recognition performance. MLP trained by backpropagation is introduced here and its performance is compared to that of discrete HMM. (author). 32 refs., 44 figs., 21 tabs.

  9. Development of Remote-Type Haptic Catheter Sensor System using Piezoelectric Transducer

    Science.gov (United States)

    Haruta, Mineyuki; Murayama, Yoshinobu; Omata, Sadao

    This study describes the development of Remote-Type Haptic Catheter Sensor System which enables the mechanical property evaluation of a blood vessel. This system consists of a feedback circuit and a piezoelectric ultrasound transducer, and is operated based on a phase shift method so that the entire system oscillates at its inherent resonance frequency. Ultrasound reflected by the blood vessel makes a phase shift of the resonance system depending on the acoustic impedance of the reflector. The phase shift is then measured as a change in resonance frequency of the system; therefore, the detection resolution is highly improved. The correlation between the acoustic impedance and the resonance frequency change of the sensor system was demonstrated using silicone rubbers, metals and actual blood vessels from a pig. The performance of the sensor was also examined using vessel shaped phantom model. Finally, the discussion surveys a possibility of the novel sensor system in an application for intra vascular diagnosis.

  10. A Community-Based Event Delivery Protocol in Publish/Subscribe Systems for Delay Tolerant Sensor Networks

    Directory of Open Access Journals (Sweden)

    Haigang Gong

    2009-09-01

    Full Text Available The basic operation of a Delay Tolerant Sensor Network (DTSN is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  11. Multiobjective Design of Wearable Sensor Systems for Electrocardiogram Monitoring

    Directory of Open Access Journals (Sweden)

    F. J. Martinez-Tabares

    2016-01-01

    Full Text Available Wearable sensor systems will soon become part of the available medical tools for remote and long term physiological monitoring. However, the set of variables involved in the performance of these systems are usually antagonistic, and therefore the design of usable wearable systems in real clinical applications entails a number of challenges that have to be addressed first. This paper describes a method to optimise the design of these systems for the specific application of cardiac monitoring. The method proposed is based on the selection of a subset of 5 design variables, sensor contact, location, and rotation, signal correlation, and patient comfort, and 2 objective functions, functionality and wearability. These variables are optimised using linear and nonlinear models to maximise those objective functions simultaneously. The methodology described and the results achieved demonstrate that it is possible to find an optimal solution and therefore overcome most of the design barriers that prevent wearable sensor systems from being used in normal clinical practice.

  12. Polydimethylsiloxane (PDMS-Based Flexible Resistive Strain Sensors for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-02-01

    Full Text Available There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports performance monitoring, etc. This article presents recent advancements in the development of polydimethylsiloxane (PDMS-based flexible resistive strain sensors for wearable applications. First of all, the article shows that PDMS-based stretchable resistive strain sensors are successfully fabricated by different methods, such as the filtration method, printing technology, micromolding method, coating techniques, and liquid phase mixing. Next, strain sensing performances including stretchability, gauge factor, linearity, and durability are comprehensively demonstrated and compared. Finally, potential applications of PDMS-based flexible resistive strain sensors are also discussed. This review indicates that the era of wearable intelligent electronic systems has arrived.

  13. Flood early warning system: sensors and internet

    NARCIS (Netherlands)

    Pengel, B.E.; Krzhizhanovskaya, V.V.; Melnikova, N.B.; Shirshov, G.S.; Koelewijn, A.R.; Pyayt, A.L.; Mokhov, I.I.; Chavoshian, A.; Takeuchi, K.

    2013-01-01

    The UrbanFlood early warning system (EWS) is designed to monitor data from very large sensornetworks in flood defences such as embankments, dikes, levees, and dams. The EWS, based on the internet, uses real-time sensor information and Artificial Intelligence (AI) to immediately calculate the

  14. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    Science.gov (United States)

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  15. Chain-based communication in cylindrical underwater wireless sensor networks.

    Science.gov (United States)

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-02-04

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  16. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2015-02-01

    Full Text Available Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs. Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS and Congestion adjusted PEGASIS (C-PEGASIS. Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  17. Measurement system for special surface mapping using miniature displacement sensors

    Directory of Open Access Journals (Sweden)

    Zowade Martyna

    2018-01-01

    Full Text Available The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.

  18. Semiconductor Metal Oxide Sensors in Water and Water Based Biological Systems

    Directory of Open Access Journals (Sweden)

    Marina V. Strobkova

    2003-10-01

    Full Text Available The results of implementation of In2O3-based semiconductor sensors for oxygen concentration evaluation in water and the LB-nutrient media (15.5 g/l Luria Broth Base, Miller (Sigma, Lot-1900 and NaCl without bacteria and with E.coli bacteria before and after UV-irradiation are presented.

  19. Sensors Based Measurement Techniques of Fuel Injection and Ignition Characteristics of Diesel Sprays in DI Combustion System

    Directory of Open Access Journals (Sweden)

    S. Rehman

    2016-09-01

    Full Text Available Innovative sensor based measurement techniques like needle lift sensor, photo (optical sensor and piezoresistive pressure transmitter are introduced and used to measure the injection and combustion characteristics in direct injection combustion system. Present experimental study is carried out in the constant volume combustion chamber to study the ignition, combustion and injection characteristics of the solid cone diesel fuel sprays impinging on the hot surface. Hot surface ignition approach has been used to create variety of advanced combustion systems. In the present study, the hot surface temperatures were varied from 623 K to 723 K. The cylinder air pressures were 20, 30 and 40 bar and fuel injection pressures were 100, 200 and 300 bar. It is found that ignition delay of fuel sprays get reduced with the rise in injection pressure. The ignition characteristics of sprays much less affected at high fuel injection pressures and high surface temperatures. The fuel injection duration reduces with the increase in fuel injection pressures. The rate of heat release becomes high at high injection pressures and it decreases with the increase in injection duration. It is found that duration of burn/combustion decrease with the increase in injection pressure. The use of various sensors is quite effective, reliable and accurate in measuring the various fuel injection and combustion characteristics. The study simulates the effect of fuel injection system parameters on combustion performance in large heavy duty engines.

  20. Intrusion recognition for optic fiber vibration sensor based on the selective attention mechanism

    Science.gov (United States)

    Xu, Haiyan; Xie, Yingjuan; Li, Min; Zhang, Zhuo; Zhang, Xuewu

    2017-11-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. A fiber optic perimeter detection system based on all-fiber interferometric sensor is proposed, through the back-end analysis, processing and intelligent identification, which can distinguish effects of different intrusion activities. In this paper, an intrusion recognition based on the auditory selective attention mechanism is proposed. Firstly, considering the time-frequency of vibration, the spectrogram is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Based on these maps, the feature matrix is formed after normalization. The system could recognize the intrusion activities occurred along the perimeter sensors. Experiment results show that the proposed method for the perimeter is able to differentiate intrusion signals from ambient noises. What's more, the recognition rate of the system is improved while deduced the false alarm rate, the approach is proved by large practical experiment and project.

  1. Common bus multinode sensor system

    International Nuclear Information System (INIS)

    Kelly, T.F.; Naviasky, E.H.; Evans, W.P.; Jefferies, D.W.; Smith, J.R.

    1988-01-01

    This patent describes a nuclear power plant including a common bus multinode sensor system for sensors in the nuclear power plant, each sensor producing a sensor signal. The system consists of: a power supply providing power; a communication cable coupled to the power supply; plural remote sensor units coupled between the cable and one or more sensors, and comprising: a direct current power supply, connected to the cable and converting the power on the cable into direct current; an analog-to-digital converter connected to the direct current power supply; an oscillator reference; a filter; and an integrated circuit sensor interface connected to the direct current power supply, the analog-to-digital converter, the oscillator crystal and the filter, the interface comprising: a counter receiving a frequency designation word from external to the interface; a phase-frequency comparator connected to the counter; an oscillator connected to the oscillator reference; a timing counter connected to the oscillator, the phase/frequency comparator and the analog-to-digital converter; an analog multiplexer connectable to the sensors and the analog-to-digital converter, and connected to the timing counter; a shift register operatively connected to the timing counter and the analog-to-digital converter; an encoder connected to the shift register and connectable to the filter; and a voltage controlled oscillator connected to the filter and the cable

  2. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  3. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  4. Sensor network infrastructure for a home care monitoring system.

    Science.gov (United States)

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  5. Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis G.; Jeung, Ho Young; Aberer, Karl

    2012-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  6. Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Ozgur Atalay

    2018-05-01

    Full Text Available The electronic textile area has gained considerable attention due to its implementation of wearable devices, and soft sensors are the main components of these systems. In this paper, a new sensor design is presented to create stretchable, capacitance-based strain sensors for human motion tracking. This involves the use of stretchable, conductive-knit fabric within the silicone elastomer matrix, as interdigitated electrodes. While conductive fabric creates a secure conductive network for electrodes, a silicone-based matrix provides encapsulation and dimensional-stability to the structure. During the benchtop characterization, sensors show linear output, i.e., R2 = 0.997, with high response time, i.e., 50 ms, and high resolution, i.e., 1.36%. Finally, movement of the knee joint during the different scenarios was successfully recorded.

  7. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian

    2017-01-17

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly(dimethylsiloxane) (PDMS) can sustain their sensitivity even at very high strain levels (with a gauge factor of over 10(7) at 50% strain). This record sensitivity is ascribed to the low initial electrical resistance (5-28 Omega) of the SWCNT paper and the wide change in resistance (up to 10(6) Omega) governed by the percolated network of SWCNT in the cracked region. The sensor response remains nearly unchanged after 10 000 strain cycles at 20% proving the robustness of this technology. This fragmentation based sensing system brings opportunities to engineer highly sensitive stretchable sensors.

  8. Low-cost failure sensor design and development for water pipeline distribution systems.

    Science.gov (United States)

    Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J

    2002-01-01

    This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).

  9. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networ....... ABSN enhances the generic Extended Zone Routing Protocol with logical sensor grouping and greatly lowers network overhead during the process of discovery, while keeping discovery latency close to optimal.......This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...

  10. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    Science.gov (United States)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the

  11. REMOTE, a Wireless Sensor Network Based System to Monitor Rowing Performance

    Science.gov (United States)

    Llosa, Jordi; Vilajosana, Ignasi; Vilajosana, Xavier; Navarro, Nacho; Suriñach, Emma; Marquès, Joan Manuel

    2009-01-01

    In this paper, we take a hard look at the performance of REMOTE, a sensor network based application that provides a detailed picture of a boat movement, individual rower performance, or his/her performance compared with other crew members. The application analyzes data gathered with a WSN strategically deployed over a boat to obtain information on the boat and oar movements. Functionalities of REMOTE are compared to those of RowX [1] outdoor instrument, a commercial wired sensor instrument designed for similar purposes. This study demonstrates that with smart geometrical configuration of the sensors, rotation and translation of the oars and boat can be obtained. Three different tests are performed: laboratory calibration allows us to become familiar with the accelerometer readings and validate the theory, ergometer tests which help us to set the acquisition parameters, and on boat tests shows the application potential of this technologies in sports. PMID:22423204

  12. REMOTE, a Wireless Sensor Network Based System to Monitor Rowing Performance

    Directory of Open Access Journals (Sweden)

    Jordi Llosa

    2009-09-01

    Full Text Available In this paper, we take a hard look at the performance of REMOTE, a sensor network based application that provides a detailed picture of a boat movement, individual rower performance, or his/her performance compared with other crew members. The application analyzes data gathered with a WSN strategically deployed over a boat to obtain information on the boat and oar movements. Functionalities of REMOTE are compared to those of RowX [1] outdoor instrument, a commercial wired sensor instrument designed for similar purposes. This study demonstrates that with smart geometrical configuration of the sensors, rotation and translation of the oars and boat can be obtained. Three different tests are performed: laboratory calibration allows us to become familiar with the accelerometer readings and validate the theory, ergometer tests which help us to set the acquisition parameters, and on boat tests shows the application potential of this technologies in sports.

  13. Design of Zigbee-Based Wireless Sensor suitable for Radiation Detection and Monitoring

    International Nuclear Information System (INIS)

    Madian, A.A.

    2012-01-01

    This paper presents a design for a wireless sensor nuclear radiation monitoring and detection based on Zigbee. The system consists of transmitter and receiver modules. The wireless sensor installed at transmitter whiles the receiver processing data. The communication between Tx and Rx done through Zigbee module using the protocol of CSMA/CA. The Zigbee has the advantages of reliable, power-efficient, and low-latency communications between low-cost Tx/Rx.The wireless sensor implementation can easily be deployed to discover unusual or abnormal radioactivity. The sensors are convenient to be installed indoors or outdoors, as well as to be mounted on mobile equipment's. All wireless nuclear detection sensors are designed using micro controller and other integrated systems

  14. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke

    2017-04-01

    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  15. Research of detection depth for graphene-based optical sensor

    Science.gov (United States)

    Yang, Yong; Sun, Jialve; Liu, Lu; Zhu, Siwei; Yuan, Xiaocong

    2018-03-01

    Graphene-based optical sensors have been developed for research into the biological intercellular refractive index (RI) because they offer greater detection depths than those provided by the surface plasmon resonance technique. In this Letter, we propose an experimental approach for measurement of the detection depth in a graphene-based optical sensor system that uses transparent polydimethylsiloxane layers with different thicknesses. The experimental results show that detection depths of 2.5 μm and 3 μm can be achieved at wavelengths of 532 nm and 633 nm, respectively. These results prove that graphene-based optical sensors can realize long-range RI detection and are thus promising for use as tools in the biological cell detection field. Additionally, we analyze the factors that influence the detection depth and provide a feasible approach for detection depth control based on adjustment of the wavelength and the angle of incidence. We believe that this approach will be useful in RI tomography applications.

  16. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.

    Science.gov (United States)

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran

    2016-06-27

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

  17. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes

    Directory of Open Access Journals (Sweden)

    Ehsan Ahvar

    2016-06-01

    Full Text Available User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i users’ privacy; (ii device-/tag-free; and (iii fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

  18. Imaging system design and image interpolation based on CMOS image sensor

    Science.gov (United States)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  19. Relational-Based Sensor Data Cleansing

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Nordbjerg, Finn Ebertsen

    2015-01-01

    approaches, such as classification, prediction and moving average, are not suited for embedded sensor devices, due to their limit storage and processing capabilities. In this paper, we propose a sensor data cleansing approach using the relational-based technologies, including constraints, triggers...... and granularity-based data aggregation. The proposed approach is simple but effective to cleanse different types of dirty data, including delayed data, incomplete data, incorrect data, duplicate data and missing data. We evaluate the proposed strategy to verify its efficiency and effectiveness.......Today sensors are widely used in many monitoring applications. Due to some random environmental effects and/or sensing failures, the collected sensor data is typically noisy. Thus, it is critical to cleanse the data before using it for answering queries or for data analysis. Popular data cleansing...

  20. Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor

    Science.gov (United States)

    Zhao, Xiaofeng; Li, Dandan; Yu, Yang; Wen, Dianzhong

    2017-07-01

    Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors ({R}1, {R}2, {R}3 and {R}4) locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator (SOI) wafer by micro electromechanical system (MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity (TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/°C, respectively. Through varying the ratio of the base region resistances {r}1 and {r}2, the TCS for the sensor with the compensation circuit is -127 ppm/°C. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor. Project supported by the National Natural Science Foundation of China (No. 61471159), the Natural Science Foundation of Heilongjiang Province (No. F201433), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. 2015018), and the Special Funds for Science and Technology Innovation Talents of Harbin in China (No. 2016RAXXJ016).

  1. Design of Seat Search System in the Classroom Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jia Yu chen

    2018-01-01

    Full Text Available The purpose of this design is intended to statistics and publishes free seats information in classroom timely to students, and then save students’ time to looking for classroom. The system uses wireless sensor networks to monitor classroom vacancies. It consists of classroom monitoring system and information transmission system. The classroom monitoring system consists of a coordinator node for remote wireless communication and two collection nodes for local communications in the classroom, and that three nodes are star-connected. The tasks of the coordinator node are to collect information from the collection nodes and display and transmission. Set up two collection nodes for collecting information of the number who inter the classroom. The devices for counting include two units, signal acquisition unit is constituted with pyroelectric infrared sensor which contains RE200B probe and conditioning circuit, and the control unit is constituted with CC2530 for signal processing. LCD screen is used to real-time display in coordinator node for counting the number of coming in or out the classroom. Users who enter the teaching building check which classroom have seats available. The manner of local communication is using ZIGBEE. The entire system uses sensor technology and mobile network communication technology to achieve real-time acquisition and release of information. The ability to identify and stability of the experimental system currently implemented are strong.

  2. Automated waste canister docking and emplacement using a sensor-based intelligent controller

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1992-08-01

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of ± 0.5 millimeter

  3. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  4. Precise shape reconstruction by active pattern in total-internal-reflection-based tactile sensor.

    Science.gov (United States)

    Saga, Satoshi; Taira, Ryosuke; Deguchi, Koichiro

    2014-03-01

    We are developing a total-internal-reflection-based tactile sensor in which the shape is reconstructed using an optical reflection. This sensor consists of silicone rubber, an image pattern, and a camera. It reconstructs the shape of the sensor surface from an image of a pattern reflected at the inner sensor surface by total internal reflection. In this study, we propose precise real-time reconstruction by employing an optimization method. Furthermore, we propose to use active patterns. Deformation of the reflection image causes reconstruction errors. By controlling the image pattern, the sensor reconstructs the surface deformation more precisely. We implement the proposed optimization and active-pattern-based reconstruction methods in a reflection-based tactile sensor, and perform reconstruction experiments using the system. A precise deformation experiment confirms the linearity and precision of the reconstruction.

  5. Innovative multi-cantilever array sensor system with MOEMS read-out

    Science.gov (United States)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  6. Laboratory validation of MEMS-based sensors for post-earthquake damage assessment image

    Science.gov (United States)

    Pozzi, Matteo; Zonta, Daniele; Santana, Juan; Colin, Mikael; Saillen, Nicolas; Torfs, Tom; Amditis, Angelos; Bimpas, Matthaios; Stratakos, Yorgos; Ulieru, Dumitru; Bairaktaris, Dimitirs; Frondistou-Yannas, Stamatia; Kalidromitis, Vasilis

    2011-04-01

    The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims to produce small size sensing nodes for measurement of strain and acceleration, integrating Micro-Electro-Mechanical Systems (MEMS) based sensors and Radio Frequency Identification (RFID) tags in a single package that will be attached to reinforced concrete buildings. To reduce the impact of installation and management, data will be transmitted to a remote base station using a wireless interface. During the project, sensor prototypes were produced by assembling pre-existing components and by developing ex-novo miniature devices with ultra-low power consumption and sensing performance beyond that offered by sensors available on the market. The paper outlines the device operating principles, production scheme and working at both unit and network levels. It also reports on validation campaigns conducted in the laboratory to assess system performance. Accelerometer sensors were tested on a reduced scale metal frame mounted on a shaking table, back to back with reference devices, while strain sensors were embedded in both reduced and full-scale reinforced concrete specimens undergoing increasing deformation cycles up to extensive damage and collapse. The paper assesses the economical sustainability and performance of the sensors developed for the project and discusses their applicability to long-term seismic monitoring.

  7. A fuzzy behaviorist approach to sensor-based robot control

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  8. Compressive sensing based wireless sensor for structural health monitoring

    Science.gov (United States)

    Bao, Yuequan; Zou, Zilong; Li, Hui

    2014-03-01

    Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.

  9. Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.

    Science.gov (United States)

    Muyun Cao; Yuhua Li; Yadid-Pecht, Orly

    2015-08-01

    This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.

  10. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  11. Neural network-based sensor signal accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  12. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    Science.gov (United States)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  13. Sensor Systems for Corrosion Monitoring in Concrete Structures

    Directory of Open Access Journals (Sweden)

    K.Kumar

    2006-05-01

    Full Text Available It is a need of permanently embedded corrosion monitoring devices to monitor the progress of corrosion problems on a new or existing reinforced concrete structures before embarking on repair or rehabilitation of the structures. Numerous devices are available for investigating corrosion problems, because no single technique exists which tells an engineer what he needs to know, namely how much damage there is on a structure now and how rapidly the damage will grow with time. In this investigation the studies on the sensors systems based on the measurements of half cell potential of rebars inside the concrete, resistivity of concrete, corrosion rate of rebars by eddy current measurements and sensing of chloride ions are reported. An integrated system consists of above sensors are fabricated and embedded into concrete. The response from each sensor was acquired and analyzed by NI hardware through LabVIEW software.

  14. Fiber Bragg Grating Sensors Based Monitoring System for Superconducting Accelerator Magnets

    CERN Document Server

    Chiuchiolo, A; Perez, J C; Bajas, H; Consales, M; Giordano, M; Breglio, G; Cusano, A

    2014-01-01

    New generation of accelerator magnets for high energy applications currently designed, manufactured and tested at the European Organization for Nuclear Research (CERN) require the implementation of precise cryogenic sensors with long-term robustness and reliability able to withstand cryogenic temperature and to monitor the mechanical stresses affecting the winding during all the stages of his service life, assembly, cool down and powering. Monitoring the mechanical behavior of the magnet from assembly to operation is a critical task which aims to assure the integrity of the magnet and to safely handle the coils made of new brittle material. This contribution deals with the first successful embedding of Fiber Bragg Grating sensors in a subscale Nb$_{3}$Sn dipole magnet in order to monitor the strain developed in the coil during the cool down to 1.9 K, the powering up to 15.8 kA and the warm up, offering new perspectives for the development of a complementary sensing technology based on fiber optic sensors.

  15. Sensitive and selective cataluminescence-based sensor system for acetone and diethyl ether determination.

    Science.gov (United States)

    Wang, Qihui; Li, Bo; Wang, Yuhuai; Shou, Zhouxiang; Shi, Guolong

    2015-05-01

    A three-dimensional hierarchical CdO nanostructure with a novel bio-inspired morphology is reported. The field emission scanning electronic microscopy, transmission electron microscopy and X-ray diffractometer were employed to characterize the as-prepared samples. In gas-sensing measurements, acetone and diethyl ether were employed as target gases to investigate cataluminescence (CTL) sensing properties of the CdO nanostructure. The results show that the as-fabricated CdO nanostructure exhibited outstanding CTL properties such as stable intensity, high signal/noise values, short response and recovery time. The limit of detection of acetone and diethyl ether was ca. 6.5 ppm and 6.7 ppm, respectively, which was below the standard permitted concentrations. Additionally, a principal components analysis method was used to investigate the recognizable ability of the CTL sensor, and it was found that acetone and diethyl ether can be distinguished clearly. The performance of the bio-inspired CdO nanostructure-based sensor system suggested the promising application of the CdO nanostructure as a novel highly efficient CTL sensing material. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks

    Directory of Open Access Journals (Sweden)

    DongHo Kang

    2014-01-01

    Full Text Available Internet of Things (IoT consists of several tiny devices connected together to form a collaborative computing environment. Recently IoT technologies begin to merge with supervisory control and data acquisition (SCADA sensor networks to more efficiently gather and analyze real-time data from sensors in industrial environments. But SCADA sensor networks are becoming more and more vulnerable to cyber-attacks due to increased connectivity. To safely adopt IoT technologies in the SCADA environments, it is important to improve the security of SCADA sensor networks. In this paper we propose a multiple filtering technique based on whitelists to detect illegitimate packets. Our proposed system detects the traffic of network and application protocol attacks with a set of whitelists collected from normal traffic.

  17. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor.

    Science.gov (United States)

    Park, Yoo Min; Han, Yong Duk; Chun, Hyeong Jin; Yoon, Hyun C

    2017-07-15

    We present a hand-held optical biosensing system utilizing a smartphone-embedded illumination sensor that is integrated with immunoblotting assay method. The smartphone-embedded illumination sensor is regarded as an alternative optical receiver that can replaces the conventional optical analysis apparatus because the illumination sensor can respond to the ambient light in a wide range of wavelengths, including visible and infrared. To demonstrate the biosensing applicability of our system employing the enzyme-mediated immunoblotting and accompanying light interference, various types of ambient light conditions including outdoor sunlight and indoor fluorescent were tested. For the immunoblotting assay, the biosensing channel generating insoluble precipitates as an end product of the enzymatic reaction is fabricated and mounted on the illumination sensor of the smartphone. The intensity of penetrating light arrives on the illumination sensor is inversely proportional to the amount of precipitates produced in the channel, and these changes are immediately analyzed and quantified via smartphone software. In this study, urinary C-terminal telopeptide fragment of type II collagen (uCTX-II), a biomarker of osteoarthritis diagnosis, was tested as a model analyte. The developed smartphone-based sensing system efficiently measured uCTX-II in the 0-5ng/mL concentration range with a high sensitivity and accuracy under various light conditions. These assay results show that the illumination sensor-based optical biosensor is suitable for point-of-care testing (POCT). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A closed-loop system for frequency tracking of piezoresistive cantilever sensors

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.

  19. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    OpenAIRE

    Vlad MARSIC; Alessandro GIULIANO; Meiling ZHU

    2013-01-01

    This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimiza...

  20. Multimodal wireless sensor network-based ambient assisted living in real homes with multiple residents.

    Science.gov (United States)

    Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem

    2014-05-30

    Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting.

  1. Multimodal Wireless Sensor Network-Based Ambient Assisted Living in Real Homes with Multiple Residents

    Directory of Open Access Journals (Sweden)

    Can Tunca

    2014-05-01

    Full Text Available Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs provide a great potential for ambient assisted living (AAL applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting.

  2. A haptic sensor-actor-system based on ultrasound elastography and electrorheological fluids for virtual reality applications in medicine.

    Science.gov (United States)

    Khaled, W; Ermert, H; Bruhns, O; Boese, H; Baumann, M; Monkman, G J; Egersdoerfer, S; Meier, A; Klein, D; Freimuth, H

    2003-01-01

    Mechanical properties of biological tissue represent important diagnostic information and are of histological relevance (hard lesions, "nodes" in organs: tumors; calcifications in vessels: arteriosclerosis). The problem is, that such information is usually obtained by digital palpation only, which is limited with respect to sensitivity. It requires intuitive assessment and does not allow quantitative documentation. A suitable sensor is required for quantitative detection of mechanical tissue properties. On the other hand, there is also some need for a realistic mechanical display of those tissue properties. Suitable actuator arrays with high spatial resolution and real-time capabilities are required operating in a haptic sensor actuator system with different applications. The sensor system uses real time ultrasonic elastography whereas the tactile actuator is based on electrorheological fluids. Due to their small size the actuator array elements have to be manufactured by micro-mechanical production methods. In order to supply the actuator elements with individual high voltages a sophisticated switching and control concept have been designed. This haptic system has the potential of inducing real time substantial forces, using a compact lightweight mechanism which can be applied to numerous areas including intraoperative navigation, telemedicine, teaching, space and telecommunication.

  3. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    Science.gov (United States)

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  4. A portable readout system for silicon microstrip sensors

    International Nuclear Information System (INIS)

    Marco-Hernandez, Ricardo

    2010-01-01

    This system can measure the collected charge in one or two microstrip silicon sensors by reading out all the channels of the sensor(s), up to 256. The system is able to operate with different types (p- and n-type) and different sizes (up to 3 cm 2 ) of microstrip silicon sensors, both irradiated and non-irradiated. Heavily irradiated sensors will be used at the Super Large Hadron Collider, so this system can be used to research the performance of microstrip silicon sensors in conditions as similar as possible to the Super Large Hadron Collider operating conditions. The system has two main parts: a hardware part and a software part. The hardware part acquires the sensor signals either from external trigger inputs, in case of a radioactive source setup is used, or from a synchronised trigger output generated by the system, if a laser setup is used. The software controls the system and processes the data acquired from the sensors in order to store it in an adequate format. The main characteristics of the system are described. Results of measurements acquired with n- and p-type detectors using both the laser and the radioactive source setup are also presented and discussed.

  5. Palladium coated fibre Bragg grating based hydrogen sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Kishore, S.; Elumalai, V.; Krishnan, R.; Babu Rao, C.; Dash, Sitaram; Murali, N.; Jayakumar, T.

    2011-01-01

    Detection of steam generator leaks in fast nuclear reactors is carried out by monitoring hydrogen in argon cover-gas. Hydrogen released during sodium cleaning of fast reactor components is required to be monitored. Hydrogen sensors with good sensitivity, stability and response time are required for all the above applications. We report a new type of hydrogen sensor with a Fibre Bragg Grating (FBG) coated with palladium thin film which is used to detect the leak of hydrogen gas in the Steam Generator (SG) module of the Fast Breeder Reactor (FBR). If water leaks into sodium, it results in sodium-water reaction. In this reaction hydrogen and sodium hydroxide are formed. Due to the explosive risk of hydrogen system, hydrogen sensors are of great interest in this case. It is known that hydrogen forms an explosive mixture with air once its concentration exceeds beyond the explosion limit of four percent. The advantages of FBG based hydrogen sensor over the other hydrogen sensors are its inherent property of safety from sparking, immunity to ambient electromagnetic interference. The sensing mechanism in this device is based on mechanical strain that is induced in the palladium coating when it absorbs hydrogen. This process physically stretches the grating and causes the grating period and grating's refractive index, to change. The Bragg wavelength shift is directly proportional to the strain induced and can be directly related to the percentage of hydrogen exposure. The online monitoring of palladium thin film coating on FBG is carried out and recorded the wavelength change and strain induced on the FBG. A hydrogen sensor set up have been fabricated which consists of SS vessel of capacity 10 litres, provided with pressure gauge, Argon filling line with a valve, Hydrogen injection line with flange, a vent line with valve and Hydrogen sensor fixing point. The Palladium coated FBG based Hydrogen sensor is tested in this experimental facility in the exposure of hydrogen in

  6. A risk-based sensor placement methodology

    International Nuclear Information System (INIS)

    Lee, Ronald W.; Kulesz, James J.

    2008-01-01

    A risk-based sensor placement methodology is proposed to solve the problem of optimal location of sensors to protect population against the exposure to, and effects of, known and/or postulated chemical, biological, and/or radiological threats. Risk is calculated as a quantitative value representing population at risk from exposure at standard exposure levels. Historical meteorological data are used to characterize weather conditions as the frequency of wind speed and direction pairs. The meteorological data drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate risk values. Sensor locations are determined via an iterative dynamic programming algorithm whereby threats detected by sensors placed in prior iterations are removed from consideration in subsequent iterations. In addition to the risk-based placement algorithm, the proposed methodology provides a quantification of the marginal utility of each additional sensor. This is the fraction of the total risk accounted for by placement of the sensor. Thus, the criteria for halting the iterative process can be the number of sensors available, a threshold marginal utility value, and/or a minimum cumulative utility achieved with all sensors

  7. An all-fiber partial discharge monitoring system based on both intrinsic fiber optic interferometry sensor and fluorescent fiber

    Science.gov (United States)

    Yin, Zelin; Zhang, Ruirui; Tong, Jie; Chen, Xi

    2013-12-01

    Partial discharges (PDs) are an electrical phenomenon that occurs within a transformer whenever the voltage stress is sufficient to produce ionization in voids or inclusions within a solid dielectric, at conductor/dielectric interfaces, or in bubbles within liquid dielectrics such as oil; high-frequency transient current discharges will then appear repeatedly and will progressively deteriorate the insulation, ultimately leading to breakdown. Fiber sensor has great potential on the partial discharge detection in high-voltage equipment for its immunity to electromagnetic interference and it can take direct measurement in the high voltage equipment. The energy released in PDs produces a number of effects, resulting in flash, chemical and structural changes and electromagnetic emissions and so on. Acoustic PD detection is based on the mechanical pressure wave emitted from the discharge and fluorescent fiber PD detection is based on the emitted light produced by ionization, excitation and recombination processes during the discharge. Both of the two methods have the shortage of weak anti-interference capacity in the physical environment, like thunder or other sound source. In order to avoid the false report, an all-fiber combined PD detection system of the two methods is developed in this paper. In the system the fluorescent fiber PD sensor is considered as a reference signal, three F-P based PD detection sensors are used to both monitor the PD intensity and calculate the exact position of the discharge source. Considering the wave band of the F-P cavity and the fluorescent probe are quite different, the reflection spectrum of the F-P cavity is in the infrared region, however the fluorescent probe is about 600nm to 700nm, thus the F-P sensor and fluorescent fiber probe can be connected in one fiber and the reflection light can be detected by two different detectors without mutual interference. The all-fiber partial discharge monitoring system not only can detect the PDs

  8. Development and radiation evaluation of mobile station for personnel monitoring system based on indigenous plastic scintillator sensor rods

    International Nuclear Information System (INIS)

    Chaudhary, H.S.; Parihar, A.; Senwar, K.R.; Prakash, V.; Rathore, A.S.

    2018-01-01

    The Mobile Station for Personnel Monitoring (MSPM) system has been designed and developed for rapid screening of personnel with respect to radiation contamination during nuclear or radiological emergency; it can also be used for prevention of illicit movement of radioactive sources. The objective was to develop a modular, transportable and easily deployable gamma portal monitoring system based on indigenous DLJ developed plastic scintillator sensors. The Gamma radiation response of the system is presented here

  9. Irradiance sensors for solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Storch, A.; Schindl, J. [Oesterreichisches Forschungs- und Pruefzentrum Arsenal GesmbH, Vienna (Austria). Business Unit Renewable Energy

    2004-07-01

    The presented project surveyed the quality of irradiance sensors used for applications in solar systems. By analysing an outdoor measurement, the accuracies of ten commercially available irradiance sensors were evaluated, comparing their results to those of a calibrated Kipp and Zonen pyranometer CM21. Furthermore, as a simple method for improving the quality of the results, for each sensor an irradiance-calibration was carried out and examined for its effectiveness. (orig.)

  10. Design and Fabricate the Remote Monitor on the Scenic Spot Based on Integrated Sensor System

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    2014-10-01

    Full Text Available Based on the embedded Linux system, established the integrated sensing system to monitor the scenic spot and transmit the collected data to the users. The platform based on the ARM11 development board as the hardware of the system. Used the sensors to collect the different data and pictures and then they were transmitted by the wired and wireless mode. Set up the small Web server by the Boa (small Web server and realized the integrated Web technology and CGI (Common Gateway Interface program. According to the difference information of the scenic spot, the mobile platform collected the needed data and transmitted it to the control platform by the ZigBee wireless module and displayed in the embedded platform. The administrator can realize monitoring all the spots of the scenic and control the terminal equipments in the whole day.

  11. Observability Analysis of a Matrix Kalman Filter-Based Navigation System Using Visual/Inertial/Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Guohu Feng

    2012-06-01

    Full Text Available A matrix Kalman filter (MKF has been implemented for an integrated navigation system using visual/inertial/magnetic sensors. The MKF rearranges the original nonlinear process model in a pseudo-linear process model. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system is observable. It has been proved that such observability conditions are: (a at least one degree of rotational freedom is excited, and (b at least two linearly independent horizontal lines and one vertical line are observed. Experimental results have validated the correctness of these observability conditions.

  12. Error propagation analysis for a sensor system

    International Nuclear Information System (INIS)

    Yeater, M.L.; Hockenbury, R.W.; Hawkins, J.; Wilkinson, J.

    1976-01-01

    As part of a program to develop reliability methods for operational use with reactor sensors and protective systems, error propagation analyses are being made for each model. An example is a sensor system computer simulation model, in which the sensor system signature is convoluted with a reactor signature to show the effect of each in revealing or obscuring information contained in the other. The error propagation analysis models the system and signature uncertainties and sensitivities, whereas the simulation models the signatures and by extensive repetitions reveals the effect of errors in various reactor input or sensor response data. In the approach for the example presented, the errors accumulated by the signature (set of ''noise'' frequencies) are successively calculated as it is propagated stepwise through a system comprised of sensor and signal processing components. Additional modeling steps include a Fourier transform calculation to produce the usual power spectral density representation of the product signature, and some form of pattern recognition algorithm

  13. PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sanam Shahla Rizvi

    2009-12-01

    Full Text Available Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS. This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  14. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    Science.gov (United States)

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  15. The Radio Frequency Health Node Wireless Sensor System

    Science.gov (United States)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  16. Monolithic integration of micromachined sensors and CMOS circuits based on SOI technologies

    International Nuclear Information System (INIS)

    Yu Xiaomei; Tang Yaquan; Zhang Haitao

    2008-01-01

    This note presents a novel way to monolithically integrate micro-cantilever sensors and signal conditioning circuits by combining SOI CMOS and SOI micromachining technologies. In order to improve the sensor performance and reduce the system volume, an integrated sensor system composed of a piezoresistive cantilever array, a temperature-compensation current reference, a digitally controlled multiplexer and an instrument amplifier is designed and finally fabricated. A post-SOI CMOS process is developed to realize the integrated sensor system which is based on a standard CMOS process with one more mask to define the cantilever structure at the end of the process. Measurements on the finished SOI CMOS devices and circuits show that the integration process has good compatibility both for the cantilever sensors and for the CMOS circuits, and the SOI CMOS integration process can decrease about 25% sequences compared with the bulk silicon CMOS process. (note)

  17. A Web 2.0 and OGC Standards Enabled Sensor Web Architecture for Global Earth Observing System of Systems

    Science.gov (United States)

    Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville

    2007-01-01

    This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.

  18. A survey of system architecture requirements for health care-based wireless sensor networks.

    Science.gov (United States)

    Egbogah, Emeka E; Fapojuwo, Abraham O

    2011-01-01

    Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  19. A Survey of System Architecture Requirements for Health Care-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abraham O. Fapojuwo

    2011-05-01

    Full Text Available Wireless Sensor Networks (WSNs have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera. However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  20. Autonomous star tracker based on active pixel sensors (APS)

    Science.gov (United States)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  1. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  2. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  3. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  4. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  5. Heme-based sensors in biological systems.

    Science.gov (United States)

    Rodgers, K R

    1999-04-01

    The past several years have been witness to a staggering rate of advancement in the understanding of how organisms respond to changes in the availability of diatomic molecules that are toxic and/or crucial to survival. Heme-based sensors presently constitute the majority of the proteins known to sense NO, O2 and CO and to initiate the chemistry required to adapt to changes in their availabilities. Knowledge of the three characterized members of this class, soluble guanylate cyclase, FixL and CooA, has grown substantially during the past year. The major advances have resulted from a broad range of approaches to elucidation of both function and mechanism. They include growth in the understanding of the interplay between the heme and protein in soluble guanylate cyclase, as well as alternate means for its stimulation. Insight into the O2-induced structural changes in FixL has been supplied by the single crystal structure of the heme domain of Bradyrhizobium japonicum. Finally, the ligation environment and ligand interchange that facilitates CO sensing by CooA has been established by spectroscopic and mutagenesis techniques.

  6. Surface-type humidity sensor based on cellulose-PEPC for telemetry systems

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Saleem, M.; Qasuria, T. A.; Farooq, M.

    2011-01-01

    Au/cellulose-PEPC/Au surface-type humidity sensors were fabricated by drop-casting cellulose and poly-N-epoxypropylcarbazole (PEPC) blend thin films. A blend of 2wt% of each cellulose and PEPC in benzol was used for the deposition of humidity sensing films. Blend films were deposited on glass substrates with preliminary deposited surface-type gold electrodes. Films of different thicknesses of cellulose and PEPC composite were deposited by drop-casting technique. A change in electrical resistance and capacitance of the fabricated devices was observed by increasing the relative humidity in the range of 0-95% RH. It was observed that the capacitances of the sensors increase, while their resistances decrease with increasing the relative humidity. The sensors were connected to op-amp square wave oscillators. It was observed that with increasing the relative humidity, the oscillator's frequencies were also increased in the range of 4.2-12.0 kHz for 65 μm thick film sample, 4.1-9.0 kHz for 88 μm thick film sample, and 4.2-9.0 kHz for 210 μm sample. Effects of film thickness on the oscillator's frequency with respect to humidity were also investigated. This polymer humidity sensor controlled oscillator can be used for short-range and long-range remote systems at environmental monitoring and assessment of the humidity level. (semiconductor integrated circuits)

  7. Adaptive Home System Using Wireless Sensor Network And Multi Agent System

    OpenAIRE

    Jayarani Kamble; Prof.Nandini Dhole

    2014-01-01

    Smart Home is an emerging technology growing continuously which includes number of new technologies which helps to improve human’s quality of living. This paper proposes an adaptive home system for optimum utilization of power, through Artificial Intelligence and Wireless Sensor network. Artificial Intelligence is a technology for developing adaptive system that can perceive the enviornmrnt, learn from the environment and can make decision using Rule based system.Zigbee is a w...

  8. Vulnerability of OFDR-based distributed sensors to radiations

    Energy Technology Data Exchange (ETDEWEB)

    Rizzolo, S. [Laboratoire Hubert Curien, Universite Jean Monnet, CNRS UMR 5516, 18 Rue Benoit Lauras, 42000, Saint-Etienne (France); Dipartimento di Fisica e Chimica, Universita di Palermo, Viale delle Scienze Parco d' Orleans II, Ed. 17, 90128 Palermo (Italy); Areva Centre Technique, Boulevard de l' Industrie, 71200, Le Creusot (France); Boukenter, A.; Marin, E.; Ouerdane, Y.; Girard, S. [Laboratoire Hubert Curien, Universite Jean Monnet, CNRS UMR 5516, 18 Rue Benoit Lauras, 42000, Saint-Etienne (France); Cannas, M. [Dipartimento di Fisica e Chimica, Universita di Palermo, Viale delle Scienze Parco d' Orleans II, Ed. 17, 90128 Palermo (Italy); Perisse, J. [Areva NP, 10 Rue Juliette Recamier, 69006, Lyon (France); Bauer, S. [Areva Centre Technique, Boulevard de l' Industrie, 71200, Le Creusot (France); Mace, J.R. [Areva NP, 1, Place Jean-Millier 92084, Paris-La Defense (France)

    2015-07-01

    Silica-based optical fibers have recently attracted much interest for their use in harsh environments such as the ones encountered in space, military or high energy physics applications. Small size, fast response, light weight and immunity to electromagnetic fields are favorable advantages that often become decisive for fiber sensing to be chosen over other conventional sensing technologies. As an important and representative example, Fukushima's accident highlighted weaknesses in the safety of nuclear power plants. Since, one of the strategic research axis of the nuclear industry is devoted to the development of novel technologies and sensors to enhance and reinforce the safety in nuclear power plants, especially in the case of accidental conditions associated with a strong increase of the constraints applied to the fiber-based system. The objective of this research field is to develop classes of distributed fiber-based sensors using scattering-based techniques, powerful solutions for various measurands measurement. Optical fiber properties, indeed, depend on several external parameters such as temperature, strain and therefore the fiber itself can be used as the sensitive element. Different classes of fiber-based sensing techniques have been recently investigated such as Fiber Bragg Gratings (FBGs) for discrete measurements and Brillouin, Raman and Rayleigh [8,9] scattering based techniques for distributed measurements of various environmental parameters. Whereas Brillouin and Raman sensor resolutions remain in the range of one meter, the advantage of Rayleigh scattering based technique is that it offers very high spatial resolution from 1 cm down to few μm over several hundred meters of fiber length down to few meters respectively. For nuclear industry, integrating fibers-based sensors has to improve the performances (resolution, operating range,...) of security systems in current nuclear power plants (NPPs) and offers new alternative technologies that may

  9. Enhanced polymeric encapsulation for MEMS based multi sensors for fisheries research

    DEFF Research Database (Denmark)

    Birkelund, Karen; Nørgaard, Lars; Thomsen, Erik Vilain

    2011-01-01

    light intensity, temperature, pressure and conductivity. For precise and fast measurements a direct exposure of the sensor to the water is desirable. A potted tube encapsulation concept has shown to be promising for accurate and fast measurements in harsh environment, provided a tight sealing......This paper presents the challenges of a packaged MEMS-based multi sensor system that allow for direct exposure of the sensing part to sea water. The system is part of a data storage tag used on fish to provide the researcher with information on fish behaviour and migration. The sensor measures...... compared to low pressure chemical vapor deposited (LPCVD) silicon nitride and untreated silicon dioxide....

  10. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    Science.gov (United States)

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  11. Performance Evaluation of Page Migration Scheme for NVRAM-Based Wireless Sensor Nodes

    OpenAIRE

    Ryu, Yeonseung

    2013-01-01

    A wireless sensor network consists of low-powered and multifunctional sensor nodes. Since each sensor node is operated by a battery, the energy management has become one of the critical design challenges in wireless sensor networks. Some recent studies have shown that DRAM-based main memory spends a significant portion of the total system power. In this paper, we studied a buffer management scheme for hybrid main memory that combines low-power nonvolatile RAM (NVRAM) and DRAM in order to redu...

  12. Research on Electronic-nose Application Based on Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Zhao, A; Wang, L; Yao, C H

    2006-01-01

    The paper proposed a structure of Wireless Sensor Networks based Electronic-nose system to monitors air quality in the building. In the study, the authors researched a data processing algorithm: fuzzy neural network based on RBF(Radial Basis Function) network model, to quantitatively analyze the gas ingredient and put forward a routing protocol for the system

  13. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  14. Nano-Composite Foam Sensor System in Football Helmets.

    Science.gov (United States)

    Merrell, A Jake; Christensen, William F; Seeley, Matthew K; Bowden, Anton E; Fullwood, David T

    2017-12-01

    American football has both the highest rate of concussion incidences as well as the highest number of concussions of all contact sports due to both the number of athletes and nature of the sport. Recent research has linked concussions with long term health complications such as chronic traumatic encephalopathy and early onset Alzheimer's. Understanding the mechanical characteristics of concussive impacts is critical to help protect athletes from these debilitating diseases and is now possible using helmet-based sensor systems. To date, real time on-field measurement of head impacts has been almost exclusively measured by devices that rely on accelerometers or gyroscopes attached to the player's helmet, or embedded in a mouth guard. These systems monitor motion of the head or helmet, but do not directly measure impact energy. This paper evaluates the accuracy of a novel, multifunctional foam-based sensor that replaces a portion of the helmet foam to measure impact. All modified helmets were tested using a National Operating Committee Standards for Athletic Equipment-style drop tower with a total of 24 drop tests (4 locations with 6 impact energies). The impacts were evaluated using a headform, instrumented with a tri-axial accelerometer, mounted to a Hybrid III neck assembly. The resultant accelerations were evaluated for both the peak acceleration and the severity indices. These data were then compared to the voltage response from multiple Nano Composite Foam sensors located throughout the helmet. The foam sensor system proved to be accurate in measuring both the HIC and Gadd severity index, as well as peak acceleration while also providing additional details that were previously difficult to obtain, such as impact energy.

  15. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  16. Graphene based strain sensor with LCP substrate

    Science.gov (United States)

    Nie, M.; Yang, H. S.; Xia, Y. H.

    2018-02-01

    A flexible strain sensor constructed by an efficient, low-cost fabrication strategy is presented in this paper. It is assembled by adhering grid-like graphene on LCP substrate. Kinds of measurement setup have been designed to verify that the proposed flexible sensor device is suitable to be used in health monitoring system. From the experiment results, it can be proved that the sensor exhibits the following features: ultra-light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication. With the great performance of this flexible strain sensor, it is considered to play an important role in body monitoring, structural health monitoring system, fatigue detection and healthcare systems in the near future.

  17. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Directory of Open Access Journals (Sweden)

    Jordi Fonollosa

    2018-02-01

    Full Text Available Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  18. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review.

    Science.gov (United States)

    Fonollosa, Jordi; Solórzano, Ana; Marco, Santiago

    2018-02-11

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  19. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Science.gov (United States)

    Fonollosa, Jordi

    2018-01-01

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative. PMID:29439490

  20. Fusion of Images from Dissimilar Sensor Systems

    National Research Council Canada - National Science Library

    Chow, Khin

    2004-01-01

    Different sensors exploit different regions of the electromagnetic spectrum; therefore a multi-sensor image fusion system can take full advantage of the complementary capabilities of individual sensors in the suit...

  1. Application for vibration monitoring of aspheric surface machining based on wireless sensor networks

    Science.gov (United States)

    Han, Chun Guang; Guo, Yin Biao; Jiang, Chen

    2010-05-01

    Any kinds of tiny vibration of machine tool parts will have a great influence on surface quality of the workpiece at ultra-precise machining process of aspheric surface. At present the major way for decreasing influence of vibration is machining compensation technology. Therefore it is important for machining compensation control to acquire and transmit these vibration signals effectively. This paper presents a vibration monitoring system of aspheric surface machining machine tool based on wireless sensor networks (WSN). Some key issues of wireless sensor networks for vibration monitoring system of aspheric surface machining are discussed. The reliability of data transmission, network communication protocol and synchronization mechanism of wireless sensor networks are studied for the vibration monitoring system. The proposed system achieves multi-sensors vibration monitoring involving the grinding wheel, the workpiece and the workbench spindle. The wireless transmission of vibration signals is achieved by the combination with vibration sensor nodes and wireless network. In this paper, these vibration sensor nodes are developed. An experimental platform is structured which employs wireless sensor networks to the vibration monitoring system in order to test acquisition and wireless transmission of vibration signal. The test results show that the proposed system can achieve vibration data transmission effectively and reliability and meet the monitoring requirements of aspheric surface machining machine tool.

  2. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Science.gov (United States)

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  3. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Marwah Almasri

    2015-12-01

    Full Text Available Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  4. A multifunctional PVDF-based tactile sensor for minimally invasive surgery

    Science.gov (United States)

    Sokhanvar, S.; Packirisamy, M.; Dargahi, J.

    2007-08-01

    In this paper a multifunctional tactile sensor system using PVDF (polyvinylidene fluoride), is proposed, designed, analyzed, tested and validated. The working principle of the sensor is in such a way that it can be used in combination with almost any end-effectors. However, the sensor is particularly designed to be integrated with minimally invasive surgery (MIS) tools. In addition, the structural and transduction materials are selected to be compatible with micro-electro-mechanical systems (MEMS) technology, so that miniaturization would be possible. The corrugated shape of the sensor ensures the safe tissue grasping and compatibility with the traditional tooth-like end effectors of MIS tools. A unit of this sensor comprised of a base, a flexible beam and three PVDF sensing elements. Two PVDF sensing elements sandwiched at the end supports work in thickness mode to measure the magnitude and position of applied load. The third PVDF sensing element is attached to the beam and it works in the extensional mode to measure the softness of the contact object. The proposed sensor is modeled both analytically and numerically and a series of simulations are performed in order to estimate the characteristics of the sensor in measuring the magnitude and position of a point load, distributed load, and also the softness of the contact object. Furthermore, in order to validate the theoretical results, the prototyped sensor was tested and the results are compared. The results are very promising and proving the capability of the sensor for haptic sensing.

  5. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    Directory of Open Access Journals (Sweden)

    Dashan Zhang

    2016-04-01

    Full Text Available The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  6. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    Directory of Open Access Journals (Sweden)

    Rolanas Dauksevicius

    2013-04-01

    Full Text Available Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner’s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  7. Sensor Systems Collect Critical Aerodynamics Data

    Science.gov (United States)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  8. A new calibration method for tri-axial field sensors in strap-down navigation systems

    International Nuclear Information System (INIS)

    Li, Xiang; Li, Zhi

    2012-01-01

    This paper presents a novel calibration method for tri-axial field sensors, such as magnetometers and accelerometers, in strap-down navigation systems. Strap-down tri-axial sensors have been widely used as they have the advantages of small size and low cost, but they need to be calibrated in order to ensure their accuracy. The most commonly used calibration method for a tri-axial field sensor is based on ellipsoid fitting, which has no requirement for external references. However, the self-calibration based on ellipsoid fitting is unable to determine and compensate the mutual misalignment between different sensors in a multi-sensor system. Therefore, a novel calibration method that employs the invariance of the dot product of two constant vectors is introduced in this paper. The proposed method, which is named dot product invariance method, brings a complete solution for the error model of tri-axial field sensors, and can solve the problem of alignment in a multi-sensor system. Its effectiveness and superiority over the ellipsoid fitting method are illustrated by numerical simulations, and its application on a digital magnetic compass shows significant enhancement of the heading accuracy. (paper)

  9. Development of wireless sensor network for landslide monitoring system

    International Nuclear Information System (INIS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S

    2017-01-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km 2 . Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website. (paper)

  10. Smart sensor-based geospatial architecture for dike monitoring

    Science.gov (United States)

    Herle, S.; Becker, R.; Blankenbach, J.

    2016-04-01

    Artificial hydraulic structures like dams or dikes used for water level regulations or flood prevention are continuously under the influence of the weather and variable river regimes. Thus, ongoing monitoring and simulation is crucial in order to determine the inner condition. Potentially life-threatening situations, in extreme case a failure, must be counteracted by all available means. Nowadays flood warning systems rely exclusively on water level forecast without considering the state of the structure itself. Area-covering continuous knowledge of the inner state including time dependent changes increases the capability of recognizing and locating vulnerable spots for early treatment. In case of a predicted breach, advance warning time for alerting affected citizens can be extended. Our approach is composed of smart sensors integrated in a service-oriented geospatial architecture to monitor and simulate artificial hydraulic structures continuously. The sensors observe the inner state of the construction like the soil moisture or the stress and deformation over time but also various external influences like water levels or wind speed. They are interconnected in distributed network architecture by a so-called sensor bus system based on lightweight protocols like Message Queue Telemetry Transport for Sensor Networks (MQTT-SN). These sensor data streams are transferred into an OGC Sensor Web Enablement (SWE) data structure providing high-level geo web services to end users. Bundled with 3rd party geo web services (WMS etc.) powerful processing and simulation tools can be invoked using the Web Processing Service (WPS) standard. Results will be visualized in a geoportal allowing user access to all information.

  11. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  12. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  13. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, Yuya; Seki, Toshinobu [Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295 (Japan); Takahashi, Shigehiro [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Anzai, Jun-ichi, E-mail: junanzai@mail.pharm.tohoku.ac.jp [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2011-10-10

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH{sup -} ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  14. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    International Nuclear Information System (INIS)

    Egawa, Yuya; Seki, Toshinobu; Takahashi, Shigehiro; Anzai, Jun-ichi

    2011-01-01

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH - ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  15. A basic system architecture for sensor data diffusion of environment sensors for intelligent cruise control systems; Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Darms, M.

    2007-07-01

    The design of the system architecture for sensor data diffusion at the beginning of the development process has significant influence on the cost. With a view to intelligent cruise control systems, the author investigated general assumptions concerning data association and data filtering for sensor data diffusion of environment sensors which must be considered when designing an architecture or may be considered for optimisation. The validity of the assumption is illustrated by simulations of adaptive speed control and time-to-collision calculations as well as on the basis of available literature. A basic sytem architecture is presented as a precursor of the final architecture which is based on these assumptions. Their applicability is proved by implementation in the PRORETA project. The author's work provides a validated basis for architects of a serial system architecture enabling them to design and implement their ultimate systems. (orig.)

  16. Battery management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  17. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks.

    Science.gov (United States)

    Peter, Steffen; Reddy, Bhanu Pratap; Momtaz, Farshad; Givargis, Tony

    2016-04-22

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  18. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    Science.gov (United States)

    Peter, Steffen; Pratap Reddy, Bhanu; Momtaz, Farshad; Givargis, Tony

    2016-01-01

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system. PMID:27110785

  19. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    Directory of Open Access Journals (Sweden)

    Steffen Peter

    2016-04-01

    Full Text Available Body area sensor networks (BANs utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  20. Optimal sensor configuration for complex systems with application to signal detection in structures

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    2000-01-01

    sensor outputs. Secondly, we describe an efficient and practical algorithm to achieve the optimization goals, based on simultaneous perturbation stochastic approximation (SPSA). SPSA avoids the need for detailed modeling of the sensor response by simply relying on observed responses as obtained......The paper considers the problem of sensor configuration for complex systems. The contribution of the paper is twofold. Firstly, we define an appropriate criterion that is based on maximizing overall sensor responses while minimizing redundant information as measured by correlations between multiple...... by limited experimentation with test sensor configurations. We illustrate the application of the approach to optimal placement of acoustic sensors for signal detection in structures. This includes both a computer simulation study for an aluminum plate, and real experimentations on a steel I-beam....