WorldWideScience

Sample records for based readout electronics

  1. Electronic readout for THGEM detectors based on FPGA TDCs

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Tobias; Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Joerg, Philipp; Koenigsmann, Kay; Kremser, Paul; Kunz, Tobias; Michalski, Christoph; Schopferer, Sebastian; Szameitat, Tobias [Physikalisches Institut, Freiburg Univ. (Germany); Collaboration: COMPASS-II RICH upgrade Group

    2013-07-01

    In the framework of the RD51 programme the characteristics of a new detector design, called THGEM, which is based on multi-layer arrangements of printed circuit board material, is investigated. The THGEMs combine the advantages for covering gains up to 10{sup 6} in electron multiplication at large detector areas and low material budget. Studies are performed by extending the design to a hybrid gas detector by adding a Micromega layer, which significantly improves the ion back flow ratio of the chamber. With the upgrade of the COMPASS experiment at CERN a MWPC plane of the RICH-1 detector will be replaced by installing THGEM chambers. This summarizes to 40k channels of electronic readout, including amplification, discrimination and time-to-digital conversion of the anode signals. Due to the expected hit rate of the detector we design a cost-efficient TDC, based on Artix7 FPGA technology, with time resolution below 100 ps and sufficient hit buffer depth. To cover the large readout area the data is transferred via optical fibres to a central readout system which is part of the GANDALF framework.

  2. Readout electronic for multichannel detectors

    CERN Document Server

    Kulibaba, V I; Naumov, S V

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) sup 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc.

  3. Readout electronic for multichannel detectors

    International Nuclear Information System (INIS)

    Kulibaba, V.I.; Maslov, N.I.; Naumov, S.V.

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc

  4. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  5. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    International Nuclear Information System (INIS)

    Rovati, L; Bonaiuti, M; Bettarini, S; Bosisio, L; Dalla Betta, G-F; Tyzhnevyi, V; Verzellesi, G; Zorzi, N

    2009-01-01

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  6. Cold front-end electronics and Ethernet-based DAQ systems for large LAr TPC readout

    CERN Document Server

    D.Autiero,; B.Carlus,; Y.Declais,; S.Gardien,; C.Girerd,; J.Marteau; H.Mathez

    2010-01-01

    Large LAr TPCs are among the most powerful detectors to address open problems in particle and astro-particle physics, such as CP violation in leptonic sector, neutrino properties and their astrophysical implications, proton decay search etc. The scale of such detectors implies severe constraints on their readout and DAQ system. We are carrying on a R&D in electronics on a complete readout chain including an ASIC located close to the collecting planes in the argon gas phase and a DAQ system based on smart Ethernet sensors implemented in a µTCA standard. The choice of the latter standard is motivated by the similarity in the constraints with those existing in Network Telecommunication Industry. We also developed a synchronization scheme developed from the IEEE1588 standard integrated by the use of the recovered clock from the Gigabit link

  7. The PAUCam readout electronics system

    Science.gov (United States)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  8. A reconfigurable image tube using an external electronic image readout

    Science.gov (United States)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  9. FPGA-based upgrade of the read-out electronics for the low energy polarimeter at the cooler synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, Nils [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Collaboration: JEDI-Collaboration

    2015-07-01

    The Cooler Synchrotron (COSY) is a storage ring used for experiments with polarized proton and deuteron beams. The low energy polarimeter is used to determine the vector and tensor polarization of the beam before injection at kinetic energies up to 45 MeV for protons and 75 MeV for deuterons. The polarimeter uses scintillators to measure the energy of both outgoing particles of a scattering reaction and the time between their detection. The present read-out electronics consists of analog NIM modules and is limited in terms of time resolution and the capability for online data analysis. The read-out electronics will be replaced with a a new system based on analog pulse sampling and an FPGA chip for logic operations. The new system will be able to measure the time at which particles arrive to a precision better than 50 ps, facilitating better background reduction using coincidence measurement. In addition to measuring the beam polarization, the system will be used to precisely determine the vector and tensor analyzing powers for deuteron scattering off carbon at a kinetic energy of 75 MeV.

  10. D-Zero muon readout electronics design

    International Nuclear Information System (INIS)

    Baldin, B.; Hansen, S.; Los, S.; Matveev, M.; Vaniev, V.

    1996-11-01

    The readout electronics designed for the D null Muon Upgrade are described. These electronics serve three detector subsystems and one trigger system. The front-ends and readout hardware are synchronized by means of timing signals broadcast from the D null Trigger Framework. The front-end electronics have continuously running digitizers and two levels of buffering resulting in nearly deadtimeless operation. The raw data is corrected and formatted by 16- bit fixed point DSP processors. These processors also perform control of the data buffering. The data transfer from the front-end electronics located on the detector platform is performed by serial links running at 160 Mbit/s. The design and test results of the subsystem readout electronics and system interface are discussed

  11. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    Directory of Open Access Journals (Sweden)

    Cheng-Chun Wu

    2016-10-01

    Full Text Available An electronic nose (E-Nose is one of the applications for surface acoustic wave (SAW sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS readout application-specific integrated circuit (ASIC based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  12. Feasibility study to use an SRAM-based FPGA in the readout electronics of the upgraded LHCb outer tracker detector

    International Nuclear Information System (INIS)

    Faerber, Christian

    2014-01-01

    This thesis presents a study of the feasibility to use SRAM-based FPGAs as central component of the upgraded LHCb Outer Tracker readout electronics. The FPGA should contain the functionality of a TDC and should provide fast data links using multi-GBit/s transceivers. The TDC core that was developed provides 5 bit time measurements for 32 channels with a bin size of 780 ps. The TDC has the required time resolution of better than 1 ns. This was achieved by manually placing every logic element of the TDC channels and with an iterative procedure feeding timing measurements back to the Place and Route step of the router software. A transceiver and TDC card, and an adapter board for the existing readout electronics was developed. Both boards were used successfully to read out drift times from an Outer Tracker straw-tube module in a cosmic setup. To qualify the proposed electronics for the expected radiation levels an irradiation test with 22 MeV protons and two FPGA boards was performed up to a total ionization dose of 30 Mrad. Both chips sustained the irradiation expected for the full life time of the upgraded LHCb detector of up to 30 krad. After an irradiation dose of 150 krad the first deteriorations of the performance of the chips were observed. The proton cross section for configuration bit flips was determined to be 1.6.10 16 cm 2 per bit. The measured error rate scaled to the upgrade environment would correspond to a manageable firmware error rate.

  13. A New Readout Electronics for the LHCb Muon Detector Upgrade

    CERN Multimedia

    Cadeddu, Sandro

    2016-01-01

    The 2018/2019 upgrade of LHCb Muon System foresees a 40 MHz readout scheme and requires the development of a new Off Detector Electronics (nODE) board that will be based on the nSYNC, a radiation tolerant custom ASIC developed in UMC 130 nm technology. Each nODE board has 192 input channels processed by 4 nSYNCs. The nSYNC is equipped with fully digital TDCs and it implements all the required functionalities for the readout: bunch crossing alignment, data zero suppression, time measurements. Optical interfaces, based on GBT and Versatile link components, are used to communicate with DAQ, TFC and ECS systems.

  14. Firmware Development and Integration for ALICE TPC and PHOS Front-end Electronics A Trigger Based Readout and Control System operating in a Radiation Environment

    CERN Document Server

    AUTHOR|(CDS)2068589; Rohrich, Dieter

    2008-01-01

    The readout electronics in PHOS and TPC - two of the major detectors of the ALICE experiment at the LHC - consist of a set of Front End Cards (FECs) that digitize, process and buffer the data from the detector sensors. The FECs are connected to a Readout Control Unit (RCU) via two sets of custom made PCB backplanes. For PHOS, 28 FECs are connected to one RCU, while for TPC the number is varying from 18 to 25 FECs depending on location. The RCU is in charge of the data readout, including reception and distribution of triggers and in moving the data from the FECs to the Data Acquisition System. In addition it does low level control tasks. The RCU consists of an RCU Motherboard that hosts a Detector Control System (DCS) board and a Source Interface Unit. The DCS board is an embedded computer running Linux that controls the readout electronics. All the mentioned devices are implemented in commercial grade SRAM based Field Programmable Gate Arrays (FPGAs). Even if these devices are not very radiation tolerant, the...

  15. Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor

    International Nuclear Information System (INIS)

    Zhang Xiao-Yu; Sun Jian-Dong; Li Xin-Xing; Zhou Yu; Lü Li; Qin Hua; Tan Ren-Bing

    2015-01-01

    An AlGaN/GaN high electron mobility transistor (HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency (RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage V g , the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector. (paper)

  16. A custom readout electronics for the BESIII CGEM detector

    Science.gov (United States)

    Da Rocha Rolo, M.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bugalho, R.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Di Francesco, A.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Marciniewski, P.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Varela, J.; Verma, S.; Wheadon, R.; Yan, L.

    2017-07-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM readout

  17. A custom readout electronics for the BESIII CGEM detector

    International Nuclear Information System (INIS)

    Rolo, M. Da Rocha; Alexeev, M.; Amoroso, A.; Bianchi, F.; Cossio, F.; Mori, F. De; Destefanis, M.; Ferroli, R. Baldini; Chai, J.Y.; Bertani, M.; Calcaterra, A.; Capodiferro, M.; Cerioni, S.; Bettoni, D.; Canale, N.; Carassiti, V.; Chiozzi, S.; Cibinetto, G.; Ramusino, A. Cotta; Bugalho, R.

    2017-01-01

    For the upgrade of the inner tracker of the BESIII spectrometer, planned for 2018, a lightweight tracker based on an innovative Cylindrical Gas Electron Multiplier (CGEM) detector is now under development. The analogue readout of the CGEM enables the use of a charge centroid algorithm to improve the spatial resolution to better than 130 μm while loosening the pitch strip to 650 μm, which allows to reduce the total number of channels to about 10 000. The channels are readout by 160 dedicated integrated 64-channel front-end ASICs, providing a time and charge measurement and featuring a fully-digital output. The energy measurement is extracted either from the time-over-threshold (ToT) or the 10-bit digitisation of the peak amplitude of the signal. The time of the event is generated by quad-buffered low-power TDCs, allowing for rates in excess of 60 kHz per channel. The TDCs are based on analogue interpolation techniques and produce a time stamp (or two, if working in ToT mode) of the event with a time resolution better than 50 ps. The front-end noise, based on a CSA and a two-stage complex conjugated pole shapers, dominate the channel intrinsic time jitter, which is less than 5 ns r.m.s. The time information of the hit can be used to reconstruct the track path, operating the detector as a small TPC and hence improving the position resolution when the distribution of the cloud, due to large incident angle or magnetic field, is very broad. Event data is collected by an off-detector motherboard, where each GEM-ROC readout card handles 4 ASIC carrier FEBs (512 channels). Configuration upload and data readout between the off-detector electronics and the VME-based data collector cards are managed by bi-directional fibre optical links. This paper covers the design of a custom front-end electronics for the readout of the new inner tracker of the BESIII experiment, addressing the relevant design aspects of the detector electronics and the front-end ASIC for the CGEM

  18. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Fossum, Eric R.

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  19. FPGA-based upgrade of the read-out electronics for the low energy polarimeter at COSY/Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, Nils [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Collaboration: JEDI-Collaboration

    2016-07-01

    The Cooler Synchrotron (COSY) is a facility for cooled polarized beams at the Forschungszentrum in Juelich. The Low Energy Polarimeter (LEP) is the polarimeter in the injection beam line of COSY. The beam polarization is measured using scattering off carbon and polyethylene (CH2) targets. The outgoing particles are detected using twelve plastic scintillators installed in groups of three to the left, to the right, above, and below the beam. The LEP is the routine tool for beam set-up, but its performance was limited by the old read-out electronics consisting of analog NIM modules. A new system using analog pulse sampling and an FPGA chip for signal processing was installed and tested. The ejectile particles were identified by relative time of flight measurement using a signal from the RF amplifier of the cyclotron used for acceleration as a reference. The new system is able to measure the time at which a particle arrives to an accuracy in the order of 50 ps. The presentation includes a review of available systems and a report about measurements in May and December 2015.

  20. A new electronic read-out for the YAPPET scanner

    International Nuclear Information System (INIS)

    Damiani, C.; Ramusino, A.C.A. Cotta; Malaguti, R.; Guerra, A. Del; Domenico, G. Di; Zavattini, G.

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper

  1. A new electronic read-out for the YAPPET scanner

    CERN Document Server

    Damiani, C; Malaguti, R; Guerra, A D; Domenico, G D; Zavattini, G

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper.

  2. A radiation-tolerant electronic readout system for portal imaging

    Science.gov (United States)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  3. LHCb: Radiation tolerance tests of SRAM-based FPGAs for the possible usage in the readout electronics for the LHCb experiment

    CERN Multimedia

    Faerber, C; Wiedner, D; Leveringzon, B; Ekelhof, R

    2013-01-01

    This paper describes radiation studies of SRAM-based FPGAs as a central component of the electronics for a possible upgrade of the LHCb Outer Tracker readout electronics to a frequency of 40 MHz. Two Arria GX FPGAs were irradiated with 20 MeV protons to radiation doses of up to 7 Mrad. During and between the irradiation periods the different FPGA currents, the package temperature, the firmware error rate, the PLL stability, and the stability of a 32 channel TDC implemented on the FPGA were monitored. Results on the radiation tolerance of the FPGA and the measured firmware error rates will be presented. The Arria GX FPGA fulfils the radiation tolerance required for the LHCb upgrade (30 krad) and an expected firmware error rate of 10$^{-6}$ Hz makes the chip viable for the LHCb Upgrade.

  4. A high-resolution detector based on liquid-core scintillating fibres with readout via an electron-bombarded charge-coupled device

    International Nuclear Information System (INIS)

    Cianfarani, C.; Duane, A.; Fabre, J.P.; Frenkel, A.; Golovkin, S.V.; Gorin, A.M.; Harrison, K.; Kozarenko, E.N.; Kushnirenko, A.E.; Ladygin, E.A.; Martellotti, G.; Medvedkov, A.M.; Nass, P.A.; Obudovski, V.P.; Penso, G.; Petukhov, Yu.P.; Siegmund, W.P.; Tyukov, V.E.; Vasilchenko, V.G.

    1994-01-01

    This paper is a presentation of results from tests in a 5 GeV/c hadron beam of detectors based on liquid-core scintillating fibres, each fibre consisting of a glass capillary filled with organic liquid scintillator. Fibre readout was performed via an Electron-Bombarded Charge-Coupled Device (EBCCD) image tube, a novel instrument that combines the functions of a high-gain, gated image intensifier and a Charge-Coupled Device. Using 1-methylnaphthalene doped with 3 g/l of R45 as liquid scintillator, the attenuation lengths obtained for light propagation over distances greater than 16 cm were 1.5 m in fibres of 20 μm core and 1.0 m in fibres of 16 μm core. For particles that crossed the fibres of 20 μm core at distances of ∼1.8 cm and ∼95 cm from the fibres' readout ends, the recorded hit densities were 5.3 mm -1 and 2.5 mm -1 respectively. Using 1-methylnaphthalene doped with 3.6 g/l of R39 as liquid scintillator and fibres of 75 μm core, the hit density obtained for particles that crossed the fibres at a distance of ∼1.8 cm from their readout ends was 8.5 mm -1 . With a specially designed bundle of tapered fibres, having core diameters that smoothly increase from 16 μm to 75 μm, a spatial precision of 6 μm was measured. (orig.)

  5. A time projection chamber with GEM-based readout

    Energy Technology Data Exchange (ETDEWEB)

    Attié, David [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Behnke, Ties [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); Bellerive, Alain [Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6 (Canada); Bezshyyko, Oleg [Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, City of Kyiv 01601 (Ukraine); Bhattacharya, Deb Sankar [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); now at Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, Purba [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); now at National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Jatni, Khurda 752050, Odisha (India); Bhattacharya, Sudeb [Saha Institute of Nuclear Physics, 1/AF, Sector 1, Bidhan Nagar, Kolkata 700064 (India); Caiazza, Stefano [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at Johannes Gutenberg Universität Mainz, Institut für Physik, 55099 Mainz (Germany); Colas, Paul [CEA Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Lentdecker, Gilles De [Inter University ULB-VUB, Av. Fr. Roosevelt 50, B1050 Bruxelles (Belgium); Dehmelt, Klaus [Deutsches Elektronen-Synchrotron DESY, A Research Centre of the Helmholtz Association, Notkestrasse 85, 22607 Hamburg (Hamburg site) (Germany); now at State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, NY 11794-3800 (United States); Desch, Klaus [Universität Bonn, Physikalisches Institut, Nußallee 12, 53115 Bonn (Germany); and others

    2017-06-01

    For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent Gas Electron Multiplier (GEM) based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.

  6. Readout and trigger electronics for the TPC vertex chamber

    International Nuclear Information System (INIS)

    Ronan, M.T.; Jared, R.C.; McGathen, T.K.; Eisner, A.M.; Broeder, W.J.; Godfrey, G.L.

    1987-10-01

    The introduction of the vertex chamber required the addition of new front-end electronics and a new 1024-channel, high-accuracy TDC system. The preamplifier/discriminator should be capable of triggering on the first electrons and the time digitzer should preserve the measurement resolution. For the TDC's, in order to maintain compatibility with the existing TPC readout system, an upgrade of a previous inner drift chamber digitizer system has been chosen. Tests of the accuracy and stability of the original design indicated that the new design specifications would be met. The TPC detector requires a fast pretrigger to turn on its gating grid within 500 ns of the e/sup +/e/sup -/ beam crossing time, to minimize the loss of ionization information. A pretrigger based on the Straw Chamber signals, operating at a rate of about 2 K/sec, will be used for charged particle final states. In addition, in order to reject low mass Two-Photon events at the final trigger level, an accurate transverse momentum cutoff will be made by the Straw Chamber trigger logic. In this paper, we describe the readout and trigger electronics systems which have been built to satisfy the above requirements. 5 refs., 8 figs

  7. Investigation of the readout electronics of DELPHI surround muon chamber

    International Nuclear Information System (INIS)

    Khovanskij, N.; Krumshtejn, Z.; Ol'shevskij, A.; Sadovskij, A.; Sedykh, Yu.; Molnar, J.; Sicho, P.; Tomsa, Z.

    1995-01-01

    The characteristics of the readout electronics of the DELPHI surround muon chambers with various AMPLEX chips (AMPLEX 16 and AMPLEX-SICAL) are presented. This electronics is studied in a cosmic rays test of the real surround muon chamber model. 4 refs., 6 figs., 1 tab

  8. Readout Electronics Upgrades of the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Anelli, Christopher Ryan; The ATLAS collaboration

    2018-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. First prototypes of the front-end electronics components show good promise to match the stringent specifications. The off-detector electronics will make use of FPGAs connected through high-speed links to perform energy reconstruction, data reduction and buffering. Results of tests of the first prototypes of front-end components will be presented, along with design studies on the performance of the off-detector readout system.

  9. A micromachined surface stress sensor with electronic readout

    NARCIS (Netherlands)

    Carlen, Edwin; Weinberg, M.S.; Zapata, A.M.; Borenstein, J.T.

    2008-01-01

    A micromachined surface stress sensor has been fabricated and integrated off chip with a low-noise, differential capacitance, electronic readout circuit. The differential capacitance signal is modulated with a high frequency carrier signal, and the output signal is synchronously demodulated and

  10. Prototype readout electronics for the upgraded ALICE Inner Tracking System

    Czech Academy of Sciences Publication Activity Database

    Sielewicz, K. M.; Rinella, G. A.; Bonora, M.; Ferencei, Jozef; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vaňát, Tomáš

    2017-01-01

    Roč. 12, JAN (2017), č. článku C01008. ISSN 1748-0221. [Topical Workshop on Electronics for Particle Physics. Karlsruhe, 26.09.2016-30.09.2016] R&D Projects: GA MŠk LM2015056; GA MŠk(CZ) LG15052; GA MŠk LM2015058 Institutional support: RVO:61389005 Keywords : digital electronic circuits * electronic detector readout concepts * modlar electronics * radiation-hard electronics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  11. Development of SuperHERO readout electronics

    Data.gov (United States)

    National Aeronautics and Space Administration — Next-generation solar hard X-ray (HXR) imagers will make high-sensitivity, high-dynamic-range observations of the signatures of accelerated electrons in solar...

  12. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    International Nuclear Information System (INIS)

    Ericson, M.N.; Allen, M.D.; Boissevain, J.

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented

  13. Technology for the compatible integration of silicon detectors with readout electronics

    International Nuclear Information System (INIS)

    Zimmer, G.

    1984-01-01

    Compatible integration of detectors and readout electronics on the same silicon substrate is of growing interest. As the methods of microelectronics technology have already been adapted for detector fabrication, a common technology basis for detectors and readout electronics is available. CMOS technology exhibits most attractive features for the compatible realization of readout electronics when advanced LSI processing steps are combined with detector requirements. The essential requirements for compatible integration are the availability of high resistivity (100)-oriented single crystalline silicon substrate, the formation of suitably doped areas for MOS circuits and the isolation of the low voltage circuit from the detector operated at much higher supply voltage. Junction isolation as a first approach based on present production technology and dielectric isolation based on an advanced SOI-LSI technology are discussed as the most promising solutions for present and future applications, respectively. (orig.)

  14. AREUS - a software framework for the ATLAS Readout Electronics Upgrade Simulation

    CERN Document Server

    Horn, Philipp; The ATLAS collaboration

    2018-01-01

    The design of readout electronics for the LAr calorimeters of the ATLAS detector to be operated at the future High-Luminosity LHC (HL-LHC) requires a detailed simulation of the full readout chain in order to find optimal solutions for the analog and digital processing of the detector signals. Due to the long duration of the LAr calorimeter pulses relative to the LHC bunch crossing time, out-of-time signal pile-up needs to be taken intoaccountandrealisticpulsesequencesmustbesimulatedtogetherwiththeresponseoftheelectronics. For this purpose, the ATLAS Readout Electronics Upgrade Simulation framework (AREUS) has been developed based on the Observer design pattern to provide a fast and flexible simulation tool. Energy deposits in the LAr calorimeters from fully simulated HL-LHC collision events are taken as input. Simulated and measured analog pulse shapes proportional to these energies are then combined in discrete time series with proper representation of electronics noise. Analog-to-digital conversion, gain se...

  15. Fabrication of the GLAST Silicon Tracker Readout Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, Luca; Brez, Alessandro; Himel, Thomas; Johnson, R.P.; Latronico, Luca; Minuti, Massimo; Nelson, David; Sadrozinski, H.F.-W.; Sgro, Carmelo; Spandre, Gloria; Sugizaki, Mutsumi; Tajima, Hiro; Cohen Tanugi, Johann; Young, Charles; Ziegler, Marcus; /Pisa U. /INFN, Pisa /SLAC /UC, Santa Cruz

    2006-03-03

    A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884,736 36-cm long silicon strips in a 4 x 4 array of tower modules. An aggressive mechanical design fits the readout electronics in narrow spaces between the tower modules, to minimize dead area. This design and the resulting departures from conventional electronics packaging led to several fabrication challenges and lessons learned. This paper describes the fabrication processes and how the problems peculiar to this design were overcome.

  16. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.

    Science.gov (United States)

    Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D

    2009-10-09

    Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

  17. Front end readout electronics for the CMS hadron calorimeter

    CERN Document Server

    Shaw, Terri M

    2002-01-01

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm sup 2. For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes.

  18. Front end readout electronics for the CMS hadron calorimeter

    International Nuclear Information System (INIS)

    Terri M. Shaw et al.

    2002-01-01

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm 2 . For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes

  19. Front-end electronics and readout system for the ILD TPC

    CERN Document Server

    Hedberg, V; Lundberg, B; Mjörnmark, U; Oskarsson, A; Österman, L; De Lentdecker, G; Yang, Y; Zhang, F

    2015-01-01

    A high resolution TPC is the main option for a central tracking detector at the future International Linear Collider (ILC). It is planned that the MPGD (Micro Pattern Gas Detector) technology will be used for the readout. A Large Prototype TPC at DESY has been used to test the performance of MPGDs in an electron beam of energies up to 6 GeV. The first step in the technology development was to demonstrate that the MPGDs are able to achieve the necessary performance set by the goals of ILC. For this ’proof of principle’ phase, the ALTRO front-end electronics from the ALICE TPC was used, modified to adapt to MPGD readout. The proof of principle has been verified and at present further improvement of the MPGD technology is going on, using the same readout electronics. The next step is the ’feasibility phase’, which aims at producing front-end electronics comparable in size (few mm2) to the readout pads of the TPC. This development work is based on the succeeding SALTRO16 chip, which combines the analogue ...

  20. The STAR Heavy Flavor Tracker PXL detector readout electronics

    International Nuclear Information System (INIS)

    Schambach, J.; Contin, G.; Greiner, L.; Stezelberger, T.; Vu, C.; Sun, X.; Szelezniak, M.

    2016-01-01

    The Heavy Flavor Tracker (HFT) is a recently installed micro-vertex detector upgrade to the STAR experiment at RHIC, consisting of three subsystems with various technologies of silicon sensors arranged in 4 concentric cylinders. The two innermost layers of the HFT close to the beam pipe, the Pixel ('PXL') subsystem, employ CMOS Monolithic Active Pixel Sensor (MAPS) technology that integrate the sensor, front-end electronics, and zero-suppression circuitry in one silicon die. This paper presents selected characteristics of the PXL detector part of the HFT and the hardware, firmware and software associated with the readout system for this detector

  1. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    CERN Document Server

    Mazza, Gianni

    2017-01-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with 13 bit resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  2. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    Science.gov (United States)

    Mazza, G.; Cometti, S.

    2018-03-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  3. 3 ns single-shot read-out in a quantum dot-based memory structure

    International Nuclear Information System (INIS)

    Nowozin, T.; Bimberg, D.; Beckel, A.; Lorke, A.; Geller, M.

    2014-01-01

    Fast read-out of two to six charges per dot from the ground and first excited state in a quantum dot (QD)-based memory is demonstrated using a two-dimensional electron gas. Single-shot measurements on modulation-doped field-effect transistor structures with embedded InAs/GaAs QDs show read-out times as short as 3 ns. At low temperature (T = 4.2 K) this read-out time is still limited by the parasitics of the setup and the device structure. Faster read-out times and a larger read-out signal are expected for an improved setup and device structure

  4. Design of readout electronics for a scintillating plate calorimeter

    International Nuclear Information System (INIS)

    Crawley, H.B.; Meyer, W.T.; Rosenberg, E.I.; Thomas, W.D.; Blair, R.E.; Buehring, A.; Dawson, J.; Hill, N.; Noland, R.; Petereit, E.; Price, L.E.; Proudfoot, J.; Spinka, H.; Talaga, R.; Trost, H.J.; Underwood, D.; Wickland, A.B.; Hurlbut, C.; Hagopian, V.; Johnson, K.; Imlay, R.; McNeil, R.; Metcalf, W.; Bolen, L.; Cremaldi, L.; Reidy, J.; Summers, D.; Fu, P.; Gabriel, T.; Handler, T.; Ficenec, J.R.; Lu, B.; Mo, L.; Piilonen, L.E.; Nunamaker, T.; Burke, M.; Hackworth, D.T.; Porter, T.F.; Ravas, R.J.; Scherbarth, D.; Swensrud, R.; Carlsmith, D.; Foudas, C.; Lackey, J.; Loveless, D.; Reeder, D.; Robb, P.; Smith, W.H.

    1990-01-01

    A scintillator calorimeter produces unique problems for the designer of readout electronics. On the one hand the narrow time structure of scintillator pulses, ∼10 nsec, is well matched to the rf structure of the SSC and gives hope of isolating information from individual beam crossings. On the other hand, the compensation mechanism and the need to broaden the pulse shape for use with analog signal sampling devices gives a somewhat wider time structure, ∼50-100 nsec. Furthermore the granularity of such a device implies that the full energy of an electromagnetic shower may be totally contained within one readout channel. If the resolution of the electronics is not to compromise the intrinsic resolution of the calorimeter, assumed to be σ/E ∼ 15%/√E + 1% (E in Gev), coverage of the full dynamic range (40,000:1) requires at least two 12-bit devices with 7 bits of overlap for a linear front-end electronics chain. The positioning of the electronics also is a critical issue. At luminosities of 10 33 cm -2 sec -1 , electronics placed on the calorimeter must withstand doses of at least 10 10 neutron/cm 2 and 2,000 Rad per year at 90 degree. In the past year, the scintillating calorimeter collaboration has begun studying these and related issues. Among the work reported below is: a study related to remote location of the calorimeter electronics, a comprehensive program to evaluate the properties of FADCs capable of operation at 60-80 MHz, design of a analog memory unit and development of a benchmark system to help evaluate components under development both within and outside the authors' collaboration

  5. Pixel detector readout electronics with two-level discriminator scheme

    International Nuclear Information System (INIS)

    Pengg, F.

    1998-01-01

    In preparation for a silicon pixel detector with more than 3,000 readout channels per chip for operation at the future large hadron collider (LHC) at CERN the analog front end of the readout electronics has been designed and measured on several test-arrays with 16 by 4 cells. They are implemented in the HP 0.8 microm process but compatible with the design rules of the radiation hard Honeywell 0.8 microm bulk process. Each cell contains bump bonding pad, preamplifier, discriminator and control logic for masking and testing within a layout area of only 50 microm by 140 microm. A new two-level discriminator scheme has been implemented to cope with the problems of time-walk and interpixel cross-coupling. The measured gain of the preamplifier is 900 mV for a minimum ionizing particle (MIP, about 24,000 e - for a 300 microm thick Si-detector) with a return to baseline within 750 ns for a 1 MIP input signal. The full readout chain (without detector) shows an equivalent noise charge to 60e - r.m.s. The time-walk, a function of the separation between the two threshold levels, is measured to be 22 ns at a separation of 1,500 e - , which is adequate for the 40 MHz beam-crossing frequency at the LHC. The interpixel cross-coupling, measured with a 40fF coupling capacitance, is less than 3%. A single cell consumes 35 microW at 3.5 V supply voltage

  6. Development of a 10-inch HPD with integrated readout electronics

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, Peter; Giunta, M; Malakhov, N; Menzione, A; Pegna, R; Piccioli, A; Raffaelli, F; Sartori, G

    2003-01-01

    A round 10-in. diameter Hybrid Photodiode (HPD) with spherical entrance window is under development for Cherenkov imaging applications in cosmic ray astronomy. The HPD adopts the fountain focusing electron optics, which, as already demonstrated in the 5 inch Pad HPD, allows for a linear demagnification of the image over practically the full tube diameter. Self-triggering front-end electronics providing also sparse readout capability, has been tested. High-efficiency Rb//2Te cathodes have been produced on a UV extended borosilicate glass windows with very thin conductive underlayers of Indium Tin Oxide. We report on the design of the 10- in. HPD, the fabrication procedure and first tests of a 5-in. HPD with Rb//2Te photocathode and 2048 channels.

  7. Development of readout electronics for monolithic integration with diode strip detectors

    International Nuclear Information System (INIS)

    Hosticka, B.J.; Wrede, M.; Zimmer, G.; Kemmer, J.; Hofmann, R.; Lutz, G.

    1984-03-01

    Parallel in - serial out analog readout electronics integrated with silicon strip detectors will bring a reduction of two orders of magnitude in external electronics. The readout concept and the chosen CMOS technology solve the basic problem of low noise and low power requirements. A hybrid solution is an intermediate step towards the final goal of monolithic integration of detector and electronics. (orig.)

  8. Readout electronics development for the ATLAS silicon tracker

    International Nuclear Information System (INIS)

    Borer, K.; Beringer, J.; Anghinolfi, F.; Aspell, P.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Bonino, R.; Clark, A.G.; Kambara, H.; La Marra, D.; Leger, A.; Wu, X.; Richeux, J.P.; Taylor, G.N.; Fedotov, M.; Kuper, E.; Velikzhanin, Yu.; Campbell, D.; Murray, P.; Seller, P.

    1995-01-01

    We present the status of the development of the readout electronics for the large area silicon tracker of the ATLAS experiment at the LHC, carried out by the CERN RD2 project. Our basic readout concept is to integrate a fast amplifier, analog memory, sparse data scan circuit and analog-to-digital convertor (ADC) on a single VLSI chip. This architecture will provide full analog information of charged particle hits associated unambiguously to one LHC beam crossing, which is expected to be at a frequency of 40 MHz. The expected low occupancy of the ATLAS inner silicon detectors allows us to use a low speed (5 MHz) on-chip ADC with a multiplexing scheme. The functionality of the fast amplifier and analog memory have been demonstrated with various prototype chips. Most recently we have successfully tested improved versions of the amplifier and the analog memory. A piecewise linear ADC has been fabricated and performed satisfactorily up to 5 MHz. A new chip including amplifier, analog memory, memory controller, ADC, and data buffer has been designed and submitted for fabrication and will be tested on a prototype of the ATLAS silicon tracker module with realistic electrical and mechanical constraints. (orig.)

  9. Test beam studies for the atlas tile calorimeter readout electronics

    CERN Document Server

    Rodriguez Perez, Andrea; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system for the Tile hadronic calorimeter (TileCal) of the ATLAS experiment is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muon data allow to study the response dependence on the incident point and angle in a cell and inter-calibration of the response between cells. The electron data are used to determine the linearity of the electron energy measurement. The hadron data allow to determined the calorimeter response to pions, kaons and protons and tune the calorimeter simulation to that data. The results of the ongoing data analyses are discussed in the presentation.

  10. NIKEL-AMC: readout electronics for the NIKA2 experiment

    International Nuclear Information System (INIS)

    Bourrion, O.; Bouly, J.L.; Bouvier, J.; Bosson, G.; Catalano, A.; Li, C.; Macías-Pérez, J.F.; Tourres, D.; Ponchant, N.; Vescovi, C.; Benoit, A.; Calvo, M.; Goupy, J.; Monfardini, A.

    2016-01-01

    The New Iram Kid Arrays-2 (NIKA2) instrument has recently been installed at the IRAM 30 m telescope. NIKA2 is a state-of-art instrument dedicated to mm-wave astronomy using microwave kinetic inductance detectors (KID) as sensors. The three arrays installed in the camera, two at 1.25 mm and one at 2.05 mm, feature a total of 3300 KIDs. To instrument these large array of detectors, a specifically designed electronics, composed of 20 readout boards and hosted in three microTCA crates, has been developed. The implemented solution and the achieved performances are presented in this paper. We find that multiplexing factors of up to 400 detectors per board can be achieved with homogeneous performance across boards in real observing conditions, and a factor of more than 3 decrease in volume with respect to previous generations.

  11. Investigation of image distortion due to MCP electronic readout misalignment and correction via customized GUI application

    Science.gov (United States)

    Vitucci, G.; Minniti, T.; Tremsin, A. S.; Kockelmann, W.; Gorini, G.

    2018-04-01

    The MCP-based neutron counting detector is a novel device that allows high spatial resolution and time-resolved neutron radiography and tomography with epithermal, thermal and cold neutrons. Time resolution is possible by the high readout speeds of ~ 1200 frames/sec, allowing high resolution event counting with relatively high rates without spatial resolution degradation due to event overlaps. The electronic readout is based on a Timepix sensor, a CMOS pixel readout chip developed at CERN. Currently, a geometry of a quad Timepix detector is used with an active format of 28 × 28 mm2 limited by the size of the Timepix quad (2 × 2 chips) readout. Measurements of a set of high-precision micrometers test samples have been performed at the Imaging and Materials Science & Engineering (IMAT) beamline operating at the ISIS spallation neutron source (U.K.). The aim of these experiments was the full characterization of the chip misalignment and of the gaps between each pad in the quad Timepix sensor. Such misalignment causes distortions of the recorded shape of the sample analyzed. We present in this work a post-processing image procedure that considers and corrects these effects. Results of the correction will be discussed and the efficacy of this method evaluated.

  12. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, Stefan [CERN (Switzerland)], E-mail: koestner@mpi-halle.mpg.de

    2009-09-11

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  13. Study on FPGA SEU Mitigation for the Readout Electronics of DAMPE BGO Calorimeter in Space

    Science.gov (United States)

    Shen, Zhongtao; Feng, Changqing; Gao, Shanshan; Zhang, Deliang; Jiang, Di; Liu, Shubin; An, Qi

    2015-06-01

    The BGO calorimeter, which provides a wide measurement range of the primary cosmic ray spectrum, is a key sub-detector of the Dark Matter Particle Explorer (DAMPE). The readout electronics of calorimeter consists of 16 pieces of Actel ProASIC Plus FLASH-based field-programmable gate array (FPGA), of which the design-level flip-flops and embedded block random access memories (RAM) are single event upset (SEU) sensitive in the harsh space environment. To comply with radiation hardness assurance (RHA), SEU mitigation methods, including partial triple modular redundancy (TMR), CRC checksum, and multi-domain reset are analyzed and tested by the heavy-ion beam test. Composed of multi-level redundancy, a FPGA design with the characteristics of SEU tolerance and low resource consumption is implemented for the readout electronics.

  14. Development of an external readout electronics for a hybrid photon detector

    CERN Document Server

    Uyttenhove, Simon; Tichon, Jacques; Garcia, Salvador

    The pixel hybrid photon detectors currently installed in the LHCb Cherenkov system encapsulate readout electronics in the vacuum tube envelope. The LHCb upgrade and the new trigger system will require their replacement with new photon detectors. The baseline photon detector candidate is the multi-anode photomultiplier. A hybrid photon detector with external readout electronics has been proposed as a backup option. This master thesis covers a R & D phase to investigate this latter concept. Extensive studies of the initial electronics system underlined the noise contributions from the Beetle chip used as front-end readout ASIC and from the ceramic carrier of the photon detector. New front-end electronic boards have been developed and made fully compatible with the existing LHCb-RICH infrastructure. With this compact readout system, Cherenkov photons have been successfully detected in a real particle beam environment. The proof-of-concept of a hybrid photon detector with external readout electronics was val...

  15. The CMS silicon strip tracker and its electronic readout

    International Nuclear Information System (INIS)

    Friedl, M.

    2001-05-01

    The Large Hadron Collider (LHC) at CERN (Geneva, CH) will be the world's biggest accelerator machine when operation starts in 2006. One of its four detector experiments is the Compact Muon Solenoid (CMS), consisting of a large-scale silicon tracker and electromagnetic and hadron calorimeters, all embedded in a solenoidal magnetic field of 4 T, and a muon system surrounding the magnet coil. The Silicon Strip Tracker has a sensitive area of 206m 2 with 10 million analog channels which are read out at the collider frequency of 40 MHz. The building blocks of the CMS Tracker are the silicon sensors, APV amplifier ASICs, supporting front-end ASICs, analog and digital optical links as well as data processors and control units in the back-end. Radiation tolerance, readout speed and the huge data volume are challenging requirements. The charge collection in silicon detectors was modeled, which is discussed as well as the concepts of readout amplifiers with respect to the LHC requirements, including the deconvolution method of fast pulse shaping, electronic noise constraints and radiation effects. Moreover, extensive measurements on prototype components of the CMS Tracker and different versions of the APV chip in particular were performed. There was a significant contribution to the construction of several detector modules, characterized them in particle beam tests and quantified radiation induced effects on the APV chip and on silicon detectors. In addition, a prototype of the analog optical link and the analog performance of the back-end digitization unit were evaluated. The results are very encouraging, demonstrating the feasibility of the CMS Silicon Strip Tracker system and motivating progress towards the construction phase. (author)

  16. Readout electronics for low dark count pixel detectors based on Geiger mode avalanche photodiodes fabricated in conventional CMOS technologies for future linear colliders

    International Nuclear Information System (INIS)

    Vilella, E.; Arbat, A.; Comerma, A.; Trenado, J.; Alonso, O.; Gascon, D.; Vila, A.; Garrido, L.; Dieguez, A.

    2011-01-01

    High sensitivity and excellent timing accuracy of the Geiger mode avalanche photodiodes make them ideal sensors as pixel detectors for particle tracking in high energy physics experiments to be performed in future linear colliders. Nevertheless, it is well known that these sensors suffer from dark counts and afterpulsing noise, which induce false hits (indistinguishable from event detection) as well as an increase in the necessary area of the readout system. In this work, we present a comparison between APDs fabricated in a high voltage 0.35 μm and a high integration 0.13 μm commercially available CMOS technologies that has been performed to determine which of them best fits the particle collider requirements. In addition, a readout circuit that allows low noise operation is introduced. Experimental characterization of the proposed pixel is also presented in this work.

  17. Test and improvement of readout system based on APV25 chip for GEM detector

    International Nuclear Information System (INIS)

    Hu Shouyang; Jian Siyu; Zhou Jing; Shan Chao; Li Xinglong; Li Xia; Li Xiaomei; Zhou Yi

    2014-01-01

    Gas electron multiplier (GEM) is the most promising position sensitive gas detector. The new generation of readout electronics system includes APV25 front-end card, multi-purpose digitizer (MPD), VME controller and Linux-based acquisition software DAQ. The construction and preliminary test of this readout system were finished, and the ideal data with the system working frequency of 40 MHz and 20 MHz were obtained. The long time running test shows that the system has a very good time-stable ability. Through optimizing the software configuration and improving hardware quality, the noise level was reduced, and the signal noise ratio was improved. (authors)

  18. Central FPGA-based destination and load control in the LHCb MHz event readout

    Science.gov (United States)

    Jacobsson, R.

    2012-10-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  19. Central FPGA-based destination and load control in the LHCb MHz event readout

    International Nuclear Information System (INIS)

    Jacobsson, R.

    2012-01-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  20. A Low Power Rad-Hard ADC for the KID Readout Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal aims to develop a radiation hardened analog-to-digital converter (ADC) required for the Kinetic Inductance Detector (KID) readout electronics. KIDs are...

  1. R&D Studies of the ATLAS LAr Calorimeter Readout Electronics for super-LHC

    CERN Document Server

    Chen, H

    2010-01-01

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors, total about 180,000 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the L1-trigger. A luminosity upgrade (x10) of the LHC will occur ~2017, the current readout electronics will have to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The front-end readout will send out data continuously at each bunch crossing through high speed radiation resistant optical links, the data will be processed real-time with the possibility of implementing trigger algorithms. This article is an overview of the R&D activities and architectural studies the ATLAS LAr collaboration is developing: front-end analog and mixed-signal ASIC design, radiation resistance optical-links in SOS, high-speed back-end processing units based on FPGA architectures and power supply d...

  2. Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes

    Science.gov (United States)

    Bender, Amy N.; Cliche, Jean-François; de Haan, Tijmen; Dobbs, Matt A.; Gilbert, Adam J.; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M.; Smith, Ken; Wilson, Andrew

    2014-07-01

    Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.

  3. Development of Digital Readout Electronics for the CMS Tracker

    CERN Document Server

    Corrin, E P

    2002-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector, based at CERN in Switzerland, designed to look for new physics in high-energy protonproton collisions provided by the Large Hadron Collider. The CMS tracker has 10 million readout channels being sampled at a rate of 40 MHz, then read out at up to 100 kHz, generating huge volumes of data; it is essential that the system can handle these rates without any of the data being lost or corrupted. The CMS tracker FED processes the data, removing pedestal and common mode-noise, and then performing hit and cluster finding. Strips below threshold are discarded, resulting in a significant reduction in data size. These zero suppressed data are stored in a buffer before being sent to the DAQ. The processing on the FEDs is done using FPGAs. Programmable logic was chosen over custom ASICs because of the lower cost, faster design and verification process, and the ability to easily upgrade the firmware at a later date. This thesis is concerned with the digital read...

  4. SiPM arrays and miniaturized readout electronics for compact gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N., E-mail: dinu@lal.in2p3.fr [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Imando, T. Ait; Nagai, A. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Pinot, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Puill, V. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Callier, S. [Omega Microelectronics Group, CNRS, Palaiseau (France); Janvier, B.; Esnault, C.; Verdier, M.-A. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Raux, L. [Omega Microelectronics Group, CNRS, Palaiseau (France); Vandenbussche, V.; Charon, Y.; Menard, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France)

    2015-07-01

    This article reports on the design and features of a very compact and light gamma camera based on SiPM arrays and miniaturized readout electronics dedicated to tumor localization during radio-guided cancer surgery. This gamma camera, called MAGICS, is composed of four (2×2) photo-detection elementary modules coupled to an inorganic scintillator. The 256 channels photo-detection system covers a sensitive area of 54×53 m{sup 2}. Each elementary module is based on four (2×2) SiPM monolithic arrays, each array consisting of 16 SiPM photo-sensors (4×4) with 3×3 mm{sup 2} sensitive area, coupled to a miniaturized readout electronics and a dedicated ASIC. The overall dimensions of the electronics fit the size of the detector, enabling to assemble side-by-side several elementary modules in a close-packed arrangement. The preliminary performances of the system are very encouraging, showing an energy resolution of 9.8% and a spatial resolution of less than 1 mm at 122 keV.

  5. A camac based data acquisition system for flat-panel image array readout

    International Nuclear Information System (INIS)

    Morton, E.J.; Antonuk, L.E.; Berry, J.E.; Huang, W.; Mody, P.; Yorkston, J.; Longo, M.J.

    1993-01-01

    A readout system has been developed to facilitate the digitization and subsequent display of image data from two-dimensional, pixellated, flat-panel, amorphous silicon imaging arrays. These arrays have been designed specifically for medical x-ray imaging applications. The readout system is based on hardware and software developed for various experiments at CERN and Fermi National Accelerator Laboratory. Additional analog signal processing and digital control electronics were constructed specifically for this application. The authors report on the form of the resulting data acquisition system, discuss aspects of its performance, and consider the compromises which were involved in its design

  6. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    International Nuclear Information System (INIS)

    OCONNOR, P.; GRATCHEV, V.; KANDASAMY, A.; POLYCHRONAKOS, V.; TCHERNIATINE, V.; PARSONS, J.; SIPPACH, W.

    1999-01-01

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm 2 /s

  7. An FPGA-based sampling-ADC readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Marciniewski, Pawel [Angstroemlaboratoriet, Uppsala (Sweden); Collaboration: CBELSA/TAPS-Collaboration

    2015-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA (Bonn) investigates the photoproduction of mesons off protons and neutrons. Presently the readout of the CsI(Tl)-crystals of the Crystal Barrel calorimeter is being upgraded from a PIN-diode readout to an APD readout to create a fast signal for first-level-triggering. This will increase the trigger efficiency especially for final states with only neutral particles substantially. To increase the possible data readout rate, which is currently limited by the digitization stage (LeCroy QDC 1885F) to ∼ 2 kHz, the implementation of a new Sampling-ADC (SADC) readout is being prepared. Based on the 64-channel PANDA-SADC, the CB-SADC design was modified and adapted to the needs of the CBELSA/TAPS experiment. It offers 64 channels in one NIM module, together with modular analog or FPGA-based digital shaping. The data transfer will be realized by two standard gigabit links. Using an FPGA together with SADCs provides a multitude of possibilities for online feature extraction, such as the determination of the energy deposited in the crystal, TDC capabilities and pile-up detection and recovery.

  8. General-purpose readout electronics for white neutron source at China Spallation Neutron Source.

    Science.gov (United States)

    Wang, Q; Cao, P; Qi, X; Yu, T; Ji, X; Xie, L; An, Q

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.

  9. Optimized readout configuration for PIXE spectrometers based on Silicon Drift Detectors: Architecture and performance

    International Nuclear Information System (INIS)

    Alberti, R.; Grassi, N.; Guazzoni, C.; Klatka, T.

    2009-01-01

    An optimized readout configuration based on a charge preamplifier with pulsed-reset has been designed for Silicon Drift Detectors (SDDs) to be used in Particle Induced X-ray Emission (PIXE) measurements. The customized readout electronics is able to manage the large pulses originated by the protons backscattered from the target material that would otherwise cause significant degradation of X-ray spectra and marked increase in dead time. In this way, the excellent performance of SDDs can be exploited in high-quality proton-induced spectroscopy of low- and medium-energy X-rays. This paper describes the designed readout architecture and the performance characterization carried out in a PIXE setup with MeV proton beams.

  10. Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell

    Science.gov (United States)

    Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.

    2018-05-01

    Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.

  11. Electronic zooming TV readout system for an x-ray microscope

    International Nuclear Information System (INIS)

    Kinoshita, K.; Matsumura, T.; Inagaki, Y.; Hirai, N.; Sugiyama, M.; Kihara, H.; Watanabe, N.; Shimanuki, Y.

    1993-01-01

    The electronic zooming TV readout system using the X-ray zooming tube has been developed for purposes of real-time readout of very high resolution X-ray image, e.g. the output image from an X-ray microscope. The system limiting resolution is 0.2∼0.3 μm and it is easy to operate in practical applications

  12. ADVANCED READOUT ELECTRONICS FOR MULTIELEMENT CdZnTe SENSORS

    International Nuclear Information System (INIS)

    DE GERONIMO, G.; O CONNOR, P.; KANDASAMY, A.; GROSHOLZ, J.

    2002-01-01

    A generation of high performance front-end and read-out ASICs customized for highly segmented CdZnTe sensors is presented. The ASICs, developed in a multi-year effort at Brookhaven National Laboratory, are targeted to a wide range of applications including medical, safeguards/security, industrial, research, and spectroscopy. The front-end multichannel ASICs provide high accuracy low noise preamplification and filtering of signals, with versions for small and large area CdZnTe elements. They implement a high order unipolar or bipolar shaper, an innovative low noise continuous reset system with self-adapting capability to the wide range of detector leakage currents, a new system for stabilizing the output baseline and high output driving capability. The general-purpose versions include programmable gain and peaking time. The read-out multichannel ASICs provide fully data driven high accuracy amplitude and time measurements, multiplexing and time domain derandomization of the shaped pulses. They implement a fast arbitration scheme and an array of innovative two-phase offset-free rail-to-rail analog peak detectors for buffering and absorption of input rate fluctuations, thus greatly relaxing the rate requirement on the external ADC. Pulse amplitude, hit timing, pulse risetime, and channel address per processed pulse are available at the output in correspondence of an external readout request. Prototype chips have been fabricated in 0.5 and 0.35 (micro)m CMOS and tested. Design concepts and experimental results are discussed

  13. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L

    2010-01-01

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  14. Performance of an optical readout GEM-based TPC

    International Nuclear Information System (INIS)

    Margato, L.M.S.; Fraga, F.A.F.; Fetal, S.T.G.; Fraga, M.M.F.R.; Balau, E.F.S.; Blanco, A.; Marques, R. Ferreira; Policarpo, A.J.P.L

    2004-01-01

    We report on the operation of a GEM-based small TPC using an optical readout. The detector was operated with a mixture of Ar+CF 4 using 5.48 MeV alpha particles obtained from a 241 Am source and the GEM scintillation was concurrently read by a CCD camera and a photomultiplier. Precision collimators were used to define the track orientation. Qualitative results on the accuracy of the track angle, length and charge deposition measurements are presented

  15. Development of a Timepix3 readout system based on the Merlin readout system

    International Nuclear Information System (INIS)

    Crevatin, G.; Carrato, S.; Horswell, I.; Omar, D.; Tartoni, N.; Cautero, G.

    2015-01-01

    Timepix3 chip is a new ASIC specifically designed to readout hybrid pixel detectors. The main purpose of Timepix3 is to measure the time of arrival of events. This characteristic can be exploited very effectively to develop detectors for time resolved experiments at synchrotron radiation facilities. In order to investigate how the ASIC can be applied to synchrotron experiments the Merlin readout system, developed at Diamond for the Medipix3 ASIC, has been adapted to readout the Timepix3 ASIC. The first tests of the ASIC with pulse injection and with alpha particles show that its behaviour is consistent with its nominal characteristics

  16. Development of radiation hard readout electronics for LHCb

    CERN Document Server

    Sexauer, Edgar; Lindenstruth, Volker

    2001-01-01

    The experiment LHCb is under development at CERN and aims to measure CP-violation in the B-Meson system at very high precision. The experiment makes use of a vertex detector that is equipped with silicon microstrip detectors. A chip suitable for the readout of this detector has been developed in a working group at the ASIC-laboratory Heidelberg. This readout chip 'Beetle-1.0' contains 128 analog input stages of a charge sensitive preamplifier, a pulse shaper and a buffer. The analog signal is fed into a comparator, from which a fast trigger signal can be derived. The following pipeline, realized as an array of gate capacitances, can be used to either store the analog output of the input amplifiers or to store the digital comparator output. External trigger signals mark events that have to be read out and the according pipeline location is stored in a derandomizing buffer. Pending events are read out from the pipeline via a charge-sensitive, resetable amplifier and an analog multiplexer, which serializes the s...

  17. R&D Studies of the ATLAS LAr Calorimeter Readout Electronics for super-LHC

    CERN Document Server

    Chen, H

    2009-01-01

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. 180,000 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the L1-trigger. A luminosity upgrade (x10) of the LHC will occur around 2016. The current readout electronics will have to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The frontend readout will send out data continuously at each bunch crossing through highspeed radiation resistant optical links. The data (100Gbps each board) will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a much higher granularity than what currently implemented. We present here an overview of the R&D activities and architectural s...

  18. Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    Andeen, Timothy; The ATLAS collaboration

    2018-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. First prototypes of the front-end electronics components show good promise to match the stringent specifications. The off-detector electronics will make use of FPGAs connected through high-speed links to perform energy reconstruction, data reduction and buffering. Results of tests of the first prototypes of front-end components will be presented, along with design studies on the performance of the off-detector readout system.

  19. Superconductor Microwave Kinetic Inductance Detectors: System Model of the Readout Electronics

    Directory of Open Access Journals (Sweden)

    F. Alimenti

    2009-06-01

    Full Text Available This paper deals with the readout electronics needed by superconductor Microwave Kinetic Inductance Detectors (MKIDs. MKIDs are typically implemented in the form of cryogenic-cooled high quality factor microwave resonator. The natural frequency of these resonators changes as a millimeter or sub-millimeter wave radiation impinges on the resonator itself. A quantitative system model of the readout electronics (very similar to that of a vector network analyzer has been implemented under ADS environment and tested by several simulation experiments. The developed model is a tool to further optimize the readout electronic and to design the frequency allocation of parallel-connected MKIDs resonators. The applications of MKIDs will be in microwave and millimeter-wave radiometric imaging as well as in radio-astronomy focal plane arrays.

  20. Test of a PCIe based readout option for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Simon; Lange, Soeren; Kuehn, Wolfgang [Justus-Liebig-Universitaet Giessen (Germany); Engel, Heiko [Goethe-Universitaet Frankfurt (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    The future PANDA detector will achieve an event rate at about 20 MHz resulting in a high data load of up to 200 GB/s. The data acquisition system will be based on a triggerless readout concept, leading to the requirement of large data bandwidths. The data reduction will be guaranteed on the first level by an array of FPGAs running a full on-line reconstruction followed by the second level of a CPU/GPU cluster to achieve a reduction factor more than 1000. The C-RORC (Common Readout Receiver Card), originally developed for ALICE, provides on the one hand 12 optical links with 6.25 Gbps each, and on the other hand a PCIe interface with up to 40 Gbps. The receiver card has been installed and tested, and the firmware has been adjusted for the Panda data format. Test results are presented.

  1. The New APD Based Readout for the Crystal Barrel Calorimeter

    International Nuclear Information System (INIS)

    Urban, M; Honisch, Ch; Steinacher, M

    2015-01-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds

  2. A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout

    CERN Document Server

    Gong, D; The ATLAS collaboration; Liu, T; Xiang, A; Ye, J

    2010-01-01

    High speed and ultra low power serial data transmission over fiber optics plays an essential roll in detector front-end electronics readout for experiments at the LHC. The ATLAS Liquid Argon Calorimeter front-end readout upgrade for the sLHC calls for an optical link system with a data bandwidth of 100 Gbps per each front-end board (FEB), a factor of 62 increase compared with the present optical link system. The transmitter of this optical link will have to withstand the radiation environment where the front-end crates are situated, and stay within the current power dissipation budget limited by the present FEB cooling capacity. To meet these challenges, we developed a 16:1 serializer based on a commercial 0.25 μm silicon-on-sapphire (SOS) CMOS technology. This serializer, designed to work at 5 Gbps, is a key component in an optical link system. Test results of this ASIC will be reported. A system design for the 100 Gbps optical link system will also be presented, with discussions about key components identi...

  3. Time over threshold readout method of SiPM based small animal PET detector

    International Nuclear Information System (INIS)

    Valastyan, I.; Gal, J.; Hegyesi, G.; Kalinka, G.; Nagy, F.; Kiraly, B.; Imrek, J.; Molnar, J.

    2012-01-01

    Complete text of publication follows. The aim of the work was to design a readout concept for silicon photomultiplier (SiPM) sensor array used in small animal PET scanner. The detector module consist of LYSO 35x35 scintillation crystals, 324 SiPM sensors (arranged in 2x2 blocks and those quads in a 9x9 configuration) and FPGA based readout electronics. The dimensions of the SiPM matrix are area: 48x48 mm 2 and the size of one SiPM sensor is 1.95x2.2 mm 2 . Due to the high dark current of the SiPM, conventional Anger based readout method does not provide sufficient crystal position maps. Digitizing the 324 SiPM channels is a straightforward way to obtain proper crystal position maps. However handling hundreds of analogue input channels and the required DSP resources cause large racks of data acquisition electronics. Therefore coding of the readout channels is required. Proposed readout method: The coding of the 324 SiPMs consists two steps: Step 1) Reduction of the channels from 324 to 36: Row column readout, SiPMs are connected to each other in column by column and row-by row, thus the required channels are 36. The dark current of 18 connected SiPMs is small in off for identifying pulses coming from scintillating events. Step 2) Reduction of the 18 rows and columns to 4 channels: Comparators were connected to each rows and columns, and the level was set above the level of dark noise. Therefore only few comparators are active when scintillation light enters in the tile. The output of the comparator rows and columns are divided to two parts using resistor chains. Then the outputs of the resistor chains are digitized by a 4 channel ADC. However instead of the Anger method, time over threshold (ToT) was used. Figure 1 shows the readout concept of the SiPM matrix. In order to validate the new method and optimize the front-end electronics of the detector, the analogue signals were digitized before the comparators using a CAEN DT5740 32 channel digitizer, then the

  4. BJT detector with FPGA-based read-out for alpha particle monitoring

    International Nuclear Information System (INIS)

    Tyzhnevyi, V; Dalla Betta, G-F; Rovati, L; Verzellesi, G; Zorzi, N

    2011-01-01

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an α-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  5. BJT detector with FPGA-based read-out for alpha particle monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V; Dalla Betta, G-F [Universita di Trento, via Sommarive, 14, 38123 Trento (Italy); Rovati, L [Universita di Modena e Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Verzellesi, G [Universita di Modena e Reggio Emilia, via Amendola 2, Pad. Morselli, 42100 Reggio Emilia (Italy); Zorzi, N, E-mail: tyzhnevyi@disi.unitn.it [Fondazione Bruno Kessler, via Sommarive, 18, 38123 Trento (Italy)

    2011-01-15

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an {alpha}-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  6. Design and performance of TPC readout electronics for the NA49 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bieser, F. [Lawrence Berkeley Lab., CA (United States); Cooper, G. [Lawrence Berkeley Lab., CA (United States); Cwienk, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Eckardt, V. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Fessler, H. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Fischer, H.G. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Gabler, F. [Frankfurt Univ. (Germany). Fachbereich 13 - Physik; Gornicki, E. [Institute of Nuclear Physics, Cracow (Poland); Hearn, W.E. [Lawrence Berkeley Lab., CA (United States); Heupke, W. [Frankfurt Univ. (Germany). Fachbereich 13 - Physik; Irmscher, D. [Lawrence Berkeley Lab., CA (United States); Jacobs, P. [Lawrence Berkeley Lab., CA (United States); Kleinfelder, S. [Lawrence Berkeley Lab., CA (United States); Lindenstruth, V. [Lawrence Berkeley Lab., CA (United States); Machowski, B. [Institute of Nuclear Physics, Cracow (Poland); Marks, K. [Lawrence Berkeley Lab., CA (United States); Milgrome, O. [Lawrence Berkeley Lab., CA (United States); Mock, A. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Noggle, T. [Lawrence Berkeley Lab., CA (United States); Pimpl, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Poskanzer, A.M. [Lawrence Berkeley Lab., CA (United States); Rauch, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Renfordt, R. [European Lab. for Particle Physics (CERN), Geneva (Switzerland)]|[Frankfurt Univ. (Germany). Fachbereich 13 -Physik; Ritter, H.G. [Lawrence Berkeley Lab., CA (United States)]|[European Lab. for Particle Physics (CERN), Geneva (Switzerland); Roehrich, D. [Frankfurt Univ. (Germany). Fachbereich 13 - Physik; Rudolph, H. [Lawrence Berkeley Lab., CA (United States); Rueschmann, G.W. [Frankfurt Univ. (Germany). Fachbereich 13 - Physik; Schaefer, E. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Seyboth, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Seyerlein, J.

    1997-02-01

    Highly integrated readout electronics were developed and produced for the 182000 channels of the four TPCs of the NA49 heavy-ion fixed target experiment at the CERN SPS. The large number of channels, the high packing density and required cost minimization led to the choice of a custom electronics system. The requirements, the design and the performance of the electronics components are described. (orig.).

  7. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    CERN Document Server

    Åkerstedt, Henrik; The ATLAS collaboration; Drake, Gary; Anderson, Kelby; Bohm, Christian; Oreglia, Mark; Tang, Fukun

    2015-01-01

    The Tile Calorimeter at ATLAS is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links, will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new read-out system will be installed in one slice of ...

  8. Performance and calibration of the CHORUS scintillating fiber tracker and opto-electronics readout system

    International Nuclear Information System (INIS)

    Annis, P.; Aoki, S.; Brunner, J.; De Jong, M.; Fabre, J.P.; Ferreira, R.; Flegel, W.; Frekers, D.; Gregoire, G.; Herin, J.; Kobayashi, M.; Konijn, J.; Lemaitre, V.; Macina, D.; Meijer Drees, R.; Meinhard, H.; Michel, L.; Mommaert, C.; Nakamura, K.; Nakamura, M.; Nakano, T.; Niwa, K.; Niu, E.; Panman, J.; Riccardi, F.; Rondeshagen, D.; Sato, O.; Stefanini, G.; Vander Donckt, M.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.T.

    1995-01-01

    An essential component of the CERN WA95/CHORUS experiment is a scintillating fiber tracker system for precise track reconstruction of particles. The tracker design, its opto-electronics readout and calibration system are discussed. Performances of the detector are presented. (orig.)

  9. Electronics development for the ATLAS liquid argon calorimeter trigger and readout for future LHC running

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Walter

    2017-02-11

    The upgrade of the LHC will provide 7 times greater instantaneous and 10 times greater total luminosities than assumed in the original design of the ATLAS Liquid Argon (LAr) Calorimeters. Radiation tolerance criteria and an improved trigger system with higher acceptance rate and longer latency require an upgrade of the LAr readout electronics. In the first upgrade phase in 2019–2020, a trigger readout with up to 10 times higher granularity will be implemented. This allows an improved reconstruction of electromagnetic and hadronic showers and will reduce the background for electron, photon and energy-flow signals at the first trigger level. The analog and digital signal processing components are currently in their final design stages and a fully functional demonstrator system is operated and tested on the LAr Calorimeters. In a second upgrade stage in 2024–2026, the readout of all 183,000 LAr Calorimeter cells will be performed without trigger selection at 40 MHz sampling rate and 16 bit dynamic range. Calibrated energies of all cells will be available at the second trigger level operating at 1 MHz, in order to allow further mitigation of pile-up effects in energy reconstruction. Radiation tolerant, low-power front-end electronics optimized for high pile-up conditions are currently being developed, including pre-amplifier, ADC and serializer components in 65–180 nm technology. This contribution will give an overview of the future LAr readout electronics and present research results from the two upgrade programs.

  10. A real-time data transmission method based on Linux for physical experimental readout systems

    International Nuclear Information System (INIS)

    Cao Ping; Song Kezhu; Yang Junfeng

    2012-01-01

    In a typical physical experimental instrument, such as a fusion or particle physical application, the readout system generally implements an interface between the data acquisition (DAQ) system and the front-end electronics (FEE). The key task of a readout system is to read, pack, and forward the data from the FEE to the back-end data concentration center in real time. To guarantee real-time performance, the VxWorks operating system (OS) is widely used in readout systems. However, VxWorks is not an open-source OS, which gives it has many disadvantages. With the development of multi-core processor and new scheduling algorithm, Linux OS exhibits performance in real-time applications similar to that of VxWorks. It has been successfully used even for some hard real-time systems. Discussions and evaluations of real-time Linux solutions for a possible replacement of VxWorks arise naturally. In this paper, a real-time transmission method based on Linux is introduced. To reduce the number of transfer cycles for large amounts of data, a large block of contiguous memory buffer for DMA transfer is allocated by modifying the Linux Kernel (version 2.6) source code slightly. To increase the throughput for network transmission, the user software is designed into formation of parallelism. To achieve high performance in real-time data transfer from hardware to software, mapping techniques must be used to avoid unnecessary data copying. A simplified readout system is implemented with 4 readout modules in a PXI crate. This system can support up to 48 MB/s data throughput from the front-end hardware to the back-end concentration center through a Gigabit Ethernet connection. There are no restrictions on the use of this method, hardware or software, which means that it can be easily migrated to other interrupt related applications.

  11. The TOTEM DAQ based on the Scalable Readout System (SRS)

    Science.gov (United States)

    Quinto, Michele; Cafagna, Francesco S.; Fiergolski, Adrian; Radicioni, Emilio

    2018-02-01

    The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC) experiment at LHC, has been designed to measure the total proton-proton cross-section and study the elastic and diffractive scattering at the LHC energies. In order to cope with the increased machine luminosity and the higher statistic required by the extension of the TOTEM physics program, approved for the LHC's Run Two phase, the previous VME based data acquisition system has been replaced with a new one based on the Scalable Readout System. The system features an aggregated data throughput of 2GB / s towards the online storage system. This makes it possible to sustain a maximum trigger rate of ˜ 24kHz, to be compared with the 1KHz rate of the previous system. The trigger rate is further improved by implementing zero-suppression and second-level hardware algorithms in the Scalable Readout System. The new system fulfils the requirements for an increased efficiency, providing higher bandwidth, and increasing the purity of the data recorded. Moreover full compatibility has been guaranteed with the legacy front-end hardware, as well as with the DAQ interface of the CMS experiment and with the LHC's Timing, Trigger and Control distribution system. In this contribution we describe in detail the architecture of full system and its performance measured during the commissioning phase at the LHC Interaction Point.

  12. Cost effective electronics for LAr and photo-detectors readout

    CERN Document Server

    Centro, Sandro

    2010-01-01

    The T600 ICARUS detector has a DAQ system that has proved a quite satisfactory performance in the test run performed in Pavia in summer 2001. The electronics has been described in various papers and technical notes. In this paper, starting from the experience gained in the T600 operation, we propose an upgraded DAQ scheme that implements the same basic architecture with more performing new components and different modularity in view a multi-kton TPC (e.g. MODULAr) with a number of channels in the order of ~n*105. Also the electronics for PMTs detecting scintillation light in Ar will be shortly presented.

  13. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Budden, B.S., E-mail: bbudden@lanl.gov [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stonehill, L.C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D.D.S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G. [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kamto, J. [Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Electrical & Computer Engineering Department, Praire View A& M University, Prairie View, TX 77446 (United States)

    2015-09-21

    A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.

  14. Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II

    Science.gov (United States)

    Nishida, S.; Adachi, I.; Ikeda, H.; Hara, K.; Iijima, T.; Iwata, S.; Korpar, S.; Križan, P.; Kuroda, E.; Pestotnik, R.; Seljak, A.; Sumiyoshi, T.; Takagaki, H.

    The particle identification (PID) device in the endcap of the Belle detector will be upgraded to a ring imaging Cherenkov counter (RICH) using aerogel as a radiator at the Belle II experiment. We develop the electronics to read out the 70,000 channels of hit information from the 144-channel hybrid avalanche photodetectors (HAPD), of the aerogel RICH detector. A readout ASIC is developed to digitize the HAPD signals, and was used in a beam test with the prototype detector. The performance and plan of the ASIC is reported in this study. We have also designed the readout electronics for the aerogel RICH, which consist of front-end boards with the ASICs merger boards to collect data from the front-end boards. A front-end board that fits in the actual available space for the aerogel RICH electronics was produced.

  15. FATALIC: a fully integrated electronics readout for the ATLAS tile calorimeter at the HL-LHC

    CERN Document Server

    Angelidakis, Stylianos; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration has started a vast program of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. The current readout electronics of every sub-detector, including the Tile Calorimeter (TileCal), must be upgraded to comply with the extreme HL-LHC operating conditions. The ASIC described in this document, named Front-end ATlAs tiLe Integrated Circuit (FATALIC), has been developed to fulfill these requirements. FATALIC is based on a $130\\,$nm CMOS technology and performs the complete processing of the signal, including amplification, shaping and digitization on a large dynamic range from $25\\,$fC to $1.2\\,$nC. The overall architecture of this current-reading ASIC is composed by current conveyors, shapers, 12-bits pipeline analog-to-digital converters operating at $40\\,$Mhz and a digital block dealing with the three gains implemented in this electronics. A dedicated channel for low current is also designed in order to be able to perform absolute calibration with radioactive cesium so...

  16. Beam test results for the upgraded LHCb RICH opto-electronic readout system

    CERN Multimedia

    Carniti, Paolo

    2016-01-01

    The LHCb experiment is devoted to high-precision measurements of CP violation and search for New Physics by studying the decays of beauty and charmed hadrons produced at the Large Hadron Collider (LHC). Two RICH detectors are currently installed and operating successfully, providing a crucial role in the particle identification system of the LHCb experiment. Starting from 2019, the LHCb experiment will be upgraded to operate at higher luminosity, extending its potential for discovery and study of new phenomena. Both the RICH detectors will be upgraded and the entire opto-electronic system has been redesigned in order to cope with the new specifications, namely higher readout rates, and increased occupancies. The new photodetectors, readout electronics, mechanical assembly and cooling system have reached the final phase of development and their performance was thoroughly and successfully validated during several beam test sessions in 2014 and 2015 at the SPS facility at CERN. Details of the test setup and perf...

  17. A Fastbus-based silicon strip readout system

    International Nuclear Information System (INIS)

    Neoustroev, P.; Stepanov, V.; Svoiski, M.; Uvarov, L.; Matthew, P.; Russ, J.; Cooper, P.

    1995-01-01

    The readout system we describe here is built specifically to work with the LBL-designed SVX chip. It is typical of systems using a master sequencer module to direct the trigger and readout cycles of the sparse data source and to push data into a digitization and storage module. (orig.)

  18. Development of new readout electronics for the ATLAS LAr calorimeter at the sLHC

    CERN Document Server

    Strässner, A

    2009-01-01

    The ATLAS Liquid Argon (LAr) calorimeter consists of 182,486 detector cells whose signals need to be read out, digitized and processed, in order to provide signal timing and the energy deposited in each detector element. The current readout electronics is not designed to sustain the ten times higher radiation levels expected at sLHC in the years beyond 2017, and will be replaced by new electronics with a completely different readout scheme. The future on-detector electronics is planned to send out all data continuously at each bunch crossing, as opposed to the current system which only transfers data at a trigger-accept signal. Multiple high-speed and radiation-resistant optical links will transmit 100 Gbps per front-end board, each covering 128 readout channels. The off-detector processing units will not only process the data in real-time and provide digital data buffering, but will also implement trigger algorithms. An overview about the various components necessary to develop such a complex system will be ...

  19. An FPGA-based Sampling-ADC readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Marciniewski, Pawel [Angstroemlaboratoriet, Uppsala (Sweden); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA (Bonn) investigates the photoproduction of mesons off protons and neutrons. The Crystal Barrel Calorimeter has been upgraded replacing its photodiode readout by APDs, which allows the integration of the calorimeter into the first level trigger. Since the possible DAQ rate is currently limited by the digitization stage (LeCroy QDC1885F) to ∼ 2 kHz, the implementation of a new Sampling-ADC (SADC) readout is the second important step in the upgrade of the detector system. Based on the 64-channel PANDA-SADC, the design was modified, adapting it to the needs of the CBELSA/TAPS experiment. The CB-SADC offers 64 channels in one NIM module with up to 14 bit rate at 125 MHz, accompanied by a modular analog input stage and power supply. Data processing and reduction are realized with Kintex7 FPGAs. Readout is possible via gigabit ethernet links. Using an FPGA provides a multitude of possibilities for online feature extraction, such as the determination of the energy deposited in the crystal, TDC capabilities and pile-up detection and recovery. The SADC development is discussed, and first measurements performed in comparison to the presently used LeCroy QDC are presented.

  20. Microcontroller based four-channel current readout unit for beam slit monitor

    International Nuclear Information System (INIS)

    Holikatti, A.C.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    This paper describes the design and development of a microcontroller based four-channel current readout unit for Beam Slit Monitor (BSM) installed in Transport Line-1 of Indus Accelerator Complex. BSM is a diagnostic device consisting of two horizontal and two vertical blades, which can be moved independently in to the beam pipe to cut the beam transversely. The readout unit employs switched integrators with reset, hold and select switches and timing and control unit. It integrates the current output of the four blades of BSM and produces an output corresponding to the beam charge intercepted by the blade. The integrator outputs are then multiplexed and digitized using 12-bit ADC. Acquired digital data from ADC is stored into on-chip RAM of the microcontroller. The readout sequence is synchronized with the Microtron beam-timing signal. The timing of integration, hold and reset cycles is controlled by the microcontroller. The unit is connected on a serial link to the host computer in main control room. This unit has been integrated with the BSM system and is being used to obtain the electron beam profile. (author)

  1. Beam test of a full-length prototype of the BESIII drift chamber with the readout electronics

    International Nuclear Information System (INIS)

    Qin, Z.H.; Chen, Y.B.; Sheng, H.Y.; Wu, L.H.; Liu, J.B.; Zhuang, B.A.; Jiang, X.S.; Zhao, Y.B.; Zhu, K.J.; Yan, Z.K.; Chen, C.; Xu, M.H.; Wang, L.; Ma, X.Y.; Tang, X.; Liu, R.G.; Jin, Y.; Zhu, Q.M.; Zhang, G.F.; Wu, Z.; Li, R.Y.; Zhao, P.P.; Dai, H.L.; Li, X.P.; Li, J.

    2007-01-01

    A full-length prototype of the BESIII drift chamber together with its readout electronics was built and a beam test was performed. Two different methods, namely 'single-threshold method' and 'double-threshold method' for timing measurement, were studied. Test results show that the BESIII drift chamber and its readout electronics can reach their design specifications. The 'double-threshold method' results in a better timing accuracy and noise suppression capabilities as compared with the 'single-threshold method'

  2. Electronics and readout of a large area silicon detector for LHC

    International Nuclear Information System (INIS)

    Borer, K.; Munday, D.J.; Parker, M.A.; Anghinolfi, F.; Aspell, P.; Campbell, M.; Chilingarov, A.; Jarron, P.; Heijne, E.H.M.; Santiard, J.C.; Scampoli, P.; Verweij, H.; Goessling, C.; Lisowski, B.; Reichold, A.; Spiwoks, R.; Tsesmelis, E.; Benslama, K.; Bonino, R.; Clark, A.G.; Couyoumtzelis, C.; Kambara, H.; Wu, X.; Fretwurst, E.; Lindstroem, G.; Schultz, T.; Bardos, R.A.; Gorfine, G.W.; Moorhead, G.F.; Taylor, G.N.; Tovey, S.N.; Bibby, J.H.; Hawkings, R.J.; Kundu, N.; Weidberg, A.; Campbell, D.; Murray, P.; Seller, P.; Teiger, J.

    1994-01-01

    The purpose of the RD2 project is to evaluate the feasibility of a silicon tracker and/or preshower detector for LHC. Irradiation studies with doses equivalent to those expected at LHC have been performed to determine the behavior of operational parameters such as leakage current, depletion voltage and charge collection during the life of the detector. The development of fast, dense, low power and low cost signal processing electronics is one of the major activities of the collaboration. We describe the first fully functional integrated analog memory chip with asynchronous read and write operations and level 1 trigger capture capabilities. A complete test beam system using this analog memory chip at 66 MHz has been successfully operated with RD2 prototype silicon detectors during various test runs. The flexibility of the electronics and readout have allowed us to easily interface our set-up to other data acquisition systems. Mechanical studies are in progress to design a silicon tracking detector with several million channels that may be operated at low (0-10 C) temperature, while maintaining the required geometrical precision. Prototype readout boards for such a detector are being developed and simulation studies are being performed to optimize the readout architecture. (orig.)

  3. Electronics Development for the ATLAS Liquid Argon Calorimeter Trigger and Readout for Future LHC Running

    CERN Document Server

    Pacheco Rodriguez, Laura; The ATLAS collaboration

    2016-01-01

    The upgrade of the LHC will provide up to 7.5 times greater instantaneous and total luminosities than assumed in the original design of the ATLAS Liquid Argon (LAr) Calorimeters. The radiation tolerance criteria and the improved trigger system with higher acceptance rate and longer latency require an upgrade of the LAr readout electronics. In the first upgrade phase in 2019-2020, a trigger-readout with up to 10 times higher granularity will be implemented. This allows an improved reconstruction of electromagnetic and hadronic showers and will reduce the background for electron, photon and energy-flow signals at the first trigger level. The analog and digital signal processing components are currently in their final design stages and a fully functional demonstrator system is operated and tested on the LAr Calorimeters. In a second upgrade stage in 2024-2026, the readout of all 183,000 LAr Calorimeter cells will be performed without trigger selection at 40 MHz sampling rate and 16 bit dynamic range. Calibrated ...

  4. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Guan, Liang; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 Front-End boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASICs and high-speed circuit board prototypes.

  5. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Antrim, Daniel Joseph; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small-strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 frontend boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASIC and board prototypes.

  6. FATALIC: a fully integrated electronics readout for the ATLAS tile calorimeter at the HL-LHC

    CERN Document Server

    Angelidakis, Stylianos; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration has started a vast program of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. The current readout electronics of every sub-detector, including the Tile Calorimeter (TileCal), must be upgraded to comply with the extreme HL-LHC operating conditions. The ASIC described in this document, named Front-end ATlAs tiLe Integrated Circuit (FATALIC), has been developed to fulfill these requirements. FATALIC is based on a $130\\,$nm CMOS technology and performs the complete processing of the signal, including amplification, shaping and digitization on a large dynamic range A dedicated channel for low current is also designed in order to perform absolute calibration with radioactive cesium source, producing a known but low signal with a typical frequency of $100\\,$Hz. In this document, the design of FATALIC is described and the measured performances as well as results of tests using beam of particles at CERN are discussed.

  7. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    International Nuclear Information System (INIS)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-01-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R and D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision

  8. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    Science.gov (United States)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-05-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision.

  9. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00567140; The ATLAS collaboration

    2017-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events even at rather low transverse energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of 1 MHz are planned, combined with longer latencies up to 60 micro-seconds in order to read out the necessary data from all detector channels. Under these conditions, the current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons a replacement of the LAr front-end and back-end readout system is foreseen for all 182,500 readout channels, with the exception of t...

  10. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00069444; The ATLAS collaboration

    2017-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile- up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events at electroweak energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of up to 1 MHz are planned, combined with longer latencies up to 40 micro-seconds in order to read out the necessary data from all detector channels. The current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. For these reasons a replacement of the LAr front-end and off-detector readout systems is foreseen for all 182,500 readout channels, with the exception of the cold pre-amplifier and summing devices of the hadronic LAr Calorimeter. The new low-power electronics must be able to capture the triangular dete...

  11. Optimization of the ATLAS (s)MDT readout electronics for high counting rates

    Energy Technology Data Exchange (ETDEWEB)

    Kortner, Oliver; Kroha, Hubert; Nowak, Sebastian; Schmidt-Sommerfeld, Korbinian [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)

    2016-07-01

    In the ATLAS muon spectrometer, Monitored Drift Tube (MDT) chambers are used for precise muon track measurement. For the high background rates expected at HL-LHC, which are mainly due to neutrons and photons produced by interactions of the proton collision products in the detector and shielding, new small-diameter muon drift tube (sMDT)-chambers with half the drift tube diameter of the MDT-chambers and ten times higher rate capability have been developed. The standard MDT readout electronics uses bipolar shaping in front of a discriminator. This shaping leads to an undershoot of same charge but opposite polarity following each pulse. With count rates also the probability of having the subsequent pulse in this undershoot increases, which leads to losses in efficiency and spatial resolution. In order to decrease this effect, discrete prototype electronics including Baseline Restoration has been developed. Results of their tests and data taken with them during muon beamtime measurements at CERN's Gamma Irradiation Facility will be presented. which causes a deterioration of signal pulses by preceding background hits, leading to losses in muon efficiency and drift tube spatial resolution. In order to mitigate these so-called signal pile-up effects, new readout electronics with active baseline restoration (BLR) is under development. Discrete prototype electronics with BLR functionality has been tested in laboratory measurements and in the Gamma Irradiation Facility at CERN under high γ-irradiation rates. Results of the measurements are presented.

  12. Yarr: A PCIe based readout system for semiconductor tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Heim, Timon [Bergische Universitaet Wuppertal, Wuppertal (Germany); CERN, Geneva (Switzerland); Maettig, Peter [Bergische Universitaet Wuppertal, Wuppertal (Germany); Pernegger, Heinz [CERN, Geneva (Switzerland)

    2015-07-01

    The Yarr readout system is a novel DAQ concept, using an FPGA board connected via PCIe to a computer, to read out semiconductor tracking systems. The system uses the FPGA as a reconfigurable IO interface which, in conjunction with the very high speed of the PCIe bus, enables a focus of processing the data stream coming from the pixel detector in software. Modern computer system could potentially make the need of custom signal processing hardware in readout systems obsolete and the Yarr readout system showcases this for FE-I4 chips, which are state-of-the-art readout chips used in the ATLAS Pixel Insertable B-Layer and developed for tracking in high multiplicity environments. The underlying concept of the Yarr readout system tries to move intelligence from hardware into the software without the loss of performance, which is made possible by modern multi-core processors. The FPGA board firmware acts like a buffer and does no further processing of the data stream, enabling rapid integration of new hardware due to minimal firmware minimisation.

  13. The Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Ochoa, Ines; The ATLAS collaboration

    2017-01-01

    Electronics developments are pursued for the trigger readout of the ATLAS Liquid-Argon Calorimeter towards the Phase-I upgrade scheduled in the LHC shut-down period of 2019-2020. The LAr Trigger Digitizer system will digitize 34000 channels at a 40 MHz sampling with 12 bit precision after the bipolar shaper at the front-end system, and transmit to the LAr Digital Processing system in the back-end to extract the transverse energies. Results of ASIC developments including QA and radiation hardness evaluations, and performances on prototypes will presented with the overall system design.

  14. Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00452211; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the Long Shut-down period of 2019-2020 (LS2), referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sucient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modi ed to use digital trigger signals with a higher spatial granularity in order to improve the identi cation effciencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger.

  15. The Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Enari, Yuji; The ATLAS collaboration

    2018-01-01

    Electronics developments are pursued for the trigger readout of the ATLAS Liquid-Argon Calorimeter towards the Phase-I upgrade scheduled in the LHC shut-down period of 2019-2020. The LAr Trigger Digitizer system will digitize 34000 channels at a 40 MHz sampling with 12 bit precision after the bipolar shaper at the front-end system, and transmit to the LAr Digital Processing system in the back-end to extract the transverse energies. Results of ASIC developments including QA and radiation hardness evaluations, performances of the final prototypes and results of the system integration tests will presented along with the overall system design.

  16. FILTRES: a 128 channels VLSI mixed front-end readout electronic development for microstrip detectors

    International Nuclear Information System (INIS)

    Anstotz, F.; Hu, Y.; Michel, J.; Sohler, J.L.; Lachartre, D.

    1998-01-01

    We present a VLSI digital-analog readout electronic chain for silicon microstrip detectors. The characteristics of this circuit have been optimized for the high resolution tracker of the CERN CMS experiment. This chip consists of 128 channels at 50 μm pitch. Each channel is composed by a charge amplifier, a CR-RC shaper, an analog memory, an analog processor, an output FIFO read out serially by a multiplexer. This chip has been processed in the radiation hard technology DMILL. This paper describes the architecture of the circuit and presents test results of the 128 channel full chain chip. (orig.)

  17. Development of new readout electronics for the ATLAS LAr Calorimeter at the sLHC

    CERN Document Server

    Strässner, A

    2009-01-01

    The readout of the ATLAS Liquid Argon (LAr) calorimeter is a complex multi-channel system to amplify, shape, digitize and process signals of the detector cells. The current on-detector electronics is not designed to sustain the ten times higher radiation levels expected at sLHC in the years beyond 2019/2020, and will be replaced by new electronics with a completely different readout scheme. The future on-detector electronics is planned to send out all data continuously at each bunch crossing, as opposed to the current system which only transfers data at a trigger-accept signal. Multiple high-speed and radiation-resistant optical links will transmit 100 Gb/s per front-end board. The off-detector processing units will not only process the data in real-time and provide digital data buffering, but will also implement trigger algorithms. An overview about the various components necessary to develop such a complex system is given. The current R&D activities and architectural studies of the LAr Calorimeter group...

  18. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Menke, Sven; The ATLAS collaboration

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests where performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of...

  19. Proton and Neutron Irradiation Tests of Readout Electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    INSPIRE-00106910

    2012-01-01

    The readout electronics of the ATLAS Hadronic Endcap Calorimeter will have to withstand the about ten times larger radiation environment of the future high-luminosity LHC (HL-LHC) compared to their design values. The GaAs ASIC which comprises the heart of the readout electronics has been exposed to neutron and proton radiation with fluences up to ten times the total expected fluences for ten years of running of the HL-LHC. Neutron tests were performed at the NPI in Rez, Czech Republic, where a 36 MeV proton beam is directed on a thick heavy water target to produce neutrons. The proton irradiation was done with 200 MeV protons at the PROSCAN area of the Proton Irradiation Facility at the PSI in Villigen, Switzerland. In-situ measurements of S-parameters in both tests allow the evaluation of frequency dependent performance parameters - like gain and input impedance - as a function of the fluence. The linearity of the ASIC response has been measured directly in the neutron tests with a triangular input pulse of ...

  20. Test of New Readout Electronics for the BONuS12 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Mathieu [Inst. de Physique Nucleaire (IPN), Orsay (France)

    2017-07-01

    For decades, electron-proton scattering experiments have been providing a large amount of data on the proton structure function. However, because of the instability of free neutrons, fewer experiments have been able to study the neutron structure function. The BONuS collaboration at Jefferson Laboratory addresses this challenge by scattering electrons off a deuterium target, using a RTPC capable of detecting the low-momentum spectator protons near the target. Events of electrons scattering on almost free neutrons are selected by constraining the spectator protons to very low momenta and very backward scattering angles. In 2005, BONuS successfully measured the neutron structure with scattering electrons of up to 5.3 GeV energy. An extension of this measurement has been approved using the newly upgraded 12 GeV electron beam and CLAS12 (CEBAF Large Acceptance Spectrometer). For this new set of measurements, a new RTPC detector using GEM trackers is being developed to allow measurements of spectator protons with momenta as low as 70 MeV/c. The new RTPC will use a new readout electronic system, which is also used by other trackers in CLAS12. This thesis will present the first tests of this electronics using a previously built RTPC of similar design.

  1. Soft X-ray imaging with axisymmetry microscope and electronic readout

    International Nuclear Information System (INIS)

    Sauneuf, A.; Cavailler, C.; Henry, Ph.; Launspach, J.; Mascureau, J. de; Rostaing, M.

    1984-11-01

    An axisymmetric microscope with 10 X magnification has been constructed; its resolution has been measured using severals grids, backlighted by an X-ray source and found to be near 25 μm. So it could be used to make images of laser driven plasmas in the soft X-ray region. In order to see rapidly those images we have associated it with a new detector. It is a small image converter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a CCD working in the spectral range. An electronic image readout chain, which is identical to those we use with streak cameras, then processes automatically and immediatly the images given by the microscope

  2. Test Beam Studies for the ATLAS Tile Calorimeter Upgrade Readout Electronics

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2018-01-01

    The High Luminosity Large Hadron Collider is expected to deliver 3-4/ab of p-p collisions with around 200 collisions per proton bunch crossing starting in 2026, and the readout electronics of the ATLAS Tile Calorimeter need to be upgraded to deal with the high rate of data taking as well as the large pileup conditions. The proposed digitizer/shaper cards were tested in 2016-7 in the North Area at CERN using the beam from the SPS to produce high energy pions, electrons, muons, and kaons. This presentation summarizes the setup for particle identification and study of the ATLAS Tile Calorimeter data taking in preparation for the production of main boards and digitizer/shaper boards for the photo-multiplier tubes. The fully assembled and tested mini-drawers will start to be installed after the LHC long shutdown in December 2023. The pulse shape, uniformity, and timing precision of the upgrade system are demonstrated.

  3. Diode readout electronics for beam intensity and position monitors for FELs

    International Nuclear Information System (INIS)

    Herrmann, S; Hart, P; Freytag, M; Pines, J; Weaver, M; Sapozhnikov, L; Nelson, S; Koglin, J; Carini, G A; Tomada, A; Haller, G

    2014-01-01

    LCLS uses Intensity-Position Monitors (IPM) to measure intensity and position of the FEL x-ray pulses. The primary beam passes through a silicon nitride film and four diodes, arranged in quadrants, detect the backscattered x-ray photons. The position is derived from the relative intensity of the four diodes, while the sum provides beam intensity information. In contrast to traditional synchrotron beam monitors, where diodes measure a DC current signal, the LCLS beam monitors have to cope with the pulsed nature of the FEL, which requires a large single shot dynamic range. A key component of these beam monitors is the readout electronics. The first generation of beam monitors showed some limitations. A new scheme with upgraded electronics, firmware and software was implemented resulting in a more robust and reliable measuring tool.

  4. An optical fiber-based flexible readout system for micro-pattern gas detectors

    Science.gov (United States)

    Li, C.; Feng, C. Q.; Zhu, D. Y.; Liu, S. B.; An, Q.

    2018-04-01

    This paper presents an optical fiber-based readout system that is intended to provide a general purpose multi-channel readout solution for various Micro-Pattern Gas Detectors (MPGDs). The proposed readout system is composed of several front-end cards (FECs) and a data collection module (DCM). The FEC exploits the capability of an existing 64-channel generic TPC readout ASIC chip, named AGET, to implement 256 channels readout. AGET offers FEC a large flexibility in gain range (4 options from 120 fC to 10 pC), peaking time (16 options from 50 ns to 1 us) and sampling freqency (100 MHz max.). The DCM contains multiple 1 Gbps optical fiber serial link interfaces that allow the system scaling up to 1536 channels with 6 FECs and 1 DCM. Further scaling up is possible through cascading of multiple DCMs, by configuring one DCM as a master while other DCMs in slave mode. This design offers a rapid readout solution for different application senario. Tests indicate that the nonlinearity of each channel is less than 1%, and the equivalent input noise charge is typically around 0.7 fC in RMS (root mean square), with a noise slope of about 0.01 fC/pF. The system level trigger rate limit is about 700 Hz in all channel readout mode. When in hit channel readout mode, supposing that typically 10 percent of channels are fired, trigger rate can go up to about 7 kHz. This system has been tested with Micromegas detector and GEM detector, confirming its capability in MPGD readout. Details of hardware and FPGA firmware design, as well as system performances, are described in the paper.

  5. Central FPGA-based Destination and Load Control in the LHCb MHz Event Readout

    CERN Document Server

    Jacobsson, Richard

    2012-01-01

    The readout strategy of the LHCb experiment [1] is based on complete event readout at 1 MHz [2]. Over 300 sub-detector readout boards transmit event fragments at 1 MHz over a commercial 70 Gigabyte/s switching network to a distributed event building and trigger processing farm with 1470 individual multi-core computer nodes [3]. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a powerful non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. A high-speed FPGA-based central master module controls the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load balancing and trigger rate regulation as a function of the global farm load. It also ...

  6. Phase - I Trigger Readout Electronics upgrade for the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Dinkespiler, Bernard; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for shut-down period of 2018-2019, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to use digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be tr...

  7. Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Camplani, Alessandra; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for shut-down period of 2018-2019, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to use digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be tr...

  8. Trigger and readout electronics for the Phase-I upgrade of the ATLAS forward muon spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas and small strip Thin Gap Chambers conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger and tracking...

  9. Trigger and Readout Electronics for the Phase-I Upgrade of the ATLAS Forward Muon Spectrometer

    CERN Document Server

    Moschovakos, Paris; The ATLAS collaboration

    2017-01-01

    The upgrades of the LHC accelerator and the experiments in 2019/20 and 2023/24 will increase the instantaneous and integrated luminosity, but also will drastically increase the data and trigger rates. To cope with the huge data flow while maintaining high muon detection efficiency and reducing fake muons found at Level-1, the present ATLAS small wheel muon detector will be replaced with a New Small Wheel (NSW) detector for high luminosity LHC runs. The NSW will feature two new detector technologies: resistive micromegas (MM) and small strip Thin Gap Chambers (sTGC) conforming a system of ~2.4 million readout channels. Both detector technologies will provide trigger and tracking primitives. A common readout path and a separate trigger path are developed for each detector technology. The electronics design of such a system will be implemented in about 8000 front-end boards, including the design of a number of custom radiation tolerant Application Specific Integrated Circuits (ASICs), capable of driving trigger ...

  10. Feasibility studies on the direct wire readout on wire scanners in electron accelerators

    International Nuclear Information System (INIS)

    Markert, Michael

    2010-10-01

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  11. Common Bias Readout for TES Array on Scanning Transmission Electron Microscope

    Science.gov (United States)

    Yamamoto, R.; Sakai, K.; Maehisa, K.; Nagayoshi, K.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Hidaka, M.; Nagasawa, S.; Maehata, K.; Hara, T.

    2016-07-01

    A transition edge sensor (TES) microcalorimeter array as an X-ray sensor for a scanning transmission electron microscope system is being developed. The technical challenge of this system is a high count rate of ˜ 5000 counts/second/array. We adopted a 64 pixel array with a parallel readout. Common SQUID bias, and common TES bias are planned to reduce the number of wires and the resources of a room temperature circuit. The reduction rate of wires is 44 % when a 64 pixel array is read out by a common bias of 8 channels. The possible degradation of the energy resolution has been investigated by simulations and experiments. The bias fluctuation effects of a series connection are less than those of a parallel connection. Simple calculations expect that the fluctuations of the common SQUID bias and common TES bias in a series connection are 10^{-7} and 10^{-3}, respectively. We constructed 8 SQUIDs which are connected to 8 TES outputs and a room temperature circuit for common bias readout and evaluated experimentally. Our simulation of crosstalk indicates that at an X-ray event rate of 500 cps/pixel, crosstalk will broaden a monochromatic line by about 0.01 %, or about 1.5 eV at 15 keV. Thus, our design goal of 10 eV energy resolution across the 0.5-15 keV band should be achievable.

  12. Towards new analog read-out electronics for the HADES drift chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Wiebusch, Michael [Goethe-Universitaet, Frankfurt (Germany); Collaboration: HADES-Collaboration

    2016-07-01

    Track reconstruction in HADES is realized with 24 planar, low-mass drift chambers (MDC). About 27000 drift cells provide precise spatial information of track hit points together with energy loss information, serving for particle ID. In order to handle high rates and track densities required at the future SIS100 accelerator at FAIR, an upgrade of the MDC system is necessary, i.e. by receiving additional redundant layers of drift cells in front of the magnet. This involves new front-end electronics, as the original analog read-out ASIC (ASD8) is no longer in stock and cannot be produced due to its legacy silicon process. Employing new FEE would allow to further increase the sensitivity, e.g. providing additional valuable information for the analysis. This contribution presents a market analysis of alternative state-of-the-art technologies for the analog read-out of drift chambers. Test procedures to evaluate the suitability for the HADES MDCs are discussed and preliminary results are shown. Emphasis is put on the benefits and possible implementations of using two separate analog channels for reading out a sense wire, i.e. a fast amplifier with a discriminator for recording the arrival time of the signal pulse and a slow integrating amplifier with a time-over-threshold discriminator to measure the total charge of the pulse.

  13. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase~0 occurs during 2013-2014, Phase~1 during 2018-1019 and finally Phase~2, which is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 10$^{34}$ cm$^2$s$^{-1}$ (HL-LHC). The main TileCal upgrade is focused on the Phase~2 period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased radiation levels. An ambitious upgrade development program is pursued to study different electronics options. Three options are presently being investigated for the front-end electronic upgrade. The first option is an improved version of the present system built using comm...

  14. Operation of a Fast-RICH Prototype with VLSI readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Guyonnet, J.L. (CRN, IN2P3-CNRS / Louis Pasteur Univ., Strasbourg (France)); Arnold, R. (CRN, IN2P3-CNRS / Louis Pasteur Univ., Strasbourg (France)); Jobez, J.P. (Coll. de France, 75 - Paris (France)); Seguinot, J. (Coll. de France, 75 - Paris (France)); Ypsilantis, T. (Coll. de France, 75 - Paris (France)); Chesi, E. (CERN / ECP Div., Geneve (Switzerland)); Racz, A. (CERN / ECP Div., Geneve (Switzerland)); Egger, J. (Paul Scherrer Inst., Villigen (Switzerland)); Gabathuler, K. (Paul Scherrer Inst., Villigen (Switzerland)); Joram, C. (Karlsruhe Univ. (Germany)); Adachi, I. (KEK, Tsukuba (Japan)); Enomoto, R. (KEK, Tsukuba (Japan)); Sumiyoshi, T. (KEK, Tsukuba (Japan))

    1994-04-01

    We discuss the first test results, obtained with cosmic rays, of a full-scale Fast-RICH Prototype with proximity-focused 10 mm thick LiF (CaF[sub 2]) solid radiators, TEA as photosensor in CH[sub 4], and readout of 12 x 10[sup 3] cathode pads (5.334 x 6.604 mm[sup 2]) using dedicated VLSI electronics we have developed. The number of detected photoelectrons is 7.7 (6.9) for the CaF[sub 2] (LiF) radiator, very near to the expected values 6.4 (7.5) from Monte Carlo simulations. The single-photon Cherenkov angle resolution [sigma][sub [theta

  15. Front-end electronics for the readout of CdZnTe sensors

    CERN Document Server

    Moraes, D; Rudge, A

    2006-01-01

    The CERN_DxCTA is a front-end ASIC optimized for the readout of CdZn Te sensors. The chip is implemented in 0.25 mum CMOS technology. The circuit consists of 128 channels equipped with a transimpedance amplifier followed by a gain-shaper stage with 20 ns peaking time and two discriminators, allowing two threshold settings. Each discriminator includes a 5-bit trim DAC and is followed by an 18-bit static ripple-counter. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. Complete evaluation of the circuit is presented using electronic pulses and Cd ZnTe pixel detectors.

  16. Readout electronics for the SiPM tracking plane in the NEXT-1 prototype

    International Nuclear Information System (INIS)

    Herrero, V.; Toledo, J.; Català, J.M.; Esteve, R.; Gil, A.; Lorca, D.; Monzó, J.M.; Sanchis, F.; Verdugo, A.

    2012-01-01

    NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.

  17. Readout electronics for the SiPM tracking plane in the NEXT-1 prototype

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V. [Instituto de Instrumentacion para Imagen Molecular I3M (Centro mixto CSIC-Universitat Politecnica de Valencia-CIEMAT), 46022 Valencia (Spain); Toledo, J., E-mail: jtoledo@eln.upv.es [Instituto de Instrumentacion para Imagen Molecular I3M (Centro mixto CSIC-Universitat Politecnica de Valencia-CIEMAT), 46022 Valencia (Spain); Catala, J.M.; Esteve, R. [Instituto de Instrumentacion para Imagen Molecular I3M (Centro mixto CSIC-Universitat Politecnica de Valencia-CIEMAT), 46022 Valencia (Spain); Gil, A.; Lorca, D. [Instituto de Fisica Corpuscular (CSIC-Universidad de Valencia), 46980 Valencia (Spain); Monzo, J.M.; Sanchis, F. [Instituto de Instrumentacion para Imagen Molecular I3M (Centro mixto CSIC-Universitat Politecnica de Valencia-CIEMAT), 46022 Valencia (Spain); Verdugo, A. [CIEMAT-Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain)

    2012-12-11

    NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.

  18. Development of silicon pad detectors and readout electronics for a Compton camera

    CERN Document Server

    Studen, A; Clinthorne, N H; Czermak, A; Dulinski, W; Fuster, J A; Han, L; Jalocha, P; Kowal, M; Kragh, T; Lacasta, C; Llosa, G; Meier, D; Mikuz, M; Nygård, E; Park, S J; Roe, S; Rogers, W L; Sowicki, B; Weilhammer, P; Wilderman, S J; Yoshioka, K; Zhang, L

    2003-01-01

    Applications in nuclear medicine and bio-medical engineering may profit using a Compton camera for imaging distributions of radio-isotope labelled tracers in organs and tissues. These applications require detection of photons using thick position-sensitive silicon sensors with the highest possible energy and good spatial resolution. In this paper, research and development on silicon pad sensors and associated readout electronics for a Compton camera are presented. First results with low-noise, self-triggering VATAGP ASIC's are reported. The measured energy resolution was 1.1 keV FWHM at room temperature for the sup 2 sup 4 sup 1 Am photo-peak at 59.5 keV.

  19. Frequency multiplexing for readout of spin qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, J. M.; Colless, J. I.; Mahoney, A. C.; Croot, X. G.; Blanvillain, S.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-03-10

    We demonstrate a low loss, chip-level frequency multiplexing scheme for readout of scaled-up spin qubit devices. By integrating separate bias tees and resonator circuits on-chip for each readout channel, we realise dispersive gate-sensing in combination with charge detection based on two radio frequency quantum point contacts. We apply this approach to perform multiplexed readout of a double quantum dot in the few-electron regime and further demonstrate operation of a 10-channel multiplexing device. Limitations for scaling spin qubit readout to large numbers of multiplexed channels are discussed.

  20. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    CERN Document Server

    Chen, H; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is one of the two general-purpose detectors designed to study proton-proton collisions (14 TeV in the center of mass) produced at the Large Hadron Collider (LHC) and to explore the full physics potential of the LHC machine at CERN. The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS (and its LAr Calorimeters) has been operating and collecting p-p collisions at LHC since 2009. The on-detector electronics (front-end) part of the current readout electronics of the calorimeters measures the ionization current signals by means of preamplifiers, shapers and digitizers and then transfers the data to the off-detector electronics (back-end) for further elaboration, via optical links. Only the data selected by the level-1 calorimeter trigger system are transferred, achieving a bandwidth reduction to 1.6 Gbps. The analog trigger sum sig...

  1. Electronic readout of a single nuclear spin using a molecular spin transistor

    Science.gov (United States)

    Vincent, R.; Klyastskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2012-02-01

    Quantum control of individual spins in condensed matter devices is an emerging field with a wide range of applications ranging from nanospintronics to quantum computing [1,2]. The electron, with its spin and orbital degrees of freedom, is conventionally used as carrier of the quantum information in the devices proposed so far. However, electrons exhibit a strong coupling to the environment leading to reduced relaxation and coherence times. Indeed quantum coherence and stable entanglement of electron spins are extremely difficult to achieve. We propose a new approach using the nuclear spin of an individual metal atom embedded in a single-molecule magnet (SMM). In order to perform the readout of the nuclear spin, the quantum tunneling of the magnetization (QTM) of the magnetic moment of the SMM in a transitor-like set-up is electronically detected. Long spin lifetimes of an individual nuclear spin were observed and the relaxation characteristics were studied. The manipulation of the nuclear spin state of individual atoms embedded in magnetic molecules opens a completely new world, where quantum logic may be integrated.[4pt] [1] L. Bogani, W. Wernsdorfer, Nature Mat. 7, 179 (2008).[0pt] [2] M. Urdampilleta, S. Klyatskaya, J.P. Cleuziou, M. Ruben, W. Wernsdorfer, Nature Mat. 10, 502 (2011).

  2. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Shoji Kawahito

    2016-11-01

    Full Text Available This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs. This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC. The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median: 0.29 e−rms when compared with the CMS gain of two (2.4 e−rms, or 16 (1.1 e−rms.

  3. Dose intercomparison for 400–500 keV electrons using FWT-60 film and glutamine (spectrophotometric readout) dosimeters

    DEFF Research Database (Denmark)

    Gupta, B. L.; Nilekani, S. R.; Gehringer, P.

    1986-01-01

    This paper describes the dose and the depth dose measurements with FWT-60 film and glutamine (Spectrophotometric readout) dosimeters for 400–500 keV electrons. The glutamine powder was spread uniformly in polyethylene bags and the powder thickness in each bag was 5 mg cm−2. Both techniques show...

  4. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase 0 occurs during 2013-2014 and prepares the LHC to reach peak luminosities of 1034 cm2s-1; Phase 1, foreseen for 2018-1019, prepares the LHC for peak luminosity up to 2-3 x 1034 cm2s-1, corresponding to 55 to 80 interactions per bunch-crossing with 25 ns bunch interval; and Phase 2 is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 1034 cm2s-1 (HL-LHC). With luminosity leveling, the average luminosity will increase with a factor 10. The main TileCal upgrade is focused on the HL-LHC period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased rad...

  5. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Dulucq, Frédéric; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2009-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  6. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2007-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  7. Development of telescope readout system based on FELIX for testbeam experiments

    CERN Document Server

    Wu, Weihao; Chen, Hucheng; Chen, Kai; Lacobucci, Giuseppe; Lanni, Francessco; Liu, Hongbin; Barrero Pinto, Mateus Vicente; Xu, Lailin

    2017-01-01

    The High Voltage CMOS (HV-CMOS) sensors are extensively investigated by the ATLAS collaboration in the High-Luminosity LHC (HL-LHC) upgrade of the Inner Tracker (ITk) detector. A testbeam telescope, based on the ATLAS IBL (Insertable B-Layer) silicon pixel modules, has been built to characterize the HV-CMOS sensor prototypes. The Front-End LInk eXchange (FELIX) system is a new approach to function as the gateway between front-ends and the commodity switched network in the different detectors of the ATLAS upgrade. A FELIX based readout system has been developed for the readout of the testbeam telescope, which includes a Telescope Readout FMC Card as interface between the IBL DC (double-chip) modules and a Xilinx ZC706 evaluation board. The test results show that the FELIX based telescope readout system is capable of sensor calibration and readout of a high-density pixel detector in test beam experiments in an effective way.

  8. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    Science.gov (United States)

    Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  9. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    International Nuclear Information System (INIS)

    Bechstein, S; Petsche, F; Scheiner, M; Drung, D; Thiel, F; Schnabel, A; Schurig, Th

    2006-01-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-T c dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm x 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm x 4 cm x 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented

  10. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Bechstein, S [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Petsche, F [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Scheiner, M [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Drung, D [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Thiel, F [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Schnabel, A [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Schurig, Th [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/{radical}Hz was specially designed for a 304-channel low-T{sub c} dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm x 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm x 4 cm x 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  11. Use of an axisymmetric microscope with electronic readout for collecting soft X-ray images

    International Nuclear Information System (INIS)

    Cavailler, C.; Henry, P.; Launspach, J.; De Mascureau, J.; Millerioux, M.; Rostaing, M.; Sauneuf, R.

    1984-08-01

    The axisymmetric microscope, first discussed by Wolter, provides high resolution and sensitivity for investigating the soft X-ray emission of laser-driven plasmas. Such a device having a 10 X magnification has been constructed. We present a comparison between the images of laser-driven plasmas given by this microscope and by a 10 X pinhole camera. Until now these images were recorded on X-ray film. We have shown that film could be replaced by C.C.D. in a pinhole camera when the photon energy lies within the 1-10 keV range. Below 1 keV the quantum yield is too low so we have used an image converter tube made by RTC. It is a diode-inverter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a C.C.D. working in the visible spectral fields. An electronic image readout chain, which is identical to those associated with streak cameras, then processes automatically and immediately the images given by the microscope [fr

  12. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  13. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  14. Optimizing read-out of the NECTAr front-end electronics

    Science.gov (United States)

    Vorobiov, S.; Feinstein, F.; Bolmont, J.; Corona, P.; Delagnes, E.; Falvard, A.; Gascón, D.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribo, M.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.

    2012-12-01

    We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.

  15. Optimizing read-out of the NECTAr front-end electronics

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.fr [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Falvard, A. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Ribo, M.; Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France)

    2012-12-11

    We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.

  16. Optimizing read-out of the NECTAr front-end electronics

    International Nuclear Information System (INIS)

    Vorobiov, S.; Feinstein, F.; Bolmont, J.; Corona, P.; Delagnes, E.; Falvard, A.; Gascón, D.; Glicenstein, J.-F.; Naumann, C.L.; Nayman, P.; Ribo, M.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.

    2012-01-01

    We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.

  17. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    International Nuclear Information System (INIS)

    Hollander, R.W.; Bom, V.R.; Van Eijk, C.W.E.; Faber, J.S.; Hoevers, H.; Kruit, P.

    1994-01-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the ''true'' to ''accidental'' ratio will be 5. The dead time is 15%. ((orig.))

  18. On Certain New Methodology for Reducing Sensor and Readout Electronics Circuitry Noise in Digital Domain

    Science.gov (United States)

    Kizhner, Semion; Miko, Joseph; Bradley, Damon; Heinzen, Katherine

    2008-01-01

    NASA Hubble Space Telescope (HST) and upcoming cosmology science missions carry instruments with multiple focal planes populated with many large sensor detector arrays. These sensors are passively cooled to low temperatures for low-level light (L3) and near-infrared (NIR) signal detection, and the sensor readout electronics circuitry must perform at extremely low noise levels to enable new required science measurements. Because we are at the technological edge of enhanced performance for sensors and readout electronics circuitry, as determined by thermal noise level at given temperature in analog domain, we must find new ways of further compensating for the noise in the signal digital domain. To facilitate this new approach, state-of-the-art sensors are augmented at their array hardware boundaries by non-illuminated reference pixels, which can be used to reduce noise attributed to sensors. There are a few proposed methodologies of processing in the digital domain the information carried by reference pixels, as employed by the Hubble Space Telescope and the James Webb Space Telescope Projects. These methods involve using spatial and temporal statistical parameters derived from boundary reference pixel information to enhance the active (non-reference) pixel signals. To make a step beyond this heritage methodology, we apply the NASA-developed technology known as the Hilbert- Huang Transform Data Processing System (HHT-DPS) for reference pixel information processing and its utilization in reconfigurable hardware on-board a spaceflight instrument or post-processing on the ground. The methodology examines signal processing for a 2-D domain, in which high-variance components of the thermal noise are carried by both active and reference pixels, similar to that in processing of low-voltage differential signals and subtraction of a single analog reference pixel from all active pixels on the sensor. Heritage methods using the aforementioned statistical parameters in the

  19. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  20. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Zhu, Junjie; The ATLAS collaboration

    2017-01-01

    The planned Phase-I and Phase-II upgrades of the LHC accelerator drastically impacts the ATLAS trigger and trigger rates. A replacement of the ATLAS innermost endcap muon station with a new small wheel (NSW) detector is planned for the second long shutdown period of 2019 - 2020. This upgrade will allow us to maintain a low pT threshold for single muon and excellent tracking capability even after the High-Luminosity LHC upgrade. The NSW detector will feature two new detector technologies, Resistive Micromegas and small-strip Thin Gap Chambers. Both detector technologies will provide trigger and tracking primitives. The total number of trigger and readout channels is about 2.4 millions, and the overall power consumption is expected to be about 75 kW. The electronics design will be implemented in some 8000 front-end boards including the design of four custom front-end ASICs capable to drive trigger and tracking primitives with high speed sterilizers to drive trigger candidates to the backend trigger processor sy...

  1. The Trigger Readout Electronics for the Phase-1 Upgrade of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Wolff, Robert; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider, scheduled for 2019-2020, will increase the instantaneous luminosity by more than three, hence the ATLAS trigger rates. To cope with this increase, the trigger signals from the ATLAS Liquid Argon Calorimeter will be rearranged in 34000 so-called super cells to get a 5 to 10 times finer granularity. This will improve the background rejection performance through more precise energy measurements and the use of shower shape information to discriminate electrons, photons and hadronically decaying tau leptons from jets. The new system will process the super cell signal at 40 MHz and with 12 bit precision. The data will be transmitted at 5.12 Gb/s to the back-end system using a custom serializer and optical transmitter. To verify full functionality, a demonstrator set- up has been installed on the ATLAS detector and operated during the LHC Run 2. This document gives a status on hardware developments towards the final design readout system, including the performance of the new...

  2. Study of fast operating readout electronics and charge interpolation technique for micro cathode strip chambers (MCSC)

    CERN Document Server

    Kashchuk, A; Sagidova, Nailia

    1998-01-01

    Study of the factors limiting the spatial resolution of the MCSC caused by nonlinearity of the cathode-charge interpolation technique has been carried out using a special test arrangement that imitates the charge distribution on the cathode strips as a real MCSC and allows high precision comparison of the coordinates determined by the charge interpolation technique with the known values. We considered a MCSC with a 0.6 mm gap between the anode and the cathode strip planes and with the strip pitch of 0.9 mm. Various charge interpolation algorithms have been tested. It was demonstrated that the systematics errors in the coordinate measurements as low as 5 microns can be achieved, after applying some simple corrections, even with rather coarse sampling, when the coordinates is determined only by 2 or 3 adjacent strips. These results have been obtained with the readout electronics specially designed for fast operation of the MCSCs with the signal peaking time of 20 ns. The equivalent noise charge ss 1600e (r.m.s....

  3. Studies of Read-Out Electronics and Trigger for Muon Drift Tube Detectors at High Luminosities

    CERN Document Server

    Nowak, Sebastian

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. For precise measurements of the properties of the Higgs-Boson and searches for new phenomena beyond the Standard Model, the LHC luminosity of $L=10^{34}cm^{-2}s^{-1}$ is planned to be increased by a factor of ten leading to the High Luminosity LHC (HL-LHC). In order to cope with the higher background and data rates, the LHC experiments need to be upgraded. In this thesis, studies for the upgrade of the ATLAS Muon Spectrometer are presented with respect to the read-out electronics of the Monitored Drift Tube (MDT) and the small-diameter Muon Drift Tube (sMDT) chambers and the Level-1 muon trigger. Due to the reduced tube diameter of sMDT chambers, background occupancy and space charge effects are suppressed by an order of magnitude compar...

  4. A Time-Based Front End Readout System for PET & CT

    CERN Document Server

    Meyer, T C; Anghinolfi, F; Auffray, E; Dosanjh, M; Hillemanns, H; Hoffmann, H -F; Jarron, P; Kaplon, J; Kronberger, M; Lecoq, P; Moraes, D; Trummer, J

    2007-01-01

    In the framework of the European FP6's BioCare project, we develop a novel, time-based, photo-detector readout technique to increase sensitivity and timing precision for molecular imaging in PET and CT. The project aims to employ Avalanche Photo Diode (APD) arrays with state of the art, high speed, front end amplifiers and discrimination circuits developed for the Large Hadron Collider (LHC) physics program at CERN, suitable to detect and process photons in a combined one-unit PET/CT detection head. In the so-called time-based approach our efforts focus on the system's timing performance with sub-nanosecond time-jitter and -walk, and yet also provide information on photon energy without resorting to analog to digital conversion. The bandwidth of the electronic circuitry is compatible with the scintillator's intrinsic light response (e.g. les40ns in LSO) and hence allows high rate CT operation in single-photon counting mode. Based on commercial LSO crystals and Hamamatsu S8550 APD arrays, we show the system pe...

  5. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures

    Science.gov (United States)

    Paulsen, Moritz; Jahns, Sabrina; Gerken, Martina

    2017-09-01

    Resonant waveguide gratings (RWG) - also called photonic crystal slabs (PCS) - have been established as reliable optical transducers for label-free biochemical assays as well as for cell-based assays. Current readout systems are based on mechanical scanning and spectrometric measurements with system sizes suitable for laboratory equipment. Here, we review recent progress in compact intensity-based readout systems for point-of-care (POC) applications. We briefly introduce PCSs as sensitive optical transducers and introduce different approaches for intensity-based readout systems. Photometric measurements have been realized with a simple combination of a light source and a photodetector. Recently a 96-channel, intensity-based readout system for both biochemical interaction analyses as well as cellular assays was presented employing the intensity change of a near cut-off mode. As an alternative for multiparametric detection, a camera system for imaging detection has been implemented. A portable, camera-based system of size 13 cm × 4.9 cm × 3.5 cm with six detection areas on an RWG surface area of 11 mm × 7 mm has been demonstrated for the parallel detection of six protein binding kinetics. The signal-to-noise ratio of this system corresponds to a limit of detection of 168 M (24 ng/ml). To further improve the signal-to-noise ratio advanced nanostructure designs are investigated for RWGs. Here, results on multiperiodic and deterministic aperiodic nanostructures are presented. These advanced nanostructures allow for the design of the number and wavelengths of the RWG resonances. In the context of intensity-based readout systems they are particularly interesting for the realization of multi-LED systems. These recent trends suggest that compact point-of-care systems employing disposable test chips with RWG functional areas may reach market in the near future.

  6. The Data Merger Readout Controller for the NA48 experiment data acquisition electronics

    International Nuclear Information System (INIS)

    Galagedera, S.B.; Brierton, B.; Halsall, R.

    1996-01-01

    The NA48 experiment at the CERN SPS offers a four fold improvement in statistical and systematic error over earlier measurements of the magnitude of the direct CP (Charge-Parity) violation of the neutral Kaon system. This requires maximum event readout efficiency, controlled event building and fast monitoring of run time errors. The event data flow in particular must be sustained at 100 Mbyte/s. The Data Merger Readout Controller presented in this paper offers this facility at minimal production cost

  7. Readout Electronics for BGO Calorimeter of DAMPE: Status during the First Half-year after Launching

    Science.gov (United States)

    Ma, Siyuan; Feng, Changqing; Zhang, Deliang; Wang, Qi

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientic satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objective of DAMPE mission is indirect searching for dark matter by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO (Bismuth Germanate Oxide) calorimeter, which is a critical sub-detector of DAMPE payload, was developed for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It is composed of 308 BGO crystal logs, with the size of 2.5cm*2.5cm*60cm for each log to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. Each PMT incorporates a three dynode pick off to achieve a large dynamic range, which results in 616 PMTs and 1848 signal channels. The main function of readout electronics system, which consists of 16 FEE(Front End Electronics) modules, is to precisely measure the charge of PMT signals and providing "hit" signals. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) to generate triggers for the payload. The calibration of the BGO calorimeter is composed of pedestal testing and electronic linear scale, which are executed frequently in the space after launching. The data of the testing is transmitted to ground station in the form of scientific data. The monitor status consists of temperature, current and status words of the FEE, which are measured and recorded every 16 seconds and packed in the engineering data, then transmitted to ground station. The status of the BGO calorimeter can be evaluated by the calibration

  8. Resolution and Efficiency of Monitored Drift-Tube Chambers with Final Read-out Electronics at High Background Rates

    CERN Document Server

    Dubbert, J; Kortner, O; Kroha, H; Manz, A; Mohrdieck-Möck, S; Rauscher, F; Richter, R; Staude, A; Stiller, W

    2003-01-01

    The performance of a monitored drift-tube chamber for ATLAS with the final read-out electronics was tested at the Gamma Irradiation facility at CERN under varyin photon irradiation rates of up to 990~Hz\\,cm$^{-2}$ which corresponds to 10 times the highest background rate expected in ATLAS. The signal pulse-height measurement of the final read-out electronics was used to perform time-slewing corrections. The corrections improve the average single-tube resolution from 106~$\\mu$m to 89~$\\mu$m at the nominal discriminator threshold of 44~mV without irradiation, and from 114~$\\mu$m to 89~$\\mu$m at the maximum nominal irradiation rate in ATLAS of 100~Hz\\,cm$^{-2}$. The reduction of the threshold from 44~mV to 34~mV and the time-slewing corrections lead to an average single-tube resolution of 82~$\\mu$m without photon background and of 89~$\\mu$m at 100~Hz\\,cm$^{-2}$. The measured muon detection efficiency agrees with the expectation for the final read-out electronics.

  9. A new avalanche photo diode based readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Martin [Helmholtz-Institut fuer Strahlen- und Kernphysik, Nussallee 14-16, 53115 Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2015-07-01

    The CBELSA/TAPS experiment at ELSA has proven successful in the measurement of double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions on a polarized neutron target with high efficiency, the main calorimeter consisting of 1320 CsI(Tl) crystals has to be integrated into the first level trigger. Key requirement to achieve this goal is an exchange of the existing PIN photo diode by a new avalanche photo diode (APD) readout. The main advantage of the new readout system is that it will provide timing information which allows a fast trigger signal. The energy resolution will remain compatible to the previous system. Besides the development of automated test routines for the front end electronics, the characterization of all APDs was successfully accomplished in Bonn. After tests with a 3 x 3 CsI(Tl) crystal matrix at the tagged photon beam facilities at ELSA and MAMI the first half of the Crystal Barrel was upgraded in 2014. This talk shows the result of the latest test measurements including the gain stabilization of the new APD readout electronics and presents the progress of the ongoing upgrade.

  10. Readout electronics validation and target detector assessment for the Neutrinos Angra experiment

    International Nuclear Information System (INIS)

    Alvarenga, T.A.; Anjos, J.C.; Azzi, G.; Cerqueira, A.S.; Chimenti, P.; Costa, J.A.; Dornelas, T.I.; Farias, P.C.M.A.; Guedes, G.P.; Gonzalez, L.F.G.; Kemp, E.; Lima, H.P.; Machado, R.; Nóbrega, R.A.; Pepe, I.M.; Ribeiro, D.B.S.; Simas Filho, E.F.; Valdiviesso, G.A.; Wagner, S.

    2016-01-01

    A compact surface detector designed to identify the inverse beta decay interaction produced by anti-neutrinos coming from near operating nuclear reactors is being developed by the Neutrinos Angra Collaboration. In this document we describe and test the detector and its readout system by means of cosmic rays acquisition. In this measurement campaign, the target detector has been equipped with 16 8-in PMTs and two scintillator paddles have been used to trigger cosmic ray events. The achieved results disclosed the main operational characteristics of the Neutrinos Angra system and have been used to assess the detector and to validate its readout system.

  11. On-ground characterization of the Euclid's CCD273-based readout chain

    Science.gov (United States)

    Szafraniec, Magdalena; Azzollini, R.; Cropper, M.; Pottinger, S.; Khalil, A.; Hailey, M.; Hu, D.; Plana, C.; Cutts, A.; Hunt, T.; Kohley, R.; Walton, D.; Theobald, C.; Sharples, R.; Schmoll, J.; Ferrando, P.

    2016-07-01

    Euclid is a medium class European Space Agency mission scheduled for launch in 2020. The goal of the survey is to examine the nature of Dark Matter and Dark Energy in the Universe. One of the cosmological probes used to analyze Euclid's data, the weak lensing technique, measures the distortions of galaxy shapes and this requires very accurate knowledge of the system point spread function (PSF). Therefore, to ensure that the galaxy shape is not affected, the detector chain of the telescope's VISible Instrument (VIS) needs to meet specific performance performance requirements. Each of the 12 VIS readout chains consisting of 3 CCDs, readout electronics (ROE) and a power supply unit (RPSU) will undergo a rigorous on-ground testing to ensure that these requirements are met. This paper reports on the current status of the warm and cold testing of the VIS Engineering Model readout chain. Additionally, an early insight to the commissioning of the Flight Model calibration facility and program is provided.

  12. Phase-I trigger readout electronics upgrade of the ATLAS Liquid-Argon Calorimeters

    International Nuclear Information System (INIS)

    Mori, T.

    2016-01-01

    This article gives an overview of the Phase-I Upgrade of the ATLAS LAr Calorimeter Trigger Readout. The design of custom developed hardware for fast real-time data processing and transfer is presented. Performance results from the prototype boards operated in the demonstrator system, first measurements of noise behavior and responses on the test pulses to the demonstrator system are shown.

  13. Development of a tracker based on GEM optically readout

    CERN Document Server

    Torchia, Natalia

    The high-resolution tracking of low energy release particles had a remarkable development in recent years and will give a crucial contribution in different sectors, from medical applications to those in dark matter search. Thanks to their characteristics (high space and time resolution, low material budget, large volumes, low costs) the gas detectors have shown to be ideal candidates for this type of trackers. In particular, a very promising technique regards the optical reading of the light produced by the de-excitation of gas molecules during the processes of electron multiplication. This type of detector has been made possible thanks to the great progresses achieved in last years in the performance in micro pattern gas detector and in the evolution of the CMOS technology which led to the production of sensors able of offering high sensitivity and granularity combined with a very low noise level. In this thesis I studied the performance of a two prototypes where the light is produced through the multiplicat...

  14. Polymer-based stress sensor with integrated readout

    DEFF Research Database (Denmark)

    Thaysen, Jacob; Yalcinkaya, Arda Deniz; Vettiger, P.

    2002-01-01

    softer than silicon and that a gold resistor is easily incorporated in SU-8, we have proven that a SU-8-based cantilever sensor is almost as sensitive to stress changes as the silicon piezoresistive cantilever. First, the surface stress sensing principle is discussed, from which it can be shown......, noise and device failure. The characterization shows that there is a good agreement between the expected and the obtained performance....

  15. Automatic readout system for superheated emulsion based neutron detector

    International Nuclear Information System (INIS)

    Meena, J.P.; Parihar, A.; Vaijapurkar, S.G.; Mohan, Anand

    2011-01-01

    The paper presents a microcontroller based automatic reader system for neutron measurement using indigenously developed superheated emulsion detector. The system is designed for real time counting of bubbles formed in superheated emulsion detector. A piezoelectric transducer is used for sensing bubble acoustic during the nucleation. The front end of system is mainly consisting of specially designed signal conditioning unit, piezoelectric transducer, an amplifier, a high-pass filter, a differentiator, a comparator and monostable multivibrator. The system is based on PlC 18F6520 microcontroller having large internal SRAM, 10-bit internal ADC, I 2 C interface, UART/USART modules. The paper also describes the design of following microcontroller peripheral units viz temperature monitoring, battery monitoring, LCD display, keypad and a serial communication. The reader system measures and displays neutron dose and dose rate, number of bubble and elapsed time. The developed system can be used for detecting very low neutron leakage in the accelerators, nuclear reactors and nuclear submarines. The important features of system are compact, light weight, cost effective and high neutron sensitivity. The prototype was tested and evaluated by exposing to 241 Am-Be neutron source and results have been reported. (author)

  16. Characterization of a DAQ system for the readout of a SiPM based shashlik calorimeter

    International Nuclear Information System (INIS)

    Berra, A.; Bonvicini, V.; Bosisio, L.; Lietti, D.; Penzo, A.; Prest, M.; Rabaioli, S.; Rashevskaya, I.; Vallazza, E.

    2014-01-01

    Silicon PhotoMultipliers (SiPMs) are a recently developed type of silicon photodetector characterized by high gain and insensitivity to magnetic fields, which make them a suitable detector for the next generation high energy and space physics experiments. This paper presents the performance of a readout system for SiPMs based on the MAROC3 ASIC. The ASIC consists of 64 channels working in parallel, each one with a variable gain pre-amplifier, a tunable slow shaper with a sample and hold circuit for the analog readout and a tunable fast shaper for the digital one. In the tests described in this paper, only the analog part of the ASIC has been used. A frontend board based on the MAROC3 ASIC has been tested at CERN coupled to a scintillator-lead shashlik calorimeter, readout with 36 large area SiPMs. The performance of the system has been characterized in terms of linearity and energy resolution on the CERN PS-T9 and SPS-H2 beamlines, using different configurations of the ASIC parameters

  17. Building a large-area GEM-based readout chamber for the upgrade of the ALICE TPC

    CERN Document Server

    Gasik, Piotr

    2017-01-01

    A large Time Projection Chamber (TPC) is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019-2020, the LHC will deliver Pb beams colliding at an interaction rate up to 50 kHz, which is about a factor of 100 above the present read-out rate of the TPC. To fully exploit the LHC potential the TPC will be upgraded based on the Gas Electron Multiplier (GEM) technology. A prototype of an ALICE TPC Outer Read-Out Chamber (OROC) was equipped with twelve large-size GEM foils as amplification stage to demonstrate the feasibility of replacing the current Multi Wire Proportional Chambers with the new technology. With a total area of $\\sim$0.76 m$^2$ it is the largest GEM-based detector built to date. The GEM OROC was installed within a test field cage and commissioned with radioactive sources.

  18. Building a large-area GEM-based readout chamber for the upgrade of the ALICE TPC

    Energy Technology Data Exchange (ETDEWEB)

    Gasik, P. [Physik Department E62, Technische Universität München, Garching (Germany); Excellence Cluster ‘Origin and Structure of the Universe’, Garching (Germany)

    2017-02-11

    A large Time Projection Chamber (TPC) is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019–2020, the LHC will deliver Pb beams colliding at an interaction rate up to 50 kHz, which is about a factor of 100 above the present read-out rate of the TPC. To fully exploit the LHC potential the TPC will be upgraded based on the Gas Electron Multiplier (GEM) technology. A prototype of an ALICE TPC Outer Read-Out Chamber (OROC) was equipped with twelve large-size GEM foils as amplification stage to demonstrate the feasibility of replacing the current Multi Wire Proportional Chambers with the new technology. With a total area of ∼0.76 m{sup 2} it is the largest GEM-based detector built to date. The GEM OROC was installed within a test field cage and commissioned with radioactive sources.

  19. Building a large-area GEM-based readout chamber for the upgrade of the ALICE TPC

    International Nuclear Information System (INIS)

    Gasik, P.

    2017-01-01

    A large Time Projection Chamber (TPC) is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019–2020, the LHC will deliver Pb beams colliding at an interaction rate up to 50 kHz, which is about a factor of 100 above the present read-out rate of the TPC. To fully exploit the LHC potential the TPC will be upgraded based on the Gas Electron Multiplier (GEM) technology. A prototype of an ALICE TPC Outer Read-Out Chamber (OROC) was equipped with twelve large-size GEM foils as amplification stage to demonstrate the feasibility of replacing the current Multi Wire Proportional Chambers with the new technology. With a total area of ∼0.76 m 2 it is the largest GEM-based detector built to date. The GEM OROC was installed within a test field cage and commissioned with radioactive sources.

  20. The IBL Readout System

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2010-01-01

    The first upgrade for the ATLAS pixel detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer having new electronics assembled an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth and also compatible with the existing system to be integrated into it. The talk will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  1. The IBL Readout System

    CERN Document Server

    Dopke, J; Flick, T; Gabrielli, A; Kugel, A; Maettig, P; Morettini, P; Polini, A; Schroer, N

    2011-01-01

    The first upgrade for the ATLAS Pixel Detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer, having new electronics, an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth, but also compatible with the existing system to be integrated into it. This paper will describe the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  2. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    Energy Technology Data Exchange (ETDEWEB)

    Real, Diego [IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna (Spain); Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocol used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.

  3. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    International Nuclear Information System (INIS)

    Real, Diego

    2014-01-01

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocol used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board

  4. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  5. A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology

    Directory of Open Access Journals (Sweden)

    Preethi Padmanabhan

    2018-02-01

    Full Text Available Gallium nitride (GaN and its alloys are becoming preferred materials for ultraviolet (UV detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs, implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e−, obtaining avalanche gains up to 103. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology.

  6. A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology †

    Science.gov (United States)

    Hancock, Bruce; Nikzad, Shouleh; Bell, L. Douglas; Kroep, Kees; Charbon, Edoardo

    2018-01-01

    Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e−, obtaining avalanche gains up to 103. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology. PMID:29401655

  7. A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology.

    Science.gov (United States)

    Padmanabhan, Preethi; Hancock, Bruce; Nikzad, Shouleh; Bell, L Douglas; Kroep, Kees; Charbon, Edoardo

    2018-02-03

    Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e - , obtaining avalanche gains up to 10³. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology.

  8. GOSSIPO-4: Evaluation of a Novel PLL-Based TDC-Technique for the Readout of GridPix-Detectors

    CERN Document Server

    Brezina, C; Zappon, F; Van Beuzekom, M; Campbell, M; Desch, K; Van der Graaf, H; Gromov, V; Kluit, R; Llopart, X; Poikela, T; Zivkovic, V

    2014-01-01

    The direct readout of Micro-Pattern Gaseous Detectors (MPGDs) with bare pixel chips introduces the need for a new generation of readout electronics featuring a high spatial granularity as well as a highly accurate time measurement in each pixel. GOSSIPO-4, fabricated in a 130 nm CMOS technology, is a demonstrator ASIC investigating the potential of a new TDC-concept that is based on a chip-wide 40 MHz clock which is complemented by an additional 640 MHz clock. The latter is created upon demand by local oscillators distributed across the pixel matrix. PLL tuning of the local oscillators allows for automatic compensation of frequency fluctuations caused by process parameter, supply voltage and temperature variations. The developed PLL locks within s and achieves a duty cycle of 50.75% with a time interval error of only 23.4 ps. Mean DNL and INL of the TDC are less than 20% of the time bin size of 1.56 ns under all anticipated conditions.

  9. Use of spectrophotometric readout method for free radical dosimetry in radiation processing including low energy electrons and bremsstrahlung

    International Nuclear Information System (INIS)

    Gupta, B.L.

    2000-01-01

    Our laboratory maintains standards for high doses in India. The glutamine powder dosimeter (spectrophotometric readout) is used for this purpose. Present studies show that 20 mg of unirradiated/irradiated glutamine dissolved in freshly prepared 10 ml of aerated aqueous acidic FX solution containing 2 x 10 -3 mol dm -3 ferrous ammonium sulphate and 10 -4 mol dm -3 xylenol orange in 0.033 mol dm -3 sulphuric acid is suitable for the dosimetry in the dose range of 0.1-100 kGy. Normally no corrections are required for the post-irradiation fading of the irradiated glutamine. The response of glutamine dosimeter is independent of irradiation temperature in the range of about 23-30 deg. C and at other temperatures, a correction is necessary. The dose intercomparison results for photon, electron and bremsstrahlung radiations show that glutamine can be used as a reference standard dosimeter. The use of flat polyethylene bags containing glutamine powder has proved very successful for electron dosimetry of wide energies. Several other amino acids like alanine, valine and threonine can also be used to cover wide range of doses using spectrophotometric readout method. (author)

  10. Requirements on read-out electronics for future keV-scale sterile neutrino search with KATRIN

    Energy Technology Data Exchange (ETDEWEB)

    Dolde, Kai [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2016-07-01

    Recent publications show the great potential of the KATRIN (KArlsruhe TRItium Neutrino) experiment in the search for sterile neutrinos in the mass range of a few keV down to active-to-sterile mixing angles at least one order of magnitude smaller than current laboratory limits of sin{sup 2}θ < 10{sup -3}. In order to be sensitive to the tiny kink-like signature of sterile neutrinos in tritium beta decay, KATRIN requires a novel sophisticated detector and read-out system. Several silicon prototype detectors are under construction at the moment to explore the most suitable detector design for this purpose. The selection of appropriate read-out electronics is strongly triggered by the requirements of allowing only very small systematic uncertainties due to ADC Non-Linearities to reach the expected sensitivity. This talk investigates the impact of ADC Non-Linearities on the tritium beta decay spectrum, depending on the digitization method of analogue signals of a multi-pixel silicon detector, peak sensing or waveform digitization. The simulations show a higher achievable sensitivity using waveform digitizers and moreover strongly favor additional variable post-acceleration of the electrons to smear out the periodic structure of the ADC Non-Linearities.

  11. A programmable electronic Microplex Driver Unit for readout of silicon strip detectors

    International Nuclear Information System (INIS)

    Bairstow, R.

    1990-08-01

    The unit provides the necessary signals to drive arrays of Microplex devices used to readout silicon strip Vertex detectors as used in DELPHI and OPAL at CERN. The unit has a CAMAC interface allowing operation of the unit by computer in a Remote-control mode. The computer can control all the essential parameters of the drive signals, together with the operational characteristics of the system. Alternatively, the unit can be used in a stand-alone Local-control mode. In this case the front panel controls and displays enable the user to set up the unit. (author)

  12. Acquisition and calibration electronics of a MWPC with a cathodic read-out

    Energy Technology Data Exchange (ETDEWEB)

    Carbonara, F; Chiefari, G; Drago, E; Ereditato, A; Lanzano, S; Napolitano, M; Sciacca, G [Istituto Nazionale di Fisica Nucleare, Naples (Italy); Naples Univ. (Italy). Ist. di Fisica Sperimentale)

    1982-02-01

    A periodic calibration of the electronics associated with the cathodic strips of a MWPC is necessary for a correct computation of the centroid of the induced charge. We describe here a method, based on computer controlled analog demultiplexers, which permits the injection of variable amounts of charge into each amplifier. The serial scanning along all the channels produces the complete set of pedestals and slopes which, stored on disk and subsequently read, is used for the conversion of ADC outputs.

  13. Image processing system design for microcantilever-based optical readout infrared arrays

    Science.gov (United States)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  14. Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Mori, Tatsuya; The ATLAS collaboration

    2015-01-01

    The Large Hadron Collider (LHC) is foreseen to be upgraded during the shut-down period of 2018-2019 to deliver about 3 times the instantaneous design luminosity. Since the ATLAS trigger system, at that time, will not support such an increase of the trigger rate an improvement of the trigger system is required. The ATLAS LAr Calorimeter readout will therefore be modified and digital trigger signals with a higher spatial granularity will be provided to the trigger. The new trigger signals will be arranged in 34000 Super Cells which achieves a 5-10 better granularity than the trigger towers currently used and allows an improved background rejection. The Super Cell readout is composed of custom developed 12-bit combined SAR ADCs in 130 nm CMOS technology which will be installed on-detector in a radiation environment and digitizes the detector pulses at 40 MHz. The data will be transmitted to the back end using a custom serializer and optical converter applying 5.44 Gb/s optical links. These components are install...

  15. Environmental sensors based on micromachined cantilevers with integrated read-out

    DEFF Research Database (Denmark)

    Boisen, Anja; Thaysen, Jacob; Jensenius, Henriette

    2000-01-01

    -out facilitates measurements in liquid. The probe has been successfully implemented in gaseous as well as in liquid experiments. For example, the probe has been used as an accurate and minute thermal sensor and as a humidity sensor. In liquid, the probe has been used to detect the presence of alcohol in water. (C......An AFM probe with integrated piezoresistive read-out has been developed and applied as a cantilever-based environmental sensor. The probe has a built-in reference cantilever, which makes it possible to subtract background drift directly in the measurement. Moreover, the integrated read...

  16. A microcontroller based readout unit for a smart personnel monitoring TLD badge

    International Nuclear Information System (INIS)

    Gaonkar, U.P.; Kulkarni, M.S.; Kannan, S.

    1997-01-01

    An automated TLD personnel monitoring system is under development to cope up with the requirements of personnel monitoring of rapidly growing number of radiation workers. The core of the system is a smart TLD badge incorporating a memory device and a microcontroller based readout unit for reading the memory contents of the badge. The memory is used to store personnel data including the accumulated dose data. The reader unit has a serial RS 232C interface for connection to a PC for entering/modifying data in the memory. A password protected software has also been developed in C for entering/modifying the data in the single memory. 3 figs

  17. Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    de La Taille, C

    2008-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  18. Development of a test system for the analysis of the read-out electronic cabling for the CMS drift tube chambers

    International Nuclear Information System (INIS)

    Fernandez Bedoya, C.; Montero, M.; Willmott, C.

    2004-01-01

    A test system has been developed for the analysis of the read-out electronics cabling for the CMS drift tube chambers. The read-out electronics will be placed inside some aluminium boxes, so-called Minicrates, which are going to be produced soon at CIEMAT. Due to the difficulty of detecting and repairing errors in the cables once they have been installed and recalling also to the large number of Minicrates that are going to be produced, it was decided to design and develop a test system for testing the cabling before its installation. (Author)

  19. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Kyeonghwan Park

    2017-04-01

    Full Text Available This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  20. Read-out concepts for FPGA-based sub-systems within the CBM detector

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Jan [Goethe-Universitaet Frankfurt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Compressed Baryonic Matter experiment (CBM) to be built at FAIR consists of several individual sub-detectors. Some are based on custom ASICs as front-ends. Others employ FPGA based modules where extensive slow control features can be implemented to ease the recording of data and to allow for fast detection of any kind of error condition. Being designed as a free-running data acquisition, the demands also include a synchronized read-out, i.e. distribution of a common clock signal to all modules. To reduce the complexity of wiring, this is to be done sharing the same optical fibers as the data transport. During the past years, TrbNet has been designed and is used in various experiments, initially for the HADES experiment at FAIR. This protocol can now serve as a platform for the CBM read-out. In several steps, synchronous links with deterministic latency, as well as a free-streaming data transport can be included. At the same time, modifications to improve bandwidth and provide compatibility to the CERN GBTx links used for ASIC based sub-systems are to be developed. This contribution shows the planned steps as well as the current status of development.

  1. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Mireshghi, A.; Wildermuth, D.; Goodman, C.; Fujieda, I.

    1992-07-01

    We describe the characteristics of thin (1 μm) and thick (> 30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-ray, γ rays and thermal neutrons. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For thermal neutron detection we use thin (2∼5 μm) gadolinium converters on 30 μm thick a-Si:H diodes. For direct detection of minimum ionizing particles and others with high resistance to radiation damage, we use the thick p-i-n diode arrays. Diode and amorphous silicon readouts as well as polysilicon pixel amplifiers are described

  2. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Drewery, J.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.

    1994-10-01

    We describe the characteristics of thin (1 μm) and thick (>30 μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. Deposition techniques using helium dilution, which produce samples with low stress are described. Pixel arrays for flux exposures can be readout by transistor, single diode or two diode switches. Polysilicon charge sensitive pixel amplifiers for single event detection are described. Various applications in nuclear, particle physics, x-ray medical imaging, neutron crystallography, and radionuclide chromatography are discussed

  3. A circuit design for front-end read-out electronics of beam homogeneity measurement

    International Nuclear Information System (INIS)

    She Qianshun; Su Hong; Xu Zhiguo; Ma Xiaoli; Hu Zhengguo; Mao Ruishi; Xu Hushan

    2011-01-01

    It introduces a circuit design of beam homogeneity measurement for heavy ion beam in the monitoring needs, which convert multichannel weak current from 10 pA to 100 nA of the output of parallel plate avalanche counter (PPAC) for large area with sensitive two-dimensional position to voltage signal from -2 V to -20 mV by current-voltage-converter (IVC) circuit which composed of T-feedback resistor networks, combined with data acquisition and processing system realized the beam homogeneity measurement in heavy ion tumor therapy of the Institute of Modern Physics. Experiments have shown that the circuit with speed and high precision. This circuit can be used for read-out of the beam for the Multiwire Proportional Chamber, Faraday Cup and other weak current sources. (authors)

  4. Performance study of large area encoding readout MRPC

    Science.gov (United States)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  5. Rutherford X-ray spectrometer readout

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-07-01

    Rutherford electronic X-ray spectrometer readout is based on the combination of two established techniques (a) the detection and location of soft X-rays by means of multichannel electron multiplier arrays (MCP's), and (b) the electronic readout of charge distributions (generally in multi-wire proportional counters) by means of the delay line techniques. In order for the latter device to function well a charge signal of approximately 10 6 electrons must be available to the delay line wand. This is achieved in the present device by means of two cascaded MCP's which can produce electron gains up to approximately 10 8 , and so operate the delay line from the single electron pulses generated at the front face of an MCP by a soft X-ray. The delay line readout technique was chosen because of its simplicity (both in terms of the necessary hardware and the associated electronics), robustness, and ease of implementation. In order to achieve the target spatial resolution of 50 μm (fwhm) or 20 μm (standard deviation) it was necessary to adapt the charge collection system so that the readout takes place from a length of delay line 200 mm long. The general layout of the system and the functions of the electronic circuits are described. Performance testing, setting up procedures and trouble shooting of the system are discussed. (U.K.)

  6. Commissioning of the readout electronics for the prototypes of a hadronic calorimeter and a tailcatcher and muon tracker

    International Nuclear Information System (INIS)

    Lutz, B.

    2006-12-01

    The goal of the CALICE collaboration is to develop and design a highly granular calorimeter for an experiment at the future international linear collider. In an integrated study all parts of the calorimeter are considered. Within this project a hadronic calorimeter prototype, built at DESY, and a tailcatcher and muon tracker prototype, built at NIU and Fermilab, are developed. The subject of this thesis is the combined readout electronics for these prototypes. In a set of measurements it is demonstrated that the individual components answer their purposes. This includes the classification of noise, linearity and signal to noise ratio of the amplifier and a study of the differential nonlinearity of the analog to digital converter in the data acquisition. In addition to these measurements of common parameters, some attributes are measured that are special to the use of the combined system, including the influence of the limited time resolution of the hold signal and the consequences of signals with variable input signal shape. Furthermore, an algorithm is developed for the determination of the SiPM gain from single photoelectron spectra that are recorded with the detector readout electronics. Particular effort is made to ensure that the developed method can be run independently from human intervention, as a 8000 channel system demands. The accuracy and stability of the gain measurement is checked with actual data from the first available hadronic calorimeter modules and a set of requirements for a measurement of 1% accuracy is fixed. Finally, the established gain measurement is used in the calibration of modules with cosmic muons. And the temperature dependence of the SiPM gain is verified. (orig.)

  7. Commissioning of the readout electronics for the prototypes of a hadronic calorimeter and a tailcatcher and muon tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, B.

    2006-12-15

    The goal of the CALICE collaboration is to develop and design a highly granular calorimeter for an experiment at the future international linear collider. In an integrated study all parts of the calorimeter are considered. Within this project a hadronic calorimeter prototype, built at DESY, and a tailcatcher and muon tracker prototype, built at NIU and Fermilab, are developed. The subject of this thesis is the combined readout electronics for these prototypes. In a set of measurements it is demonstrated that the individual components answer their purposes. This includes the classification of noise, linearity and signal to noise ratio of the amplifier and a study of the differential nonlinearity of the analog to digital converter in the data acquisition. In addition to these measurements of common parameters, some attributes are measured that are special to the use of the combined system, including the influence of the limited time resolution of the hold signal and the consequences of signals with variable input signal shape. Furthermore, an algorithm is developed for the determination of the SiPM gain from single photoelectron spectra that are recorded with the detector readout electronics. Particular effort is made to ensure that the developed method can be run independently from human intervention, as a 8000 channel system demands. The accuracy and stability of the gain measurement is checked with actual data from the first available hadronic calorimeter modules and a set of requirements for a measurement of 1% accuracy is fixed. Finally, the established gain measurement is used in the calibration of modules with cosmic muons. And the temperature dependence of the SiPM gain is verified. (orig.)

  8. SiPM based readout system for PbWO4 crystals

    Science.gov (United States)

    Berra, A.; Bolognini, D.; Bonfanti, S.; Bonvicini, V.; Lietti, D.; Penzo, A.; Prest, M.; Stoppani, L.; Vallazza, E.

    2013-08-01

    Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20-100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs.

  9. SiPM based readout system for PbWO4 crystals

    International Nuclear Information System (INIS)

    Berra, A.; Bolognini, D.; Bonfanti, S.; Bonvicini, V.; Lietti, D.; Penzo, A.; Prest, M.; Stoppani, L.; Vallazza, E.

    2013-01-01

    Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20–100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs

  10. SiPM based readout system for PbWO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11-22100 Como (Italy); Bolognini, D.; Bonfanti, S. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11-22100 Como (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Lietti, D. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11-22100 Como (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M.; Stoppani, L. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11-22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2013-08-01

    Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20–100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs.

  11. The Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Yang, Yi-lin; The ATLAS collaboration

    2018-01-01

    The Super Cell has been proposed in the Phase-I LAr upgrade to replace the existing trigger system "Trigger Tower" due to higher luminosity environments in Run 3 at LHC. The higher granularity of the Super Cell trigger systems requires higher data transmission and processing rate. The new system is also needed to be compatible with the existing trigger system. To fulfill these requirements, the new electronics including frond end and back end are developed. In the front-end part, the new LSB sums the LAr cell signals into Super Cell signals. The new baseplane distributes analog signals among FEBs, LTDB and TBB. The LTDB sums Super Cell signals to Trigger Tower signals and redirected the signals to TBB. The Analog signals are also digitized in LTDB and then sent to back end electronics. In the back-end part, the architecture is based on ATCA. The LAr carrier is used for monitoring and controlling. The LATOMEs inserted into the LAr carrier provide energy calculation from the digitized signals. So far, the demon...

  12. Front-end counting mode electronics for CdZnTe sensor readout

    CERN Document Server

    Moraes, Danielle; Kaplon, Jan

    2004-01-01

    The development of a front-end circuit optimized for CdZnTe detector readout, implemented in 0.25 mu m CMOS technology, is reported. The ASIC comprises 17 channels of a charge sensitive amplifier with an active feedback, followed by a gain-shaper stage and a discriminator with a 5 bit fine-tune DAC. The signal from the discriminator is sensed by a 25 ns mono-stable circuit and an 18-bit static ripple- counter. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at a maximum counting rate of 2 million counts/second. The amplifier shows a linear sensitivity of 24 mV/fC with 50 ns peaking time and an equivalent noise charge of about 650 e/sup -/, for a detector capacitance of 10 pF. When connected to a 3*3*7 mm/sup 3/ CdZnTe detector the amplifier gain is about 8 mV/keV with a noise around 3.6 keV.

  13. Multi-anode photon-multiplier readout electronics for the LHCb ring imaging Cherenkov detectors

    CERN Document Server

    Smale, N J

    2004-01-01

    A readout system for the Ring Imaging CHerenkov (RICH) detectors of the LHCb experiment has been developed. Two detector technologies for the measurement of Cherenkov photons are considered, the Multi-Anode Photo-Multiplier Tube (MAPMT) and the Hybrid Photon Detector (HPD), both of which meet the RICH requirements. The properties of the MAPMT are evaluated using a controlled single-photon source; a pixel-to-pixel gain variation of ~3 and a typical signal to noise of ~20 is measured. The relative tube efficiency is found to be reduced by ~26 % due to the detailed focusing structure of the MAPMT device. A radiation hard application-specific integrated circuit (ASIC) chip, the Beetle1.2MA0, has been developed to capture and store signals from a pair of MAPMTs. The Beetle1.2MA0 is built on the architecture of the Beetle family that was designed for silicon strip detectors, the difference being a modified front-end amplifier. The 128 input-channels of the Beetle1.2MA0 have a charge-sensitive pre-amplifier followed...

  14. Radiation Damage Effects and Performance of Silicon Strip Detectors using LHC Readout Electronics

    CERN Document Server

    AUTHOR|(CDS)2067734

    1998-01-01

    Future high energy physics experiments as the ATLAS experiment at CERN, will use silicon strip detectors for fast and high precision tracking information. The high hadron fluences in these experiments cause permanent damage in the silicon.Additional energy levels are introduced in the bandgap thus changing the electrical properties such as leakage current and full depletion voltage V_fd .Very high leakage currents are observed after irradiation and lead to higher electronic noise and thus decrease the spatial resolution.V_fd increases to a few hundred volts after irradiation and eventually beyond the point of stable operating voltages. Prototype detectors with either p-implanted strips (p-in-n) and n-implanted strip detectors (n-in-n) were irradiated to the maximum expected fluence in ATLAS.The irradiation and the following study of the current and V_fd were carried out under ATLAS operational conditions.The evolution of V_fd after irradiation is compared to models based on diode irradiations.The qualitative ...

  15. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out.

    Science.gov (United States)

    Liu, Hong; Crooks, Richard M

    2012-03-06

    We report a battery-powered, microelectrochemical sensing platform that reports its output using an electrochromic display. The platform is fabricated based on paper fluidics and uses a Prussian blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. The integrated metal/air battery powers both the electrochemical sensor and the electrochromic read-out, which are in electrical contact via a paper reservoir. The sample activates the battery and the presence of analyte in the sample initiates the color change of the Prussian blue spot. The entire system is assembled on the lab bench, without the need for cleanroom facilities. The applicability of the device to point-of-care sensing is demonstrated by qualitative detection of 0.1 mM glucose and H(2)O(2) in artificial urine samples.

  16. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    Science.gov (United States)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  17. High-speed, multi-channel detector readout electronics for fast radiation detectors

    International Nuclear Information System (INIS)

    Hennig, Wolfgang

    2012-01-01

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications. The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the

  18. High-speed, multi-channel detector readout electronics for fast radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Wolfgang

    2012-06-22

    In this project, we are developing a high speed digital spectrometer that a) captures detector waveforms at rates up to 500 MSPS b) has upgraded event data acquisition with additional data buffers for zero dead time operation c) moves energy calculations to the FPGA to increase spectrometer throughput in fast scintillator applications d) uses a streamlined architecture and high speed data interface for even faster readout to the host PC These features are in addition to the standard functions in our existing spectrometers such as digitization, programmable trigger and energy filters, pileup inspection, data acquisition with energy and time stamps, MCA histograms, and run statistics. In Phase I, we upgraded one of our existing spectrometer designs to demonstrate the key principle of fast waveform capture using a 500 MSPS, 12 bit ADC and a Xilinx Virtex-4 FPGA. This upgraded spectrometer, named P500, performed well in initial tests of energy resolution, pulse shape analysis, and timing measurements, thus achieving item (a) above. In Phase II, we are revising the P500 to build a commercial prototype with the improvements listed in items (b)-(d). As described in the previous report, two devices were built to pursue this goal, named the Pixie-500 and the Pixie-500 Express. The Pixie-500 has only minor improvements from the Phase I prototype and is intended as an early commercial product (its production and part of its development were funded outside the SBIR). It also allows testing of the ADC performance in real applications.The Pixie-500 Express (or Pixie-500e) includes all of the improvements (b)-(d). At the end of Phase II of the project, we have tested and debugged the hardware, firmware and software of the Pixie-500 Express prototype boards delivered 12/3/2010. This proved substantially more complex than anticipated. At the time of writing, all hardware bugs have been fixed, the PCI Express interface is working, the SDRAM has been successfully tested and the SHARC

  19. Highly Integrated Mixed-Mode Electronics for the readout of Time Projection Chambers

    CERN Document Server

    França Santos, Hugo Miguel; Musa, Luciano

    Time Projection Chambers (TPCs) are one of the most prevalent particle trackers for high-energy physics experiments. Future planed TPCs for the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) entail very high spatial resolution in large gas volumes, but impose low material budget for the end caps of the TPC cylinder. This constraint is not accomplished with the state-of-the-art front-end electronics because of its unsuited relatively large mass and of its associated water cooling system. To reach the required material budget, highly compact and power efficient dedicated TPC front-end electronics should be developed. This project aims at re-designing the different electronic elements with significant improvements in terms of performance, power efficiency and versatility, and developing an integrated circuit that merges all components of the front-end electronics. This chip ambitions a large volume production at low unitary cost and its employment in multiple detectors. The design of ...

  20. A high performance Front End Electronics for drift chamber readout in MEG experiment upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi” – Universitá del Salento, Via Arnesano, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy); Chiri, C.; Corvaglia, A.; Grancagnolo, F. [Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy); Panareo, M. [Dipartimento di Matematica e Fisica “Ennio De Giorgi” – Universitá del Salento, Via Arnesano, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy); Pepino, A., E-mail: aurora.pepino@le.infn.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi” – Universitá del Salento, Via Arnesano, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy); Pinto, C.; Tassielli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi” – Universitá del Salento, Via Arnesano, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sez. Lecce, Via Arnesano, Lecce (Italy)

    2016-07-11

    Front End (FE) Electronics plays an essential role in Drift Chambers (DC) for time resolution and, therefore, spatial resolution. The use of cluster timing techniques, by measuring the timing of all the individual ionization clusters after the first one, may enable to reach resolutions even below 100 μm in the measurement of the impact parameter. To this purpose, a Front End Electronics with a wide bandwidth and low noise is mandatory in order to acquire and amplify the drift chamber signals.

  1. A high performance Front End Electronics for drift chamber readout in MEG experiment upgrade

    International Nuclear Information System (INIS)

    Chiarello, G.; Chiri, C.; Corvaglia, A.; Grancagnolo, F.; Panareo, M.; Pepino, A.; Pinto, C.; Tassielli, G.

    2016-01-01

    Front End (FE) Electronics plays an essential role in Drift Chambers (DC) for time resolution and, therefore, spatial resolution. The use of cluster timing techniques, by measuring the timing of all the individual ionization clusters after the first one, may enable to reach resolutions even below 100 μm in the measurement of the impact parameter. To this purpose, a Front End Electronics with a wide bandwidth and low noise is mandatory in order to acquire and amplify the drift chamber signals.

  2. Investigation of a Huffman-based compression algorithm for the ALICE TPC read-out in LHC Run 3

    Energy Technology Data Exchange (ETDEWEB)

    Klewin, Sebastian [Physikalisches Institut, University of Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    Within the scope of the ALICE upgrade towards the Run 3 of the Large Hadron Collider at CERN, starting in 2020, the ALICE Time Projection Chamber (TPC) will be reworked in order to allow for a continuous read-out. This rework includes not only a replacement of the current read-out chambers with Gas Electron Multiplier (GEM) technology, but also new front-end electronics. To be able to read out the whole data stream without loosing information, in particular without zero-suppression, a lossless compression algorithm, the Huffman encoding, was investigated and adapted to the needs of the TPC. In this talk, an algorithm, adapted for an FPGA implementation, is presented. We show its capability to reduce the data volume to less than 40% of its original size.

  3. Search for second generation leptoquarks in $\\sqrt{s}$ = 1.8-TeV $p^-$ pbar at CDF and silicon detector readout electronics development with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kambara, Hisanori [Geneva U.

    1998-02-01

    In this thesis, a search for second generation leptoquark is presented. It is based on the data collected at the Collider Detector at Fermilab with the Tevatron proton-antiproton collisions of $\\sqrt{s}$ = 1.8 TeV. A total integrated luminosity of 110 pb-1 collected during runs in 1992-1995 is used. The search was performed on the charged dimuon plus dijet channel. No evidence for existence of leptoquark was found, and a new production cross section limit is set as a result of this analysis. Using the most recent theoretical calculation of pair leptoquark production [1], a new lower mass limit for second generation scalar leptoquark is extracted. The new limit excludes M(LQ2)< 202 GeV/c2. The Large Hadron Collider (LHC), a proton-proton collider with a center of mass energy ($\\sqrt{s}$) of 14 TeV, is currently under the construction at CERN. It will be utilised to extend the searches for the leptoquarks to higher mass regions. As in CDF, tracking detectors are essential to identify charged leptons decaying from leptoquarks. A silicon strip tracking detector is being developed for the ATLAS experiment. A dense and fast readout system with a good signal to noise ratio and low power consumption are required with high luminosity and short event collision interval (25 ns) expected at the LHC. A description of a prototype front-end micro-electronic chip, the ADAM, for silicon strip detector readout application is presented. Results from a complete laboratory test as well as its performance on a test beam at CERN are reported.

  4. Read-out and calibration of a tile calorimeter for ATLAS

    International Nuclear Information System (INIS)

    Tardell, S.

    1997-06-01

    The read-out and calibration of scintillating tiles hadronic calorimeter for ATLAS is discussed. Tests with prototypes of FERMI, a system of read-out electronics based on a dynamic range compressor reducing the dynamic range from 16 to 10 bits and a 40 MHz 10 bits sampling ADC, are presented. In comparison with a standard charge integrating read-out improvements in the resolution of 1% in the constant term are obtained

  5. Construction process and read-out electronics of amorphous silicon position detectors for multipoint alignment monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, C.; Schubert, M.B.; Lutz, B.; Werner, J.H. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)], E-mail: antonio.ferrando@ciemat.es; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A.; Fernandez, M.G.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F. [Instituto de Fisica de Cantabria IFCA/CSIC-University of Cantabria, Santander (Spain)] (and others)

    2009-09-01

    We describe the construction process of large-area high-performance transparent amorphous silicon position detecting sensors. Details about the characteristics of the associated local electronic board (LEB), specially designed for these sensors, are given. In addition we report on the performance of a multipoint alignment monitoring application of 12 sensors in a 13 m long light path.

  6. Characterization of the column-based priority logic readout of Topmetal-II− CMOS pixel direct charge sensor

    International Nuclear Information System (INIS)

    An, M.; Zhang, W.; Xiao, L.; Gao, C.; Chen, C.; Huang, G.; Ji, R.; Liu, J.; Pei, H.; Sun, X.; Wang, K.; Yang, P.; Zhou, W.; Han, M.; Mei, Y.; Li, X.; Sun, Q.

    2017-01-01

    We present the detailed study of the digital readout of Topmetal-II - CMOS pixel direct charge sensor. Topmetal-II - is an integrated sensor with an array of 72×72 pixels each capable of directly collecting external charge through exposed metal electrodes in the topmost metal layer. In addition to the time-shared multiplexing readout of the analog output from Charge Sensitive Amplifiers in each pixel, hits are also generated through comparators in each pixel with individually adjustable thresholds. The hits are read out via a column-based priority logic structure, retaining both hit location and time information. The in-array column-based priority logic features with a full clock-less circuitry hence there is no continuously running clock distributed in the pixel and matrix logic. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments. We studied the detailed working behavior and performance of this readout, and demonstrated its functional validity and potential in imaging applications.

  7. Ligands, cell-based models, and readouts required for Toll-like receptor action.

    LENUS (Irish Health Repository)

    Dellacasagrande, Jerome

    2012-02-01

    This chapter details the tools that are available to study Toll-like receptor (TLR) biology in vitro. This includes ligands, host cells, and readouts. The use of modified TLRs to circumvent some technical problems is also discussed.

  8. Upgraded readout electronics for the ATLAS LAr Calorimeter at the High Luminosity LHC

    CERN Document Server

    Andeen, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background ejection rates. For the first upgrade phase [1] in 2018, new digital tower builder boards (sTBB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies a digital filtering and identifies sig...

  9. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    CERN Document Server

    Andeen, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background ejection rates. For the first upgrade phase cite{pahse1loi} in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies a digital filtering and id...

  10. Paper based electronics platform

    KAUST Repository

    Nassar, Joanna Mohammad; Sevilla, Galo Andres Torres; Hussain, Muhammad Mustafa

    2017-01-01

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors

  11. Highly segmented large-area hybrid photodiodes with bialkali photocathodes and enclosed VLSI readout electronics

    CERN Document Server

    Braem, André; Filthaut, Frank; Go, A; Joram, C; Weilhammer, Peter; Wicht, P; Dulinski, W; Séguinot, Jacques; Wenzel, H; Ypsilantis, Thomas

    2000-01-01

    We report on the principles, design, fabrication, and operation of a highly segmented, large-area hybrid photodiode, which is being developed in the framework of the LHCb RICH project. The device consists of a cylindrical, 127 mm diameter vacuum envelope capped with a spherical borosilicate UV-glass entrance window, with an active-to-total-area fraction of 81A fountain-focusing electron optics is used to demagnify the image onto a 50 mm diameter silicon sensor, containing 2048 pads of size 1*1 mm/sup 2/. (10 refs).

  12. Frequency-domain multiplex with eight-input SQUID and readout electronics over 1MHz

    International Nuclear Information System (INIS)

    Masui, K.; Takei, Y.; Ikeda, H.; Kimura, S.; Mitsuda, K.; Yamasaki, N.Y.

    2006-01-01

    In a magnetic summation method, TES and SQUID driving circuits are isolated and thus small crosstalk and stray impedance are expected. Since a FLL circuit with a large bandwidth and a small noise level is required for a SQUID, we designed and produced an electronics to meet our design of multiplexing with an 8-input SQUID. The FLL circuit achieved an open loop-gain bandwidth product of 8MHz with 1m wire length, which is enough for a TES to be operated with a bias current of 70μA, and a noise level of 30pA/Hz

  13. Electronics for the CMS muon drift tube chambers the read-out minicrate

    CERN Document Server

    Fernandez Bedoya, Cristina; Oller, Juan Carlos; Willmott, Carlos

    2005-01-01

    On the Compact Muon Solenoid (CMS) experimentat the Large Hadron Collider (LHC) at the CERN laboratory, the drift tube chambers are responsible for muon detection and precise momentum measurement. In this paper the first level of the read out electronics for these drift tube chambers is described. These drift tube chambers will be located inside the muon barrel detector in the so-called minicrates (MCs), attached to the chambers. The read out boards (ROBs) are the main component of this first level data acquisition system, and they are responsible for the time digitalization related to Level 1 Accept (L1A) trigger of the incoming signals from the front-end electronics, followed by a consequent data merging to the next stages of the data acquisition system. ROBs' architecture and functionality have been exhaustively tested, as well as their capability of operation beyond the expected environmental conditions inside the CMS detector. Due to the satisfactory results obtained, final production of ROBs and their a...

  14. X-ray acquisition and electronic digital readout by charge coupled devices

    International Nuclear Information System (INIS)

    Cavailler, C.; Launspach, J.; Mens, A.; Sauneuf, R.

    1985-09-01

    X-ray imaging adapted to laser-matter interaction experiments consists in recording plasma images from its X-ray emission; these phenomena have between 100 ps and some nanoseconds duration. Investigation of the laser-driven plasma may require the formation and the detection of two-dimensional images formed by X-ray microscopes or spectrometers in the soft X-ray range (from about 50 eV to some keV). To reach that purpose, we have developed and tested two opto-electronic chains. The first one is built around a small image converter tube with a soft X-ray photocathode and P20 phosphor screen deposited on a fiber optic plate; the electronic image appearing on the screen is read by a C.C.D. working in the visible spectral range. The second one, designed to work below 100eV is realized with a very thin phosphor screen deposited on the fiber optic input of a visible microchannel image intensifier; the output image is then read by a C.C.D. in the same manner than previously

  15. Upgrade readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  16. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  17. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  18. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    International Nuclear Information System (INIS)

    Thil, Ch.; Baron, A.Q.R.; Fajardo, P.; Fischer, P.; Graafsma, H.; Rueffer, R.

    2011-01-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm 2 active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280μmx280μm size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  19. The read-out electronics of the AMS prototype RICH detector

    International Nuclear Information System (INIS)

    Gallin-Martel, L.; Eraud, L.; Pouxe, J.; Aguayo de Hoyos, P.; Marin Munoz, J.; Martinez Botella, G.

    2003-01-01

    A Ring Imaging Cherenkov (RICH) counter dedicated to the AMS experiment is under development. An integrated circuit has been designed with the Austriamicrosystems 0.6 πm CMOS technology to process the signals of the 16 anode PMTs used in the photon detection. To improve the detector compactness, the read out electronics is placed very close to the PMTs. This lead to the design of a detection cell that comprises: a light guide, a PMT, a high voltage divider, an analog front end chip and an analog to digital converter. The analog front-end chips were extensively and successfully tested in a laboratory environment, 96 of them are now mounted on the RICH prototype. Tests with cosmic rays have started. Ion beam tests are planed in a near future. (authors)

  20. PCI Based Read-out Receiver Card in the ALICE DAQ System

    CERN Document Server

    Carena, W; Dénes, E; Divià, R; Schossmaier, K; Soós, C; Sulyán, J; Vascotto, Alessandro; Van de Vyvre, P

    2001-01-01

    The Detector Data Link (DDL) is the high-speed optical link for the ALICE experiment. This link shall transfer the data coming from the detectors at 100 MB/s rate. The main components of the link have been developed: the destination Interface Unit (DIU), the Source Interface Unit (SIU) and the Read-out Receiver Card (RORC). The first RORC version is based on the VME bus. The performance tests show that the maximum VME bandwidth could be reached. Meanwhile the PCI bus became very popular and is used in many platforms. The development of a PCI-based version has been started. The document describes the prototype version in three sections. An overview explains the main purpose of the card: to provide an interface between the DDL and the PCI bus. Acting as a 32bit/33MHz PCI master the card is able to write or read directly to or from the system memory from or to the DDL, respectively. Beside these functions the card can also be used as an autonomous data generator. The card has been designed to be well adapted to ...

  1. A VME-based readout system for the CMS Preshower sub-detector

    CERN Document Server

    Antchev, G; Bialas, W; Da Silva, J C; Kokkas, P; Manthos, N; Reynaud, S; Sidiropoulos, G; Snoeys, W; Vichoudis, P

    2007-01-01

    The CMS preshower is a fine grain detector that comprises 4288 silicon sensors, each containing 32 strips. The raw data are transferred from the detector to the counting room via 1208 optical fibres. Each fibre carries a 600-byte data packet per event. The maximum average level-1 trigger rate of 100 kHz results in a total data flow of ~72 GB/s from the preshower. For the readout of the preshower, 56 links to the CMS DAQ have been reserved, each having a bandwidth of 200 MB/s (2 kB/event). The total available downstream bandwidth of GB/s necessitates a reduction in the data volume by a factor of at least 7. A modular VME-based system is currently under development. The main objective of each VME board in this system is to acquire on-detector data from at least 22 optical links, perform on-line data reduction and pass the concentrated data to the CMS DAQ. The principle modules that the system is based on are being developed in collaboration with the TOTEM experiment.

  2. A full-scale prototype for the tracking chambers of the ALICE muon spectrometer. Part II- Electronics. Preamplifier; Read-out prototype

    Energy Technology Data Exchange (ETDEWEB)

    Courtat, P.; Charlet, D.; Lebon, S.; Martin, J.M.; Sellem, R.; Wanlin, E. [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service d' Electronique Physique; Douet, R.; Harroch, H.; Bimbot, L.; Jouan, D.; Kharmandarian, L.; Le Bornec, Y.; Mac Cormick, M.; Willis, N. [Paris-11 Univ., 91 - Orsay (France). Institut de Physique Nucleaire

    1999-07-01

    A full scale prototype of one module of the first tracking station has already been constructed. It will be equipped with the new read-out electronics proposed for the final chambers. Before integration of the whole chain, tests have been carried out on the individual components in discrete circuit prototypes. The different parts of the chain are described, together with the tests performed. The final version with integrated circuits in then described. (author)

  3. A full-scale prototype for the tracking chambers of the ALICE muon spectrometer. Part II- Electronics. Preamplifier; Read-out prototype

    International Nuclear Information System (INIS)

    Courtat, P.; Charlet, D.; Lebon, S.; Martin, J.M.; Sellem, R.; Wanlin, E.; Douet, R.; Harroch, H.; Bimbot, L.; Jouan, D.; Kharmandarian, L.; Le Bornec, Y.; Mac Cormick, M.; Willis, N.

    1999-01-01

    A full scale prototype of one module of the first tracking station has already been constructed. It will be equipped with the new read-out electronics proposed for the final chambers. Before integration of the whole chain, tests have been carried out on the individual components in discrete circuit prototypes. The different parts of the chain are described, together with the tests performed. The final version with integrated circuits in then described. (author)

  4. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    CERN Document Server

    Senkin, Sergey; The ATLAS collaboration

    2017-01-01

    We present a front-end readout system, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on 130 nm CMOS technology, FATALIC performs the full signal processing, including amplification, shaping and digitisation.

  5. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  6. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    International Nuclear Information System (INIS)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-01-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10 4  ≤ Q ≤ 2 × 10 4 and the square root of spectral density of current noise referred to the SQUID input √S I  = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S 21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P MR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S I is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P MR ) or the quantization noise due to the resolution of 300-K electronics (for large values of P MR ). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit

  7. The Trigger Readout Electronics for the Phase-1 Upgrade of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Wolff, Robert; The ATLAS collaboration

    2017-01-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the shut-down period of 2018-2019 (Phase-I upgrade), will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow a corresponding increase of the trigger rate, an improvement of the trigger system is required. The new trigger signals from the ATLAS Liquid Argon Calorimeter will be arranged in 34000 so-called Super Cells which achieve 5-10 times better granularity than the current system; this improves the background rejection capabilities through more precise energy measurements, and the use of shower shapes to discriminate electrons and photons from jets. The new system will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the back-end using a custom serializer and optical converter with 5.12 Gb/s. To verify the full functionality, a demonstrator set-up has been installed on the A...

  8. The ALICE silicon pixel detector front-end and read-out electronics

    CERN Document Server

    Kluge, A

    2006-01-01

    The ALICE silicon pixel detector (SPD) comprises the two innermost barrel layers of the ALICE inner tracker system. The SPD includes 120 half staves each of which consists of a linear array of 10 ALICE pixel chips bump bonded to two silicon sensors. Each pixel chip contains 8192 active cells, so the total number of pixel cells in the SPD is ≈107. The tight material budget and the limitation in physical dimensions required by the detector design introduce new challenges for the integration of the on-detector electronics. An essential part of the half stave is a low-mass multi-layer flex that carries power, ground, and signals to the pixel chips. Each half stave is read out using a multi-chip module (MCM). The MCM contains three radiation hard ASICs and an 800 Mbit/s custom developed optical link for the data transfer between the detector and the control room. The detector components are less than 3 mm thick. The production of the half-staves and MCMs is currently under way. Test results as well as on overvie...

  9. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  10. Timing and Readout Contorl in the LHCb Upgraded Readout System

    CERN Document Server

    Alessio, Federico

    2016-01-01

    In 2019, the LHCb experiment at CERN will undergo a major upgrade where its detectors electronics and entire readout system will be changed to read-out events at the full LHC rate of 40 MHz. In this paper, the new timing, trigger and readout control system for such upgrade is reviewed. Particular attention is given to the distribution of the clock, timing and synchronization information across the entire readout system using generic FTTH technology like Passive Optical Networks. Moreover the system will be responsible to generically control the Front-End electronics by transmitting configuration data and receiving monitoring data, offloading the software control system from the heavy task of manipulating complex protocols of thousands of Front-End electronics devices. The way in which this was implemented is here reviewed with a description of results from first implementations of the system, including usages in test-benches, implementation of techniques for timing distribution and latency control."

  11. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  12. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    Energy Technology Data Exchange (ETDEWEB)

    Siwak, N. P. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States); Fan, X. Z.; Ghodssi, R. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Kanakaraju, S.; Richardson, C. J. K. [Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States)

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We have fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.

  13. The LHCb RICH PMTs Readout Electronics and the Monitoring of the HPDs Quantum Efficiency

    CERN Document Server

    Villa, Marco; Matteuzzi, Clara; D'Ambrosio, Carmelo; Pessina, Gianluigi

    2007-01-01

    LHCb is one of the four main experiments under construction on the Large Hadron Collider at CERN. Its purpose is to study CP violation in B mesons and to look for new physics effects in rare decays of b-hadrons. Particle identification will be essential to enhance the signal/background ratio in the selection of physics channels. For this reason, the Ring Imaging Cherenkov technique has been implemented: two RICH detectors (RICH1 and RICH2) have been designed to cover the wide momentum range 1-150 GeV/c. The produced Cherenkov photons will be focused on two planes of Hybrid PhotoDetectors (HPDs), which are sensitive to external magnetic fields and then need to be shielded. Despite the shielding, however, there will be some fringe field inside the HPDs volume and so it is necessary to experimentally check what is the behaviour of each photodetector when the LHCb dipole magnet is on and the HPDs are illuminated by test patterns. In RICH2, two LED projectors based on the Digital Light Processing technology are ex...

  14. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  15. A 16-ch module for thermal neutron detection using ZnS:{sup 6}LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@psi.ch; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-11

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:{sup 6}LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current {sup 3}He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  16. A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    Science.gov (United States)

    Mosset, J.-B.; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-01

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:6LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current 3He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  17. Detector for the FSD Fourier-diffractometer based on ZnS(Ag)/6LiF scintillation screen and wavelength shifting fibers readout

    International Nuclear Information System (INIS)

    Kuz'min, E.S.; Balagurov, A.M.; Bokuchava, G.D.; Zhuk, V.V.; Kudryashev, V.A.; Bulkin, A.P.; Trunov, V.A.

    2001-01-01

    At the IBR-2 pulsed reactor (FLNP, JINR, Dubna), a specialized time-of-flight instrument Fourier-Stress-Diffractometer (FSD) intended for the measurement of internal stresses in bulk samples by using high-resolution neutron diffraction is under construction. One of the main components of the diffractometer is a new-type detector with combined electronic - geometrical focusing uniting a large solid angle and a small geometry contribution to the instrumental resolution. The first two modules of the detector, based on scintillation screen ZnS(Ag)/ 6 LiF with wavelength shifting fibers readout have been developed and tested. The design of the detector and associated electronics are described. The method of time focusing surface approximation, using the screen flexibility is proposed. Characteristics of the tested modules in comparison with a detector of the previous generation are presented and advantages of the new detector design for high-resolution diffractometry are discussed

  18. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, M.; Bassini, R.; Berg, A.M. van den; Ellinghaus, F.; Frekers, D.; Hannen, V.M.; Haeupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Kruesemann, B.; Rakers, S.; Sohlbach, H.; Woertche, H.J. E-mail: wortche@ikp.uni-muenster.de

    1999-11-21

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0 deg. . For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  19. Security of Quantum-Readout PUFs against quadrature based challenge estimation attacks

    NARCIS (Netherlands)

    Skoric, B.; Mosk, Allard; Pinkse, Pepijn Willemszoon Harry

    2013-01-01

    The concept of quantum-secure readout of Physical Unclonable Functions (PUFs) has recently been realized experimentally in an optical PUF system. We analyze the security of this system under the strongest type of classical attack: the challenge estimation attack. The adversary performs a measurement

  20. 3D printed flexible capacitive force sensor with a simple micro-controller based readout

    NARCIS (Netherlands)

    Schouten, Martijn G.; Sanders, Remco; Krijnen, Gijs

    2017-01-01

    This paper describes the development of a proof of principle of a flexible force sensor and the corresponding readout circuit. The flexible force sensor consists of a parallel plate capacitor that is 3D printed using regular and conductive thermoplastic poly-urethane (TPU). The capacitance change

  1. Development of a prototype PET scanner with depth-of-interaction measurement using solid-state photomultiplier arrays and parallel readout electronics.

    Science.gov (United States)

    Shao, Yiping; Sun, Xishan; Lan, Kejian A; Bircher, Chad; Lou, Kai; Deng, Zhi

    2014-03-07

    In this study, we developed a prototype animal PET by applying several novel technologies to use solid-state photomultiplier (SSPM) arrays to measure the depth of interaction (DOI) and improve imaging performance. Each PET detector has an 8 × 8 array of about 1.9 × 1.9 × 30.0 mm(3) lutetium-yttrium-oxyorthosilicate scintillators, with each end optically connected to an SSPM array (16 channels in a 4 × 4 matrix) through a light guide to enable continuous DOI measurement. Each SSPM has an active area of about 3 × 3 mm(2), and its output is read by a custom-developed application-specific integrated circuit to directly convert analogue signals to digital timing pulses that encode the interaction information. These pulses are transferred to and are decoded by a field-programmable gate array-based time-to-digital convertor for coincident event selection and data acquisition. The independent readout of each SSPM and the parallel signal process can significantly improve the signal-to-noise ratio and enable the use of flexible algorithms for different data processes. The prototype PET consists of two rotating detector panels on a portable gantry with four detectors in each panel to provide 16 mm axial and variable transaxial field-of-view (FOV) sizes. List-mode ordered subset expectation maximization image reconstruction was implemented. The measured mean energy, coincidence timing and DOI resolution for a crystal were about 17.6%, 2.8 ns and 5.6 mm, respectively. The measured transaxial resolutions at the center of the FOV were 2.0 mm and 2.3 mm for images reconstructed with and without DOI, respectively. In addition, the resolutions across the FOV with DOI were substantially better than those without DOI. The quality of PET images of both a hot-rod phantom and mouse acquired with DOI was much higher than that of images obtained without DOI. This study demonstrates that SSPM arrays and advanced readout/processing electronics can be used to develop a practical DOI

  2. An FPGA-based slowcontrol module and a baseline shifting extension card for the sampling-ADC readout of the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Urff, Georg; Poller, Timo [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    At the electron accelerator ELSA (Bonn) the CBELSA/TAPS experiment investigates the photoproduction of mesons off protons and neutrons. The CsI(Tl)-crystals of the Crystal Barrel calorimeter are being upgraded from a PIN-diode readout to an APD readout. In the context of this upgrade, an FPGA-based Sampling-ADC (SADC) is presently being developed (HK 304). A Slow-control Module for the SADC with TCP/Telnet access has been developed on the basis of a Spartan6 FPGA. Control and monitoring of the SADC's power supply as well as control of parameters of the analog and digital data processing in the SADC is realized via PMBus/I{sup 2}C. The prototype as well as an overview of its functionality will be presented. In order to fully utilize the dynamic input range of the SADCs, an interfacing extension board was designed. It receives the differential signal generated by previous amplification stages and adds an individual DC offset voltage to each channel supplied by a digital-to-analog converter. The circuit and the used techniques as well as simulations and measurements are presented.

  3. Functional tests of 2S modules for the CMS Phase-2 Tracker Upgrade with a MicroTCA-based readout system

    CERN Document Server

    Preuten, Marius; Klein, Katja; Lipinski, Martin; Rauch, Max; Feld, Lutz

    2017-01-01

    First full size 2S module prototypes for the CMS Phase-2 Outer Tracker Upgrade have been assembled. With two sensors of realistic dimensions and 16 CBC2 readout ASICs on two front-end hybrids, the characteristics of these novel and complex objects can be studied.A MicroTCA based readout system was developed to test multiple front-end hybrids simultaneously. Therefore the concurrent information of the full module can be used for noise and signal studies.

  4. The Young-Feynman two-slits experiment with single electrons: Build-up of the interference pattern and arrival-time distribution using a fast-readout pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Frabboni, Stefano [Department of Physics, University of Modena and Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy); CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Gabrielli, Alessandro [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); INFN, Viale B. Pichat 6/2, 40127 Bologna (Italy); Carlo Gazzadi, Gian [CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Giorgi, Filippo [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); INFN, Viale B. Pichat 6/2, 40127 Bologna (Italy); Matteucci, Giorgio [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); Pozzi, Giulio, E-mail: giulio.pozzi@unibo.it [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); Cesari, Nicola Semprini; Villa, Mauro; Zoccoli, Antonio [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); INFN, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2012-05-15

    The two-slits experiment for single electrons has been carried out by inserting in a conventional transmission electron microscope a thick sample with two nano-slits fabricated by Focused Ion Beam technique and a fast recording system able to measure the electron arrival-time. The detector, designed for experiments in future colliders, is based on a custom CMOS chip equipped with a fast readout chain able to manage up to 10{sup 6} frames per second. In this way, high statistic samples of single electron events can be collected within a time interval short enough to measure the distribution of the electron arrival-times and to observe the build-up of the interference pattern. -- Highlights: Black-Right-Pointing-Pointer We present the first results obtained regarding the two-slits Young-Feynman experiment with single electrons. Black-Right-Pointing-Pointer We use two nano-slits fabricated by Focused Ion Beam technique. Black-Right-Pointing-Pointer We insert in the transmission electron microscope a detector, designed for experiments in future colliders. Black-Right-Pointing-Pointer We record the build-up of high statistic single electron interference patterns. Black-Right-Pointing-Pointer We measure the time distribution of electron arrivals.

  5. Development of a beam test telescope based on the Alibava readout system

    International Nuclear Information System (INIS)

    Marco-Hernandez, R

    2011-01-01

    A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectronica (CNM) of Barcelona and Instituto de Fisica Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.

  6. Development of a beam test telescope based on the Alibava readout system

    Science.gov (United States)

    Marco-Hernández, R.

    2011-01-01

    A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectrónica (CNM) of Barcelona and Instituto de Física Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.

  7. Development of a beam test telescope based on the Alibava readout system

    Energy Technology Data Exchange (ETDEWEB)

    Marco-Hernandez, R, E-mail: rmarco@ific.uv.es [Intituto de Fisica Corpuscular (CSIC-UV), Edificicio Institutos de Investigacion, PolIgono de La Coma, s/n. E-46980 Paterna (Valencia) (Spain)

    2011-01-15

    A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectronica (CNM) of Barcelona and Instituto de Fisica Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.

  8. Transistor amplifier as an electrochemical transducer with intuitive optical read-out: Improving its performance with simple electronic solutions

    Czech Academy of Sciences Publication Activity Database

    Lacina, K.; Žák, J.; Sopoušek, J.; Szabó, Z.; Václavek, Tomáš; Žeravík, J.; Fiala, P.; Skládal, P.

    2016-01-01

    Roč. 216, OCT (2016), s. 147-151 ISSN 0013-4686 R&D Projects: GA ČR GA13-09086S; GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : electrochemical transducer transistor * operational amplifier * optical read-out * ( bio )sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.798, year: 2016

  9. Transistor amplifier as an electrochemical transducer with intuitive optical read-out: Improving its performance with simple electronic solutions

    Czech Academy of Sciences Publication Activity Database

    Lacina, K.; Žák, J.; Sopoušek, J.; Szabó, Z.; Václavek, Tomáš; Žeravík, J.; Fiala, P.; Skládal, P.

    2016-01-01

    Roč. 216, OCT (2016), s. 147-151 ISSN 0013-4686 R&D Projects: GA ČR GA13-09086S; GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : electrochemical transducer transistor * operational amplifier * optical read-out * (bio)sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.798, year: 2016

  10. Optimisation of the Read-out Electronics of Muon Drift-Tube Chambers for Very High Background Rates at HL-LHC and Future Colliders

    CERN Document Server

    Nowak, Sebastian; Gadow, Philipp; Ecker, Katharina; Fink, David; Fras, Markus; Kortner, Oliver; Kroha, Hubert; Müller, Felix; Richter, Robert; Schmid, Clemens; Schmidt-Sommerfeld, Korbinian; Zhao, Yazhou

    2016-01-01

    In the ATLAS Muon Spectrometer, Monitored Drift Tube (MDT) chambers and sMDT chambers with half of the tube diameter of the MDTs are used for precision muon track reconstruction. The sMDT chambers are designed for operation at high counting rates due to neutron and gamma background irradiation expected for the HL-LHC and future hadron colliders. The existing MDT read-out electronics uses bipolar signal shaping which causes an undershoot of opposite polarity and same charge after a signal pulse. At high counting rates and short electronics dead time used for the sMDTs, signal pulses pile up on the undershoot of preceding background pulses leading to a reduction of the signal amplitude and a jitter in the drift time measurement and, therefore, to a degradation of drift tube efficiency and spatial resolution. In order to further increase the rate capability of sMDT tubes, baseline restoration can be used in the read-out electronics to suppress the pile-up effects. A discrete bipolar shaping circuit with baseline...

  11. Leakage current-induced effects in the silicon microstrip and gas electron multiplier readout chain and their compensation method

    Science.gov (United States)

    Zubrzycka, W.; Kasinski, K.

    2018-04-01

    Leakage current flowing into the charge sensitive amplifier (CSA) is a common issue in many radiation detection systems as it can increase overall system noise, shift a DC baseline or even lead a recording channel to instability. The commonly known leakage current contributor is a detector, however other system components like wires or an input protection circuit may become a serious problem. Compensation of the leakage current resulting from the electrostatic discharge (ESD) protection circuit by properly sizing its components is possible only for a narrow temperature range. Moreover, the leakage current from external sources can be significantly larger. Many applications, especially High Energy Physics (HEP) experiments, require a fast baseline restoration for high input hit rates by applying either a low-value feedback resistor or a high feedback resistance combined with a pulsed reset circuit. Leakage current flowing in the feedback in conjunction with a large feedback resistance supplied with a pulsed reset results in a significant voltage offset between the CSA input and output which can cause problems (e.g. fake hits or instability). This paper shows an issue referred to the leakage current of the ESD protection circuit flowing into the input amplifier. The following analysis and proposed solution is a result of the time and energy readout ASIC project realization for the Compressed Baryonic Matter (CBM) experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. This chip is purposed to work with microstrip and gaseous detectors, with high average input pulses frequencies (250 kHit/s per channel) and the possibility to process input charge of both polarities. We present measurements of the test structure fabricated in UMC 180 nm technology and propose a solution addressing leakage current related issues. This work combines the leakage current compensation capabilities at the CSA level with high, controllable value of the amplifier

  12. Readout of the upgraded ALICE-ITS

    Science.gov (United States)

    Szczepankiewicz, A.; ALICE Collaboration

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  13. Readout of the upgraded ALICE-ITS

    International Nuclear Information System (INIS)

    Szczepankiewicz, A.

    2016-01-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  14. Readout of the upgraded ALICE-ITS

    Energy Technology Data Exchange (ETDEWEB)

    Szczepankiewicz, A., E-mail: Adam.Szczepankiewicz@cern.ch [CERN, Geneva (Switzerland); Institute of Computer Science, Warsaw University of Technology, Warsaw (Poland)

    2016-07-11

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb–Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  15. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2016-11-01

    Full Text Available The detection of environmental mercury (Hg contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone, which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg2+, which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs. The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg2+ concentration in the range of 1 ng/mL–32 ng/mL with a correlation of 0.991, and a limit of detection (LOD of 0.28 ng/mL for Hg2+. The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.

  16. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor.

    Science.gov (United States)

    Xiao, Wei; Xiao, Meng; Fu, Qiangqiang; Yu, Shiting; Shen, Haicong; Bian, Hongfen; Tang, Yong

    2016-11-08

    The detection of environmental mercury (Hg) contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg 2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg 2+ , which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg 2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg 2+ concentration in the range of 1 ng/mL-32 ng/mL with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg 2+ . The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.

  17. First realization of a tracking detector for high energy physics experiments based on Josephson digital readout circuitry

    CERN Document Server

    Pagano, S; Esposito, A P; Mukhanov, O; Rylov, S

    1999-01-01

    We have designed and realized a prototype of a high energy particle microstrip detector with Josephson readout circuits. The key features of this device are: minimum ionizing particle sensitivity, due to the use of semiconductive sensors, fast speed and radiation hardness, due to the use of superconductive circuitry, and current discrimination, which allows the use of several types of semiconductors as detector (Si, GaAs, CVD-diamond) without loss in performances. The Josephson circuitry, made by a combination of RSFQ and latching logic gates, realizes an 8-bit current discriminator and parallel to serial converter and can be directly interfaced to room temperature electronics. This device, which is designed for application as vertex detector for the Compass and LHC-B accelerator experiments, has been tested with small radioactive sources acid will undergo to a test beam at the CERN SPS facility with 24 GeV/c protons. Current results and future perspectives will be reported. (11 refs).

  18. Energy dependence of EBT-1 radiochromic film response for photon (10 kvp-15 MVp) and electron beams (6-18 MeV) readout by a flatbed scanner.

    Science.gov (United States)

    Richter, Christian; Pawelke, Jörg; Karsch, Leonhard; Woithe, Julia

    2009-12-01

    The aim of this article is to investigate the energy dependence of the radiochromic film type, Gafchromic EBT-1, when scanned with a flatbed scanner for film readout. Dose response curves were determined for 12 different beam qualities ranging from a 10 kVp x-ray beam to a 15 MVp x-ray beam and include also two high energy electron beam qualities (6 and 18 MeV). The dose responses measured as net optical density (netOD) for the different beam qualities were normalized to the response of a reference beam quality (6 MVp). A strong systematic energy dependence of the film response was found. The lower the effective beam energy, the less sensitive the EBT-1 films get. The maximum decrease in dose for the same film response between the 25 kVp and 6 MVp beam qualities was 44%. Additionally, a difference in energy dependence for different doses was discovered, meaning that higher doses show a smaller dependency on energy than lower doses. The maximum decrease in the normalized netOD was found to be 25% for a dose of 0.5 Gy relative to the normalized netOD for 10 Gy. Moreover, a scaling procedure is introduced, allowing the correction of the energy dependence for the investigated beam qualities and also for comparable x-ray beam qualities within the energy range studied. A strong energy dependence for EBT-1 radiochromic films was found. The films were readout with a flatbed scanner. If the effective beam energy is known, the energy dependence can be corrected with the introduced scaling procedure. Further investigation of the influence of the spectral band of the readout device on energy dependence is needed to understand the reason for the different energy dependences found in this and previous works.

  19. Comparison between two possible CMS Barrel Muon Readout Architectures

    International Nuclear Information System (INIS)

    Aguayo, P.; Barcala, J.M.; Molinero, A.; Pablos, J.L.; Willmott, C.; Alberdi, J.; Marin, J.; Navarrete, J.; Romero, L.

    1997-01-01

    A comparison between two possible readout arquitectures for the CMS muon barrel readout electronics is presented, including various aspects like costs, reliability, installation, staging and maintenance. A review of the present baseline architecture is given in the appendix. (Author)

  20. A compact readout system for multi-pixel hybrid photodiodes

    International Nuclear Information System (INIS)

    Datema, C.P.; Meng, L.J.; Ramsden, D.

    1999-01-01

    Although the first Multi-pixel Hybrid Photodiode (M-HPD) was developed in the early 1990s by Delft Electronic Products, the main obstacle to its application has been the lack of availability of a compact read-out system. A fast, parallel readout system has been constructed for use with the earlier 25-pixel tube with High-energy Physics applications in mind. The excellent properties of the recently developed multi-pixel hybrid photodiodes (M-HPD) will be easier to exploit following the development of the new hybrid read-out circuits described in this paper. This system will enable all of the required read-out functions to be accommodate on a single board into which the M-HPD is plugged. The design and performance of a versatile system is described in which a trigger-signal, derived from the common-side of the silicon anode in the M-HPD, is used to trigger the readout of the 60-anode pixels in the M-HPD. The multi-channel amplifier section is based on the use of a new, commercial VLSI chip, whilst the read-out sequencer uses a chip of its own design. The common anode signal is processed by a fast amplifier and discriminator to provide a trigger signal when a single event is detected. In the prototype version, the serial analogue output data-stream is processed using a PC-mounted, high speed ADC. Results obtained using the new read-out system in a compact gamma-camera and with a small muon tracking-chamber demonstrate the low-noise performance of the system. The application of this read-out system in other position-sensitive or multi-anode photomultiplier tube applications are also described

  1. A Novel Data Acquisition System Based on Fast Optical Links and Universal Readout Boards

    CERN Document Server

    Korcyl, Grzegorz

    2015-01-01

    Various scale measurement systems are composed of the sensors providing data through the data acquisition system to the archiving facility. The scale of such systems is determined by the number of sensors that require processing and can vary from few up to hundreds of thousands. The number and the type of sensors impose several requirements on the data acquisition system like readout frequency, measurement precision and online analysis algorithms. The most challenging application s are the large scale experiments in nuclear and particle physics . This thesis presents a concept , construction and tests of a modular and scalable, tree - structured architecture of a data acquisition system. The system is composed out of two logical elemen ts: endpoints which are the modules providing data and hubs that concentrate the data streams from the endpoints and provide connectivity with the rest of the system. Those two logica...

  2. Software for FASTBUS and Motorola 68K based readout controllers for data acquisition

    International Nuclear Information System (INIS)

    Pordes, R.; Bernett, M.; Dorries, T.; Haire, M.; Moore, C.; Oleynik, G.; Votava, M.

    1989-01-01

    Many High Energy Physics experiments at Fermilab are now including FASTBUS front-ends in their data acquisition systems. The requirements on controllers to readout and control these FASTBUS systems are increasing in complexity and speed. The Data Acquisition Software Group has designed general software for front end 68Κ processor boards housed in FASTBUS or VME to meet these needs. The first implementation has been developed for the General Purpose FASTBUS Master (GPM). This software is being ported to the FASTBUS Smart Crate Controller under development at Fermilab. The software is designed, using structured analysis tools and coding in C, to be easily portable in the future to new processor boards. As part of their extended support for FASTBUS, they have enhanced their software for the intelligent LeCroy 1821 FASTBUS interface and implemented the FASTBUS standard routines for the VAX/VMS operating system

  3. A digital Front-End and Readout MIcrosystem for calorimetry at LHC

    CERN Multimedia

    2002-01-01

    % RD-16 A Digital Front-End and Readout Microsystem for Calorimetry at LHC \\\\ \\\\Front-end signal processing for calorimetric detectors is essential in order to achieve adequate selectivity in the trigger function of an LHC experiment, with data identification and compaction before readout being required in the harsh, high rate environment of a high luminosity hadron machine. Other crucial considerations are the extremely wide dynamic range and bandwidth requirements, as well as the volume of data to be transferred to following stages of the trigger and readout system. These requirements are best met by an early digitalization of the detector information, followed by integrated digital signal processing and buffering functions covering the trigger latencies.\\\\ \\\\The FERMI (Front-End Readout MIcrosystem) is a digital implementation of the front-end and readout electronic chain for calorimeters. It is based on dynamic range compression, high speed A to D converters, a fully programmable pipeline/digital filter c...

  4. The pipelined readout for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Hervas, L.

    1991-01-01

    The electron-proton storage ring complex HERA under construction at DESY in Hamburg is the first machine of a new generation of colliders. Since physics to be studied at HERA (covered in chapter 2) base on the precise measurement of kinematic variables over a very large range of energies, a foremost emphasis is set in calorimetry. After long studies and an ambitious test program, the ZEUS collaboration has built a high resolution depleted uranium-scintillator calorimeter with photomultiplier readout, the state of the art in detectors of this type. In chapter 3 the principles of calorimetry are reviewed and the construction of the ZEUS calorimeter is described. Mainly due to the large dynamic range and the short bunch crossing times a novel concept for the readout in an analog pipelined fashion had to be designed. This concept is explained in chapter 4. The solid state implementation of the pipeline required two integrated circuits which were developed specially for the ZEUS calorimeter in collaboration with an electronics research institute and produced by industry. The design and construction of these devices and the detailed testing which has been performed for properties critical in the readout is covered in chapters 5 and 6. The whole pipelined readout is a complicated setup with many steps and collaborating systems. Its implementation and the information to operate it are covered in chapter 7. Finally the concepts presented and the applications discussed have been installed and tested on a test beam calibration experiment. There, the modules of the calorimeter have been calibrated. Chapter 8 presents results from these measurements which show excellent performance of the electronics as well as optimal properties of the calorimeter modules. (orig./HSI)

  5. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  6. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  7. Feasibility studies on the direct wire readout on wire scanners in electron accelerators; Durchfuehrbarkeitsstudien zur direkten Drahtauslese an Wirescannern in Elektronen-Beschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Michael

    2010-10-15

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  8. A two-dimensional detector with delay line readout for slow neutron fields measurements

    International Nuclear Information System (INIS)

    Cheremukhina, G.A.; Chernenko, S.P.; Ivanov, A.B.

    1992-01-01

    This article presents the description of a two-dimensional detector of slow neutrons together with its readout and data acquisition electronics based on a PC/AT> The detector with a sensitive area of 260x140 mm 2 is based on a high pressure multiwire proportional chamber with delay line readout and gas filling of 3.0 atm. 3 He + propane. 25 refs.; 10 figs.; 2 tabs

  9. Vertically integrated pixel readout chip for high energy physics

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 (micro)m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 (micro)m 2 pixels, laid out in an array of 48 x 48 pixels.

  10. Triggerless Readout with Time and Amplitude Reconstruction of Event Based on Deconvolution Algorithm

    International Nuclear Information System (INIS)

    Kulis, S.; Idzik, M.

    2011-01-01

    In future linear colliders like CLIC, where the period between the bunch crossings is in a sub-nanoseconds range ( 500 ps), an appropriate detection technique with triggerless signal processing is needed. In this work we discuss a technique, based on deconvolution algorithm, suitable for time and amplitude reconstruction of an event. In the implemented method the output of a relatively slow shaper (many bunch crossing periods) is sampled and digitalised in an ADC and then the deconvolution procedure is applied to digital data. The time of an event can be found with a precision of few percent of sampling time. The signal to noise ratio is only slightly decreased after passing through the deconvolution filter. The performed theoretical and Monte Carlo studies are confirmed by the results of preliminary measurements obtained with the dedicated system comprising of radiation source, silicon sensor, front-end electronics, ADC and further digital processing implemented on a PC computer. (author)

  11. Investigation of high resolution compact gamma camera module based on a continuous scintillation crystal using a novel charge division readout method

    International Nuclear Information System (INIS)

    Dai Qiusheng; Zhao Cuilan; Qi Yujin; Zhang Hualin

    2010-01-01

    The objective of this study is to investigate a high performance and lower cost compact gamma camera module for a multi-head small animal SPECT system. A compact camera module was developed using a thin Lutetium Oxyorthosilicate (LSO) scintillation crystal slice coupled to a Hamamatsu H8500 position sensitive photomultiplier tube (PSPMT). A two-stage charge division readout board based on a novel subtractive resistive readout with a truncated center-of-gravity (TCOG) positioning method was developed for the camera. The performance of the camera was evaluated using a flood 99m Tc source with a four-quadrant bar-mask phantom. The preliminary experimental results show that the image shrinkage problem associated with the conventional resistive readout can be effectively overcome by the novel subtractive resistive readout with an appropriate fraction subtraction factor. The response output area (ROA) of the camera shown in the flood image was improved up to 34%, and an intrinsic spatial resolution better than 2 mm of detector was achieved. In conclusion, the utilization of a continuous scintillation crystal and a flat-panel PSPMT equipped with a novel subtractive resistive readout is a feasible approach for developing a high performance and lower cost compact gamma camera. (authors)

  12. Design of the new front-end electronics for the readout of the upgraded CMS electromagnetic calorimeter for the HL-LHC

    CERN Document Server

    Cometti, Simona

    2017-01-01

    The Compact Muon Solenoid detector was originally designed to operate for about ten years, for LHC instantaneous luminosities up to $1 \\cdot 10^{34}$ cm$^{-2}$ s$^{-1}$ and integrated luminosity of 500 fb$^{-1}$. The High Luminosity LHC will increase the instantaneous luminosity by about a factor of 5 from current levels and CMS will accumulate an integrated luminosity of 3000 fb$^{-1}$ by about 2035. With such high luminosity the electromagnetic calorimeter of CMS will have to cope with a challenging increase in the number of interactions per bunch crossing and in radiation levels. The front-end readout electronics will be completely redesigned, with the goals of providing precision timing, low noise and added flexibility in the trigger system. It will use a faster pre-amplifier, increase the sampling frequency from 40 MS/s to 160 MS/s and implement a trigger system that resides entirely off-detector.

  13. A self contained Linux based data acquisition system for 2D detectors with delay line readout

    International Nuclear Information System (INIS)

    Beltran, D.; Toledo, J.; Klora, A.C.; Ramos-Lerate, I.; Martinez, J.C.

    2007-01-01

    This article describes a fast and self-contained data acquisition system for 2D gas-filled detectors with delay line readout. It allows the realization of time resolved experiments in the millisecond scale. The acquisition system comprises of an industrial PC running Linux, a commercial time-to-digital converter and an in-house developed histogramming PCI card. The PC provides a mass storage for images and a graphical user interface for system monitoring and control. The histogramming card builds images with a maximum count rate of 5 MHz limited by the time-to-digital converter. Histograms are transferred to the PC at 85 MB/s. This card also includes a time frame generator, a calibration channel unit and eight digital outputs for experiment control. The control software was developed for easy integration into a beamline, including scans. The system is fully operational at the Spanish beamline BM16 at the ESRF in France, the neutron beamlines Adam and Eva at the ILL in France, the Max Plank Institute in Stuttgart in Germany, the University of Copenhagen in Denmark and at the future ALBA synchrotron in Spain. Some representative collected images from synchrotron and neutron beamlines are presented

  14. Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics.

    Science.gov (United States)

    Donolato, Marco; Antunes, Paula; Bejhed, Rebecca S; Zardán Gómez de la Torre, Teresa; Østerberg, Frederik W; Strömberg, Mattias; Nilsson, Mats; Strømme, Maria; Svedlindh, Peter; Hansen, Mikkel F; Vavassori, Paolo

    2015-02-03

    We demonstrate detection of DNA coils formed from a Vibrio cholerae DNA target at picomolar concentrations using a novel optomagnetic approach exploiting the dynamic behavior and optical anisotropy of magnetic nanobead (MNB) assemblies. We establish that the complex second harmonic optical transmission spectra of MNB suspensions measured upon application of a weak uniaxial AC magnetic field correlate well with the rotation dynamics of the individual MNBs. Adding a target analyte to the solution leads to the formation of permanent MNB clusters, namely, to the suppression of the dynamic MNB behavior. We prove that the optical transmission spectra are highly sensitive to the formation of permanent MNB clusters and, thereby to the target analyte concentration. As a specific clinically relevant diagnostic case, we detect DNA coils formed via padlock probe recognition and isothermal rolling circle amplification and benchmark against a commercial equipment. The results demonstrate the fast optomagnetic readout of rolling circle products from bacterial DNA utilizing the dynamic properties of MNBs in a miniaturized and low-cost platform requiring only a transparent window in the chip.

  15. Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    Science.gov (United States)

    Betancourt, C.; Blondel, A.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, A.; Mermod, P.; Noah, E.; Serra, N.; Sgalaberna, D.; Storaci, B.

    2017-11-01

    In this study an array of eight 6 mm × 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm × 6 cm × 1 cm and 120 cm × 11 cm × 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results.

  16. arXiv Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    CERN Document Server

    Betancourt, C.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, Alexander; Mermod, P.; Noah, E.; Serra, N.; Sgalaberna, D.; Storaci, B.

    2017-11-27

    In this study an array of eight 6 mm × 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm × 6 cm × 1 cm and 120 cm × 11 cm × 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results.

  17. A readout buffer prototype for ATLAS high-level triggers

    CERN Document Server

    Calvet, D; Huet, M; Le Dû, P; Mandjavidze, I D; Mur, M

    2001-01-01

    Readout buffers are critical components in the dataflow chain of the ATLAS trigger/data-acquisition system. At up to 75 kHz, after each Level-1 trigger accept signal, these devices receive and store digitized data from groups of front-end electronic channels. Several readout buffers are grouped to form a readout buffer complex that acts as a data server for the high-level trigger selection algorithms and for the final data-collection system. This paper describes a functional prototype of a readout buffer based on a custom-made PCI mezzanine card that is designed to accept input data at up to 160 MB /s, to store up to 8 MB of data, and to distribute data chunks at the desired request rate. We describe the hardware of the card that is based on an Intel 1960 processor and complex programmable logic devices. We present the integration of several of these cards in a readout buffer complex. We measure various performance figures and discuss to which extent these can fulfil ATLAS needs. (5 refs).

  18. DVD Based Electronic Pulser

    International Nuclear Information System (INIS)

    Morris, Scott J.; Pratt, Rick M.; Hughes, Michael A.; Kouzes, Richard T.; Pitts, W K.; Robinson, Eric E.

    2005-01-01

    This paper describes the design, construction, and testing of a DVD based electronic pulser system (DVDEPS). Such a device is used to generate pulse streams for simulation of both gamma and neutron detector systems. The DVDEPS reproduces a random pulse stream of a full HPGe spectrum as well as a digital pulse stream representing the output of a neutron multiplicity detector. The exchangeable DVD media contains over an hour of data for both detector systems and can contain an arbitrary gamma spectrum and neutron pulse stream. The data is written to the DVD using a desktop computer program from either actual or simulated spectra. The targeted use of the DVDEPS is authentication or validation of monitoring equipment for non-proliferation purposes, but it is also of general use whenever a complex data stream is required. The DVD based pulser combines the storage capacity and simplicity of DVD technology with commonly available electronic components to build a relatively inexpensive yet highly capable testing instrument

  19. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    International Nuclear Information System (INIS)

    Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho

    2014-01-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs

  20. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    Science.gov (United States)

    Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim

    2014-05-01

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.

  1. Paper based electronics platform

    KAUST Repository

    Nassar, Joanna Mohammad

    2017-07-20

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors are provided. A method of producing a paper based sensor can include the steps of: a) providing a conventional paper product to serve as a substrate for the sensor or as an active material for the sensor or both, the paper product not further treated or functionalized; and b) applying a sensing element to the paper substrate, the sensing element selected from the group consisting of a conductive material, the conductive material providing contacts and interconnects, sensitive material film that exhibits sensitivity to pH levels, a compressible and/or porous material disposed between a pair of opposed conductive elements, or a combination of two of more said sensing elements. The method of sensing can further include measuring, using the sensing element, a change in resistance, a change in voltage, a change in current, a change in capacitance, or a combination of any two or more thereof.

  2. Looking at Earth from space: Direct readout from environmental satellites

    Science.gov (United States)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  3. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  4. Time-Based Readout of a Silicon Photomultiplier (SiPM) for Time of Flight Positron Emission Tomography (TOF-PET)

    CERN Document Server

    Powolny, F; Brunner, S E; Hillemanns, H; Meyer, T; Garutti, E; Williams, M C S; Auffray, E; Shen, W; Goettlich, M; Jarron, P; Schultz-Coulon, H C

    2011-01-01

    Time of flight (TOF) measurements in positron emission tomography (PET) are very challenging in terms of timing performance, and should ideally achieve less than 100 ps FWHM precision. We present a time-based differential technique to read out silicon photomultipliers (SiPMs) which has less than 20 ps FWHM electronic jitter. The novel readout is a fast front end circuit (NINO) based on a first stage differential current mode amplifier with 20 Omega input resistance. Therefore the amplifier inputs are connected differentially to the SiPM's anode and cathode ports. The leading edge of the output signal provides the time information, while the trailing edge provides the energy information. Based on a Monte Carlo photon-generation model, HSPICE simulations were run with a 3 x 3 mm(2) SiPM-model, read out with a differential current amplifier. The results of these simulations are presented here and compared with experimental data obtained with a 3 x 3 x 15 mm(3) LSO crystal coupled to a SiPM. The measured time coi...

  5. A Novel Time-Based Readout Scheme for a Combined PET-CT Detector Using APDs

    CERN Document Server

    Powolny, F; Hillemanns, H; Jarron, P; Lecoq, P; Meyer, T C; Moraes, D

    2008-01-01

    This paper summarizes CERN R&D work done in the framework of the European Commission's FP6 BioCare Project. The objective was to develop a novel "time-based" signal processing technique to read out LSO-APD photodetectors for medical imaging. An important aspect was to employ the technique in a combined scenario for both computer tomography (CT) and positron emission tomography (PET) with effectively no tradeoffs in efficiency and resolution compared to traditional single mode machines. This made the use of low noise and yet very high-speed monolithic front-end electronics essential so as to assure the required timing characteristics together with a high signal-to-noise ratio. Using APDs for photon detection, two chips, traditionally employed for particle physics, could be identified to meet the above criteria. Although both were not optimized for their intended new medical application, excellent performance in conjunction with LSO-APD sensors could be derived. Whereas a measured energy resolution of 16% (...

  6. Micromachined piezoresistive inclinometer with oscillator-based integrated interface circuit and temperature readout

    International Nuclear Information System (INIS)

    Dalola, Simone; Ferrari, Vittorio; Marioli, Daniele

    2012-01-01

    In this paper a dual-chip system for inclination measurement is presented. It consists of a MEMS (microelectromechanical system) piezoresistive accelerometer manufactured in silicon bulk micromachining and a CMOS (complementary metal oxide semiconductor) ASIC (application specific integrated circuit) interface designed for resistive-bridge sensors. The sensor is composed of a seismic mass symmetrically suspended by means of four flexure beams that integrate two piezoresistors each to detect the applied static acceleration, which is related to inclination with respect to the gravity vector. The ASIC interface is based on a relaxation oscillator where the frequency and the duty cycle of a rectangular-wave output signal are related to the fractional bridge imbalance and the overall bridge resistance of the sensor, respectively. The latter is a function of temperature; therefore the sensing element itself can be advantageously used to derive information for its own thermal compensation. DC current excitation of the sensor makes the configuration unaffected by wire resistances and parasitic capacitances. Therefore, a modular system results where the sensor can be placed remotely from the electronics without suffering accuracy degradation. The inclination measurement system has been characterized as a function of the applied inclination angle at different temperatures. At room temperature, the experimental sensitivity of the system results in about 148 Hz/g, which corresponds to an angular sensitivity around zero inclination angle of about 2.58 Hz deg −1 . This is in agreement with finite element method simulations. The measured output fluctuations at constant temperature determine an equivalent resolution of about 0.1° at midrange. In the temperature range of 25–65 °C the system sensitivity decreases by about 10%, which is less than the variation due to the microsensor alone thanks to thermal compensation provided by the current excitation of the bridge and the

  7. ARTROC—a readout ASIC for GEM-based full-field XRF imaging system

    Science.gov (United States)

    Fiutowski, T.; Koperny, S.; Łach, B.; Mindur, B.; Świentek, K.; Wiącek, P.; Dąbrowski, W.

    2017-12-01

    In the paper we report on development of an Application Specific Integrated Circuit (ASIC), called ARTROC, being part of a full-field X-ray fluorescence spectroscopy (XRF) imaging system equipped with a standard three stage Gas Electron Multiplier (GEM) detector of 10×10 cm2 area. The ARTROC consists of 64 independent channels, allowing for simultaneous recording of the amplitudes (energy sub-channel) and time stamps (timing sub-channel) of incoming signals. Thanks to the implemented token-based read out of derandomizing buffers, the ASIC also provides data sparsification and full zero suppression. Reconstruction of the hit positions is performed in an external data acquisition system by matching the time stamps of signals recorded in X- and Y-strips. The amplitude information is used for centre of gravity finding in clusters of signals on neighbouring strips belonging to the same detection events. The ASIC could work in one of six gain modes and one of two speed modes. In a slower mode the maximum count rate per channel is 105/s while in a faster mode it is three times higher. The ARTROC comprises also input protection circuits against possible random discharges inside active detector volume, so it can be used without any additional input components. The ASIC has been designed in 350 nm CMOS process. The basic functionality and parameters have been evaluated using the testability functions implemented in the ASIC design. The ASIC has been also tested in a fully equipped GEM detector set-up with X-rays source.

  8. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    Science.gov (United States)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  9. Research of high speed data readout and pre-processing system based on xTCA for silicon pixel detector

    International Nuclear Information System (INIS)

    Zhao Jingzhou; Lin Haichuan; Guo Fang; Liu Zhen'an; Xu Hao; Gong Wenxuan; Liu Zhao

    2012-01-01

    As the development of the detector, Silicon pixel detectors have been widely used in high energy physics experiments. It needs data processing system with high speed, high bandwidth and high availability to read data from silicon pixel detectors which generate more large data. The same question occurs on Belle II Pixel Detector which is a new style silicon pixel detector used in SuperKEKB accelerator with high luminance. The paper describes the research of High speed data readout and pre-processing system based on xTCA for silicon pixel detector. The system consists of High Performance Computer Node (HPCN) based on xTCA and ATCA frame. The HPCN consists of 4XFPs based on AMC, 1 AMC Carrier ATCA Board (ACAB) and 1 Rear Transmission Module. It characterized by 5 high performance FPGAs, 16 fiber links based on RocketIO, 5 Gbit Ethernet ports and DDR2 with capacity up to 18GB. In a ATCA frame, 14 HPCNs make up a system using the high speed backplane to achieve the function of data pre-processing and trigger. This system will be used on the trigger and data acquisition system of Belle II Pixel detector. (authors)

  10. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    Directory of Open Access Journals (Sweden)

    Senkin Sergey

    2018-01-01

    Full Text Available The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.

  11. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    Science.gov (United States)

    Senkin, Sergey

    2018-01-01

    The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.

  12. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    CERN Document Server

    Senkin, Sergey; The ATLAS collaboration

    2017-01-01

    The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the front-end readout options, an ASIC called FATALIC, which is proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. Hereby we describe the full characterisation of FATALIC and also the signal reconstruction up to the observables of interest for physics: the energy and the arrival time of the particle. The Optimal Filtering signal reconstruction method is adapted to fully exploit the FATALIC three-range layout. Additionally, we present the performance in terms of resolution of the whole chain measured using the charge injection system designed for calibration. Finally, the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN are discussed.

  13. Performance of the gamma-ray camera based on GSO(Ce) scintillator array and PSPMT with the ASIC readout system

    International Nuclear Information System (INIS)

    Ueno, Kazuki; Hattori, Kaori; Ida, Chihiro; Iwaki, Satoru; Kabuki, Shigeto; Kubo, Hidetoshi; Kurosawa, Shunsuke; Miuchi, Kentaro; Nagayoshi, Tsutomu; Nishimura, Hironobu; Orito, Reiko; Takada, Atsushi; Tanimori, Toru

    2008-01-01

    We have studied the performance of a readout system with ASIC chips for a gamma-ray camera based on a 64-channel multi-anode PSPMT (Hamamatsu flat-panel H8500) coupled to a GSO(Ce) scintillator array. The GSO array consists of 8x8 pixels of 6x6x13 mm 3 with the same pixel pitch as the anode of the H8500. This camera is intended to serve as an absorber of an electron tracking Compton gamma-ray camera that measures gamma rays up to ∼1 MeV. Because we need a readout system with low power consumption for a balloon-borne experiment, we adopted a 32-channel ASIC chip, IDEAS VA32 H DR11, which has one of the widest dynamic range among commercial chips. However, in the case of using a GSO(Ce) crystal and the H8500, the dynamic range of VA32 H DR11 is narrow, and therefore the H8500 has to be operated with a low gain of about 10 5 . If the H8500 is operated with a low gain, the camera has a narrow incident-energy dynamic range from 100 to 700 keV, and a bad energy resolution of 13.0% (FWHM) at 662 keV. We have therefore developed an attenuator board in order to operate the H8500 with the typical gain of 10 6 , which can measure up to ∼1 MeV gamma ray. The board makes the variation of the anode gain uniform and widens the dynamic range of the H8500. The system using the new attenuator board has a good uniformity of min:max∼1:1.6, an incident-energy dynamic range from 30 to 900 keV, a position resolution of less than 6 mm, and a typical energy resolution of 10.6% (FWHM) at 662 keV with a low power consumption of about 1.7 W/64ch

  14. Upgraded Readout and Trigger Electronics for the ATLAS Liquid Argon Calorimeter at the LHC at the Horizons 2018-2022

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2013-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Board (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies...

  15. A radiation-hard dual-channel 12-bit 40 MS/s ADC prototype for the ATLAS liquid argon calorimeter readout electronics upgrade at the CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kuppambatti, J. [Columbia University, Dept. of Electrical Engineering, New York, NY (United States); Ban, J. [Columbia University, Nevis Laboratories, Irvington, NY (United States); Andeen, T., E-mail: tandeen@utexas.edu [Columbia University, Nevis Laboratories, Irvington, NY (United States); Brown, R.; Carbone, R. [Columbia University, Nevis Laboratories, Irvington, NY (United States); Kinget, P. [Columbia University, Dept. of Electrical Engineering, New York, NY (United States); Brooijmans, G.; Sippach, W. [Columbia University, Nevis Laboratories, Irvington, NY (United States)

    2017-05-21

    The readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider requires a radiation-hard ADC. The design of a radiation-hard dual-channel 12-bit 40 MS/s pipeline ADC for this use is presented. The design consists of two pipeline A/D channels each with four Multiplying Digital-to-Analog Converters followed by 8-bit Successive-Approximation-Register analog-to-digital converters. The custom design, fabricated in a commercial 130 nm CMOS process, shows a performance of 67.9 dB SNDR at 10 MHz for a single channel at 40 MS/s, with a latency of 87.5 ns (to first bit read out), while its total power consumption is 50 mW/channel. The chip uses two power supply voltages: 1.2 and 2.5 V. The sensitivity to single event effects during irradiation is measured and determined to meet the system requirements.

  16. Application specific integrated circuit (ASIC) readout technologies for future ion beam analytical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, Harry J. E-mail: harry_j.whitlow@nuclear.lu.se

    2000-03-01

    New possibilities for ion beam analysis (IBA) are afforded by recent developments in detector technology which facilitate the parallel collection of data from a large number of channels. Application specific integrated circuit (ASIC) technologies, which have been widely employed for multi-channel readout systems in nuclear and particle physics, are more net-cost effective (160/channel for 1000 channels) and a more rational solution for readout of a large number of channels than afforded by conventional electronics. Based on results from existing and on-going chip designs, the possibilities and issues of ASIC readout technology are considered from the IBA viewpoint. Consideration is given to readout chip architecture and how the stringent resolution, linearity and stability requirements for IBA may be met. In addition the implications of the restrictions imposed by ASIC technology are discussed.

  17. A new PCI card for readout in high energy physics experiments

    CERN Document Server

    Floris, M; Marras, D; Usai, G L; David, A

    2004-01-01

    Recently some high energy physics experiments started to adopt readout systems based on the PCI architecture. In this context a new PCI card that can be adapted to several readout schemes has been designed. The card contains a large 64 MB local buffer, programmable FPGA logic and a PLX PCI bridge. The solution to use a PCI bridge external to the programmable logic allows to greatly simplify projects at the level of the on-board local bus. The card is presently used as the basic readout unit of the NA60 experiment. In this context, coupling it to different mezzanine cards it is possible to create interfaces to VME/CAMAC modules or to custom front-end electronics as for the case of the silicon vertex detector. Moreover, it is used as a readout test system for the ALICE muon chambers. (10 refs).

  18. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    Science.gov (United States)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  19. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    International Nuclear Information System (INIS)

    Yue, X; Zeng, M; Wang, Y; Wang, X; Zeng, Z; Zhao, Z; Cheng, J

    2014-01-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given

  20. Control software for the CBM readout chain

    Energy Technology Data Exchange (ETDEWEB)

    Loizeau, Pierre-Alain [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment, which will be built at FAIR, will use free-streaming readout electronics to acquire high-statistics data-sets of physics probes in fixed target heavy-ion collisions. Since no simple signatures suitable for a hardware trigger are available for most of them, reconstruction and selection of the interesting collisions will be done in software, in a computer farm called First Level Event Selector (FLES). The raw data coming from the detectors is pre-processed, pre-calibrated and aggregated in a FPGA based layer called Data Preprocessing Boards (DPB). IPbus will be used to communicate with the DPBs and through them with the elements of the readout chain closer to detectors. A slow control environment based on this software is developed by CBM to configure in an efficient way the DPBs as well as the Front-End Electronics and monitor their performances. This contribution presents the layout planned for the slow control software, its first implementation and corresponding test results.

  1. A low cost, printed microwave based level sensor with integrated oscillator readout circuitry

    KAUST Repository

    Karimi, Muhammad Akram; Arsalan, Muhammad; Shamim, Atif

    2017-01-01

    This paper presents an extremely low cost, tube conformable, printed T-resonator based microwave level sensor, whose resonance frequency shifts by changing the level of fluids inside the tube. Printed T-resonator forms the frequency selective

  2. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    International Nuclear Information System (INIS)

    Doran, S J; Krstajic, N; Adamovics, J; Jenneson, P M

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGE TM (Heuris Pharma, Skillman, NJ)

  3. An array of cold-electron bolometers with SIN tunnel junctions and JFET readout for cosmology instruments

    International Nuclear Information System (INIS)

    Kuzmin, L

    2008-01-01

    A novel concept of the parallel/series array of Cold-Electron Bolometers (CEB) with Superconductor-Insulator-Normal (SIN) Tunnel Junctions has been proposed. The concept was developed specially for matching the CEB with JFET amplifier at conditions of high optical power load. The CEB is a planar antenna-coupled superconducting detector with high sensitivity. For combination of effective HF operation and low noise properties the current-biased CEBs are connected in series for DC and in parallel for HF signal. A signal is concentrated from an antenna to the absorber through the capacitance of the tunnel junctions and through additional capacitance for coupling of superconducting islands. Using array of CEBs the applications can be considerably extended to higher power load by distributing the power between N CEBs and decreasing the electron temperature. Due to increased responsivity the noise matching is so effective that photon NEP could be easily achieved at 300 mK with a room temperature JFET for wide range of optical power loads. The concept of the CEB array has been developed for the BOOMERanG balloon telescope and other Cosmology instruments

  4. Evaluation of 320x240 pixel LEC GaAs Schottky barrier X-ray imaging arrays, hybridized to CMOS readout circuit based on charge integration

    CERN Document Server

    Irsigler, R; Alverbro, J; Borglind, J; Froejdh, C; Helander, P; Manolopoulos, S; O'Shea, V; Smith, K

    1999-01-01

    320x240 pixels GaAs Schottky barrier detector arrays were fabricated, hybridized to silicon readout circuits, and subsequently evaluated. The detector chip was based on semi-insulating LEC GaAs material. The square shaped pixel detector elements were of the Schottky barrier type and had a pitch of 38 mu m. The GaAs wafers were thinned down prior to the fabrication of the ohmic back contact. After dicing, the chips were indium bump, flip-chip bonded to CMOS readout circuits based on charge integration, and finally evaluated. A bias voltage between 50 and 100 V was sufficient to operate the detector. Results on I-V characteristics, noise behaviour and response to X-ray radiation are presented. Images of various objects and slit patterns were acquired by using a standard dental imaging X-ray source. The work done was a part of the XIMAGE project financed by the European Community (Brite-Euram). (author)

  5. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.

    Science.gov (United States)

    Wang, Xu; Li, Fang; Cai, Ziqi; Liu, Kaifan; Li, Jing; Zhang, Boyang; He, Jianbo

    2018-04-01

    In this work, a multilayer-modified paper-based colorimetric sensing platform with improved color uniformity and intensity was developed for the sensitive and selective determination of uric acid and glucose with smartphone as signal readout. In detail, chitosan, different kinds of chromogenic reagents, and horseradish peroxidase (HRP) combined with a specific oxidase, e.g., uricase or glucose oxidase (GOD), were immoblized onto the paper substrate to form a multilayer-modified test paper. Hydrogen peroxide produced by the oxidases (uricase or GOD) reacts with the substrates (uric acid or glucose), and could oxidize the co-immoblized chromogenic reagents to form colored products with HRP as catalyst. A simple strategy by placing the test paper on top of a light-emitting diode lamp was adopted to efficiently prevent influence from the external light. The color images were recorded by the smartphone camera, and then the gray values of the color images were calculated for quantitative analysis. The developed method provided a wide linear response from 0.01 to 1.0 mM for uric acid detection and from 0.02 to 4.0 mM for glucose detection, with a limit of detection (LOD) as low as 0.003 and 0.014 mM, respectively, which was much lower than for previously reported paper-based colorimetric assays. The proposed assays were successfully applied to uric acid and glucose detection in real serum samples. Furthermore, the enhanced analytical performance of the proposed method allowed the non-invasive detection of glucose levels in tear samples, which holds great potential for point-of-care analysis. Graphical abstract ᅟ.

  6. Development and Characterization of Diamond and 3D-Silicon Pixel Detectors with ATLAS-Pixel Readout Electronics

    CERN Document Server

    Mathes, Markus

    2008-01-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10^16 particles per cm^2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 × 50 um^2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm^2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 × 6 cm^2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection ...

  7. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  8. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    International Nuclear Information System (INIS)

    Mathes, Markus

    2008-12-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10 16 particles per cm 2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 μm 2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm 2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm 2 ). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  9. Membrane-based torque magnetometer: Enhanced sensitivity by optical readout of the membrane displacement

    Science.gov (United States)

    Blankenhorn, M.; Heintze, E.; Slota, M.; van Slageren, J.; Moores, B. A.; Degen, C. L.; Bogani, L.; Dressel, M.

    2017-09-01

    The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.

  10. A free-running, time-based readout method for particle detectors

    International Nuclear Information System (INIS)

    Goerres, A; Ritman, J; Stockmanns, T; Bugalho, R; Francesco, A Di; Gastón, C; Gonçalves, F; Rolo, M D; Silva, J C da; Silva, R; Varela, J; Veckalns, V; Mazza, G; Mignone, M; Pietro, V Di; Riccardi, A; Rivetti, A; Wheadon, R

    2014-01-01

    For the EndoTOFPET-US experiment, the TOFPET ASIC has been developed as a front-end chip to read out data from silicon photomultipliers (SiPM) [1]. It introduces a time of flight information into the measurement of a PET scanner and hence reduces radiation exposure of the patient [2]. The chip is designed to work with a high event rate up to 100 kHz and a time resolution of 50 ps LSB. Using two threshold levels, it can measure the leading edge of the event pulse precisely while successfully suppressing dark counts from the SiPM. This also enables a time over threshold determination, leading to a charge measurement of the signal's pulse. The same, time-based concept is chosen for the PASTA chip used in the PANDA experiment. This high-energy particle detector contains sub-systems for specific measurement goals. The innermost of these is the Micro Vertex Detector, a silicon-based tracking system. The PASTA chip's approach is much like the TOFPET ASIC with some differences. The most significant ones are a changed amplifying part for different input signals as well as protection for radiation effects of the high-radiation environment. Apart from that, the simple and general concept combined with a small area and low power consumption support the choice for using this approach

  11. A free-running, time-based readout method for particle detectors

    Science.gov (United States)

    Goerres, A.; Bugalho, R.; Di Francesco, A.; Gastón, C.; Gonçalves, F.; Mazza, G.; Mignone, M.; Di Pietro, V.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; da Silva, J. C.; Silva, R.; Stockmanns, T.; Varela, J.; Veckalns, V.; Wheadon, R.

    2014-03-01

    For the EndoTOFPET-US experiment, the TOFPET ASIC has been developed as a front-end chip to read out data from silicon photomultipliers (SiPM) [1]. It introduces a time of flight information into the measurement of a PET scanner and hence reduces radiation exposure of the patient [2]. The chip is designed to work with a high event rate up to 100 kHz and a time resolution of 50 ps LSB. Using two threshold levels, it can measure the leading edge of the event pulse precisely while successfully suppressing dark counts from the SiPM. This also enables a time over threshold determination, leading to a charge measurement of the signal's pulse. The same, time-based concept is chosen for the PASTA chip used in the PANDA experiment. This high-energy particle detector contains sub-systems for specific measurement goals. The innermost of these is the Micro Vertex Detector, a silicon-based tracking system. The PASTA chip's approach is much like the TOFPET ASIC with some differences. The most significant ones are a changed amplifying part for different input signals as well as protection for radiation effects of the high-radiation environment. Apart from that, the simple and general concept combined with a small area and low power consumption support the choice for using this approach.

  12. Multiplexed profiling of GPCR activities by combining split TEV assays and EXT-based barcoded readouts.

    Science.gov (United States)

    Galinski, Sabrina; Wichert, Sven P; Rossner, Moritz J; Wehr, Michael C

    2018-05-25

    G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors and are implicated in the physiological regulation of many biological processes. The high diversity of GPCRs and their physiological functions make them primary targets for therapeutic drugs. For the generation of novel compounds, however, selectivity towards a given target is a critical issue in drug development as structural similarities between members of GPCR subfamilies exist. Therefore, the activities of multiple GPCRs that are both closely and distantly related to assess compound selectivity need to be tested simultaneously. Here, we present a cell-based multiplexed GPCR activity assay, termed GPCRprofiler, which uses a β-arrestin recruitment strategy and combines split TEV protein-protein interaction and EXT-based barcode technologies. This approach enables simultaneous measurements of receptor activities of multiple GPCR-ligand combinations by applying massively parallelized reporter assays. In proof-of-principle experiments covering 19 different GPCRs, both the specificity of endogenous agonists and the polypharmacological effects of two known antipsychotics on GPCR activities were demonstrated. Technically, normalization of barcode reporters across individual assays allows quantitative pharmacological assays in a parallelized manner. In summary, the GPCRprofiler technique constitutes a flexible and scalable approach, which enables simultaneous profiling of compound actions on multiple receptor activities in living cells.

  13. Implementation of the Timepix ASIC in the Scalable Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Lupberger, M., E-mail: lupberger@physik.uni-bonn.de; Desch, K.; Kaminski, J.

    2016-09-11

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  14. A low cost, printed microwave based level sensor with integrated oscillator readout circuitry

    KAUST Repository

    Karimi, Muhammad Akram

    2017-10-24

    This paper presents an extremely low cost, tube conformable, printed T-resonator based microwave level sensor, whose resonance frequency shifts by changing the level of fluids inside the tube. Printed T-resonator forms the frequency selective element of the tunable oscillator. Unlike typical band-pass resonators, T-resonator has a band-notch characteristics because of which it has been integrated with an unstable amplifying unit having negative resistance in the desired frequency range. Magnitude and phase of input reflection coefficient of the transistor has been optimized over the desired frequency range. Phase flattening technique has been introduced to maximize the frequency shift of the oscillator. With the help of this technique, we were able to enhance the percentage tuning of the oscillator manifolds which resulted into a level sensor with higher sensitivity. The interface level of fluids (oil and water in our case) causes a relative change in oscillation frequency by more than 50% compared to maximum frequency shift of 8% reported earlier with dielectric tunable oscillators.

  15. Design and characterization of the readout ASIC for the BESIII CGEM detector

    CERN Document Server

    Cossio, Fabio; Bugalho, Ricardo; Chai, Junying; Cheng, Weishuai; Da Rocha Rolo, Manuel Dionisio; Di Francesco, Agostino; Greco, Michela; Leng, Chongyang; Li, Huaishen; Maggiora, Marco; Marcello, Simonetta; Mignone, Marco; Rivetti, Angelo; Varela, Joao; Wheadon, Richard

    2018-01-01

    TIGER (Turin Integrated Gem Electronics for Readout) is a mixed-mode ASIC for the readout of signals from CGEM (Cylindrical Gas Electron Multiplier) detector in the upgraded inner tracker of the BESIII experiment, carried out at BEPCII in Beijing. The ASIC includes 64 channels, each of which features a dual-branch architecture optimized for timing and energy measurement. The input signal time-of-arrival and charge measurement is provided by low-power TDCs, based on analogue interpolation techniques, and Wilkinson ADCs, with a fully-digital output. The silicon results of TIGER first prototype are presented showing its full functionality.

  16. Semiconductor detectors with proximity signal readout

    International Nuclear Information System (INIS)

    Asztalos, Stephen J.

    2012-01-01

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need

  17. Monitoring the CMS strip tracker readout system

    International Nuclear Information System (INIS)

    Mersi, S; Bainbridge, R; Cripps, N; Fulcher, J; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Mirabito, L; Cole, J; Giassi, A; Gross, L; Hahn, K; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m 2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

  18. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system

    Science.gov (United States)

    Scherbak, Aleksandr; Yulmetova, Olga

    2018-05-01

    A pulsed fiber laser with the wavelength 1.06 μm was used to treat titanium nitride film deposited on beryllium substrates in the air with intensities below an ablation threshold to provide oxide formation. Laser oxidation results were predicted by the chemical thermodynamic method and confirmed by experimental techniques (X-ray diffraction). The developed technology of contrast image formation is intended to be used for optoelectronic read-out system.

  19. A new readout control system for the LHCb upgrade at CERN

    International Nuclear Information System (INIS)

    Alessio, F; Jacobsson, R

    2012-01-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and a first hardware implementation of a new fast Readout Control system for the LHCb upgrade, which will be entirely based on FPGAs and bi-directional links. We also outline the real-time implementations of the new Readout Control system, together with solutions on how to handle the synchronous distribution of timing and synchronous information to the complex upgraded LHCb readout architecture. One section will also be dedicated to the control and usage of the newly developed CERN GBT chipset to transmit fast and slow control commands to the upgraded LHCb Front-End electronics. At the end, we outline the plans for the deployment of the system in the global LHCb upgrade readout architecture.

  20. Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.

    2018-03-01

    Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

  1. Readout and triggering of the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1984-01-01

    The readout and triggering electronics for the Soudan 2 proton decay detector is presented. Pratically all the electronics is implemented in CMOS. The triggering scheme is highly flexible and software controllable

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Pulsed formation and readout of dynamic holograms in a photorefractive GaAs:Cr crystal

    Science.gov (United States)

    Andreeva, N. P.; Barashkov, M. S.; Bel'dyugin, Igor'M.; Kruzhilin, Yu I.; Petnikova, V. M.; Umnov, A. F.; Kharchenko, M. A.; Shuvalov, Vladimir V.

    1989-12-01

    An experimental investigation was made of the energy (diffraction efficiency) and time (formation, storage, readout) parameters of four-wave mixing in GaAs:Cr. An investigation of the dynamics of the leading edge of a nonlinear response pulse could become an effective method for pulsed spectroscopy of photorefractive materials.

  3. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2016-01-12

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required to extract the information from the experiments that is needed to determine the stellar reaction rates. The tools developed through this part of the work will be made freely available for general use.

  4. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    Science.gov (United States)

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.

  5. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course

    International Nuclear Information System (INIS)

    Schneider, Florian R.; Mann, Alexander B.; Technische Univ. Muenchen, Klinikum rechts der Isar; Konorov, Igor; Paul, Stephan; Delso, Gaspar; Ziegler, Sibylle I.

    2012-01-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a 22 Na point source and reconstruct different source geometries filled with 18 F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80 MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. (orig.)

  6. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Florian R.; Mann, Alexander B. [Technische Univ. Muenchen, Garching (Germany). Physik-Department E18; Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Nuklearmedizinische Klinik und Poliklinik; Konorov, Igor; Paul, Stephan [Technische Univ. Muenchen, Garching (Germany). Physik-Department E18; Delso, Gaspar; Ziegler, Sibylle I. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Nuklearmedizinische Klinik und Poliklinik

    2012-07-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a {sup 22}Na point source and reconstruct different source geometries filled with {sup 18}F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80 MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. (orig.)

  7. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    Science.gov (United States)

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  8. The Omega Ring Imaging Cerenkov Detector readout system user's guide

    International Nuclear Information System (INIS)

    Hallewell, G.

    1984-11-01

    The manual describes the electronic readout system of the Ring Imaging Cerenkov Detector at the CERN Omega Spectrometer. The system is described in its configuration of September 1984 after the Rich readout system had been used in two Omega experiments. (U.K.)

  9. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Science.gov (United States)

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  10. Highly efficient router-based readout algorithm for single-photon-avalanche-diode imagers for time-correlated experiments

    Science.gov (United States)

    Cominelli, A.; Acconcia, G.; Caldi, F.; Peronio, P.; Ghioni, M.; Rech, I.

    2018-02-01

    Time-Correlated Single Photon Counting (TCSPC) is a powerful tool that permits to record extremely fast optical signals with a precision down to few picoseconds. On the other hand, it is recognized as a relatively slow technique, especially when a large time-resolved image is acquired exploiting a single acquisition channel and a scanning system. During the last years, much effort has been made towards the parallelization of many acquisition and conversion chains. In particular, the exploitation of Single-Photon Avalanche Diodes in standard CMOS technology has paved the way to the integration of thousands of independent channels on the same chip. Unfortunately, the presence of a large number of detectors can give rise to a huge rate of events, which can easily lead to the saturation of the transfer rate toward the elaboration unit. As a result, a smart readout approach is needed to guarantee an efficient exploitation of the limited transfer bandwidth. We recently introduced a novel readout architecture, aimed at maximizing the counting efficiency of the system in typical TCSPC measurements. It features a limited number of high-performance converters, which are shared with a much larger array, while a smart routing logic provides a dynamic multiplexing between the two parts. Here we propose a novel routing algorithm, which exploits standard digital gates distributed among a large 32x32 array to ensure a dynamic connection between detectors and external time-measurement circuits.

  11. Very forward calorimeters readout and machine interface

    Indian Academy of Sciences (India)

    The paper describes the requirements for the readout electronics and DAQ for the instrumentation of the forward region of the future detector at the international linear collider. The preliminary design is discussed. Author Affiliations. Wojciech Wierba1 on behalf of the FCAL Collaboration. The Henryk Niewodniczański ...

  12. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tribble, Robert E. [Texas A & M Univ., College Station, TX (United States); Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, Jeff C. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required

  13. A read-out buffer prototype for ATLAS high level triggers

    CERN Document Server

    Calvet, D; Huet, M; Le Dû, P; Mandjavidze, I D; Mur, M

    2000-01-01

    Read-Out Buffers are critical components in the dataflow chain of the ATLAS Trigger/DAQ system. At up to 75 kHz, after each Level-1 trigger accept signal, these devices receive and store digitized data from groups of front-end electronic channels. Several Read-Out Buffers are grouped to form a Read-Out Buffer Complex that acts as a data server for the High Level Triggers selection algorithms and for the final data collection system. This paper describes a functional prototype of a Read-Out Buffer based on a custom made PCI mezzanine card that is designed to accept input data at up to 160 MB/s, to store up to 8 MB of data and to distribute data chunks at the desired request rate. We describe the hardware of the card that is based on an Intel I960 processor and CPLDs. We present the integration of several of these cards in a Read-Out Buffer Complex. We measure various performance figures and we discuss to which extent these can fulfill ATLAS needs. 5 Refs.

  14. Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips

    International Nuclear Information System (INIS)

    Linhart, V; Lacasta, C; Llosa, G; Stankova, V; Burdette, D; Chessi, E; Cochran, E; Honscheid, K; Kagan, H; Weilhammer, P; Cindro, V; Grosicar, B; Mikuz, M; Studen, A; Zontar, D; Clinthorne, N H

    2011-01-01

    Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.

  15. A Medipix3 readout system based on the National Instruments FlexRIO card and using the LabVIEW programming environment

    Science.gov (United States)

    Horswell, I.; Gimenez, E. N.; Marchal, J.; Tartoni, N.

    2011-01-01

    Hybrid silicon photon-counting detectors are becoming standard equipment for many synchrotron applications. The latest in the Medipix family of read-out chips designed as part of the Medipix Collaboration at CERN is the Medipix3, which while maintaining the same pixel size as its predecessor, offers increased functionality and operating modes. The active area of the Medipix3 chip is approx 14mm × 14mm (containing 256 × 256 pixels) which is not large enough for many detector applications, this results in the need to tile many sensors and chips. As a first step on the road to develop such a detector, it was decided to build a prototype single chip readout system to gain the necessary experience in operating a Medipix3 chip. To provide a flexible learning and development tool it was decided to build an interface based on the recently released FlexRIOTM system from National Instruments and to use the LabVIEWTM graphical programming environment. This system and the achieved performance are described in this paper.

  16. The LST analog read-out system of the ZEUS muon detector

    International Nuclear Information System (INIS)

    De Giorgi, M.; Abbiendi, G.; Bertolin, A.; Borsato, E.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Pitacco, G.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.

    1996-01-01

    A muon position detector based on limited streamer tubes has been built for the ZEUS experiment at the HERA e-p collider at Desy. The tubes are arranged in chambers equipped with electronics circuitry providing an analog read-out of induced signals on strips set orthogonal to the tube wires. The electronic module for charge amplification and conversion will be described including some results obtained from the complete system. (orig.)

  17. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  18. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    Energy Technology Data Exchange (ETDEWEB)

    Arefin, Md Shamsul, E-mail: md.arefin@monash.edu; Redoute, Jean-Michel; Rasit Yuce, Mehmet [Electrical and Computer Systems Engineering, Monash University, Melbourne (Australia); Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian [Mechanical and Aerospace Engineering, Monash University, Melbourne (Australia)

    2014-06-02

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  19. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    International Nuclear Information System (INIS)

    Arefin, Md Shamsul; Redoute, Jean-Michel; Rasit Yuce, Mehmet; Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian

    2014-01-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  20. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  1. A four gain readout integrated circuit: FRIC 96 1

    International Nuclear Information System (INIS)

    Bussat, J.M.; Bohner, G.; Lecoq, J.; Colas, J.; Rossetto, O.; Dzahini, D.; Pouxe, J.

    1996-01-01

    The main difficulty for the readout electronics of the ATLAS LARG calorimeter is to handle the 16 bit dynamic range without spoiling the signal to noise ratio. A possible way to split the input. (authors)

  2. Energy dependence of EBT-1 radiochromic film response for photon (10 kVp-15 MVp) and electron beams (6-18 MeV) readout by a flatbed scanner

    International Nuclear Information System (INIS)

    Richter, Christian; Pawelke, Joerg; Karsch, Leonhard; Woithe, Julia

    2009-01-01

    Purpose: The aim of this article is to investigate the energy dependence of the radiochromic film type, Gafchromic EBT-1, when scanned with a flatbed scanner for film readout. Methods: Dose response curves were determined for 12 different beam qualities ranging from a 10 kVp x-ray beam to a 15 MVp x-ray beam and include also two high energy electron beam qualities (6 and 18 MeV). The dose responses measured as net optical density (netOD) for the different beam qualities were normalized to the response of a reference beam quality (6 MVp). Results: A strong systematic energy dependence of the film response was found. The lower the effective beam energy, the less sensitive the EBT-1 films get. The maximum decrease in dose for the same film response between the 25 kVp and 6 MVp beam qualities was 44%. Additionally, a difference in energy dependence for different doses was discovered, meaning that higher doses show a smaller dependency on energy than lower doses. The maximum decrease in the normalized netOD was found to be 25% for a dose of 0.5 Gy relative to the normalized netOD for 10 Gy. Moreover, a scaling procedure is introduced, allowing the correction of the energy dependence for the investigated beam qualities and also for comparable x-ray beam qualities within the energy range studied. Conclusions: A strong energy dependence for EBT-1 radiochromic films was found. The films were readout with a flatbed scanner. If the effective beam energy is known, the energy dependence can be corrected with the introduced scaling procedure. Further investigation of the influence of the spectral band of the readout device on energy dependence is needed to understand the reason for the different energy dependences found in this and previous works.

  3. New read-out electronics for ICARUS-T600 liquid Argon TPC. Description, simulation and tests of the new front-end and ADC system arXiv

    CERN Document Server

    Bagby, L.; Bellini, V.; Bonesini, M.; Braggiotti, A.; Castellani, L.; Centro, S.; Cervi, T.; Cocco, A.G.; Fabris, F.; Falcone, A.; Farnese, C.; Fava, A.; Fichera, F.; Franciotti, D.; Galet, G.; Gibin, D.; Guglielmi, A.; Guida, R.; Ketchum, W.; Marchini, S.; Menegolli, A.; Meng, G.; Menon, G.; Montanari, C.; Nessi, M.; Nicoletto, M.; Pedrotta, R.; Picchi, P.; Pietropaolo, F.; Rampazzo, G.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Scaramelli, A.; Sergiampietri, F.; Spanu, M.; Torti, M.; Tortorici, F.; Varanini, F.; Ventura, S.; Vignoli, C.; Zani, A.; Zatti, P.G.

    The ICARUS T600, a liquid argon time projection chamber (LAr-TPC) detector mainly devoted to neutrino physics, underwent a major overhauling at CERN in 2016-2017, which included also a new design of the read-out electronics, in view of its operation in Fermilab on the Short Baseline Neutrino (SBN) beam from 2019. The new more compact electronics showed capability of handling more efficiently the signals also in the intermediate Induction 2 wire plane with a significant increase of signal to noise (S/N), allowing for charge measurement also in this view. The new front-end and the analog to digital conversion (ADC) system are presented together with the results of the tests on 50 liters liquid argon TPC performed at CERN with cosmic rays.

  4. Design of front end electronics and a full scale 4k pixel readout ASIC for the DSSC X-ray detector at the European XFEL

    International Nuclear Information System (INIS)

    Erdinger, Florian

    2016-01-01

    The goal of this thesis was to design a large scale readout ASIC for the 1-Mega pixel DEPFET Sensor with Signal Compression (DSSC) detector system which is being developed by an international collaboration for the European XFEL (EuXFEL). Requirements for the DSSC detector include single photon detection down to 0.5 keV combined with a large dynamic range of up to 10000 photons at frame rates of up to 4.5 MHz. The detector core concepts include full parallel readout, signal compression on the sensor or ASIC level, filtering, immediate digitization and local storage within the pixel. The DSSC is a hybrid pixel detector, each sensor pixel mates to a dedicated ASIC pixel, which includes the entire specified signal processing chain along with auxiliary circuits. One ASIC comprises 4096 pixels and a full periphery including biasing and digital control. This thesis presents the design of the ASIC, its components and integration are described in detail. Emphasis is put on the design of the analog front-end. The first full format ASIC (F1) has been fabricated within the scope of this thesis along with numerous test chips. Furthermore, the EuXFEL and the DSSC detector system are presented to create the context for the ASIC, which is the core topic of this thesis.

  5. Design of front end electronics and a full scale 4k pixel readout ASIC for the DSSC X-ray detector at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Erdinger, Florian

    2016-11-22

    The goal of this thesis was to design a large scale readout ASIC for the 1-Mega pixel DEPFET Sensor with Signal Compression (DSSC) detector system which is being developed by an international collaboration for the European XFEL (EuXFEL). Requirements for the DSSC detector include single photon detection down to 0.5 keV combined with a large dynamic range of up to 10000 photons at frame rates of up to 4.5 MHz. The detector core concepts include full parallel readout, signal compression on the sensor or ASIC level, filtering, immediate digitization and local storage within the pixel. The DSSC is a hybrid pixel detector, each sensor pixel mates to a dedicated ASIC pixel, which includes the entire specified signal processing chain along with auxiliary circuits. One ASIC comprises 4096 pixels and a full periphery including biasing and digital control. This thesis presents the design of the ASIC, its components and integration are described in detail. Emphasis is put on the design of the analog front-end. The first full format ASIC (F1) has been fabricated within the scope of this thesis along with numerous test chips. Furthermore, the EuXFEL and the DSSC detector system are presented to create the context for the ASIC, which is the core topic of this thesis.

  6. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Y.; Kubo, H.; Masuda, S. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan); Paoletti, R.; Poulios, S. [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Rugliancich, A., E-mail: andrea.rugliancich@pi.infn.it [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Saito, T. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-07-11

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards. - Highlights: • The Dragon Board is part of the DAQ of the LST Cherenkov telescope prototype. • We developed an automated quality control system for the Dragon Board. • We check pedestal, linearity, pulse shape and crosstalk values. • The quality control test can be performed on the production line.

  7. LHCb: A new Readout Control system for the LHCb Upgrade

    CERN Multimedia

    Alessio, F

    2012-01-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and the first hardware implementation of a new Readout Control system for the LHCb upgrade. The system is based on FPGAs and bi-directional links for the control of the entire readout architecture. First results on the validation of the system are also given.

  8. Challenges of arbitrary waveform signal detection by Silicon Photomultipliers as readout for Cherenkov fibre based beam loss monitoring systems

    CERN Document Server

    Vinogradov, Sergey; Nebot del Busto, Eduardo; Kastriotou, Maria; Welsch, Carsten P

    2016-01-01

    Silicon Photomultipliers (SiPMs) are well recognised as very competitive photodetectors due to their exceptional photon number and time resolution, room-temperature low-voltage operation, insensitivity to magnetic fields, compactness, and robustness. Detection of weak light pulses of nanosecond time scale appears to be the best area for SiPM applications because in this case most of the SiPM drawbacks have a rather limited effect on its performance. In contrast to the more typical scintillation and Cherenkov detection applications, which demand information on the number of photons and/or the arrival time of the light pulse only, beam loss monitoring (BLM) systems utilising Cherenkov fibres with photodetector readout have to precisely reconstruct the temporal profile of the light pulse. This is a rather challenging task for any photon detector especially taking into account the high dynamic range of incident signals (100K – 1M) from a few photons to a few percents of destructive losses in a beam line and pre...

  9. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    International Nuclear Information System (INIS)

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-01-01

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers

  10. Drift chamber data readout system

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Lokhonyai, L.

    1980-01-01

    An electronic system for processing drift chamber signals is described. The system consists of 4-channel fast amplifier-discriminators of low threshold, 16-channel time-expanders transforming 0.5 μs time intervals to 10 μs and a 9-bit time-to-digital converter (TDC) recording up to 16 expanded time intervals. If the average track multiplicity is small, TDC is capable to process signals from 4 time-expanders (i.e., 64 drift gaps). In order to record multiple tracks per drift gap discriminator outputs can be connected to a number of time-expander channels. The fast clear input enables the system to be cleared within 0.5 μs. Efficient readout from TDC is facilated by reading only those channels which contain non-zero data (9 bits - drift time; 6 bits - wire number)

  11. Study for the LHCb upgrade read-out board

    CERN Document Server

    Cachemiche, J P; Hachon, F; Le Gac, R; Marin, F; 10.1088/1748-0221/5/12/C12036

    2010-01-01

    The LHCb experiment envisages to upgrade its readout electronics in order to increase the readout rate from 1 MHz to 40 MHz. This electronics upgrade is very challenging, since readout boards will have to handle a higher number of serial links with an increased bandwidth. In addition, the new communication protocol (GBT) developed by the CERN micro-electronics group mixes data acquisition, slow control and clock distribution on the same link. To explore the feasibility of such a readout system, elementary building blocks have been studied. Their goals are multiple: understand signal integrity when using highly integrated high speed serial links running at 8 - 10 Gbits/s; test the implementation of the GBT protocol within FPGAs; understand advantages and limitations of commercial standard with a predefined interconnection topology; validate ideas on how to control easily such a system. We designed two boards compliant with the xTCA standard which meets an increasing interest in the physics community. The first...

  12. The NA60 experiment readout architecture

    CERN Document Server

    Floris, M; Usai, G L; David, A; Rosinsky, P; Ohnishi, H

    2004-01-01

    The NA60 experiment was designed to identify signatures of a new state of matter, the Quark Gluon Plasma, in heavy-ion collisions at the CERN Super Proton Synchroton. The apparatus is composed of four main detectors: a muon spectrometer (MS), a zero degree calorimeter (ZDC), a silicon vertex telescope (VT), and a silicon microstrip beam tracker (BT). The readout of the whole experiment is based on a PCI architecture. The basic unit is a general purpose PCI card, interfaced to the different subdetectors via custom mezzanine cards. This allowed us to successfully implement several completely different readout protocols (from the VME like protocol of the MS to the custom protocol of the pixel telescope). The system was fully tested with proton and ion beams, and several million events were collected in 2002 and 2003. This paper presents the readout architecture of NA60, with particular emphasis on the PCI layer common to all the subdetectors. (16 refs).

  13. The HADES-RICH upgrade using Hamamatsu H12700 MAPMTs with DiRICH FEE + Readout

    Science.gov (United States)

    Patel, V.; Traxler, M.

    2018-03-01

    The High Acceptance Di-Electron Spectrometer (HADES) is operational since the year 2000 and uses a hadron blind RICH detector for electron identification. The RICH photon detector is currently replaced by Hamamatsu H12700 MAPMTs with a readout system based on the DiRICH front-end module. The electronic readout chain is being developed as a joint effort of the HADES-, CBM- and PANDA collaborations and will also be used in the photon detectors for the upcoming Compressed Baryonic Matter (CBM) and PANDA experiments at FAIR . This article gives a brief overview on the photomultipliers and their quality assurance test measurements, as well as first measurements of the new DiRICH front-end module in final configurations.

  14. A TPC-like readout method for high precision muon-tracking using GEM-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flierl, Bernhard; Biebel, Otmar; Bortfeldt, Jonathan; Hertenberger, Ralf; Klitzner, Felix; Loesel, Philipp; Mueller, Ralph [Ludwig-Maximilians-Universitaet Muenchen (Germany); Zibell, Andre [Julius-Maximilians-Universitaet Wuerzburg (Germany)

    2016-07-01

    Gaseous electron multiplier (GEM) detectors are well suited for tracking of charged particles. Three dimensional tracking in a single layer can be achieved by application of a time-projection-chamber like readout mode (μTPC), if the drift time of the electrons is measured and the position dependence of the arrival time is used to calculate the inclination angle of the track. To optimize the tracking capabilities for ion tracks drift gas mixtures with low drift velocity have been investigated by measuring tracks of cosmic muons in a compact setup of four GEM-detectors of 100 x 100 x 6 mm{sup 3} active volume each and an angular acceptance of -25 to 25 . The setup consists of three detectors with two-dimensional strip readout layers of 0.4 mm pitch and one detector with a single strip readout layer of 0.25 mm pitch. All strips are readout by APV25 frontend boards and the amplification stage in the detectors consists of three GEM-foils. Tracks are reconstructed by the μTPC-method in one of the detectors and are then compared to the prediction from the other three detectors defined by the center of charge in every detector. We report our study of Argon and Helium based noble gas mixtures with carbon-dioxide as quencher.

  15. On-line control system for electron injector based on autoemission cathode

    International Nuclear Information System (INIS)

    Egorov, N.V.; Karpov, A.G.; Ovsyannikov, D.A.; Prudnikov, A.P.

    1987-01-01

    An original on-line system of control of electron injector parameters on the base of an autoemission cathode is described. The system includes hardware (analog-to-digital and graphical displays, a printer, a magnetic disc memory a plotter) and data control and readout equipment. A high-voltage power source of the 'RACE' is controlled by digital measuring devices connected with a computer data via a special matching device. Software includes servicing subroutines for injector controls and those permitting to display, plot and print results. The main operating program functioning in the interactive mode enables to specify the injector operating conditions and check its characteristics

  16. A Prototype Combination TPC Cherenkov Detector with GEM Readout for Tracking and Particle Identification and its Potential Use at an Electron Ion Collider

    Directory of Open Access Journals (Sweden)

    Woody Craig

    2018-01-01

    Full Text Available A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ∼ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.

  17. A Prototype Combination TPC Cherenkov Detector with GEM Readout for Tracking and Particle Identification and its Potential Use at an Electron Ion Collider

    Science.gov (United States)

    Woody, Craig; Azmoun, Babak; Majka, Richard; Phipps, Michael; Purschke, Martin; Smirnov, Nikolai

    2018-02-01

    A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ˜ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.

  18. Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    Science.gov (United States)

    Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.

    2018-02-01

    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.

  19. Strip detectors read-out system user's guide

    International Nuclear Information System (INIS)

    Claus, G.; Dulinski, W.; Lounis, A.

    1996-01-01

    The Strip Detector Read-out System consists of two VME modules: SDR-Flash and SDR-seq completed by a fast logic SDR-Trig stand alone card. The system is a self-consistent, cost effective and easy use solution for the read-out of analog multiplexed signals coming from some of the front-end electronics chips (Viking/VA chips family, Premus 128 etc...) currently used together with solid (silicon) or gas microstrip detectors. (author)

  20. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  1. A gas microstrip detector for X-ray imaging with readout of the anode by resistive division

    CERN Document Server

    Bateman, J E; Lodge, A B; Stephenson, R; Mutikainen, R; Suni, I; Morse, J

    2002-01-01

    The results are presented of a development programme aimed at the validation of the key concepts and technologies for the construction of a two-dimensional X-ray detector based on gas microstrip detector technology using resistive division along the anode to achieve the second dimension. A prototype detector and its associated electronic readout system have been developed which demonstrate the capability of a spatial resolution (standard deviation) of approximately ((1)/(1000)) of the working aperture combined with readout rates of up to 400 kHz per anode. Test results and a description of the position sensing circuitry are given.

  2. Second coordinate readout in drift chambers by timing of the electromagnetic wave propagating along the anode wire

    International Nuclear Information System (INIS)

    Boie, R.A.; Radeka, V.; Rehak, P.; Xi, D.M.

    1980-11-01

    The feasibility of using an anode wire and surrounding electrodes in drift chambers as a transmission line for second coordinate readout has been studied. The method is based on propagation of the electromagnetic wave along the anode wire is determined by measurement, in an optimized electronic readout system, of the time difference between the arrivals of the signal to the ends of the wire. The resolution obtained on long wires (approx. 2 meters) is about 2 cm FWHM for minimum ionizing particles at a gas gain of approx. = 10 5

  3. Fluorescence Lifetime Readouts of Troponin-C-Based Calcium FRET Sensors: A Quantitative Comparison of CFP and mTFP1 as Donor Fluorophores

    Science.gov (United States)

    Laine, Romain; Stuckey, Daniel W.; Manning, Hugh; Warren, Sean C.; Kennedy, Gordon; Carling, David

    2012-01-01

    We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that mTFP-based

  4. First performance results of the ALICE TPC Readout Control Unit 2

    OpenAIRE

    Zhao, Chengxin; Alme, Johan; Alt, Torsten; Appelshäuser, Harald; Bratrud, Lars Karlot Stubberud; Castro, Andrew; Costa, Filippo; David, Ernö; Gunji, Tako; Kirsch, S; Kiss, Tivadar; Langøy, Rune; Lien, Jørgen; Lippmann, C; Oskarsson, Anders

    2016-01-01

    - This paper presents the first performance results of the ALICE TPC Readout Control Unit 2 (RCU2). With the upgraded hardware typology and the new readout scheme in FPGA design, the RCU2 is designed to achieve twice the readout speed of the present Readout Control Unit. Design choices such as using the flash-based Microsemi Smartfusion2 FPGA and applying mitigation techniques in interfaces and FPGA design ensure a high degree of radiation tolerance. This paper presents the system level ir...

  5. A fast readout algorithm for Cluster Counting/Timing drift chambers on a FPGA board

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, L. [Università di Cassino e del Lazio Meridionale (Italy); Creti, P.; Grancagnolo, F. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Pepino, A., E-mail: Aurora.Pepino@le.infn.it [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Tassielli, G. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Fermilab, Batavia, IL (United States); Università Marconi, Roma (Italy)

    2013-08-01

    A fast readout algorithm for Cluster Counting and Timing purposes has been implemented and tested on a Virtex 6 core FPGA board. The algorithm analyses and stores data coming from a Helium based drift tube instrumented by 1 GSPS fADC and represents the outcome of balancing between cluster identification efficiency and high speed performance. The algorithm can be implemented in electronics boards serving multiple fADC channels as an online preprocessing stage for drift chamber signals.

  6. Development and characterization of high-resolution neutron pixel detectors based on Timepix read-out chips

    Czech Academy of Sciences Publication Activity Database

    Krejčí, F.; Žemlička, J.; Jakoubek, J.; Dudák, J.; Vavřík, D.; Koster, U.; Atkins, D.; Kaestner, A.; Šoltéš, J.; Viererbl, L.; Vacík, Jiří; Tomandl, Ivo

    2016-01-01

    Roč. 11, DEC (2016), č. článku C12026. ISSN 1748-0221 R&D Projects: GA TA ČR TA01010237 Institutional support: RVO:61389005 Keywords : neutron detector s * Pixalated detector s and associated VLSI electronics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  7. Controlling and monitoring the data flow of the LHCb read-out and DAQ network

    International Nuclear Information System (INIS)

    Schwemmer, R.; Gaspar, C.; Neufeld, N.; Svantesson, D.

    2012-01-01

    The LHCb read-out uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment's raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out chain to count fragments, packets and their rates at different positions. To keep uniformity throughout the experiment, all control software was developed using the common SCADA software, PVSS, with the JCOP framework as base. The presentation will focus on the low level controls interface developed for the L1 boards and the networking probes, as well as the integration of the high level user interfaces into PVSS. (authors)

  8. Description of the SAltro-16 chip for gas detector readout

    CERN Document Server

    Aspell, P; Garcia Garcia, E; de Gaspari, M; Mager, M; Musa, L; Rehman, A; Trampitsch, G

    2010-01-01

    The S-ALTRO prototype chip is a mixed-signal integrated circuit designed to be one of the building blocks of the readout electronics for gas detectors. Its architecture is based in the ALTRO (ALICE TPC Read Out) chip, being its main difference the integration of the charge shaping amplifier in the same IC. Just like ALTRO chip, the prototype architecture and programmability make it suitable for the readout of a wider class of detectors. In one single chip, 16 analogue signals from the detector are shaped, digitised, processed, compressed and stored in a multi-acquisition memory. The Analogue-to- Digital converters embedded in the chip have a 10-bit dynamic range and a maximum sampling rate up to 40MHz. After digitisation, a pipelined Data Processor is able to remove from the input signal a wide range of perturbations, related to the non- ideal behaviour of the detector, temperature variation of the electronics, environmental noise, etc. Moreover, the Data Processor is able to suppress the pulse tail within 1�...

  9. A continuous read-out TPC for the ALICE upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, C., E-mail: C.Lippmann@gsi.de

    2016-07-11

    The largest gaseous Time Projection Chamber (TPC) in the world, the ALICE TPC, will be upgraded based on Micro Pattern Gas Detector technology during the second long shutdown of the CERN Large Hadron Collider in 2018/19. The upgraded detector will operate continuously without the use of a triggered gating grid. It will thus be able to read all minimum bias Pb–Pb events that the LHC will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1 TByte/s. A fractional ion feedback of below 1% is required to keep distortions due to space charge in the TPC drift volume at a tolerable level. The new read-out chambers will consist of quadruple stacks of Gas Electron Multipliers (GEM), combining GEM foils with a different hole pitch. Other key requirements such as energy resolution and operational stability have to be met as well. A careful optimisation of the performance in terms of all these parameters was achieved during an extensive R&D program. A working point well within the design specifications was identified with an ion backflow of 0.63%, a local energy resolution of 11.3% (sigma) and a discharge probability comparable to that of standard triple GEM detectors.

  10. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  11. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  12. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, Joel [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    2017-05-17

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced to the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.

  13. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    Science.gov (United States)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  14. Unusual ratio of TL readouts of different discs of personnel monitoring TLD badge based on CaSO4: Dy teflon disc

    International Nuclear Information System (INIS)

    Pradhan, S.M.; Ande, C.D.; Kher, R.K.; Chourasiya, G.; Vashishtha, R.; Gupta, A.K.

    2005-01-01

    In India Personnel Monitoring against external radiation hazard of gamma, beta and X-rays is provided using a TLD badge based on CaSO 4 : Dy Teflon TLD disc. Unusual ratios of TL readouts of different discs of TLD badge (Disc Ratios) observed for service TLD badges of radiation workers were investigated and simulated. Simulations were carried out by exposure of TLD badges by speck type radioactive sources placed in contact of badges, exposure of TLD badges placed on concrete floor to a radiography source. Clues for the simulation were obtained from nature of work, radiological conditions during course of individuals' work whose TLD badges showed the unusual disc ratios and geometrical calculations performed. It is concluded that although the actual exposure condition during use is unknown, the unusual disk ratios observed for the service TLD badges can be simulated and utilized to arrive at probable exposure conditions. The study helped in investigations of the abnormal exposures and assigning doses to the concerned radiation workers. (author)

  15. FASTBUS readout system for the CDF DAQ upgrade

    International Nuclear Information System (INIS)

    Andresen, J.; Areti, H.; Black, D.

    1993-11-01

    The Data Acquisition System (DAQ) at the Collider Detector at Fermilab is currently being upgraded to handle a minimum of 100 events/sec for an aggregate bandwidth that is at least 25 Mbytes/sec. The DAQ System is based on a commercial switching network that has interfaces to VME bus. The modules that readout the front end crates (FASTBUS and RABBIT) have to deliver the data to the VME bus based host adapters of the switch. This paper describes a readout system that has the required bandwidth while keeping the experiment dead time due to the readout to a minimum

  16. Controlling and Monitoring the Data Flow of the LHCb Read-out and DAQ Network

    CERN Multimedia

    Schwemmer, R; Neufeld, N; Svantesson, D

    2011-01-01

    The LHCb readout uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment's raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out chain t...

  17. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    International Nuclear Information System (INIS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-01-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ''high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ''continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan

  18. A readout system for position sensitive measurements of X-ray using silicon strip detectors

    CERN Document Server

    Dabrowski, W; Grybos, P; Idzik, M; Kudlaty, J

    2000-01-01

    In this paper we describe the development of a readout system for X-ray measurements using silicon strip detectors. The limitation concerning the inherent spatial resolution of silicon strip detectors has been evaluated by Monte Carlo simulation and the results are discussed. The developed readout system is based on the binary readout architecture and consists of two ASICs: RX32 front-end chip comprising 32 channels of preamplifiers, shapers and discriminators, and COUNT32 counter chip comprising 32 20-bit asynchronous counters and the readout logic. This work focuses on the design and performance of the front-end chip. The RX32 chip has been optimised for a low detector capacitance, in the range of 1-3 pF, and high counting rate applications. It can be used with DC coupled detectors allowing the leakage current up to a few nA per strip. For the prototype chip manufactured in a CMOS process all basic parameters have been evaluated by electronic measurements. The noise below 140 el rms has been achieved for a ...

  19. Development of an event builder for the new SADC-readout of the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Jan; Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA in Bonn investigates the photoproduction of mesons off nucleons. Presently the readout of the CsI(Tl)-crystals of the Crystal Barrel calorimeter is being upgraded from a PIN-diode readout to an APD readout to create a fast signal for first-level-triggering. Furthermore, an entirely new setup consisting of Sampling-ADCs (SADC) with FPGA-based readout is being prepared to increase the possible data rate achievable. The SADC is capable of sampling pulses from the detector with 80 MHz, extracting features by FPGA-logic and transferring this data via UDP. To improve package-handling, a server-client structure will be provided. It is foreseen to receive packages from each of the 48 SADC units (32 channels each), detect and handle possible package losses, distribute the received information further via TCP and control the SADC-behaviour. In addition and to assist the FPGA firmware development, a tool to monitor outgoing pulses and to extract important features, such as the deposited energy, timing information and pile-up detection to cross-check the information given by the FPGA is being developed.

  20. Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors

    Science.gov (United States)

    Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.

    2018-03-01

    Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.

  1. Controlling and Monitoring the Data Flow of the LHCb Read-out and DAQ Network

    CERN Document Server

    Schwemmer, Rainer; Neufeld, N; Svantesson, D

    2011-01-01

    The LHCb read-out uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment’s raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out cha...

  2. Readout ASIC of pair-monitor for international linear collider

    International Nuclear Information System (INIS)

    Sato, Yutaro; Ikeda, Hirokazu; Ito, Kazutoshi; Miyamoto, Akiya; Nagamine, Tadashi; Sasaki, Rei; Takubo, Yosuke; Tauchi, Toshiaki; Yamamoto, Hitoshi

    2010-01-01

    The pair-monitor is a beam profile monitor at the interaction point of the international linear collider. A prototype of the readout ASIC for the pair-monitor has been designed and tested. Since the pair-monitor uses the hit distribution of electrons and positrons generated by the beam-crossing to measure the beam profile, the readout ASIC is designed to count the number of hits. In a prototype ASIC, 36 readout cells were implemented by TSMC 0.25-μm CMOS process. Each readout cell is equipped with an amplifier, comparator, 8-bit counter and 16 count-registers. By the operation test, all the ASIC component were confirmed to work correctly. As the next step, we develop the prototype ASIC with the silicon on insulator technology. It is produced with OKI 0.2-μm FD-SOI CMOS process.

  3. Calibration of ALIBAVA readout system

    Energy Technology Data Exchange (ETDEWEB)

    Trofymov, Artur [DESY, Hamburg (Germany); Collaboration: ATLAS experiment-Collaboration

    2015-07-01

    The High Luminosity Large Hadron Collider (LH-LHC) is the upgrade of the LHC that foreseen to increase the instantaneous luminosity by a factor ten with a total integrated luminosity of 3000 fb{sup -1}. The ATLAS experiment will need to build a new tracker to operate in the new severe LH-LHC conditions (increasing detector granularity to cope with much higher channel occupancy, designing radiation-hard sensors and electronics to cope with radiation damage). Charge collection efficiency (CCE) of silicon strip sensors for the new ATLAS tracker can be done with ALIBAVA analog readout system (analog system gives more information about signal from all strips than digital). In this work the preliminary results of ALIBAVA calibration using two different methods (with ''source data'' and ''calibration data'') are presented. Calibration constant obtained by these methods is necessary for knowing collected charge on the silicon strip sensors and for having the ability to compare it with measurements done at the test beam.

  4. A novel mechano-optical sensor based on read-out with a Si3N4 grated waveguide

    NARCIS (Netherlands)

    Pham Van So, P.V.S.; Dijkstra, Mindert; van Wolferen, Hendricus A.G.M.; Pollnau, Markus; Krijnen, Gijsbertus J.M.; Hoekstra, Hugo

    2011-01-01

    Microcantilever-based sensors can be used to detect molecular absorption of, for example, hydrogen gas, which causes changes in the surface stress, leading to deflection of the cantilever. Such a deflection can be determined by means of optical beam deflection, capacitance-, or piezo-resistance

  5. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  6. Development of a SQUID-based 3He Co-magnetometer Readout for a Neutron Electric Dipole Moment Experiment

    OpenAIRE

    Kim, Young Jin; Clayton, Steven M.

    2012-01-01

    A discovery of a permanent electric dipole moment (EDM) of the neutron would provide one of the most important low energy tests of the discrete symmetries beyond the Standard Model of particle physics. A new search of neutron EDM, to be conducted at the spallation neutron source (SNS) at ORNL, is designed to improve the present experimental limit of ~10^-26 e-cm by two orders of magnitude. The experiment is based on the magnetic-resonance technique in which polarized neutrons precess at the L...

  7. A superconducting quantum interference device based read-out of a subattonewton force sensor operating at millikelvin temperatures

    International Nuclear Information System (INIS)

    Usenko, O.; Vinante, A.; Wijts, G.; Oosterkamp, T. H.

    2011-01-01

    We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic temperature. The technique is based on the use of a superconducting quantum interference device to detect the magnetic flux change induced by a magnetized particle attached on the end of the resonator. Unlike conventional interferometric techniques, our detection scheme does not involve direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of 0.5 aN/√(Hz).

  8. A high-throughput readout architecture based on PCI-Express Gen3 and DirectGMA technology

    International Nuclear Information System (INIS)

    Rota, L.; Vogelgesang, M.; Perez, L.E. Ardila; Caselle, M.; Chilingaryan, S.; Dritschler, T.; Zilio, N.; Kopmann, A.; Balzer, M.; Weber, M.

    2016-01-01

    Modern physics experiments produce multi-GB/s data rates. Fast data links and high performance computing stages are required for continuous data acquisition and processing. Because of their intrinsic parallelism and computational power, GPUs emerged as an ideal solution to process this data in high performance computing applications. In this paper we present a high-throughput platform based on direct FPGA-GPU communication. The architecture consists of a Direct Memory Access (DMA) engine compatible with the Xilinx PCI-Express core, a Linux driver for register access, and high- level software to manage direct memory transfers using AMD's DirectGMA technology. Measurements with a Gen3 x8 link show a throughput of 6.4 GB/s for transfers to GPU memory and 6.6 GB/s to system memory. We also assess the possibility of using the architecture in low latency systems: preliminary measurements show a round-trip latency as low as 1 μs for data transfers to system memory, while the additional latency introduced by OpenCL scheduling is the current limitation for GPU based systems. Our implementation is suitable for real-time DAQ system applications ranging from photon science and medical imaging to High Energy Physics (HEP) systems

  9. New Approach for 2D Readout of GEM Detectors

    International Nuclear Information System (INIS)

    Hasell, Douglas K.

    2011-01-01

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to ∼50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  10. Upgraded Readout and Trigger Electronics for the ATLAS Liquid-Argon Calorimeters at the LHC at the Horizons 2018-2022

    CERN Document Server

    Damazio, D O; The ATLAS collaboration

    2013-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the High Luminosity phases of LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Board (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new digital processing system (DPS). The DPS applies...

  11. A Resettable Keypad Lock with Visible Readout Based on Closed Bipolar Electrochemistry and Electrochromic Poly(3-methylthiophene) Films.

    Science.gov (United States)

    Wang, Lei; Lian, Wenjing; Liu, Hongyun

    2016-03-24

    A closed bipolar electrode (BPE) system was developed with electrochromic poly(3-methylthiophene) (PMT) films electropolymerized on the ITO/rGO electrode as one pole of BPE in the reporting reservoir and the bare ITO electrode as another pole of BPE in the analyte reservoir, in which rGO represents reduced graphene oxide. Under a suitable driving voltage (Vtot), the electrochemical reduction/oxidation of electroactive probes, such as H2O2/glutathione (Glu), in the analyte reservoir could induce the reversible color change of PMT films in the reporting reservoir between blue and red. Based on this, a keypad lock with H2O2 , Glu, and Vtot =-3.0 V as the three inputs and the color change of PMT films as the visible output was established. This system was easily operated and did not need to synthesize the complex compounds or DNA molecules. The security system was easy to reset and could be used repeatedly. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dual-readout calorimetry with scintillating crystals

    International Nuclear Information System (INIS)

    Pinci, D

    2009-01-01

    The dual-readout approach, which allows an event-by-event measurement of the electromagnetic shower fraction, was originally demonstrated with the DREAM sampling calorimeter. This approach can be extended to homogeneous detectors like crystals if Cherenkov and scintillation light can be separated. In this paper we present several methods we developed for distinguishing the two components in PWO and BGO based calorimeters and the results obtained.

  13. Signal processing for distributed readout using TESs

    International Nuclear Information System (INIS)

    Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.

    2006-01-01

    We describe optimal filtering algorithms for determining energy and position resolution in position-sensitive Transition Edge Sensor (TES) Distributed Read-Out Imaging Devices (DROIDs). Improved algorithms, developed using a small-signal finite-element model, are based on least-squares minimisation of the total noise power in the correlated dual TES DROID. Through numerical simulations we show that significant improvements in energy and position resolution are theoretically possible over existing methods

  14. Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts.

    Science.gov (United States)

    Seuwen, Aline; Schroeter, Aileen; Grandjean, Joanes; Rudin, Markus

    2015-10-15

    Functional proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional 1H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse 1H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12 min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    Directory of Open Access Journals (Sweden)

    M. Elsobky

    2017-09-01

    Full Text Available Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI substrate to form a Hybrid System-in-Foil (HySiF, which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC. The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC, a differential difference amplifier (DDA, and a 10-bit successive approximation register (SAR ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  16. Superconducting single electron transistor for charge sensing in Si/SiGe-based quantum dots

    Science.gov (United States)

    Yang, Zhen

    Si-based quantum devices, including Si/SiGe quantum dots (QD), are promising candidates for spin-based quantum bits (quits), which are a potential platform for quantum information processing. Meanwhile, qubit readout remains a challenging task related to semiconductor-based quantum computation. This thesis describes two readout devices for Si/SiGe QDs and the techniques for developing them from a traditional single electron transistor (SET). By embedding an SET in a tank circuit and operating it in the radio-frequency (RF) regime, a superconducting RF-SET has quick response as well as ultra high charge sensitivity and can be an excellent charge sensor for the QDs. We demonstrate such RF-SETs for QDs in a Si/SiGe heterostructure. Characterization of the SET in magnetic fields is studied for future exploration of advanced techniques such as spin detection and spin state manipulation. By replacing the tank circuit with a high-quality-factor microwave cavity, the embedded SET will be operated in the supercurrent regime as a single Cooper pair transistor (CPT) to further increase the charge sensitivity and reduce any dissipation. The operating principle and implementation of the cavity-embedded CPT (cCPT) will be introduced.

  17. AVME readout module for multichannel ASIC characterization

    International Nuclear Information System (INIS)

    Borkar, S.P.; Lalwani, S.K.; Ghodgaonkar, M.D.; Kataria, S.K.; Reynaud, Serge; )

    2004-01-01

    Electronics Division, BARC has been working on the development of multi-channel ASIC, called SPAIR (Silicon-strip Pulse Amplifier Integrated Readout). It contains 8 channels of preamplifier, shaper and track-and-hold circuitry. Electronics Division has also actively participated in development of test setup for the front-end ASIC, called PACE, for the preshower detector of the Compact Muon Solenoid (CMS) Experiment at CERN, Geneva. PACE is a 32 channel ASIC for silicon strip detector, containing preamplifier, shaper, calibration circuitry, switched capacitor array, readout amplifier per channel and an analog multiplexer. A VME Readout Module, (VRM) is developed which can be utilized in data acquisition from ASICs like PACE and SPAIR. The VRM can also be used as the Detector Dependent Unit for digitally processing the data received from the front-end electronics on the 16-bit LVDS port. The processed, data can be read by the VME system. Thus the VRM is very useful in building an ASIC characterization system and/or the automated ASIC production testing system. It can be used also to build the applications using such ASICs. To cater to various requirements arising in future, variety of VME modules are to be developed like ADCs, DACs and D 1/0. VME interface remains a common part to all these modules. The different functional blocks of these modules can be designed and fabricated on small piggyback boards (called Test Boards) and mounted on the VRM, which provides the common VME interface. The design details and uses of VRM are presented here. (author)

  18. A fast readout system for scintillation detectors

    International Nuclear Information System (INIS)

    Steijger, J.; Kok, E.; Kwakkel, E.; Visschers, J.L.; Zwart, A.N.M.

    1991-01-01

    A system of fast readout electronics for segmented scintillation detectors has been constructed and is now operational. Instead of delaying the analog signals in long coaxial cables, they are digitized immediately and stored in dual-port memories, while the trigger decision is being made. A VMEbus system collects the data from these memories on the data acquisition modules within one crate. Several VME crates are connected via a transputer network to transport the data to an event builder. A separate transputer network is used to perform the VME cycles, needed for the computer-controlled tuning of the experiment. (orig.)

  19. Pad readout for gas detectors using 128-channel integrated preamplifiers

    International Nuclear Information System (INIS)

    Fischer, P.; Drees, A.; Glassel, P.

    1988-01-01

    A novel two-dimensional readout scheme for gas detectors is presented which uses small metal pads with 2.54 mm pitch as an anode. The pads are read out via 128-channel VLSI low-noise preamplifier/multiplexer chips. These chips are mounted on 2.8x2.8 cm/sup 2/ modules which are directly plugged onto the detector backplane, daisy-chained with jumpers and read out sequentially. The readout has been successfully tested with a low-pressure, two-step, TMAE-filled UV-RICH detector prototype. A single electron efficiently of >90% was observed at moderate chamber gains (<10/sup 6/). The method offers high electronic amplification, low noise, and high readout speed with a very flexible and compact design, suited for space-limited applications

  20. Study of preamplifier, shaper and peak detector in readout ASIC for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Zhang Shengjun; Fan Lei; Li Xian

    2014-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout system and ASICs have been designed in China now. This project designed a multi-channel readout ASIC for general detector. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured, results will be reported in time. (authors)

  1. Study and optimization of the spatial resolution for detectors with binary readout

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-09-11

    Using simulations and analytical approaches, we have studied single hit resolutions obtained with a binary readout, which is often proposed for high granularity detectors to reduce the generated data volume. Our simulations considering several parameters (e.g. strip pitch) show that the detector geometry and an electronics parameter of the binary readout chips could be optimized for binary readout to offer an equivalent spatial resolution to the one with an analog readout. To understand the behavior as a function of simulation parameters, we developed analytical models that reproduce simulation results with a few parameters. The models can be used to optimize detector designs and operation conditions with regard to the spatial resolution.

  2. A large area cooled-CCD detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Raeburn, C.

    1994-01-01

    Large area cooled-CCDs are an excellent medium for (indirectly) recording electron images and electron diffraction patterns in real time and for use in electron tomography; real-time imaging is extremely useful in making rapid adjustments in the electron microscope. CCDs provide high sensitivity (useful for minimising dosage to radiation-sensitive biological specimen), good resolution, stable performance, excellent dynamic range and linearity and a reasonably fast readout.We have built an electron imaging device based on the EEV 1152 by 814 pixel CCD which is controlled from a unix based SUN Sparcstation operating under X-Windows. The incident 100 kV electrons are converted to visible light in a 0.5 mm thick YAG single crystal which is imaged through a lens on to the CCD.The CCD electronics is designed to be as flexible as possible and allows a wide variation in the readout speed to cater for the relatively fast application where readout noise is less critical and low readout noise applications where the extra few seconds of readout time are not significant. The CCD electronics is built in VME format which is controlled through a S-bus to VME driver. With two parallel channels of readout the whole image can be read out in similar 1 s (using the faster readout speed) with 16 bit precision and the image is displayed under X-Windows in a few seconds. The present readout works at 500 kHz and has a noise of similar 30 e rms per pixel. With a Peltier cooling device we can operate the CCD at similar -40 circle C which reduces the dark current adequately to allow exposures of up to several minutes. Several examples of patterns collected with the system on a Philips CM12 microscope will be presented. ((orig.))

  3. Radiation tolerance of oxygenated n-strip read-out detectors

    CERN Document Server

    Allport, P P; Greenall, A

    2003-01-01

    Following earlier work on 'oxygenated' detectors in terms of charge collection efficiencies after proton irradiation, full-size detectors for the LHC have been processed with n-side read-out on oxygen enhanced n-type silicon substrates. Two hundred-micron-thick detectors have been inhomogeneously irradiated up to doses of 7 multiplied by 10**1**4p/cm**2 using 24 GeV protons from the CERN PS. Results are presented on the charge collection efficiencies as a function of operating voltage for regions of the detectors irradiated to different doses, using LHC speed analogue read-out electronics. The measurements confirm the expectations which led to our original proposal of such detectors which are now being envisaged for the silicon-based detector systems at the LHC designed to withstand the greatest doses. The possibilities for survival at an upgraded luminosity LHC (Super-LHC) are also briefly discussed.

  4. New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, T., E-mail: mizumoto@cr.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Matsuoka, Y. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Mizumura, Y. [Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Tanimori, T. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Kubo, H.; Takada, A.; Iwaki, S.; Sawano, T.; Nakamura, K.; Komura, S.; Nakamura, S.; Kishimoto, T.; Oda, M.; Miyamoto, S.; Takemura, T.; Parker, J.D.; Tomono, D.; Sonoda, S. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Miuchi, K. [Department of Physics, Kobe University, 658-8501 Kobe (Japan); Kurosawa, S. [Institute for Materials Research, Tohoku University, 980-8577 Sendai (Japan)

    2015-11-11

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×10×15 cm{sup 3} TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm){sup 3} medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm){sup 3} ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from ~10% to ~100%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.

  5. FAIR: A new fast trigger and readout bus system

    International Nuclear Information System (INIS)

    Ordine, A.; Boiano, A.; Zaghi, A.

    1998-01-01

    FAIR (FAst Intercrate Readout) is a synchronous ECL bus system dedicated to readout. It is based on a new trigger and readout hardware level protocol and on a new control system that learns how to setup and control modules. The hardware protocol along with the data structure allow both readout and event building at the same time at the rate of 22 ns/longword (1.44 Gbit/s) without the need of CPUs. It performs trigger management and full pipelining by using a multilevel FIFO structure. FAIR provides for a multi-crate front-end environment and uses an embedded serial network to accomplish front-end control and setup. The data transfer measured performances and the control system are presented in some detail

  6. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-01-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 x 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout. (orig.)

  7. Online readout and control unit for high-speed/high resolution readout of silicon tracking detectors

    Science.gov (United States)

    Bürger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1997-02-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 × 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout.

  8. Online readout and control unit for high-speed / high resolution readout of silicon tracking detectors

    International Nuclear Information System (INIS)

    Buerger, J.; Hansen, K.; Lange, W.; Nowak, T.; Prell, S.; Zimmermann, W.

    1996-09-01

    We are describing a high speed VME readout and control module developed and presently working at the H1 experiment at DESY in Hamburg. It has the capability to read out 4 x 2048 analogue data channels at sampling rates up to 10 MHz with a dynamic input range of 1 V. The nominal resolution of the A/D converters can be adjusted between 8 and 12 bit. At the latter resolution we obtain signal-to-noise ratio better than 61.4 dB at a conversion rate of 5 MSps. At this data rate all 8192 detector channels can be read out to the internal raw data memory and VME interface within about 410 μs and 510 μs, respectively. The pedestal subtracted signals can be analyzed on-line. At a raw data hit occupation of 10%, the VME readout time is 50 μs per module. Each module provides four complementary CMOS signals to control the front-end electronics and four independent sets of power supplies for analogue and digital voltages (10 V, 100 mA) to drive the front-end electronics and for the bias voltage (100 V, 1.2 mA) to assure the full functionality of the detectors and the readout. (orig.)

  9. Web-based DAQ systems: connecting the user and electronics front-ends

    Science.gov (United States)

    Lenzi, Thomas

    2016-12-01

    Web technologies are quickly evolving and are gaining in computational power and flexibility, allowing for a paradigm shift in the field of Data Acquisition (DAQ) systems design. Modern web browsers offer the possibility to create intricate user interfaces and are able to process and render complex data. Furthermore, new web standards such as WebSockets allow for fast real-time communication between the server and the user with minimal overhead. Those improvements make it possible to move the control and monitoring operations from the back-end servers directly to the user and to the front-end electronics, thus reducing the complexity of the data acquisition chain. Moreover, web-based DAQ systems offer greater flexibility, accessibility, and maintainability on the user side than traditional applications which often lack portability and ease of use. As proof of concept, we implemented a simplified DAQ system on a mid-range Spartan6 Field Programmable Gate Array (FPGA) development board coupled to a digital front-end readout chip. The system is connected to the Internet and can be accessed from any web browser. It is composed of custom code to control the front-end readout and of a dual soft-core Microblaze processor to communicate with the client.

  10. Web-based DAQ systems: connecting the user and electronics front-ends

    International Nuclear Information System (INIS)

    Lenzi, Thomas

    2016-01-01

    Web technologies are quickly evolving and are gaining in computational power and flexibility, allowing for a paradigm shift in the field of Data Acquisition (DAQ) systems design. Modern web browsers offer the possibility to create intricate user interfaces and are able to process and render complex data. Furthermore, new web standards such as WebSockets allow for fast real-time communication between the server and the user with minimal overhead. Those improvements make it possible to move the control and monitoring operations from the back-end servers directly to the user and to the front-end electronics, thus reducing the complexity of the data acquisition chain. Moreover, web-based DAQ systems offer greater flexibility, accessibility, and maintainability on the user side than traditional applications which often lack portability and ease of use. As proof of concept, we implemented a simplified DAQ system on a mid-range Spartan6 Field Programmable Gate Array (FPGA) development board coupled to a digital front-end readout chip. The system is connected to the Internet and can be accessed from any web browser. It is composed of custom code to control the front-end readout and of a dual soft-core Microblaze processor to communicate with the client.

  11. Studies and development of a readout ASIC for pixelated CdTe detectors for space applications

    International Nuclear Information System (INIS)

    Michalowska, A.

    2013-01-01

    designed two ASICs. The first one, Caterpylar, is a test-chip, which enables the characterization of differently dimensioned CSA circuits to choose the most suitable one for the final application. It is optimized for readout of the target CdTe detector with 300 μm pixel pitch and the corresponding input parameters. With this circuit I have also analyzed possible filtering methods, in particular the semi-Gaussian shaping and the Multi-Correlated Double Sampling (MCDS). Their comparison is preceded by the theoretical analysis of these shapers. The second ASIC D 2 R 1 is a complete readout circuit, containing 256 channels to readout CdTe detector with the same number of pixels, arranged in 16 *16 array. Each channel fits into a layout area of 300 μm - 300 μm. It is based on the MCDS processing with self-triggering capabilities. The mean electronic noise measured over all channels is 29 electrons rms when characterized without the detector. The corresponding power consumption is 315 μW/channel. With these results the future measurements with the detector give prospects for reaching an FWHM spectral resolution in the order of 600 eV at 60 keV. (author) [fr

  12. DRM2: the readout board for the ALICE TOF upgrade

    CERN Document Server

    Falchieri, Davide

    2018-01-01

    For the upgrade of the ALICE TOF electronics, we have designed a new version of the readout board, named DRM2, a card able to read the data coming from the TDC Readout Module boards via VME. A Microsemi Igloo2 FPGA acts as the VME master and interfaces the GBTx link for transmitting data and receiving triggers and a low-jitter clock. Compared to the old board, the DRM2 is able to cope with faster trigger rates and provides a larger data bandwidth towards the DAQ. The results of the measurements on the received clock jitter and data transmission performances in a full crate are given.

  13. Search for second generation leptoquarks in $\\sqrt{s}$ = 1.8-TeV $p^-$ pbar at CDF and silicon detector readout electronics development with ATLAS

    CERN Document Server

    Kambara, Hisanori

    1998-01-01

    In this thesis, a search for second generation leptoquark is presented. It is based on the data collected at the Collider Detector at Fermilab with the Tevatron proton-antiproton collisions of $\\sqrt{s}$ = 1.8 TeV. A total integrated luminosity of 110 pb-1 collected during runs in 1992-1995 is used. The search was performed on the charged dimuon plus dijet channel. No evidence for existence of leptoquark was found, and a new production cross section limit is set as a result of this analysis. Using the most recent theoretical calculation of pair leptoquark production [1], a new lower mass limit for second generation scalar leptoquark is extracted. The new limit excludes M(LQ2)< 202 GeV/c2. The Large Hadron Collider (LHC), a proton-proton collider with a center of mass energy ($\\sqrt{s}$) of 14 TeV, is currently under the construction at CERN. It will be utilised to extend the searches for the leptoquarks to higher mass regions. As in CDF, tracking detectors are essential to identify charged leptons decaying...

  14. DNA Nanobiosensors: An Outlook on Signal Readout Strategies

    Directory of Open Access Journals (Sweden)

    Arun Richard Chandrasekaran

    2017-01-01

    Full Text Available A suite of functionalities and structural versatility makes DNA an apt material for biosensing applications. DNA-based biosensors are cost-effective and sensitive and have the potential to be used as point-of-care diagnostic tools. Along with robustness and biocompatibility, these sensors also provide multiple readout strategies. Depending on the functionality of DNA-based biosensors, a variety of output strategies have been reported: fluorescence- and FRET-based readout, nanoparticle-based colorimetry, spectroscopy-based techniques, electrochemical signaling, gel electrophoresis, and atomic force microscopy.

  15. The Front-End Concentrator card for the RD51 Scalable Readout System

    International Nuclear Information System (INIS)

    Toledo, J; Esteve, R; Monzó, J M; Tarazona, A; Muller, H; Martoiu, S

    2011-01-01

    Conventional readout systems exist in many variants since the usual approach is to build readout electronics for one given type of detector. The Scalable Readout System (SRS) developed within the RD51 collaboration relaxes this situation considerably by providing a choice of frontends which are connected over a customizable interface to a common SRS DAQ architecture. This allows sharing development and production costs among a large base of users as well as support from a wide base of developers. The Front-end Concentrator card (FEC), a RD51 common project between CERN and the NEXT Collaboration, is a reconfigurable interface between the SRS online system and a wide range of frontends. This is accomplished by using application-specific adapter cards between the FEC and the frontends. The ensemble (FEC and adapter card are edge mounted) forms a 6U × 220 mm Eurocard combo that fits on a 19'' subchassis. Adapter cards exist already for the first applications and more are in development.

  16. The readout system for the ArTeMis camera

    Science.gov (United States)

    Doumayrou, E.; Lortholary, M.; Dumaye, L.; Hamon, G.

    2014-07-01

    During ArTeMiS observations at the APEX telescope (Chajnantor, Chile), 5760 bolometric pixels from 20 arrays at 300mK, corresponding to 3 submillimeter focal planes at 450μm, 350μm and 200μm, have to be read out simultaneously at 40Hz. The read out system, made of electronics and software, is the full chain from the cryostat to the telescope. The readout electronics consists of cryogenic buffers at 4K (NABU), based on CMOS technology, and of warm electronic acquisition systems called BOLERO. The bolometric signal given by each pixel has to be amplified, sampled, converted, time stamped and formatted in data packets by the BOLERO electronics. The time stamping is obtained by the decoding of an IRIG-B signal given by APEX and is key to ensure the synchronization of the data with the telescope. Specifically developed for ArTeMiS, BOLERO is an assembly of analogue and digital FPGA boards connected directly on the top of the cryostat. Two detectors arrays (18*16 pixels), one NABU and one BOLERO interconnected by ribbon cables constitute the unit of the electronic architecture of ArTeMiS. In total, the 20 detectors for the tree focal planes are read by 10 BOLEROs. The software is working on a Linux operating system, it runs on 2 back-end computers (called BEAR) which are small and robust PCs with solid state disks. They gather the 10 BOLEROs data fluxes, and reconstruct the focal planes images. When the telescope scans the sky, the acquisitions are triggered thanks to a specific network protocol. This interface with APEX enables to synchronize the acquisition with the observations on sky: the time stamped data packets are sent during the scans to the APEX software that builds the observation FITS files. A graphical user interface enables the setting of the camera and the real time display of the focal plane images, which is essential in laboratory and commissioning phases. The software is a set of C++, Labview and Python, the qualities of which are respectively used

  17. Status of readout integrated circuits for radiation detector

    International Nuclear Information System (INIS)

    Moon, B. S.; Hong, S. B.; Cheng, J. E. and others

    2001-09-01

    In this report, we describe the current status of readout integrated circuits developed for radiation detectors, along with new technologies being applied to this field. The current status of ASCIC chip development related to the readout electronics is also included in this report. Major sources of this report are from product catalogs and web sites of the related industries. In the field of semiconductor process technology in Korea, the current status of the multi-project wafer(MPW) of IDEC, the multi-project chip(MPC) of ISRC and other domestic semiconductor process industries is described. In the case of other countries, the status of the MPW of MOSIS in USA and the MPW of EUROPRACTICE in Europe is studied. This report also describes the technologies and products of readout integrated circuits of industries worldwide

  18. The Readout Control Unit of the ALICE TPC

    CERN Document Server

    Lien, J A; Musa, L

    2004-01-01

    The ALICE Time Projection Chamber (TPC) is the main tracking detector of the central barrel of the ALICE (A Large Ion Collider) Experiment at the Large Hadron Collider (LHC), being constructed at CERN, Geneva. It is a 88 m$^{3}$ cylinder filled with gas and divided into two drift regions by the central electrode located at its axial center. The readout chambers of the TPC are multi-wire proportional chambers with cathode pad readout. About 570 000 pads are read-out by an electronics chain of amplification, digitalization and pre-processing. One of the challenges in designing the TPC for ALICE is the design of Front End Electronics (FEE) to cope with the data rates and the channel occupancy. The Readout Control Unit (RCU), which is presented in this work, is designed to control and monitor the Front End Electronics, and to collect and ship data to the High Level Trigger and the Data Acquisition System, via the Detector Data Link (DDL - optical fibre). The RCU must be capable of reading out up to 200 Mbytes/s f...

  19. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    Science.gov (United States)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  20. Analytical bounds on SET charge sensitivity for qubit readout in a solid-state quantum computer

    International Nuclear Information System (INIS)

    Green, F.; Buehler, T.M.; Brenner, R.; Hamilton, A.R.; Dzurak, A.S.; Clark, R.G.

    2002-01-01

    Full text: Quantum Computing promises processing powers orders of magnitude beyond what is possible in conventional silicon-based computers. It harnesses the laws of quantum mechanics directly, exploiting the in built potential of a wave function for massively parallel information processing. Highly ordered and scaleable arrays of single donor atoms (quantum bits, or qubits), embedded in Si, are especially promising; they are a very natural fit to the existing, highly sophisticated, Si industry. The success of Si-based quantum computing depends on precisely initializing the quantum state of each qubit, and on precise reading out its final form. In the Kane architecture the qubit states are read out by detecting the spatial distribution of the donor's electron cloud using a sensitive electrometer. The single-electron transistor (SET) is an attractive candidate readout device for this, since the capacitive, or charging, energy of a SET's metallic central island is exquisitely sensitive to its electronic environment. Use of SETs as high-performance electrometers is therefore a key technology for data transfer in a solid-state quantum computer. We present an efficient analytical method to obtain bounds on the charge sensitivity of a single electron transistor (SET). Our classic Green-function analysis provides reliable estimates of SET sensitivity optimizing the design of the readout hardware. Typical calculations, and their physical meaning, are discussed. We compare them with the measured SET-response data

  1. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  2. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Abstract. Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant ...

  3. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    2015-05-29

    May 29, 2015 ... Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the ...

  4. A Front-End Readout Architecture for the CMS Barrel Muon Detector: A Feasibility Study

    International Nuclear Information System (INIS)

    Aguayo, P.; Alberdi, J.; Barcala, J.M.; Marin, J.; Molinero, A.; Navarrete, J.; Pablos, J.L. de; Romero, L.; Willmot, C.

    1995-01-01

    A feasibility study of a possible architecture for the CMS barrel muon detector readout electronics is presented. some aspects of system reliability are discussed. Values for the required FIFO's to store data during the first level trigger latency are given

  5. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  6. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  7. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  8. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  9. Digital column readout architectures for hybrid pixel detector readout chips

    International Nuclear Information System (INIS)

    Poikela, T; Plosila, J; Westerlund, T; Buytaert, J; Campbell, M; Gaspari, M De; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; Beuzekom, M van; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 μm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures

  10. Data base systems in electronic design engineering

    Science.gov (United States)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  11. Design of a water based cooling system to take out electronics heat load of MUCH detector in CBM experiment

    International Nuclear Information System (INIS)

    Jain, Vikas; Saini, J.; Chattopadhyay, S.; Dubey, A.K.

    2015-01-01

    A GEM based detector system is being developed at VECC, Kolkata for use as muon tracker in the Compressed Baryonic Matter (CBM) experiment at the upcoming FAIR facility in Germany. The Muon Chambers (MUCH) consists of alternating layers of six absorbers and detector stations. Out of the six stations, VECC has taken responsibility to build the detectors and related readout electronics for the first two stations where each station consists of three detector layers. MUCH will be use a custom built self-triggering ASIC, which will provide both timing and energy information for each incoming signal in its channel. MUCH uses the sensitive electronics where the desired operating temperature range is 25-30 °C. Temperature going above these limits will drift the biasing scheme and further increase may lead to damage of Front End Electronics (FEE) board itself

  12. Communication: Electron ionization of DNA bases

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  13. Comparing interferometry techniques for multi-degree of freedom test mass readout

    International Nuclear Information System (INIS)

    Isleif, Katharina-Sophie; Gerberding, Oliver; Mehmet, Moritz; Schwarze, Thomas S; Heinzel, Gerhard; Danzmann, Karsten

    2016-01-01

    Laser interferometric readout systems with 1pm/Hz precision over long time scales have successfully been developed for LISA and LISA Pathfinder. Future gravitational physics experiments, for example in the fields of gravitational wave detection and geodesy, will potentially require similar levels of displacement and tilt readouts of multiple test masses in multiple degrees of freedom. In this article we compare currently available classic interferometry schemes with new techniques using phase modulations and complex readout algorithms. Based on a simple example we show that the new techniques have great potential to simplify interferometric readouts. (paper)

  14. FASTBUS Readout Controller card for high speed data acquisition

    International Nuclear Information System (INIS)

    Zimmermann, S.

    1991-10-01

    This article describes a FASTBUS Readout Controller (FRC) for high speed data acquisition in FASTBUS based systems. The controller has two main interfaces: to FASTBUS and to a Readout Port. The FASTBUS interface performs FASTBUS master and slave operations at a maximum transfer rate exceeding 40 MBytes/s. The Readout Port can be adapted for a variety of protocols. Currently, it will be interfaced to a VME bus based processor with a VSB port. The on-board LR33000 embedded processor controls the readout, executing a list of operations download into its memory. It scans the FASTBUS modules and stores the data in a triple port DRAM (TPDRAM), through one of the Serial Access Memory (SAM) ports of the (TPDRAM). Later, it transfers this data to the readout port using the other SAM. The FRC also supports serial communication via RS232 and Ethernet interfaces. This device is intended for use in the data acquisition system at the Collider Detector at Fermilab. 5 refs., 3 figs

  15. Study of spatial resolution of coordinate detectors based on Gas Electron Multipliers

    Science.gov (United States)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-02-01

    Spatial resolution of GEM-based tracking detectors is determined in the simulation and measured in the experiments. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting of atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing with accounting of diffusion, gas amplification fluctuations, distribution of signals on readout electrodes, electronics noise and particular algorithm of final coordinate calculation (center of gravity). The simulation demonstrates that the minimum of spatial resolution of about 10 μm can be achieved with a gas mixture of Ar -CO2 (75-25 %) at a strips pitch from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 80-100 μm at a pitch of 460-500 μm. Spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4 M collider. One-coordinate resolution of the DEUTERON detector is measured with electron beam of 500 MeV, 1 GeV and 3.5 GeV energies. The determined value of spatial resolution varies in the range from approximately 35 μm to 50 μm for orthogonal tracks in the experiments.

  16. An FPGA-Based Electronic Cochlea

    Directory of Open Access Journals (Sweden)

    M. P. Leong

    2003-06-01

    Full Text Available A module generator which can produce an FPGA-based implementation of an electronic cochlea filter with arbitrary precision is presented. Although hardware implementations of electronic cochlea models have traditionally used analog VLSI as the implementation medium due to their small area, high speed, and low power consumption, FPGA-based implementations offer shorter design times, improved dynamic range, higher accuracy, and a simpler computer interface. The tool presented takes filter coefficients as input and produces a synthesizable VHDL description of an application-optimized design as output. Furthermore, the tool can use simulation test vectors in order to determine the appropriate scaling of the fixed point precision parameters for each filter. The resulting model can be used as an accelerator for research in audition or as the front-end for embedded auditory signal processing systems. The application of this module generator to a real-time cochleagram display is also presented.

  17. MAROC, a generic photomultiplier readout chip

    International Nuclear Information System (INIS)

    Blin, S; Barrillon, P; La Taille, C de

    2010-01-01

    The MAROC ASICs family is dedicated to the readout of 64-channel Multi Anode PMT and similar detectors. Its main roles are to correct the gain spread of MAPMT channels thanks to an individual variable gain preamplifier and to discriminate the input signals (from 50fC i.e 1/3 photo-electron) in order to produce 64 trigger outputs. A multiplexed analog charge output is also available with a dynamic range around 10 pe ( ∼ 1.6 pC) and a 12 bit Wilkinson ADC is embedded. Three versions of this chip have been submitted. MAROC 2 is the production version for the ATLAS luminometer and MAROC3 is a version with lower dissipation and significant improvements concerning the charge (30 pe: ∼ 5 pC) and trigger (discrimination from 10fC). This third version showed very good characteristics that are presented here.

  18. MAROC, a generic photomultiplier readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Blin, S; Barrillon, P; La Taille, C de, E-mail: blin@lal.in2p3.f [CNRS/IN2p3/LAL-OMEGA, Universite Paris Sud, Bat.200, 91898 Orsay (France)

    2010-12-15

    The MAROC ASICs family is dedicated to the readout of 64-channel Multi Anode PMT and similar detectors. Its main roles are to correct the gain spread of MAPMT channels thanks to an individual variable gain preamplifier and to discriminate the input signals (from 50fC i.e 1/3 photo-electron) in order to produce 64 trigger outputs. A multiplexed analog charge output is also available with a dynamic range around 10 pe ( {approx} 1.6 pC) and a 12 bit Wilkinson ADC is embedded. Three versions of this chip have been submitted. MAROC 2 is the production version for the ATLAS luminometer and MAROC3 is a version with lower dissipation and significant improvements concerning the charge (30 pe: {approx} 5 pC) and trigger (discrimination from 10fC). This third version showed very good characteristics that are presented here.

  19. MAROC, a generic photomultiplier readout chip

    Science.gov (United States)

    Blin, S.; Barrillon, P.; de La Taille, C.

    2010-12-01

    The MAROC ASICs family is dedicated to the readout of 64-channel Multi Anode PMT and similar detectors. Its main roles are to correct the gain spread of MAPMT channels thanks to an individual variable gain preamplifier and to discriminate the input signals (from 50fC i.e 1/3 photo-electron) in order to produce 64 trigger outputs. A multiplexed analog charge output is also available with a dynamic range around 10 pe ( ~ 1.6 pC) and a 12 bit Wilkinson ADC is embedded. Three versions of this chip have been submitted. MAROC 2 is the production version for the ATLAS luminometer and MAROC3 is a version with lower dissipation and significant improvements concerning the charge (30 pe: ~ 5 pC) and trigger (discrimination from 10fC). This third version showed very good characteristics that are presented here.

  20. dc readout experiment at the Caltech 40m prototype interferometer

    International Nuclear Information System (INIS)

    Ward, R L; Adhikari, R; Abbott, B; Abbott, R; Bork, R; Fricke, T; Heefner, J; Ivanov, A; Miyakawa, O; Smith, M; Taylor, R; Vass, S; Waldman, S; Weinstein, A; Barron, D; Frolov, V; McKenzie, K; Slagmolen, B

    2008-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system

  1. Zope based electronic operation log system - Zlog

    International Nuclear Information System (INIS)

    Yoshii, K.; Satoh, Y.; Kitabayashi, T.

    2004-01-01

    Since January 2004, the Zope based electronic operation logging system, named Zlog, has been running at the KEKB and AR accelerator facilities. Since Zope is the python based open source web application server software and python language is familiar for the members in the KEKB accelerator control group, we have developed the Zlog system rapidly. In this paper, we report the development history and the present status of Zlog system. Also we show some general plug-in components, called Zope products, have been useful for our Zlog development. (author)

  2. A fast embedded readout system for large-area Medipix and Timepix systems

    International Nuclear Information System (INIS)

    Brogna, A S; Balzer, M; Smale, S; Hartmann, J; Bormann, D; Hamann, E; Cecilia, A; Zuber, M; Koenig, T; Weber, M; Fiederle, M; Baumbach, T; Zwerger, A

    2014-01-01

    In this work we present a novel readout electronics for an X-ray sensor based on a Si crystal bump-bonded to an array of 3 × 2 Medipix ASICs. The pixel size is 55 μm × 55 μm with a total number of ∼ 400k pixels and a sensitive area of 42 mm × 28 mm. The readout electronics operate Medipix-2 MXR or Timepix ASICs with a clock speed of 125 MHz. The data acquisition system is centered around an FPGA and each of the six ASICs has a dedicated I/O port for simultaneous data acquisition. The settings of the auxiliary devices (ADCs and DACs) are also processed in the FPGA. Moreover, a high-resolution timer operates the electronic shutter to select the exposure time from 8 ns to several milliseconds. A sophisticated trigger is available in hardware and software to synchronize the acquisition with external electro-mechanical motors. The system includes a diagnostic subsystem to check the sensor temperature and to control the cooling Peltier cells and a programmable high-voltage generator to bias the crystal. A network cable transfers the data, encapsulated into the UDP protocol and streamed at 1 Gb/s. Therefore most notebooks or personal computers are able to process the data and to program the system without a dedicated interface. The data readout software is compatible with the well-known Pixelman 2.x running both on Windows and GNU/Linux. Furthermore the open architecture encourages users to write their own applications. With a low-level interface library which implements all the basic features, a MATLAB or Python script can be implemented for special manipulations of the raw data. In this paper we present selected images taken with a microfocus X-ray tube to demonstrate the capability to collect the data at rates up to 120 fps corresponding to 0.76 Gb/s

  3. The New Readout System of the NA62 LKr Calorimeter

    CERN Document Server

    Ceccucci, A; Farthouat, P; Lamanna, G; Rouet, J; Ryjov, V; Venditti, S

    2015-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the photon-veto system; to cope with the demanding NA62 re- quirements,itsback-endelectron icshadtobecompletelyrenewed. The new readout system is based on the Calorimeter REAdout Module (CREAM) [3], a 6U VME board whose design and pro- duction was sub-contracted to CAEN [4], with CERN NA62 group continuously supervising the de velopment and production phase. The first version of the board was delivered by the manufacturer in March 2013 and, as of June 2014, the full board production is ongoing. In addition to describing the CREAM board, all aspects of the new LKr readout system, including its integration within the NA62 TDAQ scheme, will be treated.

  4. The Retinal Readout System: a status report A Status Report

    CERN Document Server

    Litke, A M

    1999-01-01

    The 'Retinal Readout System' is being developed to study the language the eye uses to send information about the visual world to the brain. Its architecture is based on that of silicon microstrip detectors. An array of 512 microscopic electrodes picks up the signals generated by the output neurons of live retinal tissue in response to a dynamic image focused on the input neurons. These signals are amplified, filtered and multiplexed by a set of eight custom-designed VLSI readout chips, and digitized and recorded by a data acquisition system. This report describes the goals, design, and status of the system. (author)

  5. Development of a Crosstalk Suppression Algorithm for KID Readout

    Science.gov (United States)

    Lee, Kyungmin; Ishitsuka, H.; Oguri, S.; Suzuki, J.; Tajima, O.; Tomita, N.; Won, Eunil; Yoshida, M.

    2018-06-01

    The GroundBIRD telescope aims to detect B-mode polarization of the cosmic microwave background radiation using the kinetic inductance detector array as a polarimeter. For the readout of the signal from detector array, we have developed a frequency division multiplexing readout system based on a digital down converter method. These techniques in general have the leakage problems caused by the crosstalks. The window function was applied in the field programmable gate arrays to mitigate the effect of these problems and tested it in algorithm level.

  6. Timing performances of diamond detectors with Charge Sensitive Amplifier readout

    CERN Document Server

    Berretti, M; Minafra, N

    2015-01-01

    Research on particle detector based on synthetic diamonds has always been limited by the cost, quality and availability of the sensitive material. Moreover, the read-out electronics requires particular care due to the small number of electron/hole pairs generated by the passage of a minimum ionizing particle. However, high radiation hardness, low leakage currents and high mobility of the electron/hole pairs make them an attractive solution for the time of flight measurements and the beam monitoring of new high energy physics experiments where the severe radiation environment is a limitation for most of the technologies commonly used in particle detection. In this work we report the results on the timing performance of a 4.5x4.5 mm$^{2}$ scCVD sensor read-out using a charge sensitive amplifier. Both sensors and amplifiers have been purchased from CIVIDEC Instrumentation. The measurement have been performed on minimum ionizing pions in two beam tests at the PSI and CERN-PS facilities with two different detec...

  7. Waveshifting fiber readout of lanthanum halide scintillators

    International Nuclear Information System (INIS)

    Case, G.L.; Cherry, M.L.; Stacy, J.G.

    2006-01-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6-8 m 2 hard X-ray coded aperture imaging telescope operating in the 20-600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr 3 and LaCl 3 ) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr 3 or LaCl 3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance

  8. MKID digital readout tuning with deep learning

    Science.gov (United States)

    Dodkins, R.; Mahashabde, S.; O'Brien, K.; Thatte, N.; Fruitwala, N.; Walter, A. B.; Meeker, S. R.; Szypryt, P.; Mazin, B. A.

    2018-04-01

    Microwave Kinetic Inductance Detector (MKID) devices offer inherent spectral resolution, simultaneous read out of thousands of pixels, and photon-limited sensitivity at optical wavelengths. Before taking observations the readout power and frequency of each pixel must be individually tuned, and if the equilibrium state of the pixels change, then the readout must be retuned. This process has previously been performed through manual inspection, and typically takes one hour per 500 resonators (20 h for a ten-kilo-pixel array). We present an algorithm based on a deep convolution neural network (CNN) architecture to determine the optimal bias power for each resonator. The bias point classifications from this CNN model, and those from alternative automated methods, are compared to those from human decisions, and the accuracy of each method is assessed. On a test feed-line dataset, the CNN achieves an accuracy of 90% within 1 dB of the designated optimal value, which is equivalent accuracy to a randomly selected human operator, and superior to the highest scoring alternative automated method by 10%. On a full ten-kilopixel array, the CNN performs the characterization in a matter of minutes - paving the way for future mega-pixel MKID arrays.

  9. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    Science.gov (United States)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  10. The PASERO Project: parallel and serial readout systems for gas proportional synchrotron radiation X-ray detectors

    CERN Document Server

    Koch, M H J; Briquet-Laugier, F; Epstein, A; Sheldon, S; Beloeuvre, E; Gabriel, A; Hervé, C; Kocsis, M; Koschuch, A; Laggner, P; Leingartner, W; Raad-Iseli, C D; Reimann, T; Golding, F; Torki, K

    2001-01-01

    A project aiming at producing more efficient position sensitive gas proportional detectors and readout systems is presented. An area detector with reduced electrode spacing and a spatial resolution of 0.5 mm and two time to digital convertors (TDC) based on ASICs were produced. The first TDC, intended for use with linear detectors, relies on time to space conversion, whereas the second one, for area detectors, uses a ring oscillator with a phase locked loop. A parallel readout system for multi-anode detectors aiming at a maximum count rate extensively uses RISC microcontrollers. An electronic simulator of linear detectors built for test purposes and a mechanical chopper used for attenuation of the X-ray beam are also briefly described.

  11. New Subarray Readout Patterns for the ACS Wide Field Channel

    Science.gov (United States)

    Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.

    2017-04-01

    At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.

  12. DOSIMO - an interactive web service of the GSF Readout Center

    International Nuclear Information System (INIS)

    Huebner, S.; Lempart, R.

    2002-01-01

    Under the Radiation Protection and X-ray Ordinances, official personnel dosimetry centers are charged with measuring, documenting, and monitoring personnel doses as independent agencies. The GSF Readout Center (AWST) for Personnel Dosimeters and Area Monitors is responsible for monitoring persons occupationally exposed to radiation in the federal states of Baden-Wuerttemberg, Bavaria, Hesse, and Schleswig-Holstein. The largest German readout center uses new media in personnel dosimetry in order to simplify and speed up data transfer. In October 1998, AWST in cooperation with ADANAT ENTIRE SYSTEMS implemented an Internet interface. As a result, AWST is the first European readout center to offer not only a possibility to disseminate information through the Internet by means of the DOSIMO (DOSIMETRY On-line) Internet Service, but also enabling the interactive data exchange by electronic means with authorized customers. DOSIMO users enjoy the decisive advantage of having the results of readout of their dosimeters ready for use as soon as they have become available. (orig.) [de

  13. Evaluation of mixed-signal noise effects in photon-counting X-ray image sensor readout circuits

    International Nuclear Information System (INIS)

    Lundgren, Jan; Abdalla, Suliman; O'Nils, Mattias; Oelmann, Bengt

    2006-01-01

    In readout electronics for photon-counting pixel detectors, the tight integration between analog and digital blocks causes the readout electronics to be sensitive to on-chip noise coupling. This noise coupling can result in faulty luminance values in grayscale X-ray images, or as color distortions in a color X-ray imaging system. An exploration of simulating noise coupling in readout circuits is presented which enables the discovery of sensitive blocks at as early a stage as possible, in order to avoid costly design iterations. The photon-counting readout system has been simulated for noise coupling in order to highlight the existing problems of noise coupling in X-ray imaging systems. The simulation results suggest that on-chip noise coupling should be considered and simulated in future readout electronics systems for X-ray detectors

  14. Electronics for a Next-Generation SQUID-Based Time-Domain Multiplexing System

    International Nuclear Information System (INIS)

    Reintsema, C. D.; Doriese, W. R.; Hilton, G. C.; Irwin, K. D.; Krinsky, J. W.; Adams, J. S.; Baker, R.; Bandler, S. R.; Kelly, R. L.; Kilbourne, C. A.; Porter, F. S.; Figueroa-Feliciano, E.; Wikus, P.

    2009-01-01

    A decade has elapsed since the design, development and realization of a SQUID-based time-division multiplexer at NIST. During this time the system has been used extensively for low-temperature-detector-array measurements. Concurrently, there have been substantial advancements both in detector array and commercial electronic component technology. The relevance and applicability of the technology has blossomed as well, often accompanied by more demanding measurement requirements. These factors have motivated a complete redesign of the NIST room-temperature read-out electronics. The redesign has leveraged advancements in component technology to achieve new capabilities better suited to the SQUID multiplexers and detector arrays being realized today. As examples of specific performance enhancements, the overall system bandwidth has been increased by a factor of four (a row switching rate of 6.24 MHz), the compactness has been increased by over a factor of two (a higher number of detector columns and rows per circuit board), and there are two high speed outputs per column (allowing fast switching of SQUID offsets in addition to digital feedback). The system architecture, design implementations, and performance advantages of the new system will be discussed. As an application example, the science chain flight electronics for the Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket will be described as both a motivation for, and a direct implementation of the new system.

  15. Charge transport through DNA based electronic barriers

    Science.gov (United States)

    Patil, Sunil R.; Chawda, Vivek; Qi, Jianqing; Anantram, M. P.; Sinha, Niraj

    2018-05-01

    We report charge transport in electronic 'barriers' constructed by sequence engineering in DNA. Considering the ionization potentials of Thymine-Adenine (AT) and Guanine-Cytosine (GC) base pairs, we treat AT as 'barriers'. The effect of DNA conformation (A and B form) on charge transport is also investigated. Particularly, the effect of width of 'barriers' on hole transport is investigated. Density functional theory (DFT) calculations are performed on energy minimized DNA structures to obtain the electronic Hamiltonian. The quantum transport calculations are performed using the Landauer-Buttiker framework. Our main findings are contrary to previous studies. We find that a longer A-DNA with more AT base pairs can conduct better than shorter A-DNA with a smaller number of AT base pairs. We also find that some sequences of A-DNA can conduct better than a corresponding B-DNA with the same sequence. The counterions mediated charge transport and long range interactions are speculated to be responsible for counter-intuitive length and AT content dependence of conductance of A-DNA.

  16. LHCb : Clock and timing distribution in the LHCb upgraded detector and readout system

    CERN Multimedia

    Alessio, Federico; Barros Marin, M; Cachemiche, JP; Hachon, F; Jacobsson, Richard; Wyllie, Ken

    2014-01-01

    The LHCb experiment is upgrading part of its detector and the entire readout system towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity and increase its trigger efficiency. In this paper, the new timing, trigger and control distribution system for such an upgrade is reviewed with particular attention given to the distribution of the clock and timing information across the entire readout system, up to the FE and the on-detector electronics. Current ideas are here presented in terms of reliability, jitter, complexity and implementation.

  17. Clock and timing distribution in the LHCb upgraded detector and readout system

    CERN Document Server

    Alessio, F; Barros Marin, M; Cachemiche, JP; Hachon, F; Jacobsson, R; Wyllie, K

    2015-01-01

    The LHCb experiment is upgrading part of its detector and the entire readout system towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity and increase its trigger efficiency. In this paper, the new timing, trigger and control distribution system for such an upgrade is reviewed with particular attention given to the distribution of the clock and timing information across the entire readout system, up to the FE and the on-detector electronics. Current ideas are here presented in terms of reliability, jitter, complexity and implementation.

  18. The AMS silicon tracker readout, performance results with minimum ionizing particles

    CERN Document Server

    Alpat, B; Battiston, R; Bourquin, Maurice; Burger, W J; Extermann, Pierre; Chang, Y H; Hou, S R; Pauluzzi, M; Produit, N; Qiu, S; Rapin, D; Ribordy, R; Toker, O; Wu, S X

    2000-01-01

    First results for the AMS silicon tracker readout performance are presented. Small 20.0*20.0*0.300 mm/sup 3/ silicon microstrip detectors were installed in a 50 GeV electron beam at CERN. The detector readout consisted of prototypes of the tracker data reduction card equipped with a 12-bit ADC and the tracker frontend hybrid with VA_hdr readout chips. The system performance is assessed in terms of signal-to-noise, position resolution, and efficiency. (13 refs).

  19. BATS, the readout control of UA1

    Energy Technology Data Exchange (ETDEWEB)

    Botlo, M.; Dorenbosch, J.; Jimack, M.; Szoncso, F.; Taurok, A.; Walzel, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1991-04-15

    A steadily rising luminosity and different readout architectures for the various detector systems of UA1 required a new data flow control to minimize the dead time. BATS, a finite state machine conceived around two microprocessors in a single VME crate, improved flexibility and reliability. Compatibility with BATS streamlined all readout branches. BATS also proved to be a valuable asset in spotting readout problems and previously undetected data flow bottlenecks. (orig.).

  20. A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Vladimir [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)]. E-mail: Popov@jlab.org; Majewski, Stan [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Welch, Benjamin L. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2006-11-01

    We have developed a new analog readout concept for multianode photomultiplier tubes with a pad matrix anode layout. This new readout technique is the result of a modification of a technique previously developed at the Detector Group of Jefferson Lab (V. Popov, US patent No: 6,747,263 B1) [V. Popov, S. Majewski, A.G. Weisenberger, Readout Electronics for Multianode Photomultiplier Tubes with Pad Matrix Anode Layout, Thomas Jefferson National Accelerator Facility, IEEE 2003 Medical Imaging Conference Record, November 2003]. The new analog readout circuit provides the same analog conversion of matrix 2-D output into X and Y projective output with a significant reduction of analog outputs. The old readout network consists of resistors' matrix and current collecting amplifiers, and it provides decoupling of each anode output into two directions (one to X and one to Y coordinates), but a decoupling function that is carried out independent of photomultiplier tube gains nonuniformity. A newly developed readout network (US patent pending) also consists of resistors' matrix and current collecting amplifiers, but the new matrix includes an additional dumping resistor that provides an excess current from anode pad grounding. As a result, we subtract an extra current of high-gain pads in order to move the pads gain to an absolute minimum value for a given photomultiplier tube. This gain equalization procedure reduces image distortion related to gain nonuniformity. The new readout technique was used in several new radiation imaging detectors designed in the Detector Group of Jefferson Lab. It shows a visible readout uniformity and linearity improvement. The test results of an initial evaluation of this readout that is applied for data readout of four H8500 Hamamtsu PSPMT are presented.

  1. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  2. Dual-Readout Calorimetry with Lead Tungstate Crystals

    OpenAIRE

    Akchurin, N.

    2007-01-01

    Results are presented of beam tests in which a small electromagnetic calorimeter consisting of lead tungstate crystals was exposed to 50 GeV electrons and pions. This calorimeter was backed up by the DREAM Dual-Readout calorimeter, which measures the scintillation and \\v{C}erenkov light produced in the shower development, using two different media. The signals from the crystal calorimeter were analyzed in great detail in an attempt to determine the contributions from these two types of light ...

  3. Test of high time resolution MRPC with different readout modes for the BESIII upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Sun, Y.J., E-mail: sunday@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Li, C., E-mail: licheng@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Heng, Y.K.; Qian, S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Chen, H.F.; Chen, T.X. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Dai, H.L. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Fan, H.H.; Liu, S.B. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Liu, S.D.; Jiang, X.S. [Institute of High Energy Physics, Chinese Academy of Sciences(IHEP), Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China); Shao, M.; Tang, Z.B.; Zhang, H.; Zhao, Z.G. [Department of Modern Physics, University of Science and Technology of China(USTC), Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics(USTC-IHEP) (China)

    2014-11-01

    In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, together with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.

  4. DS read-out transcription in transgenic tomato plants

    NARCIS (Netherlands)

    Rudenko, George N.; Nijkamp, H. John J.; Hille, Jacques

    1994-01-01

    To select for Ds transposition in transgenic tomato plants a phenotypic excision assay, based on restoration of hygromycin phosphotransferase (HPT II) gene expression, was employed. Some tomato plants, however, expressed the marker gene even though the Ds had not excised. Read-out transcriptional

  5. Optimised cantilever biosensor with piezoresistive read-out

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, J.; Hansen, Ole

    2003-01-01

    We present a cantilever-based biochemical sensor with piezoresistive read-out which has been optimised for measuring surface stress. The resistors and the electrical wiring on the chip are encapsulated in low-pressure chemical vapor deposition (LPCVD) silicon nitride, so that the chip is well sui...

  6. Detection of aflatoxin B1 in food samples based on target-responsive aptamer-cross-linked hydrogel using a handheld pH meter as readout.

    Science.gov (United States)

    Zhao, Mengmeng; Wang, Peilong; Guo, Yajuan; Wang, Lixu; Luo, Fang; Qiu, Bin; Guo, Longhua; Su, Xiaoou; Lin, Zhenyu; Chen, Guonan

    2018-01-01

    Aflatoxin B 1 (AFB 1 ) can cause great threat to human health, so the development of convenient and portable device for sensitive detection of AFB 1 is highly desired. The portable pH meter has the characters of facile operation, low cost, and easy availability. Therefore, in this study, we investigate the applicability of utilizing a pH meter as the readout to develop a portable sensor for AFB 1 . The specific detection of AFB 1 is realized via the combination of AFB 1 -responsive aptamer-cross-linked hydrogel. Upon the addition of AFB 1 , AFB 1 binds to its aptamer with high affinity in lieu of aptamer/DNA complex, causing the collapse of hydrogel network and results in the releasing of urease into the solution. The released urease can catalyse the hydrolysis of urea and result in the rise of pH value. The change of pH value has a direct relationship to the concentration of AFB 1 in the range of 0.2-20µM with a detection limit of 0.1µM (S/N = 3). The proposed portable device is successfully applied to assay AFB 1 in the food samples with satisfied results. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Model based design of electronic throttle control

    Science.gov (United States)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more

  8. Multiparametric electronic devices based on nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: FINK@HMI.DE; Saad, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Basic Science Department, Faculty of Science, Al Balqa University, Salt (Jordan); Dhamodaran, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Chandra, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Fahrner, W.R. [Chair of Electronic Devices, Institute of Electrotechnique, Fernuniversitaet, Hagen (Germany); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, GPO Box 4, ACT (Australia)

    2008-08-15

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r{sub ROI} around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1{mu}m leading to nanometric TEMPOS structures.

  9. Multiparametric electronic devices based on nuclear tracks

    International Nuclear Information System (INIS)

    Fink, D.; Saad, A.; Dhamodaran, S.; Chandra, A.; Fahrner, W.R.; Hoppe, K.; Chadderton, L.T.

    2008-01-01

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r ROI around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1μm leading to nanometric TEMPOS structures

  10. Spin orbit torque based electronic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.

  11. Spin orbit torque based electronic neuron

    International Nuclear Information System (INIS)

    Sengupta, Abhronil; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik

    2015-01-01

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset

  12. X-ray imaging using amorphous selenium: photoinduced discharge (PID) readout for digital general radiography.

    Science.gov (United States)

    Rowlands, J A; Hunter, D M

    1995-12-01

    Digital radiographic systems based on photoconductive layers with the latent charge image readout by photoinduced discharge (PID) are investigated theoretically. Previously, a number of different systems have been proposed using sandwiched photoconductor and insulator layers and readout using a scanning laser beam. These systems are shown to have the general property of being very closely coupled (i.e., optimization of one imaging characteristic usually impacts negatively on others). The presence of a condensed state insulator between the photoconductor surface and the readout electrode does, however, confer a great advantage over systems using air gaps with their relatively low breakdown field. The greater breakdown field of condensed state dielectrics permits the modification of the electric field during the period between image formation and image readout. The trade-off between readout speed and noise makes this system suitable for instant general radiography and even rapid sequence radiography, however, the system is unsuitable for the low exposure rates used in fluoroscopy.

  13. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    Science.gov (United States)

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  14. Hybrid amplifier for calorimetry with photodiode readout

    Energy Technology Data Exchange (ETDEWEB)

    Sushkov, V V

    1994-12-31

    A hybrid surface mounted amplifier for the photodiode readout of the EM calorimeter has been developed. The main technical characteristics of the design are presented. The design able to math readout constraints for a high luminosity collider experiment is discussed. 10 refs., 2 tabs., 8 figs.

  15. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    ... a calorimeter system of a relatively simple construction and moderate costs, however with excellent properties, built upon experience gained with the extensively beam-tested DREAM (Dual REAdout. Module) prototype. The main idea of multiple readout calorimetry is to indepen- dently measure for each hadronic shower ...

  16. The Belle II SVD data readout system

    Energy Technology Data Exchange (ETDEWEB)

    Thalmeier, R., E-mail: Richard.Thalmeier@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universita’ di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technolog y Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 12116 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); and others

    2017-02-11

    The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing.

  17. A multichannel front end ASIC for PMT readout in LHAASO WCDA

    Science.gov (United States)

    Liang, Y.; Zhao, L.; Guo, Y.; Qin, J.; Yang, Y.; Cheng, B.; Liu, S.; An, Q.

    2018-01-01

    Time and charge measurements over a large dynamic range from 1 Photo Electron (P.E.) to 4000 P.E. are required for the Water Cherenkov Detector Array (WCDA), which is one of the key components in the Large High Altitude Air Shower Observatory (LHAASO). To simplify the circuit structure of the readout electronics, a front end ASIC was designed. Based on the charge-to-time conversion method, the output pulse width of the ASIC corresponds to the input signal charge information while time information of the input signal is picked off through a discriminator, and thus the time and charge information can be digitized simultaneously using this ASIC and a following Time-to-Digital Converter (TDC). To address the challenge of mismatch among the channels observed in the previous prototype version, this work presents approaches for analyzing the problem and optimizing the circuits. A new version of the ASIC was designed and fabricated in the GLOBALFOUNDRIES 0.35 μm CMOS technology, which integrates 6 channels (corresponding to the readout of the 3 PMTs) in each chip. The test results indicate that the mismatch between the channels is significantly reduced to less than 20% using the proposed approach. The time measurement resolution better than 300 ps is achieved, and the charge measurement resolution is better than 10% at 1 P.E., and 1% at 4000 P.E., which meets the application requirements.

  18. The selective read-out processor for the CMS electromagnetic calorimeter

    CERN Document Server

    Girão de Almeida, Nuño Miguel; Faure, Jean Louis; Gachelin, Olivier; Gras, Philippe; Mandjavidze, Irakli; Mur, Michel; Varela, João

    2005-01-01

    This paper describes the selective read-out processor (SRP) proposed for the electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at LHC (CERN). The aim is to reduce raw ECAL data to a level acceptable by the CMS data acquisition (DAQ) system. For each positive level 1 trigger, the SRP is guided by trigger primitive generation electronics to identify ECAL regions with energy deposition satisfying certain programmable criteria. It then directs the ECAL read-out electronics to apply predefined zero suppression levels to the crystal data, depending whether the crystals fall within these regions or not. The main challenges for the SRP are some 200 high speed (1.6 Gbit/s) I/O channels, asynchronous operation at up to 100 kHz level 1 trigger rate, a 5- mu s real-time latency requirement and a need to retain flexibility in choice of selection algorithms. The architecture adopted for the SRP is based on modern parallel optic pluggable modules and high density field programmable gate array ...

  19. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Conducting polymers; LB films; biosensor microactuators; monolayers. ... have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices.

  20. Flexible and Cellulose-based Organic Electronics

    OpenAIRE

    Edberg, Jesper

    2017-01-01

    Organic electronics is the study of organic materials with electronic functionality and the applications of such materials. In the 1970s, the discovery that polymers can be made electrically conductive led to an explosion within this field which has continued to grow year by year. One of the attractive features of organic electronic materials is their inherent mechanical flexibility, which has led to the development of numerous flexible electronics technologies such as organic light emitting ...