WorldWideScience

Sample records for based quantitative pcr

  1. Quality control for quantitative PCR based on amplification compatibility test.

    Science.gov (United States)

    Tichopad, Ales; Bar, Tzachi; Pecen, Ladislav; Kitchen, Robert R; Kubista, Mikael; Pfaffl, Michael W

    2010-04-01

    Quantitative qPCR is a routinely used method for the accurate quantification of nucleic acids. Yet it may generate erroneous results if the amplification process is obscured by inhibition or generation of aberrant side-products such as primer dimers. Several methods have been established to control for pre-processing performance that rely on the introduction of a co-amplified reference sequence, however there is currently no method to allow for reliable control of the amplification process without directly modifying the sample mix. Herein we present a statistical approach based on multivariate analysis of the amplification response data generated in real-time. The amplification trajectory in its most resolved and dynamic phase is fitted with a suitable model. Two parameters of this model, related to amplification efficiency, are then used for calculation of the Z-score statistics. Each studied sample is compared to a predefined reference set of reactions, typically calibration reactions. A probabilistic decision for each individual Z-score is then used to identify the majority of inhibited reactions in our experiments. We compare this approach to univariate methods using only the sample specific amplification efficiency as reporter of the compatibility. We demonstrate improved identification performance using the multivariate approach compared to the univariate approach. Finally we stress that the performance of the amplification compatibility test as a quality control procedure depends on the quality of the reference set.

  2. Primer design using Primer Express® for SYBR Green-based quantitative PCR.

    Science.gov (United States)

    Singh, Amarjeet; Pandey, Girdhar K

    2015-01-01

    To quantitate the gene expression, real-time RT-PCR or quantitative PCR (qPCR) is one of the most sensitive, reliable, and commonly used methods in molecular biology. The reliability and success of a real-time PCR assay depend on the optimal experiment design. Primers are the most important constituents of real-time PCR experiments such as in SYBR Green-based detection assays. Designing of an appropriate and specific primer pair is extremely crucial for correct estimation of transcript abundance of any gene in a given sample. Here, we are presenting a quick, easy, and reliable method for designing target-specific primers using Primer Express(®) software for real-time PCR (qPCR) experiments.

  3. Detection of PCV2 DNA by SYBR Green I-based quantitative PCR

    Institute of Scientific and Technical Information of China (English)

    YANG Zong-zhao; HABIB Mudasser; SHUAI Jiang-bing; FANG Wei-huan

    2007-01-01

    We developed an assay for the detection and quantitation ofporcine circovirus type 2 (PCV2) with the SYBR Green I-based real-time PCR. The real-time PCR provides a broad dynamic range, detecting from 103 to 1011 copies of DNA per reaction.No cross-reactions were found in specimens containing PCV1. Because of the high sensitivity and specificity of the assay with a relatively rapid and simple procedure, real-time PCR can be used as a routine assay for the clinical diagnosis of PCV2 infection. In this study we applied real-time PCR assay to 80 clinical samples, collected from 40 pigs with postweaning multisystemic wasting syndrome (PMWS) and 40 healthy pigs in comparison with conventional PCR assay. In 56 of 80 samples, PCV2 DNA was detected by conventional PCR assay. All samples positive for PCV2 DNA in conventional PCR assay were also positive in real-time assay, and 12 of 24 samples that tested negative for PCV2 DNA in the conventional assay were tested positive in real-time PCR assay. Real-time PCR assay increased the number of samples in which PCV2 was detected by 15%. It is, therefore, considered to be a useful tool for the detection of PCV2.

  4. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S-H; Tsai, M-H; Lin, C-W [Department of Biotechnology, College of Health Science, Asia University, Wufeng, Taichung, Taiwan (China); Yang, T-C; Chuang, P-H [Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (China); Tsai, I-S; Lu, H-C [Nanotechnology Research Center, Feng Chia University, Taichung, Taiwan (China); Wan Lei; Lin, Y-J [Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Lai, C-H [Department of Microbiology and Immunology, China Medical University, Taichung, Taiwan (China)], E-mail: cwlin@mail.cmu.edu.tw

    2008-10-08

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  5. Assessing the performance capabilities of LRE-based assays for absolute quantitative real-time PCR.

    Directory of Open Access Journals (Sweden)

    Robert G Rutledge

    Full Text Available BACKGROUND: Linear regression of efficiency or LRE introduced a new paradigm for conducting absolute quantification, which does not require standard curves, can generate absolute accuracies of +/-25% and has single molecule sensitivity. Derived from adapting the classic Boltzmann sigmoidal function to PCR, target quantity is calculated directly from the fluorescence readings within the central region of an amplification profile, generating 4-8 determinations from each amplification reaction. FINDINGS: Based on generating a linear representation of PCR amplification, the highly visual nature of LRE analysis is illustrated by varying reaction volume and amplification efficiency, which also demonstrates how LRE can be used to model PCR. Examining the dynamic range of LRE further demonstrates that quantitative accuracy can be maintained down to a single target molecule, and that target quantification below ten molecules conforms to that predicted by Poisson distribution. Essential to the universality of optical calibration, the fluorescence intensity generated by SYBR Green I (FU/bp is shown to be independent of GC content and amplicon size, further verifying that absolute scale can be established using a single quantitative standard. Two high-performance lambda amplicons are also introduced that in addition to producing highly precise optical calibrations, can be used as benchmarks for performance testing. The utility of limiting dilution assay for conducting platform-independent absolute quantification is also discussed, along with the utility of defining assay performance in terms of absolute accuracy. CONCLUSIONS: Founded on the ability to exploit lambda gDNA as a universal quantitative standard, LRE provides the ability to conduct absolute quantification using few resources beyond those needed for sample preparation and amplification. Combined with the quantitative and quality control capabilities of LRE, this kinetic-based approach has the

  6. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    Science.gov (United States)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  7. Molecular Characterization and SYBR Green Ⅰ-Based Quantitative PCR for Duck Hepatitis Virus Type 1

    Institute of Scientific and Technical Information of China (English)

    LUO Yu-jun; ZHANG Gui-hong; XU Xiao-qin; CHEN Jian-hong; LIAO Ming

    2008-01-01

    To determine the genomic sequence of a duck hepatitis virus type 1 (DHV-1) strain,real-time quantitative polyrnerase chain reaction (RTQ-PCR) assay based on SYBR Green Ⅰ technology was developed to target 3D gene of DHV-1.Comparative sequence analysis showed that the genome has a typical picornarivus genetic organization,and strain DHV-1 R genetic organaiztion is 5' untranslated region (UTR)-VPO-VP3-VP1-2A1-2A2-2B-2C-3A-3B-3C-3D-3' UTR,DHV-1 R has close relationship with Parechovirus,and has 95.1-99.1% nucleotide sequence identity with other DHV-1 strains.Based on the DHV-1 sequences in GenBank,three pairs of specific primers were designed to amplify DHV-1 using real-time PCR.The results showed that real-time PCR Tm value is 85.6℃ and the real-time PCR provides a broad dynamic range,detecting from 102 to 109 copies of DHV-1 cDNA per reaction.No cross-reactions were found in specimens containing DPV,AIV and NDV.It is concluded that DHV-1 belongs to a new group of the family Picornaviridae that may form a separate genus most closely related to the genus Parechovirus.All results showed that the real-time PCR has high sensitivity and specificity to detect DHV-1 using SYBR Green Ⅰ dissociation curve analysis,isolates can be distinguished by their melting temperature.These methods are rapid,sensitive,and reliable,and can be readily adapted for detection of DHV-1 from other clinical samples.

  8. Qualitative and quantitative event-specific PCR detection methods for oxy-235 canola based on the 3' integration flanking sequence.

    Science.gov (United States)

    Yang, Litao; Guo, Jinchao; Zhang, Haibo; Liu, Jia; Zhang, Dabing

    2008-03-26

    As more genetically modified plant events are approved for commercialization worldwide, the event-specific PCR method has become the key method for genetically modified organism (GMO) identification and quantification. This study reveals the 3' flanking sequence of the exogenous integration of Oxy-235 canola employing thermal asymmetric interlaced PCR (TAIL-PCR). On the basis of the revealed 3' flanking sequence, PCR primers and TaqMan probe were designed and qualitative and quantitative PCR assays were established for Oxy-235 canola. The specificity and limits of detection (LOD) and quantification (LOQ) of these two PCR assays were validated to as low as 0.1% for the relative LOD of qualitative PCR assay; the absolute LOD and LOQ were low to 10 and 20 copies of canola genomic DNA in quantitative PCR assay, respectively. Furthermore, ideal quantified results were obtained in the practical canola sample detection. All of the results indicate that the developed qualitative and quantitative PCR methods based on the revealed 3' integration flanking sequence are suitable for GM canola Oxy-235 identification and quantification.

  9. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    Science.gov (United States)

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  10. Precise Quantitation of MicroRNA in a Single Cell with Droplet Digital PCR Based on Ligation Reaction.

    Science.gov (United States)

    Tian, Hui; Sun, Yuanyuan; Liu, Chenghui; Duan, Xinrui; Tang, Wei; Li, Zhengping

    2016-12-06

    MicroRNA (miRNA) analysis in a single cell is extremely important because it allows deep understanding of the exact correlation between the miRNAs and cell functions. Herein, we wish to report a highly sensitive and precisely quantitative assay for miRNA detection based on ligation-based droplet digital polymerase chain reaction (ddPCR), which permits the quantitation of miRNA in a single cell. In this ligation-based ddPCR assay, two target-specific oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA, respectively, which avoids the sophisticated design of reverse transcription and provides high specificity to discriminate a single-base difference among miRNAs with simple operations. After the miRNA-templated ligation, the ddPCR partitions individual ligated products into a water-in-oil droplet and digitally counts the fluorescence-positive and negative droplets after PCR amplification for quantification of the target molecules, which possesses the power of precise quantitation and robustness to variation in PCR efficiency. By integrating the advantages of the precise quantification of ddPCR and the simplicity of the ligation-based PCR, the proposed method can sensitively measure let-7a miRNA with a detection limit of 20 aM (12 copies per microliter), and even a single-base difference can be discriminated in let-7 family members. More importantly, due to its high selectivity and sensitivity, the proposed method can achieve precise quantitation of miRNAs in single-cell lysate. Therefore, the ligation-based ddPCR assay may serve as a useful tool to exactly reveal the miRNAs' actions in a single cell, which is of great importance for the study of miRNAs' biofunction as well as for the related biomedical studies.

  11. Development of a neutralization assay for influenza virus using an endpoint assessment based on quantitative reverse-transcription PCR.

    Directory of Open Access Journals (Sweden)

    Belete Teferedegne

    Full Text Available A microneutralization assay using an ELISA-based endpoint assessment (ELISA-MN is widely used to measure the serological response to influenza virus infection and vaccination. We have developed an alternative microneutralization assay for influenza virus using a quantitative reverse transcription PCR-based endpoint assessment (qPCR-MN in order to improve upon technical limitations associated with ELISA-MN. For qPCR-MN, infected MDCK-London cells in 96-well cell-culture plates are processed with minimal steps such that resulting samples are amenable to high-throughput analysis by downstream one-step quantitative reverse transcription PCR (qRT-PCR; SYBR Green chemistry with primers targeting a conserved region of the M1 gene of influenza A viruses. The growth curves of three recent vaccine strains demonstrated that the qRT-PCR signal detected at 6 hours post-infection reflected an amplification of at least 100-fold over input. Using ferret antisera, we have established the feasibility of measuring virus neutralization at 6 hours post-infection, a duration likely confined to a single virus-replication cycle. The neutralization titer for qPCR-MN was defined as the highest reciprocal serum dilution necessary to achieve a 90% inhibition of the qRT-PCR signal; this endpoint was found to be in agreement with ELISA-MN using the same critical reagents in each assay. qPCR-MN was robust with respect to assay duration (6 hours vs. 12 hours. In addition, qPCR-MN appeared to be compliant with the Percentage Law (i.e., virus neutralization results appear to be consistent over an input virus dose ranging from 500 to 12,000 TCID(50. Compared with ELISA-MN, qPCR-MN might have inherent properties conducive to reducing intra- and inter-laboratory variability while affording suitability for automation and high-throughput uses. Finally, our qRT-PCR-based approach may be broadly applicable to the development of neutralization assays for a wide variety of viruses.

  12. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.

    Science.gov (United States)

    Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R

    2015-11-17

    Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.

  13. Simulation of collaborative studies for real-time PCR-based quantitation methods for genetically modified crops.

    Science.gov (United States)

    Watanabe, Satoshi; Sawada, Hiroshi; Naito, Shigehiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro

    2013-01-01

    To study impacts of various random effects and parameters of collaborative studies on the precision of quantitation methods of genetically modified (GM) crops, we developed a set of random effects models for cycle time values of a standard curve-based relative real-time PCR that makes use of an endogenous gene sequence as the internal standard. The models and data from a published collaborative study for six GM lines at four concentration levels were used to simulate collaborative studies under various conditions. Results suggested that by reducing the numbers of well replications from three to two, and standard levels of endogenous sequence from five to three, the number of unknown samples analyzable on a 96-well PCR plate in routine analyses could be almost doubled, and still the acceptable repeatability RSD (RSDr crops by real-time PCR and their collaborative studies.

  14. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  15. Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane.

    Science.gov (United States)

    Metcalfe, Cushla J; Oliveira, Sarah G; Gaiarsa, Jonas W; Aitken, Karen S; Carneiro, Monalisa S; Zatti, Fernanda; Van Sluys, Marie-Anne

    2015-07-01

    Sugarcane is the main source of the world's sugar and is becoming increasingly important as a source of biofuel. The highly polyploid and heterozygous nature of the sugarcane genome has meant that characterization of the genome has lagged behind that of other important crops. Here we developed a method using a combination of quantitative PCR with a transposable marker system to score the relative number of alleles with a transposable element (TE) present at a particular locus. We screened two genera closely related to Saccharum (Miscanthus and Erianthus), wild Saccharum, traditional cultivars, and 127 modern cultivars from Brazilian and Australian breeding programmes. We showed how this method could be used in various ways. First, we showed that the method could be extended to be used as part of a genotyping system. Secondly, the history of insertion and timing of the three TEs examined supports our current understanding of the evolution of the Saccharum complex. Thirdly, all three TEs were found in only one of the two main lineages leading to the modern sugarcane cultivars and are therefore the first TEs identified that could potentially be used as markers for Saccharum spontaneum.

  16. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    Full Text Available Introduction Butyrivibrio fibrisolvens strains are presently recognized as the major butyrate-producing bacteria found in the rumen and digestive track of many animals and also in the human gut. In this study we reported the development of two DNA based techniques, quantitative competitive (QC PCR and absolute based Real-Time PCR, for enumerating Butyrivibrio fibrisolvens strains. Despite the recent introduction of real-time PCR method for the rapid quantification of the target DNA sequences, use of quantitative competitive PCR (QC-PCR technique continues to play an important role in nucleic acid quantification since it is more cost effective. The procedure relies on the co-amplification of the sequence of interest with a serially diluted synthetic DNA fragment of the known concentration (competitor, using the single set primers. A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR. It monitors the amplification of a targeted DNA molecule during the PCR. Materials and Methods At first reported species-specific primers targeting the 16S rDNA region of the bacterium Butyrivibrio fibrisolvens were used for amplifying a 213 bp fragment. A DNA competitor differing by 50 bp in length from the 213 bp fragment was constructed and cloned into pTZ57R/T vector. The competitor was quantified by NanoDrop spectrophotometer and serially diluted and co-amplified by PCR with total extracted DNA from rumen fluid samples. PCR products were quantified by photographing agarose gels and analyzed with Image J software and the amount of amplified target DNA was log plotted against the amount of amplified competitor. Coefficient of determination (R2 was used as a criterion of methodology precision. For developing the Real-time PCR technique, the 213 bp fragment was amplified and cloned into pTZ57R/T was used to draw a standard curve. Results and Discussion The specific primers of Butyrivibrio

  17. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    Science.gov (United States)

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events.

  18. A reference-gene-based quantitative PCR method as a tool to determine Fusarium resistance in wheat.

    Science.gov (United States)

    Brunner, Kurt; Kovalsky Paris, Maria P; Paolino, Guadalupe; Bürstmayr, Hermann; Lemmens, Marc; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Mach, Robert L

    2009-11-01

    In recent years, plant breeders made great progress in breeding Fusarium-tolerant wheat lines. However, total resistance to this genus of plant pathogenic fungi has not yet been achieved as the resistance genes are located on several distinct genetic regions. Visual scoring of disease symptoms in combination with the analysis of mycotoxins is commonly applied to assess the tolerance of new lines. Both approaches are indirect methods and do not mandatorily determine the accumulated fungal biomass. Quantitative PCR is a useful tool to assess fungal biomass based on the abundance of organism-specific DNA. The aim of this study was the development of a quantitative PCR assay for trichothecene-producing Fusarium species and to adapt this method for resistance assessment of wheat lines artificially infected with Fusarium graminearum and Fusarium culmorum. Several DNA-extraction methods for wheat samples were evaluated and optimized for downstream real-time PCR analysis and furthermore, a new reference-gene-based approach for more accurate quantification of Fusarium biomass in cereals is presented. The co-determination of a plant gene was used to compensate for unequal DNA-extraction efficiencies.

  19. Hepatitis C Virus RNA Real-Time Quantitative RT-PCR Method Based on a New Primer Design Strategy.

    Science.gov (United States)

    Chen, Lida; Li, Wenli; Zhang, Kuo; Zhang, Rui; Lu, Tian; Hao, Mingju; Jia, Tingting; Sun, Yu; Lin, Guigao; Wang, Lunan; Li, Jinming

    2016-01-01

    Viral nucleic acids are unstable when improperly collected, handled, and stored, resulting in decreased sensitivity of currently available commercial quantitative nucleic acid testing kits. Using known unstable hepatitis C virus RNA, we developed a quantitative RT-PCR method based on a new primer design strategy to reduce the impact of nucleic acid instability on nucleic acid testing. The performance of the method was evaluated for linearity, limit of detection, precision, specificity, and agreement with commercial hepatitis C virus assays. Its clinical application was compared to that of two commercial kits--Cobas AmpliPrep/Cobas TaqMan (CAP/CTM) and Kehua. The quantitative RT-PCR method delivered a good performance, with a linearity of R(2) = 0.99, a total limit of detection (genotypes 1 to 6) of 42.6 IU/mL (95% CI, 32.84 to 67.76 IU/mL), a CV of 1.06% to 3.34%, a specificity of 100%, and a high concordance with the CAP/CTM assay (R(2) = 0.97), with a means ± SD value of -0.06 ± 1.96 log IU/mL (range, -0.38 to 0.25 log IU/mL). The method was superior to commercial assays in detecting unstable hepatitis C virus RNA (P quantitative RT-PCR method can effectively eliminate the influence of RNA instability on nucleic acid testing. The principle of primer design strategy may be applied to the detection of other RNA or DNA viruses.

  20. A colony multiplex quantitative PCR-Based 3S3DBC method and variations of it for screening DNA libraries.

    Directory of Open Access Journals (Sweden)

    Yang An

    Full Text Available A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements.

  1. Diagnosis and treatment based on quantitative PCR after controlled human malaria infection

    Directory of Open Access Journals (Sweden)

    Jona Walk

    2016-08-01

    Full Text Available Abstract Background Controlled human malaria infection (CHMI has become well-established in the evaluation of drugs and vaccines. Anti-malarial treatment is usually initiated when thick blood smears are positive by microscopy. This study explores the effects of using the more sensitive qPCR as the primary diagnostic test. Methods 1691 diagnostic blood samples were analysed by microscopy and qPCR from 115 volunteers (55 malaria naïve and 60 having received chemoprophylaxis and sporozoite immunization who were challenged by five mosquitoes infected with Plasmodium falciparum sporozoites of the NF54 strain. Results Retrospective analysis of different qPCR criteria for diagnosis and treatment, showed that once daily qPCR (threshold 100 parasites/ml had 99 % sensitivity and 100 % specificity, and shortened the median prepatent period from 10.5 to 7.0 days after CHMI when compared to twice daily measurement of thick blood smears (threshold 4000 parasites/ml. This is expected to result in a 78 % decrease of adverse events before initiation of treatment in future studies. Trial outcome related to infection and protective efficacy remained unchanged. Conclusion The use of qPCR as the primary diagnostic test in CHMI decreases symptoms as well as parasitaemia while obviating the need for twice daily follow-up. The implementation improves safety while reducing the clinical burden and costs without compromising the evaluation of protective efficacy.

  2. A real-time PCR-based semi-quantitative breakpoint to aid in molecular identification of urinary tract infections.

    Science.gov (United States)

    Hansen, Wendy L J; van der Donk, Christina F M; Bruggeman, Cathrien A; Stobberingh, Ellen E; Wolffs, Petra F G

    2013-01-01

    This study presents a novel approach to aid in diagnosis of urinary tract infections (UTIs). A real-time PCR assay was used to screen for culture-positive urinary specimens and to identify the causative uropathogen. Semi-quantitative breakpoints were used to screen for significant bacteriuria (presence of ≥ 10(5) CFU/ml of uropathogens) or low-level bacteriuria (containing between 10(3) and 10(4) CFU/ml of uropathogens). The 16S rDNA-based assay could identify the most prevalent uropathogens using probes for Escherichia coli, Pseudomonas species, Pseudomonas aeruginosa, Staphylococcus species, Staphylococcus aureus, Enterococcus species and Streptococcus species. 330 urinary specimens were analysed and results were compared with conventional urine culture. Using a PCR Ct value of 25 as semi-quantitative breakpoint for significant bacteriuria resulted in a sensitivity and specificity of 97% and 80%, respectively. In 78% of the samples with monomicrobial infections the assay contained probes to detect the bacteria present in the urine specimens and 99% of these uropathogens was correctly identified. Concluding, this proof-of-concept approach demonstrates that the assay can distinguish bacteriuria from no bacteriuria as well as detect the involved uropathogen within 4 hours after sampling, allowing adequate therapy decisions within the same day as well as drastically reduce consequent urine culturing.

  3. Novel micelle PCR-based method for accurate, sensitive and quantitative microbiota profiling

    Science.gov (United States)

    Boers, Stefan A.; Hays, John P.; Jansen, Ruud

    2017-01-01

    In the last decade, many researchers have embraced 16S rRNA gene sequencing techniques, which has led to a wealth of publications and documented differences in the composition of microbial communities derived from many different ecosystems. However, comparison between different microbiota studies is currently very difficult due to the lack of a standardized 16S rRNA gene sequencing protocol. Here we report on a novel approach employing micelle PCR (micPCR) in combination with an internal calibrator that allows for standardization of microbiota profiles via their absolute abundances. The addition of an internal calibrator allows the researcher to express the resulting operational taxonomic units (OTUs) as a measure of 16S rRNA gene copies by correcting the number of sequences of each individual OTU in a sample for efficiency differences in the NGS process. Additionally, accurate quantification of OTUs obtained from negative extraction control samples allows for the subtraction of contaminating bacterial DNA derived from the laboratory environment or chemicals/reagents used. Using equimolar synthetic microbial community samples and low biomass clinical samples, we demonstrate that the calibrated micPCR/NGS methodology possess a much higher precision and a lower limit of detection compared with traditional PCR/NGS, resulting in more accurate microbiota profiles suitable for multi-study comparison. PMID:28378789

  4. Quantitative and qualitative validations of a sonication-based DNA extraction approach for PCR-based molecular biological analyses.

    Science.gov (United States)

    Dai, Xiaohu; Chen, Sisi; Li, Ning; Yan, Han

    2016-05-15

    The aim of this study was to comprehensively validate the sonication-based DNA extraction method, in hope of the replacement of the so-called 'standard DNA extraction method' - the commercial kit method. Microbial cells in the digested sludge sample, containing relatively high amount of PCR-inhibitory substances, such as humic acid and protein, were applied as the experimental alternatives. The procedure involving solid/liquid separation of sludge sample and dilution of both DNA templates and inhibitors, the minimum templates for PCR-based analyses, and the in-depth understanding from the bias analysis by pyrosequencing technology were obtained and confirmed the availability of the sonication-based DNA extraction method.

  5. Recombinant plasmid-based quantitative Real-Time PCR analysis of Salmonella enterica serotypes and its application to milk samples.

    Science.gov (United States)

    Gokduman, Kurtulus; Avsaroglu, M Dilek; Cakiris, Aris; Ustek, Duran; Gurakan, G Candan

    2016-03-01

    The aim of the current study was to develop, a new, rapid, sensitive and quantitative Salmonella detection method using a Real-Time PCR technique based on an inexpensive, easy to produce, convenient and standardized recombinant plasmid positive control. To achieve this, two recombinant plasmids were constructed as reference molecules by cloning the two most commonly used Salmonella-specific target gene regions, invA and ttrRSBC. The more rapid detection enabled by the developed method (21 h) compared to the traditional culture method (90 h) allows the quantitative evaluation of Salmonella (quantification limits of 10(1)CFU/ml and 10(0)CFU/ml for the invA target and the ttrRSBC target, respectively), as illustrated using milk samples. Three advantages illustrated by the current study demonstrate the potential of the newly developed method to be used in routine analyses in the medical, veterinary, food and water/environmental sectors: I--The method provides fast analyses including the simultaneous detection and determination of correct pathogen counts; II--The method is applicable to challenging samples, such as milk; III--The method's positive controls (recombinant plasmids) are reproducible in large quantities without the need to construct new calibration curves.

  6. The development of a rapid SYBR Green I-based quantitative PCR for detection of Duck circovirus

    Directory of Open Access Journals (Sweden)

    Peng Chunxiang

    2011-10-01

    Full Text Available Abstract This report describes a one-step real-time polymerase chain reaction assay based on SYBR Green I for detection of a broad range of duck circovirus (DuCV. Align with all DuCV complete genome sequences and other Genus Circovirus download from the GenBank (such as goose circovirus, pigeon circovirus, the primers targets to the replicate gene of DuCV were designed. The detection assay was linear in the range of 1.31 × 102-1.31 × 107 copies/μL. The reaction efficiency of the assay using the slope (the slope was -3.349 and the Y-intercept was 37.01 from the linear equation was estimated to be 0.99 and the correlation coefficient (R2 was 0.993. A series of experiments were carried out to assess the reproducibility, sensitivity, and specificity of the assay, following by the low intra-assay and inter-assay CVs for CT values obtained with the standard plasmids. The intra-assay CVs were equal or less than 1.89% and the inter-assay CVs were equal or less than 1.26%. There was no cross-reaction occurred with nucleic acids extracted from RA (Riemerella anatipestifer, E. coli (Escherichia coli, Duck Cholera (Pasteurella multocida, Avian influenza virus, avian paramyxovirus, Muscovy duck parvovirus, Duck reovirus, Duck hepatitis A virus as control templates. The nucleic acids extracted from samples of healthy ducks were used as negative controls. The assay was specific and reproducible. The established real time PCR was used to detect 45 DuCV-negative samples, which were tested using conventional PCR under the developed optimal conditions, each 15 for embryonated eggs, non-embryonated budgerigar eggs, newly hatched duck, the mixture of the lung, liver, spleen which were analysis for the presence of DuCV DNA, to conform that whether the DuCV can be transmitted vertically. Meanwhile, no positive result was shown by the real-time PCR method. The SYBR Green I-based quantitative PCR can therefore be practically used as an alternative diagnostic tool and

  7. MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments

    NARCIS (Netherlands)

    Bustin, S.A.; Beaulieu, J.F.; Huggett, J.; Jaggi, R.; Kibenge, F.S.; Olsvik, P.A.; Penning, L.C.; Toegel, S.

    2010-01-01

    MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments Stephen A Bustin1 , Jean-François Beaulieu2 , Jim Huggett3 , Rolf Jaggi4 , Frederick SB Kibenge5 , Pål A Olsvik6 , Louis C Penning7 and Stefan Toegel8 1 Centre for Diges

  8. Establishment of a minor groove binder-probe based quantitative real time PCR to detect Borrelia burgdorferi sensu lato and differentiation of Borrelia spielmanii by ospA-specific conventional PCR

    Directory of Open Access Journals (Sweden)

    Strube Christina

    2010-08-01

    Full Text Available Abstract Background Borrelia burgdorferi sensu lato (sl, the causative agent of Lyme borreliosis, is transmitted by ticks of the genus Ixodes as vector. For identification of Borrelia infections in ticks a TaqMan™ minor groove binder (MGB probe-based quantitative real time PCR (qPCR was established targeting the 5S-23S intergenic spacer. Extension to a duplex qPCR included an Ixodes spp. positive control to verify successful DNA isolation. Besides qPCR, an ospA-specific conventional PCR for species-specific identification of B. spielmanii was established. Afterwards 1000 I. ricinus flagged in the city of Hanover, Germany, were investigated for B. burgdorferi sl infections followed by species identification. Furthermore, I. hexagonus ticks were investigated to proof applicability of the PCRs. Results Quantitative real time PCR (qPCR identifying B. burgdorferi sl in ticks was able to detect 1-10 copies per reaction. B. spielmanii ospA-specific conventional PCR was also highly specific and showed no cross reactions with the other tested Borrelia species. From 1000 hanoveranian ticks 24.3% were positive compared to only 7.4% positives by dark-field microscopy. Related to tick stage 1.7% larvae, 18.1% nymphs, and 34.6% adults were positive. The most frequent species was B. garinii, followed by B. afzelii, B. spielmanii, B. valaisiana and B. burgdorferi sensu stricto (ss. 70.6% of I. ricinus were mono-infected, whereas 28.0% and 1.4% were infected with two and three Borrelia species, respectively. From 232 I. hexagonus collected from hedgehogs in different sites of Germany, qPCR detected 5.7% to be infected with B. burgdorferi sl, which were identified as B. afzelii, B. garinii and B. spielmanii. Conclusions The evaluated qPCR to detect B. burgdorferi sl in Ixodes spp. is highly specific and sensitive. As a duplex qPCR including detection of Ixodes spp. DNA it is the first DNA based technique incorporating a control for successful DNA isolation from

  9. An evidence based strategy for normalization of quantitative PCR data from miRNA expression analysis in forensic organ tissue identification.

    Science.gov (United States)

    Sauer, Eva; Babion, Iris; Madea, Burkhard; Courts, Cornelius

    2014-11-01

    Messenger-RNA (mRNA)-based analysis of organ tissues and their differentiation in complex crime stains has recently been introduced as a potential and powerful tool to forensic genetics. Given the notoriously low quality of many forensic samples it seems advisable, though, to substitute mRNA with micro-RNA (miRNA) which is much less susceptible to degradation. However, reliable miRNA detection and quantification using quantitative PCR requires a solid and forensically relevant normalization strategy. In our study we evaluated a panel of 15 carefully selected reference genes for their suitability as endogenous controls in miRNA qPCR normalization in forensically relevant settings. We analyzed assay performances and expression variances in 35 individual samples and mixtures thereof integrating highly standardized protocols with contemporary methodologies and included several well-established computational algorithms. Based on these empirical results, we recommend SNORD48, SNORD24, and RNU6-2 as endogenous references since these exhibit the most stable expression levels and the least expected variation among the evaluated candidate reference genes in the given set of forensically relevant organ tissues including skin. To account for the lack of consensus on how best to perform and interpret quantitative PCR experiments, our study's documentation is according to MIQE guidelines, defining the "minimum information for publication of quantitative real-time PCR experiments".

  10. Quantitative DNA Analysis Using Droplet Digital PCR.

    Science.gov (United States)

    Vossen, Rolf H A M; White, Stefan J

    2017-01-01

    Droplet digital PCR (ddPCR) is based on the isolated amplification of thousands of individual DNA molecules simultaneously, with each molecule compartmentalized in a droplet. The presence of amplified product in each droplet is indicated by a fluorescent signal, and the proportion of positive droplets allows the precise quantification of a given sequence. In this chapter we briefly outline the basis of ddPCR, and describe two different applications using the Bio-Rad QX200 system: genotyping copy number variation and quantification of Illumina sequencing libraries.

  11. Molecular diagnosis of Anaplasma marginale in cattle: quantitative evaluation of a real-time PCR (Polymerase Chain Reaction based on msp5 gene

    Directory of Open Access Journals (Sweden)

    Gisele M. Bacanelli

    2014-01-01

    Full Text Available The rickettsia Anaplasma marginale is considered the main agent of bovine anaplasmosis. Due the nonspecific clinical signs of the anaplasmosis, the diagnosis of infection depends of laboratory confirmation. In recent years, molecular diagnostic methods have been used to detect A. marginale in cattle. However, the existence of a large number of assays of different sensitivity and cost makes the choice of an appropriate test difficult. In the present study, a real-time Polymerase Chain Reaction (PCR based on the msp5 target gene was quantitatively assessed and compared to an end point PCR. Both reactions were subjected to sensitivity and specificity evaluation using plasmid DNA and samples from cattle experimentally infected with A. marginale. A comparative field trial of the tests was carried out using samples of cattle from a stable enzootic area for A. marginale. The real-time PCR showed a higher sensitivity than the end point PCR. This reaction (i.e. real-time PCR was able to detect one copy of the msp5 gene in 100 ηg of plasmidial DNA, and more than 80% of its results were positive among experimentally infected animals seven days after infection. In addition, based on in silico analysis, the real-time PCR evaluated in the present study appears to be useful for the detection of A. ovis.

  12. Development of quantitative PCR and metagenomics-based approaches for strain quantification of a defined mixed-strain starter culture.

    Science.gov (United States)

    Johansen, Pernille; Vindeløv, Jannik; Arneborg, Nils; Brockmann, Elke

    2014-05-01

    Although the strain composition of mixed cultures may hugely affect production of various fermented foods, such as e.g. cheese, tools for investigating it have so far been limited. In this study, two new approaches for quantification of seven Lactococcus lactis subsp. cremoris strains (S1-S7) in a defined mixed-strain starter culture were developed and verified. By mapping NGS reads from 47 sequenced L. lactis strains to de novo assembly contigs of the seven strains, two strain-specific sequence regions (SEQ1 and SEQ2) were identified for each strain for qPCR primer design (A1 and A2). The qPCR assays amplified their strain-specific sequence region target efficiently. Additionally, high reproducibility was obtained in a validation sample containing equal amounts of the seven strains, and assay-to-assay coefficients of variance (CVs) for six (i.e. S1, S2, S4-S7) of the seven strains correlated to the inter-plate CVs. Hence, at least for six strains, the qPCR assay design approach was successful. The metagenomics-based approach quantified the seven strains based on average coverage of SEQ1 and SEQ2 by mapping sequencing reads from the validation sample to the strain-specific sequence regions. Average coverages of the SEQ1 and SEQ2 in the metagenomics data showed CVs of ≤17.3% for six strains (i.e. S1-S4, S6, S7). Thus, the metagenomics-based quantification approach was considered successful for six strains, regardless of the strain-specific sequence region used. When comparing qPCR- and metagenomics-based quantifications of the validation sample, the identified strain-specific sequence regions were considered suitable and applicable for quantification at a strain level of defined mixed-strain starter cultures.

  13. Event-specific qualitative and quantitative PCR detection of the GMO carnation (Dianthus caryophyllus) variety Moonlite based upon the 5'-transgene integration sequence.

    Science.gov (United States)

    Li, P; Jia, J W; Jiang, L X; Zhu, H; Bai, L; Wang, J B; Tang, X M; Pan, A H

    2012-04-27

    To ensure the implementation of genetically modified organism (GMO)-labeling regulations, an event-specific detection method was developed based on the junction sequence of an exogenous integrant in the transgenic carnation variety Moonlite. The 5'-transgene integration sequence was isolated by thermal asymmetric interlaced PCR. Based upon the 5'-transgene integration sequence, the event-specific primers and TaqMan probe were designed to amplify the fragments, which spanned the exogenous DNA and carnation genomic DNA. Qualitative and quantitative PCR assays were developed employing the designed primers and probe. The detection limit of the qualitative PCR assay was 0.05% for Moonlite in 100 ng total carnation genomic DNA, corresponding to about 79 copies of the carnation haploid genome; the limit of detection and quantification of the quantitative PCR assay were estimated to be 38 and 190 copies of haploid carnation genomic DNA, respectively. Carnation samples with different contents of genetically modified components were quantified and the bias between the observed and true values of three samples were lower than the acceptance criterion (GMO detection method. These results indicated that these event-specific methods would be useful for the identification and quantification of the GMO carnation Moonlite.

  14. A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules.

    Directory of Open Access Journals (Sweden)

    Zsolt Czimmerer

    Full Text Available Short regulatory RNA-s have been identified as key regulators of gene expression in eukaryotes. They have been involved in the regulation of both physiological and pathological processes such as embryonal development, immunoregulation and cancer. One of their relevant characteristics is their high stability, which makes them excellent candidates for use as biomarkers. Their number is constantly increasing as next generation sequencing methods reveal more and more details of their synthesis. These novel findings aim for new detection methods for the individual short regulatory RNA-s in order to be able to confirm the primary data and characterize newly identified subtypes in different biological conditions. We have developed a flexible method to design RT-qPCR assays that are very sensitive and robust. The newly designed assays were tested extensively in samples from plant, mouse and even human formalin fixed paraffin embedded tissues. Moreover, we have shown that these assays are able to quantify endogenously generated shRNA molecules. The assay design method is freely available for anyone who wishes to use a robust and flexible system for the quantitative analysis of matured regulatory RNA-s.

  15. Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus

    Directory of Open Access Journals (Sweden)

    Mounsey Kate E

    2012-01-01

    Full Text Available Abstract Background The lack of genomic data available for mites limits our understanding of their biology. Evolving high-throughput sequencing technologies promise to deliver rapid advances in this area, however, estimates of genome size are initially required to ensure sufficient coverage. Methods Quantitative real-time PCR was used to estimate the genome sizes of the burrowing ectoparasitic mite Sarcoptes scabiei, the non-burrowing ectoparasitic mite Psoroptes ovis, and the free-living house dust mite Dermatophagoides pteronyssinus. Additionally, the chromosome number of S. scabiei was determined by chromosomal spreads of embryonic cells derived from single eggs. Results S. scabiei cells were shown to contain 17 or 18 small (S. scabiei and P. ovis were 96 (± 7 Mb and 86 (± 2 Mb respectively, among the smallest arthropod genomes reported to date. The D. pteronyssinus genome was estimated to be larger than its parasitic counterparts, at 151 Mb in female mites and 218 Mb in male mites. Conclusions This data provides a starting point for understanding the genetic organisation and evolution of these astigmatid mites, informing future sequencing projects. A comparitive genomic approach including these three closely related mites is likely to reveal key insights on mite biology, parasitic adaptations and immune evasion.

  16. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    Science.gov (United States)

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  17. A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Stewart Don

    2008-05-01

    Full Text Available Abstract Background Based upon defining a common reference point, current real-time quantitative PCR technologies compare relative differences in amplification profile position. As such, absolute quantification requires construction of target-specific standard curves that are highly resource intensive and prone to introducing quantitative errors. Sigmoidal modeling using nonlinear regression has previously demonstrated that absolute quantification can be accomplished without standard curves; however, quantitative errors caused by distortions within the plateau phase have impeded effective implementation of this alternative approach. Results Recognition that amplification rate is linearly correlated to amplicon quantity led to the derivation of two sigmoid functions that allow target quantification via linear regression analysis. In addition to circumventing quantitative errors produced by plateau distortions, this approach allows the amplification efficiency within individual amplification reactions to be determined. Absolute quantification is accomplished by first converting individual fluorescence readings into target quantity expressed in fluorescence units, followed by conversion into the number of target molecules via optical calibration. Founded upon expressing reaction fluorescence in relation to amplicon DNA mass, a seminal element of this study was to implement optical calibration using lambda gDNA as a universal quantitative standard. Not only does this eliminate the need to prepare target-specific quantitative standards, it relegates establishment of quantitative scale to a single, highly defined entity. The quantitative competency of this approach was assessed by exploiting "limiting dilution assay" for absolute quantification, which provided an independent gold standard from which to verify quantitative accuracy. This yielded substantive corroborating evidence that absolute accuracies of ± 25% can be routinely achieved. Comparison

  18. PCR-反向点杂交基因分型与实时荧光定量PCR检测人乳头瘤病毒的研究%Use of a PCR-based reverse blot hybridization assay for subtyping and real-time quantitative PCR to detect human papilloma virus

    Institute of Scientific and Technical Information of China (English)

    向华国; 曾锦婷; 何婉意; 黎国

    2012-01-01

    Objective To evaluate the significance of a PCR-based reverse blot hybridization (PCR-RDB) assay and realtime quantitative PCR for detecting human papilloma virus in female outpatients. Methods A total of 121 female outpatients were checked for 23 HFV DNA types by PCR-RDB and 13 high-risk HPV genotypes by real-time quantitative PCR. Results According to PCR-RDB, 28.10% of the women(34/121) tested positive while 16. 53%(20/121) tested positive according to real-time quantitative PCR. HPV was detected more often with PCR-RDB than with real-time quantitative PCR (P<0.05). The concordance rate for the two techniques was 93. 39%(113/121). Conclusion PCR-RDB can be used to screen for HPV infection while real-time quantitative PCR facilitates evaluation of the effectiveness of treatment and the prognosis for cervical carcinoma. Combining the two should increase the specificity and sensitivity of HPV detection.%目的 评价PCR-反向点杂交基因分型与实时荧光定量PCR在检测人乳头瘤病毒(HPV)的意义.方法 同时采用PCR-反向点杂交基因分型和实时荧光定量PCR对121例女性官颈脱离细胞标本进行HPV检测.其中PCR-反向点杂交基因分型能检测23种HPV亚型,实时荧光定量PCR定量检测常见的13种高危HPV亚型.结果 PCR-反向点杂交基因分型检测HPV的阳性率为28.10%(34/121),实时荧光定量PCR检测HPV的阳性率为16.53%(20/121),差异有统计学意义(P<0.05);二者检测的符合率为93.39%(113/121).结论 PCR-反向杂交基因分型适用于HPV感染的筛查,而实时荧光定量PCR适用于HPV感染相关疾病的疗效与预后的判断.PCR-反向杂交基因分型与实时荧光定量PCR联合检测可提高HPV检测的特异性和敏感度,对于生殖道HPV感染以及子宫颈癌的早期发现、预防和治疗具有重要意义.

  19. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri.

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    Full Text Available Droplet digital polymerase chain reaction (ddPCR is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001. Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications.

  20. Detection of Cardamom mosaic virus and Banana bract mosaic virus in cardamom using SYBR Green based reverse transcription-quantitative PCR.

    Science.gov (United States)

    Siljo, A; Bhat, A I; Biju, C N

    2014-01-01

    Cardamom being perennial, propagated vegetatively, detecting viruses in planting material is important to check the spread of viruses through infected material. Thus development of effective and sensitive assay for detection of viruses is need of the time. In this view, assay for the detection of Cardamom mosaic virus (CdMV) and Banana bract mosaic virus (BBrMV), infecting cardamom was developed using SYBR Green one step reverse transcription-quantitative PCR (RT-qPCR). The RT-qPCR assay amplified all isolates of CdMV and BBrMV tested but no amplification was obtained with RNA of healthy plants. Recombinant plasmids carrying target virus regions corresponding to both viruses were quantified, serially diluted and used as standards in qPCR to develop standard curve to enable quantification. When tenfold serial dilutions of the total RNAs from infected plants were tested through RT-qPCR, the detection limit of the assay was estimated to be 16 copies for CdMV and 10 copies for BBrMV, which was approximately 1,000-fold higher than the conventional RT-PCR. The RT-qPCR assay was validated by testing field samples collected from different cardamom growing regions of India. This is the first report of RT-qPCR assay for the detection of CdMV and BBrMV in cardamom.

  1. Quantification of transcript levels with quantitative RT-PCR.

    Science.gov (United States)

    Carleton, Karen L

    2011-01-01

    Differential gene expression is a key factor driving phenotypic divergence. Determining when and where gene expression has diverged between organisms requires a quantitative method. While large-scale approaches such as microarrays or high-throughput mRNA sequencing can identify candidates, quantitative RT-PCR is the definitive method for confirming gene expression differences. Here, we describe the steps for performing qRT-PCR including extracting total RNA, reverse-transcribing it to make a pool of cDNA, and then quantifying relative expression of a few candidate genes using real-time or quantitative PCR.

  2. Rapid diagnosis of aneuploidy using segmental duplication quantitative fluorescent PCR.

    Directory of Open Access Journals (Sweden)

    Xiangdong Kong

    Full Text Available The aim of this study was use a simple and rapid procedure, called segmental duplication quantitative fluorescent polymerase chain reaction (SD-QF-PCR, for the prenatal diagnosis of fetal chromosomal aneuploidies. This method is based on the co-amplification of segmental duplications located on two different chromosomes using a single pair of fluorescent primers. The PCR products of different sizes were subsequently analyzed through capillary electrophoresis, and the aneuploidies were determined based on the relative dosage between the two chromosomes. Each primer set, containing five pairs of primers, was designed to simultaneously detect aneuploidies located on chromosomes 21, 18, 13, X and Y in a single reaction. We applied these two primer sets to DNA samples isolated from individuals with trisomy 21 (n = 36; trisomy 18 (n = 6; trisomy 13 (n = 4; 45, X (n = 5; 47, XXX (n = 3; 48, XXYY (n = 2; and unaffected controls (n = 40. We evaluated the performance of this method using the karyotyping results. A correct and unambiguous diagnosis with 100% sensitivity and 100% specificity, was achieved for clinical samples examined. Thus, the present study demonstrates that SD-QF-PCR is a robust, rapid and sensitive method for the diagnosis of common aneuploidies, and these analyses can be performed in less than 4 hours for a single sample, providing a competitive alternative for routine use.

  3. Digital PCR dynamic range is approaching that of real-time quantitative PCR.

    Science.gov (United States)

    Jones, Gerwyn M; Busby, Eloise; Garson, Jeremy A; Grant, Paul R; Nastouli, Eleni; Devonshire, Alison S; Whale, Alexandra S

    2016-12-01

    Digital PCR (dPCR) has been reported to be more precise and sensitive than real-time quantitative PCR (qPCR) in a variety of models and applications. However, in the majority of commercially available dPCR platforms, the dynamic range is dependent on the number of partitions analysed and so is typically limited to four orders of magnitude; reduced compared with the typical seven orders achievable by qPCR. Using two different biological models (HIV DNA analysis and KRAS genotyping), we have demonstrated that the RainDrop Digital PCR System (RainDance Technologies) is capable of performing accurate and precise quantification over six orders of magnitude thereby approaching that achievable by qPCR.

  4. Optimization and analysis of a quantitative real-time PCR-based technique to determine microRNA expression in formalin-fixed paraffin-embedded samples

    Directory of Open Access Journals (Sweden)

    Reis Patricia P

    2010-06-01

    Full Text Available Abstract Background MicroRNAs (miRs are non-coding RNA molecules involved in post-transcriptional regulation, with diverse functions in tissue development, differentiation, cell proliferation and apoptosis. miRs may be less prone to degradation during formalin fixation, facilitating miR expression studies in formalin-fixed paraffin-embedded (FFPE tissue. Results Our study demonstrates that the TaqMan Human MicroRNA Array v1.0 (Early Access platform is suitable for miR expression analysis in FFPE tissue with a high reproducibility (correlation coefficients of 0.95 between duplicates, p 35, we show that reproducibility between technical replicates, equivalent dilutions, and FFPE vs. frozen samples is best in the high abundance stratum. We also demonstrate that the miR expression profiles of FFPE samples are comparable to those of fresh-frozen samples, with a correlation of up to 0.87 (p Conclusion Our study thus demonstrates the utility, reproducibility, and optimization steps needed in miR expression studies using FFPE samples on a high-throughput quantitative PCR-based miR platform, opening up a realm of research possibilities for retrospective studies.

  5. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    Science.gov (United States)

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  6. Effects of Holding Time, Storage, and the Preservation of Samples on Sample Integrity for the Detection of Fecal Indicator Bacteria by Quantitative Polymerase Chain Reaction (qPCR)-based assays.

    Science.gov (United States)

    The purpose of this project was to answer questions related to storage of samples to be analyzed by the quantitative polymerase chain reaction (qPCR)-based assays for fecal indicator bacteria. The project was divided into two parts. The first part was to determine if filters th...

  7. The use sof real-time quantitative PCR for the analysis of cytokine mRNA levels

    NARCIS (Netherlands)

    Forlenza, M.; Kaiser, T.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2012-01-01

    Over the last decade, real-time-quantitative PCR (RT-qPCR) analysis has become the method of choice not only for quantitative and accurate measurement of mRNA expression levels, but also for sensitive detection of rare or mutated DNA species in diagnostic research. RT-qPCR is based on the standard p

  8. Monitoring gene expression: quantitative real-time rt-PCR.

    Science.gov (United States)

    Wagner, Elke M

    2013-01-01

    Two-step quantitative real-time RT-PCR (RT-qPCR), also known as real-time RT-PCR, kinetic RT-PCR, or quantitative fluorescent RT-PCR, has become the method of choice for gene expression analysis during the last few years. It is a fast and convenient PCR method that combines traditional RT-PCR with the phenomenon of fluorescence resonance energy transfer (FRET) using fluorogenic primers. The detection of changes in fluorescence intensity during the reaction enables the user to follow the PCR reaction in real time.RT-qPCR comprises several steps: (1) RNA is isolated from target tissue/cells; (2) mRNA is reverse-transcribed to cDNA; (3) modified gene-specific PCR primers are used to amplify a segment of the cDNA of interest, following the reaction in real time; and (4) the initial concentration of the selected transcript in a specific tissue or cell type is calculated from the exponential phase of the reaction. Relative quantification or absolute quantification compared to standards that are run in parallel can be performed.This chapter describes the entire procedure from isolation of total RNA from liver and fatty tissues/cells to the use of RT-qPCR to study gene expression in these tissues. We perform relative quantification of transcripts to calculate the fold-difference of a certain mRNA level between different samples. In addition, tips for choosing primers and performing analyses are provided to help the beginner in understanding the technique.

  9. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  10. Specific PCR and real-time PCR assays for detection and quantitation of 'Candidatus Phytoplasma phoenicium'.

    Science.gov (United States)

    Jawhari, Maan; Abrahamian, Peter; Sater, Ali Abdel; Sobh, Hana; Tawidian, Patil; Abou-Jawdah, Yusuf

    2015-02-01

    Almond witches' broom (AlmWB) is a fast-spreading lethal disease of almond, peach and nectarine associated with 'Candidatus Phytoplasma phoenicium'. The development of PCR and quantitative real-time PCR (qPCR) assays for the sensitive and specific detection of the phytoplasma is of prime importance for early detection of 'Ca. P. phoenicium' and for epidemiological studies. The developed qPCR assay herein uses a TaqMan(®) probe labeled with Black Hole Quencher Plus. The specificity of the PCR and that of the qPCR detection protocols were tested on 17 phytoplasma isolates belonging to 11 phytoplasma 16S rRNA groups, on samples of almond, peach, nectarine, native plants and insects infected or uninfected with the phytoplasma. The developed assays showed high specificity against 'Ca. P. phoenicium' and no cross-reactivity against any other phytoplasma, plant or insect tested. The sensitivity of the developed PCR and qPCR assays was similar to the conventional nested PCR protocol using universal primers. The qPCR assay was further validated by quantitating AlmWB phytoplasma in different hosts, plant parts and potential insect vectors. The highest titers of 'Ca. P. phoenicium' were detected in the phloem tissues of stems and roots of almond and nectarine trees, where they averaged from 10(5) to 10(6) genomic units per nanogram of host DNA (GU/ng of DNA). The newly developed PCR and qPCR protocols are reliable, specific and sensitive methods that are easily applicable to high-throughput diagnosis of AlmWB in plants and insects and can be used for surveys of potential vectors and alternative hosts.

  11. Comparison of quantitative PCR and culture-based methods for evaluating dispersal of Bacillus thuringiensis endospores at a bioterrorism hoax crime scene.

    Science.gov (United States)

    Crighton, Taryn; Hoile, Rebecca; Coleman, Nicholas V

    2012-06-10

    Since the anthrax mail attacks of 2001, law enforcement agencies have processed thousands of suspicious mail incidents globally, many of which are hoax bioterrorism threats. Bio-insecticide preparations containing Bacillus thuringiensis (Bt) spores have been involved in several such threats in Australia, leading to the requirement for rapid and sensitive detection techniques for this organism, a close relative of Bacillus anthracis. Here we describe the development of a quantitative PCR (qPCR) method for the detection of Bt crystal toxin gene cry1, and evaluation of the method's effectiveness during a hoax bioterrorism event in 2009. When combined with moist wipe sampling, the cry1 qPCR was a rapid, reliable, and sensitive diagnostic tool for detecting and quantifying Bt contamination, and mapping endospore dispersal within a mail sorting facility. Results from the cry1 qPCR were validated by viable counts of the same samples on Bacillus-selective agar (PEMBA), which revealed a similar pattern of contamination. Extensive and persistent contamination of the facility was detected, both within the affected mailroom, and extending into office areas up to 30m distant from the source event, emphasising the need for improved containment procedures for suspicious mail items, both during and post-event. The cry1 qPCR enables detection of both viable and non-viable Bt spores and cells, which is important for historical crime scenes or scenes subjected to decontamination. This work provides a new rapid method to add to the forensics toolbox for crime scenes suspected to be contaminated with biological agents.

  12. Detection of live Salmonella sp. cells in produce by a TaqMan-based quantitative reverse transcriptase real-time PCR targeting invA mRNA.

    Science.gov (United States)

    González-Escalona, Narjol; Hammack, Thomas S; Russell, Mindi; Jacobson, Andrew P; De Jesús, Antonio J; Brown, Eric W; Lampel, Keith A

    2009-06-01

    Salmonella enterica contamination in foods is a significant concern for public health. When DNA detection methods are used for analysis of foods, one of the major concerns is false-positive results from the detection of dead cells. To circumvent this crucial issue, a TaqMan quantitative real-time RT-PCR (qRT-PCR) assay with an RNA internal control was developed. invA RNA standards were used to determine the detection limit of this assay as well as to determine invA mRNA levels in mid-exponential-, late-exponential-, and stationary-phase cells. This assay has a detection limit of 40 copies of invA mRNA per reaction. The levels of invA mRNA in mid-exponential-, late-exponential-, and stationary-phase S. enterica cells was approximately 1 copy per 3 CFU, 1 copy per CFU, and 4 copies per 10(3) CFU, respectively. Spinach, tomatoes, jalapeno peppers, and serrano peppers were artificially contaminated with four different Salmonella serovars at levels of 10(5) and less than 10 CFU. These foods were analyzed with qRT-PCR and with the FDA's Bacteriological Analytical Manual Salmonella culture method (W. A. Andrews and T. S. Hammack, in G. J. Jackson et al., ed., Bacteriological analytical manual online, http://www.cfsan.fda.gov/ approximately ebam/bam-5.html, 2007). Comparable results were obtained by both methods. Only live Salmonella cells could be detected by this qRT-PCR assay, thus avoiding the dangers of false-positive results from nonviable cells. False negatives (inhibition of the PCR) were also ruled out through the use of an RNA internal control. This assay allows for the fast and accurate detection of viable Salmonella spp. in spinach, tomatoes, and in both jalapeno and serrano peppers.

  13. Quantitative analysis of somatic mitochondrial DNA mutations by single-cell single-molecule PCR.

    Science.gov (United States)

    Kraytsberg, Yevgenya; Bodyak, Natalya; Myerow, Susan; Nicholas, Alexander; Ebralidze, Konstantin; Khrapko, Konstantin

    2009-01-01

    Mitochondrial genome integrity is an important issue in somatic mitochondrial genetics. Development of quantitative methods is indispensable to somatic mitochondrial genetics as quantitative studies are required to characterize heteroplasmy and mutation processes, as well as their effects on phenotypic developments. Quantitative studies include the identification and measurement of the load of pathogenic and non-pathogenic clonal mutations, screening mitochondrial genomes for mutations in order to determine the mutation spectra and characterize an ongoing mutation process. Single-molecule PCR (smPCR) has been shown to be an effective method that can be applied to all areas of quantitative studies. It has distinct advantages over conventional vector-based cloning techniques avoiding the well-known PCR-related artifacts such as the introduction of artificial mutations, preferential allelic amplifications, and "jumping" PCR. smPCR is a straightforward and robust method, which can be effectively used for molecule-by-molecule mutational analysis, even when mitochondrial whole genome (mtWG) analysis is involved. This chapter describes the key features of the smPCR method and provides three examples of its applications in single-cell analysis: di-plex smPCR for deletion quantification, smPCR cloning for clonal point mutation quantification, and smPCR cloning for whole genome sequencing (mtWGS).

  14. Quantitative-PCR Assessment of Cryptosporidium parvum Cell Culture Infection

    OpenAIRE

    Di Giovanni, George D.; LeChevallier, Mark W.

    2005-01-01

    A quantitative TaqMan PCR method was developed for assessing the Cryptosporidium parvum infection of in vitro cultivated human ileocecal adenocarcinoma (HCT-8) cell cultures. This method, termed cell culture quantitative sequence detection (CC-QSD), has numerous applications, several of which are presented. CC-QSD was used to investigate parasite infection in cell culture over time, the effects of oocyst treatment on infectivity and infectivity assessment of different C. parvum isolates. CC-Q...

  15. Fast detection of deletion breakpoints using quantitative PCR

    Directory of Open Access Journals (Sweden)

    Gulshara Abildinova

    2016-01-01

    Full Text Available Abstract The routine detection of large and medium copy number variants (CNVs is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories.

  16. Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data.

    Science.gov (United States)

    Demidenko, Natalia V; Logacheva, Maria D; Penin, Aleksey A

    2011-05-12

    Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications--geNorm, NormFinder and BestKeeper--were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species.

  17. Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum based on transcriptome sequence data.

    Directory of Open Access Journals (Sweden)

    Natalia V Demidenko

    Full Text Available Quantitative reverse transcription PCR (qRT-PCR is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits. These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications--geNorm, NormFinder and BestKeeper--were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1, AT2G28390 (SAND family protein, SAND and AT5G46630 (clathrin adapter complex subunit family protein, CACS are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species.

  18. QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES

    Science.gov (United States)

    A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...

  19. Accurate and easy-to-use assessment of contiguous DNA methylation sites based on proportion competitive quantitative-PCR and lateral flow nucleic acid biosensor.

    Science.gov (United States)

    Xu, Wentao; Cheng, Nan; Huang, Kunlun; Lin, Yuehe; Wang, Chenguang; Xu, Yuancong; Zhu, Longjiao; Du, Dan; Luo, Yunbo

    2016-06-15

    Many types of diagnostic technologies have been reported for DNA methylation, but they require a standard curve for quantification or only show moderate accuracy. Moreover, most technologies have difficulty providing information on the level of methylation at specific contiguous multi-sites, not to mention easy-to-use detection to eliminate labor-intensive procedures. We have addressed these limitations and report here a cascade strategy that combines proportion competitive quantitative PCR (PCQ-PCR) and lateral flow nucleic acid biosensor (LFNAB), resulting in accurate and easy-to-use assessment. The P16 gene with specific multi-methylated sites, a well-studied tumor suppressor gene, was used as the target DNA sequence model. First, PCQ-PCR provided amplification products with an accurate proportion of multi-methylated sites following the principle of proportionality, and double-labeled duplex DNA was synthesized. Then, a LFNAB strategy was further employed for amplified signal detection via immune affinity recognition, and the exact level of site-specific methylation could be determined by the relative intensity of the test line and internal reference line. This combination resulted in all recoveries being greater than 94%, which are pretty satisfactory recoveries in DNA methylation assessment. Moreover, the developed cascades show significantly high usability as a simple, sensitive, and low-cost tool. Therefore, as a universal platform for sensing systems for the detection of contiguous multi-sites of DNA methylation without external standards and expensive instrumentation, this PCQ-PCR-LFNAB cascade method shows great promise for the point-of-care diagnosis of cancer risk and therapeutics.

  20. How Many Microorganisms Are Present? Quantitative Reverse Transcription PCR (qRT-PCR)

    Science.gov (United States)

    Price, Andy; Álvarez, Laura Acuña; Whitby, Corinne; Larsen, Jan

    Quantitative reverse transcription PCR (qRT-PCR) is a variation of conventional quantitative or real-time PCR, whereby mRNA is first converted into the complementary DNA (cDNA) by reverse transcription, the cDNA is then subsequently quantified by qPCR. The use of mRNA as the initial template allows the quantification of gene transcripts, rather than gene copy numbers. mRNA is only produced by actively metabolising cells and is produced by its corresponding gene to provide a 'blueprint' in order for a cell to manufacture a specific protein. Conventional qPCR detects not only DNA present in actively metabolising cells but also inactive and dead cells. qRT-PCR has the advantage that only actively metabolising cells are detected, hence provides a more reliable measure of microbial activity in oilfield samples. When qRT-PCR is combined with primers and probes for specific genes, the activity of microbial processes important in the oilfield, such as sulphate reduction, methanogenesis and nitrate reduction can be monitored.

  1. Interaction of quantitative PCR components with polymeric surfaces.

    Science.gov (United States)

    Gonzalez, Asensio; Grimes, Ronan; Walsh, Edmond J; Dalton, Tara; Davies, Mark

    2007-04-01

    This study investigated the effect of exposing a polymerase chain reaction (PCR) mixture to capillary tubing of different materials and lengths, at different contact times and flow rates and the adsorption of major reaction components into the tubing wall. Using 0.5 mm ID tubing, lengths of 40 cm and residence times up to 45 min, none of the tested polymeric materials was found to affect subsequent PCR amplification. However, after exposure of the mixture to tubing lengths of 3 m or reduction of sample volume, PCR inhibition occurred, increasing with the volume to length ratio. Different flow velocities did not affect PCR yield. When the adsorption of individual PCR components was studied, significant DNA adsorption and even more significant adsorption of the fluorescent dye Sybr Green I was found. The results indicate that PCR inhibition in polymeric tubing results from adsorption of reaction components to wall surfaces, increasing substantially with tubing length or sample volume reduction, but not with contact time or flow velocities typical in dynamic PCR amplification. The data also highlight that chemical compatibility of polymeric capillaries with DNA dyes should be carefully considered for the design of quantitative microfluidic devices.

  2. An outbreak of scrub typhus in military personnel despite protocols for antibiotic prophylaxis: doxycycline resistance excluded by a quantitative PCR-based susceptibility assay.

    Science.gov (United States)

    Harris, Patrick N A; Oltvolgyi, Csongor; Islam, Aminul; Hussain-Yusuf, Hazizul; Loewenthal, Mark R; Vincent, Gemma; Stenos, John; Graves, Stephen

    2016-06-01

    Scrub typhus is caused by the obligate intracellular bacterium Orientia tsutsugamushi and is endemic to many countries in the Asia-Pacific region, including tropical Australia. We describe a recent large outbreak amongst military personnel in north Queensland. A total of 45 clinical cases were identified (36% of all potentially exposed individuals). This occurred despite existing military protocols stipulating the provision of doxycycline prophylaxis. Doxycycline resistance in O. tsutsugamushi has been described in South-East Asia, but not Australia. In one case, O. tsutsugamushi was cultured from eschar tissue and blood. Using quantitative real-time PCR to determine susceptibility to doxycycline for the outbreak strain, a minimum inhibitory concentration (MIC) of ≤0.04 μg/mL was found, indicating susceptibility to this agent. It seems most probable that failure to adhere to adequate prophylaxis over the duration of the military exercise accounted for the large number of cases encountered rather than doxycycline resistance.

  3. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR.

    Science.gov (United States)

    Plain, Karren M; Waldron, Anna M; Begg, Douglas J; de Silva, Kumudika; Purdie, Auriol C; Whittington, Richard J

    2015-04-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 10(4)-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n=54) and sheep fecal and tissue (n=90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis.

  4. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform.

    Science.gov (United States)

    Tachibana, Hiroaki; Saito, Masato; Shibuya, Shogo; Tsuji, Koji; Miyagawa, Nobuyuki; Yamanaka, Keiichiro; Tamiya, Eiichi

    2015-12-15

    Polymerase chain reaction (PCR)-based genetic testing has become a routine part of clinical diagnoses and food testing. In these fields, rapid, easy-to-use, and cost-efficient PCR chips are expected to be appeared for providing such testing on-site. In this study, a new autonomous disposable plastic microfluidic PCR chip was created, and was utilized for quantitative detection of pathogenic microorganisms. To control the capillary flow of the following solution in the PCR microchannel, a driving microchannel was newly designed behind the PCR microchannel. This allowed the effective PCR by simply dropping the PCR solution onto the inlet without any external pumps. In order to achieve disposability, injection-molded cyclo-olefin polymer (COP) of a cost-competitive plastic was used for the PCR chip. We discovered that coating the microchannel walls with non-ionic surfactant produced a suitable hydrophilic surface for driving the capillary flow through the 1250-mm long microchannel. As a result, quantitative real-time PCR with the lowest initial concentration of human, Escherichia coli (E. coli), and pathogenic E. coli O157 genomic DNA of 4, 0.0019, 0.031 pg/μl, respectively, was successfully achieved in less than 18 min. Our results indicate that the platform presented in this study provided a rapid, easy-to-use, and low-cost real-time PCR system that could be potentially used for on-site gene testing.

  5. Quantitative PCR and Digital PCR for Detection of Ascaris lumbricoides Eggs in Reclaimed Water

    Directory of Open Access Journals (Sweden)

    Lucrecia Acosta Soto

    2017-01-01

    Full Text Available The reuse of reclaimed water from wastewater depuration is a widespread and necessary practice in many areas around the world and must be accompanied by adequate and continuous quality control. Ascaris lumbricoides is one of the soil-transmitted helminths (STH with risk for humans due to its high infectivity and an important determinant of transmission is the inadequacy of water supplies and sanitation. The World Health Organization (WHO recommends a limit equal to or lower than one parasitic helminth egg per liter, to reuse reclaimed water for unrestricted irrigation. We present two new protocols of DNA extraction from large volumes of reclaimed water. Quantitative PCR (qPCR and digital PCR (dPCR were able to detect low amounts of A. lumbricoides eggs. By using the first extraction protocol, which processes 500 mL of reclaimed water, qPCR can detect DNA concentrations as low as one A. lumbricoides egg equivalent, while dPCR can detect DNA concentrations as low as five A. lumbricoides egg equivalents. By using the second protocol, which processes 10 L of reclaimed water, qPCR was able to detect DNA concentrations equivalent to 20 A. lumbricoides eggs. This fact indicated the importance of developing new methodologies to detect helminth eggs with higher sensitivity and precision avoiding possible human infection risks.

  6. Quantitative PCR for detection of the OT-1 transgene

    Directory of Open Access Journals (Sweden)

    Crispe Nicholas I

    2005-08-01

    Full Text Available Abstract Background Transgenic TCR mice are often used experimentally as a source of T cells of a defined specificity. One of the most widely used transgenic TCR models is the OT-1 transgenic mouse in which the CD8+ T cells express a TCR specific for the SIINFEKL peptide of ovalbumin presented on kb. Although OT-1 CD8+ can be used in a variety of different experimental settings, we principally employ adoptive transfer and peptide-driven expansion of OT-1 cells in order to explore the distribution and fate of these antigen-specific OT-1 T cells. We set out to develop a quantitative PCR assay for OT-1 cells in order to assess the distribution of OT-1 CD8+ T cells in tissues that are either intrinsically difficult to dissociate for flow cytometric analysis or rendered incompatible with flow cytometric analysis through freezing or fixation. Results We show excellent correlation between flow cytometric assessment of OT-1 cells and OT-1 signal by qPCR assays in cell dilutions as well as in in vivo adoptive transfer experiments. We also demonstrate that qPCR can be performed from archival formalin-fixed paraffin-embedded tissue sections. In addition, the non-quantitative PCR using the OT-1-specific primers without the real-time probe is a valuable tool for OT-1 genotyping, obviating the need for peripheral blood collection and subsequent flow cytometric analysis. Conclusion An OT-1 specific qPCR assay has been developed to quantify adoptively transferred OT-1 cells. OT-1 qPCR to determine cell signal is a valuable adjunct to the standard flow cytometric analysis of OT-1 cell number, particularly in experimental settings where tissue disaggregation is not desirable or in tissues which are not readily disassociated

  7. Quantitative detection and differentiation of free-living amoeba species using SYBR green-based real-time PCR melting curve analysis.

    Science.gov (United States)

    Behets, Jonas; Declerck, Priscilla; Delaedt, Yasmine; Verelst, Lieve; Ollevier, Frans

    2006-12-01

    Real-time polymerase chain reaction melting curve analysis (MCA) allows differentiation of several free-living amoebae species. Distinctive characteristics were found for Naegleria fowleri, N. lovaniensis, N. australiensis, N. gruberi, Hartmanella vermiformis, and Willaertia magna. Species specificity of the amplicons was confirmed using agarose gel electrophoresis and sequence-based approaches. Amplification efficiency ranged from 91% to 98%, indicating the quantitative potential of the assay. This MCA approach can be used for quantitative detection of free-living amoebae after cultivation but also as a culture-independent detection method.

  8. Analysis of reference gene expression for real-time PCR based on relative quantitation and dual spike-in strategy in the silkworm Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    Ran Peng; Yuanfen Zhai; Hua Ding; Tianyuan Di; Ting Zhang; Bing Li; Weide Shen; Zhengguo Wei

    2012-01-01

    In general,for real-time quantitative polymerase chain reaction (qPCR),normalization strategies use a reference gene as a control and to avoid the introduction of experi-mental errors expression of this gene should not vary in response to changing conditions.However,the expression of many reference genes has been reported to vary consid-erably and,without appropriate normalization,the expression profile of a target gene can be misinterpreted.In this study,the expression levels of seven commonly used reference genes (ACT,GAPDH,28srRNA,RPL3,α-tubulin,UBC,and TBP) were detected at different development time points and in response to treatment with 20-hydroxyecdysone (20E) and with rntin.The expression stability was analyzed using geNorm and NormFinder software.Significant variations were found among normal tissues and between experimentally treated tissues.The dual spike-in strategy also revealed significant variations of the expression levels of the reference genes among normal tissues and between experimentally treated tissues.Glutathione-S-transferase sigma 1 (GSTs1),which has a high expression level in fat body and is related to the mechanism of resistance,was used as a target gene to validate the feasibility and difference of these two approaches.

  9. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR.

    Science.gov (United States)

    Tsao, Hsiang-Wei; Michinaka, Atsuko; Yen, Hung-Kai; Giglio, Steven; Hobson, Peter; Monis, Paul; Lin, Tsair-Fuh

    2014-02-01

    Geosmin is one of the most commonly detected off-flavor chemicals present in reservoirs and drinking water systems. Quantitative real-time PCR (qPCR) is useful for quantifying geosmin-producers by focusing on the gene encoding geosmin synthase, which is responsible for geosmin synthesis. In this study, several primers and probes were designed and evaluated to detect the geosmin synthase gene in cyanobacteria. The specificity of primer and probe sets was tested using 21 strains of laboratory cultured cyanobacteria isolated from surface waters in Australia (18) and Taiwan (2), including 6 strains with geosmin producing ability. The results showed that the primers designed in this study could successfully detect all geosmin producing strains tested. The selected primers were used in a qPCR assay, and the calibration curves were linear from 5 × 10(1) to 5 × 10(5) copies mL(-1), with a high correlation coefficient (R(2) = 0.999). This method was then applied to analyze samples taken from Myponga Reservoir, South Australia, during a cyanobacterial bloom event. The results showed good correlations between qPCR techniques and traditional methods, including cell counts determined by microscopy and geosmin concentration measured using gas chromatography (GC) coupled with a mass selective detector (MSD). Results demonstrate that qPCR could be used for tracking geosmin-producing cyanobacteria in drinking water reservoirs. The qPCR assay may provide water utilities with the ability to properly characterize a taste and odor episode and choose appropriate management and treatment options.

  10. Application of Legionella pneumophila-specific quantitative real-time PCR combined with direct amplification and sequence-based typing in the diagnosis and epidemiological investigation of Legionnaires' disease.

    Science.gov (United States)

    Mentasti, M; Fry, N K; Afshar, B; Palepou-Foxley, C; Naik, F C; Harrison, T G

    2012-08-01

    The detection of Legionella pneumophila DNA in clinical specimens using quantitative real-time polymerase chain reaction (qPCR) combined with direct sequence-based typing (SBT) offers rapid confirmation and timely intervention in the investigation of cases of Legionnaires' disease (LD). We assessed the utility of a specific L. pneumophila qPCR assay targeting the macrophage infectivity potentiator (mip) gene and internal process control with three clinical specimen types from confirmed LD cases. The assay was completely specific for L. pneumophila, as demonstrated by positive results for 39/39 strains from all subspecies and 16 serogroups. No cross-reaction was observed with any of the 54 Legionella non-pneumophila (0/69 strains) or 21 non-Legionella (0/58 strains). All L. pneumophila culture-positive respiratory samples (81/81) were qPCR-positive. Of 80 culture-negative samples tested, 47 (58.8%) were qPCR-positive and none were inhibitory. PCR was significantly more sensitive than culture for samples taken ≤ 2 days of hospitalisation (94.7% vs. 79.6%), with the difference being even more marked for samples taken between 3 and 14 days (79.3% vs. 47.8%). Overall, the sensitivity of the qPCR was ∼30% greater than that of culture and direct typing on culture-negative PCR-positive samples resulted in full 7-allele profiles from 23/46, 5 to 6 alleles from 8/46 and ≥ 1 allele from 43/46 strains.

  11. An Improved Quantitative Real-Time PCR Assay for the Enumeration of Heterosigma akashiwo (Raphidophyceae) Cysts Using a DNA Debris Removal Method and a Cyst-Based Standard Curve.

    Science.gov (United States)

    Kim, Joo-Hwan; Kim, Jin Ho; Wang, Pengbin; Park, Bum Soo; Han, Myung-Soo

    2016-01-01

    The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p cysts in sediment samples.

  12. Molecular diagnosis of sex chromosome aneuploidy using quantitative PCR.

    Science.gov (United States)

    Mutter, G L; Pomponio, R J

    1991-08-11

    Numeric sex chromosome imbalances, or aneuploidies, are present in several pathological conditions including tumors, abnormal gestations, and clinical syndromes. Here we report a method to identify karyotypic imbalances of the X and Y chromosomes using the polymerase chain reaction (PCR). The polymerase chain reaction was used to quantitatively coamplify the sex chromosome linked genes ZFX and ZFY. Quantitation was facilitated by 1) use of a single primer set which recognizes both templates, 2) incorporation of radiolabelled nucleotides during amplification, and 3) use of amplification conditions which minimize heteroduplex formation. High accuracy of the method was confirmed by concordance with values expected from titrated male and female DNAs and cells from patients with sex chromosome aneuploidy. This approach provides a rapid and reproducible method of evaluating relative abundance of allelic genes, and might be applied to detection of autosomal aneuploidy.

  13. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    Directory of Open Access Journals (Sweden)

    Martin Stofanko

    2013-01-01

    Full Text Available Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations.

  14. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia

    DEFF Research Database (Denmark)

    Jamal, Syed M.; Belsham, Graham

    2015-01-01

    . Due to the heterogeneity of FMD viruses (FMDVs) in different parts of the world, region specific diagnostic tests are required. In this study, hydrolysableprobe-based real time reverse transcription quantitative polymerase chain reaction (RTqPCR) assays were developed for specific detection......Asia,A-Iran05 and Asia-1 (Group-II and Group-VII (Sindh-08)). In addition, field samples from Iran and Bulgaria, containing FMDVs belonging to the O-PanAsiaANT-10 subline-agewere also tested. Each of the three primer/probe sets was designed to be specific for just one of the serotypes O, A and Asia-1 of FMDV...

  15. A Rapid and Sensitive One Step-SYBR Green Based Semi Quantitative Real Time RT-PCR for the Detection of peste des petits ruminants Virus in the Clinical Samples

    Institute of Scientific and Technical Information of China (English)

    Vinayagamurthy Balamurugan; Arnab Sen; Gnanavel Venkatesan; Vinita Yadav; Vandna Bhanot; Veerakyathappa Bhanuprakash; Raj Kumar Singh

    2012-01-01

    A sensitive and rapid single step real time (rt) RT-PCR was standardized using one-step Brilliant SYBR Green kit(R) for detection and semi-quantitation of peste des petitis ruminants virus (PPRV) using the virus RNA and matrix (M) protein gene-specific primers and compared with established conventional RT-PCR and TaqMan RT-PCR.The assay amplifies a 124 bp fragment of the PPRV M gene with Tm of 78.28 to 78.50.The assay was linear within a range of 50 ng to 0.5 fg total virus RNA with a detection limit (sensitivity) of 0.5 fg.Based on the serial dilution of the live-attenuated PPR vaccine virus,the detection limit was ~0.0001 cell culture infectious dose 50% units (TCID50).Additionally,swab materials spiked with known titre of vaccine virus were equally well detected in the assay.The standardized rt RT-PCR was easily employed for the detection of PPRV nucleic acid directly in the field and experimental clinical samples.The assay detected the PPRV nucleic acid as early as 3 day post infection (dpi) and up to 20 dpi in swab materials from the experimental samples.The assay was rapid and more sensitive than TaqMan and conventional RT-PCR in the detection of PPRV nucleic acid from the PPR suspected clinical samples of sheep and goats.Therefore,the established,simplified SYBR green rt RT-PCR is an alternative test to the already existing various diagnostic assays and could be useful for rapid clinical diagnosis with advantage in reducing risk of contamination.

  16. Competitive PCR-ELISA protocols for the quantitative and the standardized detection of viral genomes.

    Science.gov (United States)

    Musiani, Monica; Gallinella, Giorgio; Venturoli, Simona; Zerbini, Marialuisa

    2007-01-01

    Competitive PCR-ELISA combines competitive PCR with an ELISA to allow quantitative detection of PCR products. It is based on the inclusion of an internal standard competitor molecule that is designed to differ from the target by a short sequence of nucleotides. Once such a competitor molecule has been designed and constructed, target and competitor sequences are concurrently PCR-amplified, before hybridization to two different specific probes and determination of their respective OD values by ELISA. The target can be quantified in relation to a titration curve of different dilutions of the competitor. The competitor can alternatively be used at a unique optimal concentration to allow for standardized detection of the target sequence. PCR-ELISA can be performed in 1 d in laboratories without access to a real-time PCR thermocycler. This technique is applied in diagnostics to monitor the course of infections and drug efficacy. Competitive PCR-ELISA protocols for the quantitative and for the standardized detection of parvovirus B19 are detailed here as an example of the technique.

  17. Processing of gene expression data generated by quantitative real-time RT-PCR.

    Science.gov (United States)

    Muller, Patrick Y; Janovjak, Harald; Miserez, André R; Dobbie, Zuzana

    2002-06-01

    Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.

  18. Serious overestimation in quantitative PCR by circular (supercoiled plasmid standard: microalgal pcna as the model gene.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available Quantitative real-time PCR (qPCR has become a gold standard for the quantification of nucleic acids and microorganism abundances, in which plasmid DNA carrying the target genes are most commonly used as the standard. A recent study showed that supercoiled circular confirmation of DNA appeared to suppress PCR amplification. However, to what extent to which different structural types of DNA (circular versus linear used as the standard may affect the quantification accuracy has not been evaluated. In this study, we quantitatively compared qPCR accuracies based on circular plasmid (mostly in supercoiled form and linear DNA standards (linearized plasmid DNA or PCR amplicons, using proliferating cell nuclear gene (pcna, the ubiquitous eukaryotic gene, in five marine microalgae as a model gene. We observed that PCR using circular plasmids as template gave 2.65-4.38 more of the threshold cycle number than did equimolar linear standards. While the documented genome sequence of the diatom Thalassiosira pseudonana shows a single copy of pcna, qPCR using the circular plasmid as standard yielded an estimate of 7.77 copies of pcna per genome whereas that using the linear standard gave 1.02 copies per genome. We conclude that circular plasmid DNA is unsuitable as a standard, and linear DNA should be used instead, in absolute qPCR. The serious overestimation by the circular plasmid standard is likely due to the undetected lower efficiency of its amplification in the early stage of PCR when the supercoiled plasmid is the dominant template.

  19. Detection and quantitation of two cucurbit criniviruses in mixed infection by real-time RT-PCR.

    Science.gov (United States)

    Abrahamian, Peter E; Seblani, Rewa; Sobh, Hana; Abou-Jawdah, Yusuf

    2013-11-01

    Cucurbit chlorotic yellows virus (CCYV) and Cucurbit yellow stunting disorder virus (CYSDV) are whitefly-transmitted criniviruses infecting cucurbit crops inducing similar symptoms. Single and multiplex RT-PCR protocols were developed and evaluated on cucurbit samples collected from commercial greenhouses. Primers and probes were designed from the highly conserved heat shock protein 70 homolog (Hsp70h) gene. Conventional RT-PCR and multiplex RT-PCR assays showed high specificity and suitability for routine screening. TaqMan-based quantitative real-time RT-PCR (RT-qPCR) protocols were also developed for the detection and quantitation of both viruses occurring in single or mixed infection. The assays proved to be highly specific with no cross amplification. RT-qPCR assays showed a 100-1000 times improved sensitivity over conventional RT-PCR. Virus titers in mixed infections were compared to singly infected plants by RT-qPCR. CYSDV and CCYV titers decreased in double infected plants. This paper reports highly specific conventional RT-PCR and quantitative real-time PCR assays for detection, quantitation and differentiation between two closely related cucurbit-infecting criniviruses.

  20. Development of a Fluorescence Quantitative PCR Method for Detection of Marteilia refringens in Shellfish

    Institute of Scientific and Technical Information of China (English)

    Liji XIE; Zhixun XIE; Yaoshan PANG; Jiabo LIU; Xianwen DENG; Zhiqin XIE

    2012-01-01

    Abstract [Objective] This paper was to develop a fluorescence quantitative PCR method for detection of M. refringens in shellfish. [Method] A pair of primers and a TaqMan probe were designed and synthesized according to the conserved gene se- quences of M. refringens in GenBank, so as to develop a fluorescence quantitative PCR method for detection of M. refringens. The developed fluorescence quantitative PCR method was compared with conventional PCR detection. [Result] The fluores- cence quantitative PCR could detect 40 template copies of plasmid DNA, and its sensitivity was 100 times higher than the conventional PCR. The detection results of Perkinsus sp, Haplosporidium sp, Aeromonas hydrophila, Pseudomonas fluorescens, Vibrio parahaemolyticu, Vibrio alginolyticu, Vibrio rluvialis and Vibrio mimicus were negtive. [Conclusion] The fluorescence quantitative PCR method for M. refringens es- tablished in this paper is specific, sensitive, rapid and quantitative with good re- peatability, which can be used for clinical detection of M. refringens infection.

  1. Critical appraisal of quantitative PCR results in colorectal cancer research: can we rely on published qPCR results?

    Science.gov (United States)

    Dijkstra, J R; van Kempen, L C; Nagtegaal, I D; Bustin, S A

    2014-06-01

    The use of real-time quantitative polymerase chain reaction (qPCR) in cancer research has become ubiquitous. The relative simplicity of qPCR experiments, which deliver fast and cost-effective results, means that each year an increasing number of papers utilizing this technique are being published. But how reliable are the published results? Since the validity of gene expression data is greatly dependent on appropriate normalisation to compensate for sample-to-sample and run-to-run variation, we have evaluated the adequacy of normalisation procedures in qPCR-based experiments. Consequently, we assessed all colorectal cancer publications that made use of qPCR from 2006 until August 2013 for the number of reference genes used and whether they had been validated. Using even these minimal evaluation criteria, the validity of only three percent (6/179) of the publications can be adequately assessed. We describe common errors, and conclude that the current state of reporting on qPCR in colorectal cancer research is disquieting. Extrapolated to the study of cancer in general, it is clear that the majority of studies using qPCR cannot be reliably assessed and that at best, the results of these studies may or may not be valid and at worst, pervasive incorrect normalisation is resulting in the wholesale publication of incorrect conclusions. This survey demonstrates that the existence of guidelines, such as MIQE, is necessary but not sufficient to address this problem and suggests that the scientific community should examine its responsibility and be aware of the implications of these findings for current and future research.

  2. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system

    Directory of Open Access Journals (Sweden)

    He Junkun

    2012-06-01

    Full Text Available Abstract Background The accurate quantification of antigens at low concentrations over a wide dynamic range is needed for identifying biomarkers associated with disease and detecting protein interactions in high-throughput microarrays used in proteomics. Here we report the development of an ultrasensitive quantitative assay format called immunoliposome polymerase chain reaction (ILPCR that fulfills these requirements. This method uses a liposome, with reporter DNA encapsulated inside and biotin-labeled polyethylene glycol (PEG phospholipid conjugates incorporated into the outer surface of the liposome, as a detection reagent. The antigenic target is immobilized in the well of a microplate by a capture antibody and the liposome detection reagent is then coupled to a biotin-labeled second antibody through a NeutrAvidin bridge. The liposome is ruptured to release the reporter DNA, which serves as a surrogate to quantify the protein target using real-time PCR. Results A liposome detection reagent was prepared, which consisted of a population of liposomes ~120 nm in diameter with each liposome possessing ~800 accessible biotin receptors and ~220 encapsulated reporters. This liposome detection reagent was used in an assay to quantify the concentration of carcinoembryonic antigen (CEA in human serum. This ILPCR assay exhibited a linear dose–response curve from 10-10 M to 10-16 M CEA. Within this range the assay coefficient of variance was Conclusions The ILPCR assay has several advantages over other immuno-PCR methods. The reporter DNA and biotin-labeled PEG phospholipids spontaneously incorporate into the liposomes as they form, simplifying preparation of the detection reagent. Encapsulation of the reporter inside the liposomes allows nonspecific DNA in the assay medium to be degraded with DNase I prior to quantification of the encapsulated reporter by PCR, which reduces false-positive results and improves quantitative accuracy. The ability to

  3. Selective quantification of viable Escherichia coli bacteria in biosolids by quantitative PCR with propidium monoazide modification.

    Science.gov (United States)

    Taskin, Bilgin; Gozen, Ayse Gul; Duran, Metin

    2011-07-01

    Quantitative differentiation of live cells in biosolids samples, without the use of culturing-based approaches, is highly critical from a public health risk perspective, as recent studies have shown significant regrowth and reactivation of indicator organisms. Persistence of DNA in the environment after cell death in the range of days to weeks limits the application of DNA-based approaches as a measure of live cell density. Using selective nucleic acid intercalating dyes like ethidium monoazide (EMA) and propidium monoazide (PMA) is one of the alternative approaches to detecting and quantifying viable cells by quantitative PCR. These compounds have the ability to penetrate only into dead cells with compromised membrane integrity and intercalate with DNA via their photoinducible azide groups and in turn inhibit DNA amplification during PCRs. PMA has been successfully used in different studies and microorganisms, but it has not been evaluated sufficiently for complex environmental samples such as biosolids. In this study, experiments were performed with Escherichia coli ATCC 25922 as the model organism and the uidA gene as the target sequence using real-time PCR via the absolute quantification method. Experiments with the known quantities of live and dead cell mixtures showed that PMA treatment inhibits PCR amplification from dead cells with over 99% efficiency. The results also indicated that PMA-modified quantitative PCR could be successfully applied to biosolids when the total suspended solids (TSS) concentration is at or below 2,000 mg·liter(-1).

  4. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data

    NARCIS (Netherlands)

    Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.H.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.B.; Moorman, A.F.M.

    2009-01-01

    Despite the central role of quantitative PCR (qPCR) in the quantification of mRNA transcripts, most analyses of qPCR data are still delegated to the software that comes with the qPCR apparatus. This is especially true for the handling of the fluorescence baseline. This article shows that baseline es

  5. Critical appraisal of quantitative PCR results in colorectal cancer research: Can we rely on published qPCR results?

    NARCIS (Netherlands)

    Dijkstra, J.R.; Kempen, L.C.L.T. van; Nagtegaal, I.D.; Bustin, S.A.

    2014-01-01

    The use of real-time quantitative polymerase chain reaction (qPCR) in cancer research has become ubiquitous. The relative simplicity of qPCR experiments, which deliver fast and cost-effective results, means that each year an increasing number of papers utilizing this technique are being published. B

  6. Correlation between quantitative PCR and Culture-Based methods for measuring Enterococcus spp. over various temporal scales at three California marine beaches

    Science.gov (United States)

    Several studies have examined how fecal indicator bacteria (FIB) measurements compare between quantitative polymerase chain reaction (QPCR) and the culture methods it is intended to replace. Here we extend those studies by examining the stability of that relationship within a be...

  7. Using the Taguchi method for rapid quantitative PCR optimization with SYBR Green I.

    Science.gov (United States)

    Thanakiatkrai, Phuvadol; Welch, Lindsey

    2012-01-01

    Here, we applied the Taguchi method, an engineering optimization process, to successfully determine the optimal conditions for three SYBR Green I-based quantitative PCR assays. This method balanced the effects of all factors and their associated levels by using an orthogonal array rather than a factorial array. Instead of running 27 experiments with the conventional factorial method, the Taguchi method achieved the same optimal conditions using only nine experiments, saving valuable resources.

  8. Culture-independent identification and quantification of Gallibacterium anatis (G. anatis) by real-time quantitative PCR

    DEFF Research Database (Denmark)

    Wang, Chong; Robles, Francisco; Ramirez, Saul

    2016-01-01

    species of the families Pasteurellaceae, Enterobacteriaceae and Flavobacteriaceae. Regarding specificity none of non-G. anatis strains tested positive with the proposed assay. To test and compare the qPCR method's ability to detect G. anatis from field samples, the sensitivity was compared to a previously......-time quantitative PCR (qPCR) method allowing species-specific identification and quantification of G. anatis. A G. anatis specific DNA sequence was identified in the gyrase subunit B gene (gyrB) and used to design a TaqMan probe and corresponding primers. The specificity of the assay was tested on 52 bacterial...... published conventional PCR method and culture-based identification, respectively. The detection rates were 97%, 78% and 34% for the current qPCR, the conventional PCR and the culture-based identification method, respectively. The qPCR assay was able to detect the gene gyrB in serial dilutions of 10...

  9. [Research progress of real-time quantitative PCR method for group A rotavirus detection].

    Science.gov (United States)

    Guo, Yan-Qing; Li, Dan-Di; Duan, Zhao-Jun

    2013-11-01

    Group A rotavirus is one of the most significant etiological agents which causes acute gastroenteritis among infants and young children worldwide. So far, several method which includes electron microscopy (EM), enzyme immunoassay (EIA), reverse transcription-polymerase chain reaction (RT-PCR)and Real-time Quantitative PCR has been established for the detection of rotavirus. Compared with other methods, Real-time quantitative PCR have advantages in specificity, sensitivity, genotyping and quantitative accuracy. This article shows a overview of the application of real-time quantitative PCR technique to detecte group A rotavirus.

  10. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR

    Directory of Open Access Journals (Sweden)

    López-Revilla Rubén

    2010-05-01

    Full Text Available Abstract Background We have developed an ultrasensitive method based on conventional PCR preamplification followed by nested amplification through real time PCR (qPCR in the presence of the DNA intercalating agent EvaGreen. Results Amplification mixtures calibrated with a known number of pHV101 copies carrying a 645 base pair (bp-long insert of the human papillomavirus type 16 (HPV16 E6 oncogene were used to generate the E6-1 amplicon of 645 bp by conventional PCR and then the E6-2 amplicon of 237 bp by nested qPCR. Direct and nested qPCR mixtures for E6-2 amplification corresponding to 2.5 × 102-2.5 × 106 initial pHV101 copies had threshold cycle (Ct values in the ranges of 18.7-29.0 and 10.0-25.0, respectively. The Ct of qPCR mixtures prepared with 1/50 volumes of preamplified mixtures containing 50 ng of DNA of the SiHa cell line (derived from an invasive cervical cancer with one HPV16 genome per cell was 19.9. Thermal fluorescence extinction profiles of E6-2 amplicons generated from pHV101 and SiHa DNA were identical, with a peak at 85.5°C. Conclusions Our method based on conventional preamplification for 15 cycles increased 10,750 times the sensitivity of nested qPCR for the quantitation of the E6 viral oncogene and confirmed that the SiHa cell line contains one E6-HPV16 copy per cell.

  11. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    Science.gov (United States)

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.

  12. Is quantitative PCR for the pneumolysin (ply) gene useful for detection of pneumococcal lower respiratory tract infection?

    Science.gov (United States)

    Abdeldaim, G; Herrmann, B; Korsgaard, J; Olcén, P; Blomberg, J; Strålin, K

    2009-06-01

    The pneumolysin (ply) gene is widely used as a target in PCR assays for Streptococcus pneumoniae in respiratory secretions. However, false-positive results with conventional ply-based PCR have been reported. The aim here was to study the performance of a quantitative ply-based PCR for the identification of pneumococcal lower respiratory tract infection (LRTI). In a prospective study, fibreoptic bronchoscopy was performed in 156 hospitalized adult patients with LRTI and 31 controls who underwent bronchoscopy because of suspicion of malignancy. Among the LRTI patients and controls, the quantitative ply-based PCR applied to bronchoalveolar lavage (BAL) fluid was positive at >or=10(3) genome copies/mL in 61% and 71% of the subjects, at >or=10(5) genome copies/mL in 40% and 58% of the subjects, and at >or=10(7) genome copies/mL in 15% and 3.2% of the subjects, respectively. Using BAL fluid culture, blood culture, and/or a urinary antigen test, S. pneumoniae was identified in 19 LRTI patients. As compared with these diagnostic methods used in combination, quantitative ply-based PCR showed sensitivities and specificities of 89% and 43% at a cut-off of 10(3) genome copies/mL, of 84% and 66% at a cut-off of 10(5) genome copies/mL, and of 53% and 90% at a cut-off of 10(7) genome copies/mL, respectively. In conclusion, a high cut-off with the quantitative ply-based PCR was required to reach acceptable specificity. However, as a high cut-off resulted in low sensitivity, quantitative ply-based PCR does not appear to be clinically useful. Quantitative PCR methods for S. pneumoniae using alternative gene targets should be evaluated.

  13. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    Science.gov (United States)

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-05-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.

  14. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs.

    Science.gov (United States)

    Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis.

  15. Quantitative PCR analysis of salivary pathogen burden in periodontitis.

    Science.gov (United States)

    Salminen, Aino; Kopra, K A Elisa; Hyvärinen, Kati; Paju, Susanna; Mäntylä, Päivi; Buhlin, Kåre; Nieminen, Markku S; Sinisalo, Juha; Pussinen, Pirkko J

    2015-01-01

    Our aim was to investigate the value of salivary concentrations of four major periodontal pathogens and their combination in diagnostics of periodontitis. The Parogene study included 462 dentate subjects (mean age 62.9 ± 9.2 years) with coronary artery disease (CAD) diagnosis who underwent an extensive clinical and radiographic oral examination. Salivary levels of four major periodontal bacteria were measured by quantitative real-time PCR (qPCR). Median salivary concentrations of Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, as well as the sum of the concentrations of the four bacteria, were higher in subjects with moderate to severe periodontitis compared to subjects with no to mild periodontitis. Median salivary Aggregatibacter actinomycetemcomitans concentrations did not differ significantly between the subjects with no to mild periodontitis and subjects with moderate to severe periodontitis. In logistic regression analysis adjusted for age, gender, diabetes, and the number of teeth and implants, high salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia were significantly associated with moderate to severe periodontitis. When looking at different clinical and radiographic parameters of periodontitis, high concentrations of P. gingivalis and T. forsythia were significantly associated with the number of 4-5 mm periodontal pockets, ≥6 mm pockets, and alveolar bone loss (ABL). High level of T. forsythia was associated also with bleeding on probing (BOP). The combination of the four bacteria, i.e., the bacterial burden index, was associated with moderate to severe periodontitis with an odds ratio (OR) of 2.40 (95% CI 1.39-4.13). When A. actinomycetemcomitans was excluded from the combination of the bacteria, the OR was improved to 2.61 (95% CI 1.51-4.52). The highest OR 3.59 (95% CI 1.94-6.63) was achieved when P. intermedia was further excluded from the combination and only the levels of P. gingivalis and T

  16. Determination of PCR efficiency in chelex-100 purified clinical samples and comparison of real-time quantitative PCR and conventional PCR for detection of Chlamydia pneumoniae

    Directory of Open Access Journals (Sweden)

    Jensen Jørgen

    2002-07-01

    Full Text Available Abstract Background Chlamydia pneumoniae infection has been detected by serological methods, but PCR is gaining more interest. A number of different PCR assays have been developed and some are used in combination with serology for diagnosis. Real-time PCR could be an attractive new PCR method; therefore it must be evaluated and compared to conventional PCR methods. Results We compared the performance of a newly developed real-time PCR with a conventional PCR method for detection of C. pneumoniae. The PCR methods were tested on reference samples containing C. pneumoniae DNA and on 136 nasopharyngeal samples from patients with a chronic cough. We found the same detection limit for the two methods and that clinical performance was equal for the real-time PCR and for the conventional PCR method, although only three samples tested positive. To investigate whether the low prevalence of C. pneumoniae among patients with a chronic cough was caused by suboptimal PCR efficiency in the samples, PCR efficiency was determined based on the real-time PCR. Seventeen of twenty randomly selected clinical samples had a similar PCR efficiency to samples containing pure genomic C. pneumoniae DNA. Conclusions These results indicate that the performance of real-time PCR is comparable to that of conventional PCR, but that needs to be confirmed further. Real-time PCR can be used to investigate the PCR efficiency which gives a rough estimate of how well the real-time PCR assay works in a specific sample type. Suboptimal PCR efficiency of PCR is not a likely explanation for the low positivity rate of C. pneumoniae in patients with a chronic cough.

  17. Quantitative Detection of Respiratory Chlamydia pneumoniae Infection by Real-Time PCR

    OpenAIRE

    Kuoppa, Yvonne; Boman, Jens; Scott, Lena; Kumlin, Urban; Eriksson, Iréne; Allard, Annika

    2002-01-01

    Real-time PCR was evaluated as a quantitative diagnostic method for Chlamydia pneumoniae infection using different respiratory samples. Real-time PCR had efficiency equal to or better than that of nested touchdown PCR. This study confirmed sputum as the best sampling material to detect an ongoing C. pneumoniae infection.

  18. Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR.

    Science.gov (United States)

    Alanio, Alexandre; Sturny-Leclère, Aude; Benabou, Marion; Guigue, Nicolas; Bretagne, Stéphane

    2016-08-01

    Droplet digital PCR (ddPCR) after DNA digestion yielded a 28S rDNA copy number of 61 to 86 copies/genome when testing 10 unrelated Aspergillus fumigatus isolates, higher than with quantitative PCR. Unfortunately, ddPCR after DNA digestion did not improve the sensitivity of our PCR assay when testing serum patients with invasive aspergillosis.

  19. Hygienization by anaerobic digestion: comparison between evaluation by cultivation and quantitative real-time PCR.

    Science.gov (United States)

    Lebuhn, M; Effenberger, M; Garcés, G; Gronauer, A; Wilderer, P A

    2005-01-01

    In order to assess hygienization by anaerobic digestion, a comparison between evaluation by cultivation and quantitative real-time PCR (qPCR) including optimized DNA extraction and quantification was carried out for samples from a full-scale fermenter cascade (F1, mesophilic; F2, thermophilic; F3, mesophilic). The system was highly effective in inactivating (pathogenic) viable microorganisms, except for spore-formers. Conventionally performed cultivation underestimated viable organisms particularly in F2 and F3 by a factor of at least 10 as shown by data from extended incubation times, probably due to the rise of sublethally injured (active but not cultivable) cells. Incubation should hence be extended adequately in incubation-based hygiene monitoring of stressed samples, in order to minimize contamination risks. Although results from qPCR and cultivation agreed for the equilibrated compartments, considerably higher qPCR values were obtained for the fermenters. The difference probably corresponded to DNA copies from decayed cells that had not yet been degraded by the residual microbial activity. An extrapolation from qPCR determination to the quantity of viable organisms is hence not justified for samples that had been exposed to lethal stress.

  20. Quantitative PCR analysis of salivary pathogen burden in periodontitis

    Directory of Open Access Journals (Sweden)

    Aino eSalminen

    2015-10-01

    Full Text Available Our aim was to investigate the value of salivary concentrations of four major periodontal pathogens and their combination in diagnostics of periodontitis. The Parogene study included 462 dentate subjects (mean age 62.9±9.2 years with coronary artery disease diagnosis who underwent an extensive clinical and radiographic oral examination. Salivary levels of four major periodontal bacteria were measured by quantitative real-time PCR. Median salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia, as well as the sum of the concentrations of the four bacteria, were higher in subjects with moderate to severe periodontitis compared to subjects with no to mild periodontitis. Median salivary A. actinomycetemcomitans concentrations did not differ significantly between the subjects with no to mild periodontitis and subjects with moderate to severe periodontitis. In logistic regression analysis adjusted for age, gender, diabetes, and the number of teeth and implants, high salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia were significantly associated with moderate to severe periodontitis. When looking at different clinical and radiographic parameters of periodontitis, high concentrations of P. gingivalis and T. forsythia were significantly associated with the number of 4-5 mm periodontal pockets, ≥ 6 mm pockets, and alveolar bone loss (ABL. High level of T. forsythia was associated also with bleeding on probing (BOP. The combination of the four bacteria, i.e. the bacterial burden index, was associated with moderate to severe periodontitis with an odds ratio (OR of 2.40 (95% CI 1.39–4.13. When A. actinomycetemcomitans was excluded from the combination of the bacteria, the OR was improved to 2.61 (95% CI 1.51–4.52. The highest odds ratio 3.59 (95% CI 1.94–6.63 was achieved when P. intermedia was further excluded from the combination and only the levels of P. gingivalis and T. forsythia were used. Salivary

  1. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    Science.gov (United States)

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  2. Fluorescence Quantitative PCR Detected Infection of Condyloma Acuminatum

    Institute of Scientific and Technical Information of China (English)

    刘伟民; 杨华风; 高丽琴; 刁存英

    2002-01-01

    Objective: Infection of human papillomavirus in condylomaacuminatum (CA) was detected by real time fluorescencequantitative PCR (FQ-PCR) technique. Methods: Specimens of CA-DNA quantification from 94cases were examined by real time FQ-PCR technique and 32cases were compared with the same method after 10-daystreatment. Results: CA-DNA was found in all patients, with an averageof 4.0×106 copies/ul. After 10 days of treatment, the averagewas 2.1×105 copies/ul. There was a significant difference inthe average amount of CA-DNA before and after thetreatment. Conclusion: Real time FQ-PCR is a good method forexamining CA-DNA amount and it can direct the treatment of CA.

  3. Identification of SPRED1 deletions using RT-PCR, multiplex ligation-dependent probe amplification and quantitative PCR.

    Science.gov (United States)

    Spencer, Emily; Davis, Julia; Mikhail, Fady; Fu, Chuanhua; Vijzelaar, Raymon; Zackai, Elaine H; Feret, Holly; Meyn, M Stephen; Shugar, Andrea; Bellus, Gary; Kocsis, Kristina; Kivirikko, Sirpa; Pöyhönen, Minna; Messiaen, Ludwine

    2011-06-01

    Legius syndrome, is a recently identified autosomal dominant disorder caused by loss of function mutations in the SPRED1 gene, with individuals mainly presenting with multiple café-au-lait macules (CALM), freckling and macrocephaly. So far, only SPRED1 point mutations have been identified as the cause of this syndrome. To determine if copy number changes (CNCs) are a cause of Legius syndrome, we have used a Multiplex Ligation-dependent Probe Amplification (MLPA) assay covering all SPRED1 exons in a cohort of 510 NF1-negative patients presenting with multiple CALMs with or without freckling, but no other NF1 diagnostic signs. Four different deletions were identified by MLPA and confirmed by quantitative PCR, reverse transcriptase PCR and/or array CGH: a deletion of exon 1 and the SPRED1 promoter region in a proband and two first-degree relatives; a deletion of the entire SPRED1 gene in a sporadic patient; a deletion of exon 2-6 in a proband and her father; and an ∼6.6 Mb deletion on chromosome 15 that spans SPRED1 in a sporadic patient. Deletions account for ∼10% of the 40 detected SPRED1 mutations in this cohort of 510 individuals. These results indicate the need for dosage analysis to complement sequencing-based SPRED1 mutation analyses.

  4. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    Science.gov (United States)

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  5. Quantitative analysis of food and feed samples with droplet digital PCR.

    Directory of Open Access Journals (Sweden)

    Dany Morisset

    Full Text Available In this study, the applicability of droplet digital PCR (ddPCR for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs. Real-time quantitative polymerase chain reaction (qPCR is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed.

  6. Quantitative analysis of food and feed samples with droplet digital PCR.

    Science.gov (United States)

    Morisset, Dany; Štebih, Dejan; Milavec, Mojca; Gruden, Kristina; Žel, Jana

    2013-01-01

    In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed.

  7. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    Science.gov (United States)

    Riedel, Timothy E.; Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T.; Ebentier, Darcy L.; Byappanahalli, Muruleedhara N.; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B.; Griffith, John F.; Holden, Patricia A.; Shanks, Orin C.; Weisberg, Stephen B.; Jay, Jennifer A.

    2014-01-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  8. TaqMan real-time PCR for detection and quantitation of squash leaf curl virus in cucurbits.

    Science.gov (United States)

    Kuan, Cheng-Ping; Huang, Hung-Chang; Chang, Chia-Che; Lu, Yi-Lin

    2012-02-01

    A real-time PCR assay based on the TaqMan chemistry was developed for reliable detection and quantitation of the squash leaf curl virus (SLCV) in melon and squash plants. This method was highly specific to SLCV and it was about one thousand times more sensitive than the conventional PCR method. The protocol of the real-time PCR established in this study enabled detection of as little as 10(2) copies of SLCV DNA with CP gene as the target. This TaqMan real-time PCR assay for detection and quantitation of SLCV would be a useful tool for application in quarantine and certification of SLCV in cucurbits as well as in the research of disease resistance and epidemiology.

  9. A systematic comparison of quantitative high-resolution DNA methylation analysis and methylation-specific PCR

    Science.gov (United States)

    Claus, Rainer; Wilop, Stefan; Hielscher, Thomas; Sonnet, Miriam; Dahl, Edgar; Galm, Oliver; Jost, Edgar; Plass, Christoph

    2012-01-01

    Assessment of DNA methylation has become a critical factor for the identification, development and application of methylation based biomarkers. Here we describe a systematic comparison of a quantitative high-resolution mass spectrometry-based approach (MassARRAY), pyrosequencing and the broadly used methylation-specific PCR (MSP) technique analyzing clinically relevant epigenetically silenced genes in acute myeloid leukemia (AML). By MassARRAY and pyrosequencing, we identified significant DNA methylation differences at the ID4 gene promoter and in the 5′ region of members of the SFRP gene family in 62 AML patients compared with healthy controls. We found a good correlation between data obtained by MassARRAY and pyrosequencing (correlation coefficient R2 = 0.88). MSP-based assessment of the identical samples showed less pronounced differences between AML patients and controls. By direct comparison of MSP-derived and MassARRAY-based methylation data as well as pyrosequencing, we could determine overestimation of DNA methylation data by MSP. We found sequence-context dependent highly variable cut-off values of quantitative DNA methylation values serving as discriminator for the two MSP methylation categories. Moreover, good agreements between quantitative methods and MSP could not be achieved for all investigated loci. Significant correlation of the quantitative assessment but not of MSP-derived methylation data with clinically important characteristics in our patient cohort demonstrated clinical relevance of quantitative DNA methylation assessment. Taken together, while MSP is still the most commonly applied technique for DNA methylation assessment, our data highlight advantages of quantitative approaches for precise characterization and reliable biomarker use of aberrant DNA methylation in primary patient samples, particularly. PMID:22647397

  10. Quantitative PCR for glucose transporter and tristetraprolin family gene expression in cultured mouse adipocytes and macrophages.

    Science.gov (United States)

    Cao, Heping; Cao, Fangping; Roussel, Anne-Marie; Anderson, Richard A

    2013-12-01

    Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate false-positive signals and that the length of the amplicon affects the intensity of the amplification. Previous results demonstrate that TaqMan assay is more sensitive but generates lower calculated expression levels than SYBR Green assay in quantifying seven mRNAs in tung tree tissues. The objective of this study is to expand the analysis using animal cells. We compared both qPCR assays for quantifying 24 mRNAs including those coding for glucose transporter (Glut) and mRNA-binding protein tristetraprolin (TTP) in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. The results showed that SYBR Green and TaqMan qPCR were reliable for quantitative gene expression in animal cells. This result was supported by validation analysis of Glut and TTP family gene expression. However, SYBR Green qPCR overestimated the expression levels in most of the genes tested. Finally, both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) generated similar gene expression profiles in the mouse cells. These results support the conclusion that both qPCR assays (TaqMan and SYBR Green qPCR) and both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) are reliable for quantitative gene expression analyses in animal cells but SYBR Green qPCR generally overestimates gene expression levels than TaqMan qPCR.

  11. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    Science.gov (United States)

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  12. A new quantitative RT-PCR method for sensitive detection of dengue virus in serum samples.

    Science.gov (United States)

    Sadon, Nadine; Delers, Anne; Jarman, Richard G; Klungthong, Chonticha; Nisalak, Ananda; Gibbons, Robert V; Vassilev, Ventzislav

    2008-10-01

    In order to detect and identify dengue serotypes in serum samples, we developed a single-step quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) assay (referred to as Q-PCR). Sets of primers were selected from the capsid region of the viral genome. Dengue serotypes 1/3 and 2/4 were detected in two separate duplex amplification reactions using specific primers and fluorogenic TaqMan probes. Results obtained with this Q-PCR and the classical nested RT-PCR (N-PCR) assays were compared using a panel of 97 representative human sera collected from patients in Bangkok, Thailand. It is shown that the Q-PCR is a rapid, sensitive and reproducible tool for the detection and quantitation of the four dengue serotypes in clinical samples, and therefore of great interest for diagnostic use or for large cohort studies.

  13. Data-driven normalization strategies for high-throughput quantitative RT-PCR

    Directory of Open Access Journals (Sweden)

    Suzuki Harukazu

    2009-04-01

    Full Text Available Abstract Background High-throughput real-time quantitative reverse transcriptase polymerase chain reaction (qPCR is a widely used technique in experiments where expression patterns of genes are to be profiled. Current stage technology allows the acquisition of profiles for a moderate number of genes (50 to a few thousand, and this number continues to grow. The use of appropriate normalization algorithms for qPCR-based data is therefore a highly important aspect of the data preprocessing pipeline. Results We present and evaluate two data-driven normalization methods that directly correct for technical variation and represent robust alternatives to standard housekeeping gene-based approaches. We evaluated the performance of these methods against a single gene housekeeping gene method and our results suggest that quantile normalization performs best. These methods are implemented in freely-available software as an R package qpcrNorm distributed through the Bioconductor project. Conclusion The utility of the approaches that we describe can be demonstrated most clearly in situations where standard housekeeping genes are regulated by some experimental condition. For large qPCR-based data sets, our approaches represent robust, data-driven strategies for normalization.

  14. Validation of PCR methods for quantitation of genetically modified plants in food.

    Science.gov (United States)

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  15. Inverse PCR and Quantitative PCR as Alternative Methods to Southern Blotting Analysis to Assess Transgene Copy Number and Characterize the Integration Site in Transgenic Woody Plants.

    Science.gov (United States)

    Stefano, Biricolti; Patrizia, Bogani; Matteo, Cerboneschi; Massimo, Gori

    2016-06-01

    One of the major unanswered questions with respect to the commercial use of genetic transformation in woody plants is the stability of the transgene expression over several decades within the same individual. Gene expression is strongly affected by the copy number which has been integrated into the plant genome and by the local DNA features close to the integration sites. Because woody plants cannot be subjected to selfing or backcrossing to modify the transgenic allelic structure without affecting the valuable traits of the cultivar, molecular characterization of the transformation event is therefore crucial. After assessing the transgene copy number of a set of apple transgenic clones with Southern blotting, we describe two alternative methods: the first is based on inverse PCR (i-PCR) and the second on the quantitative PCR (q-PCR). The methods produced comparable results with the exception of the data regarding a high copy number clone, but while the q-PCR-based system is rapid and easily adaptable to high throughput systems, the i-PCR-based method can provide information regarding the transformation event and the characteristics of the sequences flanking the transgenic construct.

  16. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    Science.gov (United States)

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  17. Quantitative real-time RT-PCR and chromogenic in situ hybridization

    DEFF Research Database (Denmark)

    Rosa, Fabíola E; Silveira, Sara M; Silveira, Cássia G T;

    2009-01-01

    . METHODS: To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. RESULTS: The concordance...

  18. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics

    DEFF Research Database (Denmark)

    Busk, Peter Kamp

    2014-01-01

    Background MicroRNAs are small but biologically important RNA molecules. Although different methods can be used for quantification of microRNAs, quantitative PCR is regarded as the reference that is used to validate other methods. Several commercial qPCR assays are available but they often come...... design of primers for the method miR-specific RT-qPCR, which is one of the best performing microRNA qPCR methods available. The algorithm is based on an implementation of the previously published rules for manual design of miR-specific primers with the additional feature of evaluating the propensity...... of formation of secondary structures and primer dimers. Testing of the primers showed that 76 out of 79 primers (96%) worked for quantification of microRNAs by miR-specific RT-qPCR of mammalian RNA samples. This success rate corresponds to the success rate of manual primer design. Furthermore, primers designed...

  19. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR

    NARCIS (Netherlands)

    Kuiper, M.W.; Valster, R.M.; Wullings, B.A.; Boonstra, H.; Smidt, H.; Kooij, van der D.

    2006-01-01

    A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic

  20. Validation and standardization of gene expression data for microarray and real time quantitative PCR using universal external RNA controls

    Science.gov (United States)

    This presentation will introduce newly developed universal external ribonucleic acid (RNA) controls and their applications on different platforms of microarray and quantitative real time polymerase chain reaction (qRT-PCR) including SYBR Green® and TaqMan® probe-based chemistries. Data obtained fro...

  1. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    Science.gov (United States)

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  2. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    Directory of Open Access Journals (Sweden)

    Pengyu Zhu

    2016-03-01

    Full Text Available Digital polymerase chain reaction (PCR has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ, sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO genome samples using commercial digital PCR detection systems.

  3. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    Science.gov (United States)

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-03-18

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.

  4. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    Science.gov (United States)

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems. PMID:26999129

  5. A survey of tools for the analysis of quantitative PCR (qPCR data

    Directory of Open Access Journals (Sweden)

    Stephan Pabinger

    2014-09-01

    Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  6. Legionellosis and Lung Abscesses: Contribution of Legionella Quantitative Real-Time PCR to an Adapted Followup

    Directory of Open Access Journals (Sweden)

    G. Descours

    2013-01-01

    Full Text Available We report a case of severe Legionnaires' disease (LD complicated by a lung abscess in an immunocompetent patient who required ECMO therapy and thoracic surgery. The results of repeated Legionella quantitative real-time PCR performed on both sera and respiratory samples correlated with the LD severity and the poor clinical outcome. Moreover, the PCR allowed for the detection of Legionella DNA in the lung abscess specimen, which was negative when cultured for Legionella. This case report provides a logical basis for further investigations to examine whether the Legionella quantitative PCR could improve the assessment of LD severity and constitute a prognostic marker.

  7. Effect of platform, reference material, and quantification model on enumeration of Enterococcus by quantitative PCR methods

    Science.gov (United States)

    Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an optionn for recreational water quality testi...

  8. Conversion of cDNA differential display results (DDRT-PCR into quantitative transcription profiles

    Directory of Open Access Journals (Sweden)

    Koopmann Birger

    2005-04-01

    Full Text Available Abstract Background Gene expression studies on non-model organisms require open-end strategies for transcription profiling. Gel-based analysis of cDNA fragments allows to detect alterations in gene expression for genes which have neither been sequenced yet nor are available in cDNA libraries. Commonly used protocols for gel-based transcript profiling are cDNA differential display (DDRT-PCR and cDNA-AFLP. Both methods have been used merely as qualitative gene discovery tools so far. Results We developed procedures for the conversion of cDNA Differential Display data into quantitative transcription profiles. Amplified cDNA fragments are separated on a DNA sequencer and detector signals are converted into virtual gel images suitable for semi-automatic analysis. Data processing consists of four steps: (i cDNA bands in lanes corresponding to samples treated with the same primer combination are matched in order to identify fragments originating from the same transcript, (ii intensity of bands is determined by densitometry, (iii densitometric values are normalized, and (iv intensity ratio is calculated for each pair of corresponding bands. Transcription profiles are represented by sets of intensity ratios (control vs. treatment for cDNA fragments defined by primer combination and DNA mobility. We demonstrated the procedure by analyzing DDRT-PCR data on the effect of secondary metabolites of oilseed rape Brassica napus on the transcriptome of the pathogenic fungus Leptosphaeria maculans. Conclusion We developed a data processing procedure for the quantitative analysis of amplified cDNA fragments separated by electrophoresis. The system utilizes common software and provides an open-end alternative to DNA microarray analysis of the transcriptome. It is expected to work equally well with DDRT-PCR and cDNA-AFLP data and be useful particularly in reseach on organisms for which microarray analysis is not available or economical.

  9. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    Science.gov (United States)

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-05

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.

  10. FungiQuant: A broad-coverage fungal quantitative real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Liu Cindy M

    2012-11-01

    Full Text Available Abstract Background Fungal load quantification is a critical component of fungal community analyses. Limitation of current approaches for quantifying the fungal component in the human microbiome suggests the need for new broad-coverage techniques. Methods We analyzed 2,085 18S rRNA gene sequences from the SILVA database for assay design. We generated and quantified plasmid standards using a qPCR-based approach. We evaluated assay coverage against 4,968 sequences and performed assay validation following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE guidelines. Results We designed FungiQuant, a TaqMan® qPCR assay targeting a 351 bp region in the fungal 18S rRNA gene. Our in silico analysis showed that FungiQuant is a perfect sequence match to 90.0% of the 2,617 fungal species analyzed. We showed that FungiQuant’s is 100% sensitive and its amplification efficiencies ranged from 76.3% to 114.5%, with r2-values of >0.99 against the 69 fungal species tested. Additionally, FungiQuant inter- and intra-run coefficients of variance ranged from Conclusions FungiQuant has comprehensive coverage against diverse fungi and is a robust quantification and detection tool for delineating between true fungal detection and non-target human DNA.

  11. Validation of absolute quantitative real-time PCR for the diagnosis of Streptococcus agalactiae in fish.

    Science.gov (United States)

    Sebastião, Fernanda de A; Lemos, Eliana G M; Pilarski, Fabiana

    2015-12-01

    Streptococcus agalactiae (GBS) are Gram-positive cocci responsible for substantial losses in tilapia fish farms in Brazil and worldwide. It causes septicemia, meningoencephalitis and mortality of whole shoals that can occur within 72 h. Thus, diagnostic methods are needed that are rapid, specific and sensitive. In this study, a pair of specific primers for GBS was generated based on the cfb gene sequence and initially evaluated by conventional PCR. The protocols for absolute quantitative real-time PCR (qPCR) were then adapted to validate the technique for the identification and quantification of GBS isolated by real-time detection of amplicons using fluorescence measurements. Finally, an infectivity test was conducted in tilapia infected with GBS strains. Total DNA from the host brain was subjected to the same technique, and the strains were re-isolated to validate Koch's postulates. The assay showed 100% specificity for the other bacterial species evaluated and a sensitivity of 367 gene copies per 20 mg of brain tissue within 4 h, making this test a valuable tool for health monitoring programs.

  12. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    Science.gov (United States)

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity.

  13. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    Science.gov (United States)

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics.

  14. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    Science.gov (United States)

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  15. Design of primers and probes for quantitative real-time PCR methods.

    Science.gov (United States)

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  16. Cytochrome b gene quantitative PCR for diagnosing Plasmodium falciparum infection in travelers.

    Science.gov (United States)

    Farrugia, Cécile; Cabaret, Odile; Botterel, Françoise; Bories, Christian; Foulet, Françoise; Costa, Jean-Marc; Bretagne, Stéphane

    2011-06-01

    A cytochrome b (cytb) gene quantitative PCR (qPCR) assay was developed to diagnose malaria in travelers. First, manual and automated DNA extractions were compared and automated DNA extraction of 400 μl of blood was found to be more efficient. Sensitivity was estimated using the WHO international standard for Plasmodium falciparum DNA and compared to that of a previously published qPCR targeting the 18S rRNA coding gene (18S qPCR). The limit of detection of the cytb qPCR assay was 20 DNA copies (i.e., 1 parasite equivalent) per 400 μl of extracted whole blood and was comparable for the two qPCR assays. Both qPCR assays were used on blood samples from 265 consecutive patients seen for suspicion of malaria. There were no microscopy-positive and qPCR-negative samples. Positive cytb qPCR results were observed for 51 samples, and all but 1 were also 18S qPCR positive. Eight (16%) of these 51 samples were negative by microscopic examination. The 8 cytb qPCR-positive and microscopy-negative samples were from African patients, 3 of whom had received antimalarial drugs. Three non-P. falciparum infections were correctly identified using an additional qPCR assay. The absence of PCR inhibitors was tested for by the use of an internal control of mouse DNA to allow reliable quantification of circulating DNA. The high analytical sensitivity of both qPCR assays combined with automated DNA extraction supports its use as a laboratory tool for diagnosis and parasitemia determination in emergencies. Whether to treat qPCR-positive and microscopy-negative patients remains to be determined.

  17. Faster quantitative real-time PCR protocols may lose sensitivity and show increased variability.

    Science.gov (United States)

    Hilscher, Chelsey; Vahrson, Wolfgang; Dittmer, Dirk P

    2005-11-27

    Quantitative real-time PCR has become the method of choice for measuring mRNA transcription. Recently, fast PCR protocols have been developed as a means to increase assay throughput. Yet it is unclear whether more rapid cycling conditions preserve the original assay performance characteristics. We compared 16 primer sets directed against Epstein-Barr virus (EBV) mRNAs using universal and fast PCR cycling conditions. These primers are of clinical relevance, since they can be used to monitor viral oncogene and drug-resistance gene expression in transplant patients and EBV-associated cancers. While none of the primers failed under fast PCR conditions, the fast PCR protocols performed worse than universal cycling conditions. Fast PCR was associated with a loss of sensitivity as well as higher variability, but not with a loss of specificity or with a higher false positive rate.

  18. Evaluation of propidium monoazide-quantitative PCR to detect viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet disinfection.

    Science.gov (United States)

    Lee, Eun-Sook; Lee, Man-Ho; Kim, Bog-Soon

    2015-10-01

    We evaluated whether propidium monoazide (PMA) combined with real-time quantitative PCR (qPCR) is suitable for detecting viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet (UV) disinfection. PMA-qPCR was effective in determining the viability of M. fortuitum compared with qPCR based on the membrane integrity. However, with a mild chlorine concentration, PMA-qPCR as an alternative method was not applicable due to a large gap between loss of culturability and membrane integrity damage. In ozonation, PMA-qPCR was able to differentiate between viable and injured mycobacteria, and the results were similar to those obtained by the culture method. Interestingly, PMA-qPCR was successful in monitoring the viability after UV disinfection due to the long UV exposure needed to effectively inactivate M. fortuitum. The findings of the present study suggested that the characteristics of disinfectants and the M. fortuitum resistance to disinfectants play critical roles in determining the suitability of PMA-qPCR for evaluating the efficacy of disinfection methods.

  19. RDML: structured language and reporting guidelines for real-time quantitative PCR data

    NARCIS (Netherlands)

    Lefever, S.; Hellemans, J.; Pattyn, F.; Przybylski, D.R.; Taylor, C.; Geurts, R.; Untergasser, A.; Vandesompele, J.

    2009-01-01

    The XML-based Real-Time PCR Data Markup Language (RDML) has been developed by the RDML consortium (http://www.rdml.org) to enable straightforward exchange of qPCR data and related information between qPCR instruments and third party data analysis software, between colleagues and collaborators and be

  20. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR

    OpenAIRE

    Yue-Jiao Ma; Xiao-Hong Sun; Xiao-Yan Xu; Yong Zhao; Ying-Jie Pan; Cheng-An Hwang; Wu, Vivian C. H.

    2015-01-01

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference ...

  1. Rapid semi-automated quantitative multiplex tandem PCR (MT-PCR assays for the differential diagnosis of influenza-like illness

    Directory of Open Access Journals (Sweden)

    Dwyer Dominic E

    2010-05-01

    Full Text Available Abstract Background Influenza A, including avian influenza, is a major public health threat in developed and developing countries. Rapid and accurate detection is a key component of strategies to contain spread of infection, and the efficient diagnosis of influenza-like-illness is essential to protect health infrastructure in the event of a major influenza outbreak. Methods We developed a multiplexed PCR (MT-PCR assay for the simultaneous diagnosis of respiratory viruses causing influenza-like illness, including the specific recognition of influenza A haemagglutinin subtypes H1, H3, and H5. We tested several hundred clinical specimens in two diagnostic reference laboratories and compared the results with standard techniques. Results The sensitivity and specificity of these assays was higher than individual assays based on direct antigen detection and standard PCR against a range of control templates and in several hundred clinical specimens. The MT-PCR assays provided differential diagnoses as well as potentially useful quantitation of virus in clinical samples. Conclusions MT-PCR is a potentially powerful tool for the differential diagnosis of influenza-like illness in the clinical diagnostic laboratory.

  2. Quantitative analysis of the dystrophin gene by real-time PCR

    Directory of Open Access Journals (Sweden)

    Maksimovic Nela

    2012-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD/BMD are severe X-linked neuromuscular disorders caused by mutations in the dystrophin gene. Our aim was to optimize a quantitative real-time PCR method based on SYBR® Green I chemistry for routine diagnostics of DMD/BMD deletion carriers. Twenty female relatives of DMD/BMD patients with previously detected partial gene deletions were studied. The relative quantity of the target exons was calculated by a comparative threshold cycle method (ΔΔCt. The carrier status of all subjects was successfully determined. The gene dosage ratio for non-carriers was 1.07±0.20, and for carriers 0.56±0.11. This assay proved to be simple, rapid, reliable and cost-effective.

  3. Laboratory Evaluations of the Enterococcus qPCR Method for Recreational Water Quality Testing: Method Performance and Sources of Uncertainty in Quantitative Measurements

    Science.gov (United States)

    The BEACH Act of 2000 directed the U.S. EPA to establish more expeditious methods for the detection of pathogen indicators in coastal waters, as well as new water quality criteria based on these methods. Progress has been made in developing a quantitative PCR (qPCR) method for en...

  4. Quantitative PCR analysis of CYP1A induction in Atlantic salmon (Salmo salar)

    Science.gov (United States)

    Rees, C.B.; McCormick, S.D.; Vanden, Heuvel J.P.; Li, W.

    2003-01-01

    Environmental pollutants are hypothesized to be one of the causes of recent declines in wild populations of Atlantic salmon (Salmo salar) across Eastern Canada and the United States. Some of these pollutants, such as polychlorinated biphenyls and dioxins, are known to induce expression of the CYP1A subfamily of genes. We applied a highly sensitive technique, quantitative reverse transcription-polymerase chain reaction (RT-PCR), for measuring the levels of CYP1A induction in Atlantic salmon. This assay was used to detect patterns of CYP1A mRNA levels, a direct measure of CYP1A expression, in Atlantic salmon exposed to pollutants under both laboratory and field conditions. Two groups of salmon were acclimated to 11 and 17??C, respectively. Each subject then received an intraperitoneal injection (50 mg kg-1) of either ??-naphthoflavone (BNF) in corn oil (10 mg BNF ml-1 corn oil) or corn oil alone. After 48 h, salmon gill, kidney, liver, and brain were collected for RNA isolation and analysis. All tissues showed induction of CYP1A by BNF. The highest base level of CYP1A expression (2.56??1010 molecules/??g RNA) was found in gill tissue. Kidney had the highest mean induction at five orders of magnitude while gill tissue showed the lowest mean induction at two orders of magnitude. The quantitative RT-PCR was also applied to salmon sampled from two streams in Massachusetts, USA. Salmon liver and gill tissue sampled from Millers River (South Royalston, Worcester County), known to contain polychlorinated biphenyls (PCBs), showed on average a two orders of magnitude induction over those collected from a stream with no known contamination (Fourmile Brook, Northfield, Franklin County). Overall, the data show CYP1A exists and is inducible in Atlantic salmon gill, brain, kidney, and liver tissue. In addition, the results obtained demonstrate that quantitative PCR analysis of CYP1A expression is useful in studying ecotoxicity in populations of Atlantic salmon in the wild. ?? 2003

  5. Development of a real-time quantitative RT-PCR to detect REV contamination in live vaccine.

    Science.gov (United States)

    Luan, Huaibiao; Wang, Yixin; Li, Yang; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2016-09-01

    Based on the published Avian reticuloendotheliosis virus (REV) whole genome sequence, primers and TaqMan probes were designed and synthesized, and the TaqMan probe fluorescence real-time quantitative RT-PCR (qRT-PCR) method for detecting the REV pol gene was established by optimizing the reaction conditions. Sensitivity analysis showed that the qRT-PCR method had a sensitivity that was 1,000-fold higher than conventional PCR. Additionally, no amplification signals were obtained when we attempted to detect DNA or cDNA of ALV-A/B/J, MDV, CIAV, IBDV, ARV, NDV, AIV, or other viruses, suggesting a high specificity for our method. Various titers of REV were artificially "spiked" into the FPV and MDV vaccines to simulate REV contamination in attenuated vaccines to validate this qRT-PCR method. Our findings indicated that this qRT-PCR method could detect REV contamination at a dose of 1 TCID50/1,000 feathers, which was 10,000-fold more sensitive than the regular RT-PCR detection (10(4) TCID50/1000 feathers).

  6. Improved RT-PCR Assay to Quantitate the Pri-, Pre-, and Mature microRNAs with Higher Efficiency and Accuracy.

    Science.gov (United States)

    Tong, Li; Xue, Huihui; Xiong, Li; Xiao, Junhua; Zhou, Yuxun

    2015-10-01

    Understanding of the functional significance of microRNAs (miRNAs) requires efficient and accurate detection method. In this study, we developed an improved miRNAs quantification system based on quantitative real-time polymerase chain reaction (qRT-PCR). This method showed higher efficiency and accuracy to survey the expression of primary miRNAs (pri-miRNAs), precursor miRNAs (pre-miRNAs), and mature miRNAs. Instead of relative quantification method, we quantified the pri-miRNAs and pre-miRNAs with absolute qRT-PCR based on SYBR Green I fluorescence. This improvement corrected for the inaccuracy caused by the differences in amplicon length and PCR efficiency. We also used SYBR Green method to quantify mature miRNAs based on the stem-loop qRT-PCR method. We extended the pairing part of the stem-loop reverse transcript (RT) primer from 6 to 11 bp, which greatly increased the efficiency of reverse transcription PCR (RT-PCR). The performance of the improved RT primer was tested using synthetic mature miRNAs and tissue RNA samples. Results showed that the improved RT primer demonstrated dynamic range of seven orders of magnitude and sensitivity of detection of hundreds of copies of miRNA molecules.

  7. A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples.

    Science.gov (United States)

    Behets, Jonas; Declerck, Priscilla; Delaedt, Yasmine; Verelst, Lieve; Ollevier, Frans

    2007-01-01

    A fast and accurate duplex real-time PCR (qPCR) was developed to detect and quantify the human pathogenic amoeba Naegleria fowleri in water samples. In this study, primers and probe based on the Mp2Cl5 gene were designed to amplify and quantify N. fowleri DNA in a single duplex reaction. The qPCR detection limit (DL) corresponds to the minimum DNA quantity showing significant fluorescence with at least 90% of the positive controls in a duplex reaction. Using fluorescent Taqman technology the qPCR was found to be 100% specific for N. fowleri with a DL of 3 N. fowleri cell equivalents and a PCR efficiency of 99%. The quantification limit (QL) was 16 N. fowleri cell equivalents (corresponded with 320 N. fowleri cell equivalents l(-1) water sample) in a duplex qPCR reaction and corresponds to the lowest DNA quantity amplifiable with a coefficient of variation less than 25%. To detect inhibition an exogenous internal positive control (IPC) was included in each PCR reaction preventing false negative results. Comparison of qPCR and most probable number (MPN) culture results confirms that the developed qPCR is well suited for rapid and quantitative detection of this human pathogen in real water samples. Nevertheless 'low contamination levels' of water samples (fowleri cells l(-1)) still require culture method analyses. When other thermophilic Naegleria are very dominant, the MPN culture method could result in an underestimation in the real number of N. fowleri and some caution is necessary to interpret the data. The N. fowleri qPCR could be a useful tool to study further competitive phenomena between thermophilic Naegleria strains.

  8. Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number–qPCR Assay

    Science.gov (United States)

    Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia

    2016-01-01

    ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing

  9. 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer

    Directory of Open Access Journals (Sweden)

    Dráberová Lubica

    2011-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qPCR is becoming increasingly important for DNA genotyping and gene expression analysis. For continuous monitoring of the production of PCR amplicons DNA-intercalating dyes are widely used. Recently, we have introduced a new qPCR mix which showed improved amplification of medium-size genomic DNA fragments in the presence of DNA dye SYBR green I (SGI. In this study we tested whether the new PCR mix is also suitable for other DNA dyes used for qPCR and whether it can be applied for amplification of DNA fragments which are difficult to amplify. Results We found that several DNA dyes (SGI, SYTO-9, SYTO-13, SYTO-82, EvaGreen, LCGreen or ResoLight exhibited optimum qPCR performance in buffers of different salt composition. Fidelity assays demonstrated that the observed differences were not caused by changes in Taq DNA polymerase induced mutation frequencies in PCR mixes of different salt composition or containing different DNA dyes. In search for a PCR mix compatible with all the DNA dyes, and suitable for efficient amplification of difficult-to-amplify DNA templates, such as those in whole blood, of medium size and/or GC-rich, we found excellent performance of a PCR mix supplemented with 1 M 1,2-propanediol and 0.2 M trehalose (PT enhancer. These two additives together decreased DNA melting temperature and efficiently neutralized PCR inhibitors present in blood samples. They also made possible more efficient amplification of GC-rich templates than betaine and other previously described additives. Furthermore, amplification in the presence of PT enhancer increased the robustness and performance of routinely used qPCRs with short amplicons. Conclusions The combined data indicate that PCR mixes supplemented with PT enhancer are suitable for DNA amplification in the presence of various DNA dyes and for a variety of templates which otherwise can be amplified with difficulty.

  10. Application of TaqMan fluorescent probe-based quantitative real-time PCR assay for the environmental survey of Legionella spp. and Legionella pneumophila in drinking water reservoirs in Taiwan.

    Science.gov (United States)

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Ji, Wen-Tsai; Huang, Po-Hsiang; Hsueh, Chih-Jen; Chiang, Chuen-Sheue; Huang, Shih-Wei; Huang, Yu-Li

    2014-08-15

    In this study, TaqMan fluorescent quantitative real-time PCR was performed to quantify Legionella species in reservoirs. Water samples were collected from 19 main reservoirs in Taiwan, and 12 (63.2%) were found to contain Legionella spp. The identified species included uncultured Legionella spp., L. pneumophila, L. jordanis, and L. drancourtii. The concentrations of Legionella spp. and L. pneumophila in the water samples were in the range of 1.8×10(2)-2.6×10(3) and 1.6×10(2)-2.4×10(2) cells/L, respectively. The presence and absence of Legionella spp. in the reservoir differed significantly in pH values. These results highlight the importance that L. pneumophila, L. jordanis, and L. drancourtii are potential pathogens in the reservoirs. The presence of L. pneumophila in reservoirs may be a potential public health concern that must be further examined.

  11. THE DETECTION OF MDR1 GENE EXPRESSION USING FLUOROGENIC PROBE QUANTITATIVE RT-PCR METHOD

    Institute of Scientific and Technical Information of China (English)

    高劲松; 马刚; 仝明; 陈佩毅; 王传华; 何蕴韶

    2001-01-01

    Objective: To establish a fluoregenic probe quantitative RT-PCR (FQ-RT-PCR) method for detection of the expression of MDR1 gene in tumor cells and to investigate the expression of MDR1 gene in patients with lung cancer. Methods: The fluorogenic quantitative RT-PCR method for detection of the expression of MDR1 gene was established. K562/ADM and K562 cell lines or 45 tumor tissues from patients with lung cancer were examined on PE Applied Biosystems 7700 Sequence Detection machine. Results: the average levels of MDR1 gene expression in K562/ADM cells and K562 cells were (6.86±0.65)× 107copies/mg RNA and (8.49±0.67)×105 copies/mg RNA, respectively. The former was 80.8 times greater than the latter. Each sample was measured 10 times and the coefficient variation (CV) was 9.5% and 7.9%, respectively. Various levels of MDR1 gene expression were detected in 12 of 45 patients with lung cancer. Conclusion: Quantitative detection of MDR1 gene expression in tumor cells was achieved by using FQ-RT-PCR. FQ-RT-PCR is an accurate, and sensitive method and easy to perform. Using this method, low levels of MDR1 gene expression could be detected in 24% of the patients with lung cancer.

  12. Murine model of disseminated fusariosis: evaluation of the fungal burden by traditional CFU and quantitative PCR.

    Science.gov (United States)

    González, Gloria M; Márquez, Jazmín; Treviño-Rangel, Rogelio de J; Palma-Nicolás, José P; Garza-González, Elvira; Ceceñas, Luis A; Gerardo González, J

    2013-10-01

    Systemic disease is the most severe clinical form of fusariosis, and the treatment involves a challenge due to the refractory response to antifungals. Treatment for murine Fusarium solani infection has been described in models that employ CFU quantitation in organs as a parameter of therapeutic efficacy. However, CFU counts do not precisely reproduce the amount of cells for filamentous fungi such as F. solani. In this study, we developed a murine model of disseminated fusariosis and compared the fungal burden with two methods: CFU and quantitative PCR. ICR and BALB/c mice received an intravenous injection of 1 × 10(7) conidia of F. solani per mouse. On days 2, 5, 7, and 9, mice from each mice strain were killed. The spleen and kidneys of each animal were removed and evaluated by qPCR and CFU determinations. Results from CFU assay indicated that the spleen and kidneys had almost the same fungal burden in both BALB/c and ICR mice during the days of the evaluation. In the qPCR assay, the spleen and kidney of each mouse strain had increased fungal burden in each determination throughout the entire experiment. The fungal load determined by the qPCR assay was significantly greater than that determined from CFU measurements of tissue. qPCR could be considered as a tool for quantitative evaluation of fungal burden in experimental disseminated F. solani infection.

  13. Comparative validation using quantitative real-time PCR (qPCR and conventional PCR of bovine semen centrifuged in continuous density gradient

    Directory of Open Access Journals (Sweden)

    M.V. Resende

    2011-06-01

    Full Text Available The objective of the present study was to determine the sperm enrichment with X-bearing spermatozoa, after one centrifugation in a Percoll or OptiPrep continuous density gradient, using quantitative real-time polymerase chain reaction (qPCR of sperm DNA and resultant in vitro-produced bovine embryos by PCR. Frozen/thawed sperm was layered on density gradients and the tubes were centrifuged. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Cleavage and blastocyst rates were determined through in vitro production of embryos and PCR was performed to identify the embryos' genetic sex. A difference in blastocyst rate was found in the Percoll treatment compared to OptiPrep (P<0.05. The percentage of female embryos in the Percoll and OptiPrep groups was 62.0% and 47.1%, respectively. These results were confirmed by qPCR of spermatozoa DNA and underestimation was seen only in the Percoll group. It was possible to sexing sperm using simple approach.

  14. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    Science.gov (United States)

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  15. Embryonation of Ostertagia ostertagi eggs affects the outcome of real-time quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    prior to detection and quantification by real-time quantitative polymerase chain reaction (qPCR). Fresh O. ostertagi eggs were isolated from cattle faeces and stored at 4°C or 25°C under aerobic or anaerobic conditions. Embryonation was monitored by microscopy and the ITS2 copies were determined by qPCR...... and no significant effect of storage on ITS2 copies was noticed (p =0.8984). ITS2 copies were significantly higher in L1 compared with copies in unembryonated eggs (p compared with unembryonated eggs (266%). In conclusion, storage conditions affect...... the outcome of qPCR analysis for the quantitative determination of O. ostertagi eggs in cattle faeces. Cold storage at 4°C for up to 3 days or anaerobicvacuum packing at 25°C for up to 336 h will entail no undesirable effects on ITS2 copies....

  16. Embryonation of Ostertagia ostertagi eggs affects the outcome of real-time quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    prior to detection and quantification by real-time quantitative polymerase chain reaction (qPCR) . Fresh O. ostertagi eggs were isolated from cattle faeces and stored at 4°C or 25°C under aerobic or anaerobic conditions. Embryonation was monitored by microscopy and the ITS2 copies were determined by qPCR...... and no significant effect of storage on ITS2 copies was noticed (p = 0.8984). ITS2 copies were significantly higher in L1 compared with copies in unembryonated eggs (p compared with unembryonated eggs (266%). In conclusion, storage conditions affect...... the outcome of qPCR analysis for the quantitative determination of O. ostertagi eggs in cattle faeces. Cold storage at 4°C for up to 3 days or anaerobic vacuum packing at 25°C for up to 336 h will entail no undesirable effects on ITS2 copies....

  17. Quantitation of Rabbit Cytokine mRNA by Real-Time RT-PCR

    OpenAIRE

    Godornes, Charmie; Leader, Brandon Troy; Molini, Barbara J.; Centurion-Lara, Arturo; Lukehart, Sheila A.

    2007-01-01

    Fundamental understanding of rabbit immunology and the use of the rabbit as a disease model have long been hindered by the lack of immunological assays specific to this species. In the present study, we sought to develop a method to quantitate cytokine expression in rabbit cells and tissues. We report the development of a quantitative real-time RT-PCR method for measuring the relative levels of rabbit IFN-γ, IL-2, IL-4, IL-10 and TNF-α mRNA. Quantitation was accomplished by comparison to a st...

  18. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    Science.gov (United States)

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  19. Multiplex, Quantitative, Reverse Transcription PCR Detection of Influenza Viruses Using Droplet Microfluidic Technology

    Directory of Open Access Journals (Sweden)

    Ravi Prakash

    2014-12-01

    Full Text Available Quantitative, reverse transcription, polymerase chain reaction (qRT-PCR is facilitated by leveraging droplet microfluidic (DMF system, which due to its precision dispensing and sample handling capabilities at microliter and lower volumes has emerged as a popular method for miniaturization of the PCR platform. This work substantially improves and extends the functional capabilities of our previously demonstrated single qRT-PCR micro-chip, which utilized a combination of electrostatic and electrowetting droplet actuation. In the reported work we illustrate a spatially multiplexed micro-device that is capable of conducting up to eight parallel, real-time PCR reactions per usage, with adjustable control on the PCR thermal cycling parameters (both process time and temperature set-points. This micro-device has been utilized to detect and quantify the presence of two clinically relevant respiratory viruses, Influenza A and Influenza B, in human samples (nasopharyngeal swabs, throat swabs. The device performed accurate detection and quantification of the two respiratory viruses, over several orders of RNA copy counts, in unknown (blind panels of extracted patient samples with acceptably high PCR efficiency (>94%. The multi-stage qRT-PCR assays on eight panel patient samples were accomplished within 35–40 min, with a detection limit for the target Influenza virus RNAs estimated to be less than 10 RNA copies per reaction.

  20. La PCR quantitative en temps réel : application à la quantification des OGM

    Directory of Open Access Journals (Sweden)

    Alary Rémi

    2002-11-01

    Full Text Available Suite à l’obligation d’étiquetage, au seuil de 1 %, des aliments contenant des OGM autorisés, il est nécessaire de disposer de méthodes fiables de quantification. Pour répondre à cette obligation, la technique de PCR quantitative en temps réel semble actuellement la mieux adaptée. Son principe, ses avantages et sa mise en oeuvre pour la détermination de la teneur en OGM de farines de soja sont présentés. Les PCR simplex et duplex sont comparées.

  1. Detection and quantitation of the new world Squash leaf curl virus by TaqMan real-time PCR.

    Science.gov (United States)

    Abrahamian, Peter E; Abou-Jawdah, Yusuf

    2013-07-01

    Squash leaf curl diseases are caused by distinct virus species that are separated into two major phylogenetic groups, western and eastern hemisphere groups. The western group includes the new world Squash leaf curl virus (SLCV) which causes major losses to cucurbit production and induces severe stunting and leaf curl in squash plants. A TaqMan-based real time polymerase chain reaction (qPCR) assay has been developed for detection and quantitation of SLCV. Designed primers and probe targeted the AV1 (coat protein) gene and in silico analysis showed that they detect a large number of SLCV isolates. The developed assay could detect the virus in 18fg of total nucleic acid and 30 genomic units. The qPCR assay was about 1000 times more sensitive than PCR and amplified successfully SLCV from a wide range of cucurbit hosts and from viruliferous whiteflies. The developed qPCR assay should be suitable for detection and quantitation purposes for all reported SLCV isolates of the western hemisphere.

  2. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Morris Daryl E

    2006-01-01

    Full Text Available Abstract Background There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. Results We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch and a sequence-based method of background adjustment (as in gcRMA as the most important factors in methods' performances. However, we found poor reliability for methods

  3. Validation of Reference Genes for Quantitative Real-Time PCR in Laodelphax striatellus

    Institute of Scientific and Technical Information of China (English)

    HE Xiu-ting; LIU Cheng-cheng; LI Zhao-qun; ZHANG Zan; LI Guo-qing; LI Fei; DONG Shuang-lin

    2014-01-01

    The normalization of quantitative real-time PCR (qPCR) is important to obtain accurate gene expression data, and the most common method for qPCR normalization is to use reference genes. However, reference genes can be regulated under different conditions. qPCR has recently been used for gene expression study in Laodelphax striatellus, but there is no study on validation of the reference genes. In this study, ifve new housekeeping genes (LstrTUB1, LstrTUB2, LstrTUB3, LstrARF and LstrRPL9) in L. striatellus were cloned and deposited in the GenBank with accession numbers of JF728809, JF728810, JF728811, JF728807 and JF728806, respectively. Furthermore, mRNA expressions of the five genes and β-actin were measured by qPCR with insect samples of different instar at nymph stage, and the expression stabilities were determined by the software geNorm and NormFinder. As a result, ARF and RPL9 were consistently more stable thanβ-actin, while three TUB genes were less stable than β-actin. To determine the optimal number of reference genes used in qPCR, a pairwise variations analysis by geNorm indicated that two references ARF and RPL9 were required to obtain the accurate quantiifcation. These results were further conifrmed by the validation qPCR experiment with chitinase gene as the target gene, in which the standard error of the mRNA quantiifcation by using binary reference ARF-RPL9 was much lower than those by ARF, RPL9 orβ-actin alone. Taken together, our study suggested that the combination of ARF-RPL9 could replaceβ-actin as the reference genes for qPCR in L. striatellus.

  4. 基于PMA-定量PCR选择性检测技术的病原菌消毒特性研究%Evaluation of Pathogen Disinfection Efficacy by Chlorine and Monochloramine Disinfection Based on Quantitative PCR Combined with Propidium Monoazide ( PMA-qPCR )

    Institute of Scientific and Technical Information of China (English)

    仝铁铮; 吴舒旭; 李丹; 何苗; 杨天; 施汉昌

    2011-01-01

    A novel detection method of quantitative PCR combined with a DNA intercalating dye propidium monoazide (PMA-qPCR)was developed and then applied to analyze inactivation efficacy of chlorine and monochloramine on E. coli as a representative organism.The results shows that PMA removed 99.94% and 99.99% DNA from non-viable E. coli and Salmonella cells respectively and PMA-qPCR could effectively differentiate viable bacteria from non-viable bacteria; According to the first-order kinetic model, the inactivation coefficients on E. coli obtained by PMA-qPCR were 2.24 L·(mg·min)-1 and 0.0175 L·(mg·min)-1 for chlorine and monochloramine respectively, both of which were lower than those obtained by traditional plating counting method. In order to inactivate 99% of E. coli, the ct values by PMA-qPCR were 0. 9 mg· L-1 · min and more than 100 mg· L-1· min for chlorine and monochloramine while those by plating counting method were only 0.6 mg· L- 1 · min and 20 mg· L - 1 · min, respectively; E. coli concentration detected by conventional qPCR kept almost the same when ct value increased, indicating that conventional qPCR was unable to evaluate inactivation efficacy of both chlorine and monochloramine disinfection. In summary, PMA-qPCR shows to be a promising method for evaluating disinfection efficacy by chlorine and monochloramine more accurately.%建立了一种核酸染料propidium monoazide(PMA)与定量PCR技术联合选择性检测活性病原菌的技术(PMA-qPCR),以大肠杆菌作为模式菌,研究了氯和一氯胺消毒对病原菌的灭活特性.结果表明,PMA染料能够分别去除99.94%和99.99%的来自非活性大肠杆菌和沙门氏菌的DNA,PMA-qPCR技术能够有效区分活性菌与非活性菌;PMA-qPCR技术得到的氯和一氯胺消毒对大肠杆菌的灭活曲线符合一级动力学方程,灭活速率常数分别为2.24 L·(mg·min)和0.017 5 L·(mg·min),低于平板培养法得到的灭活速率常数;当

  5. Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization

    Directory of Open Access Journals (Sweden)

    Silvestrelli Maurizio

    2008-05-01

    Full Text Available Abstract Background Adequate stress response is a critical factor during athlete horses' training and is central to our capacity to obtain better performances while safeguarding animal welfare. In order to investigate the molecular mechanisms underlying this process, several studies have been conducted that take advantage of microarray and quantitative real-time PCR (qRT-PCR technologies to analyse the expression of candidate genes involved in the cellular stress response. Appropriate application of qRT-PCR, however, requires the use of reference genes whose level of expression is not affected by the test, by general physiological conditions or by inter-individual variability. Results The expression of nine potential reference genes was evaluated in lymphocytes of ten endurance horses during strenuous exercise. These genes were tested by qRT-PCR and ranked according to the stability of their expression using three different methods (implemented in geNorm, NormFinder and BestKeeper. Succinate dehydrogenase complex subunit A (SDHA and hypoxanthine phosphoribosyltransferase (HPRT always ranked as the two most stably expressed genes. On the other hand, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, transferrin receptor (TFRC and ribosomal protein L32 (RPL32 were constantly classified as the less reliable controls. Conclusion This study underlines the importance of a careful selection of reference genes for qRT-PCR studies of exercise induced stress in horses. Our results, based on different algorithms and analytical procedures, clearly indicate SDHA and HPRT as the most stable reference genes of our pool.

  6. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods....... Study cases (27 carcinomas and 3 ductal breast carcinoma in situ (DCIS) cases) showed varying Her-2 expression as determined by IHC (HercepTest). In carcinomas, there was a good correlation between HER-2 DNA amplification and strong HER-2 protein expression detected by FISH and IHC, respectively....... A single DCIS case was amplified in FISH, but not in IHC. Both HER-2 gene amplification and expression could be quantified in microdissected paraffin-embedded tumors using real-time PCR, DNA and RNA being successfully detected in 146 of 150 (97%) and 141 of 150 (94%) samples, respectively. PCR analysis...

  7. Detecting Polychlorinated Biphenyls by Ah Receptor and Fluorescence Quantitative PCR with Exonuclease

    Science.gov (United States)

    Zhao, Xiaoxiang; Zhuang, Huisheng

    2010-11-01

    Tetrachlorobiphenyls as ligands were cultivated with goldfish, Ah receptors were extracted from the liver of goldfish and purified by hydroxyapatite. The complex of TCB ligands-receptors were analyzed by Surface Plasmon Resonance. DNA probes were amplified by PCR using Primers F1 and F2 with the DNA recognition site of responsive enhancer. DNA probes bound to the complex were not digested by exonuclease. The DNA that bound to the complex was quantified by real time PCR. A standard curve with TCB concentration to Ct values was obtained in the range of 10-12mol/L to 10-8 mol/L, according to TCB concentration in samples. The detection limit of the assay was below 10-12mol/L of TCB. Compared with HPLC, this assay is much more sensitive. These results suggest that fluorescence quantitative PCR with exonuclease by Ah receptors fits for detection of trace PCB.

  8. Quantitative PCR for HTLV-1 provirus in adult T-cell leukemia/lymphoma using paraffin tumor sections.

    Science.gov (United States)

    Kato, Junki; Masaki, Ayako; Fujii, Keiichiro; Takino, Hisashi; Murase, Takayuki; Yonekura, Kentaro; Utsunomiya, Atae; Ishida, Takashi; Iida, Shinsuke; Inagaki, Hiroshi

    2016-11-01

    Detection of HTLV-1 provirus using paraffin tumor sections may assist the diagnosis of adult T-cell leukemia/lymphoma (ATLL). For the detection, non-quantitative PCR assay has been reported, but its usefulness and limitations remain unclear. To our knowledge, quantitative PCR assay using paraffin tumor sections has not been reported. Using paraffin sections from ATLLs and non-ATLL T-cell lymphomas, we first performed non-quantitative PCR for HTLV-1 provirus. Next, we determined tumor ratios and carried out quantitative PCR to obtain provirus copy numbers. The results were analyzed with a simple regression model and a novel criterion, cut-off using 95 % rejection limits. Our quantitative PCR assay showed an excellent association between tumor ratios and the copy numbers (r = 0.89, P PCR assay should be interpreted very carefully and that our quantitative PCR assay is useful to estimate the status of HTLV-1 involvement in the tumor cases. In conclusion, our quantitative PCR assay using paraffin tumor sections may be useful for the screening of ATLL cases, especially in HTLV-1 non-endemic areas where easy access to serological testing for HTLV-1 infection is limited.

  9. Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures.

    Science.gov (United States)

    Bruckert, G; Vivien, D; Docagne, F; Roussel, B D

    2016-04-01

    Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.

  10. Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    Science.gov (United States)

    Oguchi, Taichi; Onishi, Mari; Minegishi, Yasutaka; Kurosawa, Yasunori; Kasahara, Masaki; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-06-01

    A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this.

  11. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR.

    Science.gov (United States)

    Stets, Maria Isabel; Alqueres, Sylvia Maria Campbell; Souza, Emanuel Maltempi; Pedrosa, Fábio de Oliveira; Schmid, Michael; Hartmann, Anton; Cruz, Leonardo Magalhães

    2015-10-01

    Azospirillum is a rhizobacterial genus containing plant growth-promoting species associated with different crops worldwide. Azospirillum brasilense strains exhibit a growth-promoting effect by means of phytohormone production and possibly by N2 fixation. However, one of the most important factors for achieving an increase in crop yield by plant growth-promoting rhizobacteria is the survival of the inoculant in the rhizosphere, which is not always achieved. The objective of this study was to develop quantitative PCR protocols for the strain-specific quantification of A. brasilense FP2. A novel approach was applied to identify strain-specific DNA sequences based on a comparison of the genomic sequences within the same species. The draft genome sequences of A. brasilense FP2 and Sp245 were aligned, and FP2-specific regions were filtered and checked for other possible matches in public databases. Strain-specific regions were then selected to design and evaluate strain-specific primer pairs. The primer pairs AzoR2.1, AzoR2.2, AzoR5.1, AzoR5.2, and AzoR5.3 were specific for the A. brasilense FP2 strain. These primer pairs were used to monitor quantitatively the population of A. brasilense in wheat roots under sterile and nonsterile growth conditions. In addition, coinoculations with other plant growth-promoting bacteria in wheat were performed under nonsterile conditions. The results showed that A. brasilense FP2 inoculated into wheat roots is highly competitive and achieves high cell numbers (∼10(7) CFU/g [fresh weight] of root) in the rhizosphere even under nonsterile conditions and when coinoculated with other rhizobacteria, maintaining the population at rather stable levels for at least up to 13 days after inoculation. The strategy used here can be applied to other organisms whose genome sequences are available.

  12. Studying the replication history of human B lymphocytes by real-time quantitative (RQ)-PCR.

    Science.gov (United States)

    van Zelm, Menno C; Berkowska, Magdalena A; van Dongen, Jacques J M

    2013-01-01

    The cells of the adaptive immune system, B and T lymphocytes, each generate a unique antigen receptor through V(D)J recombination of their immunoglobulin (Ig) and T cell receptor (TCR) loci, respectively. Such rearrangements join coding elements to form a coding joint and delete the intervening DNA as circular excision products containing the signal joint. These excision circles are stable structures that cannot replicate and have no function in the cell. Since the coding joint in the genome is replicated with each cell division, the ratio between coding joints and signal joints in a population of B cells can be used as a measure for proliferation. This chapter describes a real-time quantitative (RQ-)PCR-based approach to quantify proliferation through calculating the ratio between coding joints and signal joints of the frequently occurring intronRSS-Kde rearrangements in the IGK light chain locus. The approach is useful to study basic B-cell biology as well as abnormal proliferation in human diseases.

  13. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus.

    Directory of Open Access Journals (Sweden)

    Ma Mingxiao

    Full Text Available Sacbrood virus (SBV is a picorna-like virus that affects honey bees (Apis mellifera and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.

  14. Rapid and direct quantitative detection of viable bifidobacteria in probiotic yogurt by combination of ethidium monoazide and real-time PCR using a molecular beacon approach.

    Science.gov (United States)

    Meng, X C; Pang, R; Wang, C; Wang, L Q

    2010-11-01

    The potential of ethidium monoazide (EMA) real-time PCR method based on molecular beacon probe for rapid detection of viable bifidobacteria present in probiotic yogurt was evaluated in this work. A real-time PCR with molecular beacon assay was developed to determine genus Bifidobacterium quantitatively in order to increase the sensitivity and specificity of assay. EMA was used to treat probiotic yogurt prior to DNA extraction and real-time PCR detection to allow detection of only viable bacteria. The primer set of Bif-F/Bif-R which is genus-specific for Bifid. was designed. The specificity of the probes ensures that no signal is generated by non-target amplicons. Linear regression analysis demonstrated a good correlation (R² = 0·9948) between the EMA real-time PCR results and the plate counting, and real-time quantitative PCR results correlated adequately with enumeration of bifidobacteria by culture for commercial probiotic yogurt. This culture-independent approach is promising for the direct and rapid detection of viable bifidobacteria in commercial probiotic yogurt, and the detection can be carried out within 4 h. The detection limit for this method is about 10⁴ cell/ml. In conclusion, the direct quantitative EMA real-time PCR assay based on molecular beacon described in this research is a rapid and quantitative method.

  15. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    Science.gov (United States)

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  16. Rapid detection of Pseudomonas aeruginosa from positive blood cultures by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Cattoir Vincent

    2010-08-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is responsible for numerous bloodstream infections associated with severe adverse outcomes in case of inappropriate initial antimicrobial therapy. The present study was aimed to develop a novel quantitative PCR (qPCR assay, using ecfX as the specific target gene, for the rapid and accurate identification of P. aeruginosa from positive blood cultures (BCs. Methods Over the period August 2008 to June 2009, 100 BC bottles positive for gram-negative bacilli were tested in order to evaluate performances of the qPCR technique with conventional methods as gold standard (i.e. culture and phenotypic identification. Results Thirty-three strains of P. aeruginosa, 53 strains of Enterobactericaeae, nine strains of Stenotrophomonas maltophilia and two other gram-negative species were isolated while 3 BCs were polymicrobial including one mixture containing P. aeruginosa. All P. aeruginosa clinical isolates were detected by qPCR except a single strain in mixed culture. Performances of the qPCR technique were: specificity, 100%; positive predictive value, 100%; negative predictive value, 98.5%; and sensitivity, 97%. Conclusions This reliable technique may offer a rapid (

  17. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay.

    Science.gov (United States)

    Shen, Shu-Min; Chou, Ming-Yuan; Hsu, Bing-Mu; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-07-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 10(2) and 3.3 × 10(5) cells/l in river water and 72.1-5.7 × 10(6) cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors.

  18. The use of quantitative PCR for identification and quantification of Brachyspira pilosicoli, Lawsonia intracellularis and Escherichia coli fimbrial types F4 and F18 in pig feces

    DEFF Research Database (Denmark)

    Ståhl, Marie; Kokotovic, Branko; Hjulsager, Charlotte Kristiane

    2011-01-01

    of using specific standard curves, where each pathogen is analysed in the same matrix as sample DNA. The qPCRs were compared to traditional bacteriological diagnostic methods and found to be more sensitive than cultivation for E. coli and B. pilosicoli. The qPCR assay for Lawsonia was also more sensitive......Four quantitative PCR (qPCR) assays were evaluated for quantitative detection of Brachyspira pilosicoli, Lawsonia intracellularis, and E. coli fimbrial types F4 and F18 in pig feces. Standard curves were based on feces spiked with the respective reference strains. The detection limits from...... the spiking experiments were 102 bacteria/g feces for BpiloqPCR and Laws-qPCR, 103 CFU/g feces for F4-qPCR and F18-qPCR. The PCR efficiency for all four qPCR assays was between 0.91 and 1.01 with R2 above 0.993. Standard curves, slopes and elevation, varied between assays and between measurements from pure...

  19. The performance of semi-quantitative differential PCR is similar to that of real-time PCR for the detection of the MYCN gene in neuroblastomas

    Directory of Open Access Journals (Sweden)

    A.C.M.F. Souza

    2009-09-01

    Full Text Available Amplification of the MYCN gene in neuroblastomas is a potent biological marker of highly aggressive tumors, which are invariably fatal unless sound clinical management is applied. To determine the usefulness of semi-quantitative differential PCR (SQ-PCR for accurate quantification of MYCN gene copy number, we evaluated the analytical performance of this method by comparing the results obtained with it for 101 tumor samples of neuroblastoma to that obtained by absolute and relative real-time PCR. Similar results were obtained for 100 (99% samples, no significant difference was detected between the median log10 MYCN copy number (1.53 by SQ-PCR versus 1.55 by absolute real-time PCR, and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001. In the comparison of SQ-PCR and relative real-time PCR, SQ-PCR versus relative real-time PCR concordant results were found in 100 (99% samples, no significant difference was found in median log10 MYCN copy number (1.53 by SQ-PCR versus 1.27 by relative real-time PCR, and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001. These findings indicate that the performance of SQ-PCR was comparable to that of real-time PCR for the amplification and quantification of MYCN copy number. Thus, SQ-PCR can be reliably used as an alternative assay in laboratories without facilities for real-time PCR.

  20. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    Science.gov (United States)

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12.

  1. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    Science.gov (United States)

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples.

  2. Quantitative detection of Borrelia burgdorferi sensu lato in erythema migrans skin lesions using internally controlled duplex real time PCR.

    Science.gov (United States)

    O'Rourke, Maria; Traweger, Andreas; Lusa, Lara; Stupica, Dasa; Maraspin, Vera; Barrett, P Noel; Strle, Franc; Livey, Ian

    2013-01-01

    B. burgdorferi sensu stricto, B. afzelii, B. garinii and B. bavariensis are the principal species which account for Lyme borreliosis (LB) globally. We have developed an internally controlled duplex quantitative real time PCR assay targeting the Borrelia 16S rRNA and the human RNAseP genes. This assay is well-suited for laboratory confirmation of suspected cases of LB and will be used to assess the efficacy of a vaccine against LB in clinical trials. The assay is highly specific, successfully detecting DNA extracted from 83 diverse B. burgdorferi sensu lato strains representing all major species causing LB, while 21 unrelated microbial species and human genomic DNA tested negative. The assay was highly reproducible and sensitive, with a lower limit of detection of 6 copies per PCR reaction. Together with culture, the assay was used to evaluate paired 3 mm skin biopsy samples taken from 121 patients presenting with solitary erythema migrans (EM) lesion. PCR testing identified more positive biopsy samples than culture (77.7% PCR positive versus 55.1% culture positive) and correctly identified all specimens scored as culture positive. OspA-based typing identified the majority of isolates as B. afzelii (96.8%) and the bacterial load was significantly higher in culture positive biopsies than in culture negative biopsies (Phistory of LB (P = 0.10). This is the first quantitative PCR study of human skin biopsies predominantly infected with B. afzelii and the first study to demonstrate a clear relationship between clinical symptoms in B. afzelii-infected patients and Borrelia burden.

  3. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    Science.gov (United States)

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

  4. A quantitative real-time PCR method using an X-linked gene for sex typing in pigs.

    Science.gov (United States)

    Ballester, Maria; Castelló, Anna; Ramayo-Caldas, Yuliaxis; Folch, Josep M

    2013-06-01

    At present, a wide range of molecular sex-typing protocols in wild and domestic animals are available. In pigs, most of these methods are based on PCR amplification of X-Y homologous genes followed by gel electrophoresis which is time-consuming and in some cases expensive. In this paper, we describe, for the first time, a SYBR green-based quantitative real-time PCR (qPCR) assay using an X-linked gene, the glycoprotein M6B, for genetic sexing of pigs. Taking into account the differences in the glycoprotein M6B gene copy number between genders, we determine the correct sex of 54 pig samples from either diaphragm or hair follicle from different breeds using the 2(-ΔΔCT) method for relative quantification. Our qPCR assay represents a quick, inexpensive, and reliable tool for sex determination in pigs. This new protocol could be easily adapted to other species in which the sex determination was required.

  5. Enrichment followed by quantitative PCR both for rapid detection and as a tool for quantitative risk assessment of food-borne thermotolerant campylobacters

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Jacobsen, N. R.; Hoorfar, Jeffrey

    2004-01-01

    naturally contaminated chicken samples, which indicates PCR's additional potential as a tool for quantitative risk assessment. Signal from the internal amplification control was detected in all culture-negative samples (VIC Ct: 23.1 to 28.1). The method will be taken further and validated......As part of a large international project for standardization of PCR (Food-PCR; www.pcr.dk), a multiplex, multiplatform, ready-to-go enrichment followed by a real-time PCR method, including an internal amplification control, was developed for detection of food-borne thermotolerant campylobacters...

  6. A method for amplification of unknown flanking sequences based on touchdown PCR and suppression-PCR.

    Science.gov (United States)

    Gao, Song; He, Dan; Li, Guangquan; Zhang, Yanhua; Lv, Huiying; Wang, Li

    2016-09-15

    Thermal asymmetric staggered PCR is the most widely used technique to obtain the flanking sequences. However, it has some limitations, including a low rate of positivity, and complex operation. In this study, a improved method of it was made based on suppression-PCR and touchdown PCR. The PCR fragment obtained by the amplification was used directly for sequencing after gel purification. Using this improved method, the positive rate of amplified flanking sequences of the ATMT mutants reached 99%. In addition, the time from DNA extraction to flanking sequence analysis was shortened to 2 days with about 6 dollars each sample.

  7. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    Science.gov (United States)

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes.

  8. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR

    Science.gov (United States)

    Vesper, Stephen J.; Wong, Wing; Kuo, C. Mike; Pierson, Duane L.

    2008-01-01

    Dust was collected over a period of several weeks in 2007 from various HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Opportunistic pathogens Aspergillus flavus and A. niger and toxin producers Penicillium chrysogenum and P. brevicompactum were found at relatively high concentrations (compared to U.S. homes). No cells of the opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected.

  9. Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses.

    Directory of Open Access Journals (Sweden)

    Oliver A Müller

    Full Text Available The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv causes bacterial spot disease of pepper and tomato by direct translocation of type III effector proteins into the plant cell cytosol. Once in the plant cell the effectors interfere with host cell processes and manipulate the plant transcriptome. Quantitative RT-PCR (qRT-PCR is usually the method of choice to analyze transcriptional changes of selected plant genes. Reliable results depend, however, on measuring stably expressed reference genes that serve as internal normalization controls. We identified the most stably expressed tomato genes based on microarray analyses of Xcv-infected tomato leaves and evaluated the reliability of 11 genes for qRT-PCR studies in comparison to four traditionally employed reference genes. Three different statistical algorithms, geNorm, NormFinder and BestKeeper, concordantly determined the superiority of the newly identified reference genes. The most suitable reference genes encode proteins with homology to PHD finger family proteins and the U6 snRNA-associated protein LSm7. In addition, we identified pepper orthologs and validated several genes as reliable normalization controls for qRT-PCR analysis of Xcv-infected pepper plants. The newly identified reference genes will be beneficial for future qRT-PCR studies of the Xcv-tomato and Xcv-pepper pathosystems, as well as for the identification of suitable normalization controls for qRT-PCR studies of other plant-pathogen interactions, especially, if related plant species are used in combination with bacterial pathogens.

  10. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    Science.gov (United States)

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  11. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti.

    Science.gov (United States)

    Dzaki, Najat; Ramli, Karima N; Azlan, Azali; Ishak, Intan H; Azzam, Ghows

    2017-03-16

    The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research.

  12. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Pricila da Silva Cunha

    2014-01-01

    Full Text Available Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH, which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH, and/or multiplex ligation-dependent probe amplification (MLPA all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  13. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti

    Science.gov (United States)

    Dzaki, Najat; Ramli, Karima N.; Azlan, Azali; Ishak, Intan H.; Azzam, Ghows

    2017-01-01

    The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research. PMID:28300076

  14. Comparison of high and low virulence serotypes of Actinobacillus pleuropneumoniae by quantitative real-time PCR

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Angen, Øystein; Boye, Mette

    of high virulence while serotype 6 strains are normally found to be less pathogenic. To gain an understanding of the differential virulence of serotype 2 and 6, the expression of a panel of Ap genes during infection of porcine epithelial lung cells (SJPL) were examined by quantitative real-time PCR (qPCR...... to be important for early establishment of the bacteria in the host were examined by qPCR. The genes examined were apfA, coding for a subunit of Type IV pili, kdsB coding for a gene involved in lippopolysacceride biosynthesis, and pgaB which is involved in biofilm formation, all three believed to be important...... with respect to host cells adhesion. Also included in the analysis were the capsular gene, cpxB, the RTX toxin genes apxII, and apxIV and the gene exbD, involved in binding of iron from host cells. Finally, three previously validated reference genes, glyA, pykA and tpiA were included for normalization of the qPCR...

  15. A quantitative PCR (TaqMan assay for pathogenic Leptospira spp

    Directory of Open Access Journals (Sweden)

    Symonds Meegan L

    2002-07-01

    Full Text Available Abstract Background Leptospirosis is an emerging infectious disease. The differential diagnosis of leptospirosis is difficult due to the varied and often "flu like" symptoms which may result in a missed or delayed diagnosis. There are over 230 known serovars in the genus Leptospira. Confirmatory serological diagnosis of leptospirosis is usually made using the microscopic agglutination test (MAT which relies on the use of live cultures as the source of antigen, often performed using a panel of antigens representative of local serovars. Other techniques, such as the enzyme linked immunosorbent assay (ELISA and slide agglutination test (SAT, can detect different classes of antibody but may be subject to false positive reactions and require confirmation of these results by the MAT. Methods The polymerase chain reaction (PCR has been used to detect a large number of microorganisms, including those of clinical significance. The sensitivity of PCR often precludes the need for isolation and culture, thus making it ideal for the rapid detection of organisms involved in acute infections. We employed real-time (quantitative PCR using TaqMan chemistry to detect leptospires in clinical and environmental samples. Results and Conclusions The PCR assay can be applied to either blood or urine samples and does not rely on the isolation and culture of the organism. Capability exists for automation and high throughput testing in a clinical laboratory. It is specific for Leptospira and may discriminate pathogenic and non-pathogenic species. The limit of detection is as low as two cells.

  16. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by quantitative competitive PCR

    Institute of Scientific and Technical Information of China (English)

    HAO Chun; WANG Huan; LIU Qinhua; LI Xudong

    2009-01-01

    The anaerobic ammonium-oxidizing (ANAMMOX) bacteria were enriched from a sequencing batch biofilm reactor (SBBR) biofilm.We successfully developed a quantitative competitive polymerase chain reaction (QC-PCR) system to detect and quantify ANAMMOX bacteria in environmental samples.For QC-PCR system,PCR primer sets targeting 16S ribosomal RNA genes of ANAMMOX bacteria were designed and used.The quantification range of this system was 4 orders of magnitude,from 10~3 to 10~6 copies per PCR,corresponding to the detection limit of 300 target copies per mL.A 312-bp internal standard (IS) was constructed,which showed very similar amplification efficiency with the target amxC fragment (349 bp) over 4 orders of magnitude (10~3-10~6).The linear regressions were obtained with a R~2 of 0.9824 for 10~3 copies,R~2 of 0.9882 for 10~4 copies,0.9857 for 10~5 copies and 0.9899 for 10~6 copies.Using this method,we quantified ANAMMOX bacteria in a shortcut nitrification/denitrification-anammox system which is set for piggery wastewater treatment.

  17. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples.

  18. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    Science.gov (United States)

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  19. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl

    Science.gov (United States)

    Smith, Matthew M.; Schmutz, Joel A.; Apelgren, Chloe; Ramey, Andy M.

    2015-01-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n = 105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R2 = 0.694, P = 0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species.

  20. Validation of Zebrafish (Danio rerio) Reference Genes for Quantitative Real-time RT-PCR Normalization

    Institute of Scientific and Technical Information of China (English)

    Rongying TANG; Andrew DODD; Daniel LAI; Warren C.MCNABB; Donald R.LOVE

    2007-01-01

    The normalization of quantitative real time RT-PCR (qRT-PCR) is important to obtain accurate gene expression data. The most common method for qRT-PCR normalization is to use reference, or housekeeping genes. However, there is emerging evidence that even reference genes can be regulated under different conditions, qRT-PCR has only recently been used in terms of zebrafish gene expression studies and there is no validated set of reference genes. This study characterizes the expression of nine possible reference genes during zebrafish embryonic development and in a zebrafish tissue panel. All nine reference genes exhibited variable expression. The β-actin, EF1α and Rpl13α genes comprise a validated reference gene panel for zebrafish developmental time course studies, and the EF1α, Rpl13α and 18S rRNA genes are more suitable as a reference gene panel for zebrafish tissue analysis. Importantly, the zebrafish GAPDH gene appears unsuitable as reference gene for both types of studies.

  1. Evaluation of postmortem bacterial migration using culturing and real-time quantitative PCR.

    Science.gov (United States)

    Tuomisto, Sari; Karhunen, Pekka J; Vuento, Risto; Aittoniemi, Janne; Pessi, Tanja

    2013-07-01

    Postmortem bacteriology can be a valuable tool for evaluating deaths due to bacterial infection or for researching the involvement of bacteria in various diseases. In this study, time-dependent postmortem bacterial migration into liver, mesenteric lymph node, pericardial fluid, portal, and peripheral vein was analyzed in 33 autopsy cases by bacterial culturing and real-time quantitative polymerase chain reaction (RT-qPCR). None suffered or died from bacterial infection. According to culturing, pericardial fluid and liver were the most sterile samples up to 5 days postmortem. In these samples, multigrowth and staphylococci were not or rarely detected. RT-qPCR was more sensitive and showed higher bacterial positivity in all samples. Relative amounts of intestinal bacterial DNA (bifidobacteria, bacteroides, enterobacter, clostridia) increased with time. Sterility of blood samples was low during the studied time periods (1-7 days). The best postmortem microbiological sampling sites were pericardial fluid and liver up to 5 days after death.

  2. Quantitative detection of Clostridium tyrobutyricum in milk by real-time PCR.

    Science.gov (United States)

    López-Enríquez, Lorena; Rodríguez-Lázaro, David; Hernández, Marta

    2007-06-01

    We developed a real-time PCR assay for the quantitative detection of Clostridium tyrobutyricum, which has been identified as the major causal agent of late blowing in cheese. The assay was 100% specific, with an analytical sensitivity of 1 genome equivalent in 40% of the reactions. The quantification was linear (R(2) > 0.9995) over a 5-log dynamic range, down to 10 genome equivalents, with a PCR efficiency of >0.946. With optimized detergent treatment and enzymatic pretreatment of the sample before centrifugation and nucleic acid extraction, the assay counted down to 300 C. tyrobutyricum spores, with a relative accuracy of 82.98 to 107.68, and detected as few as 25 spores in 25 ml of artificially contaminated raw or ultrahigh-temperature-treated whole milk.

  3. Detecting PML-RARα transcript in acute promyelocytic leukemia using real-time quantitative RT-PCR

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong-hu; LIU Yan-rong; QIN Ya-zhen; JIANG Bin; SHAN Fu-xiang; WU Shu-lan; YANG Ping-di; ZHAO Jie; LU Dao-pei

    2007-01-01

    Background Real-time quantitative RT-PCR (RQ-PCR) assay has become a vital tool to monitor residual disease of leukemia. However, the complexity and standardization of RQ-PCR should never be overlooked and the results should be interpreted cautiously in clinical conditions. We aimed to assess the methodology of RQ-PCR and its clinical applications in monitoring molecular kinetics of 36 newly diagnosed cases of acute promyelocytic leukemia patients with t (15; 17) from October 2004 to December 2005.Methods All the TaqMan probe-based RQ-PCR reactions and analysis were performed on an ABI-PRISM 7500platform. The quantitation of PML-RARα transcripts was represented by the normalized quotient, that is, PML-RARα transcript copies divided by ABL transcript copies. According to induction therapy, the patients were classed into two groups: group 1 (n=23), three-drug combination including arsenics, all-trans retinoic acid and mitoxantrone; and group 2 (n=13), two-drug combination from all-trans retinoic acid, arsenics and mitoxantrone.Results The sensitivity of RQ-PCR was 1 per 105 cells and 5 copies of the PML-RARα transcript could be reproducibly detected. No false positive results occurred in 40 non-acute promyelocytic leukemia samples. Optimal amplification efficiency could be attained, which was determined by the slope of the standard curves (slope: -3.2 - -3.7). The inter-assay and intra-assay variation coefficients of the method were 1.01% and 0.56% respectively. Although the time to attain hematological complete remission was similar in both groups, the time to achieve molecular remission of group 1 was significantly shorter than that of group 2 (61 days vs 75 days, P=0.034). The rate of molecular remission within 70days was higher in group 1 than in group 2 (75.00% vs 38.46%, P=0.036). Compared with pretreatment, median reduction of the PML-RARα transcript before first consolidation therapy differed significantly between group 1 and group 2 (log scale, 3.15 vs 2

  4. Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in Heliconius numata (Lepidoptera: Nymphalidae).

    Science.gov (United States)

    Piron Prunier, Florence; Chouteau, Mathieu; Whibley, Annabel; Joron, Mathieu; Llaurens, Violaine

    2016-01-01

    Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms.

  5. Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in Heliconius numata (Lepidoptera: Nymphalidae)

    Science.gov (United States)

    Chouteau, Mathieu; Whibley, Annabel; Joron, Mathieu; Llaurens, Violaine

    2016-01-01

    Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata. This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms. PMID:27271971

  6. Quantitative detection of hazelnut (Corylus avellana) in cookies: ELISA versus real-time PCR.

    Science.gov (United States)

    Platteau, Céline; De Loose, Marc; De Meulenaer, Bruno; Taverniers, Isabel

    2011-11-09

    Hazelnuts (Corylus avellana) are used widely in the food industry, especially in confectionery, where they are used raw, roasted, or in a processed formulation (e.g., praline paste and hazelnut oil). Hazelnuts contain multiple allergenic proteins, which can induce an allergic reaction associated with symptoms ranging from mild irritation to life-threatening anaphylactic shock. To date, immunochemical (e.g., ELISA or dipstick) and PCR-based analyses are the only methods available that can be applied as routine tests. The aim of this study is to make a comparative evaluation of the effectiveness of ELISA and real-time PCR in detecting and correctly quantifying hazelnut in food model systems. To this end, the performances of two commercial ELISAs were compared to those of two commercial and one in-house-developed real-time PCR assays. The results showed that although ELISA seemed to be more sensitive compared to real-time PCR, both detection techniques suffered from matrix effects and lacked robustness with regard to food processing. As these impacts were highly variable among the different evaluated assays (both ELISA and real-time PCR), no firm conclusion can be made as to which technique is suited best to detect hazelnut in (processed) food products. In this regard, the current lack of appropriate DNA calibrators to quantify an allergenic ingredient by means of real-time PCR is highlighted.

  7. Comparison of real-time quantitative PCR and culture for the diagnosis of emerging Rickettsioses.

    Directory of Open Access Journals (Sweden)

    Emmanouil Angelakis

    Full Text Available BACKGROUND: Isolation of Rickettsia species from skin biopsies may be replaced by PCR. We evaluated culture sensitivity compared to PCR based on sampling delay and previous antibiotic treatment. METHODOLOGY/PRINCIPAL FINDINGS: Skin biopsies and ticks from patients with suspected Rickettsia infection were screened for Rickettsia spp. using qPCR, and positive results were amplified and sequenced for the gltA and ompA genes. Immunofluorescence for spotted fever group rickettsial antigens was done for 79 patients. All skin biopsies and only ticks that tested positive using qPCR were cultured in human embryonic lung (HEL fibroblasts using the centrifugation-shell vial technique. Patients and ticks were classified as definitely having rickettsioses if there was direct evidence of infection with a Rickettsia sp. using culture or molecular assays or in patients if serology was positive. Data on previous antibiotic treatments were obtained for patients with rickettsiosis. Rickettsia spp. infection was diagnosed in 47 out of 145 patients (32%, 41 by PCR and 12 by culture, whereas 3 isolates were obtained from PCR negative biopsies. For 3 of the patients serology was positive although PCR and culture were negative. Rickettsia africae was the most common detected species (n = 25, [17.2%] and isolated bacterium (n = 5, [3.4%]. The probability of isolating Rickettsia spp. was 12 times higher in untreated patients and 5.4 times higher in patients from our hometown. Rickettsia spp. was amplified in 24 out of 95 ticks (25% and we isolated 7 R. slovaca and 1 R. raoultii from Dermacentor marginatus. CONCLUSIONS/SIGNIFICANCE: We found a positive correlation between the bacteria copies and the isolation success in skin biopsies and ticks. Culture remains critical for strain analysis but is less sensitive than serology and PCR for the diagnosis of a Rickettsia infection.

  8. Reference gene selection for quantitative real-time PCR normalization in Quercus suber.

    Science.gov (United States)

    Marum, Liliana; Miguel, Andreia; Ricardo, Cândido P; Miguel, Célia

    2012-01-01

    The use of reverse transcription quantitative PCR technology to assess gene expression levels requires an accurate normalization of data in order to avoid misinterpretation of experimental results and erroneous analyses. Despite being the focus of several transcriptomics projects, oaks, and particularly cork oak (Quercus suber), have not been investigated regarding the identification of reference genes suitable for the normalization of real-time quantitative PCR data. In this study, ten candidate reference genes (Act, CACs, EF-1α, GAPDH, His3, PsaH, Sand, PP2A, ß-Tub and Ubq) were evaluated to determine the most stable internal reference for quantitative PCR normalization in cork oak. The transcript abundance of these genes was analysed in several tissues of cork oak, including leaves, reproduction cork, and periderm from branches at different developmental stages (1-, 2-, and 3-year old) or collected in different dates (active growth period versus dormancy). The three statistical methods (geNorm, NormFinder, and CV method) used in the evaluation of the most suitable combination of reference genes identified Act and CACs as the most stable candidates when all the samples were analysed together, while ß-Tub and PsaH showed the lowest expression stability. However, when different tissues, developmental stages, and collection dates were analysed separately, the reference genes exhibited some variation in their expression levels. In this study, and for the first time, we have identified and validated reference genes in cork oak that can be used for quantification of target gene expression in different tissues and experimental conditions and will be useful as a starting point for gene expression studies in other oaks.

  9. Reference gene selection for quantitative real-time PCR normalization in Quercus suber.

    Directory of Open Access Journals (Sweden)

    Liliana Marum

    Full Text Available The use of reverse transcription quantitative PCR technology to assess gene expression levels requires an accurate normalization of data in order to avoid misinterpretation of experimental results and erroneous analyses. Despite being the focus of several transcriptomics projects, oaks, and particularly cork oak (Quercus suber, have not been investigated regarding the identification of reference genes suitable for the normalization of real-time quantitative PCR data. In this study, ten candidate reference genes (Act, CACs, EF-1α, GAPDH, His3, PsaH, Sand, PP2A, ß-Tub and Ubq were evaluated to determine the most stable internal reference for quantitative PCR normalization in cork oak. The transcript abundance of these genes was analysed in several tissues of cork oak, including leaves, reproduction cork, and periderm from branches at different developmental stages (1-, 2-, and 3-year old or collected in different dates (active growth period versus dormancy. The three statistical methods (geNorm, NormFinder, and CV method used in the evaluation of the most suitable combination of reference genes identified Act and CACs as the most stable candidates when all the samples were analysed together, while ß-Tub and PsaH showed the lowest expression stability. However, when different tissues, developmental stages, and collection dates were analysed separately, the reference genes exhibited some variation in their expression levels. In this study, and for the first time, we have identified and validated reference genes in cork oak that can be used for quantification of target gene expression in different tissues and experimental conditions and will be useful as a starting point for gene expression studies in other oaks.

  10. Linear-After-The-Exponential (LATE)–PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis

    Science.gov (United States)

    Sanchez, J. Aquiles; Pierce, Kenneth E.; Rice, John E.; Wangh, Lawrence J.

    2004-01-01

    Conventional asymmetric PCR is inefficient and difficult to optimize because limiting the concentration of one primer lowers its melting temperature below the reaction annealing temperature. Linear-After-The-Exponential (LATE)–PCR describes a new paradigm for primer design that renders assays as efficient as symmetric PCR assays, regardless of primer ratio. LATE-PCR generates single-stranded products with predictable kinetics for many cycles beyond the exponential phase. LATE-PCR also introduces new probe design criteria that uncouple hybridization probe detection from primer annealing and extension, increase probe reliability, improve allele discrimination, and increase signal strength by 80–250% relative to symmetric PCR. These improvements in PCR are particularly useful for real-time quantitative analysis of target numbers in small samples. LATE-PCR is adaptable to high throughput applications in fields such as clinical diagnostics, biodefense, forensics, and DNA sequencing. We showcase LATE-PCR via amplification of the cystic fibrosis CFΔ508 allele and the Tay-Sachs disease TSD 1278 allele from single heterozygous cells. PMID:14769930

  11. Quantitative galactomannan detection is superior to PCR in diagnosing and monitoring invasive pulmonary aspergillosis in an experimental rat model

    NARCIS (Netherlands)

    M.J. Becker (Martin); S. de Marie (Siem); D. Willemse; H.A. Verbrugh (Henri); I.A.J.M. Bakker-Woudenberg (Irma)

    2000-01-01

    textabstractTwo diagnostic tests, an Aspergillus-specific PCR and an enzyme-linked immunosorbent assay (ELISA) for the quantitative determination of galactomannan, were compared for diagnosing and monitoring invasive pulmonary aspergillosis. Persistently neutropenic rat

  12. Investigations on abundance and activity of microbial sponge symbionts using quantitative real - time PCR

    DEFF Research Database (Denmark)

    Kumala, Lars; Hentschel, Ute; Bayer, Kristina

    the host. Of particular interest is determining the community structure and function of microbial symbionts in order to gain deeper insight into host-symbiont interactions. We investigated the abundance and activity of microbial symbionts in two Mediterranean sponge species using quantitative real-time PCR....... An absolute quantification of functional genes and transcripts in archaeal and bacterial symbionts was conducted to determine their involvement in nitrification and denitrification, comparing the low microbial abundance (LMA) sponge Dysidea avara with the high microbial abundance (HMA) representative Aplysina...

  13. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, S.H.

    2001-01-01

    The influence of arbuscular mycorrhizal fungi (AMF) on the expression of plant nutrient transporters was studied using a relative. quantitative reverse-transcription polymerase chain-reaction (RQRT-PCR) technique. Reverse-transcribed 18S rRNA was used to standardize the treatments. The technique...... had high reproducibility and reflected trends in gene expression as observed by Northern blotting. Using this technique, it was demonstrated that both the high-affinity phosphate transporter MtPt2 and a putative nitrate transporter from Medicago truncatula were down-regulated in roots when colonized...

  14. Development of real time PCR for detection and quantitation of Dengue Viruses

    Directory of Open Access Journals (Sweden)

    Singh A

    2009-01-01

    Full Text Available Abstract Background Dengue virus (DENV, a mosquito borne flavivirus is an important pathogen causing more than 50 million infections every year around the world. Dengue diagnosis depends on serology, which is not useful in the early phase of the disease and virus isolation, which is laborious and time consuming. There is need for a rapid, sensitive and high throughput method for detection of DENV in the early stages of the disease. Several real-time PCR assays have been described for dengue viruses, but there is scope for improvement. The new generation TaqMan Minor Groove Binding (MGB probe approach was used to develop an improved real time RT-PCR (qRT-PCR for DENV in this study. Results The 3'UTR of thirteen Indian strains of DENV was sequenced and aligned with 41 representative sequences from GenBank. A region conserved in all four serotypes was used to target primers and probes for the qRT-PCR. A single MGB probe and a single primer pair for all the four serotypes of DENV were designed. The sensitivity of the two step qRT-PCR assay was10 copies of RNA molecules per reaction. The specificity and sensitivity of the assay was 100% when tested with a panel of 39 known positive and negative samples. Viral RNA could be detected and quantitated in infected mouse brain, cell cultures, mosquitoes and clinical samples. Viral RNA could be detected in patients even after seroconversion till 10 days post onset of infection. There was no signal with Japanese Encephalitis (JE, West Nile (WN, Chikungunya (CHK viruses or with Leptospira, Plasmodium vivax, Plasmodium falciparum and Rickettsia positive clinical samples. Conclusion We have developed a highly sensitive and specific qRT-PCR for detection and quantitation of dengue viruses. The assay will be a useful tool for differential diagnosis of dengue fever in a situation where a number of other clinically indistinguishable infectious diseases like malaria, Chikungunya, rickettsia and leptospira occur. The

  15. Enumeration of viable non-culturable Vibrio cholerae using propidium monoazide combined with quantitative PCR.

    Science.gov (United States)

    Wu, Bin; Liang, Weili; Kan, Biao

    2015-08-01

    The well-known human pathogenic bacterium, Vibrio cholerae, can enter a physiologically viable but non-culturable (VBNC) state under stress conditions. The differentiation of VBNC cells and nonviable cells is essential for both disease prevention and basic research. Among all the methods for detecting viability, propidium monoazide (PMA) combined with real-time PCR is popular because of its specificity, sensitivity, and speed. However, the effect of PMA treatment is not consistent and varies among different species and conditions. In this study, with an initial cell concentration of 1×10(8) CFU/ml, time and dose-effect relationships of different PMA treatments were evaluated via quantitative real-time PCR using live cell suspensions, dead cell suspensions and VBNC cell suspensions of V. cholerae O1 El Tor strain C6706. The results suggested that a PMA treatment of 20 μM PMA for 20 min was optimal under our conditions. This treatment maximized the suppression of the PCR signal from membrane-compromised dead cells but had little effect on the signal from membrane-intact live cells. In addition to the characteristics of PMA treatment itself, the initial concentration of the targeted bacteria showed a significant negative influence on the stability of PMA-PCR assay in this study. We developed a strategy that mimicked a 1×10(8) CFU/ml cell concentration with dead bacteria of a different bacterial species, the DNA of which cannot be amplified using the real time PCR primers. With this strategy, our optimal approach successfully overcame the impact of low cell density and generated stable and reliable results for counting viable cells of V. cholerae in the VBNC state.

  16. A quantitative real-time RT-PCR assay for mature C. albicans biofilms

    Directory of Open Access Journals (Sweden)

    Dongari-Bagtzoglou Anna

    2011-05-01

    Full Text Available Abstract Background Fungal biofilms are more resistant to anti-fungal drugs than organisms in planktonic form. Traditionally, susceptibility of biofilms to anti-fungal agents has been measured using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxyanilide (XTT assay, which measures the ability of metabolically active cells to convert tetrazolium dyes into colored formazan derivatives. However, this assay has limitations when applied to high C. albicans cell densities because substrate concentration and solubility are limiting factors in the reaction. Because mature biofilms are composed of high cell density populations we sought to develop a quantitative real-time RT-PCR assay (qRT-PCR that could accurately assess mature biofilm changes in response to a wide variety of anti-fungal agents, including host immune cells. Results The XTT and qRT-PCR assays were in good agreement when biofilm changes were measured in planktonic cultures or in early biofilms which contain lower cell densities. However, the real-time qRT-PCR assay could also accurately quantify small-medium size changes in mature biofilms caused by mechanical biomass reduction, antifungal drugs or immune effector cells, that were not accurately quantifiable with the XTT assay. Conclusions We conclude that the qRT-PCR assay is more accurate than the XTT assay when measuring small-medium size effects of anti-fungal agents against mature biofilms. This assay is also more appropriate when mature biofilm susceptibility to anti-fungal agents is tested on complex biological surfaces, such as organotypic cultures.

  17. Identification of Candidate Reference Genes in Perennial Ryegrass for Quantitative RT-PCR under Various Abiotic Stress Conditions

    OpenAIRE

    2014-01-01

    BACKGROUND: Quantitative real-time reverse-transcriptase PCR (qRT-PCR) is an important technique for analyzing differences in gene expression due to its sensitivity, accuracy and specificity. However, the stability of the expression of reference genes is necessary to ensure accurate qRT-PCR assessment of expression in genes of interest. Perennial ryegrass (Lolium perenne L.) is important forage and turf grass species in temperate regions, but the expression stability of its reference genes un...

  18. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains.

    Science.gov (United States)

    de Gier, Camilla; Pickering, Janessa L; Richmond, Peter C; Thornton, Ruth B; Kirkham, Lea-Ann S

    2016-09-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001).

  19. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers

    DEFF Research Database (Denmark)

    Balcells, Ingrid; Cirera Salicio, Susanna; Busk, Peter K.

    2011-01-01

    be designed with a success rate of 94%. The method was able to quantify synthetic templates over eight orders of magnitude and readily discriminated between microRNAs with single nucleotide differences. Importantly, PCR with DNA primers yielded significantly higher amplification efficiencies of biological...... samples than a similar method based on locked nucleic acids-spiked primers, which is in agreement with the observation that locked nucleic acid interferes with efficient amplification of short templates. The higher amplification efficiency of DNA primers translates into higher sensitivity and precision...... settings. RESULTS: We describe a PCR method for quantification of microRNAs based on a single reverse transcription reaction for all microRNAs combined with real-time PCR with two, microRNA-specific DNA primers. Primer annealing temperatures were optimized by adding a DNA tail to the primers and could...

  20. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    Science.gov (United States)

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  1. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    Science.gov (United States)

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  2. Detection of Actinobacillus pleuropneumoniae in pigs by real-time quantitative PCR for the apxIVA gene

    NARCIS (Netherlands)

    Tobias, T.J.; Bouma, A.; Klinkenberg, D.; Daemen, A.J.J.M.; Stegeman, J.A.; Wagenaar, J.A.; Duim, B.

    2012-01-01

    A real-time quantitative PCR (qPCR) for detection of the apxIVA gene of Actinobacillus pleuropneumoniae was validated using pure cultures of A. pleuropneumoniae and tonsillar and nasal swabs from experimentally inoculated Caesarean-derived/colostrum-deprived piglets and naturally infected convention

  3. Limitations of the use of group-specific primers in real-time PCR as appear from quantitative analyses of closely related ammonia-oxidising species

    NARCIS (Netherlands)

    Sekido, T.; Bodelier, P.L.E.; Shoji, T.; Suwa, Y.; Laanbroek, R.

    2008-01-01

    To study the ecology of ammonia-oxidising bacteria (AOB), quantitative techniques are essential. Real-time PCR assays based on the 16S rRNA or on the structural amoA gene are routinely used. The CTO primer set rooted on the 16S rRNA gene has a number of mismatches with some of the cultures of AOB. T

  4. Quantitative detection of Borrelia burgdorferi sensu lato in erythema migrans skin lesions using internally controlled duplex real time PCR.

    Directory of Open Access Journals (Sweden)

    Maria O'Rourke

    Full Text Available B. burgdorferi sensu stricto, B. afzelii, B. garinii and B. bavariensis are the principal species which account for Lyme borreliosis (LB globally. We have developed an internally controlled duplex quantitative real time PCR assay targeting the Borrelia 16S rRNA and the human RNAseP genes. This assay is well-suited for laboratory confirmation of suspected cases of LB and will be used to assess the efficacy of a vaccine against LB in clinical trials. The assay is highly specific, successfully detecting DNA extracted from 83 diverse B. burgdorferi sensu lato strains representing all major species causing LB, while 21 unrelated microbial species and human genomic DNA tested negative. The assay was highly reproducible and sensitive, with a lower limit of detection of 6 copies per PCR reaction. Together with culture, the assay was used to evaluate paired 3 mm skin biopsy samples taken from 121 patients presenting with solitary erythema migrans (EM lesion. PCR testing identified more positive biopsy samples than culture (77.7% PCR positive versus 55.1% culture positive and correctly identified all specimens scored as culture positive. OspA-based typing identified the majority of isolates as B. afzelii (96.8% and the bacterial load was significantly higher in culture positive biopsies than in culture negative biopsies (P<0.001. The quantitative data also enabled relationships between Borrelia burden and patient symptoms to be evaluated. The bacterial load was significantly higher among patients with systemic symptoms than without (P = 0.02 and was significantly higher for biopsies retrieved from patients with EM lesions with central clearing (P<0.001. 16S copy numbers were moderately lower in samples from patients reporting a history of LB (P = 0.10. This is the first quantitative PCR study of human skin biopsies predominantly infected with B. afzelii and the first study to demonstrate a clear relationship between clinical symptoms in B. afzelii

  5. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation.

    Science.gov (United States)

    Zubakov, Dmitry; Boersma, Anton W M; Choi, Ying; van Kuijk, Patricia F; Wiemer, Erik A C; Kayser, Manfred

    2010-05-01

    MicroRNAs (miRNAs) are non-protein coding molecules with important regulatory functions; many have tissue-specific expression patterns. Their very small size in principle makes them less prone to degradation processes, unlike messenger RNAs (mRNAs), which were previously proposed as molecular tools for forensic body fluid identification. To identify suitable miRNA markers for forensic body fluid identification, we first screened total RNA samples derived from saliva, semen, vaginal secretion, and venous and menstrual blood for the expression of 718 human miRNAs using a microarray platform. All body fluids could be easily distinguished from each other on the basis of complete array-based miRNA expression profiles. Results from quantitative reverse transcription PCR (RT-PCR; TaqMan) assays for microarray candidate markers confirmed strong over-expression in the targeting body fluid of several miRNAs for venous blood and several others for semen. However, no candidate markers from array experiments for other body fluids such as saliva, vaginal secretion, or menstrual blood could be confirmed by RT-PCR. Time-wise degradation of venous blood and semen stains for at least 1 year under lab conditions did not significantly affect the detection sensitivity of the identified miRNA markers. The detection limit of the TaqMan assays tested for selected venous blood and semen miRNA markers required only subpicogram amounts of total RNA per single RT-PCR test, which is considerably less than usually needed for reliable mRNA RT-PCR detection. We therefore propose the application of several stable miRNA markers for the forensic identification of blood stains and several others for semen stain identification, using commercially available TaqMan assays. Additional work remains necessary in search for suitable miRNA markers for other forensically relevant body fluids.

  6. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    Science.gov (United States)

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  7. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Van Zeveren Alex

    2005-12-01

    Full Text Available Abstract Background Real-time quantitative PCR is a sensitive and very efficient technique to examine gene transcription patterns in preimplantation embryos, in order to gain information about embryo development and to optimize assisted reproductive technologies. Critical to the succesful application of real-time PCR is careful assay design, reaction optimization and validation to maximize sensitivity and accuracy. In most of the studies published GAPD, ACTB or 18S rRNA have been used as a single reference gene without prior verification of their expression stability. Normalization of the data using unstable controls can result in erroneous conclusions, especially when only one reference gene is used. Results In this study the transcription levels of 8 commonly used reference genes (ACTB, GAPD, Histone H2A, TBP, HPRT1, SDHA, YWHAZ and 18S rRNA were determined at different preimplantation stages (2-cell, 8-cell, blastocyst and hatched blastocyst in order to select the most stable genes to normalize quantitative data within different preimplantation embryo stages. Conclusion Using the geNorm application YWHAZ, GAPD and SDHA were found to be the most stable genes across the examined embryonic stages, while the commonly used ACTB was shown to be highly regulated. We recommend the use of the geometric mean of those 3 reference genes as an accurate normalization factor, which allows small expression differences to be reliably measured.

  8. Influence of segmenting fluids on efficiency, crossing point and fluorescence level in real time quantitative PCR.

    Science.gov (United States)

    Walsh, E J; King, C; Grimes, R; Gonzalez, A

    2006-03-01

    The two-phase segmented flow approach to the processing and quantitative analysis of biological samples in microdevices offers significant advantages over the single-phase continuous flow methodology. Despite this, little is known about the compatibility of samples and reactants with segmenting fluids, although a number of investigators have reported reduced yield and inhibition of enzymatic reactions depending on the segmenting fluid employed. The current study addresses the compatibility of various segmenting fluids with real time quantitative PCR to understand the physicochemical requirements of this important reaction in biotechnology. The results demonstrate that creating a static segmenting fluid/PCR mix interface has a negligible impact on the reaction efficiency, crossing threshold and end fluorescence levels using a variety of segmenting fluids. The implication is then that the previously reported inhibitory effects are the result of the dynamic motion between the segmenting fluid and the sample in continuously flowing systems. The results presented here are a first step towards understanding the limitations of the segmented flow methodology, which are necessary to bring this approach into mainstream use.

  9. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Yue-Jiao Ma

    Full Text Available Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+ cultured at 4 different temperatures (15, 25, 37 and 42°C. Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus.

  10. Validation of reference genes for real-time quantitative RT-PCR studies in Talaromyces marneffei.

    Science.gov (United States)

    Dankai, Wiyada; Pongpom, Monsicha; Vanittanakom, Nongnuch

    2015-11-01

    Talaromyces marneffei (or Penicillium marneffei) is an opportunistic pathogen that can cause disseminated disease in human immunodeficiency virus (HIV)-infected patients, especially in Southeast Asia. T. marneffei is a thermally dimorphic fungus. Typically, T. marneffei has an adaptive morphology. It grows in a filamentous form (mould) at 25°C and can differentiate to produce asexual spores (conidia). In contrast, at 37°C, it grows as yeast cells that divide by fission. This study aimed to validate a quantitative reverse-transcription polymerase chain reaction (qRT-PCR) for gene expression analysis in T. marneffei. Analysis of relative gene expression by qRT-PCR requires normalization of data using a proper reference gene. However, suitable reference genes have not been identified in gene expression studies across different cell types or under different experimental conditions in T. marneffei. In this study, four housekeeping genes were selected for analysis: β-actin (act); glyceraldehyde-3-phosphate dehydrogenase (gapdh); β-tubulin (benA) and 18S rRNA. Two analysis programs; BestKeeper and geNorm software tools were used to validate the expression of the candidate normalized genes. The results indicated that the actin gene was the one which was most stably expressed and was recommended for use as the endogenous control for gene expression analysis of all growth forms in T. marneffei by qRT-PCR under normal and stress conditions.

  11. Evaluation of reference genes for real-time quantitative PCR in the marine flavobacterium Zobellia galactanivorans.

    Science.gov (United States)

    Thomas, François; Barbeyron, Tristan; Michel, Gurvan

    2011-01-01

    The marine bacteria Zobellia galactanivorans is an emerging model microorganism for the bioconversion of algal polysaccharides. The sequence analysis of its genome opens the way to in-depth gene expression analysis, such as reverse transcription quantitative PCR (RT-qPCR) studies. The selection and validation of reference genes are a mandatory first step for the accurate quantification of transcripts. We selected fourteen candidate reference genes belonging to distinct pathways, namely replication, transcription, translation, citric acid cycle, amino acid, nucleotide and dihydrofolate metabolisms, and peptidoglycan, FMN and aromatic compounds synthesis. We quantified their expression by RT-qPCR in various culture conditions corresponding to different temperatures, carbon sources or stresses. The applications geNorm and Normfinder allowed ranking the genes according to their stability and gave concordant results. We found that the geometric average of the expression of glyA, icdA and gmkA can be confidently used to normalize the transcript abundance of genes of interest. In conclusion, this work provides a reliable procedure for gene expression analysis in the flavobacterium Z. galactanivorans and a validated set of reference genes to be used in future transcriptomics approaches. The strategy developed could also be the starting point for similar studies in other members of the Flavobacteria class.

  12. [Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA].

    Science.gov (United States)

    Kiseleva, Y Y; Ptitsyn, K G; Radko, S P; Zgoda, V G; Archakov, A I

    2016-05-01

    MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.

  13. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR.

    Science.gov (United States)

    Ma, Yue-Jiao; Sun, Xiao-Hong; Xu, Xiao-Yan; Zhao, Yong; Pan, Ying-Jie; Hwang, Cheng-An; Wu, Vivian C H

    2015-01-01

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh) in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+) cultured at 4 different temperatures (15, 25, 37 and 42°C). Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus.

  14. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Directory of Open Access Journals (Sweden)

    Mary McMillan

    Full Text Available Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA is sufficient for effective normalisation of qRT-PCR data.

  15. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Science.gov (United States)

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  16. Comparison of conventional PCR, quantitative PCR, bacteriological culture and the Warthin Starry technique to detect Leptospira spp. in kidney and liver samples from naturally infected sheep from Brazil.

    Science.gov (United States)

    Fornazari, Felipe; da Silva, Rodrigo Costa; Richini-Pereira, Virginia Bodelão; Beserra, Hugo Enrique Orsini; Luvizotto, Maria Cecília Rui; Langoni, Helio

    2012-09-01

    Leptospirosis is an infectious disease of worldwide importance. The development of diagnostic techniques allows sick animals to be identified, reservoirs to be eliminated and the disease prevented and controlled. The present study aimed to compare different techniques for diagnosing leptospirosis in sheep. Samples of kidney, liver and blood were collected from 465 animals that originated from a slaughterhouse. The sera were analyzed by the Microscopic Agglutination Test (MAT), and kidney and liver samples of seropositive animals were analyzed using four techniques: bacteriological culture, the Warthin Starry (WS) technique, conventional PCR (cPCR), and quantitative PCR (qPCR). With the MAT, 21 animals were positive (4.5%) to serovars Hardjo (n=12), Hebdomadis (n=5), Sentot (n=2), Wolfii (n=1) and Shermani (n=1). Titers were 100 (n=10), 200 (n=2), 400 (n=6) and 1600 (n=3). No animal was positive by bacteriological culture; four animals were positive by the WS technique in kidney samples; six animals were positive by cPCR in kidney samples; and 11 animals were positive by qPCR, eight of which in kidney samples and three in liver. The bacterial quantification revealed a median of 4.3 bacteria/μL in liver samples and 36.6 bacteria/μL in kidney samples. qPCR presented the highest sensitivity among the techniques, followed by cPCR, the WS technique and bacteriological culture. These results indicate that sheep can carry leptospires of the Sejroe serogroup, and demonstrate the efficiency of quantitative PCR to detect Leptospira spp. in tissue samples.

  17. Development and validation of a quantitative PCR assay using multiplexed hydrolysis probes for detection and quantification of Theileria orientalis isolates and differentiation of clinically relevant subtypes.

    Science.gov (United States)

    Bogema, D R; Deutscher, A T; Fell, S; Collins, D; Eamens, G J; Jenkins, C

    2015-03-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease.

  18. Enrichment followed by quantitative PCR both for rapid detection and as a tool for quantitative risk assessment of food-borne thermotolerant campylobacters.

    Science.gov (United States)

    Josefsen, M H; Jacobsen, N R; Hoorfar, J

    2004-06-01

    As part of a large international project for standardization of PCR (Food-PCR; www.pcr.dk), a multiplex, multiplatform, ready-to-go enrichment followed by a real-time PCR method, including an internal amplification control, was developed for detection of food-borne thermotolerant campylobacters in chickens. Chicken rinse samples were enriched in Bolton broth for 20 h, a simple and rapid (1-h) resin-based DNA extraction was performed, and DNA samples were then tested with two instrument platforms: ABI-PRISM 7700 and RotorGene 3000. The method was validated against an International Standard Organization (ISO)-based culture method by testing low, medium, and high levels of 12 spiked and 66 unspiked, presumably naturally contaminated, chicken rinse samples. In the RotorGene, a positive PCR response was detected in 40 samples of the 66. This was in complete agreement with the enriched ISO culture. The ABI-PRISM 7700 missed one culture-positive sample. Positive samples contained 10(2) to 10(7) CFU/ml after enrichment in Bolton broth. In the enriched samples a detection probability of 95% was obtained at levels of 1 x 10(3) and 2 x 10(3) CFU/ml in the RotorGene and ABI-PRISM, respectively. The amplification efficiency in both platforms was 90%, although the linear range of amplification of purified genomic DNA was 1.5 x 10(1) to 1 x 10(7) (R(2) = 1.00) for the RotorGene and 10(3) to 10(7) (R(2) = 0.99) for the ABI-PRISM. In RotorGene and ABI-PRISM the levels of precision of detection as determined by standard deviation (coefficients of variation) of 6-carboxyfluorescein (FAM) threshold cycle (Ct) values were 0.184 to 0.417 (0.65 to 2.57%) and 0.119 to 0.421 (0.59 to 1.82%), respectively. The results showed a correlation (R(2)) of 0.94 between the target FAM Ct values and CFU per milliliter of enriched naturally contaminated chicken samples, which indicates PCR's additional potential as a tool for quantitative risk assessment. Signal from the internal amplification control

  19. Comparison of a quantitative real-time polymerase chain reaction (qPCR) with conventional PCR, bacterial culture and ELISA for detection of Mycobacterium avium subsp. paratuberculosis infection in sheep showing pathology of Johne's disease.

    Science.gov (United States)

    Sonawane, Ganesh G; Tripathi, Bhupendra N

    2013-12-01

    A quantitative real-time PCR (qPCR) assay employing IS900 gene specific primers of Mycobacterium avium subsp. parartuberculosis (MAP) was compared with conventional PCR, bacterial culture and enzyme-linked immunosorbent assay in 38 sheep showing granulomatous enteritis and lymphadenitis with and without demonstration of acid-fast bacilli (AFB). The lesions were classified as multibacillary (MB) (n = 23), which had diffuse granulomatous lesions with abundant AFB, and paucibacillary (PB) (n = 15), which had focal or multifocal granulomatous lesions with few or no AFB. In the multibacillary group (MB), IS900 PCR detected 19 (82.6%), and qPCR detected all 23 (100%) sheep positive for MAP in the intestine and lymph node tissues. In the paucibacillary group (PB), IS900 PCR detected 2 (13.3%), and qPCR detected all 15 (100%) sheep positive for MAP in tissues. When results of both groups were taken together, IS900 PCR detected 21(55.2%), and qPCR detected all 38 (100%) animals positive for MAP genome either in the intestine or lymph node tissues. On Herrold egg yolk medium, tissues of 14 (60.9%) MB and 5 (33.3%) PB sheep were found to be positive for MAP. Out of 27 sheep (PB = 8, MB = 19) tested by an ELISA, 21 (77.7%) were found to be positive for MAP antibody, of which 25% (2/8) and 100% (19/19) sheep were from PB and MB sheep, respectively. Based on the results of the present study, it was concluded that qPCR was a highly sensitive test in comparison to conventional PCR, ELISA and bacterial culture for the diagnosis of paratuberculosis on infected tissues especially from paucibacillary sheep.

  20. Accurate and objective copy number profiling using real-time quantitative PCR.

    Science.gov (United States)

    D'haene, Barbara; Vandesompele, Jo; Hellemans, Jan

    2010-04-01

    Copy number changes are known to be involved in numerous human genetic disorders. In this context, qPCR-based copy number screening may serve as the method of choice for targeted screening of the relevant disease genes and their surrounding regulatory landscapes. qPCR has many advantages over alternative methods, such as its low consumable and instrumentation costs, fast turnaround and assay development time, high sensitivity and open format (independent of a single supplier). In this chapter we provide all relevant information for a successfully implement of qPCR-based copy number analysis. We emphasize the significance of thorough in silico and empirical validation of the primers, the need for a well thought-out experiment design, and the importance of quality controls along the entire workflow. Furthermore, we suggest an appropriate and practical way to calculate copy numbers and to objectively interpret the results. The provided guidelines will most certainly improve the quality and reliability of your qPCR-based copy number screening.

  1. Quantitative fluorescent-PCR detection of sex chromosome aneuploidies and AZF deletions/duplications.

    Science.gov (United States)

    Plaseski, Toso; Noveski, Predrag; Trivodalieva, Svetlana; Efremov, Georgi D; Plaseska-Karanfilska, Dijana

    2008-12-01

    The most common genetic causes of spermatogenic failure are sex chromosomal abnormalities (most frequently Klinefelter's syndrome) and deletions of the azoospermia factor (AZF) regions (AZFa, AZFb, and AZFc) of the Y chromosome. Several studies have proposed that partial AZFc deletions/duplications may be a risk factor for spermatogenic impairment. We describe a multiplex quantitative fluorescent-polymerase chain reaction (QF-PCR) method that allows simultaneous detection of these genetic causes and risk factors of male infertility. The 11-plex QF-PCR permitted the amplification of the amelogenin gene, four polymorphic X-specific short tandem repeat (STR) markers (XHPRT, DXS6803, DXS981, and exon 1 of the androgen receptor gene), nonpolymorphic Y-specific marker (SRY gene), polymorphic Y-specific STR marker (DYS448), and coamplification of DAZ/DAZL, MYPT2Y/MYPT2, and two CDY2/CDY1 fragments that allow for determination of the DAZ, MYPT2Y, and CDY gene copy number. A total of 357 DNA samples from infertile/subfertile men (n = 205) and fertile controls (n = 152) was studied. We detected 14 infertile males with sex chromosome aneuploidy (10 with Klinefelter's syndrome, 2 XX, and 2 XYY males). All previously detected AZF deletions, that is, AZFc (n8), AZFb (n1), AZFb + c (n1), gr/gr (n11), gr/gr with b2/b4 duplication (n3), and b2/b3 (n5), gave a specific pattern with the 11-plex QF-PCR. In addition, 32 DNA samples showed a pattern consistent with presence of gr/gr or b2/b4 and 4 with b2/b3 duplication. We conclude that multiplex QF-PCR is a rapid, simple, reliable, and inexpensive method that can be used as a first-step genetic analysis in infertile/subfertile patients.

  2. Detection of microcystin-producing cyanobacteria in Missisquoi Bay, Quebec, Canada, using quantitative PCR.

    Science.gov (United States)

    Fortin, Nathalie; Aranda-Rodriguez, Rocio; Jing, Hongmei; Pick, Frances; Bird, David; Greer, Charles W

    2010-08-01

    Toxic cyanobacterial blooms, as well as their increasing global occurrence, pose a serious threat to public health, domestic animals, and livestock. In Missisquoi Bay, Lake Champlain, public health advisories have been issued from 2001 to 2009, and local microcystin concentrations found in the lake water regularly exceeded the Canadian drinking water guideline of 1.5 microg liter(-1). A quantitative PCR (Q-PCR) approach was developed for the detection of blooms formed by microcystin-producing cyanobacteria. Primers were designed for the beta-ketoacyl synthase (mcyD(KS)) and the first dehydratase domain (mcyD(DH)) of the mcyD gene, involved in microcystin synthesis. The Q-PCR method was used to track the toxigenic cyanobacteria in Missisquoi Bay during the summers of 2006 and 2007. Two toxic bloom events were detected in 2006: more than 6.5 x 10(4) copies of the mcyD(KS) gene ml(-1) were detected in August, and an average of 4.0 x 10(4) copies ml(-1) were detected in September, when microcystin concentrations were more than 4 microg liter(-1) and approximately 2 microg liter(-1), respectively. Gene copy numbers and total microcystin concentrations (determined by enzyme-linked immunosorbent assay [ELISA]) were highly correlated in the littoral (r = 0.93, P microcystin concentration was barely detectable. The Q-PCR method allowed the detection of microcystin-producing cyanobacteria when toxins and toxigenic cyanobacterial abundance were still below the limit of detection by high-pressure liquid chromatography (HPLC) and microscopy. Toxin gene copy numbers grew exponentially at a steady rate over a period of 7 weeks. Onshore winds selected for cells with a higher cell quota of microcystin. This technique could be an effective approach for the routine monitoring of the most at-risk water bodies.

  3. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations

    Science.gov (United States)

    Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan

    2014-02-01

    We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure assessment.

  4. Low-cost monitoring of Campylobacter in poultry houses by air sampling and quantitative PCR.

    Science.gov (United States)

    Søndergaard, M S R; Josefsen, M H; Löfström, C; Christensen, L S; Wieczorek, K; Osek, J; Hoorfar, J

    2014-02-01

    The present study describes the evaluation of a method for the quantification of Campylobacter by air sampling in poultry houses. Sampling was carried out in conventional chicken houses in Poland, in addition to a preliminary sampling in Denmark. Each measurement consisted of three air samples, two standard boot swab fecal samples, and one airborne particle count. Sampling was conducted over an 8-week period in three flocks, assessing the presence and levels of Campylobacter in boot swabs and air samples using quantitative real-time PCR. The detection limit for air sampling was approximately 100 Campylobacter cell equivalents (CCE)/m3. Airborne particle counts were used to analyze the size distribution of airborne particles (0.3 to 10 μm) in the chicken houses in relation to the level of airborne Campylobacter. No correlation was found. Using air sampling, Campylobacter was detected in the flocks right away, while boot swab samples were positive after 2 weeks. All samples collected were positive for Campylobacter from week 2 through the rest of the rearing period for both sampling techniques, although levels 1- to 2-log CCE higher were found with air sampling. At week 8, the levels were approximately 10(4) and 10(5) CCE per sample for boot swabs and air, respectively. In conclusion, using air samples combined with quantitative real-time PCR, Campylobacter contamination could be detected earlier than by boot swabs and was found to be a more convenient technique for monitoring and/or to obtain enumeration data useful for quantitative risk assessment of Campylobacter.

  5. Evaluation of internal control for gene expression in Phalaenopsis by quantitative real-time PCR.

    Science.gov (United States)

    Yuan, Xiu-Yun; Jiang, Su-Hua; Wang, Mo-Fei; Ma, Jie; Zhang, Xian-Yun; Cui, Bo

    2014-07-01

    The selection of appropriate reference genes is one of the most important steps to obtain reliable results for normalizing quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) of MADS-box gene in Phalaenopsis. In this study, we cloned 12 candidate reference genes including 18S ribosomal RNA (18S), elongation factor 1 alpha (EF1α), cytoskeletal structural protein actin (ACT1, ACT2, ACT3, ACT4, ACT5), ubiquitin protein (UBQ1 and UBQ2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the cytoskeletal structural proteins α-tubulin (TUA) and β-tubulin (TUB) in Phalaenopsis and evaluated their expression reliability. The expression of these candidate reference genes was analyzed using geNorm and normFinder software packages; the results showed that ACT2 and ACT4 were the highest stability reference genes for all experiment sets based on normFinder, followed by ACT1 or ACT3, while ACT3 and ACT4 were the highest stability reference genes for most experiment sets based on geNorm, then TUB or others. Taken together, Actin genes were the higher stability reference genes for all tissues at total developmental stages, and similar results came from analysis by normFinder. According to geNorm analysis, ACT3 and ACT4 were the most stable reference genes for all tissues tested and tissues at reproductive stages; TUB and ACT5 or ACT4 were the most stable reference genes for vegetative tissues or roots. The most stable reference genes for all vegetative tissues and only leaves were ACT4 and ACT5, ACT2 and ACT3, respectively; ACT1 and ACT3 were the most stable genes and sufficient for reliable normalization of flower tissues. While EF1α, UBQ1, UBQ2, and GAPDH were found to be unsuitable as a reference gene in our analysis for flower tissues, total tissues, and reproductive stages; UBQ2 and 18S were identified as the least stable reference genes for vegetative tissues at different stages, different tissues at vegetative stages; TUA and 18S were the

  6. Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages.

    Science.gov (United States)

    Zarivi, Osvaldo; Cesare, Patrizia; Ragnelli, Anna Maria; Aimola, Pierpaolo; Leonardi, Marco; Bonfigli, Antonella; Colafarina, Sabrina; Poma, Anna Maria; Miranda, Michele; Pacioni, Giovanni

    2015-08-01

    The symbiotic fungus Tuber melanosporum Vittad. (Périgord black truffle) belongs to the Ascomycota and forms mutualistic symbiosis with tree and shrub roots. This truffle has a high value in a global market and is cultivated in many countries of both hemispheres. The publication of the T. melanosporum genome has given researchers unique opportunities to learn more about the biology of the fungus. Real-time quantitative PCR (qRT-PCR) is a definitive technique for quantitating differences in transcriptional gene expression levels between samples. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. These housekeeping genes must show stable expression under given experimental conditions for the qRT-PCR results to be accurate. Unfortunately, there are no studies on the stability of housekeeping genes used in T. melanosporum development. In this study, we present a morphological and microscopical classification of the developmental stages of T. melanosporum fruit body, and investigate the expression levels of 12 candidate reference genes (18S rRNA; 5.8S rRNA; Elongation factor 1-alpha; Elongation factor 1-beta; α-tubulin; 60S ribosomal protein L29; β-tubulin; 40S ribosomal protein S1; 40S ribosomal protein S3; Glucose-6-phosphate dehydrogenase; β-actin; Ubiquitin-conjugating enzyme). To evaluate the suitability of these genes as endogenous controls, five software-based approaches and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. We demonstrate here that the 18S rRNA gene shows the most stable expression during T. melanosporum development and that a set of three genes, 18S rRNA, Elongation factor 1-alpha and 40S ribosomal protein S3, is the most suitable to normalize qRT-PCR data from all the analyzed developmental stages; conversely, 18S rRNA, Glucose-6-phosphate dehydrogenase and Elongation factor 1-alpha are the most suitable

  7. Development of a quantitative real-time PCR assay for detection of Vibrio tubiashii targeting the metalloprotease gene.

    Science.gov (United States)

    Gharaibeh, Dima N; Hasegawa, Hiroaki; Häse, Claudia C

    2009-03-01

    Vibrio tubiashii has recently re-emerged as a pathogen of bivalve larvae, causing a marked increase in the mortality of these species within shellfish rearing facilities. This has resulted in substantial losses of seed production and thus created the need for specific as well as sensitive detection methods for this pathogen. In this project, quantitative PCR (qPCR) primers were developed and optimized based upon analysis of the V. tubiashii vtpA gene sequence, encoding a metalloprotease known to cause larval mortality. Standard curves were developed utilizing dilutions of known quantities of V. tubiashii cells that were compared to colony forming unit (CFU) plate counts. The assay was optimized for detection of vtpA with both lab-grown V. tubiashii samples and filter-captured environmental seawater samples seeded with V. tubiashii. In addition, the primers were confirmed to specifically detect only V. tubiashii when tested against a variety of non-target Vibrio species. Validation of the assay was completed by analyzing samples obtained from a shellfish hatchery. The development of this rapid and sensitive assay for quantitative detection of V. tubiashii will accurately determine levels of this bacterium in a variety of seawater samples, providing a useful tool for oyster hatcheries and a method to assess the presence of this bacterium in the current turbulent ocean environment.

  8. Estimating marginal properties of quantitative real-time PCR data using nonlinear mixed models

    DEFF Research Database (Denmark)

    Gerhard, Daniel; Bremer, Melanie; Ritz, Christian

    2014-01-01

    A unified modeling framework based on a set of nonlinear mixed models is proposed for flexible modeling of gene expression in real-time PCR experiments. Focus is on estimating the marginal or population-based derived parameters: cycle thresholds and ΔΔc(t), but retaining the conditional mixed model...... to a reference gene at several states after phosphate resupply. In a small simulation study the performance of the proposed method is evaluated and compared to a standard method....

  9. Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment.

    Science.gov (United States)

    Shannon, K E; Lee, D-Y; Trevors, J T; Beaudette, L A

    2007-08-15

    Bacteria were detected at five stages of municipal wastewater treatment using TaqMan(R) real-time quantitative PCR (qPCR). Thirteen probe and primer sets were tested for diverse pathogens that may be present in wastewater, including Aeromonas hydrophila, Bacillus cereus, Clostridium perfringens, Enterococcus faecalis, Escherichia coli, E. coli O157:H7, Helicobacter pylori, Klebsiella pneumoniae, Legionella pneumophila, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella sp., and Staphylococcus aureus. The sensitivity of the assay was 100 fg of genomic DNA (=22 gene copies), based on a standard curve generated using A. hydrophila purified DNA. Samples from five stages of wastewater treatment were collected, including raw wastewater, primary effluents, mixed liquor, waste activated sludge and final effluents. In duplicate samples, E. coli, K. pneumoniae, C. perfringens and E. faecalis were detected throughout the wastewater process, and their numbers decreased by 3.52-3.98, 4.23-4.33, 3.15-3.39, and 3.24 orders of magnitude respectively, between the raw wastewater and final effluent stage. This qPCR method was effective for the detection of pathogens in wastewater and confirmed that the risk of exposure to pathogens in the wastewater discharge was well within the Environment Canada guidelines.

  10. Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae.

    Directory of Open Access Journals (Sweden)

    Yifan Zhai

    Full Text Available To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR data, normalization relative to reliable reference gene(s is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin, were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population, and abiotic (photoperiod, temperature conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper and one web-based comprehensive tool (RefFinder were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.

  11. Microfluidics-Based PCR for Fusion Transcript Detection.

    Science.gov (United States)

    Chen, Hui

    2016-01-01

    The microfluidic technology allows the production of network of submillimeter-size fluidic channels and reservoirs in a variety of material systems. The microfluidic-based polymerase chain reaction (PCR) allows automated multiplexing of multiple samples and multiple assays simultaneously within a network of microfluidic channels and chambers that are co-ordinated in controlled fashion by the valves. The individual PCR reaction is performed in nanoliter volume, which allows testing on samples with limited DNA and RNA. The microfluidics devices are used in various types of PCR such as digital PCR and single molecular emulsion PCR for genotyping, gene expression, and miRNA expression. In this chapter, the use of a microfluidics-based PCR for simultaneous screening of 14 known fusion transcripts in patients with leukemia is described.

  12. Exploring the Bacterial Diversity of Belgian Steak Tartare Using Metagenetics and Quantitative Real-Time PCR Analysis.

    Science.gov (United States)

    Delhalle, L; Korsak, N; Taminiau, B; Nezer, C; Burteau, S; Delcenserie, V; Poullet, J B; Daube, G

    2016-02-01

    Steak tartare is a popular meat dish in Belgium. It is prepared with raw minced beef and is eaten with sauce, vegetables, and spices. Because it contains raw meat, steak tartare is highly prone to bacterial spoilage. The objective of this study was to explore the diversity of bacterial flora in steak tartare in Belgium according to the source and to determine which bacteria are able to grow during shelf life. A total of 58 samples from butchers' shops, restaurants, sandwich shops, and supermarkets were collected. These samples were analyzed using 16S rDNA metagenetics, a classical microbiological technique, and quantitative real-time PCR (qPCR) targeting the Lactobacillus genus. Samples were analyzed at the beginning and at the end of their shelf life, except for those from restaurants and sandwich shops, which were analyzed only on the purchase date. Metagenetic analysis identified up to 180 bacterial species and 90 genera in some samples. But only seven bacterial species were predominant in the samples, depending on the source: Brochothrix thermosphacta, Lactobacillus algidus, Lactococcus piscium, Leuconostoc gelidum, Photobacterium kishitani, Pseudomonas spp., and Xanthomonas oryzae. With this work, an alternative method is proposed to evaluate the total flora in food samples based on the number of reads from metagenetic analysis and the results of qPCR. The degree of underestimation of aerobic plate counts at 30°C estimated with the classical microbiology method was demonstrated in comparison with the proposed culture-independent method. Compared with culture-based methods, metagenetic analysis combined with qPCR targeting Lactobacillus provides valuable information for characterizing the bacterial flora of raw meat.

  13. Method Specific Calibration Corrects for DNA Extraction Method Effects on Relative Telomere Length Measurements by Quantitative PCR.

    Science.gov (United States)

    Seeker, Luise A; Holland, Rebecca; Underwood, Sarah; Fairlie, Jennifer; Psifidi, Androniki; Ilska, Joanna J; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Banos, Georgios; Nussey, Daniel H

    2016-01-01

    Telomere length (TL) is increasingly being used as a biomarker in epidemiological, biomedical and ecological studies. A wide range of DNA extraction techniques have been used in telomere experiments and recent quantitative PCR (qPCR) based studies suggest that the choice of DNA extraction method may influence average relative TL (RTL) measurements. Such extraction method effects may limit the use of historically collected DNA samples extracted with different methods. However, if extraction method effects are systematic an extraction method specific (MS) calibrator might be able to correct for them, because systematic effects would influence the calibrator sample in the same way as all other samples. In the present study we tested whether leukocyte RTL in blood samples from Holstein Friesian cattle and Soay sheep measured by qPCR was influenced by DNA extraction method and whether MS calibration could account for any observed differences. We compared two silica membrane-based DNA extraction kits and a salting out method. All extraction methods were optimized to yield enough high quality DNA for TL measurement. In both species we found that silica membrane-based DNA extraction methods produced shorter RTL measurements than the non-membrane-based method when calibrated against an identical calibrator. However, these differences were not statistically detectable when a MS calibrator was used to calculate RTL. This approach produced RTL measurements that were highly correlated across extraction methods (r > 0.76) and had coefficients of variation lower than 10% across plates of identical samples extracted by different methods. Our results are consistent with previous findings that popular membrane-based DNA extraction methods may lead to shorter RTL measurements than non-membrane-based methods. However, we also demonstrate that these differences can be accounted for by using an extraction method-specific calibrator, offering researchers a simple means of accounting for

  14. Method Specific Calibration Corrects for DNA Extraction Method Effects on Relative Telomere Length Measurements by Quantitative PCR

    Science.gov (United States)

    Holland, Rebecca; Underwood, Sarah; Fairlie, Jennifer; Psifidi, Androniki; Ilska, Joanna J.; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Banos, Georgios; Nussey, Daniel H.

    2016-01-01

    Telomere length (TL) is increasingly being used as a biomarker in epidemiological, biomedical and ecological studies. A wide range of DNA extraction techniques have been used in telomere experiments and recent quantitative PCR (qPCR) based studies suggest that the choice of DNA extraction method may influence average relative TL (RTL) measurements. Such extraction method effects may limit the use of historically collected DNA samples extracted with different methods. However, if extraction method effects are systematic an extraction method specific (MS) calibrator might be able to correct for them, because systematic effects would influence the calibrator sample in the same way as all other samples. In the present study we tested whether leukocyte RTL in blood samples from Holstein Friesian cattle and Soay sheep measured by qPCR was influenced by DNA extraction method and whether MS calibration could account for any observed differences. We compared two silica membrane-based DNA extraction kits and a salting out method. All extraction methods were optimized to yield enough high quality DNA for TL measurement. In both species we found that silica membrane-based DNA extraction methods produced shorter RTL measurements than the non-membrane-based method when calibrated against an identical calibrator. However, these differences were not statistically detectable when a MS calibrator was used to calculate RTL. This approach produced RTL measurements that were highly correlated across extraction methods (r > 0.76) and had coefficients of variation lower than 10% across plates of identical samples extracted by different methods. Our results are consistent with previous findings that popular membrane-based DNA extraction methods may lead to shorter RTL measurements than non-membrane-based methods. However, we also demonstrate that these differences can be accounted for by using an extraction method-specific calibrator, offering researchers a simple means of accounting for

  15. Selection of Suitable Reference Genes for Quantitative Real-Time PCR Normalization in Three Types of Rat Adipose Tissue.

    Science.gov (United States)

    Zhang, Wan-Xia; Fan, Jie; Ma, Jing; Rao, Yi-Song; Zhang, Li; Yan, You-E

    2016-06-22

    Quantitative real-time PCR (qRT-PCR) is the most classical technique in the field of gene expression study. This method requires an appropriate reference gene to normalize mRNA levels. In this study, the expression stability of four frequently-used reference genes in epididymal white adipose tissue (eWAT), inguinal beige adipose tissue (iBeAT) and brown adipose tissue (BAT) from obese and lean rats were evaluated by geNorm, NormFinder and BestKeeper. Based on the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, the two most stable reference genes were recommended in each type of adipose tissue. Two target genes were applied to test the stability of the reference genes. The geNorm and NormFinder results revealed that GAPDH and 36B4 exhibited the highest expression stabilities in eWAT, while 36B4 and β-actin had the highest expression stabilities in iBeAT and BAT. According to the results of the BestKeeper analysis, 36B4 was the most stable gene in eWAT, iBeAT and BAT, in terms of the coefficient of variance. In terms of the coefficient of correlation, GAPDH, 36B4 and β-actin were the most stable genes in eWAT, iBeAT and BAT, respectively. Additionally, expected results and statistical significance were obtained using a combination of two suitable reference genes for data normalization. In conclusion, 36B4 and GAPDH, in combination, are the best reference genes for eWAT, while 36B4 and β-actin are two most suitable reference genes for both iBeAT and BAT. We recommend using these reference genes accordingly.

  16. Evaluation and comparison of SYBR Green I Real-Time PCR and TaqMan Real-Time PCR methods for quantitative assay of Listeria monocytogenes in nutrient broth and milk

    OpenAIRE

    Karatzas, Kimon Andreas G.

    2012-01-01

    Specific traditional plate count method and real-time PCR systems based on SYBR Green I and TaqMan technologies using a specific primer pair and probe for amplification of iap-gene were used for quantitative assay of Listeria monocytogenes in seven decimal serial dilution series of nutrient broth and milk samples containing 1.58 to 1.58×107 cfu /ml and the real-time PCR methods were compared with the plate count method with respect to accuracy and sensitivity. In this study, the plate count m...

  17. High Specificity of Quantitative Methylation-Specific PCR Analysis for MGMT Promoter Hypermethylation Detection in Gliomas

    Directory of Open Access Journals (Sweden)

    Paola Parrella

    2009-01-01

    Full Text Available Normal brain tissue from 28 individuals and 50 glioma samples were analyzed by real-time Quantitative Methylation-Specific PCR (QMSP. Data from this analysis were compared with results obtained on the same samples by MSP. QMSP analysis demonstrated a statistically significant difference in both methylation level (P=.000009 Mann Whitney Test and frequencies (P=.0000007, Z-test in tumour samples as compared with normal brain tissues. Although QMSP and MSP showed similar sensitivity, the specificity of QMSP analysis was significantly higher (93%; CI95%: 84%–100% as compared with MSP (64%; 95%CI: 46%–82%. Our results suggest that QMSP analysis may represent a powerful tool to identify glioma patients that will benefit from alkylating agents chemotherapy.

  18. Reference gene selection for quantitative real-time PCR normalization in larvae of three species of Grapholitini (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Ridgeway, Jaryd A; Timm, Alicia E

    2015-01-01

    Despite the agricultural importance of species in the Grapholitini (Lepidoptera: Tortricidae), and the value of gene expression analysis for improved population management, few gene expression studies based on quantitative real-time PCR (qPCR) have been conducted for this tribe. Part of the reason for this lack of information is that suitable reference genes, which are fundamental for accurate normalization of qPCR studies, have not been identified for the tribe. Thus, the expression stability of six potential reference genes (ACT, AK, COI, EF1, ENO and TUB) was assessed in three different tissues (whole body, midgut and cuticle) of Cryptophlebia peltastica (Meyrick), Cydia pomonella (L.) and Thaumatotibia leucotreta (Meyrick). Additionally, these reference genes were tested using T. leucotreta at different temperatures (15°C, 25°C and 35°C) with and without baculovirus infection. Suitable reference genes were identified for the whole body and midgut tissue of all three species, and for cuticle tissue of Cy. pomonella and T. leucotreta. When T. leucotreta was infected with the virus at all temperature conditions ACT, AK and EF1 were found to be the most suitable reference genes for experimental normalization. In general, for all tissue types, species and stress conditions, AK and EF1 were the best-performing reference genes. However, even though the three species analysed were closely related and within the same tribe, each species required varying gene combinations for suitable normalization. This study provides the first reference gene evaluation for the Tortricidae, and paves the way for future qPCR analysis in Tortricidae.

  19. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR.

    Science.gov (United States)

    Kuiper, Melanie W; Valster, Rinske M; Wullings, Bart A; Boonstra, Harry; Smidt, Hauke; van der Kooij, Dick

    2006-09-01

    A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 x 10(-1) and 1.14 x 10(4) cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 +/- 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (> or =98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water.

  20. Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR.

    Science.gov (United States)

    Ajaz, Saima; Czajka, Anna; Malik, Afshan

    2015-01-01

    We describe a protocol to accurately measure the amount of human mitochondrial DNA (MtDNA) in peripheral blood samples which can be modified to quantify MtDNA from other body fluids, human cells, and tissues. This protocol is based on the use of real-time quantitative PCR (qPCR) to quantify the amount of MtDNA relative to nuclear DNA (designated the Mt/N ratio). In the last decade, there have been increasing numbers of studies describing altered MtDNA or Mt/N in circulation in common nongenetic diseases where mitochondrial dysfunction may play a role (for review see Malik and Czajka, Mitochondrion 13:481-492, 2013). These studies are distinct from those looking at genetic mitochondrial disease and are attempting to identify acquired changes in circulating MtDNA content as an indicator of mitochondrial function. However, the methodology being used is not always specific and reproducible. As more than 95 % of the human mitochondrial genome is duplicated in the human nuclear genome, it is important to avoid co-amplification of nuclear pseudogenes. Furthermore, template preparation protocols can also affect the results because of the size and structural differences between the mitochondrial and nuclear genomes. Here we describe how to (1) prepare DNA from blood samples; (2) pretreat the DNA to prevent dilution bias; (3) prepare dilution standards for absolute quantification using the unique primers human mitochondrial genome forward primer (hMitoF3) and human mitochondrial genome reverse primer(hMitoR3) for the mitochondrial genome, and human nuclear genome forward primer (hB2MF1) and human nuclear genome reverse primer (hB2MR1) primers for the human nuclear genome; (4) carry out qPCR for either relative or absolute quantification from test samples; (5) analyze qPCR data; and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high-throughput use.

  1. Quantitative analysis of colonization with real-time PCR to identify the role of Oxalobacter formigenes in calcium oxalate urolithiasis.

    Science.gov (United States)

    Batislam, Ertan; Yilmaz, Erdal; Yuvanc, Ercan; Kisa, Ozgul; Kisa, Ucler

    2012-10-01

    The objective of the study was to quantitatively measure the number of Oxalobacter formigenes (O. formigenes) colonizations in the gastrointestinal tract in calcium oxalate-forming patients with real-time polymerase chain reaction (PCR). Calcium oxalate-forming patients (n: 27) were included in the study. Serum calcium, sodium, potassium, urea and creatinine levels, as well as 24 h urine levels of calcium and oxalate were measured. The numbers of O. formigenes colonies in stool samples were detected by real-time PCR. One or two metabolic abnormalities were detected in 15 of 27 patients. The O. formigenes levels in patients with metabolic disturbance were significantly decreased when compared to the patients with no metabolic abnormalities (p: 0.038). The undetectable levels of O. formigenes were encountered in one of five patients with hypercalciuria, in three of four patients with hyperoxaluria and in four of six patients with both hypercalciuria and hyperoxaluria. In nine patients with a history of stone recurrence, O. formigenes colonization was significantly lower than the patients with the first stone attack (p: 0.001). O. formigenes formation ceased or significantly diminished in patients with calcium oxalate stones with a coexistence of both hyperoxaluria and hypercalciuria. The measurement of O. formigenes colonies by real-time PCR seemed to be an inconvenient and expensive method. For this reason, the real-time PCR measurements can be spared for the patients with stone recurrences and with metabolic abnormalities like hypercalciuria and hyperoxaluria. The exact measurement of O. formigenes may also help more accurate programming of O. formigenes-based treatments.

  2. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    Science.gov (United States)

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations.

  3. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  4. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  5. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae.

    Directory of Open Access Journals (Sweden)

    Meng Sun

    Full Text Available The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA, elongation factor 1 (EF1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, ribosomal protein S13 (RPS13, ribosomal protein S20 (RPS20, tubulin (TUB, and β-actin (ACTB were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1 were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands. 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults. 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C. To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83 was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  6. [Evaluation of reference genes for quantitative real-time PCR normalization in cotton bollworm, Helicoverna armigera].

    Science.gov (United States)

    Chandra, G Sharath; Asokan, R; Manamohan, M; Kumar, N K K; Sita, T

    2014-01-01

    Reverse-transcription quantitative real-time PCR (RT-qPCR), a sensitive technique is being extensively employed in quantification of gene expression. However this requires normalization with suitable reference gene (RG) which is crucial in minimizing inter sample variations. Information regarding suitable RG is scarce in general and more so in insects, including the cotton bollworm, Helicoverpa armigera, an economically important pest. In management of this pest RNA interference (RNAi), is perceived as a potential tool, which is achieved by double-stranded RNA (dsRNA) delivery. These studies demand accurate quantification of gene silencing. In this study we assessed the suitability of five RGs viz. β-actin (ACTB), 18S rRNA (18S), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-tubulin (TUB) and elongation fator-1-alfa (EF1-α) for gene expression studies in dsRNA treatment and across different developmental stages of H. armigera and ranked using geNorm, NormFinder and BestKeeper software programs. Data analysis revealed that best ranked RGs were varied in dsRNA treatment and in developmental stages. Under dsRNA treatment, 18S and GAPDH were more stable whereas, TUB and GAPDH were more stable across developmental stages. We also demonstrate that inappropriate selection of RG led to erroneous estimation of the target gene, chymotrypsin, expression. These results facilitate accurate quantification of gene expression in H. armigera.

  7. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions.

    Science.gov (United States)

    Acharya, Kamal R; Dhand, Navneet K; Whittington, Richard J; Plain, Karren M

    2017-01-01

    Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne's disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne's test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne's disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples.

  8. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions

    Science.gov (United States)

    Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.

    2017-01-01

    Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne’s disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne’s test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne’s disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples. PMID:28210245

  9. Clinical consequences of PCR based diagnosis of intestinal parasitic infections

    NARCIS (Netherlands)

    Rijsman, Lucas H; Monkelbaan, Jan F; Kusters, Johannes G

    2016-01-01

    The implementation of Polymerase Chain Reaction (PCR) based diagnostics of intestinal protozoa have led to higher sensitivity and (subtype) specificity, more convenient sampling and the possibility for high-throughput screening. An increasing number of clinical laboratories use PCR for routine detec

  10. Use of quantitative real-time PCR for direct detection of serratia marcescens in marine and other aquatic environments.

    Science.gov (United States)

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D; Lipp, Erin K

    2014-03-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml(-1) and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml(-1). This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.

  11. Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions.

    Science.gov (United States)

    Svingen, Terje; Letting, Heidi; Hadrup, Niels; Hass, Ulla; Vinggaard, Anne Marie

    2015-01-01

    In biological research the analysis of gene expression levels in cells and tissues can be a powerful tool to gain insights into biological processes. For this, quantitative RT-PCR (RT-qPCR) is a popular method that often involve the use of constitutively expressed endogenous reference (or 'housekeeping') gene for normalization of data. Thus, it is essential to use reference genes that have been verified to be stably expressed within the specific experimental setting. Here, we have analysed the expression stability of 12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a, Rps18, Rps29, Sdha, Tbp and Ubc) across several juvenile and adult rat tissues (liver, adrenal, prostate, fat pad, testis and ovaries), both under normal conditions and following exposure to various chemicals during development. Employing NormFinder and BestKeeper softwares, we found Hprt and Sdha to be amongst the most stable genes across normal and manipulated tissues, with several others also being suitable for most tissues. Tbp and B2m displayed highest variability in transcript levels between tissues and developmental stages. It was also observed that the reference genes were most unstable in liver and testis following toxicological exposure. For future studies, we propose the use of more than one verified reference gene and the continuous monitoring of their suitability under various experimental conditions, including toxicological studies, based on changes in threshold (Ct) values from cDNA samples having been reverse-transcribed from a constant input concentration of RNA.

  12. Direct real-time quantitative PCR for measurement of host-cell residual DNA in therapeutic proteins.

    Science.gov (United States)

    Peper, Grit; Fankhauser, Alexander; Merlin, Thomas; Roscic, Ana; Hofmann, Matthias; Obrdlik, Petr

    2014-11-01

    Real-time quantitative PCR (qPCR) is important for quantification of residual host cell DNA (resDNA) in therapeutic protein preparations. Typical qPCR protocols involve DNA extraction steps complicating sample handling. Here, we describe a "direct qPCR" approach without DNA extraction. To avoid interferences of DNA polymerase with a therapeutic protein, proteins in the samples were digested with proteinase K (PK) in the presence of sodium dodecyl sulfate (SDS). Tween 20 and NaCl were included to minimize precipitation of therapeutic proteins in the PK/SDS mix. After PK treatment, the solution was applied directly for qPCR. Inhibition of DNA polymerase by SDS was prevented by adding 2% (v/v) of Tween 20 to the final qPCR mix. The direct qPCR approach was evaluated for quantification of resDNA in therapeutic proteins manufactured in Chinese hamster ovary (CHO) host cells. First, direct qPCR was compared with qPCR applied on purified DNA ("extraction qPCR"). For both qPCRs, the same CHO-specific primers and probes were used. Comparable residual DNA levels were detected with both PCR approaches in purified and highly concentrated drug proteins as well as in in-process-control samples. Finally, the CHO-specific direct qPCR protocol was validated according to ICH guidelines and applied for 25 different therapeutic proteins. The specific limits of quantification were 0.1-0.8ppb for 24 proteins, and 2.0ppb for one protein. General applicability of the direct qPCR was demonstrated by applying the sample preparation protocol for quantification of resDNA in therapeutic proteins manufactured in other hosts such as Escherichia coli and mouse cells.

  13. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    Directory of Open Access Journals (Sweden)

    Borges-Pérez Andrés

    2008-12-01

    Full Text Available Abstract Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC, SGN-U321250 (TIP41, SGN-U346908 ("Expressed" and SGN-U316474 (SAND genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real

  14. Detection of free-living amoebae by using multiplex quantitative PCR.

    Science.gov (United States)

    Le Calvez, Thomas; Trouilhé, Marie-Cécile; Humeau, Philippe; Moletta-Denat, Marina; Frère, Jacques; Héchard, Yann

    2012-06-01

    Free-living amoebae (FLA) are protozoa found worldwide in soil and aquatic environments, which are able to colonize man-made water networks. Some FLA have the potential to be pathogenic and others might harbour pathogenic bacteria. Indeed, FLA feed on bacteria, but some bacteria could resist phagocytosis and either survive in FLA or even multiply within FLA. These bacteria are collectively named amoeba resistant bacteria (ARB). The best characterized example is Legionella pneumophila, for which FLA is the main reservoir in the environment. Not only could FLA be a reservoir that protects ARB, some bacteria might become more resistant to treatment and be more virulent. Thus, it is of medical significance to quantify FLA populations in soil, water or the environment. The main limitation for the quantification of FLA is that classical culture is not efficient and reliable for many genera and 'strains'. Thus, several PCR-based quantification methods have been published for various FLA. However, thus far, no method has been published to simultaneously quantify the main FLA genera in the same PCR reaction. In this study, we developed a multiplex qPCR method to detect both Amoebozoan (i.e. Acanthamoeba, Hartmannella and Echinamoeba) and Vahlkampfiidae (i.e. Vahlkampfia and Naegleria) using 18S ribosomal RNA as the target gene. This method was shown to be specific, reliable and sensitive, could be used for the quantification of FLA and is likely to be useful to anticipate risks due to FLA or pathogenic bacteria, such as L. pneumophila.

  15. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    Science.gov (United States)

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  16. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    Science.gov (United States)

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  17. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan) PCR Assay

    Science.gov (United States)

    Fu, Hua-Ying; Sun, Sheng-Ren; Wang, Jin-Da; Ahmad, Kashif; Wang, Heng-Bo; Chen, Ru-Kai

    2016-01-01

    Ratoon stunting disease (RSD) of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx). A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR) assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR) and a fluorogenic probe (Pat1-QP) targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7%) of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174) were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174) were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.

  18. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan PCR Assay

    Directory of Open Access Journals (Sweden)

    Hua-Ying Fu

    2016-01-01

    Full Text Available Ratoon stunting disease (RSD of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx. A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR and a fluorogenic probe (Pat1-QP targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7% of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174 were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174 were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.

  19. Development and validation of a Q-PCR based TCID50 method for human herpesvirus 6

    Directory of Open Access Journals (Sweden)

    Gustafsson Rasmus K L

    2012-12-01

    Full Text Available Abstract Background For titer assessment of human herpesvirus 6 (HHV-6, IFA targeting viral proteins or a TCID50 method with ocular inspection for CPE can be used. These methods rely on the subjective decision of the assessor, obstructing the ability to obtain unanimous results. Findings We have developed and validated an alternative TCID50 read-out approach where infection in the titration culture plate is assessed by viral DNA load change by quantitative PCR. A ten time increase in viral DNA load was determined as cut point for infection since that yielded a maximum correlation with viral protein expression (93%. The average intra-assay CV was 9% for quantitative PCR read-out of TCID50 compared to 45% for ocular inspection read-out of TCID50, 14% for IFA read-out of TCID50, and 43% for an infectious units approach using IFA. The average inter-assay CV for quantitative PCR read-out of TCID50 was 73%, compared to 66%, 25% and 77% for the ocular inspection read-out for TCID50, IFA read-out of TCID50 and infectious unit approaches respectively. Conclusions The quantitative PCR based read-out of TCID50 proved to be more robust and easier to interpret than traditional TCID50 assessment approaches for HHV-6, and therefore it might be considered as an alternative method.

  20. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    Science.gov (United States)

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  1. Estimating the number of integrations in transformed plants by quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Vaira Anna Maria

    2002-10-01

    Full Text Available Abstract Background When generating transformed plants, a first step in their characterization is to obtain, for each new line, an estimate of how many copies of the transgene have been integrated in the plant genome because this can deeply influence the level of transgene expression and the ease of stabilizing expression in following generations. This task is normally achieved by Southern analysis, a procedure that requires relatively large amounts of plant material and is both costly and labour-intensive. Moreover, in the presence of rearranged copies the estimates are not correct. New approaches to the problem could be of great help for plant biotechnologists. Results By using a quantitative real-time PCR method that requires limited preliminary optimisation steps, we achieved statistically significant estimates of 1, 2 and 3 copies of a transgene in the primary transformants. Furthermore, by estimating the copy number of both the gene of interest and the selectable marker gene, we show that rearrangements of the T-DNA are not the exception, and probably happen more often than usually recognised. Conclusions We have developed a rapid and reliable method to estimate the number of integrated copies following genetic transformation. Unlike other similar procedures, this method is not dependent on identical amplification efficiency between the PCR systems used and does not need preliminary information on a calibrator. Its flexibility makes it appropriate in those situations where an accurate optimisation of all reaction components is impossible or impractical. Finally, the quality of the information produced is higher than what can be obtained by Southern blot analysis.

  2. Easy-to-use strategy for reference gene selection in quantitative real-time PCR experiments.

    Science.gov (United States)

    Klenke, Stefanie; Renckhoff, Kristina; Engler, Andrea; Peters, Jürgen; Frey, Ulrich H

    2016-12-01

    Real-time PCR is an indispensable technique for mRNA expression analysis but conclusions depend on appropriate reference gene selection. However, while reference gene selection has been a topic of publications, this issue is often disregarded when measuring target mRNA expression. Therefore, we (1) evaluated the frequency of appropriate reference gene selection, (2) suggest an easy-to-use tool for least variability reference gene selection, (3) demonstrate application of this tool, and (4) show effects on target gene expression profiles. All 2015 published articles in Naunyn-Schmiedeberg's Archives of Pharmacology were screened for the use of quantitative real-time PCR analysis and selection of reference genes. Target gene expression (Vegfa, Grk2, Sirt4, and Timp3) in H9c2 cells was analyzed following various interventions (hypoxia, hyperglycemia, and/or isoflurane exposure with and without subsequent hypoxia) in relation to putative reference genes (Actb, Gapdh, B2m, Sdha, and Rplp1) using the least variability method vs. an arbitrarily selected but established reference gene. In the vast majority (18 of 21) of papers, no information was provided regarding selection of an appropriate reference gene. In only 1 of 21 papers, a method of appropriate reference gene selection was described and in 2 papers reference gene selection remains unclear. The method of reference gene selection had major impact on interpretation of target gene expression. With hypoxia, for instance, the least variability gene was Rplp1 and target gene expression (Vefga) heavily showed a 2-fold up-regulation (p = 0.022) but no change (p = 0.3) when arbitrarily using Gapdh. Frequency of appropriate reference gene selection in this journal is low, and we propose our strategy for reference gene selection as an easy tool for proper target gene expression.

  3. MGMT promoter methylation in gliomas-assessment by pyrosequencing and quantitative methylation-specific PCR

    Directory of Open Access Journals (Sweden)

    Håvik Annette

    2012-03-01

    Full Text Available Abstract Background Methylation of the O6-methylguanine-DNA methyltransferase (MGMT gene promoter is a favorable prognostic factor in glioblastoma patients. However, reported methylation frequencies vary significantly partly due to lack of consensus in the choice of analytical method. Method We examined 35 low- and 99 high-grade gliomas using quantitative methylation specific PCR (qMSP and pyrosequencing. Gene expression level of MGMT was analyzed by RT-PCR. Results When examined by qMSP, 26% of low-grade and 37% of high-grade gliomas were found to be methylated, whereas 97% of low-grade and 55% of high-grade gliomas were found methylated by pyrosequencing. The average MGMT gene expression level was significantly lower in the group of patients with a methylated promoter independent of method used for methylation detection. Primary glioblastoma patients with a methylated MGMT promoter (as evaluated by both methylation detection methods had approximately 5 months longer median survival compared to patients with an unmethylated promoter (log-rank test; pyrosequencing P = .02, qMSP P = .06. One third of the analyzed samples had conflicting methylation results when comparing the data from the qMSP and pyrosequencing. The overall survival analysis shows that these patients have an intermediate prognosis between the groups with concordant MGMT promoter methylation results when comparing the two methods. Conclusion In our opinion, MGMT promoter methylation analysis gives sufficient prognostic information to merit its inclusion in the standard management of patients with high-grade gliomas, and in this study pyrosequencing came across as the better analytical method.

  4. Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Kawaguchi Makoto

    2010-01-01

    Full Text Available Abstract Background Lung cancers are the most common type of human malignancy and are intractable. Lung cancers are generally classified into four histopathological subtypes: adenocarcinoma (AD, squamous cell carcinoma (SQ, large cell carcinoma (LC, and small cell carcinoma (SC. Molecular biological characterization of these subtypes has been performed mainly using DNA microarrays. In this study, we compared the gene expression profiles of these four subtypes using twelve human lung cancer cell lines and the more reliable quantitative real-time PCR (qPCR. Results We selected 100 genes from public DNA microarray data and examined them by DNA microarray analysis in eight test cell lines (A549, ABC-1, EBC-1, LK-2, LU65, LU99, STC 1, RERF-LC-MA and a normal control lung cell line (MRC-9. From this, we extracted 19 candidate genes. We quantified the expression of the 19 genes and a housekeeping gene, GAPDH, with qPCR, using the same eight cell lines plus four additional validation lung cancer cell lines (RERF-LC-MS, LC-1/sq, 86-2, and MS-1-L. Finally, we characterized the four subtypes of lung cancer cell lines using principal component analysis (PCA of gene expression profiling for 12 of the 19 genes (AMY2A, CDH1, FOXG1, IGSF3, ISL1, MALL, PLAU, RAB25, S100P, SLCO4A1, STMN1, and TGM2. The combined PCA and gene pathway analyses suggested that these genes were related to cell adhesion, growth, and invasion. S100P in AD cells and CDH1 in AD and SQ cells were identified as candidate markers of these lung cancer subtypes based on their upregulation and the results of PCA analysis. Immunohistochemistry for S100P and RAB25 was closely correlated to gene expression. Conclusions These results show that the four subtypes, represented by 12 lung cancer cell lines, were well characterized using qPCR and PCA for the 12 genes examined. Certain genes, in particular S100P and CDH1, may be especially important for distinguishing the different subtypes. Our results

  5. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR

    Energy Technology Data Exchange (ETDEWEB)

    Mesarch, M.B.; Nakatsu, C.H.; Nies, L.

    2000-02-01

    Benzene, toluene, xylenes, phenol, naphthalene, and biphenyl are among a group of compounds that have at least one reported pathway for biodegradation involving catechol 2,3-dioxygenase enzymes. Thus, detection of the corresponding catechol 2,3-dioxygenase genes can serve as a basis for identifying and quantifying bacteria that have these catabolic abilities. Primes that can successfully amplify a 238-bp catechol 2,3-dioxygenase gene fragment from eight different bacteria are described. The identities of the amplicons were confirmed by hybridization with a 238-bp catechol 2,3-dioxygenase probe. The detection limit was 10{sup 2} to 10{sup 3} gene copies, which was lowered to 10{sup 0} to 10{sup 1} gene copies of hybridization. Using the dioxygenase-specific primers, an increase in catechol 2,3-dioxygenase genes was detected in petroleum-amended soils. The dioxygenase genes were enumerated by competitive quantitative PCR and a 163-bp competitor that was amplified using the same primers. Target and competitor sequences had identical amplification kinetics. Potential PCR inhibitors that could coextract with DNA, nonamplifying DNA, soil factors (humics), and soil pollutants (toluene) did not impact enumeration. Therefore, this technique can be used to accurately and reproducibly quantify catechol 2,3-dioxygenase genes in complex environments such as petroleum-contaminated soil. Direct, non-cultivation-based molecular techniques for detecting and enumerating microbial pollutant-biodegrading genes in environmental samples are powerful tools for monitoring bioremediation and developing field evidence in support of natural attenuation.

  6. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    Science.gov (United States)

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  7. Validation of Reference Genes for Transcriptional Analyses in Pleurotus ostreatus by Using Reverse Transcription-Quantitative PCR.

    Science.gov (United States)

    Castanera, Raúl; López-Varas, Leticia; Pisabarro, Antonio G; Ramírez, Lucía

    2015-06-15

    Recently, the lignin-degrading basidiomycete Pleurotus ostreatus has become a widely used model organism for fungal genomic and transcriptomic analyses. The increasing interest in this species has led to an increasing number of studies analyzing the transcriptional regulation of multigene families that encode extracellular enzymes. Reverse transcription (RT) followed by real-time PCR is the most suitable technique for analyzing the expression of gene sets under multiple culture conditions. In this work, we tested the suitability of 13 candidate genes for their use as reference genes in P. ostreatus time course cultures for enzyme production. We applied three different statistical algorithms and obtained a combination of stable reference genes for optimal normalization of RT-quantitative PCR assays. This reference index can be used for future transcriptomic analyses and validation of transcriptome sequencing or microarray data. Moreover, we analyzed the expression patterns of a laccase and a manganese peroxidase (lacc10 and mnp3, respectively) in lignocellulose and glucose-based media using submerged, semisolid, and solid-state fermentation. By testing different normalization strategies, we demonstrate that the use of nonvalidated reference genes as internal controls leads to biased results and misinterpretations of the biological responses underlying expression changes.

  8. New in situ capture quantitative (real-time) reverse transcription-PCR method as an alternative approach for determining inactivation of Tulane virus.

    Science.gov (United States)

    Wang, Dapeng; Xu, Shuxia; Yang, David; Young, Glenn M; Tian, Peng

    2014-04-01

    Human noroviruses (HuNoVs) are the major cause of epidemic nonbacterial gastroenteritis. Although quantitative (real-time) reverse transcription-PCR (qRT-PCR) is widely used for detecting HuNoVs, it only detects the presence of viral RNA and does not indicate viral infectivity. Human blood group antigens (HBGAs) have been identified as receptors/co-receptors for both HuNoVs and Tulane virus (TV) and are crucial for viral infection. We propose that viral infectivity can be evaluated with a molecular assay based on receptor-captured viruses. In this study, we employed TV as an HuNoV surrogate to validate the HBGA-based capture qRT-PCR method against the 50% tissue culture infectious dose (TCID50) method. We employed type B HBGA on an immuno-well module to concentrate TV, followed by amplification of the captured viral genome by in situ qRT-PCR. We first demonstrated that this in situ capture qRT-PCR (ISC-qRT-PCR) method could effectively concentrate and detect TV. We then treated TV under either partial or full inactivation conditions and measured the remaining infectivity by ISC-qRT-PCR and a tissue culture-based amplification method (TCID50). We found that the ISC-qRT-PCR method could be used to evaluate virus inactivation deriving from damage to the capsid and study interactions between the capsid and viral receptor. Heat, chlorine, and ethanol treatment primarily affect the capsid structure, which in turns affects the ability of the capsid to bind to viral receptors. Inactivation of the virus by these methods could be reflected by the ISC-qRT-PCR method and confirmed by TCID50 assay. However, the loss of the infectivity caused by damage to the viral genome (such as that from UV irradiation) could not be effectively reflected by this method. Despite this limitation, the ISC-qRT-PCR provides an alternative approach to determine inactivation of Tulane virus. A particular advantage of the ISC-qRT-PCR method is that it is also a faster and easier method to effectively

  9. Single base pair mutation analysis by PNA directed PCR clamping

    DEFF Research Database (Denmark)

    Ørum, H.; Nielsen, P.E.; Egholm, M.;

    1993-01-01

    A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity...... than the corresponding deoxyribooligonucleotides and that they cannot function as primers for DNA polymerases. We show that a PNA/DNA complex can effectively block the formation of a PCR product when the PNA is targeted against one of the PCR primer sites. Furthermore, we demonstrate that this blockage...... allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers....

  10. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    . In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical...

  11. Comparison of two quantitative PCR techniques for porcine circovirus Type 2 (PCV2) nucleic acid in field samples

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Grau-Roma, Llorenc; Sibila, M.

    PMWS (1). PMWS is associated with a high PCV2 load, and a general threshold of 10 7 copies of PCV2 per ml serum has been suggested for PMWS diagnosis (2,3). The objective of this study was to compare the performance of two different real-time quantitative polymerase chain reaction (qPCR) assays for PCV...

  12. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    Science.gov (United States)

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster have been found to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. The United States Environmental Protection Agency is planning to conduct a ...

  13. Rapid quantification of viable Campylobacter bacteria on chicken carcasses, using real-time PCR and propidium monoazide treatment, as a tool for quantitative risk assessment.

    Science.gov (United States)

    Josefsen, M H; Löfström, C; Hansen, T B; Christensen, L S; Olsen, J E; Hoorfar, J

    2010-08-01

    A number of intervention strategies against Campylobacter-contaminated poultry focus on postslaughter reduction of the number of cells, emphasizing the need for rapid and reliable quantitative detection of only viable Campylobacter bacteria. We present a new and rapid quantitative approach to the enumeration of food-borne Campylobacter bacteria that combines real-time quantitative PCR (Q-PCR) with simple propidium monoazide (PMA) sample treatment. In less than 3 h, this method generates a signal from only viable and viable but nonculturable (VBNC) Campylobacter bacteria with an intact membrane. The method's performance was evaluated by assessing the contributions to variability by individual chicken carcass rinse matrices, species of Campylobacter, and differences in efficiency of DNA extraction with differing cell inputs. The method was compared with culture-based enumeration on 50 naturally infected chickens. The cell contents correlated with cycle threshold (C(T)) values (R(2) = 0.993), with a quantification range of 1 x 10(2) to 1 x 10(7) CFU/ml. The correlation between the Campylobacter counts obtained by PMA-PCR and culture on naturally contaminated chickens was high (R(2) = 0.844). The amplification efficiency of the Q-PCR method was not affected by the chicken rinse matrix or by the species of Campylobacter. No Q-PCR signals were obtained from artificially inoculated chicken rinse when PMA sample treatment was applied. In conclusion, this study presents a rapid tool for producing reliable quantitative data on viable Campylobacter bacteria in chicken carcass rinse. The proposed method does not detect DNA from dead Campylobacter bacteria but recognizes the infectious potential of the VBNC state and is thereby able to assess the effect of control strategies and provide trustworthy data for risk assessment.

  14. Microscopy, culture, and quantitative real-time PCR examination confirm internalization of mycobacteria in plants.

    Science.gov (United States)

    Kaevska, M; Lvoncik, S; Slana, I; Kulich, P; Kralik, P

    2014-07-01

    The environment is a reservoir of nontuberculous mycobacteria and is considered a source of infection for animals and humans. Mycobacteria can persist in different types of environments for a relatively long time. We have studied their possible internalization into plant tissue through intact, as well as damaged, root systems of different types of plants grown in vitro and under field conditions. The substrate into which plants were seeded was previously contaminated with different strains of Mycobacterium avium (10(8) to 10(10) cells/g of soil) and feces from animals with paratuberculosis. We detected M. avium subsp. avium, hominissuis, and paratuberculosis in the stems and leaves of the plants by both culture and real-time quantitative PCR. The presence of mycobacteria in the plant tissues was confirmed by microscopy. The concentration of mycobacteria found inside plant tissue was several orders of magnitude lower (up to 10(4) cells/g of tissue) than the initial concentration of mycobacteria present in the culture medium or substrate. These findings led us to the hypothesis that plants may play a role in the spread and transmission of mycobacteria to other organisms in the environment.

  15. Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica.

    Science.gov (United States)

    Yan, Xia; Dong, Xicun; Zhang, Wen; Yin, Hengxia; Xiao, Honglang; Chen, Peng; Ma, Xiao-Fei

    2014-01-01

    Despite its superiority for evaluating gene expression, real-time quantitative polymerase chain reaction (qPCR) results can be significantly biased by the use of inappropriate reference genes under different experimental conditions. Reaumuria soongorica is a dominant species of desert ecosystems in arid central Asia. Given the increasing interest in ecological engineering and potential genetic resources for arid agronomy, it is important to analyze gene function. However, systematic evaluation of stable reference genes should be performed prior to such analyses. In this study, the stabilities of 10 candidate reference genes were analyzed under 4 kinds of abiotic stresses (drought, salt, dark, and heat) within 4 accessions (HG010, HG020, XGG030, and XGG040) from 2 different habitats using 3 algorithms (geNorm, NormFinder, and BestKeeper). After validation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large unite (rbcL) expression pattern, our data suggested that histone H2A (H2A) and eukaryotic initiation factor 4A-2 (EIF4A2) were the most stable reference genes, cyclophilin (CYCL) was moderate, and elongation factor 1α (EF1α) was the worst choice. This first systematic analysis for stably expressed genes will facilitate future functional analyses and deep mining of genetic resources in R. soongorica and other species of the Reaumuria genus.

  16. Detection of APC gene deletions in colorectal malignancies using quantitative PCR in a Chinese population.

    Science.gov (United States)

    Fang, Zhengyu; Xiong, Yi; Li, Jiana; Liu, Li; Li, Manhui; Zhang, Wei; Shi, Lei; Wan, Jun

    2011-09-01

    The adenomatous polyposis coli (APC) gene has been shown to be involved in genetic instability and to be downregluated in several human carcinomas. The chromosome locus of APC, 5q21-22, is frequently deleted in colorectal cancers (CRCs). The functional impact of such regions needs to be extensively investigated in large amount of clinical samples. Case-matched tissues of CRC and adjacent normal epithelium (n = 134) were included in this study. Quantitative PCR was carried out to examine the copy number as well as mRNA expression of APC gene in colorectal malignancies. Our results showed that copy number deletions of APC were present in a relatively high percentage of colorectal cancer samples (26.1%, 35 out of 134). There was a positive correlation between copy number decrease of APC and tumor progression in CRCs. Furthermore, copy number loss of APC was correlated with decreased mRNA expression. However, mRNA levels of APC were also impaired in CRC samples with unaltered copy numbers, indicating that sporadic CRCs exhibit different mechanisms of APC regulation.

  17. Opportunistic Aspergillus pathogens measured in home and hospital tap water by quantitative PCR (QPCR).

    Science.gov (United States)

    Vesper, S J; Haugland, R A; Rogers, M E; Neely, A N

    2007-09-01

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumigatus, A. flavus, A. terreus and A. niger, in home tap water and a hospital water supply. Water samples were taken from the kitchen tap in the homes of 60 patients who were diagnosed with legionellosis. Water samples were also taken from three locations in a hospital that generated all of its hot water by flash heating. Opportunistic infectious agents Aspergillus fumigatus, A. flavus, A. terreus and A. niger were measured using QPCR. Aspergillus terreus DNA was found in 16.7% and A. fumigatus DNA in 1.7% of the samples taken from the kitchen tap. None of the Aspergillus species were found in any of the hospital water samples.The development of a simple DNA extraction method along with QPCR analysis is suitable for rapid screening of tap water for opportunistic fungal pathogens. This simple method can be used to obtain pathogen occurrence results in about 3 h, instead of waiting days to weeks for culture data. Obtaining pathogen occurrence data in a timely manner could promote the elimination of the pathogens from the water supply of immunocompromised patients.

  18. Rapid quantitative detection of, Listeria monocytogenes in salmon products: evaluation of pre-real-time PCR strategies.

    Science.gov (United States)

    Rodríguez-Lázaro, David; Jofré, Anna; Aymerich, Teresa; Garriga, Margarita; Pla, Maria

    2005-07-01

    The spread and persistence of Listeria monocytogenes in smoked fish products and seafood processing factories are big concerns. Thus, the corresponding quality assurance programs must include adequate microbiological control measures. We evaluated eight different pre-PCR sample processing strategies to be coupled with a previously developed real-time PCR assay for the quantitative detection of L. monocytogenes in salmon products. The optimal pre-PCR procedure involved filtration and DNA purification with the use of a commercial kit. This strategy could detect 10 CFU of L. monocytogenes per g of smoked salmon and could quantify 1,000 CFU/g with excellent accuracy compared with the standard plate count method. Thus, this method could be a promising alternative for the quantitative detection of L. monocytogenes in smoked fish products and processing factories. This method could also detect the bacterium in raw salmon.

  19. Detection of HSP mRNA Transcription in Transport Stressed Pigs by Fluorescence Quantitative RT-PCR

    Institute of Scientific and Technical Information of China (English)

    LI Yu-bao; BAO En-dong; WANG Zhi-liang; ZHAO Ru-qian

    2007-01-01

    The RNA transcripted in vitro was used as the standard quantitative template to make the standard curve and establish the fluorescence quantitative RT-PCR (FQ-PCR) method. By means of FQ-PCR, the transcription changes of HSP70 and HSPg0 mRNA in the livers and hearts of transport stressed pigs were studied. The level of HSP70 mRNA transcription increased continuously from the beginning of transportation. The inductions of HSP70 mRNA transcription in the livers and hearts of 10 h transport stressed pigs were 2.5 and 4.1 times higher than that of the un-transport stressed pigs (P<0.01).However, the transcription levels of HSPg0 mRNA in the livers and hearts decreased with the transport stress.

  20. Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus

    Directory of Open Access Journals (Sweden)

    Tandale Babasaheb V

    2008-12-01

    Full Text Available Abstract Background Chandipura virus (CHPV, a member of family Rhabdoviridae was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR using TaqMan technology was developed for rapid diagnosis. Methods Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [in vivo (mice in ovo (eggs, in vitro (Vero E6, PS, RD and Sand fly cell line] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard. Results Real-time one step RT-PCR was optimized using in vitro transcribed (IVT RNA. Standard curve showed linear relationship for wide range of 102-1010 (r2 = 0.99 with maximum Coefficient of variation (CV = 5.91% for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 100 PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 102 PFU/ml. Vero and PS cell-lines (1.2 × 103 PFU/ml were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy

  1. Quantitative Expression Analysis in Brassica napus by Northern Blot Analysis and Reverse Transcription-Quantitative PCR in a Complex Experimental Setting.

    Science.gov (United States)

    Rumlow, Annekathrin; Keunen, Els; Klein, Jan; Pallmann, Philip; Riemenschneider, Anja; Cuypers, Ann; Papenbrock, Jutta

    Analysis of gene expression is one of the major ways to better understand plant reactions to changes in environmental conditions. The comparison of many different factors influencing plant growth challenges the gene expression analysis for specific gene-targeted experiments, especially with regard to the choice of suitable reference genes. The aim of this study is to compare expression results obtained by Northern blot, semi-quantitative PCR and RT-qPCR, and to identify a reliable set of reference genes for oilseed rape (Brassica napus L.) suitable for comparing gene expression under complex experimental conditions. We investigated the influence of several factors such as sulfur deficiency, different time points during the day, varying light conditions, and their interaction on gene expression in oilseed rape plants. The expression of selected reference genes was indeed influenced under these conditions in different ways. Therefore, a recently developed algorithm, called GrayNorm, was applied to validate a set of reference genes for normalizing results obtained by Northern blot analysis. After careful comparison of the three methods mentioned above, Northern blot analysis seems to be a reliable and cost-effective alternative for gene expression analysis under a complex growth regime. For using this method in a quantitative way a number of references was validated revealing that for our experiment a set of three references provides an appropriate normalization. Semi-quantitative PCR was prone to many handling errors and difficult to control while RT-qPCR was very sensitive to expression fluctuations of the reference genes.

  2. PCR-based techniques for leprosy diagnosis: from the laboratory to the clinic.

    Directory of Open Access Journals (Sweden)

    Alejandra Nóbrega Martinez

    2014-04-01

    Full Text Available In leprosy, classic diagnostic tools based on bacillary counts and histopathology have been facing hurdles, especially in distinguishing latent infection from active disease and diagnosing paucibacillary clinical forms. Serological tests and IFN-gamma releasing assays (IGRA that employ humoral and cellular immune parameters, respectively, are also being used, but recent results indicate that quantitative PCR (qPCR is a key technique due to its higher sensitivity and specificity. In fact, advances concerning the structure and function of the Mycobacterium leprae genome led to the development of specific PCR-based gene amplification assays for leprosy diagnosis and monitoring of household contacts. Also, based on the validation of point-of-care technologies for M. tuberculosis DNA detection, it is clear that the same advantages of rapid DNA detection could be observed in respect to leprosy. So far, PCR has proven useful in the determination of transmission routes, M. leprae viability, and drug resistance in leprosy. However, PCR has been ascertained to be especially valuable in diagnosing difficult cases like pure neural leprosy (PNL, paucibacillary (PB, and patients with atypical clinical presentation and histopathological features compatible with leprosy. Also, the detection of M. leprae DNA in different samples of the household contacts of leprosy patients is very promising. Although a positive PCR result is not sufficient to establish a causal relationship with disease outcome, quantitation provided by qPCR is clearly capable of indicating increased risk of developing the disease and could alert clinicians to follow these contacts more closely or even define rules for chemoprophylaxis.

  3. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Nicolas Chemidlin Prévost-Bouré

    Full Text Available Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR. The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1/FF390. This in silico analysis of the specificity of FR1/FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1/FF390 for Fungi was validated in vitro by cloning--sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils.

  4. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses.

    Science.gov (United States)

    Bansal, Raman; Mittapelly, Priyanka; Cassone, Bryan J; Mamidala, Praveen; Redinbaugh, Margaret G; Michel, Andy

    2015-01-01

    For real-time reverse transcription-PCR (qRT-PCR) in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2) in soybean under biotic stress from Bean pod mottle virus (BPMV), powdery mildew (PMD), soybean aphid (SBA), and two-spotted spider mite (TSSM). BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3) values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.

  5. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses.

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    Full Text Available For real-time reverse transcription-PCR (qRT-PCR in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2 in soybean under biotic stress from Bean pod mottle virus (BPMV, powdery mildew (PMD, soybean aphid (SBA, and two-spotted spider mite (TSSM. BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper and a web-based tool (RefFinder. Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3 values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.

  6. Novel wide-range quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA: development and methodology.

    Science.gov (United States)

    Takahashi, Teruyuki; Tamura, Masato; Asami, Yukihiro; Kitamura, Eiko; Saito, Kosuke; Suzuki, Tsukasa; Takahashi, Sachiko Nonaka; Matsumoto, Koichi; Sawada, Shigemasa; Yokoyama, Eise; Takasu, Toshiaki

    2008-05-01

    Previously, we designed an internally controlled quantitative nested real-time (QNRT) PCR assay for Mycobacterium tuberculosis DNA in order to rapidly diagnose tuberculous meningitis. This technique combined the high sensitivity of nested PCR with the accurate quantification of real-time PCR. In this study, we attempted to improve the original QNRT-PCR assay and newly developed the wide-range QNRT-PCR (WR-QNRT-PCR) assay, which is more accurate and has a wider detection range. For use as an internal-control "calibrator" to measure the copy number of M. tuberculosis DNA, an original new-mutation plasmid (NM-plasmid) was developed. It had artificial random nucleotides in five regions annealing specific primers and probes. The NM-plasmid demonstrated statistically uniform amplifications (F = 1.086, P = 0.774) against a range (1 to 10(5)) of copy numbers of mimic M. tuberculosis DNA and was regarded as appropriate for use as a new internal control in the WR-QNRT-PSR assay. In addition, by the optimization of assay conditions in WR-QNRT-PCR, two-step amplification of target DNA was completely consistent with the standard curve of this assay. Due to the development of the NM-plasmid as the new internal control, significantly improved quantitative accuracy and a wider detection range were realized with the WR-QNRT-PCR assay. In the next study, we will try to use this novel assay method with actual clinical samples and examine its clinical usefulness.

  7. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis of gene expression in Lycoris aurea

    Directory of Open Access Journals (Sweden)

    Rui eMa

    2016-04-01

    Full Text Available Lycoris aurea (L' Hér. Herb, a perennial grass species, produces a unique variety of pharmacologically active Amaryllidaceae alkaloids. However, the key enzymes and their expression pattern involved in the biosynthesis of Amaryllidaceae alkaloids (especially for galanthamine are far from being fully understood. Quantitative real-time polymerase chain reaction (qRT-PCR, a commonly used method for quantifying gene expression, requires stable reference genes to normalize its data. In this study, to choose the appropriate reference genes under different experimental conditions, 14 genes including YLS8 (mitosis protein YLS8, CYP2 (Cyclophilin 2, CYP 1 (Cyclophilin 1, TIP41 (TIP41-like protein, EXP2 (Expressed protein 2, PTBP1 (Polypyrimidine tract-binding protein 1, EXP1 (Expressed protein 1, PP2A (Serine/threonine-protein phosphatase 2A, β-TUB (β-tubulin, α-TUB (α-tubulin, EF1-α (Elongation factor 1-α, UBC (Ubiquitin-conjugating enzyme, ACT (Actin and GAPDH (Glyceraldehyde 3-phosphate dehydrogenase were selected from the transcriptome datasets of L. aurea. And then, expressions of these genes were assessed by qRT-PCR in various tissues and the roots under different treatments. The expression stability of the 14 candidates was analyzed by three commonly used software programs (geNorm, NormFinder, and BestKeeper, and their results were further integrated into a comprehensive ranking based on the geometric mean. The results show the relatively stable genes for each subset as follows: (1 EXP1 and TIP41 for all samples; (2 UBC and EXP1 for NaCl stress; (3 PTBP1 and EXP1 for heat stress, polyethylene glycol (PEG stress and ABA treatment; (4 UBC and CYP2 for cold stress; (5 PTBP1 and PP2A for sodium nitroprusside (SNP treatment; (6 CYP1 and TIP41 for methyl jasmonate (MeJA treatment; and (7 EXP1 and TIP41 for various tissues. The reliability of these results was further enhanced through comparison between part qRT-PCR result and RNA sequencing (RNA

  8. Determination of allele frequency in pooled DNA: comparison of three PCR-based methods.

    Science.gov (United States)

    Wilkening, Stefan; Hemminki, Kari; Thirumaran, Ranjit Kumar; Bermejo, Justo Lorenzo; Bonn, Stefan; Försti, Asta; Kumar, Rajiv

    2005-12-01

    Determination of allele frequency in pooled DNA samples is a powerful and efficient tool for large-scale association studies. In this study, we tested and compared three PCR-based methods for accuracy, reproducibility, cost, and convenience. The methods compared were: (i) real-time PCR with allele-specific primers, (ii) real-time PCR with allele-specific TaqMan probes, and (iii) quantitative sequencing. Allele frequencies of three single nucleotide polymorphisms in three different genes were estimated from pooled DNA. The pools were made of genomic DNA samples from 96 cases with basal cell carcinoma of the skin and 96 healthy controls with known genotypes. In this study, the allele frequency estimation made by real-time PCR with allele-specific primers had the smallest median deviation (MD) from the real allele frequency with 1.12% (absolute percentage points) and was also the cheapest method. However; this method required the most time for optimization and showed the highest variation between replicates (SD = 6.47%). Quantitative sequencing, the simplest method, was found to have intermediate accuracies (MD = 1.44%, SD = 4.2%). Real-time PCR with TaqMan probes, a convenient but very expensive method, had an MD of 1.47% and the lowest variation between replicates (SD = 3.18%).

  9. Development of real-time fluorescent quantitative PCR assay for detection of PRRSV based on TaqMan probe%基于TaqMan探针的猪繁殖与呼吸障碍综合症病毒实时荧光定量PCR方法的建立

    Institute of Scientific and Technical Information of China (English)

    祝秀梅; 马全英; 杜平; 王凡; 吕志慧; 牟克斌

    2012-01-01

    We establish a TaqMan real-time PCR assay for detection of PRRSV. The specific primers and probes were designed in the conserved region of the ORF7 gene for PRRSV, and the real-time fluorescent quantitative PCR was established by optimizing the probe concentration. Thirty clinical samples were detected by using the established quantitative RT-PCR assay, and the results were compared with that of conventional RT PCR and viral isolation tests. TaqMan fluorescent quantitative PCR for detection of PRRSV was established successfully with the optimal probe concentration 0. 4 μmol, and detection limit was as low as 3. 51 copies/μL The results by the TaqMan real-time PCR method were 100% consistent with the viral isolation tests. Sensitivity and positive rate (28/30) for clinical samples of TaqMan fluorescent quantitative PCR were relatively higher than conventional PCR (25/30). The results indicated this method has high specificity, sensitivity and reproducibility, and could be used for the diagnosis of PRRSV infection.%目的 建立一种能检测猪繁殖与呼吸障碍综合症病毒(PRRSV)的TaqMan探针荧光定量PCR方法.方法 根据PRRSV的ORF7基因保守区的核苷酸序列设计引物和TaqMan探针,通过探针浓度的优化,建立检测PRRSV的TaqMan探针荧光定量PCR方法.用该方法对30份临床疑似病料进行检测,并与常规RT-PCR方法和病毒分离方法进行比较.结果 TaqMan荧光PCR检测PRRSV的最佳探针浓度为0.4 μmol,检测灵敏度可达3.51拷贝/μL.检测的30份样品与病毒分离结果的符合率为100%,与普通PCR的检测结果(25/30)比较,本方法对临床样品的检出率(28/30)更高.结论 建立的方法特异性强、敏感性高、重复性好,可用于临床样品的检测.

  10. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotype of F. graminearum and F. culmorum isolates in Danish small grain cereals

    DEFF Research Database (Denmark)

    Nielsen, L. K.; Jensen, J. D.; Rodríguez, A.;

    2012-01-01

    species complex, Fusarium culmorum, Fusarium cerealis and Fusarium pseudograminearum. These assays were applied on a total of 378 field samples of cereal grain of wheat, barley, triticale, rye and oats collected from 2003 to 2007 to study the trichothecene genotype composition in Danish cereals. The three...... in wheat. The NIV genotype was found at low levels in most samples. Study of genotype composition within the Danish F. graminearum and F. culmorum population was based on principal component analysis (PCA). PCA revealed that the dominating genotype of F. graminearum in wheat is 15ADON. For barley, the PCA...... analysis indicated that the F. graminearum population consisted of all three genotypes, and in triticale, the F. graminearum population consisted mainly of 15ADON genotype. F. culmorum/F. cerealis showed correlation to the NIV genotype in wheat and triticale but not in barley. F. culmorum/F. cerealis also...

  11. Assessment of soil potential for microbial nitrogen cycling using quantitative PCR

    Science.gov (United States)

    Pereg, Lily; McMillan, Mary; Aldorri, Sind

    2016-04-01

    Nitrogen is an important nutrient for the synthesis of macromolecules, such as nucleic acids and proteins, in all organisms. Nitrogen cycling is essential for the production of different forms of nitrogenous molecules used by various organisms in the soil as available nitrogen sources. While nitrogen-fixing bacteria can utilize N2 as a nitrogen source, other microbes and plants need to assimilate N from fixed forms, e.g. ammonia or nitrate. Nitrogen cycling is largely derived by microbial activity in the soil. Examples include the reduction of N2 to ammonia by nitrogen fixation, production of nitrate by nitrification and the removal of available nitrogenous compounds by denitrification. We measured the potential of agricultural soils under various management practices to cycle nitrogen by measuring the abundance of functional genes involved in the nitrogen cycle. We report on the suitability of PCR-based methods as indicators of soil function potential.

  12. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera.

    Directory of Open Access Journals (Sweden)

    Alexandre Filipe Borges

    Full Text Available Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood. The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies.

  13. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera.

    Science.gov (United States)

    Borges, Alexandre Filipe; Fonseca, Catarina; Ferreira, Ricardo Boavida; Lourenço, Ana Maria; Monteiro, Sara

    2014-01-01

    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies.

  14. SNPs and real-time quantitative PCR method for constitutional allelic copy number determination, the VPREB1 marker case

    Directory of Open Access Journals (Sweden)

    Costa Elena

    2011-05-01

    Full Text Available Abstract Background 22q11.2 microdeletion is responsible for the DiGeorge Syndrome, characterized by heart defects, psychiatric disorders, endocrine and immune alterations and a 1 in 4000 live birth prevalence. Real-time quantitative PCR (qPCR approaches for allelic copy number determination have recently been investigated in 22q11.2 microdeletions detection. The qPCR method was performed for 22q11.2 microdeletions detection as a first-level screening approach in a genetically unknown series of patients with congenital heart defects. A technical issue related to the VPREB1 qPCR marker was pointed out. Methods A set of 100 unrelated Italian patients with congenital heart defects were tested for 22q11.2 microdeletions by a qPCR method using six different markers. Fluorescence In Situ Hybridization technique (FISH was used for confirmation. Results qPCR identified six patients harbouring the 22q11.2 microdeletion, confirmed by FISH. The VPREB1 gene marker presented with a pattern consistent with hemideletion in one 3 Mb deleted patient, suggestive for a long distal deletion, and in additional five non-deleted patients. The long distal 22q11.2 deletion was not confirmed by Comparative Genomic Hybridization. Indeed, the VPREB1 gene marker generated false positive results in association with the rs1320 G/A SNP, a polymorphism localized within the VPREB1 marker reverse primer sequence. Patients heterozygous for rs1320 SNP, showed a qPCR profile consistent with the presence of a hemideletion. Conclusions Though the qPCR technique showed advantages as a screening approach in terms of cost and time, the VPREB1 marker case revealed that single nucleotide polymorphisms can interfere with qPCR data generating erroneous allelic copy number interpretations.

  15. 实时定量PCR技术及其应用%Real-time Quantitative PCR and Its Applications

    Institute of Scientific and Technical Information of China (English)

    王梁燕; 洪奇华; 张耀洲

    2004-01-01

    实时定量PCR(Real-time Quantitative Polymerase Chain Reaction,RQ-PCR)技术是20世纪90年代中期发展起来的一种新型核酸定量技术.该技术具有实时监测、快速、灵敏、精确等特点,是对原有PCR技术的革新,扩大了PCR的应用范围.本文综述了RQ-PCR技术的原理、RQ-PCR仪、RQ-PCR实时定量检测系统及其应用.

  16. 实时定量PCR技术及应用%Real-time quantitative PCR and its applications

    Institute of Scientific and Technical Information of China (English)

    杨凤秋; 朱正歌

    2006-01-01

    实时定量PCR(Real-time Quantitative Polymerase Chain Reaction,RQ-PCR),是20世纪90年代中期发展起来的基于PCR技术的利用不同的荧光检测来给核酸定量的技术.克服了传统PCR的许多不足,能准确敏感地检测模板浓度,DNA拷贝数和检测基因变异.综述了RQ-PCR技术的原理,RQ-PCR实时定量检测系统及应用.

  17. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR.

    Science.gov (United States)

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes.

  18. Development of a quantitative real-time PCR assay for sapovirus in children under 5-years-old in Regina Margherita Hospital of Turin, Italy.

    Science.gov (United States)

    Bergallo, Massimiliano; Galliano, Ilaria; Montanari, Paola; Brusin, Martina Rosa; Finotti, Serena; Paderi, Giulia; Gabiano, Clara

    2016-12-02

    Gastroenteritis is a common disease in children. It is characterized by diarrhea, vomiting, abdominal pain, and fever. Sapovirus (SaV) is a causative agent of acute gastroenteritis, but it causes milder illness than do rotavirus and norovirus. There is high variability in the analytical performance of quantitative PCR-based assays among clinical laboratories. This study developed a reverse transcription real-time PCR method to detect SaV in fecal specimens collected from children under 5-years-old with acute gastroenteritis. Of 137 episodes of acute gastroenteritis, 15 (10.9%) were associated with SaV genomic detection, with a median viral load of 6.6(log10) ± 7.1(log10) genomes/mg fecal specimens. There was a significant difference in detection rate between males and females (9.48% (13/15) vs. 1.46% (2/15), p = 0.0232). Among the 15 SaV-positive cases, 6 were also positive for rotavirus. Viral RNA recovery rate ranged from 46% to 77% in the manual RNAzol protocol and from 31% to 90% in the automated Maxwell protocol. We also studied whether human genomic DNA influences the sensitivity of the assay: its presence caused a decrease in PCR sensitivity. The development of a laboratory-designed real-time PCR TaqMan assay for quantitative detection of SaV and the optimization and standardization of this assay, using stools of children with acute gastroenteritis, are described.

  19. Successful Validation of Sample Processing and Quantitative Real-Time PCR Capabilities on the International Space Station

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Schonfeld, Julie; Tran, Luan

    2016-01-01

    The WetLab-2 system was developed by NASA Ames Research Center to offer new capabilities to researchers. The system can lyse cells and extract RNA (Ribonucleic Acid) on-orbit from different sample types ranging from microbial cultures to animal tissues. The purified RNA can then either be stabilized for return to Earth or can be used to conduct on-orbit quantitative Reverse Transcriptase PCR (Polymerase Chain Reaction) (qRT-PCR) analysis without the need for sample return. The qRT-PCR results can be downlinked to the ground a few hours after the completion of the run. The validation flight of the WetLab-2 system launched on SpaceX-8 on April 8, 2016. On orbit operations started on April 15th with system setup and was followed by three quantitative PCR runs using an E. coli genomic DNA template pre-loaded at three different concentrations. These runs were designed to discern if quantitative PCR functions correctly in microgravity and if the data is comparable to that from the ground control runs. The flight data showed no significant differences compared to the ground data though there was more variability in the values, this was likely due to the numerous small bubbles observed. The capability of the system to process samples and purify RNA was then validated using frozen samples prepared on the ground. The flight data for both E. coli and mouse liver clearly shows that RNA was successfully purified by our system. The E. coli qRT-PCR run showed successful singleplex, duplex and triplex capability. Data showed high variability in the resulting Cts (Cycle Thresholds [for the PCR]) likely due to bubble formation and insufficient mixing during the procedure run. The mouse liver qRT-PCR run had successful singleplex and duplex reactions and the variability was slightly better as the mixing operation was improved. The ability to purify and stabilize RNA and to conduct qRT-PCR on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. The

  20. Quantitative Real Time PCR approach to study gene expression profile during prenatal growth of skeletal muscle in pig of Duroc and Pietrain breeds

    Directory of Open Access Journals (Sweden)

    M. Cagnazzo

    2010-01-01

    Full Text Available The quantitative real time-PCR (QRT-PCR is a very sensitive method used to quantify mRNA level in gene expression analysis. Combining amplification, detection and quantification in a single step, allows a more accurate measurement compared to the traditional PCR end point analysis (Pfaffl, 2001; Bustin, 2002.

  1. A highly sensitive quantitative real-time pcr assay for determination of mutant jak2 exon 12 allele burden

    DEFF Research Database (Denmark)

    Kjær, L.; Riley, C.H.; Westman, M.

    2012-01-01

    present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel...... mutation. Two patients were homozygous with a high mutant allele burden, whereas one of the heterozygous patients had a very low mutant allele burden. The allele burden in the peripheral blood resembled that of the bone marrow, except for the patient with low allele burden. Myeloid and lymphoid cell...... populations were isolated by cell sorting and quantitative PCR revealed similar mutant allele burdens in CD16+ granulocytes and peripheral blood. The mutations were also detected in B-lymphocytes in half of the patients at a low allele burden. In conclusion, our highly sensitive assay provides an important...

  2. Modeling real-time PCR kinetics: Richards reparametrized equation for quantitative estimation of European hake (Merluccius merluccius).

    Science.gov (United States)

    Sánchez, Ana; Vázquez, José A; Quinteiro, Javier; Sotelo, Carmen G

    2013-04-10

    Real-time PCR is the most sensitive method for detection and precise quantification of specific DNA sequences, but it is not usually applied as a quantitative method in seafood. In general, benchmark techniques, mainly cycle threshold (Ct), are the routine method for quantitative estimations, but they are not the most precise approaches for a standard assay. In the present work, amplification data from European hake (Merluccius merluccius) DNA samples were accurately modeled by three sigmoid reparametrized equations, where the lag phase parameter (λc) from the Richards equation with four parameters was demonstrated to be the perfect substitute for Ct for PCR quantification. The concentrations of primers and probes were subsequently optimized by means of that selected kinetic parameter. Finally, the linear correlation among DNA concentration and λc was also confirmed.

  3. Detection of Legionella by quantitative-polymerase chain reaction (qPCR) for monitoring and risk assessment

    DEFF Research Database (Denmark)

    Krøjgaard, Louise H.; Krogfelt, Karen A.; Albrechtsen, Hans-Jorgen

    2011-01-01

    Background: Culture and quantitative polymerase chain reaction (qPCR) assays for the detection of Legionella were compared on samples from a residential area before and after two interventions. A total of 84 samples were collected from shower hoses and taps as first flush samples and at constant...... temperature. Samples were grouped according to the origin of the sample, a) circulation water b) water from empty apartments c) water from shower hoses. The aims were to investigate the usefulness of qPCR compared to culture for monitoring remedial actions for elimination of Legionella bacteria and as a tool...... for risk assessment. Results: In water collected from the apartments Legionella spp were detected by qPCR in the concentration range from LOQ to 9.6* 10(5)GU/L while L. pneumophila were detected in a range from LOQ to 6.8*10(5) GU/L. By culturing, the legionellae were detected in the range from below...

  4. Quantitative RT-PCR and its application in botany research%定量RT-PCR及其在植物学研究中的应用

    Institute of Scientific and Technical Information of China (English)

    胡丹丹; 顾金刚; 姜瑞波; 董金皋

    2007-01-01

    定量RT-PCR(Quantitative reverse transcriptase-PCR)是在反转录和定量PCR的基础上发展起来的一种特异性检测基因表达的技术.主要包括相对定量RT-PCR(Relative quantitative RT-PCR)、竞争性定量RT-PCR(Competitive quantitative RT-PCR)、比较定量RT-PCR(Comparative quantitative RT-PCR)和实时定量RT-PCR(Realtime quantitativeRT-PCR)四种.目前定量RT-PCR在植物学研究中的应用越来越广泛,如植物营养学研究、植物发育学研究、植物抗逆机理研究、转基因植物的检测、病原菌的检测、植物与微生物互作机理研究、植物抗病性检测等方面.本文综述了定量RT-PCR的原理及在植物学中的应用.

  5. Selection of reference genes for quantitative PCR studies in purified B cells from B cell chronic lymphocytic leukaemia patients

    OpenAIRE

    Valceckiene, Vilma; Kontenyte, Rima; Jakubauskas, Arturas; Griskevicius, Laimonas

    2010-01-01

    Abstract Clinical heterogeneity of B-cell chronic lymphocytic leukaemia (B-CLL) makes it necessary to identify potent prognostic indicators to predict individual clinical course and select risk-adapted therapy. During the last years numerous gene expression models have been suggested as prognostic factors of B-CLL. Today quantitative polymerase chain reaction (qPCR) is a preferred method for rapid quantification of gene expression and validation of microarray data. Reliability of q...

  6. Electrochemistry-based real-time PCR on a microchip.

    Science.gov (United States)

    Yeung, Stephen S W; Lee, Thomas M H; Hsing, I-Ming

    2008-01-15

    The development of handheld instruments for point-of-care DNA analysis can potentially contribute to the medical diagnostics and environmental monitoring for decentralized applications. In this work, we demonstrate the implementation of a recently developed electrochemical real-time polymerase chain reaction (ERT-PCR) technique on a silicon-glass microchip for simultaneous DNA amplification and detection. This on-chip ERT-PCR process requires the extension of an oligonucleotide in both solution and at solid phases and intermittent electrochemical signal measurement in the presence of all the PCR reagents. Several important parameters, related to the surface passivation and electrochemical scanning of working electrodes, were investigated. It was found that the ERT-PCR's onset thermal cycle ( approximately 3-5), where the analytical signal begins to be distinguishable from the background, is much lower than that of the fluorescence-based counterparts for high template DNA situations (3 x 10(6) copies/microL). By carefully controlling the concentrations of the immobilized probe and the enzyme polymerase, improvements have been made in obtaining a meaningful electrochemical signal using a lower initial template concentration. This ERT-PCR technique on a microchip platform holds significant promise for rapid DNA detection for point-of-care testing applications.

  7. Use of propidium monoazide for the enumeration of viable Oenococcus oeni in must and wine by quantitative PCR.

    Science.gov (United States)

    Vendrame, Marco; Iacumin, Lucilla; Manzano, Marisa; Comi, Giuseppe

    2013-08-01

    Malolactic fermentation is an important step in winemaking, but it has to be avoided in some cases. It's carried out by lactic acid bacteria belonging mainly to the genus Oenococcus, which is known to be a slow growing bacterium. Classical microbiological methods to enumerate viable cells of Oenococcus oeni in must and wine take 7-9 days to give results. Moreover, RT-qPCR technique gives accurate quantitative results, but it requires time consuming steps of RNA extraction and reverse transcription. In the present work we developed a fast and reliable quantitative PCR (qPCR) method to enumerate cells of Oenococcus oeni, directly, in must and wine. For the first time we used a propidium monoazide treatment of samples to enumerate only Oenococcus oeni viable cells. The detection limit of the developed method is 0.33 log CFU/mL (2.14 CFU/mL) in must, and 0.69 log CFU/mL (4.90 CFU/mL) in wine, lower than that of the previously developed qPCR protocols.

  8. Selection of Reference Genes for Quantitative Real-time PCR during Flower Development in Tree Peony (Paeonia suffruticosa Andr.

    Directory of Open Access Journals (Sweden)

    Jian eLi

    2016-04-01

    Full Text Available Tree peony (Paeonia suffruticosa is a perennial plant indigenous to China known for its elegant and vibrantly colorful flowers. A few genes involved in petal pigmentation have been cloned in tree peony. However, to date, there have been few studies on the comparison and selection of stable reference genes for gene expression analysis by quantitative reverse-transcription PCR (qRT-PCR in this species. In this study, 10 candidate reference genes were evaluated for the normalization of qRT-PCR in three tree peony cultivars. GAPDH and UBC were identified as the top two most stable reference genes in ‘Feng Dan’ and ‘Xi Shi’, and EF-1α/UBC was recommended to be the best combination for ‘Que Hao’. The expression stability of various reference genes differed across cultivars, suggesting that selection and validation of reliable reference genes for quantitative gene expression analysis was necessary not only for different species but also for different cultivars. The results provided a list of reference genes for further study on gene expression in P. suffruticosa. However, in any case, a preliminary check on the accuracy of the best performing reference genes is requested for each qRT-PCR experiment.

  9. Selection of Reference Genes for Quantitative Real-Time PCR during Flower Development in Tree Peony (Paeonia suffruticosa Andr.)

    Science.gov (United States)

    Li, Jian; Han, Jigang; Hu, Yonghong; Yang, Ji

    2016-01-01

    Tree peony (Paeonia suffruticosa) is a perennial plant indigenous to China known for its elegant and vibrantly colorful flowers. A few genes involved in petal pigmentation have been cloned in tree peony. However, to date, there have been few studies on the comparison and selection of stable reference genes for gene expression analysis by quantitative reverse-transcription PCR (qRT-PCR) in this species. In this study, 10 candidate reference genes were evaluated for the normalization of qRT-PCR in three tree peony cultivars. GAPDH and UBC were identified as the top two most stable reference genes in ‘Feng Dan’ and ‘Xi Shi,’ and EF-1α/UBC was recommended to be the best combination for ‘Que Hao.’ The expression stability of various reference genes differed across cultivars, suggesting that selection and validation of reliable reference genes for quantitative gene expression analysis was necessary not only for different species but also for different cultivars. The results provided a list of reference genes for further study on gene expression in P. suffruticosa. However, in any case, a preliminary check on the accuracy of the best performing reference genes is requested for each qRT-PCR experiment. PMID:27148337

  10. Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR.

    Science.gov (United States)

    Vendrame, Marco; Manzano, Marisa; Comi, Giuseppe; Bertrand, Julien; Iacumin, Lucilla

    2014-09-01

    Brettanomyces bruxellensis is a current problem in winemaking all over the world, and the question if B. bruxellensis has a positive or negative impact on wine is one of the most controversial discussions in the world. The presence of live B. bruxellensis cells represents the risk of growth and an increase in cell numbers, which is related to the potential production of volatile phenols. In this work, the optimisation of a PMA-quantitative PCR (qPCR) method to enumerate only viable cells was carried out using the standard strain B. bruxellensis DSMZ 70726. The obtained detection limits were 0.83 log CFU/mL in red wine, 0.63 log CFU/mL in white wine and 0.23 log CFU/mL in beer. Moreover, the quantification was also performed by Reverse Transcription quantitative PCR (RT-qPCR), and the results showed a higher detection limit for all of the trials.

  11. Targeted profiling of oral bacteria in human saliva and in vitro biofilms with quantitative real-time PCR.

    Science.gov (United States)

    Price, R R; Viscount, H B; Stanley, M C; Leung, K-P

    2007-01-01

    An in vitro plaque model based on the use of human salivary bacteria and tooth-like surfaces was previously developed for studying the formation of oral biofilm and its use for pre-clinical testing of candidate antimicrobial or antiplaque agents. In this study, a quantitative Taqman PCR assay (QPCR) was developed to compare the bacterial compositions of in vitro biofilms to parent saliva samples, and to determine the relative contributions of different species in the formation of the oral biofilm. In addition, the growth inhibition of saliva-derived plaque was evaluated by chlorhexidine. With this assay, which consisted of primer/probe sets targeting either 16S rDNA sequences present in public databases or cloned ribosomal intergenic spacer region (ISR) sequences, 15 oral bacteria derived from saliva as well as those that were responsible for biofilm formation in an in vitro plaque model were rapidly identified and quantified. Among the target organisms were Actinobacillus actinomycetemcomitans, Eikenella corrodens, Fusobacterium nucleatum, Lactobacillus acidophilus, Micromonas micros, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus mutans, Streptococcus sobrinus, Tannerella forsythensis, and Veillonella parvula. Primer and probe sets developed were both sensitive and specific. The relative profiles of a number of bacteria in 45-h-old biofilms were determined and, when compared to saliva samples, it was found that most of the bacteria identified in saliva also populated the in vitro plaque, including some anaerobes. Brief exposure of biofilms to chlorhexidine resulted in significant losses in viability. This new broad spectrum QPCR assay in combination with the in vitro plaque model will be of significant value in the quantitative study of the microbial composition of human saliva, saliva-derived plaque, and pre-clinical evaluation of potential antimicrobial and antiplaque molecules.

  12. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.

    Science.gov (United States)

    Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon

    2015-03-01

    A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys.

  13. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA)

    Energy Technology Data Exchange (ETDEWEB)

    Vesper, Stephen; McKinstry, Craig A.; Hartmann, Chris; Neace, Michelle; Yoder, Stephanie; Vesper, Alex

    2007-11-28

    A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85 °C or held at 5 °C (controls) for 1 h. Polycarbonate filters (25 mm diameter, 0.8 μm pore size) were placed on "welled" slides (14 mm diameter) and the filters treated with either PBS or PMA. Propidium monoazide (PMA), which enters dead cells but not live cells, was incubated with cell suspensions, exposed to blue wavelength light-emitting diodes (LED) to inactivate remaining PMA and secure intercalation of PMAwith DNA of dead cells. Treated cells were extracted and the live and dead cells evaluated with quantitative PCR (QPCR). After heat treatment and DNA modification with PMA, all fungal species tested showed an approximate 100- to 1000-fold difference in cell viability estimated by QPCR analysis which was consistent with estimates of viability based on culturing.

  14. 番茄叶片基因组DNA快速制备技术及其在基于实时荧光定量PCR的转基因检测中的应用%Techniques for rapid preparation of tomato leaf DNA and its application in real-time quantitative PCR-based transgene detection

    Institute of Scientific and Technical Information of China (English)

    王伟伟; 朱长青; 刘小花; 陈昆松; 徐昌杰

    2011-01-01

    Using tomato (Solanum lycopersicum L. Cv. Micro-Tom) leaf as material, a simple and rapid DNA preparation protocol was established. This method required only 2-20 mm2 leaf with only one extraction solution and involved one pipetation and one centrifugation each. No precipitation was required. The suitable volume of prepared DNA solution, as PCR template, for real-time quantitative PCR was determined to be 0.1-0.2 μL in 12.5 μL final reaction volume. The excessive template DNA solution was confirmed to reduce PCR efficiency and even can result in PCR failure. This technique for rapid preparation of DNA and a compatible real-time quantitative PCR were successfully applied in transgene detection of tomato plants.%以番茄(Solanum lycopersicumL.cv.Micro-Tom)叶片为试材,建立了一种简便快速制备叶片基因组DNA的方法.2~20 mm2的叶片即可满足制备要求,制备过程只需一种提取试剂、只涉及1次移液和1次离心操作,不涉及沉淀.确定了所制备的DNA用于实时荧光定量PCR的合适用量为0.1~0.2 μL(反应总体积为12.5 μL),发现过量模板的使用可降低PCR效率且可导致扩增失败.该项DNA快速制备及相适应的实时荧光定量PCR技术已成功应用于番茄转基因植株检测.

  15. Improved PCR assay for the species-specific identification and quantitation of Legionella pneumophila in water.

    Science.gov (United States)

    Cho, Min Seok; Ahn, Tae-Young; Joh, Kiseong; Lee, Eui Seok; Park, Dong Suk

    2015-11-01

    Legionellosis outbreak is a major global health care problem. However, current Legionella risk assessments may be compromised by uncertainties in Legionella detection methods, infectious dose, and strain infectivity. These limitations may place public health at significant risk, leading to significant monetary losses in health care. However, there are still unmet needs for its rapid identification and monitoring of legionellae in water systems. Therefore, in the present study, a primer set was designed based on a LysR-type transcriptional regulator (LTTR) family protein gene of Legionella pneumophila subsp. pneumophila str. Philadelphia 1 because it was found that this gene is structurally diverse among species through BLAST searches. The specificity of the primer set was evaluated using genomic DNA from 6 strains of L. pneumophila, 5 type strains of other related Legionella species, and other 29 reference pathogenic bacteria. The primer set used in the PCR assay amplified a 264-bp product for only targeted six strains of L. pneumophila. The assay was also able to detect at least 1.39 × 10(3) copies/μl of cloned amplified target DNA using purified DNA or 7.4 × 10(0) colony-forming unit per reaction when using calibrated cell suspension. In addition, the sensitivity and specificity of this assay were confirmed by successful detection of Legionella pneumophila in environmental water samples.

  16. Quantitative RT-PCR Gene Evaluation and RNA Interference in the Brown Marmorated Stink Bug.

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    Full Text Available The brown marmorated stink bug (Halyomorpha halys has emerged as one of the most important invasive insect pests in the United States. Functional genomics in H. halys remains unexplored as molecular resources in this insect have recently been developed. To facilitate functional genomics research, we evaluated ten common insect housekeeping genes (RPS26, EF1A, FAU, UBE4A, ARL2, ARP8, GUS, TBP, TIF6 and RPL9 for their stability across various treatments in H. halys. Our treatments included two biotic factors (tissues and developmental stages and two stress treatments (RNAi injection and starvation. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper and a web-based tool (RefFinder. The qRT-PCR results indicated ARP8 and UBE4A exhibit the most stable expression across tissues and developmental stages, ARL2 and FAU for dsRNA treatment and TBP and UBE4A for starvation treatment. Following the dsRNA treatment, all genes except GUS showed relatively stable expression. To demonstrate the utility of validated reference genes in accurate gene expression analysis and to explore gene silencing in H. halys, we performed RNAi by administering dsRNA of target gene (catalase through microinjection. A successful RNAi response with over 90% reduction in expression of target gene was observed.

  17. Performance Assessment of Human and Cattle Associated Quantitative Real-time PCR Assays - slides

    Science.gov (United States)

    The presentation overview is (1) Single laboratory performance assessment of human- and cattle associated PCR assays and (2) A Field Study: Evaluation of two human fecal waste management practices in Ohio watershed.

  18. Establishment of quantitative PCR methods for the quantification of geosmin-producing potential and Anabaena sp. in freshwater systems.

    Science.gov (United States)

    Su, Ming; Gaget, Virginie; Giglio, Steven; Burch, Michael; An, Wei; Yang, Min

    2013-06-15

    Geosmin has often been associated with off-flavor problems in drinking water with Anabaena sp. as the major producer. Rapid on-site detection of geosmin-producers as well as geosmin is important for a timely management response to potential off-flavor events. In this study, quantitative polymerase chain reaction (qPCR) methods were developed to detect the levels of Anabaena sp. and geosmin, respectively, by designing two PCR primer sets to quantify the rpoC1 gene (ARG) and geosmin synthase one (GSG) in Anabaena sp. in freshwater systems. The ARG density determined by qPCR assay is highly related to microscopic cell count (r(2) = 0.726, p geosmin concentrations measured by gas chromatography-mass spectrometry (GC-MS) and GSG copies was also established (r(2) = 0.742, p < 0.001) with similar LOD and LOQ values. Using the two qPCR protocols, we succeeded in measuring different levels of ARG and GSG copies in different freshwater systems with high incidence environmental substrata and diverse ecological conditions, showing that the methods developed could be applied for environmental monitoring. Moreover, comparing to the microscopic count and GC-MS analytical methods, the qPCR methods can reduce the time-to-results from several days to a few hours and require considerably less traditional algal identification and taxonomic expertise.

  19. Application of propidium monoazide quantitative real-time PCR to quantify the viability of Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Shao, Yuyu; Wang, Zhaoxia; Bao, Qiuhua; Zhang, Heping

    2016-12-01

    In this study, a combination of propidium monoazide (PMA) and quantitative real-time PCR (qPCR) was used to develop a method to determine the viability of cells of Lactobacillus delbrueckii ssp. bulgaricus ND02 (L. bulgaricus) that may have entered into a viable but nonculturable state. This can happen due to its susceptibility to cold shock during lyophilization and storage. Propidium monoazide concentration, PMA incubation time, and light exposure time were optimized to fully exploit the PMA-qPCR approach to accurately assess the total number of living L. bulgaricus ND02. Although PMA has little influence on living cells, when concentrations of PMA were higher than 30μg/mL the number of PCR-positive living bacteria decreased from 10(6) to 10(5) cfu/mL in comparison with qPCR enumeration. Mixtures of living and dead cells were used as method verification samples for enumeration by PMA-qPCR, demonstrating that this method was feasible and effective for distinguishing living cells of L. bulgaricus when mixed with a known number of dead cells. We suggest that several conditions need to be studied further before PMA-qPCR methods can be accurately used to distinguish living from dead cells for enumeration under more realistic sampling situations. However, this research provides a rapid way to enumerate living cells of L. bulgaricus and could be used to optimize selection of cryoprotectants in the lyophilization process and develop technologies for high cell density cultivation and optimal freeze-drying processes.

  20. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  1. Quantitative real-time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in wastewater.

    Science.gov (United States)

    Varma, M; Field, R; Stinson, M; Rukovets, B; Wymer, L; Haugland, R

    2009-11-01

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. These methods were used in the analyses of wastewater samples to investigate their feasibility as alternatives to current fecal indicator bacteria culture methods for predicting the efficiency of viral pathogen removal by standard treatment processes. PMA treatment was effective in preventing qPCR detection of target sequences from non-viable cells. Concentrates of small volume, secondary-treated wastewater samples, collected from a publicly owned treatment works (POTW) under normal operating conditions, had little influence on this effectiveness. Higher levels of total suspended solids, such as those associated with normal primary treatment and all treatment stages during storm flow events, appeared to interfere with PMA effectiveness under the sample preparation conditions employed. During normal operating conditions at three different POTWs, greater reductions were observed in PMA-qPCR detectable target sequences of both Enterococcus and Bacteroidales than in total qPCR detectable sequences. These reductions were not as great as those observed for cultivable fecal indicator bacteria in response to wastewater disinfection. Reductions of PMA-qPCR as well as total qPCR detectable target sequences from enterococci and, to a lesser extent, Bacteroidales correlated well with reductions in infectious viruses during both normal and storm flow operating conditions and therefore may have predictive value in determining the efficiency at which these pathogens are removed.

  2. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Science.gov (United States)

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  3. Establishment of Real-Time TaqMan-Fluorescence Quantitative RT-PCR Assay for Detection and Quantification of Porcine Lipoprotein Lipase mRNA

    Institute of Scientific and Technical Information of China (English)

    LIAN Hong-xia; LU De-xun; GAO Min

    2009-01-01

    Porcine lipoprotein lipase (LPL) cDNA was cloned as the standard for real-time quantifying LPL mRNA and the TaqMan-fluorescence quantitative PCR assay for detection was established. The total RNA extracted from Longissimus dorsi of porcine was reverse-transcribed to cDNA. LPL cDNA was ligated with pGM-T vector and transformed into Escherichia coli TOP 10. Plasmid DNA extracted from positive clones was verified by PCR amplification and sequenced. LPL was amplified by real-time fluorescence quantitative PCR from the plasmid DNA. The concentration of DNA template purified was detected by analyzing absorbance in 260 nm and then the combined plasmid was diluted to series as standard for fluorescence quantitative PCR (FQ-PCR). The method of LPL mRNA real-time PCR was well established, which detected as low as 103 with the linear range 103 to 1010 copies. The standard curves showed high correlations (R2=0.9871). A series of standards for real-time PCR analysis have been constructed successfully, and real-time TaqMan-fluorescence quantitative RT-PCR is reliable to quantitatively evaluate FQ-PCR mRNA in L. dorsi of porcine.

  4. A highly sensitive quantitative real-time PCR assay for determination of mutant JAK2 exon 12 allele burden.

    Directory of Open Access Journals (Sweden)

    Lasse Kjær

    Full Text Available Mutations in the Janus kinase 2 (JAK2 gene have become an important identifier for the Philadelphia-chromosome negative chronic myeloproliferative neoplasms. In contrast to the JAK2V617F mutation, the large number of JAK2 exon 12 mutations has challenged the development of quantitative assays. We present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel mutation. Two patients were homozygous with a high mutant allele burden, whereas one of the heterozygous patients had a very low mutant allele burden. The allele burden in the peripheral blood resembled that of the bone marrow, except for the patient with low allele burden. Myeloid and lymphoid cell populations were isolated by cell sorting and quantitative PCR revealed similar mutant allele burdens in CD16+ granulocytes and peripheral blood. The mutations were also detected in B-lymphocytes in half of the patients at a low allele burden. In conclusion, our highly sensitive assay provides an important tool for quantitative monitoring of the mutant allele burden and accordingly also for determining the impact of treatment with interferon-α-2, shown to induce molecular remission in JAK2V617F-positive patients, which may be a future treatment option for JAK2 exon 12-positive patients as well.

  5. A PCR-based assay for discriminating Cervus and Rangifer (Cervidae) antlers with mitochondrial DNA polymorphisms.

    Science.gov (United States)

    Kim, Young Hwa; Kim, Eung Soo; Ko, Byong Seob; Oh, Seung-Eun; Ryuk, Jin-Ah; Chae, Seong Wook; Lee, Hye Won; Choi, Go Ya; Seo, Doo Won; Lee, Mi Young

    2012-07-01

    This study describes a method for discriminating Rangifer antlers from true Cervus antlers using agarose gel electrophoresis, capillary electrophoresis, quantitative real-time PCR, and allelic discrimination. Specific primers labeled with fluorescent tags were designed to amplify fragments from the mitochondrial D-loop genes for various Cervus subspecies and Rangifer tarandus differentially. A 466-bp fragment that was observed for both Cervus and Rangifer antlers served as a positive control, while a 270-bp fragment was specifically amplified only from Rangifer antlers. Allelic discrimination was used to differentiate between Cervus and Rangifer antlers, based on the amplification of specific alleles for both types of antlers. These PCR-based assays can be used for forensic and quantitative analyses of Cervus and Rangifer antlers in a single step, without having to obtain any sequence information. In addition, multiple PCR-based assays are more accurate and reproducible than a single assay for species-specific analysis and are especially useful in this study for the identification of original Cervus deer products from fraudulent Rangifer antlers.

  6. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    Science.gov (United States)

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A real-time PCR and culture methods was obtained in a majority of the food samples (81.8%), with good correlation (r(2)=0.8285). This study demonstrated that the rplP-targeted real-time PCR method could detect and enumerate Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods.

  7. A novel quantitative PCR assay for the detection of Streptococcus pneumoniae using the competence regulator gene target comX.

    Science.gov (United States)

    Habets, Marrit N; Cremers, Amelieke J H; Bos, Martine P; Savelkoul, Paul; Eleveld, Marc J; Meis, Jacques F; Hermans, Peter W M; Melchers, Willem J; de Jonge, Marien I; Diavatopoulos, Dimitri A

    2016-02-01

    Streptococcus pneumoniae is responsible for an estimated 1.6 million deaths worldwide every year. While rapid detection and timely treatment with appropriate antibiotics is preferred, this is often difficult due to the amount of time that detection with blood cultures takes. In this study, a novel quantitative PCR assay for the detection of Streptococcus pneumoniae was developed. To identify novel targets, we analysed the pneumococcal genome for unique, repetitive DNA sequences. This approach identified comX, which is conserved and present in duplicate copies in Streptococcus pneumoniae but not in other bacterial species. Comparison with lytA, the current 'gold standard' for detection by quantitative PCR, demonstrated an analytic specificity of 100% for both assays on a panel of 10 pneumococcal and 18 non-pneumococcal isolates, but a reduction of 3.5 quantitation cycle values (± 0.23 sem), resulting in an increased analytical detection rate of comX. We validated our assay on DNA extracted from the serum of 30 bacteraemic patients who were blood culture positive for Streptococcus pneumoniae and 51 serum samples that were culture positive for other bacteria. This resulted in a similar clinical sensitivity between the comX and lytA assays (47%) and in a diagnostic specificity of 98.2 and 100% for the lytA and comX assays, respectively. In conclusion, we have developed a novel quantitative PCR assay with increased analytical sensitivity for the detection of Streptococcus pneumoniae, which may be used to develop a rapid bedside test for the direct detection of Streptococcus pneumoniae in clinical specimens.

  8. A Digital PCR-Based Method for Efficient and Highly Specific Screening of Genome Edited Cells.

    Directory of Open Access Journals (Sweden)

    Scott D Findlay

    Full Text Available The rapid adoption of gene editing tools such as CRISPRs and TALENs for research and eventually therapeutics necessitates assays that can rapidly detect and quantitate the desired alterations. Currently, the most commonly used assay employs "mismatch nucleases" T7E1 or "Surveyor" that recognize and cleave heteroduplexed DNA amplicons containing mismatched base-pairs. However, this assay is prone to false positives due to cancer-associated mutations and/or SNPs and requires large amounts of starting material. Here we describe a powerful alternative wherein droplet digital PCR (ddPCR can be used to decipher homozygous from heterozygous mutations with superior levels of both precision and sensitivity. We use this assay to detect knockout inducing alterations to stem cell associated proteins, NODAL and SFRP1, generated using either TALENs or an "all-in-one" CRISPR/Cas plasmid that we have modified for one-step cloning and blue/white screening of transformants. Moreover, we highlight how ddPCR can be used to assess the efficiency of varying TALEN-based strategies. Collectively, this work highlights how ddPCR-based screening can be paired with CRISPR and TALEN technologies to enable sensitive, specific, and streamlined approaches to gene editing and validation.

  9. A Digital PCR-Based Method for Efficient and Highly Specific Screening of Genome Edited Cells

    Science.gov (United States)

    Berman, Jennifer R.; Postovit, Lynne-Marie

    2016-01-01

    The rapid adoption of gene editing tools such as CRISPRs and TALENs for research and eventually therapeutics necessitates assays that can rapidly detect and quantitate the desired alterations. Currently, the most commonly used assay employs “mismatch nucleases” T7E1 or “Surveyor” that recognize and cleave heteroduplexed DNA amplicons containing mismatched base-pairs. However, this assay is prone to false positives due to cancer-associated mutations and/or SNPs and requires large amounts of starting material. Here we describe a powerful alternative wherein droplet digital PCR (ddPCR) can be used to decipher homozygous from heterozygous mutations with superior levels of both precision and sensitivity. We use this assay to detect knockout inducing alterations to stem cell associated proteins, NODAL and SFRP1, generated using either TALENs or an “all-in-one” CRISPR/Cas plasmid that we have modified for one-step cloning and blue/white screening of transformants. Moreover, we highlight how ddPCR can be used to assess the efficiency of varying TALEN-based strategies. Collectively, this work highlights how ddPCR-based screening can be paired with CRISPR and TALEN technologies to enable sensitive, specific, and streamlined approaches to gene editing and validation. PMID:27089539

  10. Quantitative Analysis of Epstein-Barr Virus Load by Using a Real-Time PCR Assay

    OpenAIRE

    1999-01-01

    To measure the virus load in patients with symptomatic Epstein-Barr virus (EBV) infections, we used a real-time PCR assay to quantify the amount of EBV DNA in blood. The real-time PCR assay could detect from 2 to over 107 copies of EBV DNA with a wide linear range. We estimated the virus load in peripheral blood mononuclear cells (PBMNC) from patients with symptomatic EBV infections. The mean EBV-DNA copy number in the PBMNC was 103.7 copies/μg of DNA in patients with EBV-related lymphoprolif...

  11. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses

    OpenAIRE

    Raman Bansal; Priyanka Mittapelly; CASSONE, BRYAN J.; Praveen Mamidala; Redinbaugh, Margaret G.; Andy Michel

    2015-01-01

    For real-time reverse transcription-PCR (qRT-PCR) in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2) in soybean under biotic str...

  12. Development of a method to detect and quantify Aspergillus fumigatus conidia by quantitative PCR for environmental air samples.

    Science.gov (United States)

    McDevitt, James J; Lees, Peter S J; Merz, William G; Schwab, Kellogg J

    2004-10-01

    Exposure to Aspergillus fumigatus is linked with respiratory diseases such as asthma, invasive aspergillosis, hypersensitivity pneumonitis, and allergic bronchopulmonary aspergillosis. Molecular methods using quantitative PCR (qPCR) offer advantages over culture and optical methods for estimating human exposures to microbiological agents such as fungi. We describe an assay that uses lyticase to digest A. fumigatus conidia followed by TaqMan qPCR to quantify released DNA. This method will allow analysis of airborne A. fumigatus samples collected over extended time periods and provide a more representative assessment of chronic exposure. The method was optimized for environmental samples and incorporates: single tube sample preparation to reduce sample loss, maintain simplicity, and avoid contamination; hot start amplification to reduce non-specific primer/probe annealing; and uracil-N-glycosylase to prevent carryover contamination. An A. fumigatus internal standard was developed and used to detect PCR inhibitors potentially found in air samples. The assay detected fewer than 10 A. fumigatus conidia per qPCR reaction and quantified conidia over a 4-log10 range with high linearity (R2 >0.99) and low variability among replicate standards (CV=2.0%) in less than 4 h. The sensitivity and linearity of qPCR for conidia deposited on filters was equivalent to conidia calibration standards. A. fumigatus DNA from 8 isolates was consistently quantified using this method, while non-specific DNA from 14 common environmental fungi, including 6 other Aspergillus species, was not detected. This method provides a means of analyzing long term air samples collected on filters which may enable investigators to correlate airborne environmental A. fumigatus conidia concentrations with adverse health effects.

  13. Array-CGH and quantitative PCR genetic analysis in a case with bilateral hypoplasia of pulmonary arteries and lungs and simultaneous unilateral renal agenesis.

    Science.gov (United States)

    Hussein, Kais; Steinemann, Doris; Scholz, Henrike; Menkhaus, Ralf; Feist, Henning; Kreipe, Hans

    2010-08-18

    We describe the clinical course and have characterised anatomically and genetically a unique case of a newborn with bilateral hypoplasia of pulmonary arteries, consecutive extremely hypoplastic lung tissue and associated unilateral renal agenesis. Intrauterine oxygenation by the placenta seemed to have allowed normotrophic body maturity but immediately after delivery, in the third trimester, progressive hypoxemia developed and the newborn succumbed to acute respiratory failure. Genetic analysis by array-based comparative genomic hybridisation and quantitative PCR revealed duplication of 1p21, which, however, might not be the disease causing aberration. This case might represent an extreme form of previously reported, rare cases with simultaneous dysorganogenesis of lungs and kidneys.

  14. Reference gene selection for real-time quantitative PCR analysis of the mouse uterus in the peri-implantation period.

    Directory of Open Access Journals (Sweden)

    Pengfei Lin

    Full Text Available The study of uterine gene expression patterns is valuable for understanding the biological and molecular mechanisms that occur during embryo implantation. Real-time quantitative RT-PCR (qRT-PCR is an extremely sensitive technique that allows for the precise quantification of mRNA abundance; however, selecting stable reference genes suitable for the normalization of qRT-PCR data is required to avoid the misinterpretation of experimental results and erroneous analyses. This study employs several mouse models, including an early pregnancy, a pseudopregnancy, a delayed implantation and activation, an artificial decidualization and a hormonal treatment model; ten candidate reference genes (PPIA, RPLP0, HPRT1, GAPDH, ACTB, TBP, B2M, 18S, UBC and TUBA that are found in uterine tissues were assessed for their suitability as internal controls for relative qRT-PCR quantification. GeNorm(PLUS, NormFinder, and BestKeeper were used to evaluate these candidate reference genes, and all of these methods identified RPLP0 and GAPDH as the most stable candidates and B2M and 18S as the least stable candidates. However, when the different models were analyzed separately, the reference genes exhibited some variation in their expression levels.

  15. Use of Fluorescence Quantitative Polymerase Chain Reaction (PCR) for the Detection of Escherichia coli Adhesion to Pig Intestinal Epithelial Cells.

    Science.gov (United States)

    Dai, C H; Gan, L N; Qin, W U; Zi, C; Zhu, G Q; Wu, S L; Bao, W B

    2016-09-01

    An efficient and accurate method to test Escherichia coli (E. coli) adhesion to intestinal epithelial cells will contribute to the study of bacterial pathogenesis and the function of genes that encode receptors related to adhesion. This study used the quantitative real-time polymerase chain reaction (qPCR) method. qPCR primers were designed from the PILIN gene of E. coli F18ab, F18ac, and K88ac, and the pig β-ACTIN gene. Total deoxyribonucleic acid (DNA) from E. coli and intestinal epithelial cells (IPEC-J2 cells) were used as templates for qPCR. The 2-ΔΔCt formula was used to calculate the relative number of bacteria in cultures of different areas. We found that the relative numbers of F18ab, F18ac, and K88ac that adhered to IPEC-J2 cells did not differ significantly in 6-, 12-, and 24-well culture plates. This finding indicated that there was no relationship between the relative adhesion number of E. coli and the area of cells, so the method of qPCR could accurately test the relative number of E. coli. This study provided a convenient and reliable testing method for experiments involving E. coli adhesion, and also provided innovative ideas for similar detection methods.

  16. DEVELOPMENT OF SEMI-QUANTITATIVE PCR ASSAYS FOR THE DETECTION AND ENUMERATION OF GAMBIERDISCUS SPECIES (GONYAULACALES, DINOPHYCEAE)(1).

    Science.gov (United States)

    Vandersea, Mark W; Kibler, Steven R; Holland, William C; Tester, Patricia A; Schultz, Thomas F; Faust, Maria A; Holmes, Michael J; Chinain, Mirelle; Wayne Litaker, R

    2012-08-01

    Ciguatera fish poisoning (CFP) is a serious health problem in tropical regions and is caused by the bioaccumulation of lipophilic toxins produced by dinoflagellates in the genus Gambierdiscus. Gambierdiscus species are morphologically similar and are difficult to distinguish from one another even when using scanning electron microscopy. Improved identification and detection methods that are sensitive and rapid are needed to identify toxic species and investigate potential distribution and abundance patterns in relation to incidences of CFP. This study presents the first species-specific, semi-quantitative polymerase chain reaction (qPCR) assays that can be used to address these questions. These assays are specific for five Gambierdiscus species and one undescribed ribotype. The assays utilized a SYBR green format and targeted unique sequences found within the SSU, ITS, and the D1/D3 LSU ribosomal domains. Standard curves were constructed using known concentrations of cultured cells and 10-fold serial dilutions of rDNA PCR amplicons containing the target sequence for each specific assay. Assay sensitivity and accuracy were tested using DNA extracts purified from known concentrations of multiple Gambierdiscus species. The qPCR assays were used to assess Gambierdiscus species diversity and abundance in samples collected from nearshore areas adjacent to Ft. Pierce and Jupiter, Florida USA. The results indicated that the practical limit of detection for each assay was 10 cells per sample. Most interestingly, the qPCR analysis revealed that as many as four species of Gambierdiscus were present in a single macrophyte sample.

  17. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR.

    Science.gov (United States)

    Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin

    2015-01-01

    Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.

  18. Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infection.

    Science.gov (United States)

    Ebadzad, Ghazal; Cravador, Alfredo

    2014-01-01

    cDNA-AFLP methodology was used to gain insight into gene fragments differentially present in the mRNA profiles of Quercus suber roots infected with zoospores of Phytophthora cinnamomi at different post challenge time points. Fifty-three transcript-derived fragments (TDFs) were identified and sequenced. Six candidate genes were selected based on their expression patterns and homology to genes known to play a role in defence. They encode a cinnamyl alcohol dehydrogenase2 (QsCAD2), a protein disulphide isomerase (QsPDI), a CC-NBS-LRR resistance protein (QsRPc), a thaumatin-like protein (QsTLP), a chitinase (QsCHI) and a 1,3-β-glucanase (QsGlu). Evaluation of the expression of these genes by quantitative polymerase chain reaction (qPCR) revealed that transcript levels of QsRPc, QsCHI, QsCAD2 and QsPDI increased during the first 24 h post-inoculation, while those of thaumatin-like protein decreased. No differential expression was observed for 1,3-β-glucanase (QsGlu). Four candidate reference genes, polymerase II (QsRPII), eukaryotic translation initiation factor 5A (QsEIF-5A), β-tubulin (QsTUB) and a medium subunit family protein of clathrin adaptor complexes (QsCACs) were assessed to determine the most stable internal references for qRT-PCR normalization in the Phytophthora-Q. suber pathosystem in root tissues. Those found to be more stable, QsRPII and QsCACs, were used as internal reference in the present work. Knowledge on the Quercus defence mechanisms against biotic stress is scarce. This study provides an insight into the gene profiling of a few important genes of Q. suber in response to P. cinnamomi infection contributing to the knowledge of the molecular interactions involving Quercus and root pathogens that can be useful in the future to understand the mechanisms underlying oak resistance to soil-borne oomycetes.

  19. Quantitative Detection of Clostridium perfringens in Broiler Chickens by Real-Time PCR Targeting the Alpha-Toxin Gene

    DEFF Research Database (Denmark)

    Abildgaard, Lone; Engberg, Ricarda M.; Schramm, Andreas

    2006-01-01

    QUANTITATIVE DETECTION OF CLOSTRIDIUM PERFRINGENS IN BROILER CHICKENS BY REAL-TIME PCR TARGETING THE ALPHA-TOXIN GENE L. Abildgaard 1, R.M. Engberg 1, A. Schramm 2, O. Højberg 1 1 Danish Institute of Agricultural Sciences, Department of Animal Health, Welfare and Nutrition, Tjele, Denmark; 2...... University of Aarhus, Institute of Biological Sciences, Department of Microbiology, Aarhus, Denmark Necrotic enteritis is a severe gastrointestinal disease in broiler chickens caused by C. perfringens producing α-toxin (phospholipase C). The incidence of necrotic enteritis in broilers has been reduced...... by antibiotics (ionophores) presently used to prevent parasitic coccidiosis. From 2012 the European Union has banned these anticoccidials as feed additives, wherefore alternatives are needed to suppress C. perfringens and/or α-toxin production. A real-time PCR primer-probe set targeting the α-toxin gene...

  20. Progress in real-time quantitative PCR technique%实时荧光定量PCR技术进展

    Institute of Scientific and Technical Information of China (English)

    洪云; 李津; 汪和睦; 赵铠

    2006-01-01

    实时荧光定量PCR(real-time quantitative PCR)技术是一种新型的核酸定量检测、分析技术,它通过在PCR扩增反应过程中加入荧光物质,使得对反应过程的实时监控成为可能.它具有实时监测、定量准确、灵敏度高、反应速度快、重复性好及PCR反应后不需电泳检测等优点,已逐步成为分子生物学研究中的重要工具.

  1. Molecular staging of pathologically negative sentinel lymph nodes from melanoma patients using multimarker, quantitative real-time rt-PCR.

    Science.gov (United States)

    Hilari, Josep M; Mangas, Cristina; Xi, Liqiang; Paradelo, Cristina; Ferrándiz, Carlos; Hughes, Steven J; Yueh, Cindy; Altomare, Ivy; Gooding, William E; Godfrey, Tony E

    2009-01-01

    The aim of this study was to evaluate the prognostic potential of quantitative reverse-transcription, polymerase chain reaction (qRT-PCR) in melanoma patients with pathologically negative sentinel lymph nodes (SLN). Our study included 195 node-negative melanoma patients with a Breslow thickness greater than 0.76 mm (n = 158), or less than 0.76 mm but who had Clark level IV-V, microscopic ulceration, or pathological signs of regression (n = 32), and five patients with melanoma of unknown thickness. SLNs were examined by serial-section histopathology. A portion of each SLN was frozen for qRT-PCR analysis using markers Tyrosinase, MART1, SSX2, MAGEA3, PAX3, and GalNAc-T. In addition, two other markers (PLAB and L1CAM) were evaluated for melanoma specificity but not for SLN analysis. Median follow-up was 64 months, during which time there were 15 (7.7%) recurrences. A total of 370 lymph nodes were analyzed by qRT-PCR. No association was found between quantitative expression level of any marker and disease recurrence. Previously published primer designs were tested for PAX3 and GalNAc-T and revealed that alternative PAX3 transcripts are differentially expressed in melanoma and benign lymph nodes. No associations with recurrence were found regardless of the transcripts amplified by different primer sets. PLAB and L1CAM did not appear to differentiate between malignant melanoma and benign melanocytes or lymph nodes in our analysis. We conclude that, in this large cohort of patients, multimarker qRT-PCR analysis of SLNs did not correlate with disease recurrence. Our data support specific PAX3 splice variants but not GalNAc-T, PLAB or L1CAM as possible markers for melanoma metastasis to SLNs.

  2. PCR-based typing of DNA extracted from cigarette butts.

    Science.gov (United States)

    Hochmeister, M N; Budowle, B; Jung, J; Borer, U V; Comey, C T; Dirnhofer, R

    1991-01-01

    Limited genetic marker information can be obtained from saliva by typing by conventional serological means. Thus, the application of PCR-based DNA typing methods was investigated as a potential approach for typing genetic markers in saliva. DNA was isolated from 200 cigarettes smoked by 10 different individuals (20 cigarettes per individual) and from 3 cigarette butts recovered from 2 crime scenes (adjudicated cases) using a Chelex 100 extraction procedure. The amount of recovered human DNA was quantified by slot-blot analysis and ranged from approximately less than 2-160 ng DNA per cigarette butt for the 200 samples, and 8 ng, 50 ng, and 100 ng for the cigarette butts from the adjudicated cases. The DNA was successfully amplified by the polymerase chain reaction (PCR) for the HLA-DQ alpha locus (99 out of 100 samples) as well as for the variable number of tandem repeat (VNTR) locus D1S80 (99 out of 100 samples). Amplification and typing of DNA was successful on all samples recovered from the crime scenes. The results suggest that PCR-based typing of DNA offers a potential method for genetically characterizing traces of saliva on cigarette butts.

  3. Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba skin biopsies

    Directory of Open Access Journals (Sweden)

    Casini Silvia

    2006-09-01

    Full Text Available Abstract Background Odontocete cetaceans occupy the top position of the marine food-web and are particularly sensitive to the bioaccumulation of lipophilic contaminants. The effects of environmental pollution on these species are highly debated and various ecotoxicological studies have addressed the impact of xenobiotic compounds on marine mammals, raising conservational concerns. Despite its sensitivity, quantitative real-time PCR (qRT-PCR has never been used to quantify gene induction caused by exposure of cetaceans to contaminants. A limitation for the application of qRT-PCR is the need for appropriate reference genes which allow the correct quantification of gene expression. A systematic evaluation of potential reference genes in cetacean skin biopsies is presented, in order to validate future qRT-PCR studies aiming at using the expression of selected genes as non-lethal biomarkers. Results Ten commonly used housekeeping genes (HKGs were partially sequenced in the striped dolphin (Stenella coeruleoalba and, for each gene, PCR primer pairs were specifically designed and tested in qRT-PCR assays. The expression of these potential control genes was examined in 30 striped dolphin skin biopsy samples, obtained from specimens sampled in the north-western Mediterranean Sea. The stability of selected control genes was determined using three different specific VBA applets (geNorm, NormFinder and BestKeeper which produce highly comparable results. Glyceraldehyde-3P-dehydrogenase (GAPDH and tyrosine 3-monooxygenase (YWHAZ always rank as the two most stably expressed HKGs according to the analysis with geNorm and Normfinder, and are defined as optimal control genes by BestKepeer. Ribosomal protein L4 (RPL4 and S18 (RPS18 also exhibit a remarkable stability of their expression levels. On the other hand, transferrin receptor (TFRC, phosphoglycerate kinase 1 (PGK1, hypoxanthine ribosyltransferase (HPRT1 and β-2-microglobin (B2M show variable expression

  4. A quantitative reverse-transcriptase PCR assay for the assessment of drug activities against intracellular Theileria annulata schizonts

    Directory of Open Access Journals (Sweden)

    Isabel Hostettler

    2014-12-01

    Full Text Available Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leucocytes thereby causing fatal immunoproliferative diseases. Buparvaquone, a hydroxynaphthoquinone related to parvaquone, is the only drug available against Theileria. The drug is only effective at the onset of infection and emerging resistance underlines the need for identifying alternative compounds. Current drug assays employ monitoring of proliferation of infected cells, with apoptosis of the infected host cell as a read-out, but it is often unclear whether active compounds directly impair the viability of the parasite or primarily induce host cell death. We here report on the development of a quantitative reverse transcriptase real time PCR method based on two Theileria genes, tasp and tap104, which are both expressed in schizonts. Upon in vitro treatment of T. annulata infected bovine monocytes with buparvaquone, TaSP and Tap104 mRNA expression levels significantly decreased in relation to host cell actin already within 4 h of drug exposure, while significant differences in host cell proliferation were detectable only after 48–72 h. TEM revealed marked alterations of the schizont ultrastructure already after 2 h of buparvaquone treatment, while the host cell remained unaffected. Expression of TaSP and Tap104 proteins showed a marked decrease only after 24 h. Therefore, the analysis of expression levels of mRNA coding for TaSP and Tap104 allows to directly measuring impairment of parasite viability. We subsequently applied this method using a series of compounds affecting different targets in other apicomplexan parasites, and show that monitoring of TaSP- and Tap104 mRNA levels constitutes a suitable tool for anti-theilerial drug development.

  5. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Bergström, Anders; Licht, Tine Rask

    Freezing stool samples prior to DNA extraction and downstream analysis is widely used in metagenomic studies of the human microbiota but may affect the inferred community composition. In this study DNA was extracted either directly or following freeze storage of three homogenized human fecal...... samples using three different extraction methods. No consistent differences were observed in DNA yields between extractions on fresh and frozen samples, however differences were observed between extraction methods. Quantitative PCR analysis was subsequently performed on all DNA samples using six different...

  6. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Bergström, Anders; Licht, Tine Rask

    2012-01-01

    Freezing stool samples prior to DNA extraction and downstream analysis is widely used in metagenomic studies of the human microbiota but may affect the inferred community composition. In this study, DNA was extracted either directly or following freeze storage of three homogenized human fecal...... samples using three different extraction methods. No consistent differences were observed in DNA yields between extractions on fresh and frozen samples; however, differences were observed between extraction methods. Quantitative PCR analysis was subsequently performed on all DNA samples using six...

  7. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis) and Spikedace (Meda fulgida) in the Southwestern United States.

    Science.gov (United States)

    Dysthe, Joseph C; Carim, Kellie J; Paroz, Yvette M; McKelvey, Kevin S; Young, Michael K; Schwartz, Michael K

    2016-01-01

    Loach minnow (Rhinichthys cobitis) and spikedace (Meda fulgida) are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species' distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur.

  8. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer

    Directory of Open Access Journals (Sweden)

    Miller Nicola

    2007-11-01

    Full Text Available Abstract Background Real-time quantitative PCR (RQ-PCR forms the basis of many breast cancer biomarker studies and novel prognostic assays, paving the way towards personalised cancer treatments. Normalisation of relative RQ-PCR data is required to control for non-biological variation introduced during sample preparation. Endogenous control (EC genes, used in this context, should ideally be expressed constitutively and uniformly across treatments in all test samples. Despite widespread recognition that the accuracy of the normalised data is largely dependent on the reliability of the EC, there are no reports of the systematic validation of genes commonly used for this purpose in the analysis of gene expression by RQ-PCR in primary breast cancer tissues. The aim of this study was to identify the most suitable endogenous control genes for RQ-PCR analysis of primary breast tissue from a panel of eleven candidates in current use. Oestrogen receptor alpha (ESR1 was used a target gene to compare the effect of choice of EC on the estimate of gene quantity. Results The expression and validity of candidate ECs (GAPDH, TFRC, ABL, PPIA, HPRT1, RPLP0, B2M, GUSB, MRPL19, PUM1 and PSMC4 was determined in 6 benign and 21 malignant primary breast cancer tissues. Gene expression data was analysed using two different statistical models. MRPL19 and PPIA were identified as the most stable and reliable EC genes, while GUSB, RPLP0 and ABL were least stable. There was a highly significant difference in variance between ECs. ESR1 expression was appreciably higher in malignant compared to benign tissues and there was a significant effect of EC on the magnitude of the error associated with the relative quantity of ESR1. Conclusion We have validated two endogenous control genes, MRPL19 and PPIA, for RQ-PCR analysis of gene expression in primary breast tissue. Of the genes in current use in this field, the above combination offers increased accuracy and resolution in the

  9. A novel multispecific competitor fragment for quantitative PCR analysis of cytokine gene expression in rats.

    Science.gov (United States)

    Siegling, A; Lehmann, M; Platzer, C; Emmrich, F; Volk, H D

    1994-12-28

    Competitive polymerase chain reaction (PCR) is a sensitive method for quantification of cytokine mRNA expression. Co-amplification of an internal standard serves as control for comparing the efficiency of PCR in different samples. We have developed a novel control fragment for multiple analyses of rat cytokine gene expression containing primers for IL-1 beta, IL-2, IL-4, IL-5, IL-6, IL-10, TNF-alpha, TGF-beta 1, IFN-gamma and MIP-2. Additional primers were incorporated to analyse the content of T cells (CD3), activated T cells (CD25) and housekeeping genes (beta-actin and HPRT). As an example we demonstrate analysis of IL-2 mRNA expression in small pieces of kidney tissue obtained from rats after kidney allotransplantation. The IL-2 expression decreased tenfold during treatment with an anti-rat CD4 monoclonal antibody as compared to untreated animals.

  10. Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes

    Directory of Open Access Journals (Sweden)

    Štrukelj Borut

    2008-03-01

    Full Text Available Abstract Background Recombinant protein production in Escherichia coli cells is a complex process, where among other parameters, plasmid copy number, structural and segregational stability of plasmid have an important impact on the success of productivity. It was recognised that a method for accurate and rapid quantification of plasmid copy number is necessary for optimization and better understanding of this process. Lately, qPCR is becoming the method of choice for this purpose. In the presented work, an improved qPCR method adopted for PCN determination in various fermentation processes was developed. Results To avoid experimental errors arising from irreproducible DNA isolation, whole cells, treated by heating at 95°C for 10 minutes prior to storage at -20°C, were used as a template source. Relative quantification, taking into account different amplification efficiencies of amplicons for chromosome and plasmid, was used in the PCN calculation. The best reproducibility was achieved when the efficiency estimated for specific amplicon, obtained within one run, was averaged. It was demonstrated that the quantification range of 2 log units (100 to 10000 bacteria per well enable quantification in each time point during fermentation. The method was applied to study PCN variation in fermentation at 25°C and the correlation between PCN and protein accumulation was established. Conclusion Using whole cells as a template source and relative quantification considering different PCR amplification efficiencies are significant improvements of the qPCR method for PCN determination. Due to the approaches used, the method is suitable for PCN determination in fermentation processes using various media and conditions.

  11. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD...... 6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro...... axenic cultivation system for P. carinii and confirmed our microscopy findings that no organism multiplication had occurred during culture. For all cultures analyzed, QTD PCR assays showed a decrease in P. carinii DNA that exceeded the expected decrease due to dilution of the inoculum upon transfer...

  12. Quantitative real-time RT-PCR in sentinel lymph nodes from melanoma patients. Detection of melanocytic mRNA predicts disease-free survival

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Abrahamsen, Helene Nortvig; Sorensen, Boe Sandahl

    2008-01-01

    Quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) for specific melanoma markers is more sensitive than histology for detecting cells of melanocytic origin in sentinel lymph nodes (SLNs) in cutaneous melanoma. The clinical significance of a positive qRT-PCR analysis...... that the presence of submicroscopic metastases may influence prognosis, indicating that RT-PCR detection of melanocytic cells in SLNs may be an important diagnostic marker....

  13. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    Science.gov (United States)

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  14. Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2009-01-01

    Full Text Available Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf mitochondrial (mtDNA and nuclear (nDNA DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.

  15. Improved quantitative PCR protocols for adenovirus and CMV with an internal inhibition control system and automated nucleic acid isolation.

    Science.gov (United States)

    Henke-Gendo, C; Ganzenmueller, T; Kluba, J; Harste, G; Raggub, L; Heim, A

    2012-06-01

    With the establishment of routine virus load (DNAemia) screening for Human adenovirus (HAdV) and Cytomegalovirus (CMV) in post-transplant care quality standards for quantitative PCR-assays are increasing. Established real-time PCR assays were improved with a fully automated DNA-extraction and with a competitive internal control DNA packaged into a lambda phage which serves as an extraction and amplification control in each sample. HAdV and CMV DNA were detected and quantified simultaneously in various types of diagnostic samples like blood, feces or respiratory tract materials. Inhibition was observed in 0.33-0.66% of over 14,000 diagnostic samples, an infrequent but nevertheless not negligible event, which is observed mainly in stool samples. CMV viral load in broncho-alveolar lavage fluid (BALF) ranged between positive but below the quantitation limit of 1,000 copies/ml up to 1.8 × 10(7) copies/ml with a median of 6.0 × 10(3) copies/ml. Forty-one (4.7%) BALF samples had a viral load above 5.0 × 10(5) copies/ml, which was proposed as a threshold for the diagnosis of pneumonia. HAdV viral loads ranged between positive but below the quantitation limit of 1,000 copies/ml to a very high concentration of 1.3 × 10(11) copies/ml in stool and BALF samples. A HAdV-DNAemia of >10(4) copies/ml was found only in patients with stool viral load of above 10(5) copies/ml. These data support the hypothesis that quantitation in diagnostic materials other than blood may give valuable diagnostic information and that further evaluation of this approach is reasonable.

  16. Comparison of quantitative RT-PCR with cell culture to detect viral hemorrhagic septicemia virus (VHSV) IVb infections in the Great Lakes.

    Science.gov (United States)

    Hope, Kristine M; Casey, Rufina N; Groocock, Geoffrey H; Getchell, Rodman G; Bowser, Paul R; Casey, James W

    2010-03-01

    Viral hemorrhagic septicemia virus (VHSV) is an important pathogen of cultured and wild fish in marine and freshwater environments. A new genotype, VHSV IVb, was isolated from a fish collected from the Great Lakes in 2003. Since the first isolation, VHSV IVb has been confirmed in 28 species, signaling the early invasion and continued spread of this Office International des Epizooties-reportable agent. For surveillance of this virus in both wild and experimental settings, we have developed a rapid and sensitive one-step quantitative real-time polymerase chain reaction (qRT-PCR) assay that amplifies a 100-base-pair conserved segment from both the genomic negative strand and the mRNA positive strand of the nucleoprotein (N) gene of VHSV IVb. This assay is linear over seven orders of magnitude, with an analytical capability of detecting a single copy of viral RNA and reproducibility at 100 copies. The assay is approximately linear with RNA input from 50 to 1000 ng per assay and works equally well with RNA prepared from a column-based or phenol-chloroform-based method. In wild-caught fish, 97% of the cases were found to be more than three orders of magnitude more sensitive using qRT-PCR than using cell culture. Of the 1,428 fish from the Great Lakes region tested in 2006 and 2007, 24% were positive by qRT-PCR whereas only 5% were positive by cell culture. All of the fish that were positive by cell culture were also positive by qRT-PCR. Importantly, qRT-PCR sensitivity is comparable to that of cell culture detection when comparing VHSV viral RNA levels with viral titer stocks, confirming that the high qRT-PCR signals obtained with diagnostic samples are due to the accumulation of N gene mRNA by transcriptional attenuation. The qRT-PCR assay is particularly valuable for rapid and high-throughput prescreening of fish before confirmatory testing by cell culture or sequencing tissue-derived amplicons and especially in detecting infection in fish that do not show clinical

  17. Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR

    Institute of Scientific and Technical Information of China (English)

    Zhou-Rui Tang; Kai Li; Yu-Xun Zhou; Zhen-Xian Xiao; Jun-Hua Xiao; Rui Huang; Guo-Hao Gu

    2012-01-01

    AIM: To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components.METHODS: Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested.RESULTS: cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex.CONCLUSION: The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well.

  18. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments

    Science.gov (United States)

    Erdner, D. L.; Percy, L.; Keafer, B.; Lewis, J.; Anderson, D. M.

    2010-02-01

    Harmful algal blooms (HABs) are a global problem that affects both human and ecosystem health. One of the most serious and widespread HAB poisoning syndromes is paralytic shellfish poisoning, commonly caused by Alexandrium spp. dinoflagellates. Like many toxic dinoflagellates, Alexandrium produces resistant resting cysts as part of its life cycle. These cysts play a key role in bloom initiation and decline, as well as dispersal and colonization of new areas. Information on cyst numbers and identity is essential for understanding and predicting blooms, yet comprehensive cyst surveys are extremely time- and labor-intensive. Here we describe the development and validation of a quantitative real-time PCR (qPCR) technique for the enumeration of cysts of A. tamarense of the toxic North American/Group I ribotype. The method uses a cloned fragment of the large subunit ribosomal RNA gene as a standard for cyst quantification, with an experimentally determined conversion factor of 28,402±6152 LSU ribosomal gene copies per cyst. Tests of DNA extraction and PCR efficiency show that mechanical breakage is required for adequate cyst lysis, and that it was necessary to dilute our DNA extracts 50-fold in order to abolish PCR inhibition from compounds co-extracted from the sediment. The resulting assay shows a linear response over 6 orders of magnitude and can reliably quantify ≥10 cysts/cm 3 sediment. For method validation, 129 natural sediment samples were split and analyzed in parallel, using both the qPCR and primulin-staining techniques. Overall, there is a significant correlation ( p<0.001) between the cyst abundances determined by the two methods, although the qPCR counts tend to be lower than the primulin values. This underestimation is less pronounced in those samples collected from the top 1 cm of sediment, and more pronounced in those derived from the next 1-3 cm of the core. These differences may be due to the condition of the cysts in the different layers, as the

  19. MONITORING ASPERGILLUS SPECIES BY QUANTITATIVE PCR DURING CONSTRUCTION OF A MULTI-STORY HOSPITAL BUILDING

    Science.gov (United States)

    Noscomial fungal infections represent a persistent threat in hospitals. One of the major issues in fungal control has been monitoring these fungi in a timely manner. Quantitative polymerase chain reaction (QPCR) allows for the rapid (2 to 4 h), sensitive (often down to a single...

  20. Comparative analysis of quantitative reverse transcription real-time PCR and commercial enzyme imunoassays for detection of enterotoxigenic Bacillus thuringiensis isolates.

    Science.gov (United States)

    Kaminska, Paulina S; Yernazarova, Aliya; Murawska, Emilia; Swiecicki, Jakub; Fiedoruk, Krzysztof; Bideshi, Dennis K; Swiecicka, Izabela

    2014-08-01

    Entomopathogenic Bacillus thuringiensis is closely related to Bacillus cereus, a human pathogen known to cause emesis and diarrhea. Standard detection methods do not distinguish these bacilli. Hemolysin BL (hbl) and non-hemolytic enterotoxin (nhe) genes that encode, respectively, HBL and NHE enterotoxins, are known to be harbored in both bacterial species, suggesting that differentiation of these bacilli is clinically and epidemiologically relevant. In this study the reliability of quantitative reverse transcription real-time PCR (qRT-PCR) and enzyme immunoassays (EIAs) in detecting hbl and nhe transcripts and corresponding toxins in environmental B. thuringiensis isolates was assessed. At least one enterotoxin gene was present in each isolate, and nhe or hbl genes were found in 85% and 55% of the strains, respectively. Based on statistical analyses, both BCET-RPLA and Duopath detected HBL at similar levels, and TECRA and Duopath can be used interchangeably for the detection of NHE, although TECRA has significantly lower sensitivity than Duopath. Thus, as potential enterotoxic B. thuringiensis strains occur in the natural environment, and EIA results may not correspond with the presence of enterotoxin genes and their expression, we suggest that reliable interpretation will be significantly enhanced by including qRT-PCR to support inferences based on EIAs.

  1. Diagnosis of cytomegalovirus infections by qualitative and quantitative PCR in HIV infected patients Diagnóstico de infecção por CMV em pacientes infectados pelo HIV utilizando PCR qualitativa e quantitativa

    Directory of Open Access Journals (Sweden)

    Aldo de Albuquerque CUNHA

    2002-01-01

    Full Text Available A high incidence of cytomegalovirus (CMV infections is observed in Brazil. These viruses are causatives of significant morbidity and mortality among patients with advanced human immunodeficiency virus (HIV infection. This work, shows the application of a PCR on determination of CMV load in the buffy coat and plasma. We analyzed the samples of 247 HIV infected patients in order to diagnose CMV infection and disease. We developed a semi-quantitative PCR that amplifies part of the glycoprotein B (gB gene of CMV. The semi-quantitative PCR was carried out only in positive clinical samples in a qualitative PCR confirmed by a nested-PCR. CD4 lymphocyte count, HIV viral load and CMV disease symptom were correlated with CMV load. CMV genome was detected in the buffy coat of 82 of 237 (34.6% patients, in 10 of these the CMV load was determined varying between 928 and 332 880 viral copies/mug DNA. None of these 237 patients developed any suggestive manifestation of CMV disease. For the other 10 HIV infected patients selected based on the suspicion of CMV disease, CMV genome was detected in only one case. This patient presented a high CMV load, 8 000 000 copies/mug DNA, and developed a disseminated form of CMV disease including hepatitis and retinitis. Our results were greatly influenced by the impact of the highly active antiretroviral therapy that reduced incidence of CMV viremia and occurrence of CMV disease in the HIV infected patients.Uma alta incidência de infecção pelo citomegalovirus (CMV é observada no Brasil. Este vírus é responsável por significante morbi-mortalidade entre pacientes infectados pelo vírus da imunodeficiência humana (HIV. Neste estudo, mostramos a aplicação de uma PCR quantitativa para determinar a carga de CMV nos leucócitos do sangue periférico e no plasma de 247 pacientes infectados pelo HIV. As amostras clínicas foram previamente testadas por uma PCR qualitativa e confirmadas por uma nested-PCR para posteriormente

  2. Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method

    DEFF Research Database (Denmark)

    Malorny, B.; Hoorfar, Jeffrey; Hugas, M.;

    2003-01-01

    A collaborative study involving four European laboratories was conducted to investigate the diagnostic accuracy of a Salmonella specific PCR-based method, which was evaluated within the European FOOD-PCR project (http://www.pcr.dk). Each laboratory analysed by the PCR a set of independent obtaine...

  3. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification.

    Science.gov (United States)

    Bach, H-J; Tomanova, J; Schloter, M; Munch, J C

    2002-05-01

    Real-time quantitative PCR assays were developed for the absolute quantification of different groups of bacteria in pure cultures and in environmental samples. 16S rRNA genes were used as markers for eubacteria, and genes for extracellular peptidases were used as markers for potentially proteolytic bacteria. For the designed 16S rDNA TaqMan assay, specificity of the designed primer-probe combination for eubacteria, a high amplification efficiency over a wide range of starting copy numbers and a high reproducibility is demonstrated. Cell concentrations of Bacillus cereus, B. subtilis and Pseudomonas fluorescens in liquid culture were monitored by TaqMan-PCR using the 16S rDNA target sequence of Escherichia coli as external standard for quantification. Results agree with plate counts and microscopic counts of DAPI stained cells. The significance of 16S rRNA operon multiplicity to the quantification of bacteria is discussed.Furthermore, three sets of primer pair together with probe previously designed for targeting different classes of bacterial extracellular peptidases were tested for their suitability for TaqMan-PCR based quantification of proteolytic bacteria. Since high degeneracy of the probes did not allow accurate quantification, SybrGreen was used instead of molecular probes to visualize and quantify PCR products during PCR. The correlation between fluorescence and starting copy number was of the same high quality as for the 16S rDNA TaqMan assay for all the three peptidase gene classes. The detected amount of genes for neutral metallopeptidase of B. cereus, for subtilisin of B. subtilis and for alkaline metallopeptidase of P. fluorescens corresponded exactly to the numbers of bacteria investigated by the 16S rDNA targeting assay. The developed assays were applied for the quantification of bacteria in soil samples.

  4. A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages

    Science.gov (United States)

    Muhammed, Musemma K.; Krych, Lukasz; Nielsen, Dennis S.

    2017-01-01

    Simultaneous quantitative detection of Lactococcus (Lc.) lactis and Leuconostoc species bacteriophages (phages) has not been reported in dairies using undefined mixed-strain DL-starters, probably due to the lack of applicable methods. We optimized a high-throughput qPCR system that allows simultaneous quantitative detection of Lc. lactis 936 (now SK1virus), P335, c2 (now C2virus) and Leuconostoc phage groups. Component assays are designed to have high efficiencies and nearly the same dynamic detection ranges, i.e., from ~1.1 x 105 to ~1.1 x 101 phage genomes per reaction, which corresponds to ~9 x 107 to ~9 x 103 phage particles mL-1 without any additional up-concentrating steps. The amplification efficiencies of the corresponding assays were 100.1±2.6, 98.7±2.3, 101.0±2.3 and 96.2±6.2. The qPCR system was tested on samples obtained from a dairy plant that employed traditional mother-bulk-cheese vat system. High levels of 936 and P335 phages were detected in the mother culture and the bulk starter, but also in the whey samples. Low levels of phages were detected in the cheese milk samples. PMID:28339484

  5. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    Science.gov (United States)

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples.

  6. A competitive RT-PCR method for the quantitative analysis of cytokine mRNAs in mouse tissues.

    Science.gov (United States)

    Zhou, N M; Matthys, P; Polacek, C; Fiten, P; Sato, A; Billiau, A; Froyen, G

    1997-03-01

    The authors describe the design and validation of a competitive RT-PCR method for the efficient and reproducible quantitation of mRNA molecules of IFN-gamma, TNF-alpha, IL-4 and IL-10 in mouse spleen RNA extracts. Before being subjected to RT-PCR, the RNA extracts were supplemented with internal control RNAs (IC-RNAs), which were constructed by inserting DNA fragments in the cDNA of the respective cytokines. The efficiency of amplification of the target and the IC-RNA was shown to remain equal over a wide range of cycle numbers. Reproducibility was such that differences in mRNA contents that were greater than 17% could be detected between two RNA samples run in parallel. Normal mouse spleen tissue was found to contain 10(7)-10(8) molecules of TNF-alpha, IFN-gamma, IL-4 and IL-10 mRNA per micrograms total RNA extracted. Injection of animals with anti-CD3 antibody, a well-known cytokine inducer, resulted in a moderate increase in TNF-alpha and IL-10 mRNA levels (14- and 24-fold, respectively), and in a substantially greater increase in the levels of mRNA for IL-4 and IFN-gamma (199- and 851-fold, respectively). These results demonstrate an accurate and reliable quantitation of cytokine mRNA levels in animal tissues.

  7. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    Science.gov (United States)

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  8. Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water

    Science.gov (United States)

    Brinkman, Nichole E.; Haugland, Richard A.; Wymer, Larry J.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Vesper, Stephen J.

    2003-01-01

    Quantitative PCR (QPCR) technology, incorporating fluorigenic 5′ nuclease (TaqMan) chemistry, was utilized for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C. lusitaniae) in water. Known numbers of target cells were added to distilled and tap water samples, filtered, and disrupted directly on the membranes for recovery of DNA for QPCR analysis. The assay's sensitivities were between one and three cells per filter. The accuracy of the cell estimates was between 50 and 200% of their true value (95% confidence level). In similar tests with surface water samples, the presence of PCR inhibitory compounds necessitated further purification and/or dilution of the DNA extracts, with resultant reductions in sensitivity but generally not in quantitative accuracy. Analyses of a series of freshwater samples collected from a recreational beach showed positive correlations between the QPCR results and colony counts of the corresponding target species. Positive correlations were also seen between the cell quantities of the target Candida species detected in these analyses and colony counts of Enterococcus organisms. With a combined sample processing and analysis time of less than 4 h, this method shows great promise as a tool for rapidly assessing potential exposures to waterborne pathogenic Candida species from drinking and recreational waters and may have applications in the detection of fecal pollution.

  9. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    Science.gov (United States)

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish.

  10. Validation of reference genes for quantitative gene expression studies in Volvox carteri using real-time RT-PCR.

    Science.gov (United States)

    Kianianmomeni, Arash; Hallmann, Armin

    2013-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) is a sensitive technique for analysis of gene expression under a wide diversity of biological conditions. However, the identification of suitable reference genes is a critical factor for analysis of gene expression data. To determine potential reference genes for normalization of qRT-PCR data in the green alga Volvox carteri, the transcript levels of ten candidate reference genes were measured by qRT-PCR in three experimental sample pools containing different developmental stages, cell types and stress treatments. The expression stability of the candidate reference genes was then calculated using the algorithms geNorm, NormFinder and BestKeeper. The genes for 18S ribosomal RNA (18S) and eukaryotic translation elongation factor 1α2 (eef1) turned out to have the most stable expression levels among the samples both from different developmental stages and different stress treatments. The genes for the ribosomal protein L23 (rpl23) and the TATA-box binding protein (tbpA) showed equivalent transcript levels in the comparison of different cell types, and therefore, can be used as reference genes for cell-type specific gene expression analysis. Our results indicate that more than one reference gene is required for accurate normalization of qRT-PCRs in V. carteri. The reference genes in our study show a much better performance than the housekeeping genes used as a reference in previous studies.

  11. Mycobacterium avium subsp. paratuberculosis survival during fermentation of soured milk products detected by culture and quantitative real time PCR methods.

    Science.gov (United States)

    Klanicova, B; Slana, I; Roubal, P; Pavlik, I; Kralik, P

    2012-07-02

    Mycobacterium avium paratuberculosis (MAP), etiological agent of paratuberculosis in ruminants, is able to survive extreme conditions like very low pH (stomach), high temperature (pasteurization) or low temperature (refrigerated storage). Cheese, infant powder milk, cream and other milk and dairy products might thus be considered as possible sources of MAP for humans. The aim of this study was to investigate the survival of two MAP field isolates during fermentation of three different types of soured milk products (SMP; yogurt, acidophilus milk and kefir) under laboratory conditions. Pasteurized MAP-free milk was artificially contaminated with 10(6)MAPcells/mL and survival and absolute numbers of MAP were monitored during fermentation (4 or 16 h) and after six weeks of storage at 4°C by culture and quantitative real time PCR (qPCR). Viability of MAP was determined by culture using Herrold's egg yolk medium and Middlebrook 7H10 with antibiotics, supplemented with Mycobactin J and incubated at 37°C for up to 12 weeks. The absolute numbers of MAP were quantified by previously published qPCR assays targeting F57 and IS900 loci in MAP genome. We herein confirm that MAP can survive pH reduction, however, longer exposure to pH below 4 in SMP seems to be critical because it inhibits growth. Therefore, it is suggested that probiotic cultures that can decrease pH below 4 during fermentation could provide better inactivation of MAP in SMP.

  12. Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy.

    Science.gov (United States)

    Einen, Jørn; Thorseth, Ingunn H; Ovreås, Lise

    2008-05-01

    A SYBR Green real-time quantitative PCR (Q-PCR) assay for the detection and quantification of Bacteria and Archaea present in the glassy rind of seafloor basalts of different ages and water depths is presented. Two sets of domain-specific primers were designed and validated for specific detection and quantification of bacterial and archaeal 16S rRNA genes in DNA extracted from basaltic glass. Total cell numbers were also estimated by fluorescence microscopy analysis of SYBR Gold-stained samples. The results from the two different approaches were concurrent, and Q-PCR results showed that the total number of cells present in basalts was in the range from 6 x 10(5) to 4 x 10(6) cells g(-1) basaltic glass. Further, it was demonstrated that these cells were almost exclusively from the domain Bacteria. When applying the same methods on samples of different ages (22 years-0.1 Ma) and water depths (139-3390 mbsl), no significant differences in cell concentrations or in the relative abundance of Archaea and Bacteria were detected.

  13. Quantitative polymerase chain reaction (PCR) assays for a bacterial thiaminase I gene and the thiaminase-producing bacterium Paenibacillus thiaminolyticus.

    Science.gov (United States)

    Richter, C.A.; Wright-Osment, Maureen K.; Zajicek, J.L.; Honeyfield, D.C.; Tillitt, D.E.

    2009-01-01

    The thiaminase I enzyme produced by the gram-positive bacterium Paenibacillus thiaminolyticus isolated from the viscera of Lake Michigan alewives Alosa pseudoharengus is currently the only defined source of the thiaminase activity linked to thiamine (vitamin B1) deficiency in early mortality syndrome (EMS) in the larvae of Great Lakes salmonines. Diets of alewife or isolated strains of P. thiaminolyticus mixed in a semipurified diet and fed to lake trout Salvelinus namaycush have been shown to produce EMS in fry. We utilized quantitative polymerase chain reaction (Q-PCR) to aid in studies of the sources of P. thiaminolyticus and thiaminase I. Quantitative PCR assays were established to detect the thiaminase I gene of P. thiaminolyticus, the 16S rRNA gene from most species of bacteria, and the 16S rRNA gene specifically from P. thiaminolyticus and a few closely related taxa. The Q-PCR assays are linear over at least six orders of magnitude and can detect the thiaminase I gene of P. thiaminolyticus from as few as 1,000 P. thiaminolyticus cells/g of sample or the Paenibacillus 16S rRNA gene from as few as 100 P. thiaminolyticus cells/g of sample. The initial results from alewife viscera samples with high thiaminase activity yielded unexpectedly low densities of P. thiaminolyticus cells; Paenibacillus thiaminolyticus was detectable in 2 of 6 alewife viscera tested at densities on the order of 100 cells/g out of 100,000,000 total bacterial cells/g. The low numbers of P. thiaminolyticus detected suggest that alewives contain additional non-P. thiaminolyticus sources of thiaminase activity.

  14. Quantitative real time PCR detection of Clostridium difficile growth inhibition by probiotic organisms

    Directory of Open Access Journals (Sweden)

    Bryan L Folkers

    2010-01-01

    Full Text Available Background : Probiotic microorganisms are potential treatments for Clostridium difficile diarrheal disease (CDD but better methods are needed to determine the relative potency of probiotic microorganisms against pathogenic organisms in mixed cultures. Aim: Quantify C. difficile in the presence of putative probiotic organisms using molecular methods to determine relative probiotic potency. Materials and Methods: C. difficile strains were cultivated anaerobically. Serial dilutions of Lactobacillus cultures or microbial mixtures from kefir were co-cultured with C. difficile for 48 hours. Bacterial DNA was extracted and qPCR was used to measure C. difficile toxin A gene, on the basis of cycle threshold (Ct number. Results: Strains of Lactobacillus (human and ATCC derived, and mixed cultures from commercial kefir were co-cultured with C. difficile. Lactobacillus and the microbial mixture from kefir were ranked in order of their potency in C. difficile growth inhibition. Conclusions: PCR allows facile quantification of C. difficle in the presence of other. The technique measures relative potency of over-the-counter probiotics and may predict human strains meriting probiotic status.

  15. Quantitative real time PCR detection of Clostridium difficile growth inhibition by probiotic organisms

    Directory of Open Access Journals (Sweden)

    Michael Essmann

    2010-01-01

    Full Text Available Background: Probiotic microorganisms are potential treatments for Clostridium difficile diarrheal disease (CDD but better methods are needed to determine the relative potency of probiotic microorganisms against pathogenic organisms in mixed cultures. Aim: Quantify C. difficile in the presence of putative probiotic organisms using molecular methods to determine relative probiotic potency. Materials and Methods: C. difficile strains were cultivated anaerobically. Serial dilutions of Lactobacillus cultures or microbial mixtures from kefir were co-cultured with C. difficile for 48 hours. Bacterial DNA was extracted and qPCR was used to measure C. difficile toxin A gene, on the basis of cycle threshold (Ct number. Results: Strains of Lactobacillus (human and ATCC derived, and mixed cultures from commercial kefir were co-cultured with C. difficile. Lactobacillus and the microbial mixture from kefir were ranked in order of their potency in C. difficile growth inhibition. Conclusions: PCR allows facile quantification of C. difficle in the presence of other. The technique measures relative potency of over-the-counter probiotics and may predict human strains meriting probiotic status.

  16. Statistical assessment of DNA extraction reagent lot variability in real-time quantitative PCR

    Science.gov (United States)

    Bushon, R.N.; Kephart, C.M.; Koltun, G.F.; Francy, D.S.; Schaefer, F. W.; Lindquist, H.D. Alan

    2010-01-01

    Aims: The aim of this study was to evaluate the variability in lots of a DNA extraction kit using real-time PCR assays for Bacillus anthracis, Francisella tularensis and Vibrio cholerae. Methods and Results: Replicate aliquots of three bacteria were processed in duplicate with three different lots of a commercial DNA extraction kit. This experiment was repeated in triplicate. Results showed that cycle threshold values were statistically different among the different lots. Conclusions: Differences in DNA extraction reagent lots were found to be a significant source of variability for qPCR results. Steps should be taken to ensure the quality and consistency of reagents. Minimally, we propose that standard curves should be constructed for each new lot of extraction reagents, so that lot-to-lot variation is accounted for in data interpretation. Significance and Impact of the Study: This study highlights the importance of evaluating variability in DNA extraction procedures, especially when different reagent lots are used. Consideration of this variability in data interpretation should be an integral part of studies investigating environmental samples with unknown concentrations of organisms. ?? 2010 The Society for Applied Microbiology.

  17. Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Jung, Jinwoo [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Minjeong; Ryu, Sangryeol [Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Dongho [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-09-15

    Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold (C{sub T}) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared C{sub T} values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.

  18. Strategies to develop strain-specific PCR based assays for probiotics.

    Science.gov (United States)

    Treven, P

    2015-01-01

    Since health benefits conferred by probiotics are strain-specific, identification to the strain level is mandatory to allow the monitoring of the presence and the abundance of specific probiotic in a product or in a gastrointestinal tract. Compared to standard plate counts, the reduced duration of the assays and higher specificity makes PCR-based methods (standard PCR and quantitative PCR) very appropriate for detection or quantification of probiotics. Development of strain-specific assay consists of 4 main stages: (1) strain-specific marker identification; (2) construction of potential strain-specific primers; (3) validation on DNA from pure cultures of target and related strains; and (4) validation on spiked samples. The most important and also the most challenging step is the identification of strain-specific sequences, which can be subsequently targeted by specific primers or probes. Such regions can be identified on sequences derived from 16S-23S internally transcribed spacers, randomly amplified polymorphic DNA, representational difference analysis and suppression subtractive hybridisation. Already known phenotypic or genotypic characteristics of the target strain can also be used to develop the strain-specific assay. However, the initial stage of strain-specific assay development can be replaced by comparative genomics analysis of target genome with related genomes in public databases. Advances in whole genome sequencing (WGS) have resulted in a cost reduction for bacterial genome sequencing and consequently have made this approach available to most laboratories. In the present paper I reviewed the available literature on PCR and qPCR assays developed for detection of a specific probiotic strain and discussed future WGS and comparative genomics-based approaches.

  19. PCR-based rapid genotyping of Stenotrophomonas maltophilia isolates

    Directory of Open Access Journals (Sweden)

    Zarrilli Raffaele

    2008-11-01

    Full Text Available Abstract Background All bacterial genomes contain repetitive sequences which are members of specific DNA families. Such repeats may occur as single units, or found clustered in multiple copies in a head-to-tail configuration at specific loci. The number of clustered units per locus is a strain-defining parameter. Assessing the length variability of clusters of repeats is a versatile typing methodology known as multilocus variable number of tandem repeat analysis (MLVA. Results Stenotrophomonas maltophilia is an environmental bacterium increasingly involved in nosocomial infections and resistant to most antibiotics. The availability of the whole DNA sequence of the S. maltophilia strain K279a allowed us to set up fast and accurate PCR-based diagnostic protocols based on the measurement of length variations of loci carrying a variable number of short palindromic repeats marking the S. maltophilia genome. On the basis of the amplimers size, it was possible to deduce the number of repeats present at 12 different loci in a collection of S. maltophilia isolates, and therefore label each of them with a digit. PCR-negative regions were labelled 0. Co-amplification of two pairs of loci provided a 4-digit code sufficient for immediate subtyping. By increasing the number of loci analyzed, it should be possible to assign a more specific digit profile to isolates. In general, MLVA data match genotyping data obtained by PFGE (pulsed-field gel electrophoresis. However, some isolates exhibiting the same PCR profiles at all loci display distinct PFGE patterns. Conclusion The utilization of the present protocol allows to type several S. maltophilia isolates in hours. The results are immediately interpretable without the need for sophisticated softwares. The data can be easily reproducible, and compared among different laboratories.

  20. Application of sonication to release DNA from Bacillus cereus for quantitative detection by real-time PCR.

    Science.gov (United States)

    Fykse, Else Marie; Olsen, Jaran Strand; Skogan, Gunnar

    2003-10-01

    A rapid sonication method for lysis of Gram-positive bacteria was evaluated for use in combination with quantitative real-time polymerase chain reaction (PCR) analyses for detection. Other criteria used for evaluation of lysis were microscopic cell count, colony forming units (cfu), optical density at 600 nm and total yield of DNA measured by PicoGreen fluorescence. The aim of this study was complete disruption of cellular structures and release of DNA without the need for lysing reagents and time-consuming sample preparation. The Gram-positive bacterium Bacillus cereus was used as a model organism for Gram-positive bacteria. It was demonstrated by real-time PCR that maximum yield of DNA was obtained after 3 to 5 min of sonication. The yield of DNA was affected by culture age and the cells from a 4-h-old culture in the exponential phase of growth gave a higher yield of DNA after 5 min of sonication than a 24-h-old culture in the stationary phase of growth. The 4-h-old culture was also more sensitive for lysis caused by heating. The maximum yield of DNA, evaluated by real-time PCR, from a culture of the Gram-negative bacterium Escherichia coli, was obtained after 20 s of sonication. However, the yield of target DNA from E. coli rapidly decreased after 50 s of sonication due to degradation of DNA. Plate counting (cfu), microscopic counting and absorbance at 600 nm showed that the number of viable and structurally intact B. cereus cells decreased rapidly with sonication time, whereas the yield of DNA increased as shown by PicoGreen fluorescence and real-time PCR. The present results indicate that 3-5 min of sonication is sufficient for lysis and release of DNA from samples of Gram-positive bacteria.

  1. Quantitation of viable Coxiella burnetii in milk using an integrated cell culture-polymerase chain reaction (ICC-PCR) assay.

    Science.gov (United States)

    Stewart, Diana; Shieh, Y-Carol; Tortorello, Mary; Kukreja, Ankush; Shazer, Arlette; Schlesser, Joseph

    2015-11-01

    The obligate intracellular pathogen Coxiella burnetii has long been considered the most heat resistant pathogen in raw milk, making it the reference pathogen for determining pasteurisation conditions for milk products. New milk formulations and novel non-thermal processes require validation of effectiveness which requires a more practical method for analysis than using the currently used animal model for assessing Coxiella survival. Also, there is an interest in better characterising thermal inactivation of Coxiella in various milk formulations. To avoid the use of the guinea pig model for evaluating Coxiella survival, an Integrated Cell Culture-PCR (ICC-PCR) method was developed for determining Coxiella viability in milk. Vero cell cultures were directly infected from Coxiella-contaminated milk in duplicate 24-well plates. Viability of the Coxiella in milk was shown by a ≥ 0.5 log genome equivalent (ge)/ml increase in the quantity of IS111a gene from the baseline post-infection (day 0) level after 9-11 d propagation. Coxiella in skim, 2%, and whole milk, and half and half successfully infected Vero cells and increased in number by at least 2 logs using a 48-h infection period followed by 9-d propagation time. As few as 125 Coxiella ge/ml in whole milk was shown to infect and propagate at least 2 logs in the optimised ICC-PCR assay, though variable confirmation of propagation was shown for as low as 25 Coxiella ge/ml. Applicability of the ICC-PCR method was further proven in an MPN format to quantitate the number of viable Coxiella remaining in whole milk after 60 °C thermal treatment at 0, 20, 40, 60 and 90 min.

  2. Validation of reference genes in Penicillium echinulatum to enable gene expression study using real-time quantitative RT-PCR.

    Science.gov (United States)

    Zampieri, Denise; Nora, Luísa C; Basso, Vanessa; Camassola, Marli; Dillon, Aldo J P

    2014-08-01

    Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is a methodology that facilitates the quantification of mRNA expression in a given sample. Analysis of relative gene expression by qRT-PCR requires normalization of the data using a reference gene that is expressed at a similar level in all evaluated conditions. Determining an internal control gene is essential for gene expression studies. Gene expression studies in filamentous fungi frequently use the β-actin gene (actb), β-tubulin, and glyceraldehyde-3-phosphate dehydrogenase as reference genes because they are known to have consistent expression levels. Until now, no study has been performed to select an internal control gene for the filamentous fungal species Penicillium echinulatum. The aim of this study was to evaluate and validate internal control genes to enable the study of gene expression in P. echinulatum using qRT-PCR. P. echinulatum strain S1M29 was grown in conditions to either induce (cellulose and sugar cane bagasse) or repress (glucose) gene expression to analyze 23 candidate normalization genes for stable expression. Two software programs, BestKeeper and geNorm, were used to assess the expression of the candidate normalization genes. The results indicate that the actb reference gene is more stably expressed in P. echinulatum. This is the first report in the literature that determines a normalization gene for this fungus. From the results obtained, we recommend the use of the P. echinulatum actb gene as an endogenous control for gene expression studies of cellulases and hemicellulases by qRT-PCR.

  3. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Stacey Llewellyn

    2016-01-01

    Full Text Available Accurate quantitative assessment of infection with soil transmitted helminths and protozoa is key to the interpretation of epidemiologic studies of these parasites, as well as for monitoring large scale treatment efficacy and effectiveness studies. As morbidity and transmission of helminth infections are directly related to both the prevalence and intensity of infection, there is particular need for improved techniques for assessment of infection intensity for both purposes. The current study aimed to evaluate two multiplex PCR assays to determine prevalence and intensity of intestinal parasite infections, and compare them to standard microscopy.Faecal samples were collected from a total of 680 people, originating from rural communities in Timor-Leste (467 samples and Cambodia (213 samples. DNA was extracted from stool samples and subject to two multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation for identification and quantification of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two: 30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%. Although, all STH positive samples were low intensity infections by microscopy as defined by WHO guidelines the DNA-load detected by multiplex PCR suggested higher intensity infections.Multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of infection intensity for Ascaris, hookworms and Giardia compared to microscopy, especially in samples

  4. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    Directory of Open Access Journals (Sweden)

    Pek-Lan Chan

    Full Text Available BACKGROUND: The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR. With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. RESULTS: In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569 outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN. PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. CONCLUSIONS: Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection

  5. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    Science.gov (United States)

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.

  6. Identification of three novel OA1 gene mutations identified in three families misdiagnosed with congenital nystagmus and carrier status determination by real-time quantitative PCR assay

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2003-01-01

    Full Text Available Abstract Background X-linked ocular albinism type 1 (OA1 is caused by mutations in OA1 gene, which encodes a membrane glycoprotein localised to melanosomes. OA1 mainly affects pigment production in the eye, resulting in optic changes associated with albinism including hypopigmentation of the retina, nystagmus, strabismus, foveal hypoplasia, abnormal crossing of the optic fibers and reduced visual acuity. Affected Caucasian males usually appear to have normal skin and hair pigment. Results We identified three previously undescribed mutations consisting of two intragenic deletions (one encompassing exon 6, the other encompassing exons 7–8, and a point mutation (310delG in exon 2. We report the development of a new method for diagnosis of heterozygous deletions in OA1 gene based on measurement of gene copy number using real-time quantitative PCR from genomic DNA. Conclusion The identification of OA1 mutations in families earlier reported as families with hereditary nystagmus indicate that ocular albinism type 1 is probably underdiagnosed. Our method of real-time quantitative PCR of OA1 exons with DMD exon as external standard performed on the LightCycler™ allows quick and accurate carrier-status assessment for at-risk females.

  7. Sex ratio determination in bovine semen: a new approach by quantitative real time PCR.

    Science.gov (United States)

    Parati, K; Bongioni, G; Aleandri, R; Galli, A

    2006-12-01

    Sex preselection of livestock offspring in cattle represents, nowadays, a big potential for genetic improvement and market demand satisfaction. Sperm sorting by flow cytometer provides a powerful tool for artificial insemination and production of predefined sexed embryos but, an accurate verification of the yield of sperm separation remains essential for a field application of this technique or for improvement and validation of other related semen sexing technologies. In this work a new method for the determination of the proportion of X- and Y-bearing spermatozoa in bovine semen sample was developed by real time PCR. Two sets of primers and internal TaqMan probes were designed on specific X- and Y-chromosome genes. To allow a direct quantification, a standard reference was established using two plasmid cDNA clones (ratio 1:1) for the specific gene targets. The method was validated by a series of accuracy, repeatability and reproducibility assays and by testing two sets of sorted and unsorted semen samples. A high degree of accuracy (98.9%), repeatability (CV=2.58%) and reproducibility (CV=2.57%) was shown. The results of X- and Y-sorted semen samples analysed by real time PCR and by flow cytometric reanalysis showed no significant difference (P>0.05). The evaluation of X-chromosome bearing sperms content in unsorted samples showed an average of 51.11+/-0.56% for ejaculates and 50.17+/-0.58% for the commercial semen. This new method for quantification of the sexual chromosome content in spermatozoa demonstrated to be rapid and reliable, providing a valid support to the sperm sexing technologies.

  8. Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias.

    Science.gov (United States)

    Malik, Afshan N; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-08-19

    Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as β-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a "dilution bias" when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  9. Simple Detection of the IS6110 Sequence of Mycobacterium tuberculosis Complex in Sputum, Based on PCR with Graphene Oxide.

    Directory of Open Access Journals (Sweden)

    Sang-Hyun Hwang

    Full Text Available Graphene oxide (GO has proven to be a satisfactory DNA-sensor platform for applications in enzyme-free signal amplification, fluorescence-based amplification, and nanoparticle-based platforms because of its excellent electrical, thermal, and optical properties. In this study, we designed a novel platform for the fluorescence detection of biomolecules, using a fluorescent dye-labeled primer and GO. We applied this system for the detection of the IS6110 insertion sequence of the Mycobacterium tuberculosis complex (MTB and evaluated its feasibility for use in molecular diagnostics. Fifty-four sputum specimens were collected at our institution from October 2010 to March 2012. To detect MTB in the samples, we performed PCR amplification of the IS6110 DNA sequence using FAM-labeled primers, after which the PCR amplicon was incubated with GO and the fluorescence was measured. The results were compared with those obtained by conventional real-time quantitative PCR (RQ-PCR. The fluorescence intensity observed increased in a concentration-dependent manner with the FAM-labeled IS6110 amplicon. The results of the PCR-GO system for detecting IS6110 DNA were in good agreement with those obtained with conventional RQ-PCR (kappa statistic = 0.925. The PCR-GO system detected MTB DNA in 23 of 25 RQ-PCR-positive sputum samples (92.0%; 95% CI, 75.0-98.0%, but not in 29 of 29 RQ-PCR-negative sputum samples (100%; 95% CI, 88.1-100.0%. These results indicate the utility of the PCR-GO system in molecular diagnostics.

  10. Simple Detection of the IS6110 Sequence of Mycobacterium tuberculosis Complex in Sputum, Based on PCR with Graphene Oxide.

    Science.gov (United States)

    Hwang, Sang-Hyun; Kim, Dong-Eun; Sung, Heungsup; Park, Byeong-Min; Cho, Mi-Jeong; Yoon, Ok-Jin; Lee, Do-Hoon

    2015-01-01

    Graphene oxide (GO) has proven to be a satisfactory DNA-sensor platform for applications in enzyme-free signal amplification, fluorescence-based amplification, and nanoparticle-based platforms because of its excellent electrical, thermal, and optical properties. In this study, we designed a novel platform for the fluorescence detection of biomolecules, using a fluorescent dye-labeled primer and GO. We applied this system for the detection of the IS6110 insertion sequence of the Mycobacterium tuberculosis complex (MTB) and evaluated its feasibility for use in molecular diagnostics. Fifty-four sputum specimens were collected at our institution from October 2010 to March 2012. To detect MTB in the samples, we performed PCR amplification of the IS6110 DNA sequence using FAM-labeled primers, after which the PCR amplicon was incubated with GO and the fluorescence was measured. The results were compared with those obtained by conventional real-time quantitative PCR (RQ-PCR). The fluorescence intensity observed increased in a concentration-dependent manner with the FAM-labeled IS6110 amplicon. The results of the PCR-GO system for detecting IS6110 DNA were in good agreement with those obtained with conventional RQ-PCR (kappa statistic = 0.925). The PCR-GO system detected MTB DNA in 23 of 25 RQ-PCR-positive sputum samples (92.0%; 95% CI, 75.0-98.0%), but not in 29 of 29 RQ-PCR-negative sputum samples (100%; 95% CI, 88.1-100.0%). These results indicate the utility of the PCR-GO system in molecular diagnostics.

  11. Construction of an adult barnacle (Balanus amphitrite cDNA library and selection of reference genes for quantitative RT-PCR studies

    Directory of Open Access Journals (Sweden)

    Burgess J Grant

    2009-06-01

    Full Text Available Abstract Background Balanus amphitrite is a barnacle commonly used in biofouling research. Although many aspects of its biology have been elucidated, the lack of genetic information is impeding a molecular understanding of its life cycle. As part of a wider multidisciplinary approach to reveal the biogenic cues influencing barnacle settlement and metamorphosis, we have sequenced and annotated the first cDNA library for B. amphitrite. We also present a systematic validation of potential reference genes for normalization of quantitative real-time PCR (qRT-PCR data obtained from different developmental stages of this animal. Results We generated a cDNA library containing expressed sequence tags (ESTs from adult B. amphitrite. A total of 609 unique sequences (comprising 79 assembled clusters and 530 singlets were derived from 905 reliable unidirectionally sequenced ESTs. Bioinformatics tools such as BLAST, HMMer and InterPro were employed to allow functional annotation of the ESTs. Based on these analyses, we selected 11 genes to study their ability to normalize qRT-PCR data. Total RNA extracted from 7 developmental stages was reverse transcribed and the expression stability of the selected genes was compared using geNorm, BestKeeper and NormFinder. These software programs produced highly comparable results, with the most stable gene being mt-cyb, while tuba, tubb and cp1 were clearly unsuitable for data normalization. Conclusion The collection of B. amphitrite ESTs and their annotation has been made publically available representing an important resource for both basic and applied research on this species. We developed a qRT-PCR assay to determine the most reliable reference genes. Transcripts encoding cytochrome b and NADH dehydrogenase subunit 1 were expressed most stably, although other genes also performed well and could prove useful to normalize gene expression studies.

  12. Real-time Quantitative RT-PCR for CT9 Level in Human Cancer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    CT9 is a recently cloned cancer-testis antigen, which is a member of the bromodomain and extraterminal family.Each member of this protein family contains two N-terminal bromodomain motifs. We investigated the distribution of CT9 in different tissues and the possibility for it to be used as a potential therapeutic target in cancer treament. By using the real-time RT-PCR method and 18SrRNA as an internal standard, we analyzed the CT9 expression in several normal human tissues and in the tissues of patients suffering from cancer. The result of this study shows that the highest level of mRNA is only present in testis tissue because the CT9 expression has not been detected in other normal tissues. In 6 of 10 cases of gastric adenocarcinoma, in 3 of 10 cases of esophageal squamous cell carcinoma, in 2 of 9 cases of endometrial carcinoma and only in 1 of 12 cases of brain cancer, the low level expression of CT9 was detected. In none of the 12 cases of cervical squamous cell carcinoma, the expression of CT9 was detected. Since the high level expression of CT9 is only found in the normal testis tissue, but the low expression in cancer tissues, for example tissues of cervical squamous cell carcinoma, brain cancer, endometrial adenocarcinoma, esophageal squamous cell carcinoma, we conclude that CT9 cannot be used as a cancer therapeutic target molecule for cervical squamous cell carcinoma, brain cancer, endometrial adenocarcinoma, esophageal squamous cell carcinoma.

  13. PCR-based identification of Burkholderia pseudomallei Identificação de Burkholderia pseudomallei baseada em PCR

    Directory of Open Access Journals (Sweden)

    Adam Merritt

    2006-10-01

    Full Text Available DNA amplification techniques are being used increasingly in clinical laboratories to confirm the identity of medically important bacteria. A PCR-based identification method has been in use in our centre for 10 years for Burkholderia pseudomallei and was used to confirm the identity of bacteria isolated from cases of melioidosis in Ceará since 2003. This particular method has been used as a reference standard for less discriminatory methods. In this study we evaluated three PCR-based methods of B. pseudomallei identification and used DNA sequencing to resolve discrepancies between PCR-based results and phenotypic identification methods. The established semi-nested PCR protocol for B. pseudomallei 16-23s spacer region produced a consistent negative result for one of our 100 test isolates (BCC #99, but correctly identified all 71 other B. pseudomallei isolates tested. Anomalous sequence variation was detected at the inner, reverse primer binding site for this method. PCR methods were developed for detection of two other B. pseudomallei bacterial metabolic genes. The conventional lpxO PCR protocol had a sensitivity of 0.89 and a specificity of 1.00, while a real-time lpxO protocol performed even better with sensitivity and specificity of 1.00, and 1.00. This method identified all B. pseudomallei isolates including the PCR-negative discrepant isolate. The phaC PCR protocol detected the gene in all B. pseudomallei and all but three B. cepacia isolates, making this method unsuitable for PCR-based identification of B. pseudomallei. This experience with PCR-based B. pseudomallei identification methods indicates that single PCR targets should be used with caution for identification of these bacteria, and need to be interpreted alongside phenotypic and alternative molecular methods such as gene sequencing.As técnicas de amplificação de DNA estão sendo cada vez mais utilizadas em laboratórios clínicos para a confirmação da identificação de bact

  14. Standardisation of data from real-time quantitative PCR methods – evaluation of outliers and comparison of calibration curves

    Directory of Open Access Journals (Sweden)

    Burns Malcolm J

    2005-12-01

    Full Text Available Abstract Background As real-time quantitative PCR (RT-QPCR is increasingly being relied upon for the enforcement of legislation and regulations dependent upon the trace detection of DNA, focus has increased on the quality issues related to the technique. Recent work has focused on the identification of factors that contribute towards significant measurement uncertainty in the real-time quantitative PCR technique, through investigation of the experimental design and operating procedure. However, measurement uncertainty contributions made during the data analysis procedure have not been studied in detail. This paper presents two additional approaches for standardising data analysis through the novel application of statistical methods to RT-QPCR, in order to minimise potential uncertainty in results. Results Experimental data was generated in order to develop the two aspects of data handling and analysis that can contribute towards measurement uncertainty in results. This paper describes preliminary aspects in standardising data through the application of statistical techniques to the area of RT-QPCR. The first aspect concerns the statistical identification and subsequent handling of outlying values arising from RT-QPCR, and discusses the implementation of ISO guidelines in relation to acceptance or rejection of outlying values. The second aspect relates to the development of an objective statistical test for the comparison of calibration curves. Conclusion The preliminary statistical tests for outlying values and comparisons between calibration curves can be applied using basic functions found in standard spreadsheet software. These two aspects emphasise that the comparability of results arising from RT-QPCR needs further refinement and development at the data-handling phase. The implementation of standardised approaches to data analysis should further help minimise variation due to subjective judgements. The aspects described in this paper will

  15. Identification of suitable reference genes for quantitative RT-PCR during 3T3-L1 adipocyte differentiation.

    Science.gov (United States)

    Zhang, Juan; Tang, Hongju; Zhang, Yuqing; Deng, Ruyuan; Shao, Li; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2014-05-01

    Quantitative reverse transcription PCR (qRT-PCR) is becoming increasingly important in the effort to gain insight into the molecular mechanisms underlying adipogenesis. However, the expression profile of a target gene may be misinterpreted due to the unstable expression of the reference genes under different experimental conditions. Therefore, in this study, we investigated the expression stability of 10 commonly used reference genes during 3T3-L1 adipocyte differentiation. The mRNA expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and transferrin receptor (TFRC) significantly increased during the course of 3T3-L1 adipocyte differentiation, which was decreased by berberine, an inhibitor of adipogenesis. Three popular algorithms, GeNorm, NormFinder and BestKeeper, identified 18 ribosomal RNA and hydroxymethylbilane synthase (HMBS) as the most stable reference genes, while GAPDH and TFRC were the least stable ones. Peptidylprolyl isomerase A [PIPA (cyclophilin A)], ribosomal protein, large, P0 (36-B4), beta-2-microglobulin (B2M), α1-tubulin, hypoxanthine-guanine phosphoribosyltransferase (HPRT) and β-actin showed relatively stable expression levels. The choice of reference genes with various expression stabilities exerted a profound influence on the expression profiles of 2 target genes, peroxisome proliferator-activated receptor (PPAR)γ2 and C/EBPα. In addition, western blot analysis revealed that the increased protein expression of GAPDH was markedly inhibited by berberine during adipocyte differentiation. This study highlights the importance of selecting suitable reference genes for qRT-PCR studies of gene expression during the process of adipogenesis.

  16. Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera (L. Dunal.

    Directory of Open Access Journals (Sweden)

    Varinder Singh

    Full Text Available Quantitative real-time PCR (qRT-PCR is now globally used for accurate analysis of transcripts levels in plants. For reliable quantification of transcripts, identification of the best reference genes is a prerequisite in qRT-PCR analysis. Recently, Withania somnifera has attracted lot of attention due to its immense therapeutic potential. At present, biotechnological intervention for the improvement of this plant is being seriously pursued. In this background, it is important to have comprehensive studies on finding suitable reference genes for this high valued medicinal plant. In the present study, 11 candidate genes were evaluated for their expression stability under biotic (fungal disease, abiotic (wounding, salt, drought, heat and cold stresses, in different plant tissues and in response to various plant growth regulators (methyl jasmonate, salicylic acid, abscisic acid. The data as analyzed by various software packages (geNorm, NormFinder, Bestkeeper and ΔCt method suggested that cyclophilin (CYP is a most stable gene under wounding, heat, methyl jasmonate, different tissues and all stress conditions. T-SAND was found to be a best reference gene for salt and salicylic acid (SA treated samples, while 26S ribosomal RNA (26S, ubiquitin (UBQ and beta-tubulin (TUB were the most stably expressed genes under drought, biotic and cold treatment respectively. For abscisic acid (ABA treated samples 18S-rRNA was found to stably expressed gene. Finally, the relative expression level of the three genes involved in the withanolide biosynthetic pathway was detected to validate the selection of reliable reference genes. The present work will significantly contribute to gene analysis studies in W. somnifera and facilitate in improving the quality of gene expression data in this plant as well as and other related plant species.

  17. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  18. Quantitative characterization of cell transduction by HSV-1 amplicons using flow cytometry and real-time PCR.

    Science.gov (United States)

    El-Sherbini, Yasser M; Stevenson, Mark M; Seymour, Leonard W; Wade-Martins, Richard

    2009-08-01

    Herpes simplex virus type 1 (HSV-1) amplicon preparations are usually quantified as transducing units/ml (TU/ml), with little information on genomic copy/TU ratios. In the present study, two HSV-1 amplicons expressing enhanced green fluorescent protein (EGFP) were analysed by quantitative PCR (qPCR) and transducing activity to obtain genomic copy/TU ratios. One vector (pHSV-GL) contains the HSV-1 packaging signal (pac) and origin of replication (oriS) and the other (pHSV/EBV-GL) includes Epstein-Barr virus (EBV) episomal maintenance elements. The pHSV-GL and pHSV/EBV-GL amplicons were prepared at titres of 7.55x10(7) and 7.24x10(7)TU/ml, containing 2.56x10(9) and 1.33x10(9) genomic copies/ml respectively. This produced preliminary estimates of genomic copy/TU ratios of 34:1 and 18:1. However standard transduction conditions did not deplete fully the supernatant of transducing particles since the same supernatant was subsequently able to achieve 25% the initial transduction efficiency, although centrifugation of amplicon particles onto cells improved infectivity by 1.8-fold. Finally, qPCR analysis of FACS-purified EGFP-expressing cells showed the presence of approximately 3 amplicon genomes/transduced cell, independent of the infection dose. Accordingly, the initial estimated genomic copy/TU ratio for pHSV-GL was revised to 6.3:1. Measuring the genomic copy/TU ratios is an important parameter for comparing the quality of amplicon preparations and standardizing experimental conditions.

  19. Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Singh, Varinder; Kaul, Sunil C; Wadhwa, Renu; Pati, Pratap Kumar

    2015-01-01

    Quantitative real-time PCR (qRT-PCR) is now globally used for accurate analysis of transcripts levels in plants. For reliable quantification of transcripts, identification of the best reference genes is a prerequisite in qRT-PCR analysis. Recently, Withania somnifera has attracted lot of attention due to its immense therapeutic potential. At present, biotechnological intervention for the improvement of this plant is being seriously pursued. In this background, it is important to have comprehensive studies on finding suitable reference genes for this high valued medicinal plant. In the present study, 11 candidate genes were evaluated for their expression stability under biotic (fungal disease), abiotic (wounding, salt, drought, heat and cold) stresses, in different plant tissues and in response to various plant growth regulators (methyl jasmonate, salicylic acid, abscisic acid). The data as analyzed by various software packages (geNorm, NormFinder, Bestkeeper and ΔCt method) suggested that cyclophilin (CYP) is a most stable gene under wounding, heat, methyl jasmonate, different tissues and all stress conditions. T-SAND was found to be a best reference gene for salt and salicylic acid (SA) treated samples, while 26S ribosomal RNA (26S), ubiquitin (UBQ) and beta-tubulin (TUB) were the most stably expressed genes under drought, biotic and cold treatment respectively. For abscisic acid (ABA) treated samples 18S-rRNA was found to stably expressed gene. Finally, the relative expression level of the three genes involved in the withanolide biosynthetic pathway was detected to validate the selection of reliable reference genes. The present work will significantly contribute to gene analysis studies in W. somnifera and facilitate in improving the quality of gene expression data in this plant as well as and other related plant species.

  20. Identification and quantitative detection of Legionella spp. in various aquatic environments by real-time PCR assay.

    Science.gov (United States)

    Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Chiu, Yi-Chou; She, Cheng-Yu; Shen, Shu-Min; Huang, Yu-Li; Huang, Wen-Chien

    2013-09-01

    In this study, a SYBR green quantitative real-time PCR was developed to quantify and detect the Legionella spp. in various environmental water samples. The water samples were taken from watershed, water treatment plant, and thermal spring area in Taiwan. Legionella was detected in 13.6 % (24/176), and the detection rate for river water, raw drinking water, and thermal spring water was 10, 21.4, and 16.6 %, respectively. Using real-time PCR, concentration of Legionella spp. in detected samples ranged between 9.75 × 10(4) and 3.47 × 10(5) cells/L in river water, 6.92 × 10(4) and 4.29 × 10(5) cells/L in raw drinking water, and 5.71 × 10(4) and 2.12 × 10(6) cells/L for thermal spring water samples. The identified species included Legionella pneumophila (20.8 %), Legionella jordanis (4.2 %), Legionella nautarum (4.2 %), Legionella sp. (4.2 %), and uncultured Legionella sp. (66.6 %). The presence of L. pneumophila in aquatic environments suggested a potential public health threat that must be further examined.

  1. Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy.

    Science.gov (United States)

    La Rosa, Giuseppina; Pourshaban, Manoochehr; Iaconelli, Marcello; Muscillo, Michele

    2010-01-01

    The prevalence of enteric viruses in wastewater, the efficacy of wastewater treatments in eliminating such viruses, and potential health risks from their release into the environment or by recycling of treated wastewaters, are very important issues in environmental microbiology. In this study we performed a quantitative TaqMan real-time PCR (polymerase chain reaction) analysis of enteric viruses on samples of influents and effluents from 5 wastewater treatment plants in and around Rome. Three epidemiologically important, waterborne enteric viruses were analyzed: adenoviruses, enteroviruses and noroviruses (GI and GII) and compared to classical bacterial indicators of fecal contamination. The concentration of adenoviruses was the highest, in both raw and treated waters. Mean values in influents were ranked as follows: adenovirus > norovirus GI > norovirus GII > enterovirus. In effluents, the ranking was: adenovirus > norovirus GI > enterovirus > norovirus GII. Removal efficiencies ranged from 35% (enterovirus) to 78% (norovirus GI), while removal efficiency for bacterial indicators was up to 99%. Since molecular quantification does not necessarily indicate an actual threat to human health, we proceeded to evaluate the infectivity of enterovirus particles in treated effluents through integrated cell culture and real-time PCR. Infectivity assays detected live virions in treated water, pointing to potential public health risks through the release of these viruses into the environment. A better understanding of viral presence and resistance to sewage purification processes have the potential of contributing to the effective management of risks linked to the recycling of treated wastewater, and its discharge into the environment.

  2. Reference Gene Validation for Quantitative PCR Under Various Biotic and Abiotic Stress Conditions in Toxoptera citricida (Hemiptera, Aphidiae).

    Science.gov (United States)

    Shang, Feng; Wei, Dan-Dan; Jiang, Xuan-Zhao; Wei, Dong; Shen, Guang-Mao; Feng, Ying-Cai; Li, Ting; Wang, Jin-Jun

    2015-08-01

    The regulation of mRNA expression level is critical for gene expression studies. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR) is commonly used to investigate mRNA expression level of genes under various experimental conditions. An important factor that determines the optimal quantification of qRT-PCR data is the choice of the reference gene for normalization. To advance gene expression studies in Toxoptera citricida (Kirkaldy), an important citrus pest and a main vector of the Citrus tristeza virus, we used five tools (GeNorm, NormFinder, BestKeeper, ΔCt methods, and RefFinder) to evaluate seven candidate reference genes (elongation factor-1 alpha [EF1α], beta tubulin [β-TUB], 18S ribosomal RNA [18S], RNA polymerase II large subunit (RNAP II), beta actin (β-ACT), alpha tubulin, and glyceraldhyde-3-phosphate dehydrogenase) under different biotic (developmental stages and wing dimorphism) and abiotic stress (thermal, starvation, and UV irradiation) conditions. The results showed that EF1α and 18S were the most stable genes under various biotic states, β-ACT and β-TUB during thermal stress, EF1α and RNAP II under starvation stress, and RNAP II, β-ACT, and EF1α under UV irradiation stress conditions. This study provides useful resources for the transcriptional profiling of genes in T. citricida and closely related aphid species.

  3. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    Science.gov (United States)

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community.

  4. Molecular ABO phenotyping in cynomolgus macaques using real-time quantitative PCR.

    Science.gov (United States)

    Premasuthan, A; Ng, J; Kanthaswamy, S; Trask, J S; Houghton, P; Farkas, T; Sestak, K; Smith, D G

    2012-10-01

    Macaques are commonly used in biomedical research as animal models of human disease. The ABO phenotype of donors and recipients plays an important role in the success of transplantation and stem cell research of both human and macaque tissue. Traditional serological methods for ABO phenotyping can be time consuming, provide ambiguous results and/or require tissue that is unavailable or unsuitable. We developed a novel method to detect the A, B, and AB phenotypes of macaques using real-time quantitative polymerase chain reaction. This method enables the simple and rapid screening of these phenotypes in macaques without the need for fresh blood or saliva. This study reports the distribution of the A, B, and AB phenotypes of captive cynomolgus macaques that, while regionally variable, closely resembles that of rhesus macaques. Blood group B, as in rhesus macaques, predominates in cynomolgus macaques and its frequency distribution leads to a probability of major incompatibility of 41%. No silencing mutations have been identified in exon 6 or 7 in macaques that could be responsible for the O phenotype, that, although rare, have been reported. The excess homozygosity of rhesus and cynomolgus macaque genotypes in this study, that assumes the absence of the O allele, suggests the possibility of some mechanism preventing the expression of the A and B transferases.

  5. QUANTITATIVE RT-PCR ANALYSES OF FIVE EVOLUTIONARY CONSERVED GENES IN ALLIGATOR BRAINS DURING DEVELOPMENT

    Science.gov (United States)

    Wilson, Sarah M.; Zhu, Tianli; Khanna, Rajesh; Pritz, Michael B.

    2011-01-01

    Gene expression was investigated in the major brain subdivisions (telencephalon, diencephalon, midbrain and hindbrain) in a representative reptile, Alligator mississipiensis, during the later stages of embryonic development. The following genes were examined: voltage-gated sodium channel isoforms: NaV1.1 and NaV1.2; synaptic vesicle 2a (SV2a); synaptophysin; and calbindin 2. With the exception of synaptophysin, which was only expressed in the telencephalon, all genes were expressed in all brain regions sampled at the time periods examined. For NaV1.1, gene expression varied according to brain area sampled. When compared with NaV1.1, the pattern of NaV1.2 gene expression differed appreciably. The gene expression of SV2a was the most robust of any of the genes examined. Of the other genes examined, although differences were noted, no statistically significant changes were found either between brain part or time interval. Although limited, the present analysis is the first quantitative mRNA gene expression study in any reptile during development. Together with future experiments of a similar nature, the present gene expression results should determine which genes are expressed in major brain areas at which times during development in Alligator. When compared with other amniotes, these results will prove useful for determining how gene expression during development influences adult brain structure. PMID:22379598

  6. Wetlab-2 - Quantitative PCR Tools for Spaceflight Studies of Gene Expression Aboard the International Space Station

    Science.gov (United States)

    Schonfeld, Julie E.

    2015-01-01

    Wetlab-2 is a research platform for conducting real-time quantitative gene expression analysis aboard the International Space Station. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space. Currently, gene expression analyses of space flown biospecimens must be conducted post flight after living cultures or frozen or chemically fixed samples are returned to Earth from the space station. Post-flight analysis is limited for several reasons. First, changes in gene expression can be transient, changing over a timescale of minutes. The delay between sampling on Earth can range from days to months, and RNA may degrade during this period of time, even in fixed or frozen samples. Second, living organisms that return to Earth may quickly re-adapt to terrestrial conditions. Third, forces exerted on samples during reentry and return to Earth may affect results. Lastly, follow up experiments designed in response to post-flight results must wait for a new flight opportunity to be tested.

  7. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  8. CyProQuant-PCR: a real time RT-PCR technique for profiling human cytokines, based on external RNA standards, readily automatable for clinical use

    Directory of Open Access Journals (Sweden)

    Mercereau-Puijalon Odile

    2005-03-01

    Full Text Available Abstract Background Real-time PCR is becoming a common tool for detecting and quantifying expression profiling of selected genes. Cytokines mRNA quantification is widely used in immunological research to dissect the early steps of immune responses or pathophysiological pathways. It is also growing to be of clinical relevancy to immuno-monitoring and evaluation of the disease status of patients. The techniques currently used for "absolute quantification" of cytokine mRNA are based on a DNA standard curve and do not take into account the critical impact of RT efficiency. Results To overcome this pitfall, we designed a strategy using external RNA as standard in the RT-PCR. Use of synthetic RNA standards, by comparison with the corresponding DNA standard, showed significant variations in the yield of retro-transcription depending the target amplified and the experiment. We then developed primers to be used under one single experimental condition for the specific amplification of human IL-1β, IL-4, IL-10, IL-12p40, IL-13, IL-15, IL-18, IFN-γ, MIF, TGF-β1 and TNF-α mRNA. We showed that the beta-2 microglobulin (β2-MG gene was suitable for data normalisation since the level of β2-MG transcripts in naïve PBMC varied less than 5 times between individuals and was not affected by LPS or PHA stimulation. The technique, we named CyProQuant-PCR (Cytokine Profiling Quantitative PCR was validated using a kinetic measurement of cytokine transcripts under in vitro stimulation of human PBMC by lipopolysaccharide (LPS or Staphylococcus aureus strain Cowan (SAC. Results obtained show that CyProQuant-PCR is powerful enough to precociously detect slight cytokine induction. Finally, having demonstrated the reproducibility of the method, it was applied to malaria patients and asymptomatic controls for the quantification of TGF-β1 transcripts and showed an increased capacity of cells from malaria patients to accumulate TGF-β1 mRNA in response to LPS. Conclusion

  9. Characterization of the gut microbiota of Papua New Guineans using reverse transcription quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Andrew R Greenhill

    Full Text Available There has been considerable interest in composition of gut microbiota in recent years, leading to a better understanding of the role the gut microbiota plays in health and disease. Most studies have been limited in their geographical and socioeconomic diversity to high-income settings, and have been conducted using small sample sizes. To date, few analyses have been conducted in low-income settings, where a better understanding of the gut microbiome could lead to the greatest return in terms of health benefits. Here, we have used quantitative real-time polymerase chain reaction targeting dominant and sub-dominant groups of microorganisms associated with human gut microbiome in 115 people living a subsistence lifestyle in rural areas of Papua New Guinea. Quantification of Clostridium coccoides group, C. leptum subgroup, C. perfringens, Bacteroides fragilis group, Bifidobacterium, Atopobium cluster, Prevotella, Enterobacteriaceae, Enterococcus, Staphylococcus, and Lactobacillus spp. was conducted. Principle coordinates analysis (PCoA revealed two dimensions with Prevotella, clostridia, Atopobium, Enterobacteriaceae, Enterococcus and Staphylococcus grouping in one dimension, while B. fragilis, Bifidobacterium and Lactobacillus grouping in the second dimension. Highland people had higher numbers of most groups of bacteria detected, and this is likely a key factor for the differences revealed by PCoA between highland and lowland study participants. Age and sex were not major determinants in microbial population composition. The study demonstrates a gut microbial composition with some similarities to those observed in other low-income settings where traditional diets are consumed, which have previously been suggested to favor energy extraction from a carbohydrate rich diet.

  10. Characterization of the gut microbiota of Papua New Guineans using reverse transcription quantitative PCR.

    Science.gov (United States)

    Greenhill, Andrew R; Tsuji, Hirokazu; Ogata, Kiyohito; Natsuhara, Kazumi; Morita, Ayako; Soli, Kevin; Larkins, Jo-Ann; Tadokoro, Kiyoshi; Odani, Shingo; Baba, Jun; Naito, Yuichi; Tomitsuka, Eriko; Nomoto, Koji; Siba, Peter M; Horwood, Paul F; Umezaki, Masahiro

    2015-01-01

    There has been considerable interest in composition of gut microbiota in recent years, leading to a better understanding of the role the gut microbiota plays in health and disease. Most studies have been limited in their geographical and socioeconomic diversity to high-income settings, and have been conducted using small sample sizes. To date, few analyses have been conducted in low-income settings, where a better understanding of the gut microbiome could lead to the greatest return in terms of health benefits. Here, we have used quantitative real-time polymerase chain reaction targeting dominant and sub-dominant groups of microorganisms associated with human gut microbiome in 115 people living a subsistence lifestyle in rural areas of Papua New Guinea. Quantification of Clostridium coccoides group, C. leptum subgroup, C. perfringens, Bacteroides fragilis group, Bifidobacterium, Atopobium cluster, Prevotella, Enterobacteriaceae, Enterococcus, Staphylococcus, and Lactobacillus spp. was conducted. Principle coordinates analysis (PCoA) revealed two dimensions with Prevotella, clostridia, Atopobium, Enterobacteriaceae, Enterococcus and Staphylococcus grouping in one dimension, while B. fragilis, Bifidobacterium and Lactobacillus grouping in the second dimension. Highland people had higher numbers of most groups of bacteria detected, and this is likely a key factor for the differences revealed by PCoA between highland and lowland study participants. Age and sex were not major determinants in microbial population composition. The study demonstrates a gut microbial composition with some similarities to those observed in other low-income settings where traditional diets are consumed, which have previously been suggested to favor energy extraction from a carbohydrate rich diet.

  11. Novel quantitative real-time PCR approach to determine safflower (Carthamus tinctorius) adulteration in saffron (Crocus sativus).

    Science.gov (United States)

    Villa, Caterina; Costa, Joana; Oliveira, M Beatriz P P; Mafra, Isabel

    2017-08-15

    This work intended to develop DNA-based methods to detect and quantify safflower as an adulterant in saffron. Species-specific PCR and real-time PCR with EvaGreen dye targeting the ITS region of Carthamus tinctorius L. (safflower) were successfully proposed. The assays allowed absolute and relative sensitivities of 2pg of safflower DNA (∼1.4 DNA copies) and 0.1% of safflower in saffron (Crocus sativus L.), respectively. A normalised real-time PCR approach was also proposed in the range of 0.1-20% (w/w) of safflower in saffron, which was successfully validated and applied to commercial saffron samples (stigmas, powders and seasonings). From 19 samples, three were positive to safflower, though at levels below the limit of detection, suggesting cross-contamination rather than adulteration. In this work, specific, sensitive and accurate tools were proposed to authenticate saffron. To the best of our knowledge, this is the first successful attempt to quantify safflower by a DNA-based approach.

  12. Identification of stable reference genes for gene expression studies using quantitative real time PCR in buffalo oocytes and embryos.

    Science.gov (United States)

    Kumar, Parveen; Yadav, Poonam; Verma, Arpana; Singh, Dheer; De, Sachinandan; Datta, Tirtha Kumar

    2012-12-01

    The present study was aimed to validate expression stability of 6 housekeeping genes (viz. YWHAZ, SDHA, GAPDH, RPS15, RPS18 and RN18S1) in the oocytes and embryos of different stages in buffalo. A modified Trizol protocol was optimized for RNA isolation from as few as five oocytes. The expression level of selected genes was studied by an optimized real time PCR using DCT method and their stability of expression was evaluated by Microsoft Excel based visual application, geNORM. The analysis revealed that the RPS15 and GAPDH were the most stable genes across different samples. Also, the geometric mean of three genes (i.e. RPS15,RPS18 and GAPDH) were found suitable for normalization of real time PCR data from buffalo oocytes⁄embryos. The information would help in more accurate interpretation of gene expression data from oocytes⁄embryos towards understanding the molecular events in these cells during development.

  13. Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment

    Directory of Open Access Journals (Sweden)

    Li Qingdi

    2012-06-01

    Full Text Available Abstract Background The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. Results The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25 remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1α, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4 were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-ΔΔCT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-ΔΔCT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13 as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such

  14. Development of real-time immuno-PCR for the quantitative detection of mycobacterial PstS1 in tuberculosis patients.

    Science.gov (United States)

    Sharma, Suman; Raj, Ankush; Singh, Netrapal; Dahiya, Bhawna; Sheoran, Abhishek; Gupta, Krishna B; Mehta, Promod K

    2017-01-01

    A novel indirect real-time immuno-polymerase chain reaction (RT-I-PCR) assay, an evolution of I-PCR, was developed for the quantitative detection of Mycobacterium tuberculosis PstS1 (Rv0934) with a wide dynamic range of 10ng/mL to 1pg/mL in body fluids of tuberculosis (TB) patients, which may monitor the dynamics of disease.

  15. Development of a sequence-characterized amplified region marker-targeted quantitative PCR assay for strain-specific detection of Oenococcus oeni during wine malolactic fermentation.

    Science.gov (United States)

    Solieri, Lisa; Giudici, Paolo

    2010-12-01

    Control over malolactic fermentation (MLF) is a difficult goal in winemaking and needs rapid methods to monitor Oenococcus oeni malolactic starters (MLS) in a stressful environment such as wine. In this study, we describe a novel quantitative PCR (QPCR) assay enabling the detection of an O. oeni strain during MLF without culturing. O. oeni strain LB221 was used as a model to develop a strain-specific sequence-characterized amplified region (SCAR) marker derived from a discriminatory OPA20-based randomly amplified polymorphic DNA (RAPD) band. The 5' and 3' flanking regions and the copy number of the SCAR marker were characterized using inverse PCR and Southern blotting, respectively. Primer pairs targeting the SCAR sequence enabled strain-specific detection without cross amplification of other O. oeni strains or wine species of lactic acid bacteria (LAB), acetic acid bacteria (AAB), and yeasts. The SCAR-QPCR assay was linear over a range of cell concentrations (7 log units) and detected as few as 2.2 × 10(2) CFU per ml of red wine with good quantification effectiveness, as shown by the correlation of QPCR and plate counting results. Therefore, the cultivation-independent monitoring of a single O. oeni strain in wine based on a SCAR marker represents a rapid and effective strain-specific approach. This strategy can be adopted to develop easy and rapid detection techniques for monitoring the implantation of inoculated O. oeni MLS on the indigenous LAB population, reducing the risk of unsuccessful MLF.

  16. Sensitive Detection of Measles Virus Infection in the Blood and Tissues of Humanized Mouse by One-step Quantitative RT-PCR

    Directory of Open Access Journals (Sweden)

    Shota eIkeno

    2013-10-01

    Full Text Available Live attenuated measles virus (MV has long been recognized as a safe and effective vaccine, and it has served as the basis for development of various MV-based vaccines. However, because MV is a human-tropic virus, the evaluation of MV-based vaccines has been hampered by the lack of a small-animal model. The humanized mouse, a recently developed system in which an immunodeficient mouse is transplanted with human fetal tissues or hematopoietic stem cells, may represent a suitable model. Here, we developed a sensitive one-step quantitative reverse transcription (qRT PCR that simultaneously measures nucleocapsid (N and human RNase P mRNA levels. The results can be used to monitor MV infection in a humanized mouse model. Using this method, we elucidated the replication kinetics of MV expressing EGFP both in vitro and in humanized mice in parallel with flow-cytometric analysis. Because our qRT-PCR system was sensitive enough to detect MV expression using RNA extracted from a small number of cells, it can be used to monitor MV infection in humanized mice by sequential blood sampling.

  17. Differences in AMY1 Gene Copy Numbers Derived from Blood, Buccal Cells and Saliva Using Quantitative and Droplet Digital PCR Methods: Flagging the Pitfall

    Science.gov (United States)

    Ong, Siong Gim; Chan, Yiong Huak; Heng, Chew Kiat

    2017-01-01

    Introduction The human salivary (AMY1) gene, encoding salivary α-amylase, has variable copy number variants (CNVs) in the human genome. We aimed to determine if real-time quantitative polymerase chain reaction (qPCR) and the more recently available Droplet Digital PCR (ddPCR) can provide a precise quantification of the AMY1 gene copy number in blood, buccal cells and saliva samples derived from the same individual. Methods Seven participants were recruited and DNA was extracted from the blood, buccal cells and saliva samples provided by each participant. Taqman assay real-time qPCR and ddPCR were conducted to quantify AMY1 gene copy numbers. Statistical analysis was carried out to determine the difference in AMY1 gene copy number between the different biological specimens and different assay methods. Results We found significant within-individual difference (p<0.01) in AMY1 gene copy number between different biological samples as determined by qPCR. However, there was no significant within-individual difference in AMY1 gene copy number between different biological samples as determined by ddPCR. We also found that AMY1 gene copy number of blood samples were comparable between qPCR and ddPCR, while there is a significant difference (p<0.01) between AMY1 gene copy numbers measured by qPCR and ddPCR for both buccal swab and saliva samples. Conclusions Despite buccal cells and saliva samples being possible sources of DNA, it is pertinent that ddPCR or a single biological sample, preferably blood sample, be used for determining highly polymorphic gene copy numbers like AMY1, due to the large within-individual variability between different biological samples if real time qPCR is employed. PMID:28125683

  18. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells.

    Science.gov (United States)

    Wang, Xiao; Peden, Keith; Murata, Haruhiko

    2015-12-16

    Human cytomegalovirus (HCMV) is a leading cause of congenital infection that can result in serious disabilities in affected children. To facilitate HCMV vaccine development, a microscale neutralization assay based on reverse transcription quantitative PCR (RT-qPCR) was developed to quantify HCMV-neutralizing antibodies. Our approach relies on the generation of crude lysates from virus-infected cells that are amenable to direct analysis by RT-qPCR, thereby circumventing rate-limiting procedures associated with sample RNA extraction and purification. By serial passaging of the laboratory HCMV strain AD169 in epithelial cells (ARPE-19), a revertant virus with restored epithelial cell tropism, designated AD169(wt131), was obtained. AD169 and AD169(wt131) were evaluated in both epithelial cells (ARPE-19) and fibroblasts (MRC-5) by one-step RT-qPCR targeting the immediate-early gene IE1 transcript of HCMV. Expression kinetics indicated that RT-qPCR assessment could be conducted as early as 6h post-infection. Human serum samples (n=30) from healthy donors were tested for HCMV-specific IgG using a commercially available ELISA and for HCMV-neutralizing activity using our RT-qPCR-based neutralization assay. In agreement with the ELISA results, higher neutralizing activity was observed in the HCMV IgG seropositive group when compared with the HCMV IgG seronegative group. In addition, HCMV IgG seropositive human sera exhibited higher neutralizing titers using epithelial cells compared with using fibroblasts (geometric mean titers of 344 and 8 in ARPE-19 cells and MRC-5 cells, respectively). Our assay was robust to variation in input virus dose. In addition, a simple lysis buffer containing a non-ionic detergent was successfully demonstrated to be a less costly alternative to commercial reagents for cell-lysate preparation. Thus, our rapid HCMV neutralization assay may be a straightforward and flexible high-throughput tool for measuring antibody responses induced by vaccination

  19. Development and Evaluation of qPCR Assay for Quantitation of Kazachstania slooffiae and Total Yeasts Occurring in the Porcine Gut.

    Science.gov (United States)

    Urubschurov, Vladimir; Büsing, Kirsten; Janczyk, Pawel; Souffrant, Wolfgang-Bernhard; Zeyner, Annette

    2015-09-01

    Kazachstania slooffiae is the dominating yeast in pig's gut. No methods others than cultivation were applied for enumeration of yeasts within this ecosystem. Therefore, the aim of this study was to develop a real-time quantitative polymerase chain reaction (qPCR) assay to quantitate total yeasts and K. slooffiae in the porcine gut. This work demonstrated that the copy numbers in gDNA can be determined by qPCR using PCR amplicons as a calibrator and one-point calibration method. The gDNA were then used as a calibrator for further analysis. The values of quantitation cycle and PCR amplification efficiency of gDNA calibrator were highly reproducible. DNA was extracted from feces and from 10 different cultured yeasts found in pigs' intestine. The qPCR results using primers NL1/LS2 encoding 26S rDNA correlated (r = 0.984, P < 0.0001) with cultivation results. From two primer sets developed, one set encoding act1 gene was suitable for quantitation of K. slooffiae. The copy numbers of K. slooffiae could be determined by 40% analyzed animals, amounting to about 70% of total yeasts. The application of this method in next studies will help to get more information about K. slooffiae and total yeasts in the gut of pigs.

  20. Quantitative PCR assay for detection and enumeration of ciguatera-causing dinoflagellate Gambierdiscus spp. (Gonyaulacales) in coastal areas of Japan.

    Science.gov (United States)

    Nishimura, Tomohiro; Hariganeya, Naohito; Tawong, Wittaya; Sakanari, Hiroshi; Yamaguchi, Haruo; Adachi, Masao

    2016-02-01

    In Japan, ciguatera fish poisoning (CFP) has been increasingly reported not only in subtropical areas but also in temperate areas in recent years, causing a serious threat to human health. Ciguatera fish poisoning is caused by the consumption of fish that have accumulated toxins produced by an epiphytic/benthic dinoflagellate, genus Gambierdiscus. Previous studies revealed the existence of five Gambierdiscus species/phylotypes in Japan: Gambierdiscus australes, Gambierdiscus scabrosus, Gambierdiscus sp. type 2, Gambierdiscus sp. type 3, and Gambierdiscus (Fukuyoa) cf. yasumotoi. Among these, G. australes, G. scabrosus, and Gambierdiscus sp. type 3 strains exhibited toxicities in mice, whereas Gambierdiscus sp. type 2 strains did not show any toxicity. Therefore, it is important to monitor the cell abundance and dynamics of these species/phylotypes to identify and characterize CFP outbreaks in Japan. Because it is difficult to differentiate these species/phylotypes by observation under a light microscope, development of a rapid and reliable detection and enumeration method is needed. In this study, a quantitative PCR assay was developed using a TaqMan probe that targets unique SSU rDNA sequences of four Japanese Gambierdiscus species/phylotypes and incorporates normalization with DNA recovery efficiency. First, we constructed standard curves with high linearity (R(2)=1.00) and high amplification efficiency (≥1.98) using linearized plasmids that contained SSU rDNA of the target species/phylotypes. The detection limits for all primer and probe sets were approximately 10 gene copies. Further, the mean number of SSU rDNA copies per cell of each species/phylotype was determined from single cells in culture and from those in environmental samples using the qPCR assay. Next, the number of cells of each species/phylotype in the mixed samples, which were spiked with cultured cells of the four species/phylotypes, was calculated by division of the total number of rDNA copies

  1. PCR Based Microbial Monitor for Analysis of Recycled Water Aboard the ISSA: Issues and Prospects

    Science.gov (United States)

    Cassell, Gail H.; Lefkowitz, Elliot J.; Glass, John I.

    1995-01-01

    added to a PCR assay; There are not likely to be contaminants in ISSA recycled water that would inhibit PCR resulting in false-negative results; The TaqMan PCR product detection system is the most promising method for developing a rapid, highly automated gene-based microbial monitoring system. The method is inherently quantitative. NASA and other government agencies have invested in other technologies that, although potentially could lead to revolutionary advances, are not likely to mature in the next 5 years into working systems; PCR-based methods cannot distinguish between DNA or RNA of a viable microorganism and that of a non-viable organism. This may or may not be an important issue with reclaimed water on the ISSA. The recycling system probably damages the capacity of the genetic material of any bacteria or viruses killed during processing to serve as a template in a PCR desinged to amplify a large segment of DNA (less than 650 base pairs). If necessary, vital dye staining could be used in addition to PCR, to enumerate the viable cells in a water sample; The quality control methods have been developed to insure that PCR's are working properly, and that reactions are not contaminated with PCR carryover products which could lead to the generation of false-positive results; and The sequences of the small rRNA subunit gene for a large number of microorganisms are known, and they consititue the best database for rational development of the oligonucleotide reagents that give PCR its great specificity. From those gene sequences, sets of oligonucleotide primers for PCR and Taqman detection that could be used in a NASA microbial monitor were constructed using computer based methods. In addition to space utilization, a microbial monitior will have tremendous terrestrial applications. Analysis of patient samples for microbial pathogens, testing industrial effluent for biofouling bacteria, and detection biological warfare agents on the battlefield are but a few of the diverse

  2. Development of quantitative PCR assays targeting the 16S rRNA genes of Enterococcus spp. and their application to the identification of enterococcus species in environmental samples.

    Science.gov (United States)

    Ryu, Hodon; Henson, Michael; Elk, Michael; Toledo-Hernandez, Carlos; Griffith, John; Blackwood, Denene; Noble, Rachel; Gourmelon, Michèle; Glassmeyer, Susan; Santo Domingo, Jorge W

    2013-01-01

    The detection of environmental enterococci has been determined primarily by using culture-based techniques that might exclude some enterococcal species as well as those that are nonculturable. To address this, the relative abundances of enterococci were examined by challenging fecal and water samples against a currently available genus-specific assay (Entero1). To determine the diversity of enterococcal species, 16S rRNA gene-based group-specific quantitative PCR (qPCR) assays were developed and evaluated against eight of the most common environmental enterococcal species. Partial 16S rRNA gene sequences of 439 presumptive environmental enterococcal strains were analyzed to study further the diversity of enterococci and to confirm the specificities of group-specific assays. The group-specific qPCR assays showed relatively high amplification rates with targeted species (>98%), although some assays cross-amplified with nontargeted species (1.3 to 6.5%). The results with the group-specific assays also showed that different enterococcal species co-occurred in most fecal samples. The most abundant enterococci in water and fecal samples were Enterococcus faecalis and Enterococcus faecium, although we identified more water isolates as Enterococcus casseliflavus than as any of the other species. The prevalence of the Entero1 marker was in agreement with the combined number of positive signals determined by the group-specific assays in most fecal samples, except in gull feces. On the other hand, the number of group-specific assay signals was lower in all water samples tested, suggesting that other enterococcal species are present in these samples. While the results highlight the value of genus- and group-specific assays for detecting the major enterococcal groups in environmental water samples, additional studies are needed to determine further the diversity, distributions, and relative abundances of all enterococcal species found in water.

  3. Selection and evaluation of reference genes for expression studies with quantitative PCR in the model fungus Neurospora crassa under different environmental conditions in continuous culture.

    Science.gov (United States)

    Cusick, Kathleen D; Fitzgerald, Lisa A; Pirlo, Russell K; Cockrell, Allison L; Petersen, Emily R; Biffinger, Justin C

    2014-01-01

    Neurospora crassa has served as a model organism for studying circadian pathways and more recently has gained attention in the biofuel industry due to its enhanced capacity for cellulase production. However, in order to optimize N. crassa for biotechnological applications, metabolic pathways during growth under different environmental conditions must be addressed. Reverse-transcription quantitative PCR (RT-qPCR) is a technique that provides a high-throughput platform from which to measure the expression of a large set of genes over time. The selection of a suitable reference gene is critical for gene expression studies using relative quantification, as this strategy is based on normalization of target gene expression to a reference gene whose expression is stable under the experimental conditions. This study evaluated twelve candidate reference genes for use with N. crassa when grown in continuous culture bioreactors under different light and temperature conditions. Based on combined stability values from NormFinder and Best Keeper software packages, the following are the most appropriate reference genes under conditions of: (1) light/dark cycling: btl, asl, and vma1; (2) all-dark growth: btl, tbp, vma1, and vma2; (3) temperature flux: btl, vma1, act, and asl; (4) all conditions combined: vma1, vma2, tbp, and btl. Since N. crassa exists as different cell types (uni- or multi-nucleated), expression changes in a subset of the candidate genes was further assessed using absolute quantification. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes serve as a reliable reflection of transcript, and not gene copy number, fluctuations. The results of this study identified genes that are appropriate for use as reference genes in RT-qPCR studies with N. crassa and demonstrated that even with the presence of different cell types, relative quantification is an acceptable method for measuring gene

  4. Selection and evaluation of reference genes for expression studies with quantitative PCR in the model fungus Neurospora crassa under different environmental conditions in continuous culture.

    Directory of Open Access Journals (Sweden)

    Kathleen D Cusick

    Full Text Available Neurospora crassa has served as a model organism for studying circadian pathways and more recently has gained attention in the biofuel industry due to its enhanced capacity for cellulase production. However, in order to optimize N. crassa for biotechnological applications, metabolic pathways during growth under different environmental conditions must be addressed. Reverse-transcription quantitative PCR (RT-qPCR is a technique that provides a high-throughput platform from which to measure the expression of a large set of genes over time. The selection of a suitable reference gene is critical for gene expression studies using relative quantification, as this strategy is based on normalization of target gene expression to a reference gene whose expression is stable under the experimental conditions. This study evaluated twelve candidate reference genes for use with N. crassa when grown in continuous culture bioreactors under different light and temperature conditions. Based on combined stability values from NormFinder and Best Keeper software packages, the following are the most appropriate reference genes under conditions of: (1 light/dark cycling: btl, asl, and vma1; (2 all-dark growth: btl, tbp, vma1, and vma2; (3 temperature flux: btl, vma1, act, and asl; (4 all conditions combined: vma1, vma2, tbp, and btl. Since N. crassa exists as different cell types (uni- or multi-nucleated, expression changes in a subset of the candidate genes was further assessed using absolute quantification. A strong negative correlation was found to exist between ratio and threshold cycle (CT values, demonstrating that CT changes serve as a reliable reflection of transcript, and not gene copy number, fluctuations. The results of this study identified genes that are appropriate for use as reference genes in RT-qPCR studies with N. crassa and demonstrated that even with the presence of different cell types, relative quantification is an acceptable method for measuring

  5. HLA-DQA1 typing in Danes by two polymerase chain reaction (PCR) based methods

    DEFF Research Database (Denmark)

    Cowland, J B; Madsen, H O; Morling, N

    1995-01-01

    A total of 280 persons were HLA-DQA1 typed by two different polymerase chain reaction (PCR) based methods; (i) a reverse dot-blot (RDB) method, which can differentiate between six alleles, and (ii) a combined PCR-restriction fragment length polymorphism (PCR-RFLP) and allele-specific amplification...

  6. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach.

    Directory of Open Access Journals (Sweden)

    Iveta Svobodová

    Full Text Available Detection and characterization of circulating cell-free fetal DNA (cffDNA from maternal circulation requires an extremely sensitive and precise method due to very low cffDNA concentration. In our study, droplet digital PCR (ddPCR was implemented for fetal RHD genotyping from maternal plasma to compare this new quantification alternative with real-time PCR (qPCR as a golden standard for quantitative analysis of cffDNA. In the first stage of study, a DNA quantification standard was used. Clinical samples, including 10 non-pregnant and 35 pregnant women, were analyzed as a next step. Both methods' performance parameters-standard curve linearity, detection limit and measurement precision-were evaluated. ddPCR in comparison with qPCR has demonstrated sufficient sensitivity for analysing of cffDNA and determination of fetal RhD status from maternal circulation, results of both methods strongly correlated. Despite the more demanding workflow, ddPCR was found to be slightly more precise technology, as evaluated using quantitative standard. Regarding the clinical samples, the precision of both methods equalized with decreasing concentrations of tested DNA samples. In case of cffDNA with very low concentrations, variance parameters of both techniques were comparable. Detected levels of fetal cfDNA in maternal plasma were slightly higher than expected and correlated significantly with gestational age as measured by both methods (ddPCR r = 0.459; qPCR r = 0.438.

  7. MRPrimer: a MapReduce-based method for the thorough design of valid and ranked primers for PCR.

    Science.gov (United States)

    Kim, Hyerin; Kang, NaNa; Chon, Kang-Wook; Kim, Seonho; Lee, NaHye; Koo, JaeHyung; Kim, Min-Soo

    2015-11-16

    Primer design is a fundamental technique that is widely used for polymerase chain reaction (PCR). Although many methods have been proposed for primer design, they require a great deal of manual effort to generate feasible and valid primers, including homology tests on off-target sequences using BLAST-like tools. That approach is inconvenient for many target sequences of quantitative PCR (qPCR) due to considering the same stringent and allele-invariant constraints. To address this issue, we propose an entirely new method called MRPrimer that can design all feasible and valid primer pairs existing in a DNA database at once, while simultaneously checking a multitude of filtering constraints and validating primer specificity. Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a ranking method. Through qPCR analysis using 343 primer pairs and the corresponding sequencing and comparative analyses, we showed that the primer pairs designed by MRPrimer are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient and scalable and therefore useful for quickly constructing an entire collection of feasible and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest that MRPrimer can be utilized conveniently for experiments requiring primer design, especially real-time qPCR.

  8. Rapid Diagnosis of Mycobacterial Infections and Quantitation of Mycobacterium tuberculosis Load by Two Real-Time Calibrated PCR Assays

    Science.gov (United States)

    Broccolo, Francesco; Scarpellini, Paolo; Locatelli, Giuseppe; Zingale, Anna; Brambilla, Anna M.; Cichero, Paola; Sechi, Leonardo A.; Lazzarin, Adriano; Lusso, Paolo; Malnati, Mauro S.

    2003-01-01

    Sensitive and specific techniques to detect and identify Mycobacterium tuberculosis directly in clinical specimens are important for the diagnosis and management of patients with tuberculosis (TB). We developed two real-time PCR assays, based on the IS6110 multicopy element and on the senX3-regX3 intergenic region, which provide a rapid method for the diagnosis of mycobacterial infections. The sensitivity and specificity of both assays were established by using purified DNA from 71 clinical isolates and 121 clinical samples collected from 83 patients, 20 of whom were affected by TB. Both assays are accurate, sensitive, and specific, showing a complementary pattern of Mycobacterium recognition: broader for the IS6110-based assay and restricted to the M. tuberculosis complex for the senX3-regX3-based assay. Moreover, the addition of a synthetic DNA calibrator prior to DNA extraction allowed us to measure the efficiency of DNA recovery and to control for the presence of PCR inhibitors. The mycobacterial burden of the clinical samples, as assessed by direct microscopy, correlates with the M. tuberculosis DNA load measured by the senX3-regX3-based assay. In addition, reduced levels of M. tuberculosis DNA load are present in those patients subjected to successful therapy, suggesting a potential use of this assay for monitoring treatment efficacy. Therefore, these assays represent a fully controlled high-throughput system for the evaluation of mycobacterial burden in clinical specimens. PMID:14532183

  9. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative rt-PCR.

    Directory of Open Access Journals (Sweden)

    Hui Ling

    Full Text Available The increasingly used real time quantitative reverse transcription-PCR (qRT-PCR method for gene expression analysis requires one or several reference gene(s acting as normalization factor(s. In order to facilitate gene expression studies in sugarcane (Saccharum officinarum, a non-model plant with limited genome information, the stability of 13 candidate reference genes was evaluated. The geNorm, NormFinder and deltaCt methods were used for selecting stably expressed internal controls across different tissues and under various experimental treatments. These results revealed that, among these 13 candidate reference genes, GAPDH, eEF-1a and eIF-4α were the most stable and suitable for use as normalization factors across all various experimental samples. In addition, APRT could be a candidate for examining the relationship between gene copy number and transcript levels in sugarcane tissue samples. According to the results evaluated by geNorm, combining CUL and eEF-1α in hormone treatment experiments; CAC and CUL in abiotic stress tests; GAPDH, eEF-1a and CUL in all treatment samples plus CAC, CUL, APRT and TIPS-41 in cultivar tissues as groups for normalization would lead to more accurate and reliable expression quantification in sugarcane. This is the first systematic validation of reference genes for quantification of transcript expression profiles in sugarcane. This study should provide useful information for selecting reference genes for more accurate quantification of gene expression in sugarcane and other plant species.

  10. Quantitative multiplex real-time PCR assay for shrimp allergen: comparison of commercial master mixes and PCR platforms in rapid cycling.

    Science.gov (United States)

    Eischeid, Anne C; Kasko, Sasha M

    2015-01-01

    Real-time PCR has been used widely in numerous fields. In food safety, it has been applied to detection of microbes and other contaminants, including food allergens. Interest in rapid (fast) cycling real-time PCR has grown because it yields results in less time than does conventional cycling. However, fast cycling can adversely affect assay performance. Here we report on tests of commercial master mixes specifically designed for fast real-time PCR using a shrimp allergen assay we previously developed and validated. The objective of this work was to determine whether specialized commercial master mixes lead to improved assay performance in rapid cycling. Real-time PCR assays were carried out using four different master mixes and two different rapid cycling protocols. Results indicated that specialized master mixes did yield quality results. In many cases, linear ranges spanned up to 7 orders of magnitude, R(2) values were at least 0.95, and reaction efficiencies were within or near the optimal range of 90 to 110%. In the faster of the two rapid cycling protocols tested, assay performance and PCR amplification were markedly better for the shorter PCR product. In conclusion, specialized commercial master mixes were effective as part of rapid cycling protocols, but conventional cycling as used in our previous work is more reliable for the shrimp assay tested.

  11. Evaluation of PCR-based quantification techniques to estimate the abundance of atrazine chlorohydrolase gene atzA in rhizosphere soils.

    Science.gov (United States)

    Thompson, Brian M; Lin, Chung-Ho; Hsieh, Hsin-Yeh; Kremer, Robert J; Lerch, Robert N; Garrett, Harold E

    2010-01-01

    There are many challenges in the accurate quantification of bacterial genes, such as the atrazine-degrading enzyme antA from Pseudomonas sp. strain ADP, from soil samples. We compared four quantitative methods for enumeration of atrazine-degrading bacteria in rhizosphere environments and utilized the optimal probe-based real-time polymerase chain reaction (PCR)-based method in an ongoing bioremediation experiment to monitor atzA copy number over time. We compared three quantitative PCR (qPCR) based methods--quantitative competitive PCR and two real-time qPCR methods--to traditional dilution-plate counting techniques. The optimal real-time qPCR assay was then used to monitor atzA copy number over time in the robust atrazine-degrading Pseudomonas sp. strain ADP-spiked rhizosphere environment. The use of sensitive and reliable probe-based real-time qPCRs for the enumeration of bacterial catabolic genes allows for their detection from soil samples and monitoring of potential degradative populations over time. The addition of arrazine-biodegrading bacteria into arrazine-contaminated sites to remove entrapped atrazine is a promising approach for mitigating atrazine pollution and its metabolites. The methodology contained herein will allow for optimal monitoring of atzA in rhizosphere soil with or without the addition of biodegradative Pseudomonas sp. strain ADP of bacteria.

  12. Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR.

    Science.gov (United States)

    Oliveira, Sara R; Vieira, Helena L A; Duarte, Carlos B

    2015-09-15

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used technique to characterize changes in gene expression in complex cellular and tissue processes, such as cytoprotection or inflammation. The accurate assessment of changes in gene expression depends on the selection of adequate internal reference gene(s). Carbon monoxide (CO) affects several metabolic pathways and de novo protein synthesis is crucial in the cellular responses to this gasotransmitter. Herein a selection of commonly used reference genes was analyzed to identify the most suitable internal control genes to evaluate the effect of CO on gene expression in cultured cerebrocortical astrocytes. The cells were exposed to CO by treatment with CORM-A1 (CO releasing molecule A1) and four different algorithms (geNorm, NormFinder, Delta Ct and BestKeeper) were applied to evaluate the stability of eight putative reference genes. Our results indicate that Gapdh (glyceraldehyde-3-phosphate dehydrogenase) together with Ppia (peptidylpropyl isomerase A) is the most suitable gene pair for normalization of qRT-PCR results under the experimental conditions used. Pgk1 (phosphoglycerate kinase 1), Hprt1 (hypoxanthine guanine phosphoribosyl transferase I), Sdha (Succinate Dehydrogenase Complex, Subunit A), Tbp (TATA box b