WorldWideScience

Sample records for based positron source

  1. Van de Graaff based positron source production

    Science.gov (United States)

    Lund, Kasey Roy

    The anti-matter counterpart to the electron, the positron, can be used for a myriad of different scientific research projects to include materials research, energy storage, and deep space flight propulsion. Currently there is a demand for large numbers of positrons to aid in these mentioned research projects. There are different methods of producing and harvesting positrons but all require radioactive sources or large facilities. Positron beams produced by relatively small accelerators are attractive because they are easily shut down, and small accelerators are readily available. A 4MV Van de Graaff accelerator was used to induce the nuclear reaction 12C(d,n)13N in order to produce an intense beam of positrons. 13N is an isotope of nitrogen that decays with a 10 minute half life into 13C, a positron, and an electron neutrino. This radioactive gas is frozen onto a cryogenic freezer where it is then channeled to form an antimatter beam. The beam is then guided using axial magnetic fields into a superconducting magnet with a field strength up to 7 Tesla where it will be stored in a newly designed Micro-Penning-Malmberg trap. Several source geometries have been experimented on and found that a maximum antimatter beam with a positron flux of greater than 0.55x10 6 e+s-1 was achieved. This beam was produced using a solid rare gas moderator composed of krypton. Due to geometric restrictions on this set up, only 0.1-1.0% of the antimatter was being frozen to the desired locations. Simulations and preliminary experiments suggest that a new geometry, currently under testing, will produce a beam of 107 e+s-1 or more.

  2. Status of the Linac based positron source at Saclay

    CERN Document Server

    Rey, J -M; Debu, P; Dzitko, H; Hardy, P; Liszkay, L; Lotrus, P; Muranaka, T; Noel, C; Perez, P; Pierret, O; Ruiz, N; Sacquin, Y

    2013-01-01

    Low energy positron beams are of major interest for fundamental science and materials science. IRFU has developed and built a slow positron source based on a compact, low energy (4.3 MeV) electron linac. The linac-based source will provide positrons for a magnetic storage trap and represents the first step of the GBAR experiment (Gravitational Behavior of Antimatter in Rest) recently approved by CERN for an installation in the Antiproton Decelerator hall. The installation built in Saclay will be described with its main characteristics. The ultimate target of the GBAR experiment will be briefly presented as well as the foreseen development of an industrial positron source dedicated for materials science laboratories.

  3. Monoenergetic positron beam at the reactor based positron source at FRM-II

    Science.gov (United States)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Straßer, B.; Triftshäuser, W.

    2002-05-01

    The principle of the in-pile positron source at the Munich research reactor FRM-II is based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd. For this purpose, a cadmium cap is placed inside the tip of the inclined beam tube SR-11 in the moderator tank of the reactor, where an undisturbed thermal neutron flux up to 2×10 14n cm-2 s-1 is expected. Inside the cadmium cap a structure of platinum foils is placed for converting high energy γ-radiation into positron-electron pairs. Due to the negative positron work function, moderation in annealed platinum leads to emission of monoenergetic positrons. Therefore, platinum will also be used as moderator, since its moderation property seems to yield long-term stability under reactor conditions and it is much easier to handle than tungsten. Model calculations were performed with SIMION-7.0w to optimise geometry and potential of Pt-foils and electrical lenses. It could be shown that the potentials between the Pt-foils must be chosen in the range of 1-10 V to extract moderated positrons. After successive acceleration to 5 keV by four electrical lenses the beam is magnetically guided in a solenoid field of 7.5 mT resulting in a beam diameter of about 25 mm. An intensity of about 10 10 slow positrons per second is expected in the primary positron beam. Outside of the reactor shield a W(1 0 0) single crystal remoderation stage will lead to an improvement of the positron beam brilliance before the positrons are guided to the experimental facilities.

  4. Conceptual design of an intense positron source based on an LIA

    Institute of Scientific and Technical Information of China (English)

    LONG Ji-Dong; YANG Zhen; DONG Pan; SHI Jin-Shui

    2012-01-01

    Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography.A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper.One advantage of an LIA is its pulsed power being higher than conventional accelerators,which means a higher amount of primary electrons for positron generations per pulse.Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse.By implementing LIA cavities to decelerate the positron bunch before it is moderated,the positron yield could be greatly increased.These features may make the LIA based positron source become a high intensity pulsed positron source.

  5. Advanced positron sources

    Energy Technology Data Exchange (ETDEWEB)

    Variola, A., E-mail: variola@lal.in2p3.fr

    2014-03-11

    Positron sources are a critical system for the future lepton colliders projects. Due to the large beam emittance at the production and the limitation given by the target heating and mechanical stress, the main collider parameters fixing the luminosity are constrained by the e{sup +} sources. In this context also the damping ring design boundary conditions and the final performance are given by the injected positron beam. At present different schemes are being taken into account in order to increase the production and the capture yield of the positron sources, to reduce the impact of the deposited energy in the converter target and to increase the injection efficiency in the damping ring. The final results have a strong impact not only on the collider performance but also on its cost optimization. After a short introduction illustrating their fundamental role, the basic positron source scheme and the performance of the existing sources will be illustrated. The main innovative designs for the future colliders advanced sources will be reviewed and the different developed technologies presented. Finally the positrons-plasma R and D experiments and the futuristic proposals for positron sources will reviewed.

  6. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Science.gov (United States)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  7. Measurement of the positron polarization at an helical undulator based positron source for the international linear collider ILC. The E-166 experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Laihem

    2008-06-05

    A helical undulator based polarized positron source is forseen at a future International Linear Collider (ILC). The E-166 experiment has tested this scheme using a one meter long, short-period, pulsed helical undulator installed in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 46.6 GeV electron beam passing through this undulator generated circularly polarized photons with energies up to about 8 MeV. The generated photons of several MeV with circular polarization are then converted in a relatively thin target to generate longitudinally polarized positrons. Measurements of the positron polarization have been performed at 5 different energies of the positrons. In addition electron polarization has been determined for one energy point. For a comparison of the measured asymmetries with the expectations detailed simulations were necessary. This required upgrading GEANT4 to include the dominant polarization dependent interactions of electrons, positrons and photons in matter. The measured polarization of the positrons agrees with the expectations and is for the energy point with the highest polarization at 6MeV about 80%. (orig.)

  8. Positron source investigation by using CLIC drive beam for Linac-LHC based e{sup +}p collider

    Energy Technology Data Exchange (ETDEWEB)

    Arikan, Ertan [Department of Physics, Faculty of Art and Sciences, Nigde University, Nigde (Turkey); Aksakal, Huesnue, E-mail: aksakal@cern.ch [Department of Physics, Faculty of Art and Sciences, Nigde University, Nigde (Turkey)

    2012-08-11

    Three different methods which are alternately conventional, Compton backscattering and Undulator based methods employed for the production of positrons. The positrons to be used for e{sup +}p collisions in a Linac-LHC (Large Hadron Collider) based collider have been studied. The number of produced positrons as a function of drive beam energy and optimum target thickness has been determined. Three different targets have been used as a source investigation which are W{sub 75}-Ir{sub 25}, W{sub 75}-Ta{sub 25}, and W{sub 75}-Re{sub 25} for three methods. Estimated number of the positrons has been performed with FLUKA simulation code. Then, these produced positrons are used for following Adiabatic matching device (AMD) and capture efficiency is determined. Then e{sup +}p collider luminosity corresponding to the methods mentioned above have been calculated by CAIN code.

  9. Spin Tracking at the ILC Positron Source

    CERN Document Server

    Hartin, A; Staufenbiel, F

    2012-01-01

    In order to achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The baseline design at the International Linear Collider (ILC) foresees an e+ source based on helical undulator. Such a source provides high luminosity and polarizations. The positron source planned for ILC is based on a helical undulator system and can deliver a positron polarization of 60%. To ensure that no significant polarization is lost during the transport of the e- and e+ beams from the source to the interaction region, precise spin tracking has to be included in all transport elements which can contribute to a loss of polarization, i.e. the initial accelerating structures, the damping rings, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. In the talk recent results of positron spin tracking simulation at the source are presented. The positron yield and polarization ar...

  10. Design of a Polarised Positron Source Based on Laser Compton Scattering

    CERN Document Server

    Araki, S; Honda, Y; Kurihara, Y; Kuriki, M; Okugi, T; Omori, T; Taniguchi, T; Terunuma, N; Urakawa, J; Artru, X; Chevallier, M; Strakhovenko, V M; Bulyak, E; Gladkikh, P; Mönig, K; Chehab, R; Variola, A; Zomer, F; Guiducci, S; Raimondi, Pantaleo; Zimmermann, Frank; Sakaue, K; Hirose, T; Washio, M; Sasao, N; Yokoyama, H; Fukuda, M; Hirano, K; Takano, M; Takahashi, T; Sato, H; Tsunemi, A; Gao, J; Soskov, V

    2005-01-01

    We describe a scheme for producing polarised positrons at the ILC from polarised X-rays created by Compton scattering of a few-GeV electron beam off a CO2 or YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring.

  11. A table-top laser-based source of femtosecond, collimated, ultra-relativistic positron beams

    CERN Document Server

    Sarri, G; Di Piazza, A; Vargas, M; Dromey, B; Dieckmann, M E; Chvykov, V; Maksimchuk, A; Yanovsky, V; He, Z H; Hou, B X; Nees, J A; Thomas, A G R; Keit, C H; Zepf, M; Krushelnick, K

    2013-01-01

    The generation of ultra-relativistic positron beams with short duration ($\\tau_{e^+} \\leq 30$ fs), small divergence ($\\theta_{e^+} \\simeq 3$ mrad), and high density ($n_{e^+} \\simeq 10^{14} - 10^{15}$ cm$^{-3}$) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and $\\gamma$-rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.

  12. Development of a Positron Source for JLab at the IAC

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Tony [Idaho State Univ., Pocatello, ID (United States)

    2013-10-12

    We report on the research performed towards the development of a positron sour for Jefferson Lab's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, VA. The first year of work was used to benchmark the predictions of our current simulation with positron production efficiency measurements at the IAC. The second year used the benchmarked simulation to design a beam line configuration which optimized positron production efficiency while minimizing radioactive waste as well as design and construct a positron converter target. The final year quantified the performance of the positron source. This joint research and development project brought together the experiences of both electron accelerator facilities. Our intention is to use the project as a spring board towards developing a program of accelerator based research and education which will train students to meet the needs of both facilities as well as provide a pool of trained scientists.

  13. Positron source position sensing detector and electronics

    Science.gov (United States)

    Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.

    1985-01-01

    A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.

  14. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world`s best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world`s best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using {sup 64}Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet.

  15. Positron sources for electron-positron colliders application to the ILC and CLIC

    CERN Document Server

    CERN. Geneva

    2008-01-01

    The increased demanding qualities for positron sources dedicated to e+e- colliders pushed on investigations oriented on new kinds of e+ sources. The different kinds of positron sources polarized and no polarized are considered. Their main features (intensity, emittance) are described and analysed. Comparison between the different sources is worked out. The characteristics of the positron beam available in the collision point are greatly depending on the capture device and on the positron accelerator. Different kinds of capture systems are considered and their qualities, compared. Intense positron sources which are necessary for the colliders require intense incident beams (electrons or photons). The large number of pairs created in the targets leads to important energy deposition and so, thermal heating, which associated to temperature gradients provoke mechanical stresses often destructive. Moreover, the important Coulomb collisions, can affect the atomic structure in crystal targets and the radiation resist...

  16. The E166 experiment: Development of an undulator-based polarized positron source for the international linear collider

    Indian Academy of Sciences (India)

    J Kovermann; A Stahl; A A Mikhailichenko; D Scott; G A Moortgat-Pick; V Gharibyan; P Pahl; R Pöschl; K P Schüler; K Laihem; S Riemann; A Schälicke; R Dollan; H Kolanoski; T Lohse; T Schweizer; K T McDonald; Y Batygin; V Bharadwaj; G Bower; F-J Decker; C Hast; R Iverson; J C Sheppard; Z Szalata; D Walz; A Weidemann; G Alexander; E Reinherz-Aronis; S Berridge; W Bugg; Y Efrimenko

    2007-12-01

    A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a 46.6 GeV electron beam to produce a few MeV photons with a high degree of circular polarization. These photons are then converted in a thin target to generate longitudinally polarized + and -. The positron polarization is measured using a Compton transmission polarimeter. The data analysis has shown asymmetries in the expected vicinity of 3.4% and ∼ 1% for photons and positrons respectively and the expected positron longitudinal polarization is covering a range from 50% to 90%.

  17. A CF4 based positron trap

    Science.gov (United States)

    Marjanović, Srdjan; Banković, Ana; Cassidy, David; Cooper, Ben; Deller, Adam; Dujko, Saša; Petrović, Zoran Lj

    2016-11-01

    All buffer-gas positron traps in use today rely on N2 as the primary trapping gas due to its conveniently placed {{{a}}}1{{\\Pi }} electronic excitation cross-section. The energy loss per excitation in this process is 8.5 eV, which is sufficient to capture positrons from low-energy moderated beams into a Penning-trap configuration of electric and magnetic fields. However, the energy range over which this cross-section is accessible overlaps with that for positronium (Ps) formation, resulting in inevitable losses and setting an intrinsic upper limit on the overall trapping efficiency of ∼25%. In this paper we present a numerical simulation of a device that uses CF4 as the primary trapping gas, exploiting vibrational excitation as the main inelastic capture process. The threshold for such excitations is far below that for Ps formation and hence, in principle, a CF4 trap can be highly efficient; our simulations indicate that it may be possible to achieve trapping efficiencies as high as 90%. We also report the results of an attempt to re-purpose an existing two-stage N2-based buffer-gas positron trap. Operating the device using CF4 proved unsuccessful, which we attribute to back scattering and expansion of the positron beam following interactions with the CF4 gas, and an unfavourably broad longitudinal beam energy spread arising from the magnetic field differential between the source and trap regions. The observed performance was broadly consistent with subsequent simulations that included parameters specific to the test system, and we outline the modifications that would be required to realise efficient positron trapping with CF4. However, additional losses appear to be present which require further investigation through both simulation and experiment.

  18. Experimental Study of a Positron\\\\ Source Using Channeling

    CERN Multimedia

    Gavrykov, V; Kulibaba, V; Baier, V; Beloborodov, K; Bojenok, A; Bukin, A; Burdin, S; Dimova, T; Druzhinin, V; Dubrovin, M; Seredniakov, S; Shary, V; Strakhovenko, V; Keppler, P; Major, J; Bogdanov, A V; Potylitsin, A; Vnoukov, I; Artru, X; Lautesse, P; Poizat, J-C; Remillieux, J

    2002-01-01

    Many simulations have predicted that the yield of positrons, resulting from the interaction of fast electrons in a solid target, increases if the target is a crystal oriented with a major axis parallel to the electron beam. Tests made at Orsay and Tokyo confirmed these expectations. The experiment WA 103 concerns the determination of the main characteristics (emittance, energy spread) of a crystal positron source which could replace advantageously the conventional positron converters foreseen in some linear collider projects. The main element of the set-up is a magnetic spectrometer, using a drift chamber, where the positron trajectories are reconstructed (see Figure 1) A first run has been operated in july 2000 and the first results showed, as expected, a significant enhancement in photon and positron generation along the $$ axis of the tungsten crystal. Indications about a significant increase in the number of soft photons and positrons were also gathered : this point is of importance for the positron colle...

  19. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  20. First platinum moderated positron beam based on neutron capture

    CERN Document Server

    Hugenschmidt, C; Repper, R; Schreckenbach, K; Sperr, P; Triftshaeuser, W

    2002-01-01

    A positron beam based on absorption of high energy prompt gamma-rays from thermal neutron capture in sup 1 sup 1 sup 3 Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as gamma-e sup + e sup - -converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV gamma-radiation of the annihilating positrons. The posi...

  1. Brilliant positron sources for CLIC and other collider projects

    CERN Document Server

    Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

    2013-01-01

    The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

  2. Positron Source Simulations for ILC 1 TeV Upgrade

    CERN Document Server

    Ushakov, Andriy; Riemann, Sabine; Liu, Wanming; Gai, Wei

    2013-01-01

    The generation and capture of polarized positrons at a source with a superconducting helical undulator having 4.3 cm period and 500 GeV electron drive beam have been simulated. The positron polarization has been calculated for the different undulator K values (up to K = 2.5). Without applying a photon collimator, the maximal polarization of positrons is about 25% for 231 meters active magnet length of undulator with K = 0.7. Using an undulator with K = 2.5 and a collimator with an aperture radius of 0.9 mm results in increase of positron polarization to 54%. The energy deposition, temperature rise and stress induced by high intense photon beam in the rotated titanium-alloy target have been estimated. The maximal thermal stress in the target is about 224 MPa for the source with photon collimation to achieve a positron polarization of 54%.

  3. Intense positron beam as a source for production of electron-positron plasma

    Science.gov (United States)

    Stoneking, M. R.; Horn-Stanja, J.; Stenson, E. V.; Pedersen, T. Sunn; Saitoh, H.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Hugenschmidt, C.; Piochacz, C.

    2016-10-01

    We aim to produce magnetically confined, short Debye length electron-positron plasma and test predicted properties for such systems. A first challenge is obtaining large numbers of positrons; a table-top experiment (system size 5 cm) with a temperature less than 5 eV requires about 1010 positrons to have more than 10 Debye lengths in the system. The NEPOMUC facility at the FRM II research reactor in Germany is one of the world's most intense positron sources. We report on characterization (using a retarding field energy analyzer with magnetic field gradient) of the NEPOMUC beam as delivered to the open beam port at various beam energies and in both the re-moderated and primary beam configurations in order to design optimal trapping (and accumulation) schemes for production of electron-positron plasma. The intensity of the re-moderated (primary) beam is in the range 2 -3 x 107 /s (1 - 5 x 108 /s). The re-moderated beam is currently the most promising for direct injection and confinement experiments; it has a parallel energy spread of 15 - 35% and the transverse energy spread is 6 - 15% of the parallel energy. We report on the implications for injection and trapping in a dipole magnetic field as well as plans for beam development, in situ re-moderation, and accumulation. We also report results demonstrating a difference in phosphor luminescent response to low energy positrons versus electrons.

  4. Positron annihilation lifetime spectroscopy source correction determination: A simulation study

    Science.gov (United States)

    Kanda, Gurmeet S.; Keeble, David J.

    2016-02-01

    Positron annihilation lifetime spectroscopy (PALS) can provide sensitive detection and identification of vacancy-related point defects in materials. These measurements are normally performed using a positron source supported, and enclosed by, a thin foil. Annihilation events from this source arrangement must be quantified and are normally subtracted from the spectrum before analysis of the material lifetime components proceeds. Here simulated PALS spectra reproducing source correction evaluation experiments have been systematically fitted and analysed using the packages PALSfit and MELT. Simulations were performed assuming a single lifetime material, and for a material with two lifetime components. Source correction terms representing a directly deposited source and various foil supported sources were added. It is shown that in principle these source terms can be extracted from suitably designed experiments, but that fitting a number of independent, nominally identical, spectra is recommended.

  5. A conventional positron source for International Linear Collider

    CERN Document Server

    Gai, Wei; Kawada, Shin-ichi; Liu, Wanming; Okuda, Natsuki; Omori, Tsunehiko; Pei, Guoxi; Riemann, Sabine; Takahashi, Tohru; Urakawa, Junji; Ushakov, Andriy

    2011-01-01

    A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear Collider is proposed. A 300 Hz electron linac is employed to create positrons with stretching pulse length in order to cure target thermal load. ILC requires about 2600 bunches in a train which pulse length is 1 ms. Each pulse of the 300 Hz linac creates about 130 bunches, then 2600 bunches are created in 63 ms. Optimized parameters such as drive beam energy, beam size, and target thickness, are discussed assuming a L-band capture system to maximize the capture efficiency and to mitigate the target thermal load. A slow rotating tungsten disk is employed as positron generation target.

  6. BEPCⅡ正电子源%BEPC Ⅱ Positron Source

    Institute of Scientific and Technical Information of China (English)

    裴国玺; 孙耀霖; 刘晋通; 池云龙; 刘玉成; 刘念宗

    2006-01-01

    BEPC Ⅱ- an upgrade project of the Beijing Electron Positron Collider (BEPC) is a factory type of e+e- collider. The fundamental requirements for its injector linac are the beam energy of 1.89GeV for on-energy injection and a 40mA positron beam current at the linac end with a low beam emittance of 1.6μm and a low energy spread of ±0.5% so as to guarantee a higher injection rate (≥50mA/min) to the storage ring. Since the positron flux is proportional to the primary electron beam power on the target, we will increase the electron gun current from 4A to 10A by using a new electron gun system and increase the primary electron energy from 120MeV to 240MeV. The positron source itself is an extremely important system for producing more positrons, including a positron converter target chamber, a 12kA flux modulator,the 7m focusing module with DC power supplies and the support. The new positron production linac from the electron gun to the positron source has been installed into the tunnel. In what follows, we will emphasize the positron source design, manufacture and tests.%BEPCⅡ是一粒子工厂型的正负电子对撞机,为北京正负电子对撞机(BEPC)的改造、升级工程.它对直线注入器的基本要求是40mA,1.89GeV的正电子束流,发射度1.6μm,能散度好于士0.5%,保证储存环的注入速率≥50mA/min,实现TOP OFF注入方式.因为正电子流强与打靶电子束流功率成正比,采用一把新的10A电子枪来提高打靶电流,采用新加速结构和65MW速调管SLAC5045把目前140MeV的打靶能量提高到240MeV.正电子源本身也是一非常关键、极其复杂的系统,它包括正电子转换靶室、12kA"磁号"脉冲电源、7m长聚焦节、大功率直流电源和支架等.目前,正电子产生加速器,从电子枪直到正电子源,已经安装到了BEPC直线加速器隧道.本文将着重介绍正电子源系统的设计、加工和测试.

  7. Automatic sup sup 1 sup sup 8 F positron source supply system for a monoenergetic positron beam

    CERN Document Server

    Saito, F; Itoh, Y; Goto, A; Fujiwara, I; Kurihara, T; Iwata, R; Nagashima, Y; Hyodo, T

    2000-01-01

    A system which supplies an intense sup sup 1 sup sup 8 F (half life 110 min) positron source produced by an AVF cyclotron through sup sup 1 sup sup 8 O(p,n) sup sup 1 sup sup 8 F reaction has been constructed. Produced sup sup 1 sup sup 8 F is transferred to a low background experiment hall through a capillary. It is electro-deposited on a graphite rod and used for a source of a slow positron beam. In the meantime the next batch of target sup sup 1 sup sup 8 O water is loaded and proton irradiation proceeds. This system makes it possible to perform continuous positron beam experiments using the 18 F positron source.

  8. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    Science.gov (United States)

    2009-12-19

    boosted frame where electric field reaches the Schwinger limit for production of electron-positron pairs from vacuum. The theoretical framework...were directed toward radiative shock hydrodynamics. Lowering the threshold for Schwinger electron-positron pair production (Stepan Bulanov

  9. A new positron source with high flux and excellent electron-optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Manfred [Physics Department, University of Texas at Austin, 1 University Station, C1600, Austin, TX 78712 (United States)]. E-mail: Fink@physics.utexas.edu; Wellenstein, Hermann [Physics Department, Brandeis University, Waltham, MA 02454 (United States); Nguyen, Scott V. [Physics Department, Harvard University, Cambridge, MA 02138 (United States)

    2007-08-15

    Positron annihilation spectroscopy is a well established research tool to study the surface and bulk electron distributions of solids and liquids. These are extracted from the energy and angular distributions of the two 511 keV X-rays, produced during the annihilation of a thermal positron and an electron from the sample. Positron investigations and monitoring, however are currently not used in an industrial environment due to the lack of a sufficiently intense positron sources to record distribution functions with good statistics within minutes. Most positron spectrometers have radioactive sources which produce only modest intensities (10{sup 6} e{sup +}/s). An improvement by at least a factor of 100 is needed to become viable for on-line positron metrology. We propose to combine several technologies to generate a positron beam with good electron-optical properties, such as a small divergence angle and small beam diameter and a flux of 10{sup 8} e{sup +}/s or more. Positrons from a 10 Ci beta source will be moderated with a stack of 12 layers of tungsten meshes. The thermalized positrons will be accelerated into a deflection focusing analyzer (DFA) which focuses the positrons into a small (1-2 mm{sup 2}) area of a second moderator. A rare gas solid will be used to thermalize the positrons once more. The moderating area forms the small emitter source for a accelerating gun that generate a beam of mono-energetic positrons of any desired energy.

  10. Investigations on a hybrid positron source with a granular converter

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Chaikovska, I. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Chehab, R., E-mail: chehab@lal.in2p3.fr [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Chevallier, M. [Institut de Physique Nucleaire de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Dadoun, O. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Furukawa, K. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Guler, H. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France); Kamitani, T.; Miyahara, F.; Satoh, M. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Sievers, P. [CERN, Geneva (Switzerland); Suwada, T.; Umemori, K. [Accelerator Laboratory (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Variola, A. [Laboratoire de l’Accelerateur Lineaire (LAL), Universite Paris-Sud, Bat. 200, 91898 Orsay (France)

    2015-07-15

    Promising results obtained with crystal targets for positron production led to the elaboration of a hybrid source made of an axially oriented tungsten crystal, as a radiator, and an amorphous tungsten converter. If the converter is granular, made of small spheres, the heat dissipation is greatly enhanced and the thermal shocks reduced, allowing the consideration of such device for the future linear colliders. A positron source of this kind is investigated. Previous simulations have shown very promising results for the yield as for the energy deposition and the PEDD (Peak Energy Deposition Density). Here, we present detailed simulations made in this granular converter with emphasis on the energy deposition density, which is a critical parameter as learned from the breakdown of the SLC target. A test on the KEKB linac is foreseen; it will allow a determination of the energy deposited and the PEDD in the converter through temperature measurements. Four granular converters, made of W spheres of mm radius have been built at LAL-Orsay; they will be installed at KEK and compared to compact converters. A description of the experimental layout at KEK is provided. Applications to future linear colliders as CLIC and ILC are considered.

  11. Generation and application of slow positrons based on a electron LINAC

    CERN Document Server

    Kurihara, T

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses sup 5 sup 8 Co, sup 6 sup 4 Cu, sup 1 sup 1 C, sup 1 sup 3 N, sup 1 sup 5 O and sup 1 sup 8 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihil...

  12. A feasibility study of high intensity positron sources for the S-band and TESLA linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, R.

    1997-10-01

    Future high energy linear colliders require luminosities above 10{sup 33} cm{sup -2}s{sup -1}. Therefore beam intensities have to be provided up to two orders of magnitude higher than achieved at present. It is comparably simple to reach high electron intensities. Positron intensities in this range, however, are difficult to realize with conventional positron sources. A new method of positron production was proposed in 1979 by V.E. Balakin and A.A. Mikhailichenko. The photons, necessary for pair production, are not generated by bremsstrahlung but by high energy electrons passing through an undulator. Based on this principle, a high intensity, unpolarized and polarized positron source for linear colliders was developed by K.Floettmann. In the present work, the requirements derived by K.Floettmann are used to study the feasibility of both the polarized and the unpolarized positron source. For economical reasons it is advantageous to use the beam after the interaction for positron production. In the main part of the present work a beam line is developed which guarantees a stable operation of the unpolarized wiggler-based positron source for the S-Band and TESLA linear collider. The requirements on the electron beam emittances are much higher for the polarized undulator-based source. For TESLA it is shown, that an operation of the polarized source is possible for design interactions. For a stable operation, taking into account perturbations at the interaction point, further investigations are necessary. For the SBLC, an operation of the polarized source is not possible with the present design.

  13. Radiation damage of the ILC positron source target

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, A.; Riemann, S.

    2007-11-15

    The radiation damage of the positron source target for the International Linear Collider (ILC) has been studied. The displacement damage in target material due to multi-MeV photons has been calculated by combining FLUKA simulations for secondary particle production, SPECTER data for neutron displacement cross-sections and the Lindhard model for estimations of displacement damage by ions. The radiation damage of a stationary Ti6Al4V target in units of displacements per atom (dpa) has been estimated for photons from an undulator with strength 0.92 and period 1.15 cm. The calculated damage is 7 dpa. Approximately 12.5% of displacement damage result from neutrons. (orig.)

  14. Demonstration of a high-field short-period superconducting helical undulator suitable for future TeV-scale linear collider positron sources.

    Science.gov (United States)

    Scott, D J; Clarke, J A; Baynham, D E; Bayliss, V; Bradshaw, T; Burton, G; Brummitt, A; Carr, S; Lintern, A; Rochford, J; Taylor, O; Ivanyushenkov, Y

    2011-10-21

    The first demonstration of a full-scale working undulator module suitable for future TeV-scale positron-electron linear collider positron sources is presented. Generating sufficient positrons is an important challenge for these colliders, and using polarized e(+) would enhance the machine's capabilities. In an undulator-based source polarized positrons are generated in a metallic target via pair production initiated by circularly polarized photons produced in a helical undulator. We show how the undulator design is developed by considering impedance effects on the electron beam, modeling and constructing short prototypes before the successful fabrication, and testing of a final module.

  15. Report of the Snowmass T4 working group on particle sources: Positron sources, anti-proton sources and secondary beams

    Energy Technology Data Exchange (ETDEWEB)

    N. Mokhov et al.

    2002-12-05

    This report documents the activities of the Snowmass 2001 T4 Particle Sources Working Group. T4 was charged with examining the most challenging aspects of positron sources for linear colliders and antiproton sources for proton-antiproton colliders, and the secondary beams of interest to the physics community that will be available from the next generation of high-energy particle accelerators. The leading issues, limiting technologies, and most important R and D efforts of positron production, antiproton production, and secondary beams are discussed in this paper. A listing of T4 Presentations is included.

  16. Undulator-based production of polarized positrons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G. [Tel-Aviv Univ. (Israel); Barley, J. [Cornell Univ., Ithaca, NY (United States); Batygin, Y. [SLAC, Menlo Park, CA (US)] (and others)

    2009-05-15

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9 MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a one-meter-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of GEANT4 that includes the dominant polarization-dependent interactions of electrons, positrons, and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV. (orig.)

  17. Positron Energy Levels in Cd-Based Semiconductors

    Institute of Scientific and Technical Information of China (English)

    B.Abbar; S.Mé(c)abih; S.Amari; N.Benosman; B.Bouhafs

    2013-01-01

    Using the full potential linearized augmented plane wave FP-LAPW method within local density approximation LDA,we have studied positron diffusion and surface emission in Cd-based semiconductors.This requires the calculation of electron and positron band structures.In the absence of experimental and theoretical data for CdX (X=S,Se,Te) we have treated the Si,which has been studied by several authors,as a test case.Predictive results on positron effective masses,deformation potentials,positron work functions,diffusion constants and positron mobilities axe presented for CdX (X=S,Se,Te).Our calculated data for Si axe compared with experimental and recent theoretical results.

  18. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  19. Proceedings of the workshop on new kinds of positron sources for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, J.; Nixon, R. [eds.

    1997-06-01

    It has been very clear from the beginning of studies for future linear colliders that the conventional positron source approach, as exemplified by the SLC source, is pushing uncomfortably close to the material limits of the conversion target. Nonetheless, since this type of positron source is better understood and relatively inexpensive to build, it has been incorporated into the initial design studies for the JLC/NLC. New ideas for positron sources for linear colliders have been regularly reported in the literature and at accelerator conferences for at least a decade, and indeed the recirculation scheme associated with the VLEPP design is nearly two decades old. Nearly all the new types of positron sources discussed in this workshop come under the heading of crystals (or channeling), undulators, and Compton. Storage ring and nuclear reactor sources were not discussed. The positron source designs that were discussed have varying degrees of maturity, but except for the case of crystal sources, where proof of principle experiments have been undertaken, experimental results are missing. It is hoped that these presentations, and especially the recommendations of the working groups, will prove useful to the various linear collider groups in deciding if and when new experimental programs for positron sources should be undertaken.

  20. Positrons sources and related activities for Future Linear Collider at LAL Orsay Laboratory

    CERN Document Server

    Dadoun, Olivier

    2012-01-01

    In the context of the positrons sources studies for the Future Linear Collider, the Accelerator Department at LAL Orsay is involved since several years in different activities both experiments and simulations.

  1. A Laser-Cooled Ion Source to Sympathetically Cool Positrons in the ALPHA Experiment

    Science.gov (United States)

    Sameed, Muhammed; Maxwell, Daniel; Madsen, Niels

    2016-10-01

    The ALPHA experiment at CERN studies the properties of antimatter by making precision measurements on antihydrogen. Antihydrogen atoms are produced by mixing a cloud of cold antiprotons with a dense positron plasma inside a magnetic trap. The formation of antihydrogen, of which only the coldest atoms remain trapped, depends principally on the kinetic energy of the constituent plasmas. Presently, the trapping rate is approximately two atoms in a seven minute cycle. During mixing, the antiprotons thermalize in the positron plasma prior to antihydrogen production. Colder positron temperatures would therefore result in an increased fraction of trapped antihydrogen atoms in the ALPHA mixing trap. At present, the positrons used for antihydrogen production in ALPHA reach energies of about 50 K. Much colder positron plasmas may be achieved by sympathetically cooling the positrons using laser-cooled beryllium ions. Preliminary results in the development of a low flux and low energy beryllium ion source using a pulsed ablation laser are presented. Precision ablation techniques coupled with laser-cooling can subsequently be used to effectively cool positrons. A provisional design of an ablation source is also presented for installation in the ALPHA apparatus in 2017. The authors would like to thank EPSRC for supporting this research.

  2. Hybrid scheme of positron source at SPARC-LAB LNF facility

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, S.V., E-mail: abdsv@tpu.ru [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Ave 36, 634050 Tomsk (Russian Federation); Bogdanov, O.V. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); Dabagov, S.B. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, RM (Italy); RAS PN Lebedev Physical Institute, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU MEPhI, Kashirskoe Highway 31, 115409 Moscow (Russian Federation); Pivovarov, Yu.L.; Tukhfatullin, T.A. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation)

    2015-07-15

    The hybrid scheme of the positron source for SPARC-LAB LNF facility (Frascati, Italy) is proposed. The comparison of the positron yield in a thin amorphous W converter of 0.1 mm thickness produced by bremsstrahlung, by axial 〈1 0 0〉 and planar (1 1 0) channeling radiations in a W crystal is performed for the positron energy range of 1 ÷ 3 MeV. It is shown that the radiation from 200 MeV electrons (parameters of SPARC-LAB LNF Frascati) in a 10 μm W crystal can produce positrons in the radiator of 0.1 mm thickness with the rate of 10–10{sup 2} s{sup −1} at planar channeling, of 10{sup 2}–10{sup 3} s{sup −1} at bremsstrahlung and of 10{sup 3}–10{sup 4} s{sup −1} at axial channeling.

  3. Methods and applications of positron-based medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H. [Institute of Medicine, Forschungszentrum Juelich, D-52425 Juelich (Germany)]. E-mail: h.herzog@fz-juelich.de

    2007-02-15

    Positron emission tomography (PET) is a diagnostic imaging method to examine metabolic functions and their disorders. Dedicated ring systems of scintillation detectors measure the 511 keV {gamma}-radiation produced in the course of the positron emission from radiolabelled metabolically active molecules. A great number of radiopharmaceuticals labelled with {sup 11}C, {sup 13}N, {sup 15}O, or {sup 18}F positron emitters have been applied both for research and clinical purposes in neurology, cardiology and oncology. The recent success of PET with rapidly increasing installations is mainly based on the use of [{sup 18}F]fluorodeoxyglucose (FDG) in oncology where it is most useful to localize primary tumours and their metastases.

  4. Development of an intense positron source using a crystal--amorphous hybrid target for linear colliders

    CERN Document Server

    Uesugi, Y; Chehab, R; Dadoun, O; Furukawa, K; Kamitani, T; Kawada, S; Omori, T; Takahashi, T; Umemori, K; Urakawa, U; Satoh, M; Strakhovenko, V; Suwada, T; Variola, A

    2013-01-01

    In a conventional positron source driven by a few GeV electron beam, a high amount of heat is loaded into a positron converter target to generate intense positrons required by linear colliders, and which would eventually damage the converter target. A hybrid target, composed of a single crystal target as a radiator of intense gamma--rays, and an amorphous converter target placed downstream of the crystal, was proposed as a scheme which could overcome the problem.This paper describes the development of an intense positron source with the hybrid target. A series of experiments on positron generation with the hybrid target has been carried out with a 8--GeV electron beam at the KEKB linac. We observed that positron yield from the hybrid target increased when the incident electron beam was aligned to the crystal axis and exceeded the one from the conventional target with the converter target of the same thickness, when its thickness is less than about 2 radiation length. The measurements in the temperature rise o...

  5. Effect of positron source irradiation on positronium annihilation in fine powdered alumina

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.W.; Chen, Z.Q.

    2016-09-30

    Highlights: • Effect of positron irradiation was studied using both positron lifetime and Doppler. • Positron source irradiation creates paramagnetic centers on the surface of alumina. • Paramagnetic centers induced spin conversion quenching of positronium. • Paramagnetic centers are unstable above 70 K and nearly vanish above 190 K. • Positronium is a sensitive probe for the surface defects in porous materials. - Abstract: Positron lifetime and Doppler broadening of positron annihilation radiation were measured as a function of time to study the irradiation effect by {sup 22}Na positron source in fine powdered alumina. The γ-Al{sub 2}O{sub 3} samples were put in a vacuum chamber with a pressure of about 10{sup −6} Torr and were cooled down to 10 K by a closed-cycle helium gas refrigerator. The irradiation of γ-Al{sub 2}O{sub 3} samples by positron source was taken for a duration of about two days immediately after the sample was cooled down. After that, the sample was subjected to a warm up process from 10 K to 300 K with a step of 10 K. Positron lifetime and Doppler broadening spectra were measured simultaneously during these processes. Two long lifetime components corresponding to ortho-positronium annihilation were observed. A significant shortening of these long lifetime components and a large increase in S parameter is observed during irradiation. It is supposed that positron source irradiation creates a large number of paramagnetic centers on the surface of the γ-Al{sub 2}O{sub 3} grains, which induce spin conversion quenching of positronium. The irradiation induced paramagnetic centers are unstable above 70 K and are nearly annealed out when the temperature rises to 190 K. After warming up of the sample to room temperature, the positron lifetime spectrum is identical to that before irradiation. It was also found that after irradiation, a medium long lifetime component of about 5 ns appears, of which the intensity increases with increasing

  6. Effect of positron source irradiation on positronium annihilation in fine powdered alumina

    Science.gov (United States)

    Liu, Z. W.; Chen, Z. Q.

    2016-09-01

    Positron lifetime and Doppler broadening of positron annihilation radiation were measured as a function of time to study the irradiation effect by 22Na positron source in fine powdered alumina. The γ-Al2O3 samples were put in a vacuum chamber with a pressure of about 10-6 Torr and were cooled down to 10 K by a closed-cycle helium gas refrigerator. The irradiation of γ-Al2O3 samples by positron source was taken for a duration of about two days immediately after the sample was cooled down. After that, the sample was subjected to a warm up process from 10 K to 300 K with a step of 10 K. Positron lifetime and Doppler broadening spectra were measured simultaneously during these processes. Two long lifetime components corresponding to ortho-positronium annihilation were observed. A significant shortening of these long lifetime components and a large increase in S parameter is observed during irradiation. It is supposed that positron source irradiation creates a large number of paramagnetic centers on the surface of the γ-Al2O3 grains, which induce spin conversion quenching of positronium. The irradiation induced paramagnetic centers are unstable above 70 K and are nearly annealed out when the temperature rises to 190 K. After warming up of the sample to room temperature, the positron lifetime spectrum is identical to that before irradiation. It was also found that after irradiation, a medium long lifetime component of about 5 ns appears, of which the intensity increases with increasing irradiation time. This may be originated from the formation of the surface o-Ps state. This surface o-Ps state is also inhibited at elevated temperatures. Our results indicate that positronium is a very sensitive probe for the surface defects in porous materials.

  7. Intense positron source at the Munich research reactor FRM-II

    CERN Document Server

    Hugenschmidt, C; Schreckenbach, K; Strasser, B; Koegel, G; Sperr, P; Triftshaeuser, W

    2002-01-01

    The principle and the design of the in-pile positron source at the new Munich research reactor FRM-II are presented. Absorption of high-energy prompt gamma-rays from thermal neutron capture in sup 1 sup 1 sup 3 Cd generates positrons by pair production. For this purpose, a cadmium cap is placed inside the tip of the inclined beam tube SR11 in the neutron field of the reactor, where an undisturbed thermal neutron flux up to 2 x 10 sup 1 sup 4 n cm sup - sup 2 s sup - sup 1 is expected. At this position the flux ratio of thermal to fast neutrons will be better than 10 sup 4. Monte Carlo calculations showed that a mean capture rate in cadmium between 4.5 and 6.0 x 10 sup 1 sup 3 n cm sup - sup 2 s sup - sup 1 can be expected. Inside the cadmium cap a structure of platinum foils is placed for converting gamma-radiation into positron-electron pairs. The heated foils also act as positron moderators to generate monoenergetic positrons. After acceleration to 5 keV a positron beam is formed by electric lenses and guid...

  8. A positron source using an axially oriented crystal associated to a granular amorphous converter

    Institute of Scientific and Technical Information of China (English)

    XU Cheng-Hai; Robert Chehab; Peter Sievers; Xavier Artru; Michel Chevallier; Olivier Dadoun; PEI Guo-Xi; Vladimir M. Strakhovenko; Alessandro Variola

    2012-01-01

    A non-conventional positron source using the intense γ radiation from an axially oriented monocrystal which materializes into e+e- pairs in a granular amorphous converter is described.The enhancement of photon radiation by multi-GeV electrons crossing a tungsten crystal along its 〈111〉 axis is reported.The resulting enhancement of pair production in an amorphous converter placed 2 meters downstream,is also reported.Sweeping off the charged particles from the crystal by a bending magnet upstream of the converter allows a significant reduction of the deposited energy density.Substituting a granular target made of small spheres for the usual compact one,makes the energy dissipation easier.The deposited energy and corresponding heating are analyzed and solutions for cooling are proposed.The configurations studied here for this kind of positron source allow its consideration for unpolarized positrons for the ILC.

  9. A positron source using an axially oriented crystal associated to a granular amorphous converter

    CERN Document Server

    Xu, Cheng-Hai; Sievers, Peter; Artru, Xavier; Chevallier, Michel; Dadoun, Olivier; Pei, Guo-Xi; Strakhovenko, Vladimir M; Variola, Alessandro

    2012-01-01

    A non-conventional positron source using the intense l radiation from an axially oriented monocrystal which materializes into e(+)e(-') pairs in a granular amorphous converter is described. The enhancement of photon radiation by multi-GeV electrons crossing a tungsten crystal along its axis is reported. The resulting enhancement of pair production in an amorphous converter placed 2 meters downstream, is also reported. Sweeping off the charged particles from the crystal by a bending magnet upstream of the converter allows a significant reduction of the deposited energy density. Substituting a granular target made of small spheres for the usual compact one, makes the energy dissipation easier. The deposited energy and corresponding heating are analyzed and solutions for cooling are proposed. The configurations studied here for this kind of positron source allow its consideration for unpolarized positrons for the ILC.

  10. Internal positron source production with a cyclotron and vacancy study in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kawasuso, Atsuo; Masuno, Shin-ichi; Okada, Sohei [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hasegawa, Masayuki; Suezawa, Masashi

    1997-03-01

    In order to detect thermal vacancies in Si, in situ positron annihilation measurement has been performed using an internal source method. An increase (decrease) in S-parameter (W-parameter) was observed above 1200degC. It was explained in terms of the formation of thermal vacancies. (author)

  11. The intense slow positron source concept: A theoretical perspective on a proposed INEL facility

    Energy Technology Data Exchange (ETDEWEB)

    Makowitz, H.; Abrashoff, J.D.; Landman, W.H.; Albano, R.K. (Idaho National Engineering Laboratory, EG G Idaho, Inc., Idaho Falls, Idaho 83415 (United States)); Tajima, T. (Physics Department, University of Texas at Austin, Austin, Texas 78712 (United States)); Larson, J.D. (Independence, Missouri 64052 (United States))

    1994-06-15

    An analysis has been performed of the INEL Intense Slow Positron Source (ISPS) concept. The results of the theoretical study are encouraging. A full-scale device with a monoenergetic 5 keV positron beam of [ge]10[sup 12] e[sup +]/s on a [le]0.03-cm-diameter target appears feasible and can be obtained within the existing infrastructure of INEL reactor facilities. A 30.0-cm-diameter, large area source dish, moderated at first with thin crystalline W films and later by solid Ne, is proposed as the initial device in order to explore problems with a facility scale system. A demonstration scale beam at [ge]10[sup 10] slow e[sup +]/s is proposed using a [sup 58]Co source plated on a 6-cm-diameter source dish insert, placed in a 30-cm adaptor.

  12. Performance of the plugged-in 22Na based slow positron beam facility

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; MA Yan-Yun; QIN Xiu-Bo; ZHANG Zhe; CAO Xing-Zhong; YU Run-Sheng; WANG Bao-Yi

    2008-01-01

    The Beijing intense slow positron beam facility is based on the 1.3 GeV linac of Beijing ElectronPositron CoUider (BEPC) aiming to produce mono-energetic intense slow positron beam for material science investigation. The plugged-in 22Na based slow positron beam section has been newly constructed to supply continuous beam time for the debugging of positron annihilation measurement stations and improve the Beijing intense slow positron beam time using efficiency. Performance testing result of the plugged-in 22Na based slow positron beam facility are reviewed in this paper, with the measurement of the beam transport efficiency, the view of beam spot, the adjustment of beam position, the measurement of beam intensity and energy spread etc. included.

  13. Positron annihilation in cardo-based polymer membranes.

    Science.gov (United States)

    Kobayashi, Y; Kazama, Shingo; Inoue, K; Toyama, T; Nagai, Y; Haraya, K; Mohamed, Hamdy F M; O'Rouke, B E; Oshima, N; Kinomura, A; Suzuki, R

    2014-06-05

    Positron annihilation lifetime spectroscopy (PALS) is applied to a series of bis(aniline)fluorene and bis(xylidine)fluorene-based cardo polyimide and bis(phenol)fluorene-based polysulfone membranes. It was found that favorable amounts of positronium (Ps, the positron-electron bound state) form in cardo polyimides with the 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) moiety and bis(phenol)fluorene-based cardo polysulfone, but no Ps forms in most of the polyimides with pyromellitic dianhydride (PMDA) and 3,3',4,4'-biphenyltetracarboxylic dianhydride (BTDA) moieties. A bis(xylidine)fluorene-based polyimide membrane containing PMDA and BTDA moieties exhibits a little Ps formation but the ortho-positronium (o-Ps, the triplet state of Ps) lifetime of this membrane anomalously shortens with increasing temperature, which we attribute to chemical reaction of o-Ps. Correlation between the hole size (V(h)) deduced from the o-Ps lifetime and diffusion coefficients of O2 and N2 for polyimides with the 6FDA moiety and cardo polysulfone showing favorable Ps formation is discussed based on free volume theory of gas diffusion. It is suggested that o-Ps has a strong tendency to probe larger holes in rigid chain polymers with wide hole size distributions such as those containing cardo moieties, resulting in deviations from the previously reported correlations for common polymers such as polystyrene, polycarbonate, polysulfone, and so forth.

  14. Dipole anisotropy in cosmic electrons and positrons: inspection on local sources

    CERN Document Server

    Manconi, Silvia; Donato, Fiorenza

    2016-01-01

    The cosmic electrons and positrons have been measured with unprecedented statistics up to several hundreds GeV, thus permitting to explore the role that close single sources can have in shaping the flux at different energies. In the present analysis, we consider electrons and positrons in cosmic rays to be produced by spallations of hadron fluxes with the interstellar medium, by a smooth Supernova Remnant (SNR) population, by all the ATNF catalog pulsars, and by few discrete, local SNRs. We test several source models on the $e^++e^-$ and $e^+$ AMS-02 flux data. For the configurations compatible with the data, we compute the dipole anisotropy in $e^++e^-$, $e^+$, $e^+/e^-$ from single sources. Our study includes a dedicated analysis to the Vela SNR. We show that Fermi-LAT present data on dipole anisotropy of $e^++e^-$ start to explore some of the models for the Vela SNR selected by AMS-02 flux data. We also investigate how the observed anisotropy could result from a combination of local sources. Our analysis s...

  15. Feasibility and conceptual design of a C.W. positron source at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Golge, Serkan [Old Dominion Univ., Norfolk, VA (United States)

    2010-08-01

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm∙mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as δ = 3×10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV Ⓧ10 mA e- beam impinging on a 2 mm W target with a 100 μm spot size, we can get up to 3 μA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings.

  16. Feasibility and conceptual design of a C.W. positron source at CEBAF

    Science.gov (United States)

    Golge, Serkan

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm·mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as delta = 3 x 10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV⊗10 mA e- beam impinging on a 2 mm W target with a 100 mum spot size, we can get up to 3 muA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings. 1,2 1S. Golge et al., in Proceedings of PAC07, Albuquerque, New Mexico, June 2007 2S. Golge et al., AIP Conf. Proc., 1160, 109 (2009)

  17. Positron lifetimes in Cu-based {beta}-phase alloys

    Energy Technology Data Exchange (ETDEWEB)

    Plazaola, F. [Bilbo, Euskal Herrilo Unibertsitatea (Spain). Elektrika eta Elektronika Saila; Romero, R.; Somoza, A. [Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires (Argentina). IFIMAT

    1997-05-01

    Experimental and theoretical characterization of the positron lifetimes for bulk and vacancy-type defects are considered in the ordered {beta}-phase Cu-Zn-Al alloys. The general trend exhibits the same behaviour in both cases, in which the bulk positron lifetimes vary very little with alloy`s composition. The ordered structure can be described as two interpenetrating sublattices: however, within the theoretical approach, there is no preferential positron trapping at the mono vacancies of one of the two sublattices. The calculated lifetimes of positrons trapped at mono vacancies depend mainly on the Al content in the next near-neighbourhood. The lifetimes of positrons trapped at divacancies are 10-25 ps larger than the ones at mono vacancies. The experimental vacancy-type defect lifetimes are in good agreement with the ones calculated for mono vacancies.

  18. Application of the 4 {sup {pi}{sup {gamma}}} Method to the Absolute Standardization of Radioactive Sources of Positron Emitters; Aplicacion del Metodo 4 {sup {pi}{sup {gamma}}} a la Medida Absoluta de la Actividad de Fuentes Radiactivas Emisoras de Positrones

    Energy Technology Data Exchange (ETDEWEB)

    Peyres Medina, V.; Garcia-Torano Martinez, E.; Roteta Ibarra, M.

    2006-07-01

    We discuss the application of the method known as 4 {sup {pi}{sup {gamma}}} counting to the standardization of positron emitters. Monte Carlo simulations are used to calculate the detection efficiency of positrons emitted by the nuclides 22Na and 18F. Two experimental setups are used, both based on a NaI(Tl) well detector. The results of the standardizations are in good agreement with those obtained by other methods. It is shown that the 4 {sup {pi}{sup {gamma}}} method can be successfully used for the absolute standardization of sources of positron emitters. (Author) 23 refs.

  19. Depolarization in the ILC Linac-to-Ring Positron Beamline

    CERN Document Server

    Riemann, Sabine

    2012-01-01

    To achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The positron source planned for the International Linear Collider (ILC) is based on a helical undulator system and can deliver a polarised beam with positron polarization of 60%. To ensure that no significant polarization is lost during the transport of the electron and positron beams from the source to the interaction region, spin tracking has to be included in all transport elements which can contribute to a loss of polarization. These are the positron source, the damping ring, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. The results of positron spin tracking and depolarization study at the Positron-Linac-To-Ring (PLTR) beamline are presented.

  20. Transmission positron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Doyama, Masao [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan)]. E-mail: doyama@ntu.ac.jp; Kogure, Yoshiaki [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan); Inoue, Miyoshi [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan); Kurihara, Toshikazu [Institute of Materials Structure Science (IMSS), High Energy Accelerator, Research Organization (KEK), Ohno 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Yoshiie, Toshimasa [Reactor Research Institute, Kyoto University, Noda, Kumatori, Osaka 590-0451 (Japan); Oshima, Ryuichiro [Research Institute for Advanced Science and Technology, Osaka Prefecture University (Japan); Matsuya, Miyuki [Electron Optics Laboratory (JEOL) Ltd., Musashino 3-1-2, Akishima 196-0021 (Japan)

    2006-02-28

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons.

  1. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    Science.gov (United States)

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  2. Industrial positron-based imaging: principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.J. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Hawkesworth, M.R. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Broadbent, C.J. (School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Fowles, P. (School of Chemistry, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); Fryer, T.D. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom)); McNeil, P.A. (School of Physics and Space Research, University of Birmingham, Birmingham, B15 2TT (United Kingdom))

    1994-09-01

    Positron Emission Tomography (PET) has great potential as a non-invasive flow imaging technique in engineering, since 511 keV gamma-rays can penetrate a considerable thickness of (e.g.) steel. The RAL/Birmingham multiwire positron camera was constructed in 1984, with the initial goal of observing the lubricant distribution in operating aero-engines, automotive engines and gearboxes, and has since been used in a variety of industrial fields. The major limitation of the camera for conventional tomographic PET studies is its restricted logging rate, which limits the frequency with which images can be acquired. Tracking a single small positron-emitting tracer particle provides a more powerful means of observing high speed motion using such a camera. Following a brief review of the use of conventional PET in engineering, and the capabilities of the Birmingham camera, this paper describes recent developments in the Positron Emission Particle Tracking (PEPT) technique, and compares the results obtainable by PET and PEPT using, as an example, a study of axial diffusion of particles in a rolling cylinder. ((orig.))

  3. A novel image reconstruction methodology based on inverse Monte Carlo analysis for positron emission tomography

    Science.gov (United States)

    Kudrolli, Haris A.

    2001-04-01

    A three dimensional (3D) reconstruction procedure for Positron Emission Tomography (PET) based on inverse Monte Carlo analysis is presented. PET is a medical imaging modality which employs a positron emitting radio-tracer to give functional images of an organ's metabolic activity. This makes PET an invaluable tool in the detection of cancer and for in-vivo biochemical measurements. There are a number of analytical and iterative algorithms for image reconstruction of PET data. Analytical algorithms are computationally fast, but the assumptions intrinsic in the line integral model limit their accuracy. Iterative algorithms can apply accurate models for reconstruction and give improvements in image quality, but at an increased computational cost. These algorithms require the explicit calculation of the system response matrix, which may not be easy to calculate. This matrix gives the probability that a photon emitted from a certain source element will be detected in a particular detector line of response. The ``Three Dimensional Stochastic Sampling'' (SS3D) procedure implements iterative algorithms in a manner that does not require the explicit calculation of the system response matrix. It uses Monte Carlo techniques to simulate the process of photon emission from a source distribution and interaction with the detector. This technique has the advantage of being able to model complex detector systems and also take into account the physics of gamma ray interaction within the source and detector systems, which leads to an accurate image estimate. A series of simulation studies was conducted to validate the method using the Maximum Likelihood - Expectation Maximization (ML-EM) algorithm. The accuracy of the reconstructed images was improved by using an algorithm that required a priori knowledge of the source distribution. Means to reduce the computational time for reconstruction were explored by using parallel processors and algorithms that had faster convergence rates

  4. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B. S., E-mail: ben.cooper.13@ucl.ac.uk; Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  5. Laser-driven γ-ray, positron, and neutron source from ultra-intense laser-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tatsufumi, E-mail: t-nakamura@fit.ac.jp [Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Hayakawa, Takehito [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1106 (Japan)

    2015-08-15

    In ultra-intense laser-matter interactions, γ-rays are effectively generated via the radiation reaction effect. Since a significant fraction of the laser energy is converted into γ-rays, understanding of the energy transport inside of the target is important. We have developed a Particle-in-Cell code which includes generation of the γ-rays, their energy transport, and photo-nuclear reactions. Using the code, we have investigated the characteristics of the quantum beams generated by the transport of the laser-driven γ-rays. It is shown that collimated, mono-energetic positron beams with hundreds of MeV are generated by using thick targets. Neutron beams are also effectively generated by using beryllium targets via photo-nuclear reactions. These lead to the proposal of quantum beam sources of γ-rays, positrons, and neutrons with distinctive characters, which are selectively generated by choosing target conditions.

  6. Activity-based costing evaluation of a [F-18]-fludeoxyglucose positron emission tomography study

    NARCIS (Netherlands)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Vander Borght, Thierry

    2009-01-01

    Objective: The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes. Met

  7. Experimental determination of the characteristics of a positron source using channeling addendum to P309 and request for beam time in 2001

    CERN Document Server

    Chehab, R; Sylvia, C; Baier, V; Beloborodov, K I; Bukin, A; Burdin, S V; Dimova, T V; Drozdetsky, A A; Druzhinin, V P; Dubrovin, M S; Golubev, V B; Serednyakov, S I; Shary, V; Strakhovenko, V M; Artru, X; Chevallier, M; Dauvergne, D; Kirsch, R; Lautesse, P; Poizat, J C; Rémillieux, Joseph; Jejcic, A; Keppler, P; Major, J V; Gatignon, L; Bochek, G L; Kulibaba, V; Maslov, N I; Bogdanov, A; Potylitsin, A P; Vnukov, I E; CERN. Geneva. SPS-PS Experiments Committee; Lautesse, Ph.

    2000-01-01

    Numerical simulations and `proof of principle' experiments showed clearly the interest of using crystals as photon generators dedicated to intense positron sources for linear colliders. An experimental investigation, using a 10 GeV secondary electron beam, of the SPS-CERN, impinging on an axially oriented thick tungsten crystal, has been prepared and operated between May and August 2000. After a short recall on the main features of positron sources using channeling in oriented crystals, the experimental set-up is described. A particular emphasis is put on the positron detector made of a drift chamber, partially immersed in a magnetic field. The enhancement in photon and positron production in the aligned crystal have been observed in the energy range 5 to 40 GeV, for the incident electrons, in crystals of 4 and 8 mm as in an hybrid target. The first results concerning this experiment are presented hereafter.

  8. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools.

    Science.gov (United States)

    Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr

    2012-05-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.

  9. Gamma camera based Positron Emission Tomography: a study of the viability on quantification; Tomografia por emissao de positrons com sistemas PET/SPECT: um estudo da viabilidade de quantifizacao

    Energy Technology Data Exchange (ETDEWEB)

    Pozzo, Lorena

    2005-07-01

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  10. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  11. Low energy positron injector (LEPI)

    CERN Document Server

    Antropov, V K; Korotaev, Yu V

    2003-01-01

    The LEPI for the LEP storage ring is described. A radioactive source **2**2Na is the positron source. After deceleration in a solid target, in a magnetic trap and in a gas medium to the thermal velocity the positrons are stored during approximately equals 100 s. For injection into the storage ring the positrons are extracted by a pulse electric field and accelerated to the required energy. (Edited abstract) 4 Refs.

  12. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  13. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    Science.gov (United States)

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  14. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  15. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  16. Pulsar Wind Nebulae as a source of the observed electron and positron excess at high energy: the case of Vela-X

    CERN Document Server

    Della Torre, S; Rancoita, P G; Rozza, D; Treves, A

    2015-01-01

    We investigate, in terms of production from pulsars and their nebulae, the cosmic ray positron and electron fluxes above $\\sim10$ GeV, observed by the AMS-02 experiment up to 1 TeV. We concentrate on the Vela-X case. Starting from the gamma-ray photon spectrum of the source, generated via synchrotron and inverse Compton processes, we estimated the electron and positron injection spectra. Several features are fixed from observations of Vela-X and unknown parameters are borrowed from the Crab nebula. The particle spectra produced in the pulsar wind nebula are then propagated up to the Solar System, using a diffusion model. Differently from previous works, the omnidirectional intensity excess for electrons and positrons is obtained as a difference between the AMS-02 data and the corresponding local interstellar spectrum. An equal amount of electron and positron excess is observed and we interpreted this excess (above $\\sim$100 GeV in the AMS-02 data) as a supply coming from Vela-X. The particle contribution is c...

  17. Modular design of multi-wire moderator for slow positron source on hard synchrotron radiation SPring-8

    CERN Document Server

    Nikitin, V P; Doronina, P P

    2001-01-01

    One of the optional versions of multi-wire moderator design using modular approach of construction is discussed. The methods of cleaning of tungsten wire surface are reviewed with the aim of increasing reemitted positron yield from moderator wires.

  18. Positron Channeling

    CERN Document Server

    Badikyan, Karen

    2016-01-01

    The possibility of channeling the low-energy relativistic positrons around separate crystallographic axes with coaxial symmetry of negative ions in some types of crystals is shown. The process of annihilation of positrons with electrons of medium was studied in detail.

  19. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    NARCIS (Netherlands)

    Eijt, S.W.H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W.J.; Hendrikx, R.W.A.; Svetchnikov, V.L.; Westerwaal, R.J.; Dam, B.

    2009-01-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron mo

  20. Study on low-energy positron polarimetry

    Indian Academy of Sciences (India)

    A Schälicke; G Alexander; R Dollan; K Laihem; T Lohse; S Riemann; P Starovoitov; A Ushakov

    2007-12-01

    A polarised positron source has been proposed for the design of the international linear collider (ILC). In order to optimise the positron beam, a measurement of its degree of polarisation close to the positron creation point is desired. In this contribution, methods for determining the positron polarisation at low energies are reviewed. A newly developed polarisation extension to GEANT4 will provide the basis for further polarimeter investigations.

  1. Preclinical positron emission tomography scanner based on a monolithic annulus of scintillator: initial design study.

    Science.gov (United States)

    Stolin, Alexander V; Martone, Peter F; Jaliparthi, Gangadhar; Raylman, Raymond R

    2017-01-01

    Positron emission tomography (PET) scanners designed for imaging of small animals have transformed translational research by reducing the necessity to invasively monitor physiology and disease progression. Virtually all of these scanners are based on the use of pixelated detector modules arranged in rings. This design, while generally successful, has some limitations. Specifically, use of discrete detector modules to construct PET scanners reduces detection sensitivity and can introduce artifacts in reconstructed images, requiring the use of correction methods. To address these challenges, and facilitate measurement of photon depth-of-interaction in the detector, we investigated a small animal PET scanner (called AnnPET) based on a monolithic annulus of scintillator. The scanner was created by placing 12 flat facets around the outer surface of the scintillator to accommodate placement of silicon photomultiplier arrays. Its performance characteristics were explored using Monte Carlo simulations and sections of the NEMA NU4-2008 protocol. Results from this study revealed that AnnPET's reconstructed spatial resolution is predicted to be [Formula: see text] full width at half maximum in the radial, tangential, and axial directions. Peak detection sensitivity is predicted to be 10.1%. Images of simulated phantoms (mini-hot rod and mouse whole body) yielded promising results, indicating the potential of this system for enhancing PET imaging of small animals.

  2. 18F-Labeled Silicon-Based Fluoride Acceptors: Potential Opportunities for Novel Positron Emitting Radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Vadim Bernard-Gauthier

    2014-01-01

    Full Text Available Background. Over the recent years, radiopharmaceutical chemistry has experienced a wide variety of innovative pushes towards finding both novel and unconventional radiochemical methods to introduce fluorine-18 into radiotracers for positron emission tomography (PET. These “nonclassical” labeling methodologies based on silicon-, boron-, and aluminium-18F chemistry deviate from commonplace bonding of an [18F]fluorine atom (18F to either an aliphatic or aromatic carbon atom. One method in particular, the silicon-fluoride-acceptor isotopic exchange (SiFA-IE approach, invalidates a dogma in radiochemistry that has been widely accepted for many years: the inability to obtain radiopharmaceuticals of high specific activity (SA via simple IE. Methodology. The most advantageous feature of IE labeling in general is that labeling precursor and labeled radiotracer are chemically identical, eliminating the need to separate the radiotracer from its precursor. SiFA-IE chemistry proceeds in dipolar aprotic solvents at room temperature and below, entirely avoiding the formation of radioactive side products during the IE. Scope of Review. A great plethora of different SiFA species have been reported in the literature ranging from small prosthetic groups and other compounds of low molecular weight to labeled peptides and most recently affibody molecules. Conclusions. The literature over the last years (from 2006 to 2014 shows unambiguously that SiFA-IE and other silicon-based fluoride acceptor strategies relying on 18F− leaving group substitutions have the potential to become a valuable addition to radiochemistry.

  3. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    Science.gov (United States)

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  4. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  5. PETALO, a new concept for a Positron Emission TOF Apparatus based on Liquid xenOn

    CERN Document Server

    Benlloch-Rodriguez, J M

    2016-01-01

    This master thesis presents a new type of Positron Emission TOF Apparatus using Liquid xenOn (PETALO). The detector is based in the Liquid Xenon Scintillating Cell (LXSC). The cell is a box filled with liquid xenon (LXe) whose transverse dimensions are chosen to optimize packing and with a thickness optimized to contain a large fraction of the incoming photons. The entry and exit faces of the box (relative to the incoming gammas direction) are instrumented with large silicon photomultipliers (SiPMs), coated with a wavelength shifter, tetraphenyl butadiene (TPB). The non-instrumented faces are covered by reflecting Teflon coated with TPB. In this thesis we show that the LXSC can display an energy resolution of 5% FWHM, much better than that of conventional solid scintillators such as LSO/LYSO. The LXSC can measure the interaction point of the incoming photon with a resolution in the three coordinates of 1 mm. The very fast scintillation time of LXe (2 ns) and the availability of suitable sensors and electronic...

  6. FPGA-Based Front-End Electronics for Positron Emission Tomography.

    Science.gov (United States)

    Haselman, Michael; Dewitt, Don; McDougald, Wendy; Lewellen, Thomas K; Miyaoka, Robert; Hauck, Scott

    2009-02-22

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm.

  7. Detection of occult disease in breast cancer using fluorodeoxyglucose camera-based positron emission tomography.

    Science.gov (United States)

    Pecking, A P; Mechelany-Corone, C; Bertrand-Kermorgant, F; Alberini, J L; Floiras, J L; Goupil, A; Pichon, M F

    2001-10-01

    An isolated increase of blood tumor marker CA 15.3 in breast cancer is considered a sensitive indicator for occult metastatic disease but by itself is not sufficient for initiating therapeutic intervention. We investigated the potential of camera-based positron emission tomography (PET) imaging using [18F]-fluorodeoxyglucose (FDG) to detect clinically occult recurrences in 132 female patients (age, 35-69 years) treated for breast cancer, all presenting with an isolated increase in blood tumor marker CA 15.3 without any other evidence of metastatic disease. FDG results were correlated to pathology results or to a sequentially guided conventional imaging method. One hundred nineteen patients were eligible for correlations. Positive FDG scans were obtained for 106 patients, including 89 with a single lesion and 17 with 2 or more lesion. There were 92 true-positive and 14 false-positive cases, 10 of which became true positive within 1 year. Among the 13 negative cases, 7 were false negative and 6 were true negative. Camera-based PET using FDG has successfully identified clinically occult disease with an overall sensitivity of 93.6% and a positive predictive value of 96.2%. The smallest detected size was 6 mm for a lymph node metastasis (tumor to nontumor ratio, 4:2). FDG camera-based PET localized tumors in 85.7% of cases suspected for clinically occult metastatic disease on the basis of a significant increase in blood tumor marker. A positive FDG scan associated with an elevated CA 15.3 level is most consistent with metastatic relapse of breast cancer.

  8. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Science.gov (United States)

    Nakanishi, Kouhei; Yamamoto, Seiichi

    2016-11-01

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  9. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools

    OpenAIRE

    Hawe, David; Hernández Fernández, Francisco R.; O’Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O’Sullivan, Finbarr

    2012-01-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course da...

  10. Faceted Taxonomy-Based Sources

    Science.gov (United States)

    Tzitzikas, Yannis

    The objective of this chapter is to explain the underlying mathematical structure of faceted taxonomy-based sources and to provide some common notions and notations that are used in some parts of the book. Subsequently, and on the basis of the introduced formalism, this chapter describes the interaction between a user and an information source that supports dynamic taxonomies and faceted search.

  11. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M. J., E-mail: josim.phys2007@gmail.com; Alam, M. S.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)

    2015-06-15

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  12. Positron clouds within thunderstorms

    CERN Document Server

    Dwyer, Joseph R; Hazelton, Bryna J; Grefenstette, Brian W; Kelley, Nicole A; Lowell, Alexander W; Schaal, Meagan M; Rassoul, Hamid K

    2015-01-01

    We report the observation of two isolated clouds of positrons inside an active thunderstorm. These observations were made by the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, which flew on a Gulfstream V jet aircraft through the top of an active thunderstorm in August 2009. ADELE recorded two 511 keV gamma-ray count rate enhancements, 35 seconds apart, each lasting approximately 0.2 seconds. The enhancements, which were about a factor of 12 above background, were both accompanied by electrical activity as measured by a flat-plate antenna on the underside of the aircraft. The energy spectra were consistent with a source mostly composed of positron annihilation gamma rays, with a prominent 511 keV line clearly visible in the data. Model fits to the data suggest that the aircraft was briefly immersed in clouds of positrons, more than a kilometer across. It is not clear how the positron clouds were created within the thunderstorm, but it is possible they were ca...

  13. Generation of monoenergetic positrons

    Energy Technology Data Exchange (ETDEWEB)

    Hulett, L.D. Jr.; Dale, J.M.; Miller, P.D. Jr.; Moak, C.D.; Pendyala, S.; Triftshaeuser, W.; Howell, R.H.; Alvarez, R.A.

    1983-01-01

    Many experiments have been performed in the generation and application of monoenergetic positron beams using annealed tungsten moderators and fast sources of /sup 58/Co, /sup 22/Na, /sup 11/C, and LINAC bremstrahlung. This paper will compare the degrees of success from our various approaches. Moderators made from both single crystal and polycrystal tungsten have been tried. Efforts to grow thin films of tungsten to be used as transmission moderators and brightness enhancement devices are in progress.

  14. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  15. Radio frequency elevator for a pulsed positron beam

    Science.gov (United States)

    Dickmann, Marcel; Mitteneder, Johannes; Kögel, Gottfried; Egger, Werner; Sperr, Peter; Ackermann, Ulrich; Piochacz, Christian; Dollinger, Günther

    2016-06-01

    An elevator increases the potential energy of a particle beam with respect to ground potential without any alteration of kinetic energy and other beam parameters. This elevator is necessary for the implementation of the Munich Scanning Positron Microscope (SPM) at the intense positron source NEPOMUC at the research reactor FRM II in Munich. The principles of the rf elevator for pure electrostatically guided positrons are described. Measurements of beam quality behind the elevator are reported, which confirm that after the implementation of elevator and SPM at NEPOMUC the SPM can be operated at a considerably improved resolution (~ 0.3 μm) and event rate (~3.7 kHz) compared to the laboratory based β+-source.

  16. Compensation models in chlorine doped CdTe based on positron annihilation and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, W.; Hofman, D.M.; Meyer, B.K. [Technische Universitaet Muenchen, Garching (Germany); Krause-Rehberg, R.; Polity, A.; Abgarjan, Th. [Martin-Luther Universitaet Halle-Wittenberg, FB Physik, Halle (Germany); Salk, M.; Benz, K.W. [Kristallographisches Institut, Universitaet Freiburg, Freiburg (Germany); Azoulay, M. [Soreq, Nuclear Research Centre, Yavne (Israel)

    1995-12-31

    In this investigation positron annihilation, photoluminescence and electron paramagnetic resonance techniques are employed to gain insight in the compensation of CdTe doped with the halogen Cl. We will demonstrate that the high resistivity of CdTe:Cl cannot be explain by the interaction between the shallow effective mass type donor Cl on Te site and the doping induced shallow acceptor complex, a Cd vacancy paired off with a nearest-neighbour Cl atom (A centre). From electron paramagnetic resonance investigations we conclude that the mid gap trap, often detected by electrical methods in CdTe, is not the isolated Cd vacancy. (author). 9 refs, 2 figs, 1 tab.

  17. A positron study on the microstructural evolution of Al-Li based alloys in the early stages of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Diego, N. de; Rio, J. del [Univ. Complutense, Madrid (Spain). Dept. de Fisica de Materiales; Romero, R.; Somoza, A. [Univ. Nacional del Centro de la Provincia de Buenos Aires, Tandil (Argentina). Inst. de Fisica de Materiales]|[Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina)

    1997-11-01

    The formation of voids by coalescence of microvoids initiated at precipitates has been proposed to explain the fracture mechanisms in alloys containing a large number of second phase particles whereas in binary Al-Li alloys with shearable particles the brittleness could be linked with the grain boundary fracture. Most of the microstructure studies of Al-Li alloys have been performed by deforming to fracture; however, little is known about the processes and mechanisms involved in the early stages of plastic deformation. Butler et al. have studied a quaternary Al-Li alloy and have found that there is a critical effective strain to cause voiding, which is about 0.06 and 0.1% for the aged and for the solution treated material respectively. It is very well established that positrons are very sensitive to vacancy-like defects. With the aim of clarifying the behavior of Al-Li based alloys in the very early stages of deformation, and detecting the eventual formation of microvoids, the authors have studied the response of the positron lifetime parameters to the degrees of deformation in age-hardenable Al-Li based alloys plastically deformed under tensile stress.

  18. Simulation and Design of Tentative Muon Source Based on CSNS*%Simulation and Design of Tentative Muon Source Based on CSNS*

    Institute of Scientific and Technical Information of China (English)

    许文贞; 刘艳芬; 叶邦角

    2012-01-01

    This paper presents a conceptual design for the first tentative surface muon source based on the proton beam provided by China Spallation Neutron Source (CSNS). We have calcu- lated the optimal parameters of solid muon target, in which the method of Monte Carlo simula- tion is used to obtain the optimal muon beam parameters, such as beam fiuence rate, momentum spread and phase space distribution. A simple muon transport beamline system was also designed, which could transport the muons emitted from the muon target into the experimental area, where positrons from muon decay in a test sample are detected by a spectrometer. The beam optics of this new beam line is also described.

  19. CA19-9 as a Potential Target for Radiolabeled Antibody-Based Positron Emission Tomography of Pancreas Cancer

    Directory of Open Access Journals (Sweden)

    Mark D. Girgis

    2011-01-01

    Full Text Available Introduction. Sensitive and specific imaging of pancreas cancer are necessary for accurate diagnosis, staging, and treatment. The vast majority of pancreas cancers express the carbohydrate tumor antigen CA19-9. The goal of this study was to determine the potential to target CA19-9 with a radiolabeled anti-CA19-9 antibody for imaging pancreas cancer. Methods. CA19-9 was quantified using flow cytometry on human pancreas cancer cell lines. An intact murine anti-CA19-9 monoclonal antibody was labeled with a positron emitting radionuclide (Iodine-124 and injected into mice harboring antigen positive and negative xenografts. MicroPET/CT were performed at successive time intervals (72 hours, 96 hours, 120 hours after injection. Radioactivity was measured in blood and tumor to provide objective confirmation of the images. Results. Antigen expression by flow cytometry revealed approximately 1.3×106 CA19-9 antigens for the positive cell line and no expression in the negative cell line. Pancreas xenograft imaging with Iodine-124-labeled anti-CA19-9 mAb demonstrated an average tumor to blood ratio of 5 and positive to negative tumor ratio of 20. Conclusion. We show in vivo targeting of our antigen positive xenograft with a radiolabeled anti-CA19-9 antibody. These data demonstrate the potential to achieve anti-CA19-9 antibody based positron emission tomography of pancreas cancer.

  20. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Vogel, W.V.; Hoffmann, A.L.; Dalen, J.A. van; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2007-01-01

    PURPOSE: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may imp

  1. High-intensity positron microprobe at Jefferson Lab

    CERN Document Server

    Golge, Serkan; Wojtsekhowski, Bogdan

    2014-01-01

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 10$^{10}$ e$^+$/s. Reaching this intensity in our design relies on the transport of positrons (T$_+$ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effective...

  2. Applications and advances of positron beam spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R., LLNL

    1998-03-18

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center, the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques would play in materials analysis and the demand for the data. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of stockpile stewardship. The Livermore facilities now include the world`s highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. It was concluded that the positron microprobe under development at LLNL and other new instruments that would be relocated at LLNL at the high current keV source are an exciting step forward in providing results for the positron technique. These new data will impact a wide variety of applications.

  3. A new look at the cosmic ray positron fraction

    Science.gov (United States)

    Boudaud, M.; Aupetit, S.; Caroff, S.; Putze, A.; Belanger, G.; Genolini, Y.; Goy, C.; Poireau, V.; Poulin, V.; Rosier, S.; Salati, P.; Tao, L.; Vecchi, M.

    2015-03-01

    Context. The positron fraction in cosmic rays has recently been measured with improved accuracy up to 500 GeV, and it was found to be a steadily increasing function of energy above ~10 GeV. This behaviour contrasts with standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactions of primary cosmic rays during their propagation in the interstellar medium. The observed anomaly in the positron fraction triggered a lot of excitement, as it could be interpreted as an indirect signature of the presence of dark matter species in the Galaxy, the so-called weakly interacting massive particles (WIMPs). Alternatively, it could be produced by nearby sources, such as pulsars. Aims: These hypotheses are probed in light of the latest AMS-02 positron fraction measurements. As regards dark matter candidates, regions in the annihilation cross section to mass plane, which best fit the most recent data, are delineated and compared to previous measurements. The explanation of the anomaly in terms of a single nearby pulsar is also explored. Methods: The cosmic ray positron transport in the Galaxy is described using a semi-analytic two-zone model. Propagation is described with Green functions as well as with Bessel expansions. For consistency, the secondary and primary components of the positron flux are calculated together with the same propagation model. The above mentioned explanations of the positron anomaly are tested using χ2 fits. The numerical package MicrOMEGAs is used to model the positron flux generated by dark matter species. The description of the positron fraction from conventional astrophysical sources is based on the pulsar observations included in the Australia Telescope National Facility (ATNF) catalogue. Results: The masses of the favoured dark matter candidates are always larger than 500 GeV, even though the results are very sensitive to the lepton flux. The Fermi measurements point systematically to much heavier

  4. Ventilation/Perfusion Positron Emission Tomography—Based Assessment of Radiation Injury to Lung

    Energy Technology Data Exchange (ETDEWEB)

    Siva, Shankar, E-mail: shankar.siva@petermac.org [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville (Australia); Hardcastle, Nicholas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Bressel, Mathias [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne (Australia); Callahan, Jason [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); MacManus, Michael P.; Shaw, Mark; Plumridge, Nikki [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hicks, Rodney J. [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Department of Medicine, University of Melbourne, Parkville (Australia); Steinfort, Daniel [Department of Medicine, University of Melbourne, Parkville (Australia); Department of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne (Australia); Ball, David L. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hofman, Michael S. [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Department of Medicine, University of Melbourne, Parkville (Australia)

    2015-10-01

    Purpose: To investigate {sup 68}Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). Methods and Materials: In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). Results: A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r{sup 2}=0.99, P<.01), with ventilation strongly negatively linear (r{sup 2}=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Conclusions: Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET

  5. Fluorodeoxyglucose-positron emission tomography in carcinoma nasopharynx: Can we predict outcomes and tailor therapy based on postradiotherapy fluorodeoxyglucose-positron emission tomography?

    Directory of Open Access Journals (Sweden)

    Sarbani Ghosh Laskar

    2016-01-01

    Full Text Available Background: Positron emission tomography-computed tomography (PET-CT is an emerging modality for staging and response evaluation in carcinoma nasopharynx. This study was conducted to evaluate the impact of PET-CT in assessing response and outcomes in carcinoma nasopharynx. Materials and Methods: Forty-five patients of nonmetastatic carcinoma nasopharynx who underwent PET-CT for response evaluation at 10-12 weeks posttherapy between 2004 and 2009 were evaluated. Patients were classified as responders (Group A if there was a complete response on PET-CT or as nonresponders (Group B if there was any uptake above the background activity. Data regarding demographics, treatment, and outcomes were collected from their records and compared across the Groups A and B. Results: The median age was 41 years. 42 out of 45 (93.3% patients had WHO Grade 2B disease (undifferentiated squamous carcinoma. 24.4%, 31.1%, 15.6, and 28.8% patients were in American Joint Committee on Cancer Stage IIb, III, Iva, and IVb. All patients were treated with neoadjuvant chemotherapy followed by concomitant chemoradiotherapy. Forty-five patients, 28 (62.2% were classified as responders, whereas 17 (37.8% were classified as nonresponders. There was no significant difference in the age, sex, WHO grade, and stage distribution between the groups. Compliance to treatment was comparable across both groups. The median follow-up was 25.3 months (759 days. The disease-free survival (DFS of the group was 57.3% at 3 years. The DFS at 3 years was 87.3% and 19.7% for Group A and B, respectively (log-rank test, P < 0.001. Univariate and multivariate analysis revealed Groups to be the only significant factor predicting DFS (P value 0.002 and < 0.001, respectively. In Group B, the most common site of disease failure was distant (9, 53%. Conclusion: PET-CT can be used to evaluate response and as a tool to identify patients at higher risk of distant failure. Further, this could be exploited to

  6. KEK-IMSS Slow Positron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T; Wada, K; Yagishita, A; Kosuge, T; Saito, Y; Kurihara, T; Kikuchi, T; Shirakawa, A; Sanami, T; Ikeda, M; Ohsawa, S; Kakihara, K; Shidara, T, E-mail: toshio.hyodo@kek.jp [High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps{sup -}). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a {sup 22}Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  7. KEK-IMSS Slow Positron Facility

    Science.gov (United States)

    Hyodo, T.; Wada, K.; Yagishita, A.; Kosuge, T.; Saito, Y.; Kurihara, T.; Kikuchi, T.; Shirakawa, A.; Sanami, T.; Ikeda, M.; Ohsawa, S.; Kakihara, K.; Shidara, T.

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps-). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a 22Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  8. Quasi-monoenergetic positron beam generation from ultra-intense laser-matter interactions

    Science.gov (United States)

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2016-10-01

    In ultra-intense laser-matter interactions in which the radiation reaction effect plays an important role, γ-rays are effectively generated that are intense, collimated, and of short duration. These γ-rays propagate through the target, which results in the electron-positron pair creation caused by the interaction of the γ-rays with the nuclear electric fields. The positron beam thus generated has several unique features; it is quasi-monoenergetic in nature with a peak energy of hundreds of MeV, well collimated, and of ultra-short duration. Based on the numerical simulations, the dependences of the number and monochromaticity of the positrons on the laser and target parameters are explored, which leads to the proposal of a new type of the laser-driven positron source.

  9. Positron-alkali atom scattering

    Science.gov (United States)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  10. Positron annihilation study of the hardening behavior in Al-Cu based alloy by electron and heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Fuminobu; Kobayashi, Ippei; Iwase, Akihiro [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Saito, Yuichi; Ishikawa, Norito; Oshima, Takeshi, E-mail: horif@mtr.osakafu-u.ac.j [JAEA Tokai, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2010-04-01

    Al-Cu based alloy, which is generally called duralumin (JIS2017), was irradiated with 10 MeV Iodine ions, 200 MeV Xenon ions and 3 MeV electrons at room temperature respectively. The micro Vicker's hardness and positron annihilation coincidence Doppler broadening (CDB) measurements have been performed before and after irradiation. Only in the case of ion irradiation, the Vicker's hardness increases with increasing ion dose. Nevertheless, there was no difference in the profile CDB spectrum for before and after irradiation. On the other hand, we found that the micro hardness of this alloy, which was Xe ion irradiated and subsequently annealed at 423 K, is greater than that of age hardened alloy without irradiation. CDB ratio curve of the age hardened Duralumin is clearly different in the electron momentum range around 0.015-0.025 mc from that of the ion irradiated alloy. The results of three-dimensional atom probe (3DAP) also show that a lot of small clusters were found after ion irradiation but large precipitations have found in annealed Duralumin. These results reveal that a number of small clusters formed in this alloy after ion irradiation, and they should strongly affects the micro hardness.

  11. Modelisation de photodetecteurs a base de matrices de diodes avalanche monophotoniques pour tomographie d'emission par positrons

    Science.gov (United States)

    Corbeil Therrien, Audrey

    La tomographie d'emission par positrons (TEP) est un outil precieux en recherche preclinique et pour le diagnostic medical. Cette technique permet d'obtenir une image quantitative de fonctions metaboliques specifiques par la detection de photons d'annihilation. La detection des ces photons se fait a l'aide de deux composantes. D'abord, un scintillateur convertit l'energie du photon 511 keV en photons du spectre visible. Ensuite, un photodetecteur convertit l'energie lumineuse en signal electrique. Recemment, les photodiodes avalanche monophotoniques (PAMP) disposees en matrice suscitent beaucoup d'interet pour la TEP. Ces matrices forment des detecteurs sensibles, robustes, compacts et avec une resolution en temps hors pair. Ces qualites en font un photodetecteur prometteur pour la TEP, mais il faut optimiser les parametres de la matrice et de l'electronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une operation difficile, car les differents parametres interagissent de maniere complexe avec les processus d'avalanche et de generation de bruit. Enfin, l'electronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser differentes strategies de lecture. Pour repondre a cette question, la solution la plus economique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce memoire presentent le developpement d'un tel simulateur. Celui-ci modelise le comportement d'une matrice de PAMP en se basant sur les equations de physique des semiconducteurs et des modeles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les declenchements intempestifs correles et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'electronique de lecture plus adaptees a ce type de detecteur. Au final, le simulateur vise a

  12. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian

    2009-11-20

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55{+-}0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 {mu}m. The efficiency of the re-moderation process in this second stage was 24.5{+-}4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the

  13. Emission and transmission noise propagation in positron emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, G.T.; Huesman, R.H.

    1979-06-01

    Errors in positron emission computed tomograms are the result of noise propagated from three sources: (1) the statistical fluctuation in the positron coincidence events; (2) the statistical fluctuation in the incident transmission beam; and (3) the statistical fluctuation in the transmitted beam. The data for the transmission study in (2) and (3) are used to compensate for internal absorption of the distributed positron source. For the reconstruction of a circular phantom using the convolution algorithm, the percent root-mean-square uncertainty (%RMS) is related to the total measured positron events C and the incident photon flux per cm I/sub 0/. Our derivation of the %RMS uncertainty based on the propagation of errors yields a simple expression: %RMS = ..sqrt..K/sub 1//C + K/sub 2//I/sub 0/. The constants K/sub 1/ = 4.52 x 10/sup 8/ and K/sub 2/ = 1.48 x 10/sup 8/ were determined for a 20 cm diameter disc based on computer simulation. The projection data were analytically calculated with an attenuation coefficient ..mu.. = 0.0958 cm/sup -1/ for 140 angles between 0 and ..pi... Poisson noise was added to the positron coincidence events, the incident transmission events I/sub 0/, and the transmitted events. These results indicate that for a total number of incident transmission photons per cm of 2.0 x 10/sup 5/, the contrast resolution for a fixed spatial resolution is limited to 27% even with an infinite number of emission events. For a total of 10/sup 6/ emission events the contrast resolution is 34%.

  14. Positron annihilation lifetime spectroscopy at a superconducting electron accelerator

    Science.gov (United States)

    Wagner, A.; Anwand, W.; Attallah, A. G.; Dornberg, G.; Elsayed, M.; Enke, D.; Hussein, A. E. M.; Krause-Rehberg, R.; Liedke, M. O.; Potzger, K.; Trinh, T. T.

    2017-01-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA. The electron beam is employed for production of several secondary beams including X-rays from bremsstrahlung production, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed in parallel. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films.

  15. Positrons in Surface Physics

    CERN Document Server

    Hugenschmidt, Christoph

    2016-01-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positron...

  16. An Open-Source Based ITS Platform

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Torp, Kristian

    2013-01-01

    , the trip-based approach requires more GPS data and of a higher quality than the point-based approach. The platform has been completely implemented using open-source software. The main conclusion is that large quantity of GPS data can be managed, with a limited budget and that GPS data is a good source...

  17. Identifying electrons and positrons with AMS-02

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Nikolas [RWTH Aachen University (Germany)

    2015-07-01

    The AMS-02 experiment is a multi-purpose detector for cosmic ray particles mounted on the International Space Station. It recorded over 40 billion events since its installation in 2011. The bulk of these events are protons, which are most abundant in cosmic rays. Electrons are 100 times and positrons 1000 times less abundant. Measuring the positrons as function of energy is especially interesting, as an excess over the expected astrophysical background may hint at an additional source of positrons in the galaxy or a new phenomena responsible for the excess, e.g. dark-matter annihilation. In order to measure positrons accurately with a small uncertainty, a large proton rejection of 10{sup 6} is needed. AMS-02 offers a transition radiation detector to separate positrons from protons and an electromagnetic calorimeter allowing a precise measurement of the kinetic energy of an incoming lepton. This talk covers the general strategy of identifying electrons/positrons with AMS-02 and presents the so-obtained electron/positron fluxes that were recently published.

  18. Assessment of S Values in Stylized and Voxel-Based Rat Models for Positron-Emitting Radionuclides

    NARCIS (Netherlands)

    Xie, Tianwu; Zaidi, Habib

    2013-01-01

    Positron emission tomography (PET) is a powerful tool in small animal research, enabling noninvasive quantitative imaging of biochemical processes in living subjects. However, the dosimetric characteristics of small animal PET imaging are usually overlooked, although the radiation dose may be signif

  19. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography.

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M; Levin, Craig S

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A larger resistivity is favorable for reducing the dark current (noise) in the detector crystal, and thus the higher resistivity BSO crystal has a lower (50% lower on average) noise level than CdTe. The CdTe and BSO crystals can achieve the same sensitivity under laser diode illumination at the same crystal bias voltage condition while the BSO crystal is not as sensitive to 511-keV photons as the CdTe crystal under the same crystal bias voltage. The amplitude of the modulation signal induced by 511-keV photons in BSO crystal is around 30% of that induced in CdTe crystal under the same bias condition. In addition, we have found that the optical modulation strength increases linearly with crystal bias voltage before saturation. The modulation signal with CdTe tends to saturate at bias voltages higher than 1500 V due to its lower resistivity (thus larger dark current) while the modulation signal strength with BSO still increases after 3500 V. Further increasing the bias voltage for BSO could potentially further enhance the modulation strength and thus, the sensitivity.

  20. Positron annihilation microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Canter, K.F. [Brandeis Univ., Waltham, MA (United States)

    1997-03-01

    Advances in positron annihilation microprobe development are reviewed. The present resolution achievable is 3 {mu}m. The ultimate resolution is expected to be 0.1 {mu}m which will enable the positron microprobe to be a valuable tool in the development of 0.1 {mu}m scale electronic devices in the future. (author)

  1. Solvated Positron Chemistry. II

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1979-01-01

    The reaction of the hydrated positron, eaq+ with Cl−, Br−, and I− ions in aqueous solutions was studied by means of positron The measured angular correlation curves for [Cl−, e+], [Br−, e+, and [I−, e+] bound states were in good agreement with th Because of this agreement and the fact that the ca...

  2. Positrons in surface physics

    Science.gov (United States)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  3. Salmonella source attribution based on microbial subtyping

    DEFF Research Database (Denmark)

    Barco, Lisa; Barrucci, Federica; Olsen, John Elmerdahl

    2013-01-01

    Source attribution of cases of food-borne disease represents a valuable tool for identifying and prioritizing effective food-safety interventions. Microbial subtyping is one of the most common methods to infer potential sources of human food-borne infections. So far, Salmonella microbial subtyping...... source attribution models have been implemented by using serotyping and phage-typing data. Molecular-based methods may prove to be similarly valuable in the future, as already demonstrated for other food-borne pathogens like Campylobacter. This review assesses the state of the art concerning Salmonella...... in the context of their potential applicability for Salmonella source attribution studies....

  4. Development and application of the intense slow positron beam at IHEP

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-Yi; MA Yan-Yun; WANG Ping; CAO Xing-Zhong; QIN Xiu-So; ZHANG Zhe; YU Run-Sheng; WEI Long

    2008-01-01

    This paper describes the development and application of an intense slow positron beam at IHEP with regard to its two main components.The Variable-Energy Positron Lifetime Spectroscopy (VEPLS) based on the pulsing system consisting of a chopper,a prebuncher and a buncher has been constructed in order to meet the needs of materials science development.At present,the time resolution of the VEPLS can easily reach about 386 ps with a peak-to-background ratio of about 600:1.A plugged-in 22Na positron source section for adjusting the newly built experimental station and for increasing the beam operation efficiency has been constructed.A slow positron beam with an intensity of 2.5x105 e+/s and the beam profile whose diameter is 10 mm has been obtained;the moderation efficiency of the tungsten mesh moderator reaches 5.1x 10-4 as calculated with an original positron source activity of 52 mCi.

  5. A novel method based solely on FPGA units enabling measurement of time and charge of analog signals in Positron Emission Tomography

    CERN Document Server

    Pałka, M; Białas, P; Czerwiński, E; Kapłon, Ł; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Krzemień, W; Molenda, M; Moskal, P; Niedźwiecki, Sz; Pawlik, M; Raczyński, L; Rudy, Z; Salabura, P; Sharma, N G; Silarski, M; Słomski, A; Smyrski, J; Strzelecki, A; Wiślicki, W; Zieliński, M; Zoń, N

    2013-01-01

    This article presents a novel technique for precise measurement of time and charge based solely on FPGA (Field Programmable Gate Array) device and few satellite discrete electronic components used in Positron Emission Tomography (PET). Described approach simplifies electronic circuits, reduces the power consumption, lowers costs, merges front-end electronics with digital electronics and also makes more compact final design. Furthermore, it allows to measure time when analog signals cross a reference voltage at different threshold levels with a very high precision of $\\sim$ 10ps (rms) and thus enables sampling of signals in a voltage domain.

  6. Development and applications of time-bunched and velocity-selected positron beams

    DEFF Research Database (Denmark)

    Merrison, J.P.; Charlton, M.; Aggerholm, P.

    2003-01-01

    the buncher was used to compress positron pulses produced from an electron accelerator-based beam. Computer simulations of particle trajectories in the buncher have been performed resulting in a detailed evaluation of the factors that govern and limit the time resolution of the instrument. A sector magnet...... for propagation of the applied voltage pulse along the electrode system and to facilitate operation at frequencies up to 100 kHz. A parabolic potential distribution for time focusing was used. Tests with a dc positron beam produced from a radioactive source are described, together with measurements in which...

  7. Nonlinear excitations for the positron acoustic shock waves in dissipative nonextensive electron-positron-ion plasmas

    Science.gov (United States)

    Saha, Asit

    2017-03-01

    Positron acoustic shock waves (PASHWs) in unmagnetized electron-positron-ion (e-p-i) plasmas consisting of mobile cold positrons, immobile positive ions, q-nonextensive distributed electrons, and hot positrons are studied. The cold positron kinematic viscosity is considered and the reductive perturbation technique is used to derive the Burgers equation. Applying traveling wave transformation, the Burgers equation is transformed to a one dimensional dynamical system. All possible vector fields corresponding to the dynamical system are presented. We have analyzed the dynamical system with the help of potential energy, which helps to identify the stability and instability of the equilibrium points. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PASHWs. Furthermore, fully nonlinear arbitrary amplitude positron acoustic waves are also studied applying the theory of planar dynamical systems. It is also observed that the fundamental features of the small amplitude and arbitrary amplitude PASHWs are significantly affected by the effect of the physical parameters q e , q h , μ e , μ h , σ , η , and U. This work can be useful to understand the qualitative changes in the dynamics of nonlinear small amplitude and fully nonlinear arbitrary amplitude PASHWs in solar wind, ionosphere, lower part of magnetosphere, and auroral acceleration regions.

  8. CHARACTERIZATION OF PLASTICALLY-INDUCED STRUCTURAL CHANGES IN A Zr-BASED BULK METALLIC GLASS USING POSITRON ANNIHILATION SPECTROCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Flores, K M; Kanungo, B P; Glade, S C; Asoka-Kumar, P

    2005-09-16

    Flow in metallic glasses is associated with stress-induced cooperative rearrangements of small groups of atoms involving the surrounding free volume. Understanding the details of these rearrangements therefore requires knowledge of the amount and distribution of the free volume and how that distribution evolves with deformation. The present study employs positron annihilation spectroscopy to investigate the free volume change in Zr{sub 58.5}Cu{sub 15.6}Ni{sub 12.8}Al{sub 10.3}Nb{sub 2.8} bulk metallic glass after inhomogeneous plastic deformation by cold rolling and structural relaxation by annealing. Results indicate that the size distribution of open volume sites is at least bimodal. The size and concentration of the larger group, identified as flow defects, changes with processing. Following initial plastic deformation the size of the flow defects increases, consistent with the free volume theory for flow. Following more extensive deformation, however, the size distribution of the positron traps shifts, with much larger open volume sites forming at the expense of the flow defects. This suggests that a critical strain is required for flow defects to coalesce and form more stable nanovoids, which have been observed elsewhere by high resolution TEM. Although these results suggest the presence of three distinct open volume size groups, further analysis indicates that all groups have the same line shape parameter. This is in contrast to the distinctly different interactions observed in crystalline materials with multiple defect types. This similarity may be due to the disordered structure of the glass and positron affinity to particular atoms surrounding open-volume regions.

  9. Supernovae and Positron Annihilation

    CERN Document Server

    Milne, P A; Kinzer, R L; Leising, M D

    2002-01-01

    Radioactive nuclei, especially those created in SN explosion, have long been suggested to be important contributors of galactic positrons. In this paper we describe the findings of three independent OSSE/SMM/TGRS studies of positron annihilation radiation, demonstrating that the three studies are largely in agreement as to the distribution of galactic annihilation radiation. We then assess the predicted yields and distributions of SN-synthesized radionuclei, determining that they are marginally compatible with the findings of the annihilation radiation studies.

  10. Nanomaterial-based x-ray sources

    Science.gov (United States)

    Cole, Matthew T.; Parmee, R. J.; Milne, William I.

    2016-02-01

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  11. A Peltier-based variable temperature source

    Science.gov (United States)

    Molki, Arman; Roof Baba, Abdul

    2014-11-01

    In this paper we propose a simple and cost-effective variable temperature source based on the Peltier effect using a commercially purchased thermoelectric cooler. The proposed setup can be used to quickly establish relatively accurate dry temperature reference points, which are necessary for many temperature applications such as thermocouple calibration.

  12. Simulations of pulses in a buffer gas positron trap

    Energy Technology Data Exchange (ETDEWEB)

    Tattersall, W; Sullivan, J P; Buckman, S J [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); White, R D; Robson, R E, E-mail: wade.tattersall@anu.edu.au [ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD (Australia)

    2011-01-01

    In this study we simulate positron transport properties for various configurations of the gases and electric fields used in the Australian Positron Beamline Facility positron trap, which is based on the Surko buffer-gas trap. In an attempt to further improve the time and energy resolution of the trap and thus the associated scattering experiments, we apply a Monte-Carlo simulation procedure to a variety of possible configurations of the dumping stage of the trap.

  13. Individualized Positron Emission Tomography–Based Isotoxic Accelerated Radiation Therapy Is Cost-Effective Compared With Conventional Radiation Therapy: A Model-Based Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bongers, Mathilda L., E-mail: ml.bongers@vumc.nl [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Coupé, Veerle M.H. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); De Ruysscher, Dirk [Radiation Oncology University Hospitals Leuven/KU Leuven, Leuven (Belgium); Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Oberije, Cary; Lambin, Philippe [Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Uyl-de Groot, Cornelia A. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2015-03-15

    Purpose: To evaluate long-term health effects, costs, and cost-effectiveness of positron emission tomography (PET)-based isotoxic accelerated radiation therapy treatment (PET-ART) compared with conventional fixed-dose CT-based radiation therapy treatment (CRT) in non-small cell lung cancer (NSCLC). Methods and Materials: Our analysis uses a validated decision model, based on data of 200 NSCLC patients with inoperable stage I-IIIB. Clinical outcomes, resource use, costs, and utilities were obtained from the Maastro Clinic and the literature. Primary model outcomes were the difference in life-years (LYs), quality-adjusted life-years (QALYs), costs, and the incremental cost-effectiveness and cost/utility ratio (ICER and ICUR) of PET-ART versus CRT. Model outcomes were obtained from averaging the predictions for 50,000 simulated patients. A probabilistic sensitivity analysis and scenario analyses were carried out. Results: The average incremental costs per patient of PET-ART were €569 (95% confidence interval [CI] €−5327-€6936) for 0.42 incremental LYs (95% CI 0.19-0.61) and 0.33 QALYs gained (95% CI 0.13-0.49). The base-case scenario resulted in an ICER of €1360 per LY gained and an ICUR of €1744 per QALY gained. The probabilistic analysis gave a 36% probability that PET-ART improves health outcomes at reduced costs and a 64% probability that PET-ART is more effective at slightly higher costs. Conclusion: On the basis of the available data, individualized PET-ART for NSCLC seems to be cost-effective compared with CRT.

  14. MEMS-based IR-sources

    Science.gov (United States)

    Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen

    2016-03-01

    The series JSIR350 sources are MEMS based infrared emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our pyro-electric or thermopile detectors. The MEMS chips used in Micro-Hybrid's infrared emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of infrared radiation sources with soldered infrared filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based infrared emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.

  15. Plasma-Based Ion Beam Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, H. W.

    2005-07-01

    Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2

  16. Applications of nucleoside-based molecular probes for the in vivo assessment of tumour biochemistry using positron emission tomography (PET

    Directory of Open Access Journals (Sweden)

    Leonard I. Wiebe

    2007-05-01

    Full Text Available Positron emission tomography (PET is a non-invasive nuclear imaging technique. In PET, radiolabelled molecules decay by positron emission. The gamma rays resulting from positron annihilation are detected in coincidence and mapped to produce three dimensional images of radiotracer distribution in the body. Molecular imaging with PET refers to the use of positron-emitting biomolecules that are highly specific substrates for target enzymes, transport proteins or receptor proteins. Molecular imaging with PET produces spatial and temporal maps of the target-related processes. Molecular imaging is an important analytical tool in diagnostic medical imaging, therapy monitoring and the development of new drugs. Molecular imaging has its roots in molecular biology. Originally, molecular biology meant the biology of gene expression, but now molecular biology broadly encompasses the macromolecular biology and biochemistry of proteins, complex carbohydrates and nucleic acids. To date, molecular imaging has focused primarily on proteins, with emphasis on monoclonal antibodies and their derivative forms, small-molecule enzyme substrates and components of cell membranes, including transporters and transmembrane signalling elements. This overview provides an introduction to nucleosides, nucleotides and nucleic acids in the context of molecular imaging.A tomografia por emissão de pósitrons (TEP é uma técnica de imagem não invasiva da medicina nuclear. A TEP utiliza moléculas marcadas com emissores de radiação beta positiva (pósitrons. As radiações gama medidas que resultam do aniquilamento dos pósitrons são detectadas por um sistema de coincidência e mapeadas para produzir uma imagem tridimensional da distribuição do radiotraçador no corpo. A imagem molecular com TEP refere-se ao uso de biomoléculas marcadas com emissor de pósitron que são substratos altamente específicos para alvos como enzimas, proteínas transportadoras ou receptores prot

  17. Are we ready for positron emission tomography/computed tomography-based target volume definition in lymphoma radiation therapy?

    Science.gov (United States)

    Yeoh, Kheng-Wei; Mikhaeel, N George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  18. Cyclotron-based neutron source for BNCT

    Science.gov (United States)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  19. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  20. Polarized positrons for the ILC - update on simulations

    CERN Document Server

    Staufenbiel, F

    2012-01-01

    To achieve the extremely high luminosity for colliding electron-positron beams at the future International Linear Collider (ILC) an undulator-based source with about 230 meters helical undulator and a thin titanium-alloy target rim rotated with tangential velocity of about 100 meters per second are foreseen. The very high density of heat deposited in the target has to be analyzed carefully. The energy deposited by the photon beam in the target has been calculated in FLUKA. The resulting stress in the target material after one bunch train has been simulated in ANSYS.

  1. Alternative positron-target design for electron-positron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Donahue, R.J. (Lawrence Berkeley Lab., CA (United States)); Nelson, W.R. (Stanford Linear Accelerator Center, Menlo Park, CA (United States))

    1991-04-01

    Current electron-positron linear colliders are limited in luminosity by the number of positrons which can be generated from targets presently used. This paper examines the possibility of using an alternate wire-target geometry for the production of positrons via an electron-induced electromagnetic cascade shower. 39 refs., 38 figs., 5 tabs.

  2. Open Source GIS based integrated watershed management

    Science.gov (United States)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address

  3. Positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Muehllehner, Gerd; Karp, Joel S [Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States)

    2006-07-07

    The developments in positron emission tomography (PET) are reviewed with an emphasis on instrumentation for clinical PET imaging. After a brief summary of positron imaging before the advent of computed tomography, various improvements are highlighted including the move from PET scanners with septa to fully 3D scanners, changes in the preferred scintillators, efforts to improve the energy discrimination, and improvements in attenuation correction. Time-of-flight PET imaging is given special attention due to the recent revival of this technique, which promises significant improvement. Besides technical instrumentation efforts, other factors which influenced the acceptance of clinical PET are also discussed. (review)

  4. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  5. Measuring Modularity in Open Source Code Bases

    Directory of Open Access Journals (Sweden)

    Roberto Milev

    2009-03-01

    Full Text Available Modularity of an open source software code base has been associated with growth of the software development community, the incentives for voluntary code contribution, and a reduction in the number of users who take code without contributing back to the community. As a theoretical construct, modularity links OSS to other domains of research, including organization theory, the economics of industry structure, and new product development. However, measuring the modularity of an OSS design has proven difficult, especially for large and complex systems. In this article, we describe some preliminary results of recent research at Carleton University that examines the evolving modularity of large-scale software systems. We describe a measurement method and a new modularity metric for comparing code bases of different size, introduce an open source toolkit that implements this method and metric, and provide an analysis of the evolution of the Apache Tomcat application server as an illustrative example of the insights gained from this approach. Although these results are preliminary, they open the door to further cross-discipline research that quantitatively links the concerns of business managers, entrepreneurs, policy-makers, and open source software developers.

  6. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    Science.gov (United States)

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course.

  7. Source extension based on ε-entropy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; YU Sheng-sheng; ZHOU Jing-li; ZHENG Xin-wei

    2005-01-01

    It is known by entropy theory that image is a source correlated with a certain characteristic of probability. The entropy rate of the source and ? entropy (rate-distortion function theory) are the information content to identify the characteristics of video images, and hence are essentially related with video image compression. They are fundamental theories of great significance to image compression, though impossible to be directly turned into a compression method. Based on the entropy theory and the image compression theory, by the application of the rate-distortion feature mathematical model and Lagrange multipliers to some theoretical problems in the H.264 standard, this paper presents a new the algorithm model of coding rate-distortion. This model is introduced into complete test on the capability of the test model of JM61e (JUT Test Model). The result shows that the speed of coding increases without significant reduction of the rate-distortion performance of the coder.

  8. Positron excitation of neon

    Science.gov (United States)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  9. Gamma-induced positron annihilation spectroscopy and application to radiation-damaged alloys

    Science.gov (United States)

    Wells, D. P.; Hunt, A. W.; Tchelidze, L.; Kumar, J.; Smith, K.; Thompson, S.; Selim, F.; Williams, J.; Harmon, J. F.; Maloy, S.; Roy, A.

    2006-06-01

    Radiation damage and other defect studies of materials are limited to thin samples because of inherent limitations of well-established techniques such as diffraction methods and traditional positron annihilation spectroscopy (PAS) [P. Hautojarvi, et al., Positrons in Solids, Springer, Berlin, 1979, K.G. Lynn, et al., Appl. Phys. Lett. 47 (1985) 239]. This limitation has greatly hampered industrial and in-situ applications. ISU has developed new methods that use pair-production to produce positrons throughout the volume of thick samples [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. Unlike prior work at other laboratories that use bremsstrahlung beams to create positron beams (via pair-production) that are then directed at a sample of interest, we produce electron-positron pairs directly in samples of interest, and eliminate the intermediate step of a positron beam and its attendant penetrability limitations. Our methods include accelerator-based bremsstrahlung-induced pair-production in the sample for positron annihilation energy spectroscopy measurements (PAES), coincident proton-capture gamma-rays (where one of the gammas is used for pair-production in the sample) for positron annihilation lifetime spectroscopy (PALS), or photo-nuclear activation of samples for either type of measurement. The positrons subsequently annihilate with sample electrons, emitting coincident 511 keV gamma-rays [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D

  10. A combined matrix isolation spectroscopy and cryosolid positron moderation apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Molek, Christopher D.; Michael Lindsay, C.; Fajardo, Mario E. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2013-03-15

    We describe the design, construction, and operation of a novel apparatus for investigating efficiency improvements in thin-film cryogenic solid positron moderators. We report results from solid neon, argon, krypton, and xenon positron moderators which illustrate the capabilities and limitations of our apparatus. We integrate a matrix isolation spectroscopy diagnostic within a reflection-geometry positron moderation system. We report the optical thickness, impurity content, and impurity trapping site structures within our moderators determined from infrared absorption spectra. We use a retarding potential analyzer to modulate the flow of slow positrons, and report positron currents vs. retarding potential for the different moderators. We identify vacuum ultraviolet emissions from irradiated Ne moderators as the source of spurious signals in our channel electron multiplier slow positron detection channel. Our design is also unusual in that it employs a sealed radioactive Na-22 positron source which can be translated relative to, and isolated from, the cryogenic moderator deposition substrate. This allows us to separate the influences on moderator efficiency of surface contamination by residual gases from those of accumulated radiation damage.

  11. Source Code Generator Based on Dynamic Frames

    Directory of Open Access Journals (Sweden)

    Danijel Radošević

    2011-06-01

    Full Text Available Normal 0 21 false false false HR X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Obična tablica"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} This paper presents the model of source code generator based on dynamic frames. The model is named as the SCT model because if its three basic components: Specification (S, which describes the application characteristics, Configuration (C, which describes the rules for building applications, and Templates (T, which refer to application building blocks. The process of code generation dynamically creates XML frames containing all building elements (S, C ant T until final code is produced. This approach is compared to existing XVCL frames based model for source code generating. The SCT model is described by both XML syntax and the appropriate graphical elements. The SCT model is aimed to build complete applications, not just skeletons. The main advantages of the presented model are its textual and graphic description, a fully configurable generator, and the reduced overhead of the generated source code. The presented SCT model is shown on development of web application example in order to demonstrate its features and justify our design choices.

  12. Plasma-based EUV light source

    Science.gov (United States)

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  13. Synchrotron based spallation neutron source concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.

    1998-07-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required {approx} 1 {micro}s. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources.

  14. Positron beam facility at Kyoto University Research Reactor

    Science.gov (United States)

    Xu, Q.; Sato, K.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2014-04-01

    A positron beam facility is presently under construction at the Kyoto University Research Reactor (KUR), which is a light-water moderated tank-type reactor operated at a rated thermal power of 5 MW. A cadmium (Cd) - tungsten (W) source similar to that used in NEPOMUC was chosen in the KUR because Cd is very efficient at producing γ-rays when exposed to thermal neutron flux, and W is a widely used in converter and moderator materials. High-energy positrons are moderated by a W moderator with a mesh structure. Electrical lenses and a solenoid magnetic field are used to extract the moderated positrons and guide them to a platform outside of the reactor, respectively. Since Japan is an earthquake-prone country, a special attention is paid for the design of the in-pile positron source so as not to damage the reactor in the severe earthquake.

  15. Positron analysis of defects in metals

    NARCIS (Netherlands)

    van Veen, A; Kruseman, AC; Schut, H; Mijnarends, PE; Kooi, BJ; De Hosson, JTM; Jean, YC; Eldrup, M; Schrader, DM; West, RN

    1997-01-01

    New methods are discussed to improve defect analysis. The first method employs mapping of two shape parameters, S and W, of the positron annihilation photopeak. It is demonstrated that the combined use of S and W allows to a better discrimination of defects. The other method is based on background s

  16. Time-Based Readout of a Silicon Photomultiplier (SiPM) for Time of Flight Positron Emission Tomography (TOF-PET)

    CERN Document Server

    Powolny, F; Brunner, S E; Hillemanns, H; Meyer, T; Garutti, E; Williams, M C S; Auffray, E; Shen, W; Goettlich, M; Jarron, P; Schultz-Coulon, H C

    2011-01-01

    Time of flight (TOF) measurements in positron emission tomography (PET) are very challenging in terms of timing performance, and should ideally achieve less than 100 ps FWHM precision. We present a time-based differential technique to read out silicon photomultipliers (SiPMs) which has less than 20 ps FWHM electronic jitter. The novel readout is a fast front end circuit (NINO) based on a first stage differential current mode amplifier with 20 Omega input resistance. Therefore the amplifier inputs are connected differentially to the SiPM's anode and cathode ports. The leading edge of the output signal provides the time information, while the trailing edge provides the energy information. Based on a Monte Carlo photon-generation model, HSPICE simulations were run with a 3 x 3 mm(2) SiPM-model, read out with a differential current amplifier. The results of these simulations are presented here and compared with experimental data obtained with a 3 x 3 x 15 mm(3) LSO crystal coupled to a SiPM. The measured time coi...

  17. Quantum resonances in reflection of relativistic electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Eykhorn, Yu.L.; Korotchenko, K.B. [National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050 (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050 (Russian Federation); Tomsk State University, 36, Lenin Avenue, Tomsk 634050 (Russian Federation); Takabayashi, Y. [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

    2015-07-15

    Calculations based on the use of realistic potential of the system of crystallographic planes confirm earlier results on existence of resonances in reflection of relativistic electrons and positrons by the crystal surface, if the crystallographic planes are parallel to the surface.The physical reason of predicted phenomena, similar to the band structure of transverse energy levels, is connected with the Bloch form of the wave functions of electrons (positrons) near the crystallographic planes, which appears both in the case of planar channeling of relativistic electrons (positrons) and in reflection by a crystal surface. Calculations show that positions of maxima in reflection of relativistic electrons and positrons by crystal surface specifically depend on the angle of incidence with respect to the crystal surface and relativistic factor of electrons/positrons. These maxima form the Darwin tables similar to that in ultra-cold neutron diffraction.

  18. Application of positrons to the study of thin technological films

    CERN Document Server

    Nathwani, M

    2001-01-01

    Positron Doppler broadening experiments using variable-energy positron beams with positron implantation energy range 0-25 keV and 0-30 keV, respectively, have been performed on a selection of thin technological films. By measuring the spectrum of the 511 keV annihilation gamma-rays photopeak the profile of the Doppler broadening of the photopeak, due to the motion of the annihilating positron-electron pair, can be analysed. Varying the incident positron energy enables the positron t$ probe a sample at different depths which makes it possible to study samples by analysing the Doppler broadening of the photopeak as a function of positron depth. The Doppler broadening experiments on gallium nitride films with different crystallographic orientations revealed distortions in the Doppler broadened profile at low energies. The distortions were identified to be a consequence of significant para-positronium annihilation taking place near the sample surface. A parameter based on the proportion of positrons trapped at an...

  19. Construction of a pulsed MeV positron beam line

    Energy Technology Data Exchange (ETDEWEB)

    Masuno, Shin-ichi; Okada, Sohei; Kawasuso, Atsuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    To develop a fast (1 MeV) and short pulsed (100 ps) positron beam which enables defect behavior analysis of bulk states of materials even at high temperatures where a usual positron source would melt, we have been performing design study and construction of the beam line in a three-year program since 1994. This report describes the components, design study results and experimental results of the completed parts until now. (author)

  20. Trellis-based source and channel coding

    NARCIS (Netherlands)

    Van der Vleuten, R.J.

    1994-01-01

    This thesis concerns the efficient transmission of digital data, such as digitized sounds or images, from a source to its destination. To make the best use of the limited capacity of the source-destination channel, a source coder is used to delete the less significant information. To correct the occ

  1. The Calibration of the PEPPo Polarimeter for Electrons and Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke Hakeem [Hampton University, Hampton, VA (United States); Voutier, Eric J-.M. [Laboratoire de Physique Subatomique et Cosmologie, Grenoble (France)

    2013-06-01

    The PEPPo (Polarized Electrons for Polarized Positrons) experiment at Jefferson Laboratory investigated the polarization transfer from longitudinally polarized electrons to longitudinally polarized positrons, with the aim of developing this technology for a low energy (~MeV) polarized positron source. Polarization of the positrons was measured by means of a Compton transmission polarimeter where incoming positrons transfer their polarization into circularly polarized photons that were subsequently analyzed by a thick polarized iron target. The measurement of the transmitted photon flux with respect to the orientation of the target polarization (+-) or the helicity (+-) of the incoming leptons provided the measurement of their polarization. Similar measurements with a known electron beam were also performed for calibration purposes. This presentation will describe the apparatus and calibrations performed at the injector at the Jefferson Laboratory to measure positron polarization in the momentum range 3.2-6.2 MeV/c, specifically to quantify the positron analyzing power from electron experimental data measured over a comparable momentum range.

  2. Applications of positron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Hakvoort, R.A.

    1993-12-23

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM).

  3. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  4. Ion source based on the cathodic arc

    Science.gov (United States)

    Sanders, David M.; Falabella, Steven

    1994-01-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  5. Laser Created Relativistic Positron Jets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Wilks, S C; Meyerhofer, D D; Bonlie, J; Chen, C D; Chen, S N; Courtois, C; Elberson, L; Gregori, G; Kruer, W; Landoas, O; Mithen, J; Murphy, C; Nilson, P; Price, D; Scheider, M; Shepherd, R; Stoeckl, C; Tabak, M; Tommasini, R; Beiersdorder, P

    2009-10-08

    Electron-positron jets with MeV temperature are thought to be present in a wide variety of astrophysical phenomena such as active galaxies, quasars, gamma ray bursts and black holes. They have now been created in the laboratory in a controlled fashion by irradiating a gold target with an intense picosecond duration laser pulse. About 10{sup 11} MeV positrons are emitted from the rear surface of the target in a 15 to 22-degree cone for a duration comparable to the laser pulse. These positron jets are quasi-monoenergetic (E/{delta}E {approx} 5) with peak energies controllable from 3-19 MeV. They have temperatures from 1-4 MeV in the beam frame in both the longitudinal and transverse directions. Positron production has been studied extensively in recent decades at low energies (sub-MeV) in areas related to surface science, positron emission tomography, basic antimatter science such as antihydrogen experiments, Bose-Einstein condensed positronium, and basic plasma physics. However, the experimental tools to produce very high temperature positrons and high-flux positron jets needed to simulate astrophysical positron conditions have so far been absent. The MeV temperature jets of positrons and electrons produced in our experiments offer a first step to evaluate the physics models used to explain some of the most energetic phenomena in the universe.

  6. Positrons observed to originate from thunderstorms

    Science.gov (United States)

    Fishman, Gerald J.

    2011-05-01

    Thunderstorms are the result of warm, moist air moving rapidly upward, then cooling and condensing. Electrification occurs within thunderstorms (as noted by Benjamin Franklin), produced primarily by frictional processes among ice particles. This leads to lightning discharges; the types, intensities, and rates of these discharges vary greatly among thunderstorms. Even though scientists have been studying lightning since Franklin's time, new phenomena associated with thunderstorms are still being discovered. In particular, a recent finding by Briggs et al. [2011], based on observations by the Gamma-Ray Burst Monitor (GBM) instrument on NASA's satellite-based Fermi Gamma-ray Space Telescope (Fermi), shows that positrons are also generated by thunderstorms. Positrons are the antimatter form of electrons—they have the same mass and charge as an electron but are of positive rather than negative charge; hence the name positron. Observations of positrons from thunderstorms may lead to a new tool for understanding the electrification and high-energy processes occurring within thunderstorms. New theories, along with new observational techniques, are rapidly evolving in this field.

  7. The behavior of 3d electrons and defects in TiAl-based alloys containing V and Cu studied by positron annihilation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Information of defects and 3d electrons in transition metals (Ti,V,Cu) and TiAl-based alloys (Ti50Al50,Ti50Al48V2,Ti50Al48Cu2) can be extracted from the positron lifetime and coincidence Doppler broadening spectra. The results show that the 3d electron signals for the transition metals Ti,V and Cu increase with the number of 3d electrons. The 3d electron signal and the electron density for binary TiAl alloy are relatively low due to the (Ti)3d-(Al)3p interactions. The addition of V and Cu atoms to TiAl alloy leads to the increase in the electron densities in bulk and the defects on grain boundaries simultaneously,as well as the enhancement of the 3d electron signal. The 3d electron signal in the spectrum of Ti50Al48Cu2 alloy is higher than that of Ti50Al48V2 alloy.

  8. ADAPTIVE CONTENT BASED TEXTUAL INFORMATION SOURCE PRIORITIZATION

    Directory of Open Access Journals (Sweden)

    Nikhil Mitra

    2014-10-01

    Full Text Available The world-wide-web offers a posse of textual information sources which are ready to be utilized for several applications. In fact, given the rapidly evolving nature of online data, there is a real risk of information overload unless we continue to develop and refine techniques to meaningfully segregate these information sources. Specifically, there is a dearth of content-oriented and intelligent techniques which can learn from past search experiences and also adapt to a user’s specific requirements during her current search. In this paper, we tackle the core issue of prioritizing textual information sources on the basis of the relevance of their content to the central theme that a user is currently exploring. We propose a new Source Prioritization Algorithm that adopts an iterative learning approach to assess the proclivity of given information sources towards a set of user-defined seed words in order to prioritise them. The final priorities obtained serve as initial priorities for the next search request. This serves a dual purpose. Firstly, the system learns incrementally from several users’ cumulative search experiences and re-adjusts the source priorities to reflect the acquired knowledge. Secondly, the refreshed source priorities are utilized to direct a user’s current search towards more relevant sources while adapting also to the new set of keywords acquired from that user. Experimental results show that the proposed algorithm progressively improves the system’s ability to discern between different sources, even in the presence of several random sources. Further, it is able to scale well to identify the augmented information source when a new enriched information source is generated by clubbing existing ones.

  9. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool.

    Science.gov (United States)

    Shpotyuk, Oleh; Filipecki, Jacek; Ingram, Adam; Golovchak, Roman; Vakiv, Mykola; Klym, Halyna; Balitska, Valentyna; Shpotyuk, Mykhaylo; Kozdras, Andrzej

    2015-01-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media. This algorithm was well justified at the example of thermally induced nanostructurization occurring in 80GeSe2-20Ga2Se3 glass.

  10. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  11. Efficient Cryosolid Positron Moderators

    Science.gov (United States)

    2012-08-01

    Howell, and Mr. Roy Larsen for infrastructure and equipment support. Mrs. Karen Clayton for administrative support. Mr. Byron Allmon for critical...showing explicitly the long, bent slow positron transport tube scaled to fit onto a 4x4-foot optical table. The sharp 90° bend in this tube is intended...half-cycle RPA scan of an N2 moderator. The ≈ 0.15 cps CEM signal is clearly visible above the ≈ 0.03 cps background. The very sharp absorption lines

  12. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  13. Cyclotrons and positron emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  14. Positron production within our atmosphere

    Science.gov (United States)

    Dwyer, Joseph

    2016-04-01

    Positrons are commonly produced within our atmosphere by cosmic rays and the decay radioactive isotopes. Energetic positrons are also produced by pair production from the gamma rays generated by relativistic runaway electrons. Indeed, such positrons have been detected in Terrestrial Electron Beams (TEBs) in the inner magnetosphere by Fermi/GBM. In addition, positrons play an important role in relativistic feedback discharges (also known as dark lightning). Relativistic feedback models suggest that these discharges may be responsible for Terrestrial Gamma-ray Flashes (TGFs) and some gamma-ray glows. When producing TGFs, relativistic feedback discharges may generate large, lightning-like currents with current moments reaching hundreds of kA-km. In addition, relativistic feedback discharges also may limit the electric field that is possible in our atmosphere, affecting other mechanisms for generating runaway electrons. It is interesting that positrons, often thought of as exotic particles, may play an important role in thunderstorm processes. In this presentation, the role of positrons in high-energy atmospheric physics will be discussed. The unusual observation of positron clouds inside a thunderstorm by the ADELE instrument on an NCAR/NSF Gulfstream V aircraft will also be described. These observations illustrate that we still have much to learn about positron production within our atmosphere.

  15. Positron lifetime in polycrystalline gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, A.M.; Serna, J. (Universidad Complutense de Madrid (Spain). Dept. de Fisica del Estado Solido)

    1984-06-16

    Positron lifetimes are measured on polycrystalline gadolinium between 15 and 25 /sup 0/C taking into account the microstructure of the specimens, especially the grain sizes of untreated or annealed sheets. Results show the existence of a trapping effect of positrons in Gd due to different trapping centers such as point defects, dislocations, grain boundaries, and other defects.

  16. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels-Alder click chemistry.

    Science.gov (United States)

    Zeglis, Brian M; Mohindra, Priya; Weissmann, Gabriel I; Divilov, Vadim; Hilderbrand, Scott A; Weissleder, Ralph; Lewis, Jason S

    2011-10-19

    A modular system for the construction of radiometalated antibodies was developed based on the bioorthogonal cycloaddition reaction between 3-(4-benzylamino)-1,2,4,5-tetrazine and the strained dienophile norbornene. The well-characterized, HER2-specific antibody trastuzumab and the positron emitting radioisotopes (64)Cu and (89)Zr were employed as a model system. The antibody was first covalently coupled to norbornene, and this stock of norbornene-modified antibody was then reacted with tetrazines bearing the chelators 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) or desferrioxamine (DFO) and subsequently radiometalated with (64)Cu and (89)Zr, respectively. The modification strategy is simple and robust, and the resultant radiometalated constructs were obtained in high specific activity (2.7-5.3 mCi/mg). For a given initial stoichiometric ratio of norbornene to antibody, the (64)Cu-DOTA- and (89)Zr-DFO-based probes were shown to be nearly identical in terms of stability, the number of chelates per antibody, and immunoreactivity (>93% in all cases). In vivo PET imaging and acute biodistribution experiments revealed significant, specific uptake of the (64)Cu- and (89)Zr-trastuzumab bioconjugates in HER2-positive BT-474 xenografts, with little background uptake in HER2-negative MDA-MB-468 xenografts or other tissues. This modular system-one in which the divergent point is a single covalently modified antibody stock that can be reacted selectively with various chelators-will allow for both greater versatility and more facile cross-comparisons in the development of antibody-based radiopharmaceuticals.

  17. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  18. Simple Signal Source based Micro Controller

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Using micro controller, DAC and Multi-periods syn-thesis, we can buildup a very simple signal source with precisefrequency, amplitude and waveform. Wave parameters can beprogrammed in advance. The circuit can satisfy some special re-quirements.

  19. Moving sound source localization based on triangulation method

    Science.gov (United States)

    Miao, Feng; Yang, Diange; Wen, Junjie; Lian, Xiaomin

    2016-12-01

    This study develops a sound source localization method that extends traditional triangulation to moving sources. First, the possible sound source locating plane is scanned. Secondly, for each hypothetical source location in this possible plane, the Doppler effect is removed through the integration of sound pressure. Taking advantage of the de-Dopplerized signals, the moving time difference of arrival (MTDOA) is calculated, and the sound source is located based on triangulation. Thirdly, the estimated sound source location is compared to the original hypothetical location and the deviations are recorded. Because the real sound source location leads to zero deviation, the sound source can be finally located by minimizing the deviation matrix. Simulations have shown the superiority of MTDOA method over traditional triangulation in case of moving sound sources. The MTDOA method can be used to locate moving sound sources with as high resolution as DAMAS beamforming, as shown in the experiments, offering thus a new method for locating moving sound sources.

  20. A new algorithm for EEG source reconstruction based on LORETA by contracting the source region

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method is presented for EEG source reconstruction based on multichannel surface EEG recordings. From the low-resolution tomography obtained by the low resolution electromagnetic tomography algorithm (LORETA), this method acquires the source tomography, which has high-resolution by contracting the source region. In contrast to focal underdetermined system solver (FOCUSS), this method can gain more accurate result under certain circumstances.

  1. Photonic Crystal Fiber Based Entangled Photon Sources

    Science.gov (United States)

    2014-03-01

    new entanglement source is to make sure the source can provide an efficient and scalable quantum information processor . They are usually generated...multiple scattering on the telecom wavelength photon-pair. Our findings show that quantum correlation of polarization-entangled photon-pairs is...Fiber, Quantum communication, Keyed Communication in Quantum Noise (KCQ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18

  2. Positron scattering measurements for application to medical physics

    Science.gov (United States)

    Sullivan, James

    2015-09-01

    While the use of positrons in medical imaging is now well established, there is still much to learn regarding the transport of positrons through the body, and the subsequent damage induced. Current models of dosimetry use only a crude approximation of the collision physics involved, and at low energies misrepresent the thermalisation process to a considerable degree. Recently, collaborative work has commenced to attempt to refine these models, incorporating a better representation of the underlying physics and trying to gain a better understanding of the damage done after the emission of a positron from a medical radioisotope. This problem is being attacked from several different angles, with new models being developed based upon established techniques in plasma and swarm physics. For all these models, a realistic representation of the collision processes of positrons with relevant molecular species is required. At the Australian National University, we have undertaken a program of measurements of positron scattering from a range of molecules that are important in biological systems, with a focus on analogs to DNA. This talk will present measurements of positron scattering from a range of these molecules, as well as describing the experimental techniques employed to make such measurements. Targets have been measured that are both liquid and solid at room temperature, and new approaches have been developed to get absolute cross section data. The application of the data to various models of positron thermalisation will also be described.

  3. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    Energy Technology Data Exchange (ETDEWEB)

    Mammar, Hamid, E-mail: hamid.mammar@unice.fr [Radiation Oncology Department, Antoine Lacassagne Center, Nice (France); CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Kerrou, Khaldoun; Nataf, Valerie [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France); Pontvert, Dominique [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Clemenceau, Stephane [Department of Neurosurgery, Pitie-Salpetriere Hospital, Paris (France); Lot, Guillaume [Department of Neurosurgery, Adolph De Rothschild Foundation, Paris (France); George, Bernard [Department of Neurosurgery, Lariboisiere Hospital, Paris (France); Polivka, Marc [Department of Pathology, Lariboisiere Hospital, Paris (France); Mokhtari, Karima [Department of Pathology, Pitie-Salpetriere Hospital, Paris (France); Ferrand, Regis; Feuvret, Loiec; Habrand, Jean-louis [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Pouyssegur, Jacques; Mazure, Nathalie [CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Talbot, Jean-Noeel [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France)

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake value (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.

  4. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes

    DEFF Research Database (Denmark)

    Hansen, Anders Elias; Petersen, Anncatrine Luisa; Henriksen, Jonas Rosager

    2015-01-01

    included carcinomas displayed high uptake levels of liposomes, whereas one of four sarcomas displayed signs of liposome retention. We conclude that nanocarrier-radiotracers could be important in identifying cancer patients that will benefit from nanocarrier-based therapeutics in clinical practice.......Since the first report of the enhanced permeability and retention (EPR) effect, the research in nanocarrier based antitumor drugs has been intense. The field has been devoted to treatment of cancer by exploiting EPR-based accumulation of nanocarriers in solid tumors, which for many years......-effect in large animals and humans with spontaneously developed cancer. In the present paper, we describe a novel loading method of copper-64 into PEGylated liposomes and use these liposomes to evaluate the EPR-effect in 11 canine cancer patients with spontaneous solid tumors by PET/CT imaging. We thereby provide...

  5. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes

    DEFF Research Database (Denmark)

    Hansen, Anders Elias; Petersen, Anncatrine Luisa; Henriksen, Jonas Rosager;

    2015-01-01

    -effect in large animals and humans with spontaneously developed cancer. In the present paper, we describe a novel loading method of copper-64 into PEGylated liposomes and use these liposomes to evaluate the EPR-effect in 11 canine cancer patients with spontaneous solid tumors by PET/CT imaging. We thereby provide......Since the first report of the enhanced permeability and retention (EPR) effect, the research in nanocarrier based antitumor drugs has been intense. The field has been devoted to treatment of cancer by exploiting EPR-based accumulation of nanocarriers in solid tumors, which for many years...... included carcinomas displayed high uptake levels of liposomes, whereas one of four sarcomas displayed signs of liposome retention. We conclude that nanocarrier-radiotracers could be important in identifying cancer patients that will benefit from nanocarrier-based therapeutics in clinical practice....

  6. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  7. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes.

    Science.gov (United States)

    Hansen, Anders E; Petersen, Anncatrine L; Henriksen, Jonas R; Boerresen, Betina; Rasmussen, Palle; Elema, Dennis R; af Rosenschöld, Per Munck; Kristensen, Annemarie T; Kjær, Andreas; Andresen, Thomas L

    2015-07-28

    Since the first report of the enhanced permeability and retention (EPR) effect, the research in nanocarrier based antitumor drugs has been intense. The field has been devoted to treatment of cancer by exploiting EPR-based accumulation of nanocarriers in solid tumors, which for many years was considered to be a ubiquitous phenomenon. However, the understanding of differences in the EPR-effect between tumor types, heterogeneities within each patient group, and dependency on tumor development stage in humans is sparse. It is therefore important to enhance our understanding of the EPR-effect in large animals and humans with spontaneously developed cancer. In the present paper, we describe a novel loading method of copper-64 into PEGylated liposomes and use these liposomes to evaluate the EPR-effect in 11 canine cancer patients with spontaneous solid tumors by PET/CT imaging. We thereby provide the first high-resolution analysis of EPR-based tumor accumulation in large animals. We find that the EPR-effect is strong in some tumor types but cannot be considered a general feature of solid malignant tumors since we observed a high degree of accumulation heterogeneity between tumors. Six of seven included carcinomas displayed high uptake levels of liposomes, whereas one of four sarcomas displayed signs of liposome retention. We conclude that nanocarrier-radiotracers could be important in identifying cancer patients that will benefit from nanocarrier-based therapeutics in clinical practice.

  8. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons.

    Science.gov (United States)

    Sato, K; Kobayashi, Y

    2015-05-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  9. TRIPPy: Python-based Trailed Source Photometry

    Science.gov (United States)

    Fraser, Wesley C.; Alexandersen, Mike; Schwamb, Megan E.; Marsset, Michael E.; Pike, Rosemary E.; Kavelaars, JJ; Bannister, Michele T.; Benecchi, Susan; Delsanti, Audrey

    2016-05-01

    TRIPPy (TRailed Image Photometry in Python) uses a pill-shaped aperture, a rectangle described by three parameters (trail length, angle, and radius) to improve photometry of moving sources over that done with circular apertures. It can generate accurate model and trailed point-spread functions from stationary background sources in sidereally tracked images. Appropriate aperture correction provides accurate, unbiased flux measurement. TRIPPy requires numpy, scipy, matplotlib, Astropy (ascl:1304.002), and stsci.numdisplay; emcee (ascl:1303.002) and SExtractor (ascl:1010.064) are optional.

  10. Positron emission mammography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  11. Positron Emission Mammography imaging

    Science.gov (United States)

    Moses, William W.

    2004-06-01

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and X-ray mammography, as well as PEM and X-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  12. High Efficiency Positron Accumulation for High-Precision Measurements

    CERN Document Server

    Hoogerheide, S Fogwell; Novitski, E; Gabrielse, G

    2015-01-01

    Positrons are accumulated within a Penning trap designed to make more precise measurements of the positron and electron magnetic moments. The retractable radioactive source used is weak enough to require no license for handling radioactive material and the radiation dosage one meter from the source gives an exposure several times smaller than the average radiation dose on the earth's surface. The 100 mK trap is mechanically aligned with the 4.2 K superconducting solenoid that produces a 6 tesla magnetic trapping field with a direct mechanical coupling.

  13. Electrons and Positrons in Cosmic Rays

    CERN Document Server

    Panov, A D

    2013-01-01

    This review concentrates on the results obtained, over the last ten years, on the astrophysics of high-energy cosmic ray electrons and positrons. The anomalies, observed in the data of recent experiments (possible bump in the electron spectrum and the PAMELA anomaly in the positron fraction) are discussed through the systematic use of simple analytical solutions of the transport equations for cosmic ray electrons. Three main ways of explaining the origin of the anomalies are considered: the conservative way supposing the positrons to be pure secondary particles; the nearby sources like pulsars origin; and the dark matter origin. This review discusses, also, the inability to select the pulsars model or the dark matter model to explain the electron anomalies on the basis of the electron spectra with the usual large energy binning ($\\gtrsim15%$). It is argued that the signature of nearby pulsars origin of the anomalies against the dark matter origin could be the fine structure of the cosmic ray electron spectrum...

  14. 21 CFR 892.1110 - Positron camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food... DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image the distribution of positron-emitting radionuclides in the...

  15. Statistical Hadronisation in Positron-proton Collisions

    CERN Document Server

    Urmossy, Karoly

    2016-01-01

    We reproduce charged hadron momentum fraction distributions measured in diffractive positron-proton collisions resulting in hadronic final states with two jets of approximately equal energies. Our hadronisation model is based on microcanonical statistics and negative binomial multiplicity fluctuations. We describe the scale dependence of the fit parameters of the model with formulas obtained by approximating the exact solution of the DGLAP equation in the $\\phi^3$ theory with leading order splitting function and 1-loop coupling.

  16. Multivalent bifunctional chelator scaffolds for gallium-68 based positron emission tomography imaging probe design: signal amplification via multivalency.

    Science.gov (United States)

    Singh, Ajay N; Liu, Wei; Hao, Guiyang; Kumar, Amit; Gupta, Anjali; Öz, Orhan K; Hsieh, Jer-Tsong; Sun, Xiankai

    2011-08-17

    The role of the multivalent effect has been well recognized in the design of molecular imaging probes toward the desired imaging signal amplification. Recently, we reported a bifunctional chelator (BFC) scaffold design, which provides a simple and versatile approach to impart multivalency to radiometal based nuclear imaging probes. In this work, we report a series of BFC scaffolds ((t)Bu(3)-1-COOH, (t)Bu(3)-2-(COOH)(2), and (t)Bu(3)-3-(COOH)(3)) constructed on the framework of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for (68)Ga-based PET probe design and signal amplification via the multivalent effect. For proof of principle, a known integrin α(v)β(3) specific ligand (c(RGDyK)) was used to build the corresponding NOTA conjugates (H(3)1, H(3)2, and H(3)3), which present 1-3 copies of c(RGDyK) peptide, respectively, in a systematic manner. Using the integrin α(v)β(3) binding affinities (IC(50) values), enhanced specific binding was observed for multivalent conjugates (H(3)2: 43.9 ± 16.1 nM; H(3)3: 14.7 ± 5.0 nM) as compared to their monovalent counterpart (H(3)1: 171 ± 60 nM) and the intact c(RGDyK) peptide (204 ± 76 nM). The obtained conjugates were efficiently labeled with (68)Ga(3+) within 30 min at room temperature in high radiochemical yields (>95%). The in vivo evaluation of the labeled conjugates, (68)Ga-1, (68)Ga-2, and (68)Ga-3, was performed using male severe combined immunodeficiency (SCID) mice bearing integrin α(v)β(3) positive PC-3 tumor xenografts (n = 3). All (68)Ga-labeled conjugates showed high in vivo stability with no detectable metabolites found by radio-HPLC within 2 h postinjection (p.i.). The PET signal amplification in PC-3 tumor by the multivalent effect was clearly displayed by the tumor uptake of the (68)Ga-labeled conjugates ((68)Ga-3: 2.55 ± 0.50%ID/g; (68)Ga-2: 1.90 ± 0.10%ID/g; (68)Ga-1: 1.66 ± 0.15%ID/g) at 2 h p.i. In summary, we have designed and synthesized a series of NOTA-based BFC scaffolds with signal

  17. Recent development of positron annihilation methods

    CERN Document Server

    Doyama, M

    2002-01-01

    When positron comes into solid or liquid, it moves in the matter and emitted two gamma rays at the opposite direction, by pair annihilation with electron. Each gamma ray is about 511 keV. The experiments of positron annihilation has been developed by three methods such as angular correlation between two gamma rays, energy analysis of emission gamma ray and positron lifetime. The angular correlation between two gamma rays is determined by gamma ray position detector.The energy analysis was measured by S-W analysis and Coincidence Doppler Broadening (CDB) method. Positron lifetime are determined by gamma-gamma lifetime measurement method, beta sup + -gamma lifetime measurement method and other method using waveform of photomultiplier, and determination of time and frequency of gamma-ray. Positron beam is applied to positron scattering, positron diffraction, low energy positron diffraction (LEPD), PELS, LEPSD, PAES, positron re-emission imaging microscope (PRIM) and positron channeling. The example of CDB method...

  18. Three Dimensional Positron Annihilation Momentum Measurement Technique Applied to Measure Oxygen-Atom Defects in 6H Silicon Carbide

    Science.gov (United States)

    2010-03-01

    detectors used 30 in 2D ACAR are discrete scintillation detector arrays, multi-wire proportional counters, and Anger cameras . A typical 2D ACAR...spectrometer is illustrated in Figure 12. Coincidence Multiplexer Analog Interface ADC A B PC Sample Positron Source x1 y2y1 x2 Trigger Figure...semiconductor material, in this experiment, it was planar germanium, by either photoelectric absorption, Compton scattering or pair production based on

  19. Positron Scanner for Locating Brain Tumors

    Science.gov (United States)

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  20. Hiding the Source Based on Limited Flooding for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan Chen

    2015-11-01

    Full Text Available Wireless sensor networks are widely used to monitor valuable objects such as rare animals or armies. Once an object is detected, the source, i.e., the sensor nearest to the object, generates and periodically sends a packet about the object to the base station. Since attackers can capture the object by localizing the source, many protocols have been proposed to protect source location. Instead of transmitting the packet to the base station directly, typical source location protection protocols first transmit packets randomly for a few hops to a phantom location, and then forward the packets to the base station. The problem with these protocols is that the generated phantom locations are usually not only near the true source but also close to each other. As a result, attackers can easily trace a route back to the source from the phantom locations. To address the above problem, we propose a new protocol for source location protection based on limited flooding, named SLP. Compared with existing protocols, SLP can generate phantom locations that are not only far away from the source, but also widely distributed. It improves source location security significantly with low communication cost. We further propose a protocol, namely SLP-E, to protect source location against more powerful attackers with wider fields of vision. The performance of our SLP and SLP-E are validated by both theoretical analysis and simulation results.

  1. SOURCE EXPLORER: Towards Web Browser Based Tools for Astronomical Source Visualization and Analysis

    Science.gov (United States)

    Young, M. D.; Hayashi, S.; Gopu, A.

    2014-05-01

    As a new generation of large format, high-resolution imagers come online (ODI, DECAM, LSST, etc.) we are faced with the daunting prospect of astronomical images containing upwards of hundreds of thousands of identifiable sources. Visualizing and interacting with such large datasets using traditional astronomical tools appears to be unfeasible, and a new approach is required. We present here a method for the display and analysis of arbitrarily large source datasets using dynamically scaling levels of detail, enabling scientists to rapidly move from large-scale spatial overviews down to the level of individual sources and everything in-between. Based on the recognized standards of HTML5+JavaScript, we enable observers and archival users to interact with their images and sources from any modern computer without having to install specialized software. We demonstrate the ability to produce large-scale source lists from the images themselves, as well as overlaying data from publicly available source ( 2MASS, GALEX, SDSS, etc.) or user provided source lists. A high-availability cluster of computational nodes allows us to produce these source maps on demand and customized based on user input. User-generated source lists and maps are persistent across sessions and are available for further plotting, analysis, refinement, and culling.

  2. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tattersall, Wade [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Chiari, Luca [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Machacek, J. R.; Anderson, Emma; Sullivan, James P. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); White, Ron D. [Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Brunger, M. J. [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Buckman, Stephen J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Garcia, Gustavo [Instituto de Fısica Fundamental, Consejo Superior de Investigationes Cientıficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, Francisco [Departamento de Fısica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-01-28

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.

  3. Positron interactions with water-total elastic, total inelastic, and elastic differential cross section measurements.

    Science.gov (United States)

    Tattersall, Wade; Chiari, Luca; Machacek, J R; Anderson, Emma; White, Ron D; Brunger, M J; Buckman, Stephen J; Garcia, Gustavo; Blanco, Francisco; Sullivan, James P

    2014-01-28

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.

  4. Electron Source based on Superconducting RF

    Science.gov (United States)

    Xin, Tianmu

    High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.

  5. Smart material-based radiation sources

    Science.gov (United States)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  6. Patch nearfield acoustic holography based on the equivalent source method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    On the basis of nearfield acoustic holography (NAH) based on the equivalent source method (ESM), patch NAH based on the ESM is proposed. The method overcomes the shortcoming in the conventional NAH that the hologram surface should be larger than the source surface. It need not to discretize the whole source and its measurement need not to cover the whole source. The measurement may be performed over the region of interest, and the reconstruction can be done in the region directly. The method is flexible in applications, stable in computation, and very easy to implement. It has good potential applications in engineering. The nu- merical simulations show the invalidity of the conventional NAH based on the ESM and prove the validities of the proposed method for reconstructing a partial source and the regularization for reducing the error effect of the pressure measured on the hologram surface.

  7. Patch nearfield acoustic holography based on the equivalent source method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    On the basis of nearfield acoustic holography (NAH) based on the equivalent source method (ESM), patch NAH based on the ESM is proposed. The method overcomes the shortcoming in the conventional NAH that the hologram surface should be larger than the source surface. It need not to discretize the whole source and its measurement need not to cover the whole source. The measurement may be performed over the region of interest, and the reconstruction can be done in the region directly. The method is flexible in applications, stable in computation, and very easy to implement. It has good potential applications in engineering. The numerical simulations show the invalidity of the conventional NAH based on the ESM and prove the validities of the proposed method for reconstructing a partial source and the regularization for reducing the error effect of the pressure measured on the hologram surface.

  8. Positron acceleration by sheath field in ultra-intense laser–solid interactions

    Science.gov (United States)

    Yan, Yonghong; Wu, Yuchi; Chen, Jia; Yu, Minghai; Dong, Kegong; Gu, Yuqiu

    2017-04-01

    A positron production experiment was performed by irradiating an ultra-intense picosecond laser on solid tantalum targets. Quasi-monoenergetic positron beams were obtained owing to the sheath field on the back of the target. The experiment shows that the peak energy of the positron spectrum has a linear relation with the reciprocal of the target diameter. A simple analytical model of the sheath field was constructed to explain the experimental data, which predicts the positron peak energy in terms of the target diameter and hot electron parameters. Based on the field model, Monte Carlo simulations were conducted to treat the positron production and acceleration self-consistently. The simulated spectra are in good agreement with most experiment results. The disagreement of the 1 mm diameter data reveals that the hot electron propagation along the target flank surface plays an important role in the sheath field set up. Several aspects involved in the positron acceleration are discussed.

  9. Geneva University - The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography

    CERN Multimedia

    Université de Genève

    2012-01-01

    Geneva University École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 14 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11.15 a.m. - Science II, Auditoire 1S081, 30, quai Ernest-Ansermet, 1211 Genève 4 The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography Dr Chiara CASELLA   ETH Zurich   PET (Positron Emission Tomography) is a tool for in-vivo functional imaging, successfully used since the earliest days of nuclear medicine. It is based on the detection of the two coincident 511 keV photons from the annihilation of a positron, emitted from a radiotracer injected into the body. Tomographic analysis of the coincidence data allows for a 3D reconstructed image of the source distribution. The AX-PET experiment proposes a novel geometrical approach for a PET scanner, in which l...

  10. Source—to—Source Conversion Based on Formal Definition

    Institute of Scientific and Technical Information of China (English)

    张幸儿; 李建新; 等

    1991-01-01

    This paper proposes the idea of source-to-source conversion between two heterogeneous high-level programming languages.The conversion is based on formal definition and oriented to multi-pairs of languages.The issues in conversion from PASCAL to C are also discussed.

  11. Theoretical study on the positron annihilation in Rocksalt structured magnesium oxide

    Institute of Scientific and Technical Information of China (English)

    Liu Jian-Dang; Zhang Jie; Zhang Li-Juan; Hao Ying-Ping; Guo Wei-Feng; Cheng Bin; Ye Bang-Jiao

    2011-01-01

    Based on the atomic superposition approximation (ATSUP) and first-principles pseudopotential plane-wave methods, the bulk and Mg mono-vacancy positron lifetime of magnesium oxide were calculated using Arponen-Pajamme and Boro(n)ski-Nieminen positron-annihilation-rate interpolation formula respectively. The calculated values are in good agreement with experimental values and the first-principles method gives more convincing results. The positron annihilation density spectra analysis reveals that positrons mainly annihilate with valence electrons of oxygen atoms when the magnesium-vacancy appears within magnesium oxide.

  12. Production and application of pulsed slow-positron beam using an electron LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Tetsuo; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Kobayashi, Yoshinori

    1997-03-01

    Slow-positron beam is quite useful for non-destructive material research. At the Electrotechnical Laboratory (ETL), an intense slow positron beam line by exploiting an electron linac has been constructed in order to carry out various experiments on material analysis. The beam line can generates pulsed positron beams of variable energy and of variable pulse period. Many experiments have been carried out so far with the beam line. In this paper, various capability of the intense pulsed positron beam is presented, based on the experience at the ETL, and the prospect for the future is discussed. (author)

  13. Application of positron annihilation lifetime technique for {gamma}-irradiation stresses study in chalcogenide vitreous semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Golovchak, R.; Kovalskiy, A. [Scientific Research Company ' ' Carat' ' , Stryjska str. 20279031 Lviv (Ukraine); Filipecki, J.; Hyla, M. [Physics Institute, Pedagogical University, Al. Armii Krajowej 13/1542201 Czestochowa (Poland)

    2002-08-01

    The influence of {gamma}-irradiation on the positron annihilation lifetime spectra in chalcogenide vitreous semiconductors of As-Ge-S system has been analysed. The correlations between lifetime data, structural features and chemical compositions of glasses have been discussed. The observed lifetime components are connected with bulk positron annihilation and positron annihilation on various native and {gamma}-induced open volume defects. It is concluded that after {gamma}-irradiation of investigated materials the {gamma}-induced microvoids based on S{sub 1}{sup -}, As{sub 2}{sup -}, and Ge{sub 3}{sup -} coordination defects play the major role in positron annihilation processes. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  14. AlInGaN-Based Superlattice Terahertz Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — WaveBand Corporation in collaboration with Virginia Commonwealth University proposes to design and fabricate a new sub-millimeter source based on an InAlGaN...

  15. Single channel blind source separation based on ICA feature extraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new technique is proposed to solve the blind source separation (BSS) given only a single channel observation. The basis functions and the density of the coefficients of source signals learned by ICA are used as the prior knowledge. Based on the learned prior information the learning rules of single channel BSS are presented by maximizing the joint log likelihood of the mixed sources to obtain source signals from single observation,in which the posterior density of the given measurements is maximized. The experimental results exhibit a successful separation performance for mixtures of speech and music signals.

  16. Sourcing Team Behavior in Project-Based MNE's

    DEFF Research Database (Denmark)

    Hansen, Anders Peder Lysholm

    2014-01-01

    This paper presents and discusses a multiple case study of three cross-functional category teams responsible for sourcing critical components within multi-national, project-based enterprises. The study focused on behaviour and management of the sourcing teams and found that the sourcing process...... across the three cases was characterized by conflict between departments represented in the category teams. This resulted in unfortunate sourcing team behaviour and unaligned performance management, which in turn had a number of adverse effects. Further research on how to create a holistic and balanced...

  17. Voltage Sag Source Location Based on Instantaneous Energy Detection

    DEFF Research Database (Denmark)

    Chen, Zhe; Kong, Wei; Dong, Xinzhou

    2008-01-01

    Voltage sag is a major power quality problem, which could disrupt the operation of voltage-sensitive equipment. This paper presents the method based on variation components-based instantaneous energy for voltage sag source detection. Simulations have been performed to provide the thorough analysi...... for system with distributed generation units. The studies show that the presented method can effectively detect the location of voltage sag source....

  18. An accelerator-based epithermal photoneutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.; Yoon, W.Y. [and others

    1995-11-01

    Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.

  19. NMF on positron emission tomography

    DEFF Research Database (Denmark)

    Bödvarsson, Bjarni; Hansen, Lars Kai; Svarer, Claus;

    2007-01-01

    In positron emission tomography, kinetic modelling of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling in the arm or as shown in (Liptrot, M, et al., 2004) by non-invasive K-means clustering....... We propose another method to estimate time-activity curves (TAC) extracted directly from dynamic positron emission tomography (PET) scans by non-negative matrix factorization (NMF). Since the scaling of the basis curves is lost in the NMF the estimated TAC is scaled by a vector alpha which...

  20. Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Li, YunWei; Blaabjerg, Frede;

    2015-01-01

    The virtual impedance concept is increasingly used for the control of power electronic systems. Generally, the virtual impedance loop can either be embedded as an additional degree of freedom for active stabilization and disturbance rejection, or be employed as a command reference generator...... for the converters to provide ancillary services. This paper presents an overview of the virtual-impedance-based control strategies for voltage-source and current-source converters. The control output impedance shaping attained by the virtual impedances is generalized first using the impedance-based models...

  1. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-01-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  2. Z - Source Multi Level Inverter Based PV Generation System

    Directory of Open Access Journals (Sweden)

    T. Lakhmi kanth

    2014-09-01

    Full Text Available In this paper a novel technique of Z-Source multilevel Inverter based PV Generation system is implemented and simulated using MATLAB-Simulink simulation software. The Photovoltaic cells are healthier option for converting solar energy into electricity. Due to high capital cost and low efficiency PV cells have not yet been a fully smart choice for electricity users. To enhance the performance of the system, Z-Source multi level inverter can be used in place of conventional Voltage Source Inverter (VSI in Solar Power Generation System. The PV cell model is developed using circuit mathematical equations. The Z-Source multilevel inverter is modeled to realize boosted DC to AC conversion (inversion with low THD. Outcome shows that the energy conversion efficiency of ZSMLI is a lot improved as compared to conventional voltage Source Inverter (VSI. By doing FFT analysis we can know the total THD.

  3. Line-Source Based X-Ray Tomography

    Directory of Open Access Journals (Sweden)

    Deepak Bharkhada

    2009-01-01

    Full Text Available Current computed tomography (CT scanners, including micro-CT scanners, utilize a point x-ray source. As we target higher and higher spatial resolutions, the reduced x-ray focal spot size limits the temporal and contrast resolutions achievable. To overcome this limitation, in this paper we propose to use a line-shaped x-ray source so that many more photons can be generated, given a data acquisition interval. In reference to the simultaneous algebraic reconstruction technique (SART algorithm for image reconstruction from projection data generated by an x-ray point source, here we develop a generalized SART algorithm for image reconstruction from projection data generated by an x-ray line source. Our numerical simulation results demonstrate the feasibility of our novel line-source based x-ray CT approach and the proposed generalized SART algorithm.

  4. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    Energy Technology Data Exchange (ETDEWEB)

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2010-08-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that don’t form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  5. Six transformer based asymmetrical embedded Z-source inverters

    DEFF Research Database (Denmark)

    Wei, Mo; Poh Chiang, Loh; Chi, Jin

    2013-01-01

    Embedded/Asymmetrical embedded Z-source inverters were proposed to maintain smooth input current/voltage across the dc source and within the impedance network, remain the shoot-through feature used to boost up the dc-link voltage without adding bulky filter at input side. This paper introduces...... a class of transformer based asymmetrical embedded Z-source inverters which keep the smooth input current and voltage while achieving enhanced voltage boost capability. The presented inverters are verified by laboratory prototypes experimentally....

  6. Fiber-based swept-source terahertz radar.

    Science.gov (United States)

    Huang, Yu-Wei; Tseng, Tzu-Fang; Kuo, Chung-Chiu; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-05-01

    We demonstrate an all-terahertz swept-source imaging radar operated at room temperature by using terahertz fibers for radiation delivery and with a terahertz-fiber directional coupler acting as a Michelson interferometer. By taking advantage of the high water reflection contrast in the low terahertz regime and by electrically sweeping at a high speed a terahertz source combined with a fast rotating mirror, we obtained the living object's distance information with a high image frame rate. Our experiment showed that this fiber-based swept-source terahertz radar could be used in real time to locate concealed moving live objects with high stability.

  7. Piezoelectric-based hybrid reserve power sources for munitions

    Science.gov (United States)

    Rastegar, Jahangir; Pereira, Carlos M.; Feng, Dake

    2016-05-01

    Reserve power sources are used extensively in munitions and other devices such as emergency devices or remote sensors that have to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries require sometimes in excess of 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources have to be provided to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper the development of a hybrid reserve power source obtained by the integration of a piezoelectric-based energy harvesting device with a reserve battery that can provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is also provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.

  8. Data-based matched-mode source localization for a moving source.

    Science.gov (United States)

    Yang, T C

    2014-03-01

    A data-based matched-mode source localization method is proposed in this paper for a moving source, using mode wavenumbers and depth functions estimated directly from the data, without requiring any environmental acoustic information and assuming any propagation model. The method is in theory free of the environmental mismatch problem because the mode replicas are estimated from the same data used to localize the source. Besides the estimation error due to the approximations made in deriving the data-based algorithms, the method has some inherent drawbacks: (1) It uses a smaller number of modes than theoretically possible because some modes are not resolved in the measurements, and (2) the depth search is limited to the depth covered by the receivers. Using simulated data, it is found that the performance degradation due to the afore-mentioned approximation/limitation is marginal compared with the original matched-mode source localization method. The proposed method has a potential to estimate the source range and depth for real data and be free of the environmental mismatch problem, noting that certain aspects of the (estimation) algorithms have previously been tested against data. The key issues are discussed in this paper.

  9. Tutorial on fiber-based sources for biophotonic applications

    Science.gov (United States)

    Taylor, James R.

    2016-06-01

    Fiber-based lasers and master oscillator power fiber amplifier configurations are described. These allow spectral versatility coupled with pulse width and pulse repetition rate selection in compact and efficient packages. This is enhanced through the use of nonlinear optical conversion in fibers and fiber-coupled nonlinear crystals, which can be integrated to provide all-fiber pump sources for diverse application. The advantages and disadvantages of sources based upon supercontinuum generation, stimulated Raman conversion, four-wave mixing, parametric generation and difference frequency generation, allowing spectral coverage from the UV to the mid-infrared, are considered.

  10. Source effects in analyzer-based X-ray phase contrast imaging with conventional sources

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M. G. [Universidade Federal da Integracao Latino-Americana, 85867-970 Foz do Iguacu, PR (Brazil); Manica, J. [Universidade Estadual do Oeste do Parana, 85867-970 Foz do Iguacu, PR (Brazil); Mazzaro, I.; Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba, PR (Brazil); Huang, X.-R. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-11-15

    Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals. These parameters, if not well optimized, may cause important features in the acquired images which can mislead the interpretation. A few ways to minimize these effects are implemented and discussed, including some experimental results.

  11. Spectral and spatial characterisation of laser-driven positron beams

    Science.gov (United States)

    Sarri, G.; Warwick, J.; Schumaker, W.; Poder, K.; Cole, J.; Doria, D.; Dzelzainis, T.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Romagnani, L.; Samarin, G. M.; Symes, D.; Thomas, A. G. R.; Yeung, M.; Zepf, M.

    2017-01-01

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. The results obtained indicate that current technology allows to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.

  12. Positron emission particle tracking-Application and labelling techniques

    Institute of Scientific and Technical Information of China (English)

    David J.Parker; Xianfeng Fan

    2008-01-01

    The positron emission particle tracking (PEPT) technique has been widely used in science and engineering to obtain detailed information on the motion and flow fields of fluids or granular materials in multiphase systems, for example, fluids in rock cracks, chemical reactors and food processors; dynamic behaviour of granular materials in chemical reactors, granulators, mixers, dryers, rotating kilns and ball mills. The information obtained by the PEPT technique can be used to optimise the design, operational conditions for a wide range of industrial process systems, and to evaluate modelling work. The technique is based on tracking radioactively labelled particles (up to three particles) by detecting the pairs of back-to-back 511 ke V -γ-rays arising from annihilation of emitted positrons. It therefore involves a positron camera, location algorithms for calculating the tracer location and speed, and tracer labelling techniques. This paper will review the particle tracking technique from tracking algorithm, tracer labelling to their application.

  13. Source mask optimization study based on latest Nikon immersion scanner

    Science.gov (United States)

    Zhu, Jun; Wei, Fang; Chen, Lijun; Zhang, Chenming; Zhang, Wei; Nishinaga, Hisashi; El-Sewefy, Omar; Gao, Gen-Sheng; Lafferty, Neal; Meiring, Jason; Zhang, Recoo; Zhu, Cynthia

    2016-03-01

    The 2x nm logic foundry node has many challenges since critical levels are pushed close to the limits of low k1 ArF water immersion lithography. For these levels, improvements in lithographic performance can translate to decreased rework and increased yield. Source Mask Optimization (SMO) is one such route to realize these image fidelity improvements. During SMO, critical layout constructs are intensively optimized in both the mask and source domain, resulting in a solution for maximum lithographic entitlement. From the hardware side, advances in source technology have enabled free-form illumination. The approach allows highly customized illumination, enabling the practical application of SMO sources. The customized illumination sources can be adjusted for maximum versatility. In this paper, we present a study on a critical layer of an advanced foundry logic node using the latest ILT based SMO software, paired with state-of-the-art scanner hardware and intelligent illuminator. Performance of the layer's existing POR source is compared with the ideal SMO result and the installed source as realized on the intelligent illuminator of an NSR-S630D scanner. Both simulation and on-silicon measurements are used to confirm that the performance of the studied layer meets established specifications.

  14. A Parallax-based Distance Estimator for Spiral Arm Sources

    CERN Document Server

    Reid, M J; Menten, K M; Brunthaler, A

    2016-01-01

    The spiral arms of the Milky Way are being accurately located for the first time via trigonometric parallaxes of massive star forming regions with the BeSSeL Survey, using the Very Long Baseline Array and the European VLBI Network, and with the Japanese VERA project. Here we describe a computer program that leverages these results to significantly improve the accuracy and reliability of distance estimates to other sources that are known to follow spiral structure. Using a Bayesian approach, sources are assigned to arms based on their (l,b,v) coordinates with respect to arm signatures seen in CO and HI surveys. A source's kinematic distance, displacement from the plane, and proximity to individual parallax sources are also considered in generating a full distance probability density function. Using this program to estimate distances to large numbers of star forming regions, we generate a realistic visualization of the Milky Way's spiral structure as seen from the northern hemisphere.

  15. Phased-array sources based on nonlinear metamaterial nanocavities.

    Science.gov (United States)

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P; Liu, Sheng; Luk, Ting S; Kadlec, Emil A; Shaner, Eric A; Klem, John F; Sinclair, Michael B; Brener, Igal

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

  16. Intensive neutrino source on the base of lithium converter

    CERN Document Server

    Lyashuk, V I

    2015-01-01

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neu...

  17. Excess of positrons in cosmic rays: A Lindbladian model of quantum electrodynamics

    CERN Document Server

    Campos, Andre G; Bondar, Denys I; Rabitz, Herschel

    2015-01-01

    The fraction of positrons and electrons in cosmic rays recently observed on the International Space Station unveiled an unexpected excess of the positrons, undermining the current foundations of cosmic rays sources. We provide a quantum electrodynamics phenomenological model explaining the observed data. This model incorporates electroproduction, in which cosmic ray electrons decelerating in the interstellar medium emit photons that turn into electron-positron pairs. These findings not only advance our knowledge of cosmic ray physics, but also pave the way for computationally efficient formulations of quantum electrodynamics, critically needed in physics and chemistry.

  18. Note: Localization based on estimated source energy homogeneity

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Eriksen, Fredrik Kvalheim; Lengliné, Olivier; Daniel, Guillaume; Flekkøy, Eirik G.; Mâløy, Knut Jørgen

    2016-09-01

    Acoustic signal localization is a complex problem with a wide range of industrial and academic applications. Herein, we propose a localization method based on energy attenuation and inverted source amplitude comparison (termed estimated source energy homogeneity, or ESEH). This inversion is tested on both synthetic (numerical) data using a Lamb wave propagation model and experimental 2D plate data (recorded with 4 accelerometers sensitive up to 26 kHz). We compare the performance of this technique with classic source localization algorithms: arrival time localization, time reversal localization, and localization based on energy amplitude. Our technique is highly versatile and out-performs the conventional techniques in terms of error minimization and cost (both computational and financial).

  19. Volume-Based Parameters of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Improve Disease Recurrence Prediction in Postmastectomy Breast Cancer Patients With 1 to 3 Positive Axillary Lymph Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Naomi, E-mail: haruhi0321@gmail.com [Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Department of Radiology, Ehime University, Ehime (Japan); Kataoka, Masaaki [Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Sugawara, Yoshifumi [Department of Diagnostic Radiology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Ochi, Takashi [Department of Radiology, Ehime University, Ehime (Japan); Kiyoto, Sachiko; Ohsumi, Shozo [Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Mochizuki, Teruhito [Department of Radiology, Ehime University, Ehime (Japan)

    2013-11-15

    Purpose: To determine whether volume-based parameters on pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer patients treated with mastectomy without adjuvant radiation therapy are predictive of recurrence. Methods and Materials: We retrospectively analyzed 93 patients with 1 to 3 positive axillary nodes after surgery, who were studied with {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography for initial staging. We evaluated the relationship between positron emission tomography parameters, including the maximum standardized uptake value, metabolic tumor volume (MTV), and total lesion glycolysis (TLG), and clinical outcomes. Results: The median follow-up duration was 45 months. Recurrence was observed in 11 patients. Metabolic tumor volume and TLG were significantly related to tumor size, number of involved nodes, nodal ratio, nuclear grade, estrogen receptor (ER) status, and triple negativity (TN) (all P values were <.05). In receiver operating characteristic curve analysis, MTV and TLG showed better predictive performance than tumor size, ER status, or TN (area under the curve: 0.85, 0.86, 0.79, 0.74, and 0.74, respectively). On multivariate analysis, MTV was an independent prognostic factor of locoregional recurrence-free survival (hazard ratio 34.42, 95% confidence interval 3.94-882.71, P=.0008) and disease-free survival (DFS) (hazard ratio 13.92, 95% confidence interval 2.65-103.78, P=.0018). The 3-year DFS rate was 93.8% for the lower MTV group (<53.1; n=85) and 25.0% for the higher MTV group (≥53.1; n=8; P<.0001, log–rank test). The 3-year DFS rate for patients with both ER-positive status and MTV <53.1 was 98.2%; and for those with ER-negative status and MTV ≥53.1 it was 25.0% (P<.0001). Conclusions: Volume-based parameters improve recurrence prediction in postmastectomy breast cancer patients with 1 to 3 positive nodes. The addition of MTV to ER status or TN has

  20. Asymmetrical transformer-based embedded Z-source inverters

    DEFF Research Database (Denmark)

    Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede

    2013-01-01

    their performances, a number of asymmetrical transformer-based embedded Z-source inverters are proposed. Through theoretical derivation and experiments, the proposed inverters have been shown to draw a smooth input current and produce a high gain by varying the transformer turns ratio n. The range of variation for n...

  1. Solving Information-Based Problems: Evaluating Sources and Information

    Science.gov (United States)

    Brand-Gruwel, Saskia; Stadtler, Marc

    2011-01-01

    The focus of this special section is on the processes involved when solving information-based problems. Solving these problems requires from people that they are able to define the information problem, search and select usable and reliable sources and information and synthesise information into a coherent body of knowledge. An important aspect…

  2. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.;

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...

  3. Fast Tunable Wavelength Sources Based on the Laser Diode Array

    Institute of Scientific and Technical Information of China (English)

    Sung-Chan; Cho; Hyun; Ha; Hong; Byoung-Whi; Kim

    2003-01-01

    We report a demonstration of a fast wavelength tunable source (TWS) based on the laser diode array coupled to the arrayed waveguide grating (AWG) multiplexer. The switching and optical characteristics of TWS make it a candidate for implementing the wavelength-division space switch fabric for an optical packet/burst switching.

  4. Electron-Positron Accumulator (EPA)

    CERN Multimedia

    Photographic Service

    1986-01-01

    After acceleration in the low-current linac LIL-W, the electrons and positrons are accumulated in EPA to obtain a sufficient intensity and a suitable time-structure, before being passed on to the PS for further acceleration to 3.5 GeV. Electrons circulate from right to left, positrons in the other direction. Dipole bending magnets are red, focusing quadrupoles blue, sextupoles for chromaticity-control orange. The vertical tube at the left of the picture belongs to an optical transport system carrying the synchrotron radiation to detectors for beam size measurement. Construction of EPA was completed in spring 1986. LIL-W and EPA were conceived for an energy of 600 MeV, but operation was limited to 500 MeV.

  5. Conceptional Design of the Laser Ion Source based Hadrontherapy Facility

    OpenAIRE

    Xie, Xiucui; Song, Mingtao; Zhang, Xiaohu

    2013-01-01

    Laser ion source (LIS), which can provide carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. A LIS based hadrontherapy facility is proposed with the advantage of short linac length, simple injection scheme and small synchrotron size. With the experience from the DPIS and HITFiL project that had conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be pres...

  6. 64Cu loaded liposomes as positron emission tomography imaging agents

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle;

    2011-01-01

    We have developed a highly efficient method for utilizing liposomes as imaging agents for positron emission tomography (PET) giving high resolution images and allowing direct quantification of tissue distribution and blood clearance. Our approach is based on remote loading of a copper-radionuclid...

  7. A General Quantum Mechanical Method to Predict Positron Spectroscopy

    Science.gov (United States)

    2007-06-01

    provide the best timing information, are each sent directly to one of the channels of the Ortec 935 quad constant fraction discrimi- nator ( CFD ), which...positron observables using finite element-based approach”. App. Surf . Sci., 149:238–243, 1999. 57. Stoll, H., P. Castellaz, and A. Siegle. Principles and

  8. Fluorinated amino acids for tumour imaging with positron emission tomography.

    NARCIS (Netherlands)

    Laverman, P.; Boerman, O.C.; Corstens, F.H.M.; Oyen, W.J.G.

    2002-01-01

    The currently preferred radiopharmaceutical for positron emission tomography (PET) in oncology is 2-[(18)F]fluoro-deoxyglucose (FDG). Increased accumulation of this deoxyglucose analogue in tumour cells is based on elevated glucose metabolism by tumour cells and subsequent trapping in the cells. In

  9. Radiation-damage study of a monocrystalline tungsten positron converter

    CERN Document Server

    Artru, X; Chehab, R; Johnson, B; Keppler, P; Major, J V; Rinolfi, Louis; Jejcic, A

    1998-01-01

    The exploitation of the enhancement of positron sources by channeling effects, in particular for Linear Colliders (LC), relies on the long term resistance of the crystal to radiation damage. Such dama ge has been tested on a 0.3 mm thick tungsten monocrystal exposed during 6 months to the 30 Gev incident electron beam of the SLAC Linear Collider (SLC). The crystal was placed in the converter region , orientated in a random direction and received an integrated flux of e- (fluence) of 2 x 10^18 e-/mm^2. The crystal was analyzed before and after irradiation by X and Gamma diffractometry. No damage was observed, the mosaic spread remained unchanged during irradiation (0.4 mrad FWHM). Implications for use of orientated crystal as converter for positron sources of future LCs are discussed.

  10. Bremsstrahlung Energy Losses for Cosmic Ray Electrons and Positrons

    CERN Document Server

    Widom, A; Srivastava, R

    2015-01-01

    Recently cosmic ray electrons and positrons, i.e. cosmic ray charged leptons, have been observed. To understand the distances from our solar system to the sources of such lepton cosmic rays, it is important to understand energy losses from cosmic electrodynamic fields. Energy losses for ultra-relativistic electrons and/or positrons due to classical electrodynamic bremsstrahlung are computed. The energy losses considered are (i) due to Thompson scattering from fluctuating electromagnetic fields in the background cosmic thermal black body radiation and (ii) due to the synchrotron radiation losses from quasi-static domains of cosmic magnetic fields. For distances to sources of galactic length proportions, the lepton cosmic ray energy must be lass than about a TeV.

  11. Improved Slow-Positron Yield using a Single Crystal Tungsten Moderator

    DEFF Research Database (Denmark)

    Vehanen, A.; Lynn, K. G.; Schultz, P. J.

    1983-01-01

    A well-annealed W(110) single crystal was used as a fast-to-slow positron moderator. The measured moderator efficiency at room temperature using a58Co positron source in the backscattering geometry isɛ =(3.2±0.4)×10−3, roughly a factor of three better thanɛ for the best previously reported Cu(111...

  12. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  13. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M. J., E-mail: josim.phys2007@gmail.com; Alam, M. S.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

    2015-02-15

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  14. Optimal Source-Based Filtering of Malicious Traffic

    CERN Document Server

    Soldo, Fabio; Markopoulou, Athina

    2010-01-01

    In this paper, we consider the problem of blocking malicious traffic on the Internet, via source-based filtering. In particular, we consider filtering via access control lists (ACLs): these are already available at the routers today but are a scarce resource because they are stored in the expensive ternary content addressable memory (TCAM). Aggregation (by filtering source prefixes instead of individual IP addresses) helps reduce the number of filters, but comes also at the cost of blocking legitimate traffic originating from the filtered prefixes. We show how to optimally choose which source prefixes to filter, for a variety of realistic attack scenarios and operators' policies. In each scenario, we design optimal, yet computationally efficient, algorithms. Using logs from Dshield.org, we evaluate the algorithms and demonstrate that they bring significant benefit in practice.

  15. Open Source Web Based Geospatial Processing with OMAR

    Directory of Open Access Journals (Sweden)

    Mark Lucas

    2009-01-01

    Full Text Available The availability of geospatial data sets is exploding. New satellites, aerial platforms, video feeds, global positioning system tagged digital photos, and traditional GIS information are dramatically increasing across the globe. These raw materials need to be dynamically processed, combined and correlated to generate value added information products to answer a wide range of questions. This article provides an overview of OMAR web based geospatial processing. OMAR is part of the Open Source Software Image Map project under the Open Source Geospatial Foundation. The primary contributors of OSSIM make their livings by providing professional services to US Government agencies and programs. OMAR provides one example that open source software solutions are increasingly being deployed in US government agencies. We will also summarize the capabilities of OMAR and its plans for near term development.

  16. Alternative modeling methods for plasma-based Rf ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com; Beckwith, Kristian R. C., E-mail: beckwith@txcorp.com [Tech-X Corporation, Boulder, Colorado 80303 (United States)

    2016-02-15

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two

  17. Alternative modeling methods for plasma-based Rf ion sources

    Science.gov (United States)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  18. Location and size of nanoscale free-volume holes in crosslinked- polytetrafluoroethylene-based graft-type polymer electrolyte membranes determined by positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Sawada, Shin-ichi; Yabuuchi, Atsushi; Maekawa, Masaki; Kawasuso, Atsuo; Maekawa, Yasunari

    2013-06-01

    The location and size of nanoscale free-volume holes (nanoholes) in graft-type polymer electrolyte membranes (PEMs), which were prepared by radiation-induced graft polymerization (grafting) of styrene into crosslinked-polytetrafluoroethylene (cPTFE) films and subsequent sulfonation, were investigated using positron annihilation lifetime (PAL) spectroscopy. The PAL spectra of the PEMs indicated the existence of two types of ortho-positronium (o-Ps) species, corresponding to nanoholes with volumes of 0.11 and 0.38 nm3. A comparison of the PAL data of the PEMs with that of the precursor original cPTFE and polystyrene-grafted films demonstrated the probability that the smaller holes were located in both the PTFE crystalline phases and the poly(styrene sulfonic acid) graft regions, whereas the larger holes are potentially localized in the PTFE amorphous phases. Taking into account both the size and the location of the nanoholes, it was concluded that gas transport through the larger holes in the amorphous PTFE phases was dominant over permeation through the smaller holes in the PTFE crystals and grafted regions.

  19. First on-line positron experiments en route to pair-plasma creation

    Energy Technology Data Exchange (ETDEWEB)

    Stanja, Juliane; Hergenhahn, Uwe; Stenson, Eve V. [Max-Planck-Institut fuer Plasmaphysik (Germany); Niemann, Holger; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik (Germany); Ernst-Moritz-Arndt Universitaet Greifswald (Germany); Saitoh, Haruhiko [Max-Planck-Institut fuer Plasmaphysik (Germany); The University of Tokyo (Japan); Stoneking, Matthew R. [Lawrence University (United States); Hugenschmidt, Christoph; Piochacz, Christian [Technische Universitaet Muenchen (Germany); Schweikhard, Lutz [Ernst-Moritz-Arndt Universitaet Greifswald (Germany)

    2016-07-01

    Electron-positron plasmas are predicted to show a fundamentally different behavior from traditional ion-electron plasmas, because of the equal masses of the two species. Using up to 10{sup 9} positrons per second provided by the NEPOMUC (Neutron-Induced Positron Source Munich) facility, the APEX/PAX team aims to create the first such plasma confined in a toroidal magnetic trap. Positron beam parameters as well as efficient injection and confinement schemes for both species in toroidal geometries are fundamental to the project. In this contribution we present results from first on-line positron experiments. Besides characterizing the NEPOMUC beam we conducted positron injection experiments into a dipole magnetic field configuration. Using static electric fields, a 5-eV positron beam was transported across magnetic field lines into the confinement region. With this method, up to 38% of the incoming particles reach the confinement region and make at least a 180 revolution around the magnet. Under dedicated experimental conditions confinement on the order of 1 ms was realized.

  20. Robust Source Localization in Shallow Water Based on Vector Optimization

    Institute of Scientific and Technical Information of China (English)

    SONG Hai-yan; SHI Jie; LIU Bo-sheng

    2013-01-01

    Owing to the multipath effect,the source localization in shallow water has been an area of active interest.However,most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty,which limit their further application in practical engineering.In this paper,a new method of source localization in shallow water,based on vector optimization concept,is described,which is highly robust against environmental factors affecting the localization,such as the channel depth,the bottom reflection coefficients,and so on.Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom,the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation.It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints.It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method,such as the software tool,SeDuMi.Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.

  1. Robust source localization in shallow water based on vector optimization

    Science.gov (United States)

    Song, Hai-yan; Shi, Jie; Liu, Bo-sheng

    2013-06-01

    Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the software tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.

  2. Source distance determination based on the spherical harmonics

    Science.gov (United States)

    Koutny, Adam; Jiricek, Ondrej; Thomas, Jean-Hugh; Brothanek, Marek

    2017-02-01

    This paper deals with the processing of signals measured by a spherical microphone array, focusing on the utilization of near-field information of such an array. The processing, based on the spherical harmonics decomposition, is performed in order to investigate the radial-dependent spherical functions and extract their argument - distance to the source. Using the low-frequency approximation of these functions, the source distance is explicitly expressed. The source distance is also determined from the original equation (using no approximation) by comparing both sides of this equation. The applicability of both methods is first presented in the noise-less data simulation, then validated with data contaminated by the additive white noise of different signal-to-noise ratios. Finally, both methods are tested for real data measured by a rigid spherical microphone array of radius 0.15 m, consisting of 36 microphones for a point source represented by a small speaker. The possibility of determination of the source distance using low-order spherical harmonics is shown.

  3. Applications of laser wakefield accelerator-based light sources

    Science.gov (United States)

    Albert, Félicie; Thomas, Alec G. R.

    2016-11-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  4. Fizeau simultaneous phase-shifting interferometry based on extended source

    Science.gov (United States)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  5. Research of mine water source identification based on LIF technology

    Science.gov (United States)

    Zhou, Mengran; Yan, Pengcheng

    2016-09-01

    According to the problem that traditional chemical methods to the mine water source identification takes a long time, put forward a method for rapid source identification system of mine water inrush based on the technology of laser induced fluorescence (LIF). Emphatically analyzes the basic principle of LIF technology. The hardware composition of LIF system are analyzed and the related modules were selected. Through the fluorescence experiment with the water samples of coal mine in the LIF system, fluorescence spectra of water samples are got. Traditional water source identification mainly according to the ion concentration representative of the water, but it is hard to analysis the ion concentration of the water from the fluorescence spectra. This paper proposes a simple and practical method of rapid identification of water by fluorescence spectrum, which measure the space distance between unknown water samples and standard samples, and then based on the clustering analysis, the category of the unknown water sample can be get. Water source identification for unknown samples verified the reliability of the LIF system, and solve the problem that the current coal mine can't have a better real-time and online monitoring on water inrush, which is of great significance for coal mine safety in production.

  6. Toward a European Network of Positron Laboratories

    Directory of Open Access Journals (Sweden)

    Karwasz Grzegorz P.

    2015-12-01

    Full Text Available Some applications of controlled-energy positron beams in material studies are discussed. In porous organic polysilicates, measurements of 3γ annihilation by Doppler broadening (DB method at the Trento University allowed to trace pore closing and filling by water vapor. In silicon coimplanted by He+ and H+, DB data combined with positron lifetime measurements at the München pulsed positron beam allowed to explain Si blistering. Presently measured samples of W for applications in thermonuclear reactors, irradiated by W+ and electrons, show vast changes of positron lifetimes, indicating complex dynamics of defects.

  7. Monte Carlo modeling and optimization of buffer gas positron traps

    Science.gov (United States)

    Marjanović, Srđan; Petrović, Zoran Lj

    2017-02-01

    Buffer gas positron traps have been used for over two decades as the prime source of slow positrons enabling a wide range of experiments. While their performance has been well understood through empirical studies, no theoretical attempt has been made to quantitatively describe their operation. In this paper we apply standard models as developed for physics of low temperature collision dominated plasmas, or physics of swarms to model basic performance and principles of operation of gas filled positron traps. The Monte Carlo model is equipped with the best available set of cross sections that were mostly derived experimentally by using the same type of traps that are being studied. Our model represents in realistic geometry and fields the development of the positron ensemble from the initial beam provided by the solid neon moderator through voltage drops between the stages of the trap and through different pressures of the buffer gas. The first two stages employ excitation of N2 with acceleration of the order of 10 eV so that the trap operates under conditions when excitation of the nitrogen reduces the energy of the initial beam to trap the positrons without giving them a chance to become annihilated following positronium formation. The energy distribution function develops from the assumed distribution leaving the moderator, it is accelerated by the voltage drops and forms beams at several distinct energies. In final stages the low energy loss collisions (vibrational excitation of CF4 and rotational excitation of N2) control the approach of the distribution function to a Maxwellian at room temperature but multiple non-Maxwellian groups persist throughout most of the thermalization. Optimization of the efficiency of the trap may be achieved by changing the pressure and voltage drops and also by selecting to operate in a two stage mode. The model allows quantitative comparisons and test of optimization as well as development of other properties.

  8. Analysis of the experimental positron lifetime spectra by neural networks

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2003-01-01

    Full Text Available This paper deals with the analysis of experimental positron lifetime spectra in polymer materials by using various algorithms of neural networks. A method based on the use of artificial neural networks for unfolding the mean lifetime and intensity of the spectral components of simulated positron lifetime spectra was previously suggested and tested on simulated data [Pžzsitetal, Applied Surface Science, 149 (1998, 97]. In this work, the applicability of the method to the analysis of experimental positron spectra has been verified in the case of spectra from polymer materials with three components. It has been demonstrated that the backpropagation neural network can determine the spectral parameters with a high accuracy and perform the decomposi-tion of lifetimes which differ by 10% or more. The backpropagation network has not been suitable for the identification of both the parameters and the number of spectral components. Therefore, a separate artificial neural network module has been designed to solve the classification problem. Module types based on self-organizing map and learning vector quantization algorithms have been tested. The learning vector quantization algorithm was found to have better performance and reliability. A complete artificial neural network analysis tool of positron lifetime spectra has been constructed to include a spectra classification module and parameter evaluation modules for spectra with a different number of components. In this way, both flexibility and high resolution can be achieved.

  9. The Separation of Secondary Positrons Produced in the Galaxy from the High Energy Positrons that are Observed Recent Space Experiments on PAMELA and AMS2

    CERN Document Server

    Webber, W R

    2015-01-01

    The large intensity of greater than 10 GeV positrons which apparently come from sources outside the Earth-Sun system observed recently by many spacecraft (PAMELA, FERMI, AMS2) is still a mystery with broad implications. In our attempts to solve this mystery we have first tried to define reasonable limits to the positrons produced in our own galaxy by nuclear interactions of cosmic rays. This is best done by using the secondary B/C ratio produced by these same cosmic rays in order to define the amount of matter traversed by galactic cosmic ray nuclei. Using new values of the B/C ratio together with earlier calculations of positron production by Moskalenko and Strong, 1998, we find that at 10 GeV this galactic production is from 70% to almost 100% of the positrons observed by the above experiments. At 100 GeV these fractions are still from 20 to 33% of the positrons observed. The resulting excess positron spectrum above this normal galactic background is found to have an exponent -2.75, possibly flattening at l...

  10. Solvated Positron Chemistry. The Reaction of Hydrated Positrons with Chloride Ions

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Shantarovich, V. P.

    1974-01-01

    The reaction of hydrated positrons (caq+ with cloride ions in aqueous solutions has been studied by means of positron annihilation angular correlation measurements. A rate constant of k = (2.5 ± 0.5) × 1010 M−1 s−1 was found. Probably the reacting positrons annihilated from an e+ Cl− bound state...

  11. Evidence Locator: sources of evidence-based dentistry information.

    Science.gov (United States)

    Frantsve-Hawley, Julie

    2008-09-01

    Multiple resources are available to help practitioners access the latest scientific evidence. Evidence-based dentistry (EBD) is an approach to clinical decision making that incorporates the most current and comprehensive scientific evidence with the practitioner's judgment and the patient's needs and preferences. One challenge in implementing this approach is access to evidence, and there are multiple online resources that can be used in this endeavor. This article presents the Evidence Locator, a list of Web sites that provide access to "secondary sources" of evidence. Such "secondary sources" are typically summaries of systematic reviews and evidence-based clinical recommendations or guidelines. Also presented is a list of other Web sites that may be useful to the practitioner in implementing EBD.

  12. Conceptional design of the laser ion source based hadrontherapy facility

    Science.gov (United States)

    Xie, Xiu-Cui; Song, Ming-Tao; Zhang, Xiao-Hu

    2014-04-01

    A laser ion source (LIS), which can provide a carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. The proposed LIS based hadrontherapy facility has the advantages of short linac length, simple injection scheme, and small synchrotron size. With the experience from the DPIS and HITFiL projects that have been conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be presented, with special attention given to APF type IH DTL design and simulation.

  13. Conceptional Design of the Laser Ion Source based Hadrontherapy Facility

    CERN Document Server

    Xie, Xiucui; Zhang, Xiaohu

    2013-01-01

    Laser ion source (LIS), which can provide carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. A LIS based hadrontherapy facility is proposed with the advantage of short linac length, simple injection scheme and small synchrotron size. With the experience from the DPIS and HITFiL project that had conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be present with special dedication to APF type IH DTL design and simulation.

  14. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Morel, C. [Centre de Physique des Particules de Marseille, ImXgam Group, 13009 Marseille (France); Castro, H. F. [Universidad Nacional de Colombia, Physics Department, Carrera 45 No. 26-85, Bogota (Colombia)

    2016-10-15

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source {sup 22}Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source {sup 22}Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  15. Wavelet-based localization of oscillatory sources from magnetoencephalography data.

    Science.gov (United States)

    Lina, J M; Chowdhury, R; Lemay, E; Kobayashi, E; Grova, C

    2014-08-01

    Transient brain oscillatory activities recorded with Eelectroencephalography (EEG) or magnetoencephalography (MEG) are characteristic features in physiological and pathological processes. This study is aimed at describing, evaluating, and illustrating with clinical data a new method for localizing the sources of oscillatory cortical activity recorded by MEG. The method combines time-frequency representation and an entropic regularization technique in a common framework, assuming that brain activity is sparse in time and space. Spatial sparsity relies on the assumption that brain activity is organized among cortical parcels. Sparsity in time is achieved by transposing the inverse problem in the wavelet representation, for both data and sources. We propose an estimator of the wavelet coefficients of the sources based on the maximum entropy on the mean (MEM) principle. The full dynamics of the sources is obtained from the inverse wavelet transform, and principal component analysis of the reconstructed time courses is applied to extract oscillatory components. This methodology is evaluated using realistic simulations of single-trial signals, combining fast and sudden discharges (spike) along with bursts of oscillating activity. The method is finally illustrated with a clinical application using MEG data acquired on a patient with a right orbitofrontal epilepsy.

  16. Writable electrochemical energy source based on graphene oxide

    Science.gov (United States)

    Wei, Di

    2015-10-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability.

  17. A Parallax-based Distance Estimator for Spiral Arm Sources

    Science.gov (United States)

    Reid, M. J.; Dame, T. M.; Menten, K. M.; Brunthaler, A.

    2016-06-01

    The spiral arms of the Milky Way are being accurately located for the first time via trigonometric parallaxes of massive star-forming regions with the Bar and Spiral Structure Legacy Survey, using the Very Long Baseline Array and the European VLBI Network, and with the Japanese VLBI Exploration of Radio Astrometry project. Here we describe a computer program that leverages these results to significantly improve the accuracy and reliability of distance estimates to other sources that are known to follow spiral structure. Using a Bayesian approach, sources are assigned to arms based on their (l, b, v) coordinates with respect to arm signatures seen in CO and H i surveys. A source's kinematic distance, displacement from the plane, and proximity to individual parallax sources are also considered in generating a full distance probability density function. Using this program to estimate distances to large numbers of star-forming regions, we generate a realistic visualization of the Milky Way's spiral structure as seen from the northern hemisphere.

  18. Development of a mono-energetic positron beam line at the Kyoto University Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. [Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka 590-0494 (Japan); Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka 590-0494 (Japan); Yoshiie, T.; Sano, T.; Kawabe, H. [Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka 590-0494 (Japan); Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T. [The Oarai Branch, Institute for Materials Research, Tohoku University, Ibaraki 311-1313 (Japan); Oshima, N.; Kinomura, A. [National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568 (Japan); Shirai, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2015-01-01

    Positron beam facilities are widely used for solid state physics and material science studies. A positron beam facility has been constructed at the Kyoto University Research Reactor (KUR) in order to expand its application range. The KUR is a light-water-moderated tank-type reactor operated at a rated thermal power of 5 MW. A positron beam has been transported successfully from the reactor to the irradiation chamber. The total moderated positron rate was greater than 1.4 × 10{sup 6}/s while the reactor operated at a reduced power of 1 MW. Special attention was paid for the design of the in-pile position source to prevent possible damage of the reactor in case of severe earthquakes.

  19. Development of a mono-energetic positron beam line at the Kyoto University Research Reactor

    Science.gov (United States)

    Sato, K.; Xu, Q.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2015-01-01

    Positron beam facilities are widely used for solid state physics and material science studies. A positron beam facility has been constructed at the Kyoto University Research Reactor (KUR) in order to expand its application range. The KUR is a light-water-moderated tank-type reactor operated at a rated thermal power of 5 MW. A positron beam has been transported successfully from the reactor to the irradiation chamber. The total moderated positron rate was greater than 1.4 × 106/s while the reactor operated at a reduced power of 1 MW. Special attention was paid for the design of the in-pile position source to prevent possible damage of the reactor in case of severe earthquakes.

  20. A Doppler-broadening facility for positron spin relaxation (e{sup +}SR) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gessmann, Th.; Harmat, P.; Major, J.; Seeger, A. [Max-Planck-Institut fuer Metallforschung, Institut fuer Physik, Stuttgart, Stuttgart (Germany)

    1997-05-14

    A set-up is described for the determination of the spin polarization of positrons emitted from radioactive sources that makes use of the dependence of the Doppler broadening of the 511 keV annihilation photon line on the strength and direction (with regard to the spin polarization) of an applied magnetic field. In the so-called e{sup +}SR (positron spin relaxation) technique the sample to be investigated is part of the e{sup +}-spin polarimeter. Its application to the investigation of positronium formation in condensed matter is illustrated using crystalline quartz as an example. The method earlier applied to the positron annihilation in magnetized ferromagnets is now transferred to the detection of positronium (Ps) in condensed matter. This new approach makes use of the fact, that the ratio of Ps atoms in the singlet and the triplet states is larger in a magnetic field applied parallel to the positron-spin polarization than in an antiparallel field.

  1. PALSfit: A new program for the evaluation of positron lifetime spectra

    DEFF Research Database (Denmark)

    Olsen, Jens V.; Kirkegaard, Peter; Pedersen, Niels Jørgen

    2007-01-01

    PALSfit is a new Windows program for the analysis of positron lifetime spectra. PALSfit combines into one interactive Windows program the features of our previous PATFIT program package, such as data input, least-squares fitting routines as well as graphical displays. A number of options are avai......PALSfit is a new Windows program for the analysis of positron lifetime spectra. PALSfit combines into one interactive Windows program the features of our previous PATFIT program package, such as data input, least-squares fitting routines as well as graphical displays. A number of options...... are available, including constraints on positron lifetimes, intensities, background and area, and corrections for annihilation in the positron source. In addition, a number of new features have been included. The Windows user-interface makes to a large extent the various features of the program self...

  2. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  3. A Bright Single Photon Source Based on a Diamond Nanowire

    CERN Document Server

    Babinec, T; Khan, M; Zhang, Y; Maze, J; Hemmer, P R; Loncar, M

    2009-01-01

    The development of a robust light source that emits one photon at a time is an outstanding challenge in quantum science and technology. Here, at the transition from many to single photon optical communication systems, fully quantum mechanical effects may be utilized to achieve new capabilities, most notably perfectly secure communication via quantum cryptography. Practical implementations place stringent requirements on the device properties, including fast and stable photon generation, efficient collection of photons, and room temperature operation. Single photon light emitting devices based on fluorescent dye molecules, quantum dots, nanowires, and carbon nanotube material systems have all been explored, but none have simultaneously demonstrated all criteria. Here, we describe the design, fabrication, and characterization of a bright source of single photons consisting of an individual Nitrogen-vacancy color center (NV center) in a diamond nanowire operating in ambient conditions. The nanowire plays a posit...

  4. An overview of an accelerator-based neutron spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Lessner, E.S.

    1996-06-01

    An overview of the feasibility study of a 1-MW pulsed spallation source is presented. The machine delivers 1 MW of proton beam power to spallation targets where slow neutrons are produced. The slow neutrons can be used for isotope production, materials irradiation, and neutron scattering research. The neutron source facility is based on a rapid cycling synchrotron (RCS) and consists of a 400-MeV linac, a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV, and two neutron-generating target stations. The RCS accelerates an average proton beam current of 0.5 mA, corresponding to 1.04 x 10{sup 14} protons per pulse. This intensity is about two times higher than that of existing machines. A key feature of this accelerator system design is that beam losses are minimized from injection to extraction, reducing activation to levels consistent with hands-on maintenance.

  5. Bruno Touschek, from Betatrons to Electron-positron Colliders

    CERN Document Server

    Bernardini, Carlo; Pellegrini, Claudio

    2015-01-01

    Bruno Touschek's life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders, storage rings, and gave important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology environmental sciences and cultural heritage studies. We describe Touschek's life in Austria, where he was born, Germany, where he participated to the construction of a betatron during WWII, and Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his life style and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  6. Development of positron annihilation spectroscopy for characterizing neutron irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    C.N. Taylor; M. Shimada; D.W. Akers; M.W. Drigert; B.J. Merrill; Y. Hatano

    2013-05-01

    Tungsten samples (6 mm diameter, 0.2 mm thick) were irradiated to 0.025 and 0.3 dpa with neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Samples were then exposed to deuterium plasma in the tritium plasma experiment (TPE) at 100, 200 and 500ºC to a total fluence of 1 x 1026 m-2. Nuclear reaction analysis (NRA) and Doppler broadening positron annihilation spectroscopy (DB-PAS) were performed at various stages to characterize damage and retention. We present the first known results of neutron damaged tungsten characterized by DB-PAS in order to study defect concentration. Two positron sources, 22Na and 68Ge, probe ~58 µm and through the entire 200 µm thick samples, respectively. DB-PAS results reveal clear differences between the various irradiated samples. These results, and the calibration of DB-PAS to NRA data are presented.

  7. Positron collisions with alkali-metal atoms

    Science.gov (United States)

    Gien, T. T.

    1990-01-01

    The total cross sections for positron and electron collisions with potassium, sodium, lithium and rubidium are calculated, employing the modified Glauber approximation. The Modified Glauber cross sections for positron collision with potassium and sodium at low intermediate energies are found to agree reasonably well with existing experimental data.

  8. Slow positron beam at the JINR, Dubna

    Directory of Open Access Journals (Sweden)

    Horodek Paweł

    2015-12-01

    Full Text Available The Low Energy Positron Toroidal Accumulator (LEPTA at the Joint Institute for Nuclear Research (JINR proposed for generation of positronium in flight has been adopted for positron annihilation spectroscopy (PAS. The positron injector generates continuous slow positron beam with positron energy range between 50 eV and 35 keV. The radioactive 22Na isotope is used. In distinction to popular tungsten foil, here the solid neon is used as moderator. It allows to obtain the beam intensity of about 105 e+/s width energy spectrum characterized by full width at half maximum (FWHM of 3.4 eV and a tail to lower energies of about 30 eV. The paper covers the characteristic of variable energy positron beam at the LEPTA facility: parameters, the rule of moderation, scheme of injector, and transportation of positrons into the sample chamber. Recent status of the project and its development in the field of PAS is discussed. As an example, the measurement of the positron diffusion length in pure iron is demonstrated.

  9. Consequences of Dirac Theory of the Positron

    CERN Document Server

    Heisenberg, W K

    1936-01-01

    According to Dirac's theory of the positron, an electromagnetic field tends to create pairs of particles which leads to a change of Maxwell's equations in the vacuum. These changes are calculated in the special case that no real electrons or positrons are present and the field varies little over a Compton wavelength.

  10. LEP - Large Electron Positron Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Large Electron-Positron Collider (LEP) is 27 km long. Its four detectors (ALEPH, DELPHI, L3, OPAL) measure precisely what happens in the collisions of electrons and positrons. These conditions only exist-ed in the Universe when it was about 10 -10 sec old.

  11. Electron and Positron Stopping Powers of Materials

    Science.gov (United States)

    SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase)   The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.

  12. Positron Emission Mammotomography with Dual Planar Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  13. GISCube, an Open Source Web-based GIS Application

    Science.gov (United States)

    Boustani, M.; Mattmann, C. A.; Ramirez, P.

    2014-12-01

    There are many Earth science projects and data systems being developed at the Jet Propulsion Laboratory, California Institute of Technology (JPL) that require the use of Geographic Information Systems (GIS). Three in particular are: (1) the JPL Airborne Snow Observatory (ASO) that measures the amount of water being generated from snow melt in mountains; (2) the Regional Climate Model Evaluation System (RCMES) that compares climate model outputs with remote sensing datasets in the context of model evaluation and the Intergovernmental Panel on Climate Change and for the U.S. National Climate Assessment and; (3) the JPL Snow Server that produces a snow and ice climatology for the Western US and Alaska, for the U.S. National Climate Assessment. Each of these three examples and all other earth science projects are strongly in need of having GIS and geoprocessing capabilities to process, visualize, manage and store GeoSpatial data. Beside some open source GIS libraries and some software like ArcGIS there are comparatively few open source, web-based and easy to use application that are capable of doing GIS processing and visualization. To address this, we present GISCube, an open source web-based GIS application that can store, visualize and process GIS and GeoSpatial data. GISCube is powered by Geothon, an open source python GIS cookbook. Geothon has a variety of Geoprocessing tools such data conversion, processing, spatial analysis and data management tools. GISCube has the capability of supporting a variety of well known GIS data formats in both vector and raster formats, and the system is being expanded to support NASA's and scientific data formats such as netCDF and HDF files. In this talk, we demonstrate how Earth science and other projects can benefit by using GISCube and Geothon, its current goals and our future work in the area.

  14. Distribution of Positron Annihilation Radiation

    CERN Document Server

    Milne, P A

    2006-01-01

    The SPI instrument on-board the ESA/INTEGRAL satellite is engaged in a mission-long study of positron annihilation radiation from the Galaxy. Early results suggest that the disk component is only weakly detected at 511 keV by SPI. We review CGRO/OSSE, TGRS and SMM studies of 511 keV line and positronium continuum emission from the Galaxy in light of the early INTEGRAL/SPI findings. We find that when similar spatial distributions are compared, combined fits to the OSSE/SMM/TGRS data-sets produce bulge and disk fluxes similar in total flux and in B/D ratio to the fits reported for SPI observations. We further find that the 511 keV line width reported by SPI is similar to the values reported by TGRS, particularly when spectral fits include both narrow-line and broad-line components. Collectively, the consistency between these four instruments suggests that all may be providing an accurate view of positron annihilation in the Galaxy.

  15. Integrating Ontological Data Sources Using Viewpoints-Based Approach

    Directory of Open Access Journals (Sweden)

    Bouchra Boulkroun

    2016-12-01

    Full Text Available Within the development of Internet and intranets, information integration from various data sources becomes increasingly important and more challenging issue. Recently, the trend in data integration has favored the semantic integration using ontologies. However, the existing ontology-based approaches do not support the aspect of data multi-representations, which is important in the development of multi-user applications. The motivation of this paper is to address a novel semantic integration approach based on ontologies and viewpoints paradigms. This contribution combines the advantages of existing ontology-based integration approaches while avoiding their drawbacks. The proposed integration approach is evaluated using query processing. Profiles are introduced to offer answers to users according to their viewpoints and choices.

  16. Developing seismogenic source models based on geologic fault data

    Science.gov (United States)

    Haller, Kathleen M.; Basili, Roberto

    2011-01-01

    Calculating seismic hazard usually requires input that includes seismicity associated with known faults, historical earthquake catalogs, geodesy, and models of ground shaking. This paper will address the input generally derived from geologic studies that augment the short historical catalog to predict ground shaking at time scales of tens, hundreds, or thousands of years (e.g., SSHAC 1997). A seismogenic source model, terminology we adopt here for a fault source model, includes explicit three-dimensional faults deemed capable of generating ground motions of engineering significance within a specified time frame of interest. In tectonically active regions of the world, such as near plate boundaries, multiple seismic cycles span a few hundred to a few thousand years. In contrast, in less active regions hundreds of kilometers from the nearest plate boundary, seismic cycles generally are thousands to tens of thousands of years long. Therefore, one should include sources having both longer recurrence intervals and possibly older times of most recent rupture in less active regions of the world rather than restricting the model to include only Holocene faults (i.e., those with evidence of large-magnitude earthquakes in the past 11,500 years) as is the practice in tectonically active regions with high deformation rates. During the past 15 years, our institutions independently developed databases to characterize seismogenic sources based on geologic data at a national scale. Our goal here is to compare the content of these two publicly available seismogenic source models compiled for the primary purpose of supporting seismic hazard calculations by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the U.S. Geological Survey (USGS); hereinafter we refer to the two seismogenic source models as INGV and USGS, respectively. This comparison is timely because new initiatives are emerging to characterize seismogenic sources at the continental scale (e.g., SHARE in the

  17. Open source based cadastral information system : ANCFCC-MOROCCO

    CERN Document Server

    Elasri, Hicham; Jamila, Aatab; Karima, Ganoun

    2012-01-01

    This present project is developing a geographic information system to support the cadastral business. This system based on open source solutions which developed within the National Agency of Land Registry, Cadastre and Cartography (ANCFCC) enabling monitoring and analysis of cadastral procedures as well as offering consumable services by other information systems: consultation and querying spatial data. The project will also assist the various user profiles in the completion of production tasks and the possibility to eliminate the deficiencies identified to ensure an optimum level of productivity

  18. Impact of the spectral hardening of TeV cosmic rays on the prediction of the secondary positron flux

    CERN Document Server

    Lavalle, Julien

    2010-01-01

    The rise in the cosmic-ray positron fraction measured by the PAMELA satellite is likely due to the presence of astrophysical sources of positrons, e.g. pulsars, on the kpc scale around the Earth. Nevertheless, assessing the properties of these sources from the positron data requires a good knowledge of the secondary positron component generated by the interaction of cosmic rays with the interstellar gas. In this paper, we investigate the impact of the spectral hardening in the cosmic-ray proton and helium fluxes recently reported by the ATIC2 and CREAM balloon experiments, on the predictions of the secondary positron flux. We show that the effect is not negligible, leading to an increase of the secondary positron flux by up to $\\sim$60% above $\\sim$100 GeV. We provide fitting formulae that allow a straightforward utilization of our results, which can help in deriving constraints on one's favorite primary positron source, e.g. pulsars or dark matter.

  19. Mapping methane emission sources over California based on airborne measurements

    Science.gov (United States)

    Karl, T.; Guha, A.; Peischl, J.; Misztal, P. K.; Jonsson, H.; Goldstein, A. H.; Ryerson, T. B.

    2011-12-01

    The California Global Warming Solutions Act of 2006 (AB 32) has created a need to accurately characterize the emission sources of various greenhouse gases (GHGs) and verify the existing state GHG inventory. Methane (CH4) is a major GHG with a global warming potential of 20 times that of CO2 and currently constitutes about 6% of the total statewide GHG emissions on a CO2 equivalent basis. Some of the major methane sources in the state are area sources where methane is biologically produced (e.g. dairies, landfills and waste treatment plants) making bottom-up estimation of emissions a complex process. Other potential sources include fugitive emissions from oil extraction processes and natural gas distribution network, emissions from which are not well-quantified. The lack of adequate field measurement data to verify the inventory and provide independently generated estimates further contributes to the overall uncertainty in the CH4 inventory. In order to gain a better perspective of spatial distribution of major CH4 sources in California, a real-time measurement instrument based on Cavity Ring Down Spectroscopy (CRDS) was installed in a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of airborne CH4 and CO2 measurements during eight unique flights which covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. The coincident VOC measurements, obtained through a high frequency proton transfer reaction mass spectrometer (PTRMS), aid in CH4 source identification. High mixing ratios of CH4 (> 2000 ppb) are observed consistently in all the flight transects above the Central Valley. These high levels of CH4 are accompanied by high levels of methanol which is an important

  20. Gamma-ray spectroscopy of Positron Annihilation in the Milky Way

    CERN Document Server

    Siegert, Thomas; Khachatryan, Gerasim; Krause, Martin G H; Guglielmetti, Fabrizia; Greiner, Jochen; Strong, Andrew W; Zhang, Xiaoling

    2015-01-01

    The annihilation of positrons in the Galaxy's interstellar medium produces characteristic gamma-rays with a line at 511 keV. This emission has been observed with the spectrometer SPI on INTEGRAL, confirming a puzzling morphology with bright emission from an extended bulge-like region, and faint disk emission. Most plausible sources of positrons are believed to be distributed throughout the disk of the Galaxy. We aim to constrain characteristic spectral shapes for different spatial components in the disk and bulge with the high-resolution gamma-ray spectrometer SPI, based on a new instrumental background method and detailed multi-component sky model fitting. We confirm the detection of the main extended components of characteristic annihilation gamma-ray signatures at 58$\\sigma$ significance in the line. The total Galactic line intensity amounts to $(2.7\\pm0.3)\\times10^{-3}~\\mathrm{ph~cm^{-2}~s^{-1}}$ for our assumed spatial model. We derive spectra for the bulge and disk, and a central point-like and at the p...

  1. Narrow-Bandwidth Diode-Laser-Based Ultraviolet Light Source

    Institute of Scientific and Technical Information of China (English)

    PENG Yu; FANG Zhan-Jun; ZANG Er-Jun

    2011-01-01

    A compact, tunable and narrow-bandwidth laser source for ultraviolet radiation is presented. A grating stabilized diode laser at 1064 nm is frequency-stabilized to below 10 kHz by using a ultra low expansion (ULE) cavity. Injecting light of the diode laser into a tapered amplifier yields a power of 290mW. In a first frequency-doubling stage, about 47 mW of green light at 532nm is generated by using a periodical// poled KTP crystal. Subsequent second-harwonic generation employing a BBO crystal leads to about 30μW of ultraviolet light at 266nm.%A compact,tunable and narrow-bandwidth laser source for ultraviolet radiation is presented.A grating stabilized diode laser at 1064nm is frequency-stabilized to below 10kHz by using a ultra low expansion (ULE) cavity.Injecting light of the diode laser into a tapered amplifier yields a power of 290 mW.In a first frequency-doubling stage,about 47mW of green light at 532nm is generated by using a periodically poled KTP crystal.Subsequent second-harmonic generation employing a BBO crystal leads to about 30 μ W of ultraviolet light at 266nm.Hg is,so far,the heaviest nonradioactive atom that has been laser-cooled and trapped.Systematic evaluation of various sources of uncertainty for the Hg-based optical lattice clock is obtained and an accuracy of better than 10-1s is attainable,which is an order of magnitude of improvement over Sr or Yb based clocks because of the reduced susceptibility to the blackbody radiation field,which sets a major limitation on the accuracy of atomic clocks.[1] The 1S0-3p0 transition at 265.6 nm will be exploited as a clock transition.

  2. Cardiac magnetic source imaging based on current multipole model

    Institute of Scientific and Technical Information of China (English)

    Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping

    2011-01-01

    It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution.Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseuDOInverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides,two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared.

  3. A silicon-based electrical source of surface plasmon polaritons.

    Science.gov (United States)

    Walters, R J; van Loon, R V A; Brunets, I; Schmitz, J; Polman, A

    2010-01-01

    After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100 nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

  4. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend

  5. Positron emission tomography basic sciences

    CERN Document Server

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  6. Probing the Pulsar Origin of the Anomalous Positron Fraction with AMS-02 and Atmospheric Cherenkov Telescopes

    CERN Document Server

    Linden, Tim

    2013-01-01

    Recent observations by PAMELA, Fermi-LAT, and AMS-02 have conclusively indicated a rise in the cosmic-ray positron fraction above 10 GeV, a feature which is impossible to mimic under the paradigm of secondary positron production with self-consistent Galactic cosmic-ray propagation models. A leading explanation for the rising positron fraction is an additional source of electron-positron pairs, for example one or more mature, energetic, and relatively nearby pulsars. We point out that any one of two well-known nearby pulsars, Geminga and Monogem, can satisfactorily provide enough positrons to reproduce AMS-02 observations. A smoking-gun signature of this scenario is an anisotropy in the arrival direction of the cosmic-ray electrons and positrons, which may be detectable by existing, or future, telescopes. The predicted anisotropy level is, at present, consistent with limits from Fermi-LAT and AMS-02. We argue that the large collecting area of Atmospheric Cherenkov Telescopes (ACTs) makes them optimal tools for...

  7. Damage test for International Linear Collider positron generation target at KEKB

    Science.gov (United States)

    Kuriki, M.; Mimashi, T.; Saito, K.; Kikuchi, M.; Kamitani, T.

    2006-07-01

    ILC (International Linear Collider) is aiming to conduct electron-positron collisions at 1 TeV center-of-mass energy. One bunch train will contain up to 2800 3.2 nC bunches with a 308 ns bunch spacing or 5600 1.6 nC bunches with a 154 ns spacing. The bunch-train length will be 0.9 ms. Because of this extremely large amount of beam in a train, serious damage to a positron production target driven by 6 GeV incident electron beam is of concern. As the ILC positron source, several different methods have been proposed. The target hardness is a key point concerning the selection. In this article, we report on a test experiment to examine the target hardness by using a stored electron beam in KEKB HER (High Energy Ring). The project name is IPPAK (ILC Positron Project At KEKB). By manipulating the abort kicker, a condition similar to that of the ILC positron production target can be reproduced. The experiment was carried out on June 29 and 30, 2005. The target was seriously damaged under the heaviest condition (KEKB mode), but the damage was less and nothing for those of the ILC mode. Possible impacts to the ILC positron production scheme are also discussed.

  8. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    CERN Document Server

    Aguilar, M; Allaby, James V; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Blasko, S; Bölla, G; Boschini, M; Bourquin, M; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Cardano, F; Casadei, D; Casaus, J; Castellini, G; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Cho, K; Choi, M J; Choi, Y Y; Cindolo, F; Commichau, V; Contin, A; Cortina, E; Cristinziani, M; Dai, T S; Delgado, C; Difalco, S; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gast, H; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Hungerford, W; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kim, D H; Kim, G N; Kim, K S; Kim, M Y; Klimentov, A; Kossakowski, R; Kounine, A; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Lanciotti, E; Laurenti, G; Lebedev, A; Lechanoine-Leluc, C; Lee, M W; Lee, S C; Levi, G; Liu, C L; Liu, H T; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mujunen, A; Oliva, A; Olzem, J; Palmonari, F; Park, H B; Park, W H; Pauluzzi, M; Pauss, F; Perrin, E; Pesci, A; Pevsner, A; Pilo, F; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Ro, S; Röser, U; Rossin, C; Sagdeev, R; Santos, D; Sartorelli, G; Sbarra, C; Schael, S; Schultzvon Dratzig, A; Schwering, G; Seo, E S; Shin, J W; Shoumilov, E; Shoutko, V; Siedenburg, T; Siedling, R; Son, D; Song, T; Spinella, F; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trumper, J; Ulbricht, J; Urpo, S; Valtonen, E; Vandenhirtz, J; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, G; Vite, D; Von Gunten, H; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wiik, K; Williams, C; Wu, S X; Xia, P C; Xu, S; Yan, J L; Yan, L G; Yang, C G; Yang, J; Yang, M; Ye, S W; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhou, Y; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2007-01-01

    A measurement of the cosmic ray positron fraction e+/(e+ + e-) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10^6 is reached by identifying converted bremsstrahlung photons emitted from positrons.

  9. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    Science.gov (United States)

    AMS-01 Collaboration; Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Camps, C.; Cannarsa, P.; Capell, M.; Cardano, F.; Casadei, D.; Casaus, J.; Castellini, G.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Cho, K.; Choi, M. J.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Cristinziani, M.; Dai, T. S.; Delgado, C.; Difalco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Yu.; Gast, H.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kim, M. Y.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Lanciotti, E.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Liu, C. L.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mujunen, A.; Oliva, A.; Olzem, J.; Palmonari, F.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.

    2007-03-01

    A measurement of the cosmic ray positron fraction e/(e+e) in the energy range of 1 30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 106 is reached by identifying converted bremsstrahlung photons emitted from positrons.

  10. Model-independent approach for dark matter phenomenology: Signatures in linear colliders and cosmic positron experiments

    Indian Academy of Sciences (India)

    Shigeki Matsumoto; Nobuchika Okada

    2007-11-01

    We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detection experiments of dark matter. Once the dark matter is discovered in the positron experiments such as the PAMELA, its nature will be investigated in detail at the ILC.

  11. An overview of the slow-positron beam facility at the photon factory, KEK

    Science.gov (United States)

    Kurihara, Toshikazu; Shirakawa, Akihiro; Enomoto, Atsushi; Shidara, Tetsuo; Kobayashi, Hitoshi; Nakahara, Kazuo

    1995-01-01

    The KEK slow-positron source is in the final stage of construction. The beam line comprises a 31 m long vacuum duct within an axial magnetic field and a following electrostatic guided section. In order to vary the energy of a positron beam dedicated to depth-profile measurements, a high voltage station capable of applying 60 kV has been installed in the beam transport system. The target assembly (a water-cooled tantalum rod of 5 radiation lengths and a moderator with multiple tungsten vanes) and the following straight section (8 m; used for positron storage) are under high voltage. The beam duct located downstream is at ground potential. Positron beams passing through this region have a high kinetic energy. A focusing triplet quadrupole lens and a moderator on the retarding electrode are located at the end of the magnetic transport. This beam line has 9 right-angle-curved ducts, comprising a radius of curvature of 40 cm. Positrons with a maximum energy of 60 keV are guided by bending magnets attached to the beam-transport ducts. A transport system to switch from magnetically guided to electrostatically guided has been installed. The design of the brightness-enhancement stage of the positron beam for positron re-emission microscopy is in progress. In a preliminary experiments at 2.0 GeV with a 2 kW primary beam, 4×10 6e +/s of slow positrons were observed by detecting annihilation γ-rays at the end of the magnetic beam-transport line. Further improvements are expected by careful surface and thermal treatments of the moderator.

  12. Coronary revascularization treatment based on dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dikkers, R.; Willems, T.P.; Jonge, G.J. de; Zaag-Loonen, H.J. van der; Ooijen, P.M.A. van; Oudkerk, M. [University of Groningen, Department of Radiology, Groningen (Netherlands); University Medical Center, Groningen (Netherlands); Piers, L.H.; Tio, R.A.; Zijlstra, F. [University of Groningen, Department of Cardiology, Groningen (Netherlands); University Medical Center, Groningen (Netherlands)

    2008-09-15

    Therapy advice based on dual-source computed tomography (DSCT) in comparison with coronary angiography (CAG) was investigated and the results evaluated after 1-year follow-up. Thirty-three consecutive patients (mean age 61.9 years) underwent DSCT and CAG and were evaluated independently. In an expert reading (the ''gold standard''), CAG and DSCT examinations were evaluated simultaneously by an experienced radiologist and cardiologist. Based on the presence of significant stenosis and current guidelines, therapy advice was given by all readers blinded from the results of other readings and clinical information. Patients were treated based on a multidisciplinary team evaluation including all clinical information. In comparison with the gold standard, CAG had a higher specificity (91%) and positive predictive value (PPV) (95%) compared with DSCT (82% and 91%, respectively). DSCT had a higher sensitivity (96%) and negative predictive value (NPV) (89%) compared with CAG (91% and 83%, respectively). The DSCT-based therapy advice did not lead to any patient being denied the revascularization they needed according to the multidisciplinary team evaluation. During follow-up, two patients needed additional revascularization. The high NPV for DSCT for revascularization assessment indicates that DSCT could be safely used to select patients benefiting from medical therapy only. (orig.)

  13. Investigation of the chemical vicinity of defects in Mg and AZ31 with positron coincident Doppler boarding spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Martin

    2008-03-10

    Within the scope of the present work, two main goals have been achieved: Firstly, the coincident Doppler broadening spectrometer (CDBS) at the high intense positron source NEPOMUC has been elaborately improved in order to increase the spatial resolution for defect mapping measurements and to investigate samples with shallow positron trapping sites which are present e. g. in magnesium. Secondly, as an application, the chemical vicinity of defects in the industrially used magnesium based alloy AZ31 has been examined by means of the detailed investigation of ion-irradiated specimen with positron annihilation spectroscopy. Detailed simulations with the finite-element simulation tool COMSOL were used to optimize the focal diameter of the positron beam at the sample position in order to increase the spatial resolution. With a value of 0.3 mm, sub-mm resolution has now been reached. The CDBS has been furthermore equipped with a sample cooling unit in order to reach liquid nitrogen temperature, maintaining the feature of scanning the sample for defect mapping. Defects and their chemical surrounding in ion irradiated magnesium and the magnesium based alloy AZ31 were then investigated on an atomic scale with the CDBS. In the respective spectra the chemical information and the defect contribution have been thoroughly separated. For this purpose, samples of annealed Mg were irradiated with Mg-ions in order to create exclusively defects. In addition Al- and Zn-ion irradiations on Mg-samples were performed in order to create samples with both defects and impurity atoms. The ion irradiated area on the samples was investigated with laterally and depth resolved positron Doppler broadening spectroscopy (DBS) and compared with SRIM-simulations of the vacancy distribution. The investigation of the chemical vicinity of crystal defects in AZ31 was performed with CDBS on Mg-ion irradiated AZ31 with Mg-ion irradiated Mg. The outer tail of the energy distribution in the annihilation

  14. Potential evaluation of biomass-based energy sources for Turkey

    OpenAIRE

    Mustafa Ozcan; Semra Öztürk; Yuksel Oguz

    2015-01-01

    Turkey has great potential with respect to renewable energy sources (RES) and, among such sources, “biomass energy” is of particular importance. The purpose of this study is to determine the primary electrical energy potential obtainable from the biomass potential, according to different biomass source types. In this study, the biomass sources of municipal solid wastes, energy crops, animal manure and urban wastewater treatment sludge are evaluated. For each source, individual biogas and biom...

  15. Social Studies Teachers' Use of Classroom-Based and Web-Based Historical Primary Sources

    Science.gov (United States)

    Hicks, David; Doolittle, Peter; Lee, John K.

    2004-01-01

    A limited body of research examines the extent to which social studies teachers are actually utilizing primary sources that are accessible in traditional classroom-based formats versus web-based formats. This paper initiates an exploration of this gap in the literature by reporting on the result of a survey of secondary social studies teachers,…

  16. Three dimensional co-registration between a positron emission tracking system and a C-arm x-ray imaging system

    Science.gov (United States)

    Spencer, Benjamin A.

    Real-time motion tracking is required for accurate delivery of radiation therapy to tumours undergoing motion due to respiration, as well as for the precise guidance, manipulation, and operation of surgical tools or devices used during non-invasive interventional procedures. Positron emission real-time three-dimensional (3D) tracking (PeTrack) is a proposed solution to these problems which is currently being developed at Carleton University. The technique involves the localization and tracking of positron emission fiducial markers which could be implanted into a tumour volume or integrated into a surgical tool or instrument. The research presented here describes the co-registration of the PeTrack localization and tracking system with a C-arm x-ray imaging system capable of 3D cone-beam imaging. This co-registration allows the display of objects tracked in 3D by the PeTrack system on to a 3D reconstructed image. The acquisition of accurate 3D images from the x-ray imaging system requires: x-ray detector distortion correction, geometric calibration of the C-arm x-ray scanner, and then a method to reconstruct 3D images. PeTrack localization and tracking of positron sources requires a detector system capable of detecting positron sources, and an algorithm which can localize and track positron sources based on the information provided by the detector system. This tracking algorithm has previously been developed. The co-registration of the x-ray imaging system and the PeTrack tracking system requires the geometric calibrations of the PeTrack and the x-ray imaging systems both defined in a common 3D reference frame. The results presented in this work show that distortion correction is essential for the acquisition of high quality 3D image reconstructions. The method of x-ray scanner geometric calibration implemented was validated for the the first time with real data. A method of PeTrack geometric calibration was developed and evaluated. A simulation study showed that

  17. Current Source Converter Based Wind Energy Conversion Systems

    Institute of Scientific and Technical Information of China (English)

    Samir Kouro; Jing-ya DAI; Bin WU

    2011-01-01

    The increase in the installed capacity of wind energy conversion systems (WECS) has triggered the development of more demanding grid codes and additional requirements on performance.In order to meet these requirements the industry trend has shifted to full-scale power converter interfaces in modern multi-megawatt WECS.As consequence,a wide variety of new power converter topologies and WECS configurations have been introduced in recent years.Among them,current source converter(CSC) based configurations have attracted attention due to a series of advantages like:simple structure,grid friendly waveforms,controllable power factor,and reliable grid short-circuit protection.This paper presents the latest developments in CSC interfaces for WECS and related technologies such as modulation methods,control schemes and grid code compatibility.

  18. Monolithic fuel cell based power source for burst power generation

    Science.gov (United States)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  19. Phase-Based Road Detection in Multi-Source Images

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, S K; Lopez, A S; Brase, J M; Paglieroni, D W

    2004-06-16

    The problem of robust automatic road detection in remotely sensed images is complicated by the fact that the sensor, spatial resolution, acquisition conditions, road width, road orientation and road material composition can all vary. A novel technique for detecting road pixels in multi-source remotely sensed images based on the phase (i.e., orientation or directional) information in edge pixels is described. A very dense map of edges extracted from the image is separated into channels, each containing edge pixels whose phases lie within a different range of orientations. The edge map associated with each channel is de-cluttered. A map of road pixels is formed by re-combining the de-cluttered channels into a composite edge image which is itself then separately de-cluttered. Road detection results are provided for DigitalGlobe and TerraServerUSA images. Road representations suitable for various applications are then discussed.

  20. Positron life time and annihilation Doppler broadening measurements on transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Levay, B. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Fizikai Kemiai es Radiologiai Tanszek); Varhelyi, Cs. (Babes-Bolyai Univ., Cluj (Romania)); Burger, K. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Szervetlen es Analitikai Kemiai Intezet)

    1982-01-01

    Positron life time and annihilation Doppler broadening measurements have been carried out on 44 solid coordination compounds. Several correlations have been found between the annihilation life time (tau/sub 1/) and line shape parameters (L) and the chemical structure of the compounds. Halide ligands were the most active towards positrons. This fact supports the assumption on the possible formation of (e/sup +/X/sup -/) positron-halide bound state. The life time was decreasing and the annihilation energy spectra were broadening with the increasing negative character of the halides. The aromatic base ligands affected the positron-halide interaction according to their basicity and space requirement and thus they indirectly affected the annihilation parameters, too. In the planar and tetrahedral complexes the electron density on the central met--al ion affected directly the annihilation parameters, while in the octahedral mixed complexes it had only an ind--irect effect through the polarization of the halide ligands.

  1. Simulation of positron backscattering and implantation profiles using Geant4 code

    Institute of Scientific and Technical Information of China (English)

    黄世娟; 潘子文; 刘建党; 韩荣典; 叶邦角

    2015-01-01

    For the proper interpretation of the experimental data produced in slow positron beam technique, the positron im-plantation properties are studied carefully using the latest Geant4 code. The simulated backscattering coefficients, the implantation profiles, and the median implantation depths for mono-energetic positrons with energy range from 1 keV to 50 keV normally incident on different crystals are reported. Compared with the previous experimental results, our simula-tion backscattering coefficients are in reasonable agreement, and we think that the accuracy may be related to the structures of the host materials in the Geant4 code. Based on the reasonable simulated backscattering coefficients, the adjustable parameters of the implantation profiles which are dependent on materials and implantation energies are obtained. The most important point is that we calculate the positron backscattering coefficients and median implantation depths in amorphous polymers for the first time and our simulations are in fairly good agreement with the previous experimental results.

  2. Possible Contribution of Mature γ-ray Pulsars to Cosmic-ray Positrons

    Institute of Scientific and Technical Information of China (English)

    Quan-Gui Gao; Ze-Jun Jiang; Li Zhang

    2008-01-01

    We restudy the possible contribution of mature gamma-ray pulsars to cosmic ray positrons based on the new version of outer gap model. In this model, the inclination angle and average properties of the outer gap are taken into account, and more mature pulsars can have the outer gap and emit high energy photons. Half of the primary particles in the outer gaps will flow back toward the star surface and emit synchrotron photons, which can produce electron/positron pairs by the cascade of pair production. Some of these pairs will escape from the light cylinder and be accelerated to relativistic energies in the pulsar wind driven by low-frequency electromagnetic waves. Using a Monte Carlo method, we obtain a sample of mature gamma-ray pulsars and then calculate the production of the positrons from these pulsars. The observed excess of cosmic positrons can be well explained by this model.

  3. Cloud based, Open Source Software Application for Mitigating Herbicide Drift

    Science.gov (United States)

    Saraswat, D.; Scott, B.

    2014-12-01

    The spread of herbicide resistant weeds has resulted in the need for clearly marked fields. In response to this need, the University of Arkansas Cooperative Extension Service launched a program named Flag the Technology in 2011. This program uses color-coded flags as a visual alert of the herbicide trait technology within a farm field. The flag based program also serves to help avoid herbicide misapplication and prevent herbicide drift damage between fields with differing crop technologies. This program has been endorsed by Southern Weed Science Society of America and is attracting interest from across the USA, Canada, and Australia. However, flags have risk of misplacement or disappearance due to mischief or severe windstorms/thunderstorms, respectively. This presentation will discuss the design and development of a cloud-based, free application utilizing open-source technologies, called Flag the Technology Cloud (FTTCloud), for allowing agricultural stakeholders to color code their farm fields for indicating herbicide resistant technologies. The developed software utilizes modern web development practices, widely used design technologies, and basic geographic information system (GIS) based interactive interfaces for representing, color-coding, searching, and visualizing fields. This program has also been made compatible for a wider usability on different size devices- smartphones, tablets, desktops and laptops.

  4. Bit-Based Joint Source-Channel Decoding of Huffman Encoded Markov Multiple Sources

    Directory of Open Access Journals (Sweden)

    Weiwei Xiang

    2010-04-01

    Full Text Available Multimedia transmission over time-varying channels such as wireless channels has recently motivated the research on the joint source-channel technique. In this paper, we present a method for joint source-channel soft decision decoding of Huffman encoded multiple sources. By exploiting the a priori bit probabilities in multiple sources, the decoding performance is greatly improved. Compared with the single source decoding scheme addressed by Marion Jeanne, the proposed technique is more practical in wideband wireless communications. Simulation results show our new method obtains substantial improvements with a minor increasing of complexity. For two sources, the gain in SNR is around 1.5dB by using convolutional codes when symbol-error rate (SER reaches 10-2 and around 2dB by using Turbo codes.

  5. Non-linear Ion-Wake Excitation by Plasma Electron Wakefields of an Electron or Positron Beam for Positron Acceleration

    Science.gov (United States)

    Katsouleas, Thomas; Sahai, Aakash

    2015-11-01

    The excitation of a non-linear ion-wake by a train of non-linear electron wake of an electron and a positron beam is modeled and its use for positron acceleration is explored. The ion-wake is shown to be a driven non-linear ion-acoustic wave in the form of a cylindrical ion-soliton similar to the solution of the cKdV equation. The phases of the oscillating radial electric fields of the slowly-propagating electron wake are asymmetric in time and excite time-averaged inertial ion motion radially. The radial field of the electron compression region sucks-in the ions and the field of space-charge region of the wake expels them, driving a cylindrical ion-soliton structure with on-axis and bubble-edge density-spikes. Once formed, the channel-edge density-spike is driven radially outwards by the thermal pressure of the thermalized wake energy. Its channel-like structure due to the flat-residue left behind by the propagating ion-soliton, is independent of the energy-source driving the non-linear electron wake. We explore the use of the partially-filled channel formed by the cylindrical ion-soliton for a novel regime of positron acceleration. PIC simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration (arXiv:1504.03735). Work supported by the US Department of Energy under DE-SC0010012 and the National Science Foundation under NSF-PHY-0936278.

  6. AMS-02 results support the secondary origin of cosmic ray positrons.

    Science.gov (United States)

    Blum, Kfir; Katz, Boaz; Waxman, Eli

    2013-11-22

    We show that the recent AMS-02 positron fraction measurement is consistent with a secondary origin for positrons and does not require additional primary sources such as pulsars or dark matter. The measured positron fraction at high energy saturates the previously predicted upper bound for secondary production, obtained by neglecting radiative losses. This coincidence, which will be further tested by upcoming AMS-02 data at higher energy, is a compelling indication for a secondary source. Within the secondary model, the AMS-02 data imply a cosmic ray propagation time in the Galaxy of <10(6) yr and an average traversed interstellar matter density of ~1 cm(-3), comparable to the density of the Milky Way gaseous disk, at a rigidity of 300 GV.

  7. AMS02 results support the secondary origin of cosmic ray positrons

    CERN Document Server

    Blum, Kfir; Waxman, Eli

    2013-01-01

    We show that the recent AMS02 positron fraction measurement is consistent with a secondary origin for positrons, and does not require additional primary sources such as pulsars or dark matter. The measured positron fraction at high energy saturates the previously predicted upper bound for secondary production (Katz et al 2009), obtained by neglecting radiative losses. This coincidence, which will be further tested by upcoming AMS02 data at higher energy, is a compelling indication for a secondary source. Within the secondary model the AMS02 data imply a cosmic ray propagation time in the Galaxy of < Myr and an average traversed interstellar matter density of order 1/cc, comparable to the density of the Milky Way gaseous disk, at a rigidity of 300 GV.

  8. Polymeric membrane studied using slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hung, W.-S.; Lo, C.-H. [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Cheng, M.-L. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan (China); Chen Hongmin; Liu Guang; Chakka, Lakshmi [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y. [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Sun Yiming [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan (China); Yu Changcheng [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Zhang Renwu [Physical Science Department, Southern Utah University, Cedar City, UT 84720 (United States); Jean, Y.C. [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)], E-mail: jeany@umkc.edu

    2008-10-31

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes.

  9. Radiopharmaceutical chemistry for positron emission tomography

    NARCIS (Netherlands)

    Elsinga, PH

    2002-01-01

    Radiopharmaceutical chemistry includes the selection, preparation, and preclinical evaluation of radiolabeled compounds. This paper describes selection criteria for candidates for positron emission tomography (PET) investigations. Practical aspects of nucleophilic and electrophilic F-18-fluorination

  10. [Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model].

    Science.gov (United States)

    Pan, Tao; Wu, Shao-Hong; Dai, Er-Fu; Liu, Yu-Jie

    2013-01-01

    The Three Rivers Source Area is the largest ecological function region of water source supply and conservation in China. As affected by a variety of driving factors, the ecosystems in this region are seriously degraded, giving definite impacts on the water source supply service. This paper approached the variation patterns of precipitation and runoff coefficient from 1981 to 2010, quantitatively estimated the water source supply of the ecosystems in the region from 1980 to 2005 based on InVEST model, and analyzed the spatiotemporal variation pattern and its causes of the water source supply in different periods. In 1981-2010, the precipitation in the Three Rivers Source Area had a trend of increase after an initial decrease, while the precipitation runoff coefficient presented an obvious decreasing trend, suggesting a reduced capability of runoff water source supply of this region. The potential evapotranspiration had a declining trend, but not obvious, with a rate of -0.226 mm x a(-1). In 1980-2005, the water source supply of the region represented an overall decreasing trend, which was most obvious in the Yellow River Source Area. The spatiotemporal variation of the water source supply in the Three Rivers Source Area was the results of the combined effects of climate and land use change, and the climate factors affected the water source supply mainly through affecting the precipitation and potential evapotranspiration. Climate and land use change induced the ecosystem degradation and underlying surface change, which could be the main driving forces of the declined water source supply in the Three Rivers Source Area.

  11. Nonlinear electromagnetic waves in a degenerate electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)

    2015-08-15

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)

  12. Accurate theoretical prediction on positron lifetime of bulk materials

    CERN Document Server

    Zhang, Wenshuai; Liu, Jiandang; Ye, Bangjiao

    2015-01-01

    Based on the first-principles calculations, we perform an initiatory statistical assessment on the reliability level of theoretical positron lifetime of bulk material. We found the original generalized gradient approximation (GGA) form of the enhancement factor and correlation potentials overestimates the effect of the gradient factor. Furthermore, an excellent agreement between model and data with the difference being the noise level of the data is found in this work. In addition, we suggest a new GGA form of the correlation scheme which gives the best performance. This work demonstrates that a brand-new reliability level is achieved for the theoretical prediction on positron lifetime of bulk material and the accuracy of the best theoretical scheme can be independent on the type of materials.

  13. A novel clustering approach to positron emission particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque; Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2016-03-01

    A novel approach to positron emission particle tracking is presented based on determining regions of space with high density of line of response crossing via clustering. The method is shown to be able to accurately track multiple particles in systems where the number of particles is unknown and in which particles can enter and leave the field of view of the scanning system. This method is explored in various environments and its parametric dependence is studied. - Highlights: • A new approach to positron emission particle tracking is presented. • Using G-means clustering, multiple particle tracking is enabled. • Multiple and variable number particle tracking is explored. • Parametric dependence of algorithm is studied.

  14. Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.

    2015-08-01

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.

  15. On the measurement of positron emitters with Ge detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peyres, Virginia, E-mail: virginia.peyres@ciemat.e [Ciemat, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, Madrid 28040 (Spain); Garcia-Torano, Eduardo [Ciemat, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, Madrid 28040 (Spain)

    2011-05-01

    This paper discusses the problems related to the measurement of positron emitters with germanium detectors. Five positron emitters with important applications in nuclear medicine ({sup 22}Na, {sup 18}F, {sup 11}C, {sup 13}N and {sup 68}Ga) have been studied. Measurements and Monte Carlo simulations have been used to determine the optimal conditions of measurement in gamma-ray spectrometry systems. The results obtained indicate that adding adequate absorbers, detection efficiencies are close to those of gamma emitters of similar energy measured in the same conditions, which allows a rapid calibration of a Ge-based spectrometry system. More accurate results are also presented using a detailed Monte Carlo simulation. Comparison to experimental data shows a good agreement.

  16. Modulation of a quantum positron acoustic wave

    Science.gov (United States)

    Amin, M. R.

    2015-09-01

    Amplitude modulation of a positron acoustic wave is considered in a four-component electron-positron plasma in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the particle exchange-correlation potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to viscosity in the momentum balance equation of the charged carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the quantum positron acoustic wave by employing the standard reductive perturbation technique. Detailed analysis of the linear and nonlinear dispersions of the quantum positron acoustic wave is presented. For a typical parameter range, relevant to some dense astrophysical objects, it is found that the quantum positron acoustic wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the quantum effect due to the particle exchange-correlation potential is significant in comparison to the effect due to the Bohm potential for smaller values of the carrier wavenumber. However, for comparatively larger values of the carrier wavenumber, the Bohm potential effect overtakes the effect of the exchange-correlation potential. It is found that the critical wavenumber for the modulation instability depends on the ratio of the equilibrium hot electron number density and the cold positron number density and on the ratio of the equilibrium hot positron number density and the cold positron number density. A numerical result on the growth rate of the modulation instability is also presented.

  17. Positron-impact ionization of Na

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.K. (Jawahar Navodaya Vidyalaya, Ramchandraghat, West Tripura 799207, Tripura (India)); Singh, N.R. (Thambal Marik College, Oinam, Bishanpur, Manipur (India)); Choudhury, K.B. (Department of Physics, Jadavpur University, Calcutta 700032, West Bengal (India)); Mazumdar, P.S. (Department of Physics, Manipur University, Canchipur, Imphal 795003, Manipur (India))

    1992-07-01

    In this paper we present the total cross sections for the positron-impact ionization of Na in the range 8--30 eV of the energy of the incident positron. Calculations are done by using a distorted-wave approximation incorporating the effects of screening and distortion. The present results are compared with the experimental results for the electron-impact ionization of Na.

  18. Fission, spallation or fusion-based neutron sources

    Indian Academy of Sciences (India)

    Kurt N Clausen

    2008-10-01

    In this paper the most promising technology for high power neutron sources is briefly discussed. The conclusion is that the route to high power neutron sources in the foreseeable future is spallation – short or long pulse or even CW – all of these sources will have areas in which they excel.

  19. The 511 keV emission from positron annihilation in the Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferriere, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G. [CNRS, UMR7095, UMPC and Institut d' Astrophysique de Paris, F-75014, Paris (France) and LAPP, 9 Chemin de Bellevue, BP 110 F-74941 Annecy-le-Vieux (France); A. F. Ioffe Institute of Physics and Technology, Russian Academy of Sciences, 194021, St. Petersburg (Russian Federation); Max Planck Institut fuer Extraterrestrische Physik, D-85741 Garching (Germany); Laboratoire d' Astrophysique de Toulouse-Tarbes, Universite de Toulouse, CNRS, 14 avenue Edouard Belin, F-31400 Toulouse (France); American University of Sharjah, College of Arts and Sciences/Physics Department, P.O. Box 26666, Sharjah (United Arab Emirates); CESR, Universite de Toulouse, CNRS, 9, Avenue du Colonel Roche, Boite Postal 4346, F-31028 Toulouse Cedex 4 (France); L.U.P.M., Universite Montpellier II, CNRS, Place Eugene Bataillon, F-34095 Montpellier (France); Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, California 94305 (United States); Max Planck Institut fuer Extraterrestrische Physik, D-85741, Garching (Germany); Max Planck Institut fur Extraterrestrische Physik, Garching, D-85741 Germany, and MPI Halbleiterlabor, Otto-Hahn-Ring 6, D-81739 Muenchen (Germany)

    2011-07-01

    The first {gamma}-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agency's (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather ''exotic'' ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy ({approx}MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  20. Positron Emission Mammography with Multiple Angle Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  1. Positron Emission Mammography with Multiple Angle Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FDG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three- dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  2. AMS results on positrons and antiprotons in cosmic rays

    Science.gov (United States)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the cosmic ray particles are presented with the emphasis on the measurements of positrons and antiprotons. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of AMS.

  3. Positron annihilation study of vacancy-type defects in Al single crystal foils with the tweed structures across the surface

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Pavel, E-mail: kpv@ispms.tsc.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Cizek, Jacub, E-mail: jcizek@mbox.troja.mff.cuni.cz; Hruska, Petr [Charles University in Prague, Praha, CZ-18000 Czech Republic (Czech Republic); Anwad, Wolfgang [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, D-01314 Germany (Germany); Bordulev, Yuri; Lider, Andrei; Laptev, Roman [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Mironov, Yuri [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The vacancy-type defects in the aluminum single crystal foils after a series of the cyclic tensions were studied using positron annihilation. Two components were identified in the positron lifetime spectra associated with the annihilation of free positrons and positrons trapped by dislocations. With increasing number of cycles the dislocation density firstly increases and reaches a maximum value at N = 10 000 cycles but then it gradually decreases and at N = 70 000 cycles falls down to the level typical for the virgin samples. The direct evidence on the formation of a two-phase system “defective near-surface layer/base Al crystal” in aluminum foils at cyclic tension was obtained using a positron beam with the variable energy.

  4. Potential evaluation of biomass-based energy sources for Turkey

    Directory of Open Access Journals (Sweden)

    Mustafa Ozcan

    2015-06-01

    Full Text Available Turkey has great potential with respect to renewable energy sources (RES and, among such sources, “biomass energy” is of particular importance. The purpose of this study is to determine the primary electrical energy potential obtainable from the biomass potential, according to different biomass source types. In this study, the biomass sources of municipal solid wastes, energy crops, animal manure and urban wastewater treatment sludge are evaluated. For each source, individual biogas and biomass energy potential calculations are made. Methods for energy conversion from wastes applicable to the conditions of Turkey, and technical and economic parameters are used. As a result of the calculations made, the total primary energy value of biogas obtainable from the examined sources is 188.21 TWh/year. The total primary energy value related to the potential of the evaluated biomass sources is 278.40 TWh/year.

  5. Yields of positron and positron emitting nuclei for proton and carbon ion radiation therapy: a simulation study with GEANT4.

    Science.gov (United States)

    Lau, Andy; Chen, Yong; Ahmad, Salahuddin

    2012-01-01

    A Monte Carlo application is developed to investigate the yields of positron-emitting nuclei (PEN) used for proton and carbon ion range verification techniques using the GEANT4 Toolkit. A base physics list was constructed and used to simulate incident proton and carbon ions onto a PMMA or water phantom using pencil like beams. In each simulation the total yields of PEN are counted and both the PEN and their associated positron depth-distributions were recorded and compared to the incident radiation's Bragg Peak. Alterations to the physics lists are then performed to investigate the PEN yields dependence on the choice of physics list. In our study, we conclude that the yields of PEN can be estimated using the physics list presented here for range verification of incident proton and carbon ions.

  6. Reconstruction and prediction of multi-source acoustic field with the distributed source boundary point method based nearfield acoustic holography

    Institute of Scientific and Technical Information of China (English)

    BI; Chuanxing; CHEN; Jian; CHEN; Xinzhao

    2004-01-01

    In a multi-source acoustic field, the actual measured pressure is a scalar sum of pressures from all the sources. The pressure belonging to every source cannot be separated out with the existing techniques. Consequently, routine formulas cannot be used to reconstruct the acoustic source and predict the acoustic field directly. In this paper, a novel theoretical model of reconstruction and prediction of multi-source acoustic field in the distributed source boundary point method (DSBPM) based nearfield acoustic holography (NAH) is established. Three different methods, namely combination method with single surface measurement, combination method with multi-surface measurement and elimination method with multi-surface measurement, are proposed to realize the holographic reconstruction of sources. With these methods, the problem of reconstruction and prediction of acoustic field existing multiple coherent sources synchronously is solved effectively. Using the particular solutions constructed by the DSBPM to establish the vibro-acoustic transfer matrix, the calculation time, calculation precision and calculation stability are improved. These methods are valuable in localizing acoustic source and predicting acoustic field in engineering field.

  7. Constraint-Based Integration of Geospatial and Online Sources

    Science.gov (United States)

    2007-09-10

    sources to accurately geocode addresses. In Proceedings of the 12th ACM International Symposium on Advances in Geographic Information Systems (ACM- GIS 󈧈...34* Rahul Bakshi Integration and reasoning about online sources to accurately geocode addresses. Master’s thesis, University of Southern California...2004. Rahul Bakshi. Integration and reasoning about online sources to accurately geocode addresses. Master’s thesis, University of Southern

  8. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa)

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  9. Wave equation based microseismic source location and velocity inversion

    Science.gov (United States)

    Zheng, Yikang; Wang, Yibo; Chang, Xu

    2016-12-01

    The microseismic event locations and velocity information can be used to infer the stress field and guide hydraulic fracturing process, as well as to image the subsurface structures. How to get accurate microseismic event locations and velocity model is the principal problem in reservoir monitoring. For most location methods, the velocity model has significant relation with the accuracy of the location results. The velocity obtained from log data is usually too rough to be used for location directly. It is necessary to discuss how to combine the location and velocity inversion. Among the main techniques for locating microseismic events, time reversal imaging (TRI) based on wave equation avoids traveltime picking and offers high-resolution locations. Frequency dependent wave equation traveltime inversion (FWT) is an inversion method that can invert velocity model with source uncertainty at certain frequency band. Thus we combine TRI with FWT to produce improved event locations and velocity model. In the proposed approach, the location and model information are interactively used and updated. Through the proposed workflow, the inverted model is better resolved and the event locations are more accurate. We test this method on synthetic borehole data and filed data of a hydraulic fracturing experiment. The results verify the effectiveness of the method and prove it has potential for real-time microseismic monitoring.

  10. Tip-based electron source for femtosecond electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Jan-Paul; Hoffrogge, Johannes; Schenk, Markus; Krueger, Michael; Baum, Peter; Hommelhoff, Peter [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching bei Muenchen (Germany)

    2012-07-01

    Illumination of a sharp tungsten tip with femtosecond laser pulses leads to the emission of ultrashort, high brightness electron pulses that are ideally suited for ultrafast electron diffraction (UED) experiments [1]. The tip's small virtual source size ({proportional_to}5 nm) results in a large transverse coherence length of the electron pulse and therefore better spatial resolution as compared to a conventional flat cathode design. The enhanced electric field at the tip apex (2 GV/m) is about two orders of magnitude larger than the maximum electric field applicable in a plate capacitor based setup (20 MV/m). This reduces the influence of the initial energy distribution on the pulse duration at the target and improves the timing jitter. Simulations show that a setup with a sharp tip as the cathode in combination with two anodes yields an electron pulse duration of about 50 fs at the sample. The electron energy is 30 keV and the gun to sample distance is 3 cm. We implemented the two anode setup with the tip experimentally. We present the experimental characteristics of the emitted electron beam both in static field emission and in laser triggered emission.

  11. Compact X-ray source based on Compton backscattering

    CERN Document Server

    Bulyak, E V; Zelinsky, A; Karnaukhov, I; Kononenko, S; Lapshin, V G; Mytsykov, A; Telegin, Yu P; Khodyachikh, A; Shcherbakov, A; Molodkin, V; Nemoshkalenko, V; Shpak, A

    2002-01-01

    The feasibility study of an intense X-ray source based on the interaction between the electron beam in a compact storage ring and the laser pulse accumulated in an optical resonator is carried out. We propose to reconstruct the 160 MeV electron storage ring N-100, which was shutdown several years ago. A new magnetic lattice will provide a transverse of electron beam size of approx 35 mu m at the point of electron beam-laser beam interaction. The proposed facility is to generate X-ray beams of intensity approx 2.6x10 sup 1 sup 4 s sup - sup 1 and spectral brightness approx 10 sup 1 sup 2 phot/0.1%bw/s/mm sup 2 /mrad sup 2 in the energy range from 10 keV up to 0.5 MeV. These X-ray beam parameters meet the requirements for most of technological and scientific applications. Besides, we plan to use the new facility for studying the laser cooling effect.

  12. A Muon Source Proton Driver at JPARC-based Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab

    2016-06-01

    An "ultimate" high intensity proton source for neutrino factories and/or muon colliders was projected to be a ~4 MW multi-GeV proton source providing short, intense proton pulses at ~15 Hz. The JPARC ~1 MW accelerators provide beam at parameters that in many respects overlap these goals. Proton pulses from the JPARC Main Ring can readily meet the pulsed intensity goals. We explore these parameters, describing the overlap and consider extensions that may take a JPARC-like facility toward this "ultimate" source. JPARC itself could serve as a stage 1 source for such a facility.

  13. Neutron Source Facility Training Simulator Based on EPICS

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.; Grelle, Austin L.; Dworzanski, Pawel L.; Gohar, Yousry

    2015-01-01

    A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has been widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.

  14. Cylindrical and spherical positron-acoustic shock waves in nonthermal electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M.; Alam, M.S.; Mamun, A.A., E-mail: shohelplasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2015-06-15

    The nonlinear propagation of cylindrical and spherical positron-acoustic shock waves (PASWs) in an unmagnetized four-component plasma (containing nonthermal distributed hot positrons and electrons, cold mobile viscous positron fluid, and immobile positive ions) is investigated theoretically. The modified Burgers equation is derived by employing the reductive perturbation method. Analytically, the effects of cylindrical and spherical geometries, nonthermality of electrons and hot positrons, relative number density and temperature ratios, and cold mobile positron kinematic viscosity on the basic features (viz. polarity, amplitude, width, phase speed, etc.) of PASWs are briefly addressed. It is examined that the PASWs in nonplanar (cylindrical and spherical) geometry significantly differ from those in planar geometry. The relevance of our results may be useful in understanding the basic characteristics of PASWs in astrophysical and laboratory plasmas. (author)

  15. FEM simulation of the dynamical pressure and temperature load in target materials of the positron source for the International Linear Collider (ILC); FEM-Simulation der dynamischen Druck- und Temperaturbelastung in Targetmaterialien der Positronenquelle fuer den International Linear Collider (ILC) unter der Einwirkung von kurzen hochenergetischen Teilchenstrahlpulsen

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Felix

    2014-12-15

    Future linear elektron-positron colliders at high energies require a huge amount of positrons during operation time. Positrons are produced by pulsed high-energy electron beams which pass a target. The deposited energy along their path is increasing the temperature immediately and causes stress in the target material. Using the commercial software package ANSYS the development and evolution of potential stress waves in a W-26% is simulated to obtain the dynamic behavior of the material. The load due to the electron beam causes stress waves which still exist 30μs after the cut off. The maximum stress value of the von Mises stress is 392 MPa. That is well below the limit of elasticity. However, cyclic load up to 643 MPa is obtained exceeding the fatigue limit. To provide an optimum design for a positron target these results have to be taken into account.

  16. Voltage sag source location based on instantaneous energy detection

    DEFF Research Database (Denmark)

    Chen, Zhe; Xinzhou, Dong; Wei, Kong

    2007-01-01

    Voltage sag is the major power quality problem, which could disrupt the operation of sensitive equipment. This paper presents the applications of instantaneous energy direction for voltage sag source detection. Simulations have been performed to provide the analysis for system with distributed ge...... generation units. The studies show that the presented method can effectively detect the location of the voltage sag source....

  17. Concept for Risk-based Prioritisation of Point Sources

    DEFF Research Database (Denmark)

    Overheu, N.D.; Troldborg, Mads; Tuxen, N.

    2010-01-01

    estimates on a local scale from all the sources, and 3D catchment-scale fate and transport modelling. It handles point sources at various knowledge levels and accounts for uncertainties. The tool estimates the impacts on the water supply in the catchment and provides an overall prioritisation of the sites...

  18. Microfluidics for Positron Emission Tomography Probe Development

    Directory of Open Access Journals (Sweden)

    Ming-Wei Wang

    2010-07-01

    Full Text Available Owing to increased needs for positron emission tomography (PET, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidics-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates, and easier purification processes with greater yield and higher specific activity of desired probes. Several proof-of-principle examples along with the basics of device architecture and operation and the potential limitations of each design are discussed. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”, an easy-to-use, stand-alone, flexible, fully automated, radiochemical microfluidic platform can provide simpler and more cost-effective procedures for molecular imaging using PET.

  19. Blind source separation based on generalized gaussian model

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; KONG Wei; ZHOU Yue

    2007-01-01

    Since in most blind source separation (BSS) algorithms the estimations of probability density function (pdf) of sources are fixed or can only switch between one sup-Gaussian and other sub-Gaussian model,they may not be efficient to separate sources with different distributions. So to solve the problem of pdf mismatch and the separation of hybrid mixture in BSS, the generalized Gaussian model (GGM) is introduced to model the pdf of the sources since it can provide a general structure of univariate distributions. Its great advantage is that only one parameter needs to be determined in modeling the pdf of different sources, so it is less complex than Gaussian mixture model. By using maximum likelihood (ML) approach, the convergence of the proposed algorithm is improved. The computer simulations show that it is more efficient and valid than conventional methods with fixed pdf estimation.

  20. Setting up of an Open Source based Private Cloud

    Directory of Open Access Journals (Sweden)

    G R Karpagam

    2011-05-01

    Full Text Available Cloud Computing is an attractive concept in IT field, since it allows the resources to be provisioned according to the user needs[11]. It provides services on virtual machines whereby the user can share resources, software and other devices on demand. Cloud services are supported both by Proprietary and Open Source Systems. As Proprietary products are very expensive, customers are not allowed to experiment on their product and security is a major issue in it, Open source systems helps in solving out these problems. Cloud Computing motivated many academic and non academic members to develop Open Source Cloud Setup, here the users are allowed to study the source code and experiment it. This paper describes the configuration of a private cloud using Eucalyptus. Eucalyptus an open source system has been used to implement a private cloud using the hardware and software without making any modification to it and provide various types of services to the cloud computing environment

  1. Sources

    OpenAIRE

    2015-01-01

    SOURCES MANUSCRITES Archives nationales Rôles de taille 1768/71 Z1G-344/18 Aulnay Z1G-343a/02 Gennevilliers Z1G-340/01 Ivry Z1G-340/05 Orly Z1G-334c/09 Saint-Remy-lès-Chevreuse Z1G-344/18 Sevran Z1G-340/05 Thiais 1779/80 Z1G-391a/18 Aulnay Z1G-380/02 Gennevilliers Z1G-385/01 Ivry Z1G-387b/05 Orly Z1G-388a/09 Saint-Remy-lès-Chevreuse Z1G-391a/18 Sevran Z1G-387b/05 Thiais 1788/89 Z1G-451/18 Aulnay Z1G-452/21 Chennevières Z1G-443b/02 Gennevilliers Z1G-440a/01 Ivry Z1G-452/17 Noiseau Z1G-445b/05 ...

  2. Contribution of 18F-Fluoro-ethyl-tyrosine Positron Emission Tomography to Target Volume Delineation in Stereotactic Radiotherapy of Malignant Cranial Base Tumours: First Clinical Experience

    Directory of Open Access Journals (Sweden)

    Reinhold Graf

    2012-01-01

    Full Text Available Increased amino acid uptake has been demonstrated in intracerebral tumours and head and neck carcinomas of squamous cell origin. We investigated the potential impact of using 18F-fluoro-ethyl-tyrosine (18F-FET-PET/CT in addition to conventional imaging for gross tumour volume (GTV delineation in stereotactic radiotherapy of skull base tumours. The study population consisted of 14 consecutive patients with cranial base tumours (10 with squamous cell histology, 4 others. All patients underwent a FET-PET/CT examination in addition to contrast-enhanced CT and 11 patients underwent MRI. All tumours and histologic types showed increased FET uptake. The GTV was defined by all voxels showing hyperintensity in MRI or CT (GTVMRI/CT or enhancement in PET (GTVPET, forming a GTVcomposite that was used for the initial treatment fields. An additional volume of infiltrative growth outside the GTVMRI/CT of about 1.0 ± 2 cm3 (5% of the conventional volume was demonstrated by FET-PET only (GTVPETplus with significant enlargement (>10% of GTVMRI/CT in three patients. From existing data, we found correlation between cellular density and the standardized uptake value (SUV of FET. We were able to substantially reduce the volume of escalated radiation dose (GTVboost by 11 ± 2 cm3 (24% of the conventional volume.

  3. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV

    Science.gov (United States)

    Aguilar, M.; Alberti, G.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Anderhub, H.; Arruda, L.; Azzarello, P.; Bachlechner, A.; Barao, F.; Baret, B.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Basili, A.; Batalha, L.; Bates, J.; Battiston, R.; Bazo, J.; Becker, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Berges, P.; Bertucci, B.; Bigongiari, G.; Biland, A.; Bindi, V.; Bizzaglia, S.; Boella, G.; de Boer, W.; Bollweg, K.; Bolmont, J.; Borgia, B.; Borsini, S.; Boschini, M. J.; Boudoul, G.; Bourquin, M.; Brun, P.; Buénerd, M.; Burger, J.; Burger, W.; Cadoux, F.; Cai, X. D.; Capell, M.; Casadei, D.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, C. R.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chernoplyiokov, N.; Chikanian, A.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Commichau, V.; Consolandi, C.; Contin, A.; Corti, C.; Costado Dios, M. T.; Coste, B.; Crespo, D.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirkoz, B.; Dennett, P.; Derome, L.; Di Falco, S.; Diao, X. H.; Diago, A.; Djambazov, L.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Dubois, J. M.; Duperay, R.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eppling, F. J.; Eronen, T.; van Es, J.; Esser, H.; Falvard, A.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Flood, K.; Foglio, R.; Fohey, M.; Fopp, S.; Fouque, N.; Galaktionov, Y.; Gallilee, M.; Gallin-Martel, L.; Gallucci, G.; García, B.; García, J.; García-López, R.; García-Tabares, L.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gentile, S.; Gervasi, M.; Gillard, W.; Giovacchini, F.; Girard, L.; Goglov, P.; Gong, J.; Goy-Henningsen, C.; Grandi, D.; Graziani, M.; Grechko, A.; Gross, A.; Guerri, I.; de la Guía, C.; Guo, K. H.; Habiby, M.; Haino, S.; Hauler, F.; He, Z. H.; Heil, M.; Heilig, J.; Hermel, R.; Hofer, H.; Huang, Z. C.; Hungerford, W.; Incagli, M.; Ionica, M.; Jacholkowska, A.; Jang, W. Y.; Jinchi, H.; Jongmanns, M.; Journet, L.; Jungermann, L.; Karpinski, W.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Koulemzine, A.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Laudi, E.; Laurenti, G.; Lauritzen, C.; Lebedev, A.; Lee, M. W.; Lee, S. C.; Leluc, C.; León Vargas, H.; Lepareur, V.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Z. H.; Lipari, P.; Lin, C. H.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, Y. S.; Lucidi, S.; Lübelsmeyer, K.; Luo, J. Z.; Lustermann, W.; Lv, S.; Madsen, J.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masciocchi, F.; Masi, N.; Maurin, D.; McInturff, A.; McIntyre, P.; Menchaca-Rocha, A.; Meng, Q.; Menichelli, M.; Mereu, I.; Millinger, M.; Mo, D. C.; Molina, M.; Mott, P.; Mujunen, A.; Natale, S.; Nemeth, P.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oh, S.; Oliva, A.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pauw, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Perrin, E.; Pessina, G.; Pierschel, G.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pochon, J.; Pohl, M.; Poireau, V.; Porter, S.; Pouxe, J.; Putze, A.; Quadrani, L.; Qi, X. N.; Rancoita, P. G.; Rapin, D.; Ren, Z. L.; Ricol, J. S.; Riihonen, E.; Rodríguez, I.; Roeser, U.; Rosier-Lees, S.; Rossi, L.; Rozhkov, A.; Rozza, D.; Sabellek, A.; Sagdeev, R.; Sandweiss, J.; Santos, B.; Saouter, P.; Sarchioni, M.; Schael, S.; Schinzel, D.; Schmanau, M.; Schwering, G.; Schulz von Dratzig, A.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Shi, Y. M.; Siedenburg, T.; Siedling, R.; Son, D.; Spada, F.; Spinella, F.; Steuer, M.; Stiff, K.; Sun, W.; Sun, W. H.; Sun, X. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tassan-Viol, J.; Ting, Samuel C. C.; Ting, S. M.; Titus, C.; Tomassetti, N.; Toral, F.; Torsti, J.; Tsai, J. R.; Tutt, J. C.; Ulbricht, J.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vargas Trevino, M.; Vaurynovich, S.; Vecchi, M.; Vergain, M.; Verlaat, B.; Vescovi, C.; Vialle, J. P.; Viertel, G.; Volpini, G.; Wang, D.; Wang, N. H.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Wallraff, W.; Weng, Z. L.; Willenbrock, M.; Wlochal, M.; Wu, H.; Wu, K. Y.; Wu, Z. S.; Xiao, W. J.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. G.; Zhang, Z.; Zhang, M. M.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zuccon, P.; Zurbach, C.

    2013-04-01

    A precision measurement by the Alpha Magnetic Spectrometer on the International Space Station of the positron fraction in primary cosmic rays in the energy range from 0.5 to 350 GeV based on 6.8×106 positron and electron events is presented. The very accurate data show that the positron fraction is steadily increasing from 10 to ˜250GeV, but, from 20 to 250 GeV, the slope decreases by an order of magnitude. The positron fraction spectrum shows no fine structure, and the positron to electron ratio shows no observable anisotropy. Together, these features show the existence of new physical phenomena.

  4. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV

    OpenAIRE

    2013-01-01

    A precision measurement by the Alpha Magnetic Spectrometer on the International Space Station of the positron fraction in primary cosmic rays in the energy range from 0.5 to 350 GeV based on 6.8×106 positron and electron events is presented. The very accurate data show that the positron fraction is steadily increasing from 10 to ∼250  GeV, but, from 20 to 250 GeV, the slope decreases by an order of magnitude. The positron fraction spectrum shows no fine structure, and the positron to electron...

  5. Study of the production yields of {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Italiano, Antonio, E-mail: italianoa@unime.it [Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Margarone, Daniele [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic); Pagano, Benedetta [Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Baldari, Sergio [Section of Radiological Sciences, Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging, University of Messina (Italy); Nuclear Medicine Unit, University Hospital “G. Martino”, Messina (Italy); Korn, Georg [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague (Czech Republic)

    2016-03-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. {sup 18}F, {sup 11}C, {sup 13}N and {sup 15}O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of {sup 18}F-, {sup 11}C- and {sup 13}N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  6. Relationship between the temporal changes in positron-emission-tomography-imaging-based textural features and pathologic response and survival in esophageal cancer patients

    Directory of Open Access Journals (Sweden)

    Stephen ShingFan Yip

    2016-03-01

    Full Text Available Purpose: Although change in SUV measures and PET-based textural features during treatment have shown promise in tumor response prediction, it is unclear which quantitative measure is the most predictive. We compared the relationship between PET-based features and pathologic response and overall survival with the SUV measures in esophageal cancer. Methods: Fifty-four esophageal cancer patients received PET/CT scans before and after chemo-radiotherapy. Of these, 45 patients underwent surgery and were classified into complete, partial, and non-responders to the preoperative chemoradiation. SUVmax and SUVmean, two co-occurrence matrix (Entropy and Homogeneity, two run-length-matrix (High-gray-run-emphasis and Short-run-high-gray-run-emphasis, and two size-zone-matrix (High-gray-zone-emphasis and Short-zone-high-gray-emphasis textures were computed. The relationship between the relative difference of each measure at different treatment time points and the pathologic response and overall survival was assessed using the area under the receiver-operating-characteristic curve (AUC and Kaplan-Meier statistics respectively. Results: All Textures, except Homogeneity, were better related to pathologic response than SUVmax and SUVmean. Entropy was found to significantly distinguish non-responders from the complete (AUC=0.79, p=1.7x10^-4 and partial (AUC=0.71, p=0.01 responders. Non-responders can also be significantly differentiated from partial and complete responders by the change in the run length and size zone matrix textures (AUC=0.71‒0.76, p≤0.02. Homogeneity, SUVmax and SUVmean failed to differentiate between any of the responders (AUC=0.50‒0.57, p≥0.46. However, none of the measures were found to significantly distinguish between complete and partial responders with AUC0.25. Conclusions: For the patients studied, temporal change in Entropy and all Run length matrix were better correlated with pathological response and survival than the SUV

  7. Powerful nanosecond light sources based on LEDs for astroparticle physics experiments

    OpenAIRE

    Lubsandorzhiev, B. K.; Poleshuk, R. V.; Shaibonov, B. A. J.; Vyatchin, Y. E.

    2007-01-01

    Powerful nanosecond light sources based on LEDs have been developed for use in astroparticle physics experiments. The light sources use either matrixes of ultra bright blue LEDs or a new generation high power blue LEDs. It's shown that such light sources have light yield of up to 10**10 - 10**12 photons per pulse with very fast light emission kinetics. The described light sources are important for use in calibration systems of Cherenkov and scintillator detectors. The developed light sources ...

  8. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger.

  9. Positron range in tissue-equivalent materials: experimental microPET studies

    Science.gov (United States)

    Alva-Sánchez, H.; Quintana-Bautista, C.; Martínez-Dávalos, A.; Ávila-Rodríguez, M. A.; Rodríguez-Villafuerte, M.

    2016-09-01

    In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with 18F, 13N or 68Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters.

  10. Imaging the attenuation coefficients of positron beams in matter: positron attenuation tomography

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Charles [Siemens Healthcare, Knoxville, TN (United States)

    2015-05-18

    A new positron annihilation imaging modality is described that enables nondestructive measurement of the linear attenuation coefficients (LACs) of positron beams in heterogeneous materials. This positron attenuation tomography (PAT) technique utilizes a positron emission tomography (PET) system embedded within a uniform static magnetic field, such as is found in integrated PET/MRI scanners. A Ga68-generated positron beam constrained by a 3T magnetic field penetrates objects placed within the scanner. The positrons slow down and annihilate within the object. The resulting annihilation distribution is tomographically imaged by the PET camera. This image may be interpreted as a map of the product of the positron beam's flux and its LAC at each point in the volume. It is shown that under certain easily achieved conditions this image can be decomposed into separate maps of the flux and the LACs, without need for auxiliary measurements. Although these LACs may depend on both beam and material properties, a beam softening correction is demonstrated that effectively removes the dependence on beam variation, leaving a relative LAC that is characteristic of the material. Unlike x-ray, gamma-ray or other transmission techniques, PAT does not require the penetration of the beam entirely through the object. High resolution and high contrast images of positron beam LACs in objects may be produced over nearly the full range of the positron beam, which for Ga68 beta-rays in a 3T field is about 0.5 g/cm{sup 2}. The first examples of PAT images and an initial characterization of performance will be presented.

  11. On source models for (192)Ir HDR brachytherapy dosimetry using model based algorithms.

    Science.gov (United States)

    Pantelis, Evaggelos; Zourari, Kyveli; Zoros, Emmanouil; Lahanas, Vasileios; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2016-06-07

    A source model is a prerequisite of all model based dose calculation algorithms. Besides direct simulation, the use of pre-calculated phase space files (phsp source models) and parameterized phsp source models has been proposed for Monte Carlo (MC) to promote efficiency and ease of implementation in obtaining photon energy, position and direction. In this work, a phsp file for a generic (192)Ir source design (Ballester et al 2015) is obtained from MC simulation. This is used to configure a parameterized phsp source model comprising appropriate probability density functions (PDFs) and a sampling procedure. According to phsp data analysis 15.6% of the generated photons are absorbed within the source, and 90.4% of the emergent photons are primary. The PDFs for sampling photon energy and direction relative to the source long axis, depend on the position of photon emergence. Photons emerge mainly from the cylindrical source surface with a constant probability over  ±0.1 cm from the center of the 0.35 cm long source core, and only 1.7% and 0.2% emerge from the source tip and drive wire, respectively. Based on these findings, an analytical parameterized source model is prepared for the calculation of the PDFs from data of source geometry and materials, without the need for a phsp file. The PDFs from the analytical parameterized source model are in close agreement with those employed in the parameterized phsp source model. This agreement prompted the proposal of a purely analytical source model based on isotropic emission of photons generated homogeneously within the source core with energy sampled from the (192)Ir spectrum, and the assignment of a weight according to attenuation within the source. Comparison of single source dosimetry data obtained from detailed MC simulation and the proposed analytical source model show agreement better than 2% except for points lying close to the source longitudinal axis.

  12. DIFFERENCES BETWEEN ELECTRONS AND POSITRONS INTERACTING WITH DETECTOR MATERIAL

    NARCIS (Netherlands)

    MEIRING, WJ; VANKLINKEN, J; WICHERS, VA

    1991-01-01

    A theory of multiple scattering, exhibiting differences between electrons and positrons in interactions with matter, is developed. Additional differences in stopping power and annihilation for positrons are briefly discussed. Experimental verification of these differences is reported for plastic sci

  13. Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model

    Science.gov (United States)

    Xu, Fei; Dong, Guangxia; Wang, Qingrui; Liu, Lumeng; Yu, Wenwen; Men, Cong; Liu, Ruimin

    2016-09-01

    The impacts of different digital elevation model (DEM) resolutions, sources and resampling techniques on nutrient simulations using the Soil and Water Assessment Tool (SWAT) model have not been well studied. The objective of this study was to evaluate the sensitivities of DEM resolutions (from 30 m to 1000 m), sources (ASTER GDEM2, SRTM and Topo-DEM) and resampling techniques (nearest neighbor, bilinear interpolation, cubic convolution and majority) to identification of non-point source (NPS) critical source area (CSA) based on nutrient loads using the SWAT model. The Xiangxi River, one of the main tributaries of Three Gorges Reservoir in China, was selected as the study area. The following findings were obtained: (1) Elevation and slope extracted from the DEMs were more sensitive to DEM resolution changes. Compared with the results of the 30 m DEM, 1000 m DEM underestimated the elevation and slope by 104 m and 41.57°, respectively; (2) The numbers of subwatersheds and hydrologic response units (HRUs) were considerably influenced by DEM resolutions, but the total nitrogen (TN) and total phosphorus (TP) loads of each subwatershed showed higher correlations with different DEM sources; (3) DEM resolutions and sources had larger effects on CSAs identifications, while TN and TP CSAs showed different response to DEM uncertainties. TN CSAs were more sensitive to resolution changes, exhibiting six distribution patterns at all DEM resolutions. TP CSAs were sensitive to source and resampling technique changes, exhibiting three distribution patterns for DEM sources and two distribution patterns for DEM resampling techniques. DEM resolutions and sources are the two most sensitive SWAT model DEM parameters that must be considered when nutrient CSAs are identified.

  14. Pitch and TDOA-Based Localization of Acoustic Sources with Distributed Arrays

    DEFF Research Database (Denmark)

    Hansen, Martin Weiss; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2015-01-01

    In this paper, a method for acoustic source localization using distributed microphone arrays based on time-differences of arrival (TDOAs) is presented. The TDOAs are used to estimate the location of an acoustic source using a recently proposed method, based on a 4D parameter space defined by the 3D...... location of the source, and the TDOAs. The performance of the proposed method for acoustic source localization is compared to the performance of a method based on generalized cross-correlation with phase transform (GCC-PHAT) using synthetic and speech signals with varying source position. Results show...

  15. 89Zr radiochemistry for positron emission tomography.

    Science.gov (United States)

    Severin, Gregory W; Engle, Jonathan W; Barnhart, Todd E; Nickles, R Jerry

    2011-09-01

    The positron emitting isotope (89)Zr is an ideal radionuclide for use in positron emission tomography (PET) imaging with monoclonal antibodies (mAbs). This article reviews the cyclotron physics of (89)Zr production, and the chemical separation methods for isolating it from yttrium target material. (89)Zr coordination with the bifunctional chelate desferrioxamine B is discussed, along with the common procedures for attaching the chelate to mAbs. The review is intended to detail the procedure for creating (89)Zr labeled mAbs, going from cyclotron to PET.

  16. A compact positron annihilation lifetime spectrometer

    Institute of Scientific and Technical Information of China (English)

    LI Dao-Wu; LIU Jun-Hui; ZHANG Zhi-Ming; WANG Bao-Yi; ZHANG Tian-Bao; WEI Long

    2011-01-01

    Using LYSO scintillator coupled on HAMAMATSU R9800(a fast photomultiplier)to form the small size γ-ray detectors,a compact lifetime spectrometer has been built for the positron annihilation experiments.The system time resolution FWHM=193 ps and the coincidence counting rate -8 cps/μCi were achieved.A lifetime value of 219±1 ps of positron annihilation in well annealed Si was tested,which is in agreement with the typical values published in the previous lectures.

  17. Positronium Formation in Positron-Lithium Scattering

    Institute of Scientific and Technical Information of China (English)

    程勇军; 周雅君; 刘芳

    2011-01-01

    The positronium formation process in positron scattering with atomic lithium is investigated using the coupledchannel optical method.The cross sections of positronium formation into the n =1 and n =2 levels from 2 to 60 e V are reported.The present results show reasonable agreement with the available experimental measurements and theoretical calculations.%The positronium formation process in positron scattering with atomic lithium is investigated using the coupled-channel optical method. The cross sections of positronium formation into the n = 1 and n = 2 levels from 2 to 60 e V are reported. The present results show reasonable agreement with the available experimental measurements and theoretical calculations.

  18. Vortices in Ionization Collisions by Positron Impact

    CERN Document Server

    Navarrete, F; Fiol, J; Barrachina, R O

    2013-01-01

    The presence of vortices in the ionisation of hydrogen atoms by positrons at intermediate impact energies is investigated. The present findings show that a previously reported minima in the fully-differential cross section is the signature of a vortex in the continuum positron-electron-proton system. The behaviour of the real and imaginary parts of the complex-valued transition matrix is studied in order to determine and characterize the vortex in momentum space. The obtained information is translated to fully-differential ionisation cross sections, feasible of being measured with currently available techniques.

  19. LIGHT SOURCE: Design of a new compact THz source based on Smith-Purcell radiation

    Science.gov (United States)

    Dai, Dong-Dong; Bei, Hua; Dai, Zhi-Min

    2009-06-01

    In recent years, people are dedicated to the research work of finding compact THz sources with high emission power. Smith-Purcell radiation is qualified for the possibility of coherent enhancement due to the effect of FEL mechanism. The compact experiment device is expected to produce hundreds mW level THz ray. The electron beam with good quality is provided under the optimized design of the electron gun. Besides, the grating is designed as an oscillator without any external feedbacks. While the beam passes through the grating surface, the beam bunching will be strong and the second harmonics enhancement will be evident, as is seen from the simulation results.

  20. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    KAUST Repository

    Vlach, Martin

    2015-01-29

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible. © 2015, The Minerals, Metals & Materials Society and ASM International.

  1. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield

    Energy Technology Data Exchange (ETDEWEB)

    Corde, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adli, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Oslo, Oslo (Norway); Allen, J. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); An, W. [Univ. of California, Los Angeles, CA (United States); Clarke, C. I. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Delahaye, J. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frederico, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gessner, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Green, S. Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States); Lipkowitz, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lu, W. [Tsinghua Univ., Beijing (China); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Mori, W. B. [Univ. of California, Los Angeles, CA (United States); Schmeltz, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Vafaei-Najafabadi, N. [Univ. of California, Los Angeles, CA (United States); Walz, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yocky, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States)

    2015-08-26

    New accelerator concepts must be developed to make future particle colliders more compact and affordable. The Plasma Wakefield Accelerator (PWFA) is one such concept, where the electric field of a plasma wake excited by a charged-particle bunch is used to accelerate a trailing bunch of particles. To apply plasma acceleration to particle colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas1. While substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch 2, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFA where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered – self-loaded – so that about a billion positrons gain five gigaelectronvolts (GeV) of energy with a narrow energy spread in a distance of just 1.3 meters. They extract about 30% of the wake’s energy and form a spectrally distinct bunch with as low as a 1.8% r.m.s. energy spread. This demonstrated ability of positron-driven plasma wakes to efficiently accelerate a significant number of positrons with a small energy spread may overcome the long-standing challenge of positron acceleration in plasma-based accelerators.

  2. Positron methods for the study of defects in bulk materials

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard

    1995-01-01

    The basic principles of positron annihilation physics are briefly discussed and the three most important experimental techniques used for bulk studies are described (i.e. positron lifetime, angular correlation, Doppler broadening). Several examples of the use of the positron methods are discussed...

  3. Positron Annihilation Studies of VVER Type Reactor Steels

    OpenAIRE

    Brauer, G.

    1995-01-01

    A summary of recent positron annihilation work on Russian VVER type reactor steels is presented. Thereby, special attention is paid to the outline of basic processes that might help to understand the positron behaviour in this class of industrial material. The idea of positron trapping by irradiation-induced precipitates, which are probably carbides, is discussed in detail.

  4. Physics perspectives at JLab with a polarized positron beam

    Directory of Open Access Journals (Sweden)

    Voutier Eric

    2014-06-01

    Full Text Available Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.

  5. Physics perspectives at JLab with a polarized positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, Eric J.-M. [UNIV. JOSEPH FOURNIER, GRENOBLE, France

    2014-06-01

    Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.

  6. The multilayer Fe/Hf studied with slow positron beam

    Science.gov (United States)

    Murashige, Y.; Tashiro, M.; Nakajyo, T.; Koizumi, T.; Kanazawa, I.; Komori, F.; Ito, Y.

    1997-04-01

    The positron annihilation parameter versus the incident positron energy is measured in the thin Fe films and the Fe/Hf bilayer on silica substrate, by means of the variable energetic slow-positron beam technique. We have analyzed the change in open-volume spaces and vacancy-type defects among the Fe microcrystals in these thin films with the deposition temperature.

  7. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Gregor, Jens [University of Tennessee, Knoxville (UTK); Bingham, Philip R [ORNL

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.

  8. Visible and ultraviolet light sources based nonlinear interaction of lasers

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Tidemand-Lichtenberg, Peter; Jain, Mayank;

    Different light sources can be used for optically stimulated luminescence measurements and usually a halogen lamp in combination with filters or light emitting diodes (LED’s) are used to provide the desired stimulation wavelength. However lasers can provide a much more well-defined beam, very...

  9. Quantum-dot-based integrated non-linear sources

    DEFF Research Database (Denmark)

    Bernard, Alice; Mariani, Silvia; Andronico, Alessio

    2015-01-01

    The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter is gra...

  10. Advanced RF Sources Based on Novel Nonlinear Transmission Lines

    Science.gov (United States)

    2015-01-26

    crowding and therefore highest temperature due to joule heating, occurs at the constriction corner near the source side , which is point B in Fig. 4(c...Boltzmann transport equation in orifice and disk geometry,” Proc. Phys. Soc. 89, 927 (1966). [23] Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Analysis of

  11. Towards Evidence-Based Understanding of Electronic Data Sources

    DEFF Research Database (Denmark)

    Chen, Lianping; Ali Babar, Muhammad; Zhang, He

    2010-01-01

    Identifying relevant papers from various Electronic Data Sources (EDS) is one of the key activities of conducting these kinds of studies. Hence, the selection of EDS for searching the potentially relevant papers is an important decision, which can affect a study’s coverage of relevant papers. Res...

  12. RPC: from High Energy Physics to Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Belli, G; Vecchi, C De; Giroletti, E; Musitelli, G; Nardo, R; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Sani, G; Torre, P; Vitulo, P; Viviani, C [Dipartimento di Fisica Nucleare e Teorica - Universita di Pavia and Istituto Nazionale di Fisica Nucleare - Sezione di Pavia - via A. Bassi, 6 Pavia - (Italy)

    2006-05-15

    A low cost gas-based charged particle detector, the Resistive Plate Counter (RPC) intensively used in fixed target and collider high energy experiments, is proposed as basic detector for Positron Emission Tomography. The performance of RPCs in terms of intrinsic space and time resolution and electronic pulse height response, makes it possible to transform standard RPCs into photon detectors and therefore to compensate for the photon sensitivity of scintillating crystals, when the efficiency of the complex crystal + photomultiplier is turned into standard quantum efficiency (q.e). Prototype multigap glass RPCs were developed which optimize {gamma} detection efficiency and thus might substitute the traditional scintillators setups.

  13. Direction of arrival estimation of coherent sources based on arbitrary plane arrays

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A method of direction of arrival (DOA) estimation of coherent sources is proposed, which is based on arbitrary plane arrays. After constructing the mathematical model of coherent sources, virtual array transformation and MUSIC algorithm are used to realize the azimuth estimation of coherent sources, which improved the DOA estimation performance greatly. According to the computer simulation, its validity is confirmed.

  14. The Great Patriotic War: the Problems of Forming the Source Base

    Directory of Open Access Journals (Sweden)

    Evgeny F. Krinko

    2015-07-01

    Full Text Available The Great Patriotic War was reflected in the different historical sources. The article is devoted to the formation of the source base of the problem. The author examines the dynamics of the situation in the archives and publication of documents. The main attention is paid to the modern study of the sources of the Great Patriotic War.

  15. Integrating source-language context into phrase-based statistical machine translation

    NARCIS (Netherlands)

    Haque, R.; Kumar Naskar, S.; Bosch, A.P.J. van den; Way, A.

    2011-01-01

    The translation features typically used in Phrase-Based Statistical Machine Translation (PB-SMT) model dependencies between the source and target phrases, but not among the phrases in the source language themselves. A swathe of research has demonstrated that integrating source context modelling dire

  16. Development of a dedicated positron emission tomography system for the detection and biopsy of breast cancer

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Kross, Brian; Popov, Vladimir; Proffitt, James; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Dedicated positron emission mammography breast imaging systems have shown great promise for the detection of small, radiotracer-avid lesions. Our group (a collaboration consisting of West Virginia University, Jefferson Lab and the University of Washington) is extending this work by developing a positron emission mammography-tomography (PEM-PET) system for imaging and biopsy of breast lesions. The system will have four planar detector heads that will rotate about the breast to acquire multi-view data suitable for tomographic reconstruction. Each detector head will consist of a 96×72 array of 2×2×15 mm 3 LYSO detector elements (pitch=2.1 mm) mounted on a 3×4 array of 5×5 cm 2 flat panel position-sensitive photomultiplier tubes. PEM-PET is expected to have approximately two-millimeter resolution and possess the ability to guide the needle biopsy of suspicious lesions seen on the PET images. Initial tests of the scintillator arrays yielded excellent results. Pixel maps for all four scintillator arrays demonstrated that separation of the LYSO elements was very good; all of the LYSO array elements were observed, even in areas between individual PSPMTs. System energy resolution was measured to be 25% FWHM at 511 keV. Future work includes the use of field programmable gate arrays (FPGAs) to replace the current VME-based data acquisition system, a PSPMT gain normalization procedure to help improve response uniformity and energy resolution, and the addition of an x-ray source and detector to produce multi-modality PEM-PET-CT images of the breast.

  17. Positron Impact Mransitions of Atomic Sodium

    Institute of Scientific and Technical Information of China (English)

    CHENG Yong-Jun; ZHOU YarJun

    2011-01-01

    @@ We present a new investigation of elastic and inelastic positron-sodium scattering by using the coupled-channel optical method(CCO)at an incident energy region of 2-100eV.The ionization continuum and positronium formation channels have been included via a complex equivalent-local optical potential.The present calculations are compared with available theoretical data and our investigation indicates that the inclusion of ionization and Ps-formation channels in the present calculations has a significant effect on the cross sections of elastic and inelastic positron-sodium scattering at lower energies.%We present a new investigation of elastic and inelastic positron-sodium scattering by using the coupled-channel optical method (CCO) at an incident energy region of 2-100eV. The ionization continuum and positronium formation channels have been included via a complex equivalent-local optical potential. The present calculations are compared with available theoretical data and our investigation indicates that the inclusion of ionization and Ps-formation channels in the present calculations has a significant effect on the cross sections of elastic and inelastic positron-sodium scattering at lower energies.

  18. Positron annihilation with core and valence electrons

    CERN Document Server

    Green, D G

    2015-01-01

    $\\gamma$-ray spectra for positron annihilation with the core and valence electrons of the noble gas atoms Ar, Kr and Xe is calculated within the framework of diagrammatic many-body theory. The effect of positron-atom and short-range positron-electron correlations on the annihilation process is examined in detail. Short-range correlations, which are described through non-local corrections to the vertex of the annihilation amplitude, are found to significantly enhance the spectra for annihilation on the core orbitals. For Ar, Kr and Xe, the core contributions to the annihilation rate are found to be 0.55\\%, 1.5\\% and 2.2\\% respectively, their small values reflecting the difficulty for the positron to probe distances close to the nucleus. Importantly however, the core subshells have a broad momentum distribution and markedly contribute to the annihilation spectra at Doppler energy shifts $\\gtrsim3$\\,keV, and even dominate the spectra of Kr and Xe at shifts $\\gtrsim5$\\,keV. Their inclusion brings the theoretical ...

  19. Advanced Instrumentation for Positron Emission Tomography [PET

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  20. Positron production in collision of heavy nuclei

    CERN Document Server

    Khriplovich, I B

    2016-01-01

    We consider the electromagnetic production of positron in collision of slow heavy nuclei, with the simultaneously produced electron captured by one of the nuclei. The cross-section of the discussed process exceeds essentially the cross-section of $e^+e^-$ production.

  1. A compact positron annihilation lifetime spectrometer

    Institute of Scientific and Technical Information of China (English)

    李道武; 刘军辉; 章志明; 王宝义; 张天保; 魏龙

    2011-01-01

    Using LYSO scintillator coupled on HAMAMATSU R9800 (a fast photomultiplier) to form the small size γ-ray detectors, a compact lifetime spectrometer has been built for the positron annihilation experiments. The system time resolution FWHM=193 ps and the co

  2. Positron elastic scattering from alkaline earth targets

    Science.gov (United States)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  3. A positron moderator using porous metal

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-Yi; YU Run-Sheng; ZHAO Fa-Ru; MA Chuang-Xin; ZHANG Tian-Bao; WEI Long

    2004-01-01

    Two types of porous metal moderators (i.e. porous nickel layer and multi-wire tungsten layer) are proposed and tested on a slow positron beam line. A moderation efficiency of about 2×10-4 has been achieved, which is higher than that for W vane geometry moderator by a factor of 4.

  4. Positron Interactions with Atoms and Ions

    Science.gov (United States)

    Bhatia, Anand K.

    2012-01-01

    Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of relativity invented the well-known relativistic wave equation. In his formulation, he predicted an antiparticle of the electron of spin n-bar/2. He thought that this particle must be a proton. Dirac published his interpretation in a paper 'A theory of electrons and protons.' It was shown later by the mathematician Hermann Weyl that the Dirac theory was completely symmetric between negative and positive particles and the positive particle must have the same mass as that of the electron. In his J. Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac notes that 'Blackett was really the first person to obtain hard evidence for the existence of a positron but he was afraid to publish it. He wanted confirmation, he was really over cautious.' Positron, produced by the collision of cosmic rays in a cloud chamber, was detected experimentally by Anderson in 1932. His paper was published in Physical Review in 1933. The concept of the positron and its detection were the important discoveries of the 20th century. I have tried to discuss various processes involving interactions of positrons with atoms and ions. This includes scattering, bound states and resonances. It has not been possible to include the enormous work which has been carried out during the last 40 or 50 years in theory and measurements.

  5. Is positron emission tomography useful in stroke?

    NARCIS (Netherlands)

    DeReuck, J; Leys, D; DeKeyser, J

    1997-01-01

    Positron emission tomography (PET) has been widely used in the study of stroke and related cerebrovascular diseases. It has shown the various stages leading to cerebral infarction and defined the significance of the ischaemic penumbra. PET scan can predict the clinical outcome of patients with acute

  6. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  7. Positron emission tomography : measurement of transgene expression

    NARCIS (Netherlands)

    de Vries, EFJ; Vaalburg, W

    2002-01-01

    Noninvasive and repetitive imaging of transgene expression can play a pivotal role in the development of gene therapy strategies, as it offers investigators a means to determine the effectiveness of their gene transfection protocols. In the last decade, imaging of transgene expression using positron

  8. Observation of a charge delocalization from Se vacancies in Bi2Se3 : A positron annihilation study of native defects

    Science.gov (United States)

    Unzueta, I.; Zabala, N.; Marín-Borrás, V.; Muñoz-Sanjosé, V.; García, J. A.; Plazaola, F.

    2016-07-01

    By means of positron annihilation lifetime spectroscopy, we have investigated the native defects present in Bi2Se3 , which belongs to the family of topological insulators. We experimentally demonstrate that selenium vacancy defects (VSe1) are present in Bi2Se3 as-grown samples, and that their charge is delocalized as temperature increases. At least from 100 K up to room temperature both VSe10 and VSe1+ charge states coexist. The observed charge delocalization determines the contribution of VSe1 defects to the n -type conductivity of Bi2Se3 . These findings are supported by theoretical calculations, which show that vacancies of nonequivalent Se1 and Se2 selenium atoms are clearly differentiated by positron annihilation lifetime spectroscopy, enabling us to directly detect and quantify the most favorable type of selenium vacancy. In addition to open-volume defects, experimental data indicate the presence of defects that act as shallow traps, suggesting that more than one type of native defects coexist in Bi2Se3 . As will be discussed, the presence of a dislocation density around 1010cm-2 could be the source of the detected shallow traps. Understanding the one-dimensional defects and the origin of the charge delocalization that leads Bi2Se3 to be an n -type semiconductor will help in the development of high-quality topological insulators based on this material.

  9. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  10. Performance of positive ion based high power ion source of EAST neutral beam injector

    Science.gov (United States)

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-02-01

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST.

  11. Control and Driving Methods for LED Based Intelligent Light Sources

    DEFF Research Database (Denmark)

    Beczkowski, Szymon

    High power light-emitting diodes allow the creation of luminaires capable of generating saturated colour light at very high efficacies. Contrary to traditional light sources like incandescent and high-intensity discharge lamps, where colour is generated using filters, LEDs use additive light mixing......, where the intensity of each primary colour diode has to be adjusted to the needed intensity to generate specified colour. The function of LED driver is to supply the diode with power needed to achieve the desired intensity. Typically, the drivers operate as a current source and the intensity...... of the diode is controlled either by varying the magnitude of the current or by driving the LED with a pulsed current and regulate the width of the pulse. It has been shown previously, that these two methods yield different effects on diode's efficacy and colour point. A hybrid dimming strategy has been...

  12. Gravitational mass of positron from LEP synchrotron losses

    Science.gov (United States)

    Kalaydzhyan, Tigran

    2016-07-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  13. Gravitational mass of positron from LEP synchrotron losses

    Science.gov (United States)

    Kalaydzhyan, Tigran

    2016-01-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials. PMID:27461548

  14. Online blind source separation based on joint diagonalization

    Institute of Scientific and Technical Information of China (English)

    Li Ronghua; Zhou Guoxu; Fang Zuyuan; Xie Shengli

    2009-01-01

    A now algorithm is proposed for joint diagonalization. With a modified objective function, the now algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, with the new objective function, the proposed algorithm can work well in online blind source separation (BSS) for the first time, although this family of algorithms is always thought to be valid only in batch-mode BSS by far. Simulations show that it is a very competitive joint diagonalization algorithm.

  15. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  16. Design optimization and performances of an intraoperative positron imaging probe for radioguided cancer surgery

    Science.gov (United States)

    Spadola, S.; Verdier, M.-A.; Pinot, L.; Esnault, C.; Dinu, N.; Charon, Y.; Duval, M.-A.; Ménard, L.

    2016-12-01

    Extent and accuracy of surgical resection is a crucial step in operable tumor therapy. Emergence of promising specific tumor-seeking agents labeled with positron emitters is giving rise to a renewed interest for radioguided surgery using beta probes. Beta detection, due to the particle short range, allows a more sensitive and accurate tumor localization compared to gamma radiotracers. In that context, we are currently developing an intraoperative positron imaging probe using SiPM photosensors to perform tumor localization and post-operative control of the surgical cavity. Because compactness is a key feature when trying to detect positron emitters with high sensitivity in small surgical cavities, we chose to study the simplest detector design based on the use of a very thin organic scintillator coupled to the photosensor. Different designs of the positron imaging probe, including scintillator material and thickness, light spreading window and optical reflector, were investigated with Monte-Carlo simulations and measurements. Their impact on the probe performances were optimized in terms of positron sensitivity, gamma rays background noise contamination, spatial resolution and bias and uniformity. The ability of the probes to detect small radiolabeled tumors was also investigated by simulating different phantom uptake configurations.

  17. New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy

    Science.gov (United States)

    Eijt, S. W. H.; Shi, W.; Mannheim, A.; Butterling, M.; Schut, H.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R. W.; Callewaert, V.; Saniz, R.; Partoens, B.; Barbiellini, B.; Bansil, A.; Melskens, J.; Zeman, M.; Smets, A. H. M.; Kulbak, M.; Hodes, G.; Cahen, D.; Brück, E.

    2017-01-01

    Recent studies showed that positron annihilation methods can provide key insights into the nanostructure and electronic structure of thin film solar cells. In this study, positron annihilation lifetime spectroscopy (PALS) is applied to investigate CdSe quantum dot (QD) light absorbing layers, providing evidence of positron trapping at the surfaces of the QDs. This enables one to monitor their surface composition and electronic structure. Further, 2D-Angular Correlation of Annihilation Radiation (2D-ACAR) is used to investigate the nanostructure of divacancies in photovoltaic-high-quality a-Si:H films. The collected momentum distributions were converted by Fourier transformation to the direct space representation of the electron-positron autocorrelation function. The evolution of the size of the divacancies as a function of hydrogen dilution during deposition of a-Si:H thin films was examined. Finally, we present a first positron Doppler Broadening of Annihilation Radiation (DBAR) study of the emerging class of highly efficient thin film solar cells based on perovskites.

  18. A review of laser and synchrotron based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. [Paris-Sud Univ., Orsay (France). LSAI; Key, M.H. [Paris-Sud Univ., Orsay (France). LSAI; Lawrence Livermore National Lab., CA (United States)

    2001-07-01

    The rapid development of laser technology and related progress in research using lasers is shifting the boundaries where laser based sources are preferred over other light sources particularly in the XUV and X-ray spectral region. Laser based sources have exceptional capability for short pulse and high brightness and with improvements in high repetition rate pulsed operation, such sources are also becoming more interesting for their average power capability. This study presents an evaluation of the current capabilities and near term future potential of laser based light sources and summarises, for the purpose of comparison, the characteristics and near term prospects of sources based on synchrotron radiation and free electron lasers. Relative comparisons are given within charts of peak brightness. (orig.)

  19. TeV Gamma Rays from Geminga and the Origin of the GeV Positron Excess

    CERN Document Server

    Yuksel, Hasan; Stanev, Todor

    2008-01-01

    The Geminga pulsar has long been one of the most intriguing MeV-GeV gamma-ray point sources. We examine the implications of the recent Milagro detection of extended, multi-TeV gamma-ray emission from Geminga, finding that this reveals the existence of an ancient, powerful cosmic-ray accelerator that also can plausibly account for the multi-GeV positron excess that has evaded explanation. We explore a number of testable predictions for gamma-ray, electron/positron, and neutrino experiments that can confirm the first direct detection of a cosmic-ray source.

  20. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  1. Silicon-Based Light Sources for Silicon Integrated Circuits

    Directory of Open Access Journals (Sweden)

    L. Pavesi

    2008-01-01

    Full Text Available Silicon the material per excellence for electronics is not used for sourcing light due to the lack of efficient light emitters and lasers. In this review, after having introduced the basics on lasing, I will discuss the physical reasons why silicon is not a laser material and the approaches to make it lasing. I will start with bulk silicon, then I will discuss silicon nanocrystals and Er3+ coupled silicon nanocrystals where significant advances have been done in the past and can be expected in the near future. I will conclude with an optimistic note on silicon lasing.

  2. Producing Terahertz Conherent Synchrotron Radiation Based On Hefei Light Source

    CERN Document Server

    De-Rong, Xu; Yan, Shao

    2014-01-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in THz region using a quick kicker magnet and an ac sextupole magnet. When the vertical chromaticity is modulated by the ac sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. We calculate the radiation spectral distribution from the wavy bunch in Hefei Light Source(HLS). If we reduce electron energy to 400MeV, it can produce extremely strong coherent synchrotron radiation(CSR) at 0.115THz.

  3. Research on Passivity Based Controller of Three Phase Voltage Source PWM Rectifier

    Directory of Open Access Journals (Sweden)

    Yin Hongren

    2012-09-01

    Full Text Available Euler-Lagrange (EL model of voltage source PWM rectifier is set up based on its model in synchronous dq coordinates. Passivity based controller is designed on the basis of passivity and EL model of voltage source PWM rectifier. Three switching function are educed by passivity based controller. A switching function is only realized in engineering consequently. Voltage source PWM rectifier using passivity based controller has many advantages, such as simpler structure, low total harmonic distortion, and good disturbance rejection performance. Passivity based control law is proved feasible by simulink simulation.  

  4. A single particle effective potential for interacting positron and positronium

    CERN Document Server

    Zubiaga, A; Puska, M

    2013-01-01

    We have studied small systems composed by an atom and a positron or a positronium atom. We have used many-body quantum mechanical calculations to describe the correlation effects of light particles. Explicitly correlated gaussian for the basis functions and a stochastical variational optimization method has allowed to obtain accurate wavefunctions and energies. We have discussed the chemistry of positrons in those systems by means of analyzing the densities of the light particles (electrons and positrons). During the discussion, we propose an effective potential that describes the properties of the positron in those systems, valid also when it forms a Ps cluster. The effective potential is a mean field description of the interaction of the positron that can be used to calculate the distribution of the positron and its interaction energy. This potential can be a step forward for an accurate single particle description of the positron in cases when it forms positronium, specially molecular soft matter.

  5. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  6. Developing a beta source based setup for pixel sensor characterization

    CERN Document Server

    Schouwenberg, Jeroen

    2014-01-01

    The main goal of this project is to provide mono-energetic minimum ionizing electrons from a $^{90}$Sr source using a magnetic monochromator, and thus provide a useful tool for in-lab sensor characterization. The monochromator is calibrated using a setup, with a heavy inorganic scintillator and a PMT, which has been calibrated with a $^{22}$Na gamma source. The average energy of the electrons as a function of the current in the monochromator coil is found to be $1.38\\pm0.01$ keV/mA, taking into consideration the effect of the magnetic field on the signal of the PMT. For integration into the pixel sensor test bench, scintillator-counters (a plastic scintillator connected to a PMT) are used. Their response to the electron energies is observed to follow a saturation curve, which leads to a more identical response for high energetic electrons. A preliminary pixel sensor test bench has been set up and properties such as voltage and discriminator settings have been studied as well as count rates for coincidence cou...

  7. Statistical and systematic uncertainties in pixel-based source reconstruction algorithms for gravitational lensing

    CERN Document Server

    Tagore, Amitpal

    2014-01-01

    Gravitational lens modeling of spatially resolved sources is a challenging inverse problem with many observational constraints and model parameters. We examine established pixel-based source reconstruction algorithms for de-lensing the source and constraining lens model parameters. Using test data for four canonical lens configurations, we explore statistical and systematic uncertainties associated with gridding, source regularisation, interpolation errors, noise, and telescope pointing. Specifically, we compare two gridding schemes in the source plane: a fully adaptive grid that follows the lens mapping but is irregular, and an adaptive Cartesian grid. We also consider regularisation schemes that minimise derivatives of the source (using two finite difference methods) and introduce a scheme that minimises deviations from an analytic source profile. Careful choice of gridding and regularisation can reduce "discreteness noise" in the $\\chi^2$ surface that is inherent in the pixel-based methodology. With a grid...

  8. Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET Imaging Using GEANT4 Toolkit

    Directory of Open Access Journals (Sweden)

    Mohsen Mashayekhi

    2015-05-01

    Application of a magnetic field perpendicular to the positron diffusion plane prevented the scattering of positrons, and consequently, improved the intrinsic spatial resolution of PET imaging, caused by positron range effects.

  9. A GIS-based time-dependent seismic source modeling of Northern Iran

    Science.gov (United States)

    Hashemi, Mahdi; Alesheikh, Ali Asghar; Zolfaghari, Mohammad Reza

    2017-01-01

    The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.

  10. Non-invasive studies of multiphase flow in process equipment. Positron emission particle tracking technique

    Science.gov (United States)

    Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.

    2017-01-01

    Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.

  11. Angular distribution of positrons in coherent pair production in deformed crystals

    CERN Document Server

    Parazian, V V

    2008-01-01

    We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for ${\\mathrm{SiO}}_{2}$ single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.

  12. Angular distribution of positrons in coherent pair production in deformed crystals.

    Science.gov (United States)

    Parazian, V V

    2009-05-01

    We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO(2) and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by an acoustic wave of S-type.

  13. Doppler broadening of in-flight positron annihilation radiation due to electron momentum.

    Science.gov (United States)

    Hunt, A W; Cassidy, D B; Sterne, P A; Cowan, T E; Howell, R H; Lynn, K G; Golevchenko, J A

    2001-06-11

    We report the first observation of electron momentum contributions to the Doppler broadening of radiation produced by in-flight two-photon annihilation in solids. In these experiments an approximately 2.5 MeV positron beam impinged on thin polyethylene, aluminum, and gold targets. Since energetic positrons easily penetrate the nuclear Coulomb potential and do not cause a strong charge polarization, the experimental annihilation line shapes agree well with calculations based on a simple independent-particle model. Moreover, annihilations with the deepest core electrons are greatly enhanced.

  14. PREFACE: 13th International Workshop on Slow Positron Beam Techniques and Applications (SLOPOS13)

    Science.gov (United States)

    2014-04-01

    These proceedings originate from the 13th International Workshop on Slow Positron Beam Techniques and Applications SLOPOS13 which was held at the campus of the Technische Universität München in Garching between 15th-20th September, 2013. This event is part of a series of triennial SLOPOS conferences. In total 123 delegates from 21 countries participated in the SLOPOS13. The excellent scientific program comprised 50 talks and 58 posters presented during two poster sessions. It was very impressive to learn about novel technical developments on positron beam facilities and the wide range of their applications all over the world. The workshop reflected the large variety of positron beam experiments covering fundamental studies, e.g., for efficient production of anti-hydrogen as well as applied research on defects in bulk materials, thin films, surfaces, and interfaces. The topics comprised: . Positron transport and beam technology . Pulsed beams and positron traps . Defect profiling in bulk and layered structures . Nanostructures, porous materials, thin films . Surfaces and interfaces . Positronium formation and emission . Positron interactions with atoms and molecules . Many positrons and anti-hydrogen . Novel experimental techniques The international advisory committee of SLOPOS awarded student prizes for the best presented scientific contributions to a team of students from Finland, France, and the NEPOMUC team at TUM. The conference was overshadowed by the sudden death of Professor Klaus Schreckenbach immediately before the workshop. In commemoration of him as a spiritus rectus of the neutron induced positron source a minutes' silence was hold. We are most grateful for the hard work of the Local Organising Committee, the help of the International Advisory Committee, and all the students for their friendly and efficient support during the meeting. The workshop could not have occurred without the generous support of the Heinz Maier-Leibnitz Zentrum (MLZ), Deutsche

  15. A Latent Source Model for Patch-Based Image Segmentation.

    Science.gov (United States)

    Chen, George H; Shah, Devavrat; Golland, Polina

    2015-10-01

    Despite the popularity and empirical success of patch-based nearest-neighbor and weighted majority voting approaches to medical image segmentation, there has been no theoretical development on when, why, and how well these nonparametric methods work. We bridge this gap by providing a theoretical performance guarantee for nearest-neighbor and weighted majority voting segmentation under a new probabilistic model for patch-based image segmentation. Our analysis relies on a new local property for how similar nearby patches are, and fuses existing lines of work on modeling natural imagery patches and theory for nonparametric classification. We use the model to derive a new patch-based segmentation algorithm that iterates between inferring local label patches and merging these local segmentations to produce a globally consistent image segmentation. Many existing patch-based algorithms arise as special cases of the new algorithm.

  16. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  17. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    Energy Technology Data Exchange (ETDEWEB)

    Sedrati, R., E-mail: rafik.sedrati@univ-annaba.org; Attallah, R.

    2014-04-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥10GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.

  18. Higgs shifts from electron-positron annihilations near neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, Gary A. [Dartmouth College, Department of Physics and Astronomy, Hanover, NH (United States); Onofrio, Roberto [Universita di Padova, Dipartimento di Fisica e Astronomia ' Galileo Galilei' , Padova (Italy); ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2015-07-15

    We discuss the potential for using neutron stars to determine bounds on the Higgs-Kretschmann coupling by looking at peculiar shifts in gamma-ray spectroscopic features. In particular, we reanalyze multiple lines observed in GRB781119 detected by two gamma-ray spectrometers, and derive an upper bound on the Higgs-Kretschmann coupling that is much more constraining than the one recently obtained from white dwarfs. This calls for targeted analyses of spectra of gamma-ray bursts from more recent observatories, dedicated searches for differential shifts on electron-positron and proton-antiproton annihilation spectra in proximity of compact sources, and signals of electron and proton cyclotron lines from the same neutron star. (orig.)

  19. The development of a compact positron tomograph for prostate imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Qi, Jinyi; Derenzo, Stephen E.; Moses, William W.; Huesman, Ronald H.; Budinger, Thomas F.

    2002-12-17

    We give design details and expected image results of a compact positron tomograph designed for prostate imaging that centers a patient between a pair of external curved detector banks (ellipse: 45 cm minor, 70 cm major axis). The bottom bank is fixed below the patient bed, and the top bank moves upward for patient access and downward for maximum sensitivity. Each bank is composed of two rows (axially) of 20 CTI PET Systems HR+ block detectors, forming two arcs that can be tilted to minimize attenuation. Compared to a conventional PET system, our camera uses about one-quarter the number of detectors and has almost two times higher solid angle coverage for a central point source, because the detectors are close to the patient. The detectors are read out by modified CTI HRRT data acquisition electronics. The individual detectors are angled in the plane to point towards the prostate to minimize reso

  20. Fixed-point blind source separation algorithm based on ICA

    Institute of Scientific and Technical Information of China (English)

    Hongyan LI; Jianfen MA; Deng'ao LI; Huakui WANG

    2008-01-01

    This paper introduces the fixed-point learning algorithm based on independent component analysis (ICA);the model and process of this algorithm and simulation results are presented.Kurtosis was adopted as the estimation rule of independence.The results of the experiment show that compared with the traditional ICA algorithm based on random grads,this algorithm has advantages such as fast convergence and no necessity for any dynamic parameter,etc.The algorithm is a highly efficient and reliable method in blind signal separation.

  1. Dynamically reconfigurable directionality of plasmon-based single photon sources

    DEFF Research Database (Denmark)

    Chen, Yuntian; Lodahl, Peter; Koenderink, A. Femius

    2010-01-01

    We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitter into multiple narrow beams. We predict...... that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication....

  2. Dynamically reconfigurable directionality of plasmon-based single photon sources

    CERN Document Server

    Chen, Yuntian; Koenderink, A Femius

    2010-01-01

    We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitter into multiple narrow beams. We predict that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication.

  3. A preference-based multiple-source rough set model

    NARCIS (Netherlands)

    M.A. Khan; M. Banerjee

    2010-01-01

    We propose a generalization of Pawlak’s rough set model for the multi-agent situation, where information from an agent can be preferred over that of another agent of the system while deciding membership of objects. Notions of lower/upper approximations are given which depend on the knowledge base of

  4. Positron annihilation in neutron-irradiated germanium

    Energy Technology Data Exchange (ETDEWEB)

    Bartenev, G.M.; Bardyshev, I.I.; Erchak, D.P.; Stel' makh, V.F.; Tsyganov, A.D.

    1979-04-01

    The annealing of radiation defects in a germanium single crystal irradiated with 10/sup 18/ neutrons/cm/sup 2/ was studied by positron annihilation, ESR, and resistivity measurements. It was found that positrons are trapped by radiation defects. The intensity of the narrow component of the angular correlation of the annihilation radiation yielded the concentration of defect clusters in the irradiated sample n/sub d/approx. =3 x 10/sup 14/ cm/sup -3/. Three characteristic annealing stages were identified. At 160--200 /sup 0/C, point defects were annealed within the crystal. At 200--320 /sup 0/C, there was ''loosening'' of the clusters, and the charge state of the defects changed. At 320--550 /sup 0/C, the clusters were annealed.

  5. Cold Positrons from Decaying Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Boubekeur, Lotfi [Universitate de Valencia (Spain); Dodelson, Scott [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Vives, Oscar [Universitate de Valencia (Spain)

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  6. Pediatric radiation dosimetry for positron-emitting radionuclides using anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4 (Switzerland); Bolch, Wesley E. [Departments of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Rockville, Maryland 20850 (United States); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4 (Switzerland); Geneva Neuroscience Center, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen (Netherlands)

    2013-10-15

    Purpose: Positron emission tomography (PET) plays an important role in the diagnosis, staging, treatment, and surveillance of clinically localized diseases. Combined PET/CT imaging exhibits significantly higher sensitivity, specificity, and accuracy than conventional imaging when it comes to detecting malignant tumors in children. However, the radiation dose from positron-emitting radionuclide to the pediatric population is a matter of concern since children are at a particularly high risk when exposed to ionizing radiation.Methods: The authors evaluate the absorbed fractions and specific absorbed fractions (SAFs) of monoenergy photons/electrons as well as S-values of 9 positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124) in 48 source regions for 10 anthropomorphic pediatric hybrid models, including the reference newborn, 1-, 5-, 10-, and 15-yr-old male and female models, using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code.Results: The self-absorbed SAFs and S-values for most organs were inversely related to the age and body weight, whereas the cross-dose terms presented less correlation with body weight. For most source/target organ pairs, Rb-82 and Y-86 produce the highest self-absorbed and cross-absorbed S-values, respectively, while Cu-64 produces the lowest S-values because of the low-energy and high-frequency of electron emissions. Most of the total self-absorbed S-values are contributed from nonpenetrating particles (electrons and positrons), which have a linear relationship with body weight. The dependence of self-absorbed S-values of the two annihilation photons varies to the reciprocal of 0.76 power of the mass, whereas the self-absorbed S-values of positrons vary according to the reciprocal mass.Conclusions: The produced S-values for common positron-emitting radionuclides can be exploited for the assessment of radiation dose delivered to the pediatric population from various PET

  7. Critical remarks on the electron (positron) beam polarization by Compton scattering on circular polarized laser photons

    CERN Document Server

    Kotkin, G L; Telnov, V I

    2003-01-01

    In a number of papers an attractive method of laser polarization of electrons (positrons) at storage rings or linear colliders have been proposed. We show that these suggestions are incorrect and based on errors in simulation of multiple Compton scattering and in calculation of the Compton spin-flip cross sections. We argue that the equilibrium polarization in this method is zero.

  8. Plastic scintillators for positron emission tomography obtained by the bulk polymerization method

    CERN Document Server

    Kapłon, Łukasz; Molenda, Marcin; Moskal, Paweł; Wieczorek, Anna; Bednarski, Tomasz; Białas, Piotr; Czerwiński, Eryk; Korcyl, Grzegorz; Kowal, Jakub; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Niedźwiecki, Szymon; Pałka, Marek; Pawlik, Monika; Raczyński, Lech; Rudy, Zbigniew; Salabura, Piotr; Gupta-Sharma, Neha; Silarski, Michał; Słomski, Artur; Smyrski, Jerzy; Strzelecki, Adam; Wiślicki, Wojciech; Zieliński, Marcin; Zoń, Natalia

    2015-01-01

    This paper describes three methods regarding the production of plastic scintillators. One method appears to be suitable for the manufacturing of plastic scintillator, revealing properties which fulfill the requirements of novel positron emission tomography scanners based on plastic scintillators. The key parameters of the manufacturing process are determined and discussed.

  9. Study of PRIMAVERA steel samples by a positron annihilation spectroscopy technique

    Science.gov (United States)

    Grafutin, V.; Ilyukhina, O.; Krsjak, V.; Burcl, R.; Hähner, P.; Erak, D.; Zeman, A.

    2010-11-01

    In the present article, a positron annihilation spectroscopy investigation of VVER-440/230 weld materials is discussed. Important characteristics of metals such as Fermi energy, concentration of electrons in the conduction band, size and concentration of defects were experimentally determined for three model materials with higher level of copper (0.16 wt.%) and phosphorus (0.027-0.038 wt.%). The impact of neutron irradiation and subsequent annealing on crystal lattice parameters was investigated. The experiments with the angular correlation of positron annihilation radiation (ACAR) complement the published positron annihilation spectroscopy (PAS) studies of the radiation treated VVER materials as well as previous experiments on PRIMAVERA materials. The availability of the experimental reactor to prepare strong 64Cu positron sources provided for unique experimental conditions, such as good resolution of spectra (0.4 mrad) and reasonable short time of measurement (36 h). The present paper aims to contribute to further understanding of RPV (reactor pressure vessel) steels behaviour under irradiation conditions as well as annealing recovery procedures, which have already been applied at several VVER NPP units in Europe.

  10. Ablation Properties of the Carbon-Based Composites Used in Artificial Heat Source Under Fire Accident

    Institute of Scientific and Technical Information of China (English)

    TANG; Xian; HUANG; Jin-ming; ZHOU; Shao-jian; LUO; Zhi-fu

    2012-01-01

    <正>The ablation properties of the carbon-based composites used in artificial heat source under fire accident were investigated by the arc heater. In this work, we tested the carbon-based composites referring to Fig. 1. Their linear/mass ablation ratio and ablation morphologies were studied. The results showed that the carbon-based composites used in artificial heat source behaved well

  11. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  12. Theoretical Sources and Bases of Pedagogy of Collective Creative Education

    Directory of Open Access Journals (Sweden)

    Kaplunovich I. Ya.

    2014-01-01

    Full Text Available Known pedagogical concept of I. P. Ivanov considered and analyzed from the perspective of two sciences: psychology and cybernetics. It is shown that the basic principles of pedagogy common concern based implicitly and may be explained in particular on the fundamental positions of the two classical disciplines (Ashby laws, the second principle, the initial threshold of complexity, etc. in cybernetics and cultural-historical and activity approach in psychology.

  13. Advances in positron and electron scattering*

    Science.gov (United States)

    Limão-Vieira, Paulo; García, Gustavo; Krishnakumar, E.; Petrović, Zoran; Sullivan, James; Tanuma, Hajime

    2016-10-01

    The topical issue on Advances in Positron and Electron Scattering" combines contributions from POSMOL 2015 together with others devoted to celebrate the unprecedented scientific careers of our loyal colleagues and trusted friends Steve Buckman (Australian National University, Australia) and Michael Allan (University of Fribourg, Switzerland) on the occasion of their retirements. POSMOL 2015, the XVIII International Workshop on Low-Energy Positron and Positronium Physics and the XIX International Symposium on Electron-Molecule Collisions and Swarms, was held at Universidade NOVA de Lisboa, Lisboa, Portugal, from 17-20 July 2015. The international workshop and symposium allowed to achieve a very privileged forum of sharing and developing our scientific expertise on current aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and related topics, as well as electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent developments in the study of swarms are also fully addressed.

  14. Effects of stoichiometries on the positron distribution in Si sub 1 sub - sub x sub - sub y Ge sub x C sub y alloys

    CERN Document Server

    Soudini, B; Abid, H; Sehil, M

    2003-01-01

    The effect of alloying on the positron distribution in Si sub 1 sub - sub x sub - sub y Ge sub x C sub y alloys is reported. Our computations of the thermalized positron densities are based on the independent particle method coupled with the empirical pseudopotential method to derive the positron and electron wave functions, respectively. Initial results show a clear symmetrical positron charge distribution relative to the bond centre, a quite similar situation that was found in the IV groups. Since the minimum band gaps were found to be very sensitive to the carbon as well as the germanium concentration variations, this has an immediate consequence on the positron densities, where we find a deviation from linearity. This illustrative result was an indication of the alloying effect in this system (bowing effect). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  15. Source and listener directivity for interactive wave-based sound propagation.

    Science.gov (United States)

    Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh

    2014-04-01

    We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.

  16. Cosmic Ray Electrons, Positrons and the Synchrotron emission of the Galaxy: consistent analysis and implications

    CERN Document Server

    Di Bernardo, Giuseppe; Gaggero, Daniele; Grasso, Dario; Maccione, Luca

    2012-01-01

    A multichannel analysis of cosmic ray electron and positron spectra and of the diffuse synchrotron emission of the Galaxy is performed by using the DRAGON code. This study is aimed at probing the interstellar electron source spectrum down to E ~ 1 GeV and at constraining several propagation parameters. We find that above 4 GeV the electron source spectrum is compatible with a power-law of index -2.5. Below 4 GeV instead it must be significantly suppressed and the total lepton spectrum is dominated by secondary particles. The positron spectrum and fraction measured below a few GeV are consistently reproduced only within low reacceleration models. We also constrain the scale-height zt of the cosmic-ray distribution using three independent (and, in two cases, original) arguments, showing that values of z_t < 2 kpc are excluded. This result may have strong implications for particle dark matter searches.

  17. Multiple Chemical Sources Localization Using Virtual Physics-Based Robots with Release Strategy

    Directory of Open Access Journals (Sweden)

    Yuli Zhang

    2015-01-01

    Full Text Available This paper presents a novel method of simultaneously locating chemical sources by a virtual physics-based multirobot system with a release strategy. The proposed release strategy includes setting forbidden area, releasing the robots from declared sources and escaping from it by a rotary force and goal force. This strategy can avoid the robots relocating the same source which has been located by other robots and leading them to move toward other sources. Various turbulent plume environments are simulated by Fluent and Gambit software, and a set of simulations are performed on different scenarios using a group of six robots or parallel search by multiple groups’ robots to validate the proposed methodology. The experimental results show that release strategy can be successfully used to find multiple chemical sources, even when multiple plumes overlap. It can also extend the operation of many chemical source localization algorithms developed for single source localization.

  18. Inelastic Collisions of Positrons with Beryllium and Magnesium Ions

    Science.gov (United States)

    El-Bakry, Salah-Yaseen

    The collision of positrons with beryllium and magnesium positive ions is treated for the first time as a three-channel problem with the assumption that the elastic, ground-positronium and excited-positronium formation channels are open. A one-valence-electron model for the targets, based on the Clementi-Roetti Slater basis functions, as well as an improved coupled-static approach allowing for the polarization of the excited positronium, are used for calculating the partial cross-sections of eight partial waves (corresponding to 0≤ℓ≤7, where ℓ is the total angular momentum of the scattering problem considered). The calculations are carried out, in each case, at 19 values of the incident energy lying above the excited positronium formation threshold (i.e. above 16.42 eV in e+-Be+ scattering and above 13.02 eV in e+-Mg+ scattering). The total elastic cross-sections of e+-Mg+ scattering show a peak around the ionization threshold of Mg+ (at 14.723 eV) but for e+-Be+ scattering, display a peak at 90 eV (remember that the ionization threshold of Be+ is 18.2 eV). Although the resulting total collisional positronium formation cross-sections are smaller than the elastic ones, their relatively large values should draw the attention of experimental and theoretical physicists to the field of positron-ion collisions.

  19. A Model of Electron-Positron Pair Formation

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2008-01-01

    Full Text Available The elementary electron-positron pair formation process is consideredin terms of a revised quantum electrodynamic theory, with specialattention to the conservation of energy, spin, and electric charge.The theory leads to a wave-packet photon model of narrow line widthand needle-radiation properties, not being available from conventionalquantum electrodynamics which is based on Maxwell's equations. Themodel appears to be consistent with the observed pair productionprocess, in which the created electron and positron form two raysthat start within a very small region and have original directionsalong the path of the incoming photon. Conservation of angular momentum requires the photon to possess a spin, as given by the present theory but not by the conventional one. The nonzero electric field divergence further gives rise to a local intrinsic electric charge density within the photon body, whereas there is a vanishing total charge of the latter. This may explain the observed fact that the photon decays on account of the impact from an external electric field. Such a behaviour should not become possible for a photon having zero local electric charge density.

  20. Advances in positron studies of age hardening in light alloys

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, A. [IFIMAT, UNCentro and CICPBA, Pinto, Tandil (Argentina); Dupasquier, A.; Ferragut, R. [LNESS and CNISM, Politecnico di Milano, Como (Italy)

    2009-11-15

    The extensive experimental work on age hardening of Al- and Mg-based alloys, performed by the associated groups at IFIMAT (UNCentro, Argentina) and at LNESS (Politecnico di Milano, Italy) in recent years, is discussed here in a comprehensive way, with attention to experimental procedures and to results of general validity. For Al-based alloys, the established knowledge regarding the different action of Zn, Cu, Mg and Ag in the formation of vacancy-solute clusters is presented. For Mg-based alloys, the limits of positron annihilation spectroscopy are discussed on the basis of experience in progress. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Combustion-based power source for Venus surface missions

    Science.gov (United States)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  2. Trust-Based Route Selection in Dynamic Source Routin

    DEFF Research Database (Denmark)

    Jensen, Christian D.; Connell, Paul O

    2006-01-01

    Unlike traditional mobile wireless networks, ad hoc networks do not rely on any fixed infrastructure. Nodes rely on each other to route packets to other mobile nodes or toward stationary nodes that may act as a gateway to a fixed network. Mobile nodes are generally assumed to participate as routers......, which selects the route based on a local evaluation of the trustworthiness of all known intermediary nodes (routers) on the route to the destination. We have implemented this mechanism in an existing ad hoc routing protocol, and we show how trust can be built from previous experience and how trust can...

  3. Compact THz radiation source based on photocathode RF gun

    Institute of Scientific and Technical Information of China (English)

    URAKAWA; JunJi

    2011-01-01

    Terahertz (THz) science and technology have already become the research highlight at present. In this paper, we put forward a proposal to generate THz radiation at tens of MW peak power. As a result of the ultrafast laser and the high accelerating field of photocathode RF gun, we can generate and accelerate an electron beam to several MeV, of which the bunch length is less than sub-ps. When the short electron bunches are injected into the wiggler, THz radiation based on Coherent Synchrotron Radiation could be achieved with tens of MW peak power. The whole THz FEL facility can be scaled to the size of a tabletop.

  4. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    Science.gov (United States)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  5. Neutrinoless double positron decay and positron emitting electron capture in the interacting boson model

    CERN Document Server

    Barea, J; Iachello, F

    2015-01-01

    Neutrinoless double-$\\beta$ decay is of fundamental importance for determining the neutrino mass. Although double electron ($\\beta^-\\beta^-$) decay is the most promising mode, in very recent years interest in double positron ($\\beta^+\\beta^+$) decay, positron emitting electron capture ($EC\\beta^+$), and double electron capture ($ECEC$) has been renewed. We present here results of a calculation of nuclear matrix elements for neutrinoless double-$\\beta^+$ decay and positron emitting electron capture within the framework of the microscopic interacting boson model (IBM-2) for $^{58}$Ni, $^{64}$Zn, $^{78}$Kr, $^{96}$Ru, $^{106}$Cd, $^{124}$Xe, $^{130}$Ba, and $^{136}$Ce decay. By combining these with a calculation of phase space factors we calculate expected half-lives.

  6. Query processing in distributed, taxonomy-based information sources

    CERN Document Server

    Meghini, Carlo; Coltella, Veronica; Analyti, Anastasia

    2011-01-01

    We address the problem of answering queries over a distributed information system, storing objects indexed by terms organized in a taxonomy. The taxonomy consists of subsumption relationships between negation-free DNF formulas on terms and negation-free conjunctions of terms. In the first part of the paper, we consider the centralized case, deriving a hypergraph-based algorithm that is efficient in data complexity. In the second part of the paper, we consider the distributed case, presenting alternative ways implementing the centralized algorithm. These ways descend from two basic criteria: direct vs. query re-writing evaluation, and centralized vs. distributed data or taxonomy allocation. Combinations of these criteria allow to cover a wide spectrum of architectures, ranging from client-server to peer-to-peer. We evaluate the performance of the various architectures by simulation on a network with O(10^4) nodes, and derive final results. An extensive review of the relevant literature is finally included.

  7. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    Science.gov (United States)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  8. Open-Source web-based geographical information system for health exposure assessment

    DEFF Research Database (Denmark)

    Evans, Barry; Sabel, Clive E

    2012-01-01

    This paper presents the design and development of an open source web-based Geographical Information System allowing users to visualise, customise and interact with spatial data within their web browser. The developed application shows that by using solely Open Source software it was possible...

  9. The Research of Heterogeneous Data Source Integration Method Based on Ontology

    Institute of Scientific and Technical Information of China (English)

    Lou,Yabin; Tao,Fengmei; Ma,Yuan

    2005-01-01

    This paper provides an integration scheme of heterogeneous data source based on ontology, and this scheme settles basically syntactic and semantic heterogeneity in heterogeneous data sources; meanwhile, it provides an effective technology measure for the interior information of enterprises to be shared in time accurately.

  10. Taurine supplemented plant protein based diets with alternative lipid sources for juvenile sea bream, sparus aurata

    Science.gov (United States)

    Two lipid sources were evaluated as fish oil replacements in fishmeal free, plant protein based diets for juvenile gilthead sea bream, Sparus aurata. A twelve week feeding study was undertaken to examine the performance of fish fed the diets with different sources of essential fatty acids (canola o...

  11. Tomsk Polytechnic University cyclotron as a source for neutron based cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lisin, V. A. [Cancer Research Institute, 5 Kooperativny St., Tomsk 634050 (Russian Federation); Tomsk Polytechnic University, 30 Lenina av., Tomsk 634050 (Russian Federation); Bogdanov, A. V.; Golovkov, V. M.; Sukhikh, L. G.; Verigin, D. A., E-mail: verigin@tpu.ru [Tomsk Polytechnic University, 30 Lenina av., Tomsk 634050 (Russian Federation); Musabaeva, L. I. [Cancer Research Institute, 5 Kooperativny St., Tomsk 634050 (Russian Federation)

    2014-02-15

    In this paper we present our cyclotron based neutron source with average energy 6.3 MeV generated during the 13.6 MeV deuterons interactions with beryllium target, neutron field dosimetry, and dosimetry of attendant gamma fields. We also present application of our neutron source for cancer treatment.

  12. Development of Management System for Regional Pollution Source Based on SuperMap Objects

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Based on the integration of C#.net and SuperMap Objects(tool software of component GIS),the management system of regional pollution source is developed.It mainly includes the demand analysis of system,function design,database construction,program design and concrete realization in the management aspect of pollution source.

  13. Electron-based EUV and ultrashort hard-x-ray sources

    Science.gov (United States)

    Egbert, A.; Mader, B.; Tkachenko, B.; Chichkov, B. N.

    2002-11-01

    A brief review of our progress in the realization of femtosecond laser-driven ultrashort hard-x-ray sources is given. New results on the development of electron-based compact EUV sources for "at-wavelength" metrology and next generation lithography are presented. AIP Conference Proceedings.

  14. The lives and deaths of positrons in the interstellar medium

    CERN Document Server

    Guessoum, N; Gillard, W

    2005-01-01

    We reexamine in detail the various processes undergone by positrons in the ISM from their birth to their annihilation using the most recent results of positron interaction cross sections with H, H2 and He. The positrons' lives are divided into two phases: the 'in-flight' phase and the thermal phase. The first phase is treated with a Monte Carlo simulation that allows us to determine the fraction of positrons that form positronium and annihilate as well as the characteristics of the annihilation emission as a function of the medium conditions. The second phase is treated with a binary reaction rate approach, with cross sections adopted from experimental measurement or theoretical calculations. An extensive search and update of the knowledge of positron processes was thus undertaken. New reaction rates and line widths have been obtained. We investigate the treatment of the complicated interactions between positrons and interstellar dust grains. New reaction rates and widths of the line resulting from the annihi...

  15. Evaluation of Timepix silicon detector for the detection of 18F positrons

    Science.gov (United States)

    Wang, Q.; Tous, J.; Liu, Z.; Ziegler, S.; Shi, K.

    2014-05-01

    Timepix is an evolving energy and position sensitive pixel detector. It consists of a silicon detector (sensitive layer 300 μm thick) bump-bonded to the Timepix readout chip developed by the Medipix2 collaboration. This study aims to test the feasibility of using the acquired energy and position signals from Timepix for positron imaging. The signals of the commonly used fluorine-18 PET (positron emission tomography) tracer [18F]FDG were measured using Timepix operated both in single particle counting (Medipix) and in time over threshold (TOT) modes. The spatial resolution (SR) was measured using the absorber edge method (AEM) and was calculated from the over-sampled line spread function. The track of a positron in the Timepix detector was characterized as a cluster and the energy weighted centroid of each cluster was considered as readout for the position of the positron incidence. The measurement results were compared with theoretical predictions using Monte-Carlo simulations. In addition, imaging of a tissue slice of a mouse heart was analysed with reference to standard phosphor plate imaging. Our results show that the SR was improved from 177.1±4.1 μm (centroid without energy weighting) to 155.5±3.1 μm μm (centroid with energy weighting). About 12% enhancement of SR was achieved with energy information in TOT mode. The sensitivity of Timepix was 0.35 cps/Bq based on the measurements. The measuring background and the ratio between detected positrons and gamma rays were also evaluated and were found to be consistent with theoretical predictions. A small enhancement of image quality was also achieved by applying energy information to the data of the measured tissue sample. Our results show that the inclusion of energy information could slightly enhance the positron measurement compared to without energy information and the Timepix provides a high SR and sensitivity for positron detection. Thus, Timepix is a potentially effective tool for 2D positron imaging.

  16. Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles

    Science.gov (United States)

    Kargar, Z.; Asgarian, S. M.; Mozaffari, M.

    2016-05-01

    Single phase copper substituted nickel ferrite Ni1-xCuxFe2O4 (x = 0.0, 0.1, 0.3 and 0.5) nanoparticles were synthesized by the sol-gel method. TEM images of the samples confirm formation of nano-sized particles. The Rietveld refinement of the X-ray diffraction patterns showed that lattice constant increase with increase in copper content from 8.331 for x = 0.0 to 8.355 Å in x = 0.5. Cation distribution of samples has been determined by the occupancy factor, using Rietveld refinement. The positron lifetime spectra of the samples were convoluted into three lifetime components. The shortest lifetime is due to the positrons that do not get trapped by the vacancy defects. The second lifetime is ascribed to annihilation of positrons in tetrahedral (A) and octahedral (B) sites in spinel structure. It is seen that for x = 0.1 and 0.3 samples, positron trapped within vacancies in A sites, but for x = 0.0 and 0.5, the positrons trapped and annihilated within occupied B sites. The longest lifetime component attributed to annihilation of positrons in the free volume between nanoparticles. The obtained results from coincidence Doppler broadening spectroscopy (CDBS) confirmed the results of positron annihilation lifetime spectroscopy (PALS) and also showed that the vacancy clusters concentration for x = 0.3 is more than those in other samples. Average defect density in the samples, determined from mean lifetime of annihilated positrons reflects that the vacancy concentration for x = 0.3 is maximum. The magnetic measurements showed that the saturation magnetization for x = 0.3 is maximum that can be explained by Néel's theory. The coercivity in nanoparticles increased with increase in copper content. This increase is ascribed to the change in anisotropy constant because of increase of the average defect density due to the substitution of Cu2+ cations and magnetocrystalline anisotropy of Cu2+ cations. Curie temperature of the samples reduces with increase in copper content which

  17. High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-500 GeV with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Accardo, L.; Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2014-09-01

    A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above ∼200 GeV the positron fraction no longer exhibits an increase with energy.

  18. High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Accardo, L; Aisa, D; Alpat, B; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Carosi, G; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cerreta, D; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Cindolo, F; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Haas, D; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Henning, R; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Levi, G; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lolli, M; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Massera, F; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Monreal, B; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pauluzzi, M; Pedreschi, E; Pensotti, S; Pereira, R; Pilastrini, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rossi, L; Rozhkov, A; Rozza, D; Rybka, G; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Volpini, G; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Wu, K Y; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhou, F; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above ∼200  GeV the positron fraction no longer exhibits an increase with energy.

  19. High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station.

    Science.gov (United States)

    Accardo, L; Aguilar, M; Aisa, D; Alpat, B; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Carosi, G; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cerreta, D; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Cindolo, F; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Haas, D; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Henning, R; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Levi, G; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lolli, M; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Massera, F; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Monreal, B; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pauluzzi, M; Pedreschi, E; Pensotti, S; Pereira, R; Pilastrini, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rossi, L; Rozhkov, A; Rozza, D; Rybka, G; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Volpini, G; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Wu, K Y; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhou, F; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-09-19

    A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above ∼200  GeV the positron fraction no longer exhibits an increase with energy.

  20. A room temperature light source based on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lo Faro, M.J. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Andrea, C. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Messina, E.; Fazio, B. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); Musumeci, P. [Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Franzò, G. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Gucciardi, P.G.; Vasi, C. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); Priolo, F. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Via Valdisavoia 9, 95123 Catania (Italy); Iacona, F. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Irrera, A., E-mail: irrera@me.cnr.it [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy)

    2016-08-31

    We synthesized ultrathin Si nanowires (NWs) by metal assisted chemical wet etching, using a very thin discontinuous Au layer as precursor for the process. A bright room temperature emission in the visible range due to electron–hole recombination in quantum confined Si NWs is reported. A single walled carbon nanotube (CNT) suspension was prepared and dispersed in Si NW samples. The hybrid Si NW/CNT system exhibits a double emission at room temperature, both in the visible (due to Si NWs) and the IR (due to CNTs) range, thus demonstrating the realization of a low-cost material with promising perspectives for applications in Si-based photonics. - Highlights: • Synthesis of ultrathin Si nanowires (NWs) by metal-assisted chemical etching • Synthesis of NW/carbon nanotube (CNT) hybrid systems • Structural characterization of Si NWs and Si NW/CNT • Room temperature photoluminescence (PL) properties of Si NWs and of Si NW/CNT • Tuning of the PL properties of the Si NW/CNT hybrid system.

  1. A method for MREIT-based source imaging: simulation studies

    Science.gov (United States)

    Song, Yizhuang; Jeong, Woo Chul; Woo, Eung Je; Seo, Jin Keun

    2016-08-01

    This paper aims to provide a method for using magnetic resonance electrical impedance tomography (MREIT) to visualize local conductivity changes associated with evoked neuronal activities in the brain. MREIT is an MRI-based technique for conductivity mapping by probing the magnetic flux density induced by an externally injected current through surface electrodes. Since local conductivity changes resulting from evoked neural activities are very small (less than a few %), a major challenge is to acquire exogenous magnetic flux density data exceeding a certain noise level. Noting that the signal-to-noise ratio is proportional to the square root of the number of averages, it is important to reduce the data acquisition time to get more averages within a given total data collection time. The proposed method uses a sub-sampled k-space data set in the phase-encoding direction to significantly reduce the data acquisition time. Since the sub-sampled data violates the Nyquist criteria, we only get a nonlinearly wrapped version of the exogenous magnetic flux density data, which is insufficient for conductivity imaging. Taking advantage of the sparseness of the conductivity change, the proposed method detects local conductivity changes by estimating the time-change of the Laplacian of the nonlinearly wrapped data.

  2. Bayesian analysis of spatial-dependent cosmic-ray propagation: Astrophysical background of antiprotons and positrons

    Science.gov (United States)

    Feng, Jie; Tomassetti, Nicola; Oliva, Alberto

    2016-12-01

    The AMS-02 experiment has reported a new measurement of the antiproton/proton ratio in Galactic cosmic rays (CRs). In the energy range E ˜60 - 450 GeV , this ratio is found to be remarkably constant. Using recent data on CR proton, helium, and carbon fluxes, 10Be/9Be and B/C ratios, we have performed a global Bayesian analysis based on a Markov chain Monte Carlo sampling algorithm under a "two halo model" of CR propagation. In this model, CRs are allowed to experience a different type of diffusion when they propagate in the region close to the Galactic disk. We found that the vertical extent of this region is about 900 pc above and below the disk, and the corresponding diffusion coefficient scales with energy as D ∝E0.15 , describing well the observations on primary CR spectra, secondary/primary ratios, and anisotropy. Under this model, we have carried out improved calculations of antiparticle spectra arising from secondary CR production and their corresponding uncertainties. We made use of Monte Carlo generators and accelerator data to assess the antiproton production cross sections and their uncertainties. While the positron excess requires the contribution of additional unknown sources, we found that the new AMS-02 antiproton data are consistent, within the estimated uncertainties, with our calculations based on secondary production.

  3. Experimental results obtained with the positron-annihilation-radiation telescope of the Toulouse-Argonne collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Naya, J.E. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements; Ballmoos, P. von [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements; Smither, R.K. [Argonne National Lab., IL (United States). Advanced Photon Source Div.; Faiz, M. [Argonne National Lab., IL (United States). Advanced Photon Source Div.; Fernandez, P.B. [Argonne National Lab., IL (United States). Advanced Photon Source Div.; Graber, T. [Argonne National Lab., IL (United States). Advanced Photon Source Div.; Albernhe, F. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements; Vedrenne, G. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements

    1996-04-11

    We present laboratory measurements obtained with a ground-based prototype of the focusing positron-annihilation-radiation telescope developed by the Toulouse-Argonne collaboration. This instrument has been designed to collect 511-keV photons from astrophysical sources when operating as a balloon borne observatory. The ground-based prototype consists of a crystal lens holding small cubes of diffracting germanium crystals and a 3 x 3 germanium array that detects the concentrated beam in the focal plane. Measured performances of the instrument at different line energies (511 and 662 keV) are presented and compared with Monte Carlo simulations; also the advantages of combining the lens with a detector array are discussed. The results obtained in the laboratory have strengthened interest in a crystal-diffraction telescope: the balloon instrument will provide a combination of high spatial and energy resolution (15 arc sec and 2 keV, respectively) with an extremely low instrumental background resulting in a sensitivity of similar 3.10{sup -5} photons cm{sup -2}s{sup -1}. These features will allow us to resolve a possible narrow 511-keV line both energetically and spatially within a Galactic center microquasar or in other broad-class annihilators. (orig.).

  4. Systematic study of the uncertainties in fitting the cosmic positron data by AMS-02

    CERN Document Server

    Yuan, Qiang

    2015-01-01

    The launch of AMS-02 opens a new era for cosmic ray physics with unprecedented precision of data, which are comparable with the laboratory measurements. The high precision data allow a quantitative study on the cosmic ray physics and give strict constraints on the nature of cosmic ray sources. However, the intrinsic errors from theoretical models to interpret the data become dominant over the errors in data. In the present work we try to give a systematic study on these uncertainties to explain, as an explicit example, the first AMS-02 positron fraction data, which shows the cosmic ray positron/electron excesses together with the PAMELA, Fermi-LAT measurements. The excesses can be attributed to contributions from new positron/electron sources, like pulsars or dark matter annihilation. The precise data give strict constraints on properties of the new sources. We study the systematic uncertainties from cosmic ray propagation, solar modulation, the $pp$ interaction models, the nuclei injection spectrum and so on...

  5. Microdischarge Array Flexible Light Source for High-Efficiency Irradiation of Spaced-Based Crops Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is desirable to develop a high-efficiency lighting source for large-area irradiation of space-based crops. The key requirements for such a system include high...

  6. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    Directory of Open Access Journals (Sweden)

    Vincenzo Spagnolo

    2009-12-01

    Full Text Available The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques.

  7. Tunable C- and L-band laser source based on colorless laser diode

    Science.gov (United States)

    Peng, P. C.; Jhang, J. J.; Peng, Y. W.; Bitew, M. A.; Chi, Y. C.; Wu, W. C.; Wang, H. Y.; Lin, G. R.; Li, C. Y.; Lu, H. H.

    2017-03-01

    In this letter, we propose and demonstrate a tunable laser source which covers C- and L-bands based on a colorless laser diode. The proposed laser source is tunable widely and it can tune single-wavelength, dual-wavelength, and triple-wavelength. Additionally, the optical side mode suppression ratio exceeds 30 dB. Since we combine the colorless laser diode with a tunable optical filter, the proposed tunable laser source stabilizes multi-wavelengths simultaneously. Our proposed tunable laser source is very useful for applications such as optical test instruments, optical communication systems, and optical fiber sensing systems.

  8. Positrons from dark matter annihilation in the galactic halo: uncertainties

    CERN Document Server

    Fornengo, N; Lineros, R; Donato, F; Salati, P

    2007-01-01

    Indirect detection signals from dark matter annihilation are studied in the positron channel. We discuss in detail the positron propagation inside the galactic medium: we present novel solutions of the diffusion and propagation equations and we focus on the determination of the astrophysical uncertainties which affect the positron dark matter signal. We show that, especially in the low energy tail of the positron spectra at Earth, the uncertainty is sizeable and we quantify the effect. Comparison of our predictions with current available and foreseen experimental data are derived.

  9. Open-Source web-based geographical information system for health exposure assessment

    Directory of Open Access Journals (Sweden)

    Evans Barry

    2012-01-01

    Full Text Available Abstract This paper presents the design and development of an open source web-based Geographical Information System allowing users to visualise, customise and interact with spatial data within their web browser. The developed application shows that by using solely Open Source software it was possible to develop a customisable web based GIS application that provides functions necessary to convey health and environmental data to experts and non-experts alike without the requirement of proprietary software.

  10. Open-Source web-based Geographical Information System for health exposure assessment.

    Science.gov (United States)

    Evans, Barry; Sabel, Clive E

    2012-01-01

    This paper presents the design and development of an open source web-based Geographical Information System allowing users to visualise, customise and interact with spatial data within their web browser. The developed application shows that by using solely Open Source software it was possible to develop a customisable web based GIS application that provides functions necessary to convey health and environmental data to experts and non-experts alike without the requirement of proprietary software.

  11. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems

    Science.gov (United States)

    Ratheesh, K. M.; Seah, L. K.; Murukeshan, V. M.

    2016-11-01

    The automatic calibration in Fourier-domain optical coherence tomography (FD-OCT) systems allows for high resolution imaging with precise depth ranging functionality in many complex imaging scenarios, such as microsurgery. However, the accuracy and speed of the existing automatic schemes are limited due to the functional approximations and iterative operations used in their procedures. In this paper, we present a new real-time automatic calibration scheme for swept source-based optical coherence tomography (SS-OCT) systems. The proposed automatic calibration can be performed during scanning operation and does not require an auxiliary interferometer for calibration signal generation and an additional channel for its acquisition. The proposed method makes use of the spectral component corresponding to the sample surface reflection as the calibration signal. The spectral phase function representing the non-linear sweeping characteristic of the frequency-swept laser source is determined from the calibration signal. The phase linearization with improved accuracy is achieved by normalization and rescaling of the obtained phase function. The fractional-time indices corresponding to the equidistantly spaced phase intervals are estimated directly from the resampling function and are used to resample the OCT signals. The proposed approach allows for precise calibration irrespective of the path length variation induced by the non-planar topography of the sample or galvo scanning. The conceived idea was illustrated using an in-house-developed SS-OCT system by considering the specular reflection from a mirror and other test samples. It was shown that the proposed method provides high-performance calibration in terms of axial resolution and sensitivity without increasing computational and hardware complexity.

  12. ESTIMATION OF THE NUMBER OF CORRELATED SOURCES WITH COMMON FREQUENCIES BASED ON POWER SPECTRAL DENSITY

    Institute of Scientific and Technical Information of China (English)

    LI Ning; SHI Tielin

    2007-01-01

    Blind source Separation and estimation of the number of sources usually demand that the number of sensors should be greater than or equal to that of the sources, which, however, is very difficult to satisfy for the complex Systems. A new estimating method based on power spectral density (PSD) is presented. When the relation between the number of sensors and that of sources is unknown, the PSD matrix is first obtained by the ratio of PSD of the observation signals, and then the bound of the number of correlated sources with common frequencies can be estimated by comparing every column vector of PSD matrix. The effectiveness of the proposed method is verified by theoretical analysis and experiments, and the influence of noise on the estimation of number of source is simulated.

  13. A novel moving mesh method based on the domain decomposition for traveling singular sources problems

    CERN Document Server

    Zhou, Xiaoyan; Liang, Keiwei

    2012-01-01

    This paper studies the numerical solution of traveling singular sources problems. A big challenge is the sources move with different speeds. Our work focus on a moving mesh method based on the domain decomposition. A predictor-corrector algorithm is derived to simulate the position of singular sources, which are described by some ordinary differential equations. The whole domain is splitted into several subdomains according to the positions of the sources. The endpoints of each subdomain are two adjacent sources. In each subdomain, moving mesh method is respectively applied. Moreover, the computation of jump $[\\dot{u}]$ is avoided and there are only two different cases discussed in the discretization of the PDE. Furthermore, the new method has a desired second-order of the spacial convergence. Numerical examples are presented to illustrate the convergence rates and the efficiency of the method. Blow-up phenomenon is also investigated for various motions of the sources.

  14. A multiple-source consecutive localization algorithm based on quantized measurement for wireless sensor network

    Science.gov (United States)

    Chu, Hao; Wu, Chengdong

    2016-10-01

    The source localization base on wireless sensor network has attracted considerable attention in recent years. However, most of the previous works focus on the accurate measurement or single source localization. The multiple-source localization has extensive application prospect in many fields. The quantized measurement is a low-cost and low energy consumption solution for wireless sensor network. In this paper, we present a novel multiple-source consecutive localization algorithm using the quantized measurement. We first introduce the multiple acoustic sources model and quantized measurement method. Then the maximum likelihood method is used to establish the localization function and the particle swarm optimization is employed to estimate the initial position of the source. Finally the Kalman filter is used to mitigate the random processing noise. Simulation results show that the proposed method owns high localization accuracy.

  15. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  16. Current Source Converter Based Multi-terminal DC Wind Energy Conversion System

    Institute of Scientific and Technical Information of China (English)

    Shixiong FAN; Guangyi LIU; Zhanyong YANG; Weiwei MA; Barry W.WILLIAMS

    2013-01-01

    A current source converter based multi-terminal direct current (DC) wind energy conversion system (WECS) is proposed.The current source DC/DC converter is adopted to connect a wind turbine to an inverter with maximum power point control.Each turbine is associated with a DC source by parallel-connected to a common DC link.After DC power collection,a current source inverter (CSI) using gate turn-off components is used for the grid connection due to its flexible reactive power control and short circuit protection capabilities.For such a parallel connection configuration,the CSI operates in an input voltage control mode,which maintains the DC link voltage constant.The dynamic responses of combined mechanical and electrical systems are investigated with three different operation cases.Simulation and experimental results demonstrate the feasibility and stability of the current source DC/DC converter based multi-terminal DC WECS.

  17. Two Model-Based Methods for Policy Analyses of Fine Particulate Matter Control in China: Source Apportionment and Source Sensitivity

    Science.gov (United States)

    Li, X.; Zhang, Y.; Zheng, B.; Zhang, Q.; He, K.

    2013-12-01

    Anthropogenic emissions have been controlled in recent years in China to mitigate fine particulate matter (PM2.5) pollution. Recent studies show that sulfate dioxide (SO2)-only control cannot reduce total PM2.5 levels efficiently. Other species such as nitrogen oxide, ammonia, black carbon, and organic carbon may be equally important during particular seasons. Furthermore, each species is emitted from several anthropogenic sectors (e.g., industry, power plant, transportation, residential and agriculture). On the other hand, contribution of one emission sector to PM2.5 represents contributions of all species in this sector. In this work, two model-based methods are used to identify the most influential emission sectors and areas to PM2.5. The first method is the source apportionment (SA) based on the Particulate Source Apportionment Technology (PSAT) available in the Comprehensive Air Quality Model with extensions (CAMx) driven by meteorological predictions of the Weather Research and Forecast (WRF) model. The second method is the source sensitivity (SS) based on an adjoint integration technique (AIT) available in the GEOS-Chem model. The SA method attributes simulated PM2.5 concentrations to each emission group, while the SS method calculates their sensitivity to each emission group, accounting for the non-linear relationship between PM2.5 and its precursors. Despite their differences, the complementary nature of the two methods enables a complete analysis of source-receptor relationships to support emission control policies. Our objectives are to quantify the contributions of each emission group/area to PM2.5 in the receptor areas and to intercompare results from the two methods to gain a comprehensive understanding of the role of emission sources in PM2.5 formation. The results will be compared in terms of the magnitudes and rankings of SS or SA of emitted species and emission groups/areas. GEOS-Chem with AIT is applied over East Asia at a horizontal grid

  18. Note: Tormenta: An open source Python-powered control software for camera based optical microscopy

    Science.gov (United States)

    Barabas, Federico M.; Masullo, Luciano A.; Stefani, Fernando D.

    2016-12-01

    Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.

  19. Real-time tunability of chip-based light source enabled by microfluidic mixing

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Rasmussen, Torben; Balslev, Søren;

    2006-01-01

    We demonstrate real-time tunability of a chip-based liquid light source enabled by microfluidic mixing. The mixer and light source are fabricated in SU-8 which is suitable for integration in SU-8-based laboratory-on-a-chip microsystems. The tunability of the light source is achieved by changing...... the concentration of rhodamine 6G dye inside two integrated vertical resonators, since both the refractive index and the gain profile are influenced by the dye concentration. The effect on the refractive index and the gain profile of rhodamine 6G in ethanol is investigated and the continuous tuning of the laser...

  20. Kalman filter-based microphone array signal processing using the equivalent source model

    Science.gov (United States)

    Bai, Mingsian R.; Chen, Ching-Cheng

    2012-10-01

    This paper demonstrates that microphone array signal processing can be implemented by using adaptive model-based filtering approaches. Nearfield and farfield sound propagation models are formulated into state-space forms in light of the Equivalent Source Method (ESM). In the model, the unknown source amplitudes of the virtual sources are adaptively estimated by using Kalman filters (KFs). The nearfield array aimed at noise source identification is based on a Multiple-Input-Multiple-Output (MIMO) state-space model with minimal realization, whereas the farfield array technique aimed at speech quality enhancement is based on a Single-Input-Multiple-Output (SIMO) state-space model. Performance of the nearfield array is evaluated in terms of relative error of the velocity reconstructed on the actual source surface. Numerical simulations for the nearfield array were conducted with a baffled planar piston source. From the error metric, the proposed KF algorithm proved effective in identifying noise sources. Objective simulations and subjective experiments are undertaken to validate the proposed farfield arrays in comparison with two conventional methods. The results of objective tests indicated that the farfield arrays significantly enhanced the speech quality and word recognition rate. The results of subjective tests post-processed with the analysis of variance (ANOVA) and a post-hoc Fisher's least significant difference (LSD) test have shown great promise in the KF-based microphone array signal processing techniques.