WorldWideScience

Sample records for based moist convection

  1. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  2. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  3. Understanding dynamics of large-scale atmospheric vortices with moist-convective shallow water model

    International Nuclear Information System (INIS)

    Rostami, M.; Zeitlin, V.

    2016-01-01

    Atmospheric jets and vortices which, together with inertia-gravity waves, constitute the principal dynamical entities of large-scale atmospheric motions, are well described in the framework of one- or multi-layer rotating shallow water models, which are obtained by vertically averaging of full “primitive” equations. There is a simple and physically consistent way to include moist convection in these models by adding a relaxational parameterization of precipitation and coupling precipitation with convective fluxes with the help of moist enthalpy conservation. We recall the construction of moist-convective rotating shallow water model (mcRSW) model and give an example of application to upper-layer atmospheric vortices. (paper)

  4. Response of Moist Convection to Multi-scale Surface Flux Heterogeneity

    Science.gov (United States)

    Kang, S. L.; Ryu, J. H.

    2015-12-01

    We investigate response of moist convection to multi-scale feature of the spatial variation of surface sensible heat fluxes (SHF) in the afternoon evolution of the convective boundary layer (CBL), utilizing a mesoscale-domain large eddy simulation (LES) model. The multi-scale surface heterogeneity feature is analytically created as a function of the spectral slope in the wavelength range from a few tens of km to a few hundreds of m in the spectrum of surface SHF on a log-log scale. The response of moist convection to the κ-3 - slope (where κ is wavenumber) surface SHF field is compared with that to the κ-2 - slope surface, which has a relatively weak mesoscale feature, and the homogeneous κ0 - slope surface. Given the surface energy balance with a spatially uniform available energy, the prescribed SHF has a 180° phase lag with the latent heat flux (LHF) in a horizontal domain of (several tens of km)2. Thus, warmer (cooler) surface is relatively dry (moist). For all the cases, the same observation-based sounding is prescribed for the initial condition. For all the κ-3 - slope surface heterogeneity cases, early non-precipitating shallow clouds further develop into precipitating deep thunderstorms. But for all the κ-2 - slope cases, only shallow clouds develop. We compare the vertical profiles of domain-averaged fluxes and variances, and the contribution of the mesoscale and turbulence contributions to the fluxes and variances, between the κ-3 versus κ-2 slope cases. Also the cross-scale processes are investigated.

  5. Continuous Cropping and Moist Deep Convection on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Devon E. Worth

    2012-12-01

    Full Text Available Summerfallow is cropland that is purposely kept out of production during a growing season to conserve soil moisture. On the Canadian Prairies, a trend to continuous cropping with a reduction in summerfallow began after the summerfallow area peaked in 1976. This study examined the impact of this land-use change on convective available potential energy (CAPE, a necessary but not sufficient condition for moist deep convection. All else being equal, an increase in CAPE increases the probability-of-occurrence of convective clouds and their intensity if they occur. Representative Bowen ratios for the Black, Dark Brown, and Brown soil zones were determined for 1976: the maximum summerfallow year, 2001: our baseline year, and 20xx: a hypothetical year with the maximum-possible annual crop area. Average mid-growing-season Bowen ratios and noon solar radiation were used to estimate the reduction in the lifted index (LI from land-use weighted evapotranspiration in each study year. LI is an index of CAPE, and a reduction in LI indicates an increase in CAPE. The largest reductions in LI were found for the Black soil zone. They were −1.61 ± 0.18, −1.77 ± 0.14 and −1.89 ± 0.16 in 1976, 2001 and 20xx, respectively. These results suggest that, all else being equal, the probability-of-occurrence of moist deep convection in the Black soil zone was lower in 1976 than in the base year 2001, and it will be higher in 20xx when the annual crop area reaches a maximum. The trend to continuous cropping had less impact in the drier Dark Brown and Brown soil zones.

  6. On the sensitivities of idealized moist baroclinic waves to environmental temperature and moist convection

    Science.gov (United States)

    Kirshbaum, Daniel; Merlis, Timothy; Gyakum, John; McTaggart-Cowan, Ron

    2017-04-01

    The impact of cloud diabatic heating on baroclinic life cycles has been studied for decades, with the nearly universal finding that this heating enhances the system growth rate. However, few if any studies have systematically addressed the sensitivity of baroclinic waves to environmental temperature. For a given relative humidity, warmer atmospheres contain more moisture than colder atmospheres. They also are more prone to the development of deep moist convection, which is itself a major source of diabatic heating. Thus, it is reasonable to expect faster baroclinic wave growth in warmer systems. To address this question, this study performs idealized simulations of moist baroclinic waves in a periodic channel, using initial environments with identical relative humidities, dry stabilities, and dry available potential energies but varying environmental temperatures and moist instabilities. While the dry versions of these simulations exhibit virtually identical wave growth, the moist versions exhibit major differences in life cycle. Counter-intuitively, despite slightly faster initial wave growth, the warmer and moister waves ultimately develop into weaker baroclinic systems with an earlier onset of the decay phase. An energetics analysis reveals that the reduced wave amplitude in the warmer cases stems from a reduced transfer of available potential energy into eddy potential energy. This reduced energy transfer is associated with an unfavorable phasing of mid-to-upper-level thermal and vorticity anomalies, which limits the meridional heat flux.

  7. Surface and atmospheric controls on the onset of moist convection over land

    NARCIS (Netherlands)

    Gentine, P.; Holtslag, A.A.M.; Andrea, D' F.; Ek, M.

    2013-01-01

    The onset of moist convection over land is investigated using a conceptual approach with a slab boundary layer model. We here determine the essential factors for the onset of boundary layer clouds over land, and study their relative importance. They are: 1) the ratio of the temperature to the

  8. Development of a moisture scheme for the explicit numerical simulation of moist convection

    CSIR Research Space (South Africa)

    Bopape, Mary-Jane M

    2010-09-01

    Full Text Available .kashan.co.za] Development of a moisture scheme for the explicit numerical simulation of moist convection M BOPAPE, F ENGELBRECHT, D RANDALL AND W LANDMAN CSIR Natural Resources and the Environment, PO Box 395, Pretoria, 0001, South Africa Email: mbopape... sigma coordinate model that incorporates moisture effects, so that it can simulate convective clouds and precipitation. moisture terms equivalent to those of the miller and pearce (1974) model are incorporated in the equation set used: ; (1) ; (2...

  9. Asymptotics for moist deep convection I: refined scalings and self-sustaining updrafts

    Science.gov (United States)

    Hittmeir, Sabine; Klein, Rupert

    2018-04-01

    Moist processes are among the most important drivers of atmospheric dynamics, and scale analysis and asymptotics are cornerstones of theoretical meteorology. Accounting for moist processes in systematic scale analyses therefore seems of considerable importance for the field. Klein and Majda (Theor Comput Fluid Dyn 20:525-551, 2006) proposed a scaling regime for the incorporation of moist bulk microphysics closures in multiscale asymptotic analyses of tropical deep convection. This regime is refined here to allow for mixtures of ideal gases and to establish consistency with a more general multiple scales modeling framework for atmospheric flows. Deep narrow updrafts, the so-called hot towers, constitute principal building blocks of larger scale storm systems. They are analyzed here in a sample application of the new scaling regime. A single quasi-one-dimensional upright columnar cloud is considered on the vertical advective (or tower life cycle) time scale. The refined asymptotic scaling regime is essential for this example as it reveals a new mechanism for the self-sustainance of such updrafts. Even for strongly positive convectively available potential energy, a vertical balance of buoyancy forces is found in the presence of precipitation. This balance induces a diagnostic equation for the vertical velocity, and it is responsible for the generation of self-sustained balanced updrafts. The time-dependent updraft structure is encoded in a Hamilton-Jacobi equation for the precipitation mixing ratio. Numerical solutions of this equation suggest that the self-sustained updrafts may strongly enhance hot tower life cycles.

  10. Convergence behavior of idealized convection-resolving simulations of summertime deep moist convection over land

    Science.gov (United States)

    Panosetti, Davide; Schlemmer, Linda; Schär, Christoph

    2018-05-01

    Convection-resolving models (CRMs) can explicitly simulate deep convection and resolve interactions between convective updrafts. They are thus increasingly used in numerous weather and climate applications. However, the truncation of the continuous energy cascade at scales of O (1 km) poses a serious challenge, as in kilometer-scale simulations the size and properties of the simulated convective cells are often determined by the horizontal grid spacing (Δ x ).In this study, idealized simulations of deep moist convection over land are performed to assess the convergence behavior of a CRM at Δ x = 8, 4, 2, 1 km and 500 m. Two types of convergence estimates are investigated: bulk convergence addressing domain-averaged and integrated variables related to the water and energy budgets, and structural convergence addressing the statistics and scales of individual clouds and updrafts. Results show that bulk convergence generally begins at Δ x =4 km, while structural convergence is not yet fully achieved at the kilometer scale, despite some evidence that the resolution sensitivity of updraft velocities and convective mass fluxes decreases at finer resolution. In particular, at finer grid spacings the maximum updraft velocity generally increases, and the size of the smallest clouds is mostly determined by Δ x . A number of different experiments are conducted, and it is found that the presence of orography and environmental vertical wind shear yields more energetic structures at scales much larger than Δ x , sometimes reducing the resolution sensitivity. Overall the results lend support to the use of kilometer-scale resolutions in CRMs, despite the inability of these models to fully resolve the associated cloud field.

  11. Numerical simulations of Jupiter’s moist convection layer: Structure and dynamics in statistically steady states

    Science.gov (United States)

    Sugiyama, K.; Nakajima, K.; Odaka, M.; Kuramoto, K.; Hayashi, Y.-Y.

    2014-02-01

    A series of long-term numerical simulations of moist convection in Jupiter’s atmosphere is performed in order to investigate the idealized characteristics of the vertical structure of multi-composition clouds and the convective motions associated with them, varying the deep abundances of condensable gases and the autoconversion time scale, the latter being one of the most questionable parameters in cloud microphysical parameterization. The simulations are conducted using a two-dimensional cloud resolving model that explicitly represents the convective motion and microphysics of the three cloud components, H2O, NH3, and NH4SH imposing a body cooling that substitutes the net radiative cooling. The results are qualitatively similar to those reported in Sugiyama et al. (Sugiyama, K. et al. [2011]. Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett. 38, L13201. doi:10.1029/2011GL047878): stable layers associated with condensation and chemical reaction act as effective dynamical and compositional boundaries, intense cumulonimbus clouds develop with distinct temporal intermittency, and the active transport associated with these clouds results in the establishment of mean vertical profiles of condensates and condensable gases that are distinctly different from the hitherto accepted three-layered structure (e.g., Atreya, S.K., Romani, P.N. [1985]. Photochemistry and clouds of Jupiter, Saturn and Uranus. In: Recent Advances in Planetary Meteorology. Cambridge Univ. Press, London, pp. 17-68). Our results also demonstrate that the period of intermittent cloud activity is roughly proportional to the deep abundance of H2O gas. The autoconversion time scale does not strongly affect the results, except for the vertical profiles of the condensates. Changing the autoconversion time scale by a factor of 100 changes the intermittency period by a factor of less than two, although it causes a dramatic increase in the amount of

  12. Influence of Ice-phase of Hydrometeors on Moist-Convection

    Science.gov (United States)

    Sud, Y. C.; Walker, G. K.

    2003-01-01

    Climate models often ignore the influence of ice-phase physics (IPP) of hydrometeors as a second order effect. This has also been true for McRAS (Microphysics of clouds with Relaxed Arakawa Schubert Scheme) developed by the authors. Recognizing that the temperature sounding is critical for moist-convection, and, that IPP would modify it, we investigated the influence of introducing IPP into McRAS coupled to FvGCM (finite volume General Circulation Model with NCAR physics). We analyzed three 3-yr long simulations; the first called Control Case, CC and had no IPP; the other two called Experiments El and E2 had IPP introduced with two different in-cloud freezing assumptions. Simulation El assumed that all hydrometeors remain liquid in the updraft and freeze upon detrainment. Simulation E2 invoked the in-cloud freezing of new condensate generated at subfreezing temperatures in the updraft while old cloud water continued to ascend as liquid. Upon detrainment, this cloud water also froze like in E1. With these assumptions, about 50% of hydrometeors froze in the tower and the rest froze in the anvil. However, in both El and E2, the frozen hydrometeors melted during fall at the first encounter of above freezing ambient temperature. Comparative analysis revealed that El simulated far more mid-level and far less deep clouds while E2 had modified deep and more mid-level clouds as compared to CC along with some major changes around the melt-level. We infer that IPP produced a more realistic response in E2. At the basic level, the results show that ice-phase processes influence convective detrainment at mid- and deep levels in accord with TOGAGOARE observations. The results suggest that IPP can help to mitigate less-than-observed mid-level and over-abundance of deep convective clouds in McRAS.

  13. Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt

    Science.gov (United States)

    Fletcher, Leigh N.; Orton, G. S.; Rogers, J. H.; Giles, R. S.; Payne, A. V.; Irwin, P. G. J.; Vedovato, M.

    2017-04-01

    The transformation of Jupiter's South Equatorial Belt (SEB) from its faded, whitened state in 2009-2010 (Fletcher et al., 2011b) to its normal brown appearance is documented via comparisons of thermal-infrared (5-20 μm) and visible-light imaging between November 2010 and November 2011. The SEB revival consisted of convective eruptions triggered over ∼100 days, potentially powered by the latent heat released by the condensation of water. The plumes rise from the water cloud base and ultimately diverge and cool in the stably-stratified upper troposphere. Thermal-IR images from the Very Large Telescope (VLT) were acquired 2 days after the SEB disturbance was first detected as a small white spot by amateur observers on November 9th 2010. Subsequent images over several months revealed the cold, putatively anticyclonic and cloudy plume tops (area 2.5 × 106 km2) surrounded by warm, cloud-free conditions at their peripheries due to subsidence. The latent heating was not directly detectable in the 5-20 μm range. The majority of the plumes erupted from a single source near 140 -160∘ W, coincident with the remnant cyclonic circulation of a brown barge that had formed during the fade. The warm remnant of the cyclone could still be observed in IRTF imaging 5 days before the November 9th eruption. Additional plumes erupted from the leading edge of the central disturbance immediately east of the source, which propagated slowly eastwards to encounter the Great Red Spot. The tropospheric plumes were sufficiently vigorous to excite stratospheric thermal waves over the SEB with a 20 -30∘ longitudinal wavelength and 5-6 K temperature contrasts at 5 mbar, showing a direct connection between moist convection and stratospheric wave activity. The subsidence and compressional heating of dry, unsaturated air warmed the troposphere (particularly to the northwest of the central branch of the revival) and removed the aerosols that had been responsible for the fade. Dark, cloud

  14. The boundary layer moist static energy budget: Convection picks up moisture and leaves footprints in the marine boundary layer

    Science.gov (United States)

    de Szoeke, S. P.

    2017-12-01

    Averaged over the tropical marine boundary layer (BL), 130 W m-2 turbulent surface moist static energy (MSE) flux, 120 W m-2 of which is evaporation, is balanced by upward MSE flux at the BL top due to 1) incorporation of cold air by downdrafts from deep convective clouds, and 2) turbulent entrainment of dry air into the BL. Cold saturated downdraft air, and warm clear air entrained into the BL have distinct thermodynamic properties. This work observationally quantifies their respective MSE fluxes in the central Indian Ocean in 2011, under different convective conditions of the intraseasonal (40-90 day) Madden Julian oscillation (MJO). Under convectively suppressed conditions, entrainment and downdraft fluxes export equal shares (60 W m-2) of MSE from the BL. Downdraft fluxes are more variable, increasing for stronger convection. In the convectively active phase of the MJO, downdrafts export 90 W m-2 from the BL, compared to 40 W m-2 by entrainment. These processes that control the internal, latent (condensation), and MSE of the tropical marine atmospheric BL determine the parcel buoyancy and strength of tropical deep convection.

  15. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Stechmann, Samuel N., E-mail: stechmann@wisc.edu [Department of Mathematics, University of Wisconsin-Madison (United States); Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison (United States)

    2014-08-15

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes.

  16. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    International Nuclear Information System (INIS)

    Stechmann, Samuel N.

    2014-01-01

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes

  17. Activities relating to understanding the initiation, organization and structure of moist convection in the Southeast environment

    Science.gov (United States)

    Mcnider, Richard T.

    1992-01-01

    In the spring and summer of 1986, NASA/Marshall Space Flight Center (MSFC) will sponsor the Satellite Precipitation And Cloud Experiment (SPACE) to be conducted in the Central Tennessee, Northern Alabama, and Northeastern Mississippi area. The field program will incorporate high altitude flight experiments associated with meteorological remote sensor development for future space flight, and an investigation of precipitation processes associated with mesoscale and small convective systems. In addition to SPACE, the MIcroburst and Severe Thunderstorm (MIST) program, sponsored by the National Science Foundation (NSF), and the FAA-Lincoln Laboratory Operational Weather Study (FLOWS), sponsored by the Federal Aviation Administration (FAA), will take place concurrently within the SPACE experiment area. All three programs (under the joint acronym COHMEX (COoperative Huntsville Meteorological EXperiment)) will provide a data base for detailed analysis of mesoscale convective systems while providing ground truth comparisons for remote sensor evaluation. The purpose of this document is to outline the experiment design criteria for SPACE, and describe the special observing facilities and data sets that will be available under the COHMEX joint program. In addition to the planning of SPACE-COHMEX, this document covers three other parts of the program. The field program observations' main activity was the operation of an upper air rawinsonde network to provide ground truth for aircraft and spacecraft observations. Another part of the COHMEX program involved using boundary layer mesoscale models to study and simulate the initiation and organization of moist convection due to mesoscale thermal and mechanical circulations. The last part of the program was the collection, archival and distribution of the resulting COHMEX-SPACE data sets.

  18. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    Science.gov (United States)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive

  19. Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE

    Science.gov (United States)

    Zhang, Guang J.; Wu, Xiaoqing; Zeng, Xiping; Mitovski, Toni

    2016-10-01

    The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.

  20. Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures

    International Nuclear Information System (INIS)

    Shmerlin, Boris Ya; Kalashnik, Maksim V

    2013-01-01

    Convective motions in moist saturated air are accompanied by the release of latent heat of condensation. Taking this effect into account, we consider the problem of convective instability of a moist saturated air layer, generalizing the formulation of the classical Rayleigh problem. An analytic solution demonstrating the fundamental difference between moist convection and Rayleigh convection is obtained. Upon losing stability in the two-dimensional case, localized convective rolls or spatially periodic chains of rollers with localized areas of upward motion evolve. In the case of axial symmetry, the growth of localized convective vortices with circulation characteristic of tropical cyclones (hurricanes) is possible at the early stages of development and on the scale of tornados to tropical cyclones. (methodological notes)

  1. Convectively coupled Kelvin waves in aquachannel simulations: 2. Life cycle and dynamical-convective coupling

    Science.gov (United States)

    Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.

    2016-10-01

    This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.

  2. Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    Science.gov (United States)

    Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.

    2013-01-01

    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.

  3. Analysis and evaluation of WRF microphysical schemes for deep moist convection over south-eastern South America (SESA) using microwave satellite observations and radiative transfer simulations

    Science.gov (United States)

    Sol Galligani, Victoria; Wang, Die; Alvarez Imaz, Milagros; Salio, Paola; Prigent, Catherine

    2017-10-01

    In the present study, three meteorological events of extreme deep moist convection, characteristic of south-eastern South America, are considered to conduct a systematic evaluation of the microphysical parameterizations available in the Weather Research and Forecasting (WRF) model by undertaking a direct comparison between satellite-based simulated and observed microwave radiances. A research radiative transfer model, the Atmospheric Radiative Transfer Simulator (ARTS), is coupled with the WRF model under three different microphysical parameterizations (WSM6, WDM6 and Thompson schemes). Microwave radiometry has shown a promising ability in the characterization of frozen hydrometeors. At high microwave frequencies, however, frozen hydrometeors significantly scatter radiation, and the relationship between radiation and hydrometeor populations becomes very complex. The main difficulty in microwave remote sensing of frozen hydrometeor characterization is correctly characterizing this scattering signal due to the complex and variable nature of the size, composition and shape of frozen hydrometeors. The present study further aims at improving the understanding of frozen hydrometeor optical properties characteristic of deep moist convection events in south-eastern South America. In the present study, bulk optical properties are computed by integrating the single-scattering properties of the Liu(2008) discrete dipole approximation (DDA) single-scattering database across the particle size distributions parameterized by the different WRF schemes in a consistent manner, introducing the equal mass approach. The equal mass approach consists of describing the optical properties of the WRF snow and graupel hydrometeors with the optical properties of habits in the DDA database whose dimensions might be different (Dmax') but whose mass is conserved. The performance of the radiative transfer simulations is evaluated by comparing the simulations with the available coincident

  4. Jovian meterology: Large-scale moist convection without a lower boundary

    Science.gov (United States)

    Gierasch, P. J.

    1975-01-01

    It is proposed that Jupiter's cloud bands represent large scale convection whose character is determined by the phase change of water at a level where the temperature is about 275K. It is argued that there are three important layers in the atmosphere: a tropopause layer where emission to space occurs; an intermediate layer between the tropopause and the water cloud base; and the deep layer below the water cloud. All arguments are only semi-quantitative. It is pointed out that these ingredients are essential to Jovian meteorology.

  5. Tropical convection regimes in climate models: evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. K. Steiner

    2018-04-01

    Full Text Available High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS radio occultation (RO, which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  6. Tropical convection regimes in climate models: evaluation with satellite observations

    Science.gov (United States)

    Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.

    2018-04-01

    High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  7. Collective impacts of soil moisture and orography on deep convective thunderstorms

    Science.gov (United States)

    Imamovic, Adel; Schlemmer, Linda; Schär, Christoph

    2017-04-01

    Thunderstorm activity in many land regions peaks in summer, when surface heat fluxes and the atmospheric moisture content reach an annual maximum. Studies using satellite and ground-based observations have shown that the timing and vigor of summer thunderstorms are influenced by the presence of triggering mechanisms such as soil-moisture heterogeneity or orography. In the current process-based study we aim to dissect the combined impact of soil-moisture and orography on moist convection by using convection-resolving climate simulations with idealized landsurface and orographic conditions. First we systematically investigate the sensitivity of moist convection in absence of orography to a mesoscale soil-moisture anomaly, i.e. a region with drier or moister soil. Consistent with previous studies, a high sensitivity of total rain to soil-moisture anomalies over flat terrain is found. The total rain in the presence of a dry soil-moisture anomaly increases linearly if the soil-moisture anomaly is dried: an anomaly that is 50 % dryer than the reference case with a homogeneous soil-moisture distribution produces up to 40 % more rain. The amplitude of this negative response to the dry soil-moisture anomaly cannot be reproduced by either drying or moistening the soil in the whole domain, even when using unrealistic soil-moisture values. A moist soil anomaly showed little impact on total rain. The triggering effects of the soil-moisture anomalies can be reproduced by an isolated mountain of 250 m height. In order to test to what extent the impact of the soil-moisture anomaly and the mountain are additive, the soil-moisture perturbation method is applied to soil-moisture over the isolated mountain. A 250 m high mountain with drier (moister) soil than its surrounding is found to enhance (suppress) rain amounts. However, the sensitivity of rain amount to the soil-moisture anomaly decreases with the mountain height: A 500 m high mountain is already sufficient to eliminate the

  8. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

    Science.gov (United States)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.

    2017-09-01

    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  9. Convective Self-Aggregation in Numerical Simulations: A Review

    Science.gov (United States)

    Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline

    Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.

  10. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    Science.gov (United States)

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  11. Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case

    Science.gov (United States)

    Choi, Hyun-Young; Ha, Ji-Hyun; Lee, Dong-Kyou; Kuo, Ying-Hwa

    2011-05-01

    We investigated a torrential rainfall case with a daily rainfall amount of 379 mm and a maximum hourly rain rate of 77.5 mm that took place on 12 July 2006 at Goyang in the middlewestern part of the Korean Peninsula. The heavy rainfall was responsible for flash flooding and was highly localized. High-resolution Doppler radar data from 5 radar sites located over central Korea were analyzed. Numerical simulations using the Weather Research and Forecasting (WRF) model were also performed to complement the high-resolution observations and to further investigate the thermodynamic structure and development of the convective system. The grid nudging method using the Global Final (FNL) Analyses data was applied to the coarse model domain (30 km) in order to provide a more realistic and desirable initial and boundary conditions for the nested model domains (10 km, 3.3 km). The mesoscale convective system (MCS) which caused flash flooding was initiated by the strong low level jet (LLJ) at the frontal region of high equivalent potential temperature (θe) near the west coast over the Yellow Sea. The ascending of the warm and moist air was induced dynamically by the LLJ. The convective cells were triggered by small thermal perturbations and abruptly developed by the warm θe inflow. Within the MCS, several convective cells responsible for the rainfall peak at Goyang simultaneously developed with neighboring cells and interacted with each other. Moist absolutely unstable layers (MAULs) were seen at the lower troposphere with the very moist environment adding the instability for the development of the MCS.

  12. Moist air state above counterflow wet-cooling tower fill based on Merkel, generalised Merkel and Klimanek & Białecky models

    Science.gov (United States)

    Hyhlík, Tomáš

    2017-09-01

    The article deals with an evaluation of moist air state above counterflow wet-cooling tower fill. The results based on Klimanek & Białecky model are compared with results of Merkel model and generalised Merkel model. Based on the numerical simulation it is shown that temperature is predicted correctly by using generalised Merkel model in the case of saturated or super-saturated air above the fill, but the temperature is underpredicted in the case of unsaturated moist air above the fill. The classical Merkel model always under predicts temperature above the fill. The density of moist air above the fill, which is calculated using generalised Merkel model, is strongly over predicted in the case of unsaturated moist air above the fill.

  13. Evaluation of convection-resolving models using satellite data: The diurnal cycle of summer convection over the Alps

    Directory of Open Access Journals (Sweden)

    Michael Keller

    2016-05-01

    Full Text Available Diurnal moist convection is an important element of summer precipitation over Central Europe and the Alps. It is poorly represented in models using parameterized convection. In this study, we investigate the diurnal cycle of convection during 11 days in June 2007 using the COSMO model. The numerical simulations are compared with satellite measurements of GERB and SEVIRI, AVHRR satellite-based cloud properties and ground-based precipitation and temperature measurements. The simulations use horizontal resolutions of 12 km (convection-parameterizing model, CPM and 2 km (convection-resolving model, CRM and either a one-moment microphysics scheme (1M or a two-moment microphysics scheme (2M.They are conducted for a computational domain that covers an extended Alpine area from Northern Italy to Northern Germany. The CPM with 1M exhibits a significant overestimation of high cloud cover. This results in a compensation effect in the top of the atmosphere energy budget due to an underestimation of outgoing longwave radiation (OLR and an overestimation of reflected solar radiation (RSR. The CRM reduces high cloud cover and improves the OLR bias from a domain mean of −20.1 to −2.6 W/m2. When using 2M with ice sedimentation in the CRM, high cloud cover is further reduced. The stronger diurnal cycle of high cloud cover and associated convection over the Alps, compared to less mountainous regions, is well represented by the CRM but underestimated by the CPM. Despite substantial differences in high cloud cover, the use of a 2M has no significant impact on the diurnal cycle of precipitation. Furthermore, a negative mid-level cloud bias is found for all simulations.

  14. Biomass Smoke Influences on Deep Convection during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E)

    Science.gov (United States)

    Dong, X.; Logan, T.; Xi, B.

    2015-12-01

    Three deep convective cloud cases were selected during the 2011 Mid-Latitude Continental Convective Clouds Experiment (MC3E). Although biomass burning smoke advected from Mexico and Central America was the dominant source of cloud condensation nuclei (CCN) for deep convective cloud formation, the 11 May, 20 May, and 23 May cases exhibited different convective characteristics. The convection in the 11 May and 23 May cases formed in smoke laden environments in the presence of convective available potential energy (CAPE) values exceeding 1000 m2 s-2 and 3000 m2 s-2 along with low-level (0-1 km) shear of 10.3 m s-1 and 5.1 m s-1, respectively. The 11 May case had linear convection while the 23 May case featured discrete supercells. The 20 May case featured elevated linear convection that formed in a more moist environment with cleaner aerosol conditions, weak CAPE (9 km) suggesting a warm rain suppression mechanism caused by a combination of strong aerosol loading, large CAPE, and weak low-level wind shear. The observed results for the 20 May and 23 May cases agree well with recent modeling studies that simulated the convection and precipitation in these cases. Furthermore, the modeling of the 11 May case is suggested since the abundant amount of smoke CCN did not greatly enhance the overall precipitation amount and could be a possible aerosol-induced precipitation suppression case.

  15. Simulating moist convection with a quasi-elastic sigma coordinate model

    CSIR Research Space (South Africa)

    Bopape, Mary-Jane M

    2012-10-01

    Full Text Available : Corrected TOGA COARE Sounding Humidity Data: Impact on Diagnosed Properties of Convection and Climate over the Warm Pool. Journal of Climate, 12, 2370-2384. WW, X Wu and MW Moncrieff, 1996: Cloud-Resolving Modeling of Tropical Cloud Systems during Phase... during the suppressed phase of a Madden-Julian Oscillation: Comparing single-column models with cloud resolving models. Quarterly Journal of the Royal Meteorological Society, 1-22. Sun S and W Sun, 2002: A One-dimensional Time Dependent Cloud Model...

  16. Coupled interactions of organized deep convection over the tropical western pacific

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The relationship between sea surface temperature (SST) and deep convection is complex. In general, deep convection occurs more frequently and with more intensity as SSTs become higher. This theory assumes that the atmospheric stability is sufficiently reduced to allow the onset of moist convection. However, the amount and intensity of convection observed tends to decrease with increasing SST because very warm SSTs. A reason for such decrease is the enhancements to surface fluxes of heat and moisture out of the ocean surface because of the vertical overturning associated with deep convection. Early studies used the radiative-convective models of the atmosphere to examine the role of the convective exchange of heat and moisture in maintaining the vertical temperature profile. In this paper we use a Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to simulate a squall line over a tropical ocean global atmosphere/coupled ocean atmosphere response experiment (TOGA/COARE) area and to investigate how the ocean cooling mechanisms associated with organized deep convection act to limit tropical SSTs.

  17. Combined natural convection heat and mass transfer from vertical fin arrays

    International Nuclear Information System (INIS)

    Giri, A.; Narasimham, G.S.V.L.; Krishna Murthy, M.V.

    2003-01-01

    Natural convection transport processes play an important role in many applications like ice-storage air-conditioning. A mathematical formulation of natural convection heat and mass transfer over a shrouded vertical fin array is developed. The base plate is maintained at a temperature below the dew point of the surrounding moist air. Hence there occurs condensation of moisture on the base plate, while the fins may be partially or fully wet. A numerical study is performed by varying the parameters of the problem. The local and average Nusselt numbers decrease in streamwise direction and tend to approach fully developed values for sufficiently large values of the fin length. The results show that beyond a certain streamwise distance, further fin length does not improve the sensible and latent heat transfer performance, and that if dry fin analysis is used under moisture condensation conditions, the overall heat transfer will be underestimated by about 50% even at low buoyancy ratios

  18. Diagnosis of Moist Vorticity and Moist Divergence for a Heavy Precipitation Event in Southwestern China

    Institute of Scientific and Technical Information of China (English)

    Gang LI; Daoyong YANG; Xiaohua JIANG; Jing PAN; Yanke TAN

    2017-01-01

    A regional heavy precipitation event that occurred over Sichuan Province on 8-9 September 2015 is analyzed based on hourly observed precipitation data obtained from weather stations and NCEP FNL data.Two moist dynamic parameters, i.e., moist vorticity (mζ) and moist divergence (mδ), are used to diagnose this heavy precipitation event.Results show that the topography over southwestern China has a significant impact on the ability of these two parameters to diagnose precipitation.When the impact of topography is weak (i.e., low altitude), mζ cannot exactly depict the location of precipitation in the initial stage of the event.Then, as the precipitation develops, its ability to depict the location improves significantly.In particular, mζ coincides best with the location of precipitation during the peak stage of the event.Besides, the evolution of the mζ center shows high consistency with the evolution of the precipitation center.For mδ,although some false-alarm regions are apparent, it reflects the location of precipitation almost entirely during the precipitation event.However, the mδ center shows inconsistency with the precipitation center.These results suggest that both mζ and mδ have a significant ability to predict the location of precipitation.Moreover, mζ has a stronger ability than mδ in terms of predicting the variability of the precipitation center.However, when the impact of topography is strong (i.e., high altitude), both of these two moist dynamic parameters are unable to depict the location and center of precipitation during the entire precipitation event, suggesting their weak ability to predict precipitation over complex topography.

  19. Corrosion of copper-based materials in irradiated moist air systems

    International Nuclear Information System (INIS)

    Reed, D.T.; Van Konynenburg, R.A.

    1991-06-01

    The atmospheric corrosion of oxygen-free copper (CDA-102), 70/30 copper-nickel (CDA-715), and 7% aluminum bronze (CDA-613) in an irradiated moist air environment was investigated. Experiments were performed in both dry and 40% RH (at sign 90 degree C) air at temperatures of 90 and 150 degree C. Initial corrosion rates were determined based on a combination of weight gain and weight loss measurements. Corrosion products observed were identified. These experiments support efforts by the Yucca Mountain Project (YMP) to evaluate possible metallic barrier materials for nuclear waste containers. 8 refs., 1 fig., 2 tabs

  20. 21 CFR 890.5250 - Moist steam cabinet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Moist steam cabinet. 890.5250 Section 890.5250...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam cabinet. (a) Identification. A moist steam cabinet is a device intended for medical purposes that delivers...

  1. On the recent warming in the subcloud layer entropy and vertically integrated moist static energy over South Asian Monsoon region.

    Science.gov (United States)

    Konduru, R.; Gupta, A.; Matsumoto, J.; Takahashi, H. G.

    2017-12-01

    In order to explain monsoon circulation, surface temperature gradients described as most traditional concept. However, it cannot explain certain important aspects of monsoon circulation. Later, convective quasi-equilibrium framework and vertically integrated atmospheric energy budget has become recognized theories to explain the monsoon circulation. In this article, same theories were analyzed and observed for the duration 1979-2010 over south Asian summer monsoon region. With the help of NCEP-R2, NOAA 20th Century, and Era-Interim reanalysis an important feature was noticed pertained to subcloud layer entropy and vertical moist static energy. In the last 32 years, subcloud layer entropy and vertically integrated moist static energy has shown significant seasonal warming all over the region with peak over the poleward flank of the cross-equatorial cell. The important reason related to the warming was found to be increase in surface enthalpy fluxes. Instead, other dynamical contributions pertained to the warming was also observed. Increase in positive anomalies of vertical advection of moist static energy over northern Bay of Bengal, Central India, Peninsular India, Eastern Arabian Sea, and Equatorial Indian Ocean was found to be an important dynamic factor contributing for warming of vertically integrated moist static energy. Along with it vertical moist stability has also supported the argument. Similar interpretations were perceived in the AMIP simulation of CCSM4 model. Further modeling experiments on this warming will be helpful to know the exact mechanism behind it.

  2. Gregarious Convection and Radiative Feedbacks in Idealized Worlds

    Science.gov (United States)

    2016-08-29

    water,’’ PW, a very strong predictor of deep moist convection [Bretherton et al., 2004; Neelin et al., 2009]. These papers freely interchange VIMSE and...exist neither on the globe nor within the cloud model. Since mesoscales impose great computational costs on atmosphere models, as well as inconven...continuity. Bottom-heavy or ‘‘ shallow ’’ circulations are especially effective at transporting moisture (since it is concen- trated at low altitudes

  3. Convective Cloud and Rainfall Processes Over the Maritime Continent: Simulation and Analysis of the Diurnal Cycle

    Science.gov (United States)

    Gianotti, Rebecca L.

    The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global circulations, current predictions of climate change over this region are still highly uncertain, largely due to inadequate representation of the diurnally-varying processes related to convection. In this work, a coupled numerical model of the land-atmosphere system (RegCM3-IBIS) is used to investigate how more physically-realistic representations of these processes can be incorporated into large-scale climate models. In particular, this work improves simulations of convective-radiative feedbacks and the role of cumulus clouds in mediating the diurnal cycle of rainfall. Three key contributions are made to the development of RegCM3-IBIS. Two pieces of work relate directly to the formation and dissipation of convective clouds: a new representation of convective cloud cover, and a new parameterization of convective rainfall production. These formulations only contain parameters that can be directly quantified from observational data, are independent of model user choices such as domain size or resolution, and explicitly account for subgrid variability in cloud water content and nonlinearities in rainfall production. The third key piece of work introduces a new method for representation of cloud formation within the boundary layer. A comprehensive evaluation of the improved model was undertaken using a range of satellite-derived and ground-based datasets, including a new dataset from Singapore's Changi airport that documents diurnal variation of the local boundary layer height. The performance of RegCM3-IBIS with the new formulations is greatly improved across all evaluation metrics, including cloud cover, cloud liquid water, radiative fluxes and rainfall, indicating consistent improvement in physical realism throughout the simulation. This work

  4. A new mix design concept for earth-moist concrete: A theoretical and experimental study

    NARCIS (Netherlands)

    Hüsken, Götz; Brouwers, Jos

    2008-01-01

    This paper addresses experiments on earth-moist concrete (EMC) based on the ideas of a new mix design concept. First, a brief introduction into particle packing and relevant packing theories is given. Based on packing theories for geometric packing, a new concept for the mix design of earth-moist

  5. Fusing Multiple Satellite Datasets Toward Defining and Understanding Organized Convection

    Science.gov (United States)

    Elsaesser, G.; Del Genio, A. D.

    2017-12-01

    How do we differentiate unorganized from organized convection? We might think of organized convection as being long lasting (at least longer than the lifetime of any individual cumulus cell), clustered at larger spatial scales (>100 km), and responsible for substantial rainfall accumulation. Organized convection is sustained on such scales due to the arrangement of moist/dry and buoyant/non-buoyant mesoscale circulations. The nature of these circulations is tied to system diabatic heating profiles; in particular, the 2nd baroclinic (top-heavy), stratiform heating mode is thought to be important for organized convection maintenance/propagation. We investigate the extent to which these characteristics are jointly found in propagating convective systems. Lifecycle information comes from hi-res IR data. Diabatic heating profiles, convective fractions and rainfall are provided by GPM retrievals mapped to convective system tracks. Moisture is provided by AIRS/AMSU and passive microwave retrievals. Instead of compositing heating profile information along a system track, where information is smoothed out, we sort system heating profile structures according to their "top heaviness" and then analyze PDFs of system rainfall, system sizes, durations, convective/stratiform ratios, etc. as a function of diabatic heating structure. Perhaps contrary to expectation, we find only small differences in PDFs of rainfall rates, system sizes, and system duration for different heating profile structures. If organization is defined according to heating structures, then one possible interpretation of these results is that organization is independent of system size, duration, and many times, even lifecycle stage. Is it possible that most systems "hobble" along and exhibit varying degrees of organization, dependent on local environment moisture/buoyancy variations, unlike the archetypical MCS paradigm? This presentation will also discuss the questions posed above within the context of

  6. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  7. Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations collected at the ARM Southern Great Plains site

    Science.gov (United States)

    Zhang, Y.; Klein, S. A.

    2009-12-01

    11 years of summertime observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site are used to investigate mechanisms controlling the transition from shallow to deep convection over land. A more humid environment above the boundary layer favors the occurrence of late-afternoon heavy precipitation events. The higher moisture content is brought by wind from south. Greater boundary layer inhomogeneity in moist static energy (MSE) is correlated to larger rain rates at the initial stage of precipitation. MSE inhomogeneity is attributed to both moisture and temperature fields, and is correlated with westerly winds. In an examination of afternoon rain statistics, higher relative humidity above the boundary layer is correlated to an earlier onset and longer duration of precipitation, while greater boundary layer inhomogeneity and atmospheric instability are positively correlated to the total rain amount and the maximum rain rate. On balance, these observations favor theories for the transition that involve a moist free troposphere and boundary layer heterogeneity in preference to those that involve convective available potential energy or convective inhibition. Thus the evidence presented here supports the current emphasis in the modeling community on the entraining nature of convection and the role of boundary layer cold pools in triggering new convection.

  8. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  9. Role of hydrocolloid dressings in the treatment of moist skin desquamation

    International Nuclear Information System (INIS)

    Margolin, S.G.

    1987-01-01

    Moist skin desquamation has been of concern to radiation oncologists since the inception of radiation therapy as a major treatment modality. As treatment units became more sophisticated severe skin reactions became less of a problem, but never disappeared. In recent years, with the more aggressive use of chemotherapy concurrently with radiation therapy, and with some treatment regimens requiring high doses to the skin, moist desquamation has occurred more frequently. The principle of wound healing under occlusive moist conditions is based on the observation that untouched blisters showed faster reepithelialization than open blisters. As long ago as 1962, it was demonstrated that if tissue hydration were maintained the rate of epidermal resurfacing would be enhanced. The primary disadvantage has been the fear of infection. Since June 1984, the authors have treated 40 patients with moist desquamation with an occlusive hydrocolloid dressing. These patients had undergone radiation therapy for a variety of conditions, including Hodgkin disease, head and neck cancers, melanoma, and breast cancer. Some patients had received concurrent chemotherapy and experienced severe reactions. All patients healed well with good cosmesis, and there were no infections. Pain relief was excellent. This exhibit demonstrates the theory of moist occlusive healing. Dressing application and case history pictures illustrating the healing process are shown

  10. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  11. Environmental Characteristics of Convective Systems During TRMM-LBA

    Science.gov (United States)

    Halverson, Jeffrey B.; Rickenbach, Thomas; Roy, Biswadev; Pierce, Harold; Williams, Earle; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper, data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment are used to describe the mean thermodynamic and kinematic airmass properties of wet season convection over Rondonia, Brazil. Distinct multi-day easterly and westerly lower tropospheric wind regimes occurred during the campaign with contrasting airmass characteristics. Westerly wind periods featured modest CAPE (1000 J/kg), moist conditions (>90% RH) extending through 700 mb and shallow (900 mb) speed shear on the order of 10(exp -4)/s. This combination of characteristics promoted convective systems that featured a relatively large fraction of stratiform rainfall and weak convection nearly devoid of lightning. The environment is very similar to the general airmass conditions experienced during the Darwin, Australia monsoon convective regime. In contrast, easterly regime convective systems were more strongly electrified and featured larger convective rain rates and reduced stratiform rainfall fraction. These systems formed in an environment with significantly larger CAPE (1500 J/kg), drier lower and middle level humidities (in the lowest 1-2 km, thus contributing to a more explosive growth of convection. The time series of low- and mid-level averaged humidity exhibited marked variability between westerly and easterly regimes and was characterized by low frequency (i.e., multi-day to weekly) oscillations. The synoptic scale origins of these moisture fluctuations are examined, which include the effects of variable low-level airmass trajectories and upper-level, westward migrating cyclonic vortices. The results reported herein provide an environmental context for ongoing dual Doppler analyses and numerical modeling case studies of individual TRMM-LBA convective systems.

  12. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  13. The impact of parametrized convection on cloud feedback

    Science.gov (United States)

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud

  14. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  15. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    International Nuclear Information System (INIS)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models

  16. Snow precipitation on Mars driven by cloud-induced night-time convection

    Science.gov (United States)

    Spiga, Aymeric; Hinson, David P.; Madeleine, Jean-Baptiste; Navarro, Thomas; Millour, Ehouarn; Forget, François; Montmessin, Franck

    2017-09-01

    Although it contains less water vapour than Earth's atmosphere, the Martian atmosphere hosts clouds. These clouds, composed of water-ice particles, influence the global transport of water vapour and the seasonal variations of ice deposits. However, the influence of water-ice clouds on local weather is unclear: it is thought that Martian clouds are devoid of moist convective motions, and snow precipitation occurs only by the slow sedimentation of individual particles. Here we present numerical simulations of the meteorology in Martian cloudy regions that demonstrate that localized convective snowstorms can occur on Mars. We show that such snowstorms--or ice microbursts--can explain deep night-time mixing layers detected from orbit and precipitation signatures detected below water-ice clouds by the Phoenix lander. In our simulations, convective snowstorms occur only during the Martian night, and result from atmospheric instability due to radiative cooling of water-ice cloud particles. This triggers strong convective plumes within and below clouds, with fast snow precipitation resulting from the vigorous descending currents. Night-time convection in Martian water-ice clouds and the associated snow precipitation lead to transport of water both above and below the mixing layers, and thus would affect Mars' water cycle past and present, especially under the high-obliquity conditions associated with a more intense water cycle.

  17. Lightning-based propagation of convective rain fields

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2011-05-01

    Full Text Available This paper describes a new multi-sensor approach for continuously monitoring convective rain cells. It exploits lightning data from surface networks to propagate rain fields estimated from multi-frequency brightness temperature measurements taken by the AMSU/MHS microwave radiometers onboard NOAA/EUMETSAT low Earth orbiting operational satellites. Specifically, the method allows inferring the development (movement, morphology and intensity of convective rain cells from the spatial and temporal distribution of lightning strokes following any observation by a satellite-borne microwave radiometer. Obviously, this is particularly attractive for real-time operational purposes, due to the sporadic nature of the low Earth orbiting satellite measurements and the continuous availability of ground-based lightning measurements – as is the case in most of the Mediterranean region. A preliminary assessment of the lightning-based rainfall propagation algorithm has been successfully made by using two pairs of consecutive AMSU observations, in conjunction with lightning measurements from the ZEUS network, for two convective events. Specifically, we show that the evolving rain fields, which are estimated by applying the algorithm to the satellite-based rainfall estimates for the first AMSU overpass, show an overall agreement with the satellite-based rainfall estimates for the second AMSU overpass.

  18. Engineering Model of High Pressure Moist Air

    OpenAIRE

    Hyhlík Tomáš

    2017-01-01

    The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept ...

  19. Performance and optimum design of convective-radiative rectangular fin with convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base

    International Nuclear Information System (INIS)

    Aziz, Abdul; Beers-Green, Arlen B.

    2009-01-01

    This paper investigates the performance and optimum design of a longitudinal rectangular fin attached to a convectively heated wall of finite thickness. The exposed surfaces of the fin lose heat to the environmental sink by simultaneous convection and radiation. The tip of the fin is assumed to lose heat by convection and radiation to the same sink. The analysis and optimization of the fin is conducted numerically using the symbolic algebra package Maple. The temperature distribution, the heat transfer rates, and the fin efficiency data is presented illustrating how the thermal performance of the fin is affected by the convection-conduction number, the radiation-conduction number, the base convection Biot number, the convection and radiation Biot numbers at the tip, and the dimensionless sink temperature. Charts are presented showing the relationship between the optimum convection-conduction number and the optimum radiation-conduction number for different values of the base convection Biot number and dimensionless sink temperature and fixed values of the convection and radiation Biot numbers at the tip. Unlike the few other papers which have applied the Adomian's decomposition and the differential quadrature element method to this problem but give illustrative results for specific fin geometry and thermal variables, the present graphical data are generally applicable and can be used by fin designers without delving into the mathematical details of the computational techniques.

  20. A stochastic parameterization for deep convection using cellular automata

    Science.gov (United States)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    large-scale variables in regions where convective activity is large. A two month extended evaluation of the deterministic behaviour of the scheme indicate a neutral impact on forecast skill. References: Bengtsson, L., H. Körnich, E. Källén, and G. Svensson, 2011: Large-scale dynamical response to sub-grid scale organization provided by cellular automata. Journal of the Atmospheric Sciences, 68, 3132-3144. Frenkel, Y., A. Majda, and B. Khouider, 2011: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. Journal of the Atmospheric Sciences, doi: 10.1175/JAS-D-11-0148.1. Huang, X.-Y., 1988: The organization of moist convection by internal 365 gravity waves. Tellus A, 42, 270-285. Khouider, B., J. Biello, and A. Majda, 2010: A Stochastic Multicloud Model for Tropical Convection. Comm. Math. Sci., 8, 187-216. Palmer, T., 2011: Towards the Probabilistic Earth-System Simulator: A Vision for the Future of Climate and Weather Prediction. Quarterly Journal of the Royal Meteorological Society 138 (2012) 841-861 Plant, R. and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87-105.

  1. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  2. Corrosion of candidate iron-base waste package structural barrier materials in moist salt environments

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.

    1984-11-01

    Mild steels are considered to be strong candidates for waste package structural barrier (e.g., overpack) applications in salt repositories. Corrosion rates of these materials determined in autoclave tests utilizing a simulated intrusion brine based on Permian Basin core samples are low, generally <25 μm (1 mil) per year. When the steels are exposed to moist salts containing simulated inclusion brines, the corrosion rates are found to increase significantly. The magnesium in the inclusion brine component of the environment is believed to be responsible for the increased corrosion rates. 1 reference, 4 figures, 2 tables

  3. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  4. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data

    Science.gov (United States)

    Chen, Xingchao; Zhao, Kun; Xue, Ming

    2014-11-01

    This study examines the temporal and spatial characteristics and distributions of convection over the Pearl River Delta region of Guangzhou, China, during the May-September warm season, using, for the first time for such a purpose, 3 years of operational Doppler radar data in the region. Results show that convective features occur most frequently along the southern coast and the windward slope of the eastern mountainous area of Pearl River Delta, with the highest frequency occurring in June and the lowest in September among the 5 months. The spatial frequency distribution pattern also roughly matches the accumulated precipitation pattern. The occurrence of convection in this region also exhibits strong diurnal cycles. During May and June, the diurnal distribution is bimodal, with the maximum frequency occurring in the early afternoon and a secondary peak occurring between midnight and early morning. The secondary peak is much weaker in July, August, and September. Convection near the coast is found to occur preferentially on days when a southerly low-level jet (LLJ) exists, especially during the Meiyu season. Warm, moist, and unstable air is transported from the ocean to land by LLJs on these days, and the lifting along the coast by convergence induced by differential surface friction between the land and ocean is believed to be the primary cause for the high frequency along the coast. In contrast, the high frequency over mountainous area is believed to be due to orographic lifting of generally southerly flows during the warm season.

  5. Influence of moist combustion gas on performance of a sub-critical turbine

    International Nuclear Information System (INIS)

    Yang Wenbin; Su Ming

    2005-01-01

    In the HAT cycle, as the absolute humidity of the moist combustion gas increases, the performance of the turbine will also change. In this paper, one model to calculate the thermodynamic properties of the moist combustion gas is introduced, and another model to calculate the performance of the turbine is formulated based on the equations of one dimensional flow. Using these models with the geometric parameters of the turbine fixed, at the design working condition, the performance of the turbine is calculated and analyzed for different absolute humidities. Finally, some conclusions about the turbine performance are presented

  6. Theoretical and numerical studies of transonic flow of moist air around a thin airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Chang [School of Mechanical Engineering, Andong National University, Kyongbuk (Korea); Rusak, Zvi [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2002-07-01

    Numerical studies of a two-dimensional and steady transonic flow of moist air around a thin airfoil with condensation are presented. The computations are guided by a recent transonic small-disturbance (TSD) theory of Rusak and Lee (2000) on this topic. The asymptotic model provides a simplified framework to investigate the changes in the flow field caused by the heat addition from a nonequilibrium process of condensation of water vapor in the air by homogeneous nucleation. An iterative method which is based on a type-sensitive difference scheme is applied to solve the governing equations. The results demonstrate the similarity rules for transonic flow of moist air and the effects of energy supply by condensation on the flow behavior. They provide a method to formulate various cases with different flow properties that have a sufficiently close behavior and that can be used in future computations, experiments, and design of flow systems operating with moist air. Also, the computations show that the TSD solutions of moist air flows represent the essence of the flow character computed from the inviscid fluid flow equations. (orig.)

  7. The reaction of uranium with moist hydrogen

    International Nuclear Information System (INIS)

    Pearce, R.J.; Kay, P.

    1987-10-01

    The reaction of uranium in moist hydrogen at a total pressure of 101 kPa over the temperature range 105 0 -200 0 C and water vapour pressures in the range 5-100 kPa has been examined in a limited thermogravimetric study. It has been shown that initially there is a period during which only linear kinetics are observed with a rate similar to that exhibited in similarly moist argon, i.e. hydrogen has no apparent effect on the reaction. At water vapour pressures of and above 49 kPa, corresponding to hydrogen:water vapour pressure ratios in the range 1:1 to 1:100, over the exposure times studied (not > 20h) only such linear kinetics are observed. Below this water vapour pressure and after an initial period of linear kinetics a continuously increasing reaction rate was observed in some instances resulting from rapid attach on localised areas. The localised reaction rates were approximately 2-3 orders of magnitude faster than the original linear reaction kinetics and the interaction rates in either moist argon or moist air. Comparison with a single experiment carried out at 150 0 C indicated that breakaway rates were approaching that in dry hydrogen. During breakaway attack there was a significant increase in the relative amounts of uranium hydride formed. The duration of the linear kinetics phase was extended by pre-oxidation of the uranium surface, decreasing temperature at a constant water vapour pressure, or increasing water vapour pressure (or water vapour: hydrogen pressure ratio) at a constant temperature. (author)

  8. Theoretical basis for convective invigoration due to increased aerosol concentration

    Directory of Open Access Journals (Sweden)

    Z. J. Lebo

    2011-06-01

    Full Text Available The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF model as a detailed high-resolution cloud resolving model (CRM with both detailed bulk and bin microphysics schemes. Both models include a physically-based activation scheme that incorporates a size-resolved aerosol population. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small and the resulting decrease in domain-averaged cumulative precipitation is shown not to be statistically significant, but may act to suppress precipitation. It is also shown that even in the presence of a decrease in the domain-averaged cumulative precipitation, an increase in the precipitation variance, or in other words, andincrease in rainfall intensity, may be expected in more polluted environments, especially in moist environments.

    A significant difference exists between the predictions based on the bin and bulk microphysics schemes of precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme shows little change in the latent heating rates due to an increase in the CCN number concentration, while the bin microphysics scheme demonstrates significant increases in the latent heating aloft with increasing CCN number concentration. This suggests that even a detailed two-bulk microphysics scheme, coupled to a detailed activation scheme, may not be

  9. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  10. Scaling a Convection-Resolving RCM to Near-Global Scales

    Science.gov (United States)

    Leutwyler, D.; Fuhrer, O.; Chadha, T.; Kwasniewski, G.; Hoefler, T.; Lapillonne, X.; Lüthi, D.; Osuna, C.; Schar, C.; Schulthess, T. C.; Vogt, H.

    2017-12-01

    In the recent years, first decade-long kilometer-scale resolution RCM simulations have been performed on continental-scale computational domains. However, the size of the planet Earth is still an order of magnitude larger and thus the computational implications of performing global climate simulations at this resolution are challenging. We explore the gap between the currently established RCM simulations and global simulations by scaling the GPU accelerated version of the COSMO model to a near-global computational domain. To this end, the evolution of an idealized moist baroclinic wave has been simulated over the course of 10 days with a grid spacing of up to 930 m. The computational mesh employs 36'000 x 16'001 x 60 grid points and covers 98.4% of the planet's surface. The code shows perfect weak scaling up to 4'888 Nodes of the Piz Daint supercomputer and yields 0.043 simulated years per day (SYPD) which is approximately one seventh of the 0.2-0.3 SYPD required to conduct AMIP-type simulations. However, at half the resolution (1.9 km) we've observed 0.23 SYPD. Besides formation of frontal precipitating systems containing embedded explicitly-resolved convective motions, the simulations reveal a secondary instability that leads to cut-off warm-core cyclonic vortices in the cyclone's core, once the grid spacing is refined to the kilometer scale. The explicit representation of embedded moist convection and the representation of the previously unresolved instabilities exhibit a physically different behavior in comparison to coarser-resolution simulations. The study demonstrates that global climate simulations using kilometer-scale resolution are imminent and serves as a baseline benchmark for global climate model applications and future exascale supercomputing systems.

  11. what is a tornado?

    Science.gov (United States)

    shallow (perhaps 10-100 m deep) with no apparent connection to any process happening at cloud base or associated with deep moist convection. Thus, I must quibble with the standard definition for its exclusion of from the surface at least as far as cloud base (with that cloud base associated with deep moist

  12. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  13. Ionotropic Receptor-dependent moist and dry cells control hygrosensation in Drosophila.

    Science.gov (United States)

    Knecht, Zachary A; Silbering, Ana F; Cruz, Joyner; Yang, Ludi; Croset, Vincent; Benton, Richard; Garrity, Paul A

    2017-06-16

    Insects use hygrosensation (humidity sensing) to avoid desiccation and, in vectors such as mosquitoes, to locate vertebrate hosts. Sensory neurons activated by either dry or moist air ('dry cells' and 'moist cells') have been described in many insects, but their behavioral roles and the molecular basis of their hygrosensitivity remain unclear. We recently reported that Drosophila hygrosensation relies on three Ionotropic Receptors (IRs) required for dry cell function: IR25a, IR93a and IR40a (Knecht et al., 2016). Here, we discover Drosophila moist cells and show that they require IR25a and IR93a together with IR68a, a conserved, but orphan IR. Both IR68a- and IR40a-dependent pathways drive hygrosensory behavior: each is important for dry-seeking by hydrated flies and together they underlie moist-seeking by dehydrated flies. These studies reveal that humidity sensing in Drosophila , and likely other insects, involves the combined activity of two molecularly related but neuronally distinct hygrosensing systems.

  14. Moist skin care can diminish acute radiation-induced skin toxicity

    International Nuclear Information System (INIS)

    Momm, F.; Weissenberger, C.; Bertelt, S.; Henke, M.

    2003-01-01

    Background: Radiation treatment may induce acute skin reactions. There are several methods of managing them. Validity of these methods, however, is not sufficiently studied. We therefore investigated, whether moist skin care with 3% urea lotion will reduce acute radiation skin toxicity. Patients and Methods: 88 patients with carcinomas of the head and neck undergoing radiotherapy with curative intent (mean total dose 60 Gy, range: 50-74 Gy) were evaluated weekly for acute skin reactions according to the RTOG-CTC score. In 63 patients, moist skin care with 3% urea lotion was performed. The control group consisted of 25 patients receiving conventional dry skin care. The incidence of grade I, II, and III reactions and the radiation dose at occurrence of a particular reaction were determined and statistically analyzed using the log-rank test. The dose-time relations of individual skin reactions are described. Results: At some point of time during radiotherapy, all patients suffered from acute skin reactions grade I, > 90% from grade II reactions. 50% of patients receiving moist skin care experienced grade I reactions at 26 Gy as compared to 22 Gy in control patients (p = 0.03). Grade II reactions occurred at 51 Gy versus 34 Gy (p = 0.006). Further, 22% of the patients treated with moist skin care suffered from acute skin toxicity grade III as compared to 56% of the controls (p = 0.0007). Conclusion: Moist skin care with 3% urea lotion delays the occurrence and reduces the grade of acute skin reactions in percutaneously irradiated patients with head and neck tumors. (orig.)

  15. Spatio-Temporal Variability of Western Central African Convection from Infrared Observations

    Directory of Open Access Journals (Sweden)

    Derbetini A. Vondou

    2012-08-01

    Full Text Available The present study has used Meteosat infrared brightness temperature images to investigate the regional and interannual variability of Central African cloudiness. Spatial and temporal variability were investigated using half–hourly data from the Meteosat-7 during June–July–August (JJA of 1998–2002. The full domain of study (1.5E–17E, 1N–15N was divided into six regions and statistics in each region were derived. Analysis of the dependence of cloud fraction to the brightness temperature threshold is explored both over land and ocean. Three diurnal cycle regimes (continental, oceanic, and coastal are depicted according to the amplitude and peak time. Over regions of relatively flat terrain, results indicate enhancement of deep convection in the afternoon followed by a gradual decrease in the night. The diurnal cycle of convection is characterised by afternoon and early evening (around 15:00–18:00 LST maxima located mainly downwind of the major mountain chains, and a more rapid nighttime decay. In terms of the harmonic amplitude, the diurnal signal shows significant regional contrast with the strongest manifestation over the Adamaoua Plateau and the weakest near the South Cameroon Plateau. This remarkable spatial dependence is clear evidence of orographic and heterogeneous land-surface impacts on convective development. Oceanic region exhibits weak activity of convective cloudiness with a maximum at noon. It is suggested that daytime heating of the land surface and moist environment may play a role in determining the spatial distribution of cloud fraction. This study further demonstrates the importance of the Cameroon coastline concavity and coastal mountains in regulating regional frequencies of convection and their initialization. The strength of the diurnal cycle of convective activity depends on mountain height, mean flow, coastal geometry.

  16. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    Science.gov (United States)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  17. The influence of terrain forcing on the initiation of deep convection over Mediterranean islands

    Science.gov (United States)

    Barthlott, Christian; Kirshbaum, Daniel

    2013-04-01

    The influence of mountainous islands on the initiation of deep convection is investigated using the Consortium for Small-scale Modeling (COSMO) model. The study day is 26 August 2009 on which moist convection occurred over both the Corsica and Sardinia island in the Mediterranean Sea. Sensitivity runs with systematically modified topography are explored to evaluate the relative importance of the land-sea contrast and the terrain height for convection initiation. Whereas no island precipitation is simulated when the islands are completely removed, all simulations that represent these land surfaces develop convective precipitation. Although convection initiates progressively earlier in the day over taller islands, the precipitation rates and accumulations do not show a fixed relationship with terrain height. This is due to the competing effects of different physical processes. First, whereas the forcing for low-level ascent increases over taller islands, the boundary-layer moisture supply decreases, which diminishes the conditional instability and precipitable water. Second, whereas taller islands enhance the inland propagation speeds of sea-breeze fronts, they also mechanically block these fronts and prevent them from reaching the island interior. As a result, the island precipitation is rather insensitive to island terrain height except for one particular case in which the island precipitation increases considerably due to an optimal superposition of the sea breeze and upslope flow. These results demonstrate the complexity of interactions between sea breezes and orography and reinforce that an adequate representation of detailed topographic features is necessary to account for thermally induced wind systems that initiate deep convection.

  18. Environments of Long-Lived Mesoscale Convective Systems Over the Central United States in Convection Permitting Climate Simulations: Long-Lived Mesoscale Convective Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Houze, Robert A. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Leung, L. Ruby [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Feng, Zhe [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-12-27

    Continental-scale convection-permitting simulations of the warm seasons of 2011 and 2012 reproduce realistic structure and frequency distribution of lifetime and event mean precipitation of mesoscale convective systems (MCSs) over the central United States. Analysis is performed to determine the environmental conditions conducive to generating the longest-lived MCSs and their subsequent interactions. The simulations show that MCSs systematically form over the Great Plains ahead of a trough in the westerlies in combination with an enhanced low-level jet from the Gulf of Mexico. These environmental properties at the time of storm initiation are most prominent for the MCSs that persist for the longest times. Systems reaching 9 h or more in lifetime exhibit feedback to the environment conditions through diabatic heating in the MCS stratiform regions. As a result, the parent synoptic-scale wave is strengthened as a divergent perturbation develops over the MCS at high levels, while a cyclonic circulation perturbation develops in the midlevels of the trough, where the vertical gradient of heating in the MCS region is maximized. The quasi-balanced mesoscale vortex helps to maintain the MCS over a long period of time by feeding dry, cool air into the environment at the rear of the MCS region, so that the MCS can draw in air that increases the evaporative cooling that helps maintain the MCS. At lower levels the south-southeasterly jet of warm moist air from the Gulf is enhanced in the presence of the synoptic-scale wave. That moisture supply is essential to the continued redevelopment of the MCS.

  19. Moist Heat Disinfection and Revisiting the A0 Concept.

    Science.gov (United States)

    McCormick, Patrick J; Schoene, Michael J; Dehmler, Matthew A; McDonnell, Gerald

    2016-04-02

    Moist heat is employed in the medical device, pharmaceutical, and food processing industries to render products and goods safe for use and human consumption. Applications include its use to pasteurize a broad range of foods and beverages, the control of microbial contamination of blood products, and treatment of bone tissue transplants and vaccines. In the pharmaceutical industry, water heated to 65°C to 80°C is used to sanitize high-purity water systems. In healthcare, it has been employed for decades to disinfect patient care items ranging from bedpans to anesthesia equipment. There is a good understanding of the conditions necessary to achieve disinfection of microorganisms at temperatures ranging from 65°C to 100°C. Based on this information, the efficacy of moist heat processes at a range of exposure times and temperatures can be quantified based on mathematical models such as the A0 calculation. While the A0 concept is recognized within the European healthcare community, it has yet to be widely adopted within the United States. This article provides information regarding the A0 concept, a brief overview of the classification of thermal disinfection for use with healthcare applications within the United States, and recent data on reinvestigating the thermal disinfection of a selected panel of microorganisms and a mixed culture biofilm.

  20. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    Science.gov (United States)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure

  1. Tropical teleconnections via the ocean and atmosphere induced by Southern Ocean deep convective events

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.

    2016-12-01

    The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most

  2. Roller compaction of moist pharmaceutical powders.

    Science.gov (United States)

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. A Moist Crevice for Word Aversion: In Semantics Not Sounds.

    Directory of Open Access Journals (Sweden)

    Paul H Thibodeau

    Full Text Available Why do people self-report an aversion to words like "moist"? The present studies represent an initial scientific exploration into the phenomenon of word aversion by investigating its prevalence and cause. Results of five experiments indicate that about 10-20% of the population is averse to the word "moist." This population often speculates that phonological properties of the word are the cause of their displeasure. However, data from the current studies point to semantic features of the word-namely, associations with disgusting bodily functions-as a more prominent source of peoples' unpleasant experience. "Moist," for averse participants, was notable for its valence and personal use, rather than imagery or arousal-a finding that was confirmed by an experiment designed to induce an aversion to the word. Analyses of individual difference measures suggest that word aversion is more prevalent among younger, more educated, and more neurotic people, and is more commonly reported by females than males.

  4. 9 CFR 381.165 - “(Kind) barbecued prepared with moist heat.”

    Science.gov (United States)

    2010-01-01

    ... heat.â 381.165 Section 381.165 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Standards of Identity or Composition § 381.165 “(Kind) barbecued prepared with moist heat.” Such product consists of ready-to-cook poultry of the kind indicated that has been cooked by the action of moist heat in...

  5. Health constraints of Cart Horses in the Dry warm, Sub-moist tepid ...

    African Journals Online (AJOL)

    The objectives of this study were to identify the major health and welfare constraints of cart horses in the dry warm, sub-moist tepid and moist cool climatic zones of Ethiopia. The study was cross sectional and a total of 837 horses were examined. Five major health problems and welfare issues were identified. Lymphangitis ...

  6. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  7. Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions

    Science.gov (United States)

    Gao, Yang; Leung, L. Ruby; Zhao, Chun; Hagos, Samson

    2017-03-01

    Simulating summer precipitation is a significant challenge for climate models that rely on cumulus parameterizations to represent moist convection processes. Motivated by recent advances in computing that support very high-resolution modeling, this study aims to systematically evaluate the effects of model resolution and convective parameterizations across the gray zone resolutions. Simulations using the Weather Research and Forecasting model were conducted at grid spacings of 36 km, 12 km, and 4 km for two summers over the conterminous U.S. The convection-permitting simulations at 4 km grid spacing are most skillful in reproducing the observed precipitation spatial distributions and diurnal variability. Notable differences are found between simulations with the traditional Kain-Fritsch (KF) and the scale-aware Grell-Freitas (GF) convection schemes, with the latter more skillful in capturing the nocturnal timing in the Great Plains and North American monsoon regions. The GF scheme also simulates a smoother transition from convective to large-scale precipitation as resolution increases, resulting in reduced sensitivity to model resolution compared to the KF scheme. Nonhydrostatic dynamics has a positive impact on precipitation over complex terrain even at 12 km and 36 km grid spacings. With nudging of the winds toward observations, we show that the conspicuous warm biases in the Southern Great Plains are related to precipitation biases induced by large-scale circulation biases, which are insensitive to model resolution. Overall, notable improvements in simulating summer rainfall and its diurnal variability through convection-permitting modeling and scale-aware parameterizations suggest promising venues for improving climate simulations of water cycle processes.

  8. Oxidation of uranium monocarbide in dry or moist oxygen

    International Nuclear Information System (INIS)

    Herrmann, B.; Herrmann, F.J.

    1968-01-01

    The kinetics of oxidation of uranium monocarbide either in dry or moist air or in oxygen-argon mixtures, has been studied thermogravimetrically, between 500 and 800 C in a circulating atmosphere. In all cases the oxidation leads to the formation of U 3 O 8 . Between 500 and 700 C, the activation energy is about 21 +3 kcal/mole. It seems to decrease between 700 and 800 C, but the reaction follows always a linear rate law. In moist air, the oxidation proceeds more swiftly, due to an increase in the reactional interface. An evaluation of the over-temperature has been made at 800 C. (author) [fr

  9. A new fire ant (Hymenoptera: Formicidae) bait base carrier for moist conditions.

    Science.gov (United States)

    Kafle, Lekhnath; Wu, Wen-Jer; Shih, Cheng-Jen

    2010-10-01

    A new water-resistant fire ant bait (T-bait; cypermethrin 0.128%) consisting of dried distillers grains with solubles (DDGS) as a carrier was developed and evaluated against a standard commercial bait (Advion; indoxacarb 0.045%) under both laboratory and field conditions. When applying the normal T-bait or Advion in the laboratory, 100% of Solenopsis invicta Buren worker ants were killed within 4 days. However, when the T-bait and Advion were wetted, 70.6 and 39.7% of the ants were killed respectively. Under field conditions, dry T-bait and dry Advion had almost the same efficacy against ant colonies. However, when T-bait and Advion came in contact with water, the former's ability to kill S. invicta colonies in the field was only marginally reduced, while Advion lost virtually all of its activity. In addition, DDGS was also shown to be compatible with a number of other insecticides, such as d-allethrin, permethrin and pyrethrin. Based on its properties of remaining attractive to the fire ants when wetted, combined with its ant-killing abilities both in the laboratory and in the field, T-bait is an efficient fire ant bait, especially under moist conditions.

  10. Clausius-Clapeyron Scaling of Convective Available Potential Energy (CAPE) in Cloud-Resolving Simulations

    Science.gov (United States)

    Seeley, J.; Romps, D. M.

    2015-12-01

    Recent work by Singh and O'Gorman has produced a theory for convective available potential energy (CAPE) in radiative-convective equilibrium. In this model, the atmosphere deviates from a moist adiabat—and, therefore, has positive CAPE—because entrainment causes evaporative cooling in cloud updrafts, thereby steepening their lapse rate. This has led to the proposal that CAPE increases with global warming because the strength of evaporative cooling scales according to the Clausius-Clapeyron (CC) relation. However, CAPE could also change due to changes in cloud buoyancy and changes in the entrainment rate, both of which could vary with global warming. To test the relative importance of changes in CAPE due to CC scaling of evaporative cooling, changes in cloud buoyancy, and changes in the entrainment rate, we subject a cloud-resolving model to a suite of natural (and unnatural) forcings. We find that CAPE changes are primarily driven by changes in the strength of evaporative cooling; the effect of changes in the entrainment rate and cloud buoyancy are comparatively small. This builds support for CC scaling of CAPE.

  11. 3-Dimensional simulations of storm dynamics on Saturn

    Science.gov (United States)

    Hueso, R.; Sanchez-Lavega, A.

    2000-10-01

    The formation and evolution of convective clouds in the atmosphere of Saturn is investigated using an anelastic three-dimensional time-dependent model with parameterized microphysics. The model is designed to study the development of moist convection on any of the four giant planets and has been previously used to investigate the formation of water convective storms in the jovian atmosphere. The role of water and ammonia in moist convection is investigated with varying deep concentrations. Results imply that most of the convective activity observed at Saturn may occur at the ammonia cloud deck while the formation of water moist convection may happen only when very strong constraints on the lower troposphere are met. Ammonia storms can ascend to the 300 mb level with vertical velocities around 30 ms-1. The seasonal effect on the thermal profile at the upper troposphere may have important effects on the development of ammonia storms. In the cases where water storms can develop they span many scale heights with peak vertical velocities around 160 ms-1 and cloud particles can be transported up to the 150 mb level. These predicted characteristics are similar to the Great White Spots observed in Saturn which, therefore, could be originated at the water cloud base level. This work has been supported by Gobierno Vasco PI 1997-34. R. Hueso acknowledges a PhD fellowship from Gobierno Vasco.

  12. Sucralfate cream in the management of moist desquamation during radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Delaney, G. [Liverpool Hospital, Liverpool, NSW, (Australia). Department of Radiation Oncology, Cancer Therapy Centre; Fisher, R.; Hook, C. [Prince of Wales Hospital, Randwick, NSW, (Australia). Department of Radiation Oncology; Barton, M. [Westmead Hospital, Westmead, NSW (Australia). Department of Radiation Oncology

    1997-08-01

    Randomized trials have shown that sucralfate is effective in the management of acute radiation reactions such as oesophagitis, mucositis and proctitis. However, at the time of commencement of the present trial, it had never been used in the management of moist desquamation of the skin. The purpose of the present study was to assess the value of sucralfate cream in the management of moist desquamation during radiotherapy. Patients who developed moist desquamation during radiation were eligible. Patients were stratified by site of radiotherapy into three groups: (i) the head and neck; (ii) the breast; and (iii) other sites. Patients were randomized to receive 10% sucralfate in sorbolene cream or sorbolene alone. Patients` pain and skin healing were assessed by using linear analogue self-assessment (LASA) scales and by serial measurement of the desquamated area. Due to poor patient accrual, the trial was terminated after 2 years and 39 patients. No statistically significant difference was found between the two arms in either time from randomization to healing or improvement in pain score. Twenty patients in the sucralfate arm took a geometric mean of 14.8 days to heal whereas 19 patients receiving sorbolene alone took a geometric mean of 14.2 days. The ratio of mean times to healing, 1.043, is not statistically different from 1 (P= 0.86; 95% Cl = 0.65,1.67). A total of 75% of the patients reported pain relief on application of either cream. Mean LASA scores for pain for each day after randomization were compared by treatment arm and there was no statistically significant difference (P = 0.32). The present trial was unable to show a difference in terms of time to healing or pain relief in the treatment of moist desquamation. The small number of patients in the trial gave a wide confidence interval for treatment difference, implying that an important effect of sucralfate has not been excluded. Given the poor accrual in the present, single-institution study, future

  13. Sucralfate cream in the management of moist desquamation during radiotherapy

    International Nuclear Information System (INIS)

    Delaney, G.; Fisher, R.; Hook, C.; Barton, M.

    1997-01-01

    Randomized trials have shown that sucralfate is effective in the management of acute radiation reactions such as oesophagitis, mucositis and proctitis. However, at the time of commencement of the present trial, it had never been used in the management of moist desquamation of the skin. The purpose of the present study was to assess the value of sucralfate cream in the management of moist desquamation during radiotherapy. Patients who developed moist desquamation during radiation were eligible. Patients were stratified by site of radiotherapy into three groups: (i) the head and neck; (ii) the breast; and (iii) other sites. Patients were randomized to receive 10% sucralfate in sorbolene cream or sorbolene alone. Patients' pain and skin healing were assessed by using linear analogue self-assessment (LASA) scales and by serial measurement of the desquamated area. Due to poor patient accrual, the trial was terminated after 2 years and 39 patients. No statistically significant difference was found between the two arms in either time from randomization to healing or improvement in pain score. Twenty patients in the sucralfate arm took a geometric mean of 14.8 days to heal whereas 19 patients receiving sorbolene alone took a geometric mean of 14.2 days. The ratio of mean times to healing, 1.043, is not statistically different from 1 (P= 0.86; 95% Cl = 0.65,1.67). A total of 75% of the patients reported pain relief on application of either cream. Mean LASA scores for pain for each day after randomization were compared by treatment arm and there was no statistically significant difference (P = 0.32). The present trial was unable to show a difference in terms of time to healing or pain relief in the treatment of moist desquamation. The small number of patients in the trial gave a wide confidence interval for treatment difference, implying that an important effect of sucralfate has not been excluded. Given the poor accrual in the present, single-institution study, future

  14. The roles of convection, extratropical mixing, and in-situ freeze-drying in the Tropical Tropopause Layer

    Directory of Open Access Journals (Sweden)

    W. G. Read

    2008-10-01

    Full Text Available Mechanisms for transporting and dehydrating air across the tropical tropopause layer (TTL are investigated with a conceptual two dimensional (2-D model. The 2-D TTL model combines the Holton and Gettelman cold trap dehydration mechanism (Holton and Gettelman, 2001 with the two column convection model of Folkins and Martin (2005. We investigate 3 possible transport scenarios through the TTL: 1 slow uniform ascent across the level of zero radiative heating without direct convective mixing, 2 convective mixing of H2O vapor at 100% relative humidity with respect to ice (RHi with no ice retention, and 3 convective mixing of extremely subsaturated air (100% RHi following the moist adiabatic temperature above the level of neutral buoyancy with sufficient ice retention such that total H2O is 100%RHi. The three mechanisms produce similar seasonal cycles for H2O that are in good quantitative agreement with the Aura Microwave Limb Sounder (MLS measurements. We use Aura MLS measurement of CO and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer measurement of HDO to distinguish among the transport mechanisms. Model comparisons with the observations support the view that H2O is predominantly controlled by regions having the lowest cold point tropopause temperature but the trace species CO and HDO support the convective mixing of dry air and lofted ice. The model provides some insight into the processes affecting the long term trends observed in stratospheric H2O.

  15. Global and exponential attractors of the three dimensional viscous primitive equations of large-scale moist atmosphere

    OpenAIRE

    You, Bo; Li, Fang

    2016-01-01

    This paper is concerned with the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. We prove the existence of a global attractor for the three dimensional viscous primitive equations of large-scale moist atmosphere by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by the three dimensional viscous primitive equations of large-scale moist atmosphere...

  16. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions.

    Science.gov (United States)

    Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel

    2010-06-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.

  17. A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation

    Directory of Open Access Journals (Sweden)

    Sabrina Wahl

    2017-10-01

    Full Text Available Atmospheric reanalyses are a state-of-the-art tool to generate consistent and realistic state estimates of the atmospheric system. They provide a synthesis of various heterogeneous observational systems and model simulations using a physical model together with a data assimilation scheme. Current reanalyses are mainly global, while regional reanalyses are emerging for North America, the polar region, and most recently for Europe. However, deep convection is still parameterized even in the regional reanalyses. A novel convective-scale regional reanalysis system for Central Europe (COSMO-REA2 has been developed by the Hans-Ertel Center for Weather Research – Climate Monitoring Branch. The system is based on the COSMO model and uses observational nudging for regional data assimilation. In addition to conventional observations, radar-derived rain rates are assimilated using latent heat nudging. With a horizontal grid-spacing of 2 km, the model runs without parameterization of deep moist convection. COSMO-REA2 produces horizontal wind fields that represent a realistic energy spectrum for horizontal scales above 14 km. COSMO-REA2 is currently available for seven years from 2007 to 2013.This study illustrates the improved representation of local precipitation over Germany by the convective-scale reanalysis COSMO-REA2 compared to coarser gridded European and global reanalyses. A systematic verification using rain gauge data reveals the added value of high-resolution regional atmospheric reanalyses on different time scales. On monthly to annual time scales, regional reanalyses yield better estimates of the spatial variability of precipitation patterns which can not be provided by coarser gridded global models. On hourly to daily time scales, the convective-scale reanalysis substantially improves the representation of local precipitation in two ways. On the one hand, COSMO-REA2 shows an enhanced representation of observed frequencies of local

  18. Randomized Comparison of Dry Dressings Versus Hydrogel in Management of Radiation-Induced Moist Desquamation

    International Nuclear Information System (INIS)

    Macmillan, Maureen S.; Wells, Mary; MacBride, Sheila; Raab, Gillian M.; Munro, Alastair; MacDougall, Hugh

    2007-01-01

    Purpose: We present the results of a randomized controlled clinical trial that evaluated the effect of a hydrogel or dry dressing on the time to healing of moist desquamation after radiotherapy to the head-and-neck, breast, or anorectal areas. Methods and Materials: A total of 357 patients were randomized before radiotherapy to receive simple dry dressings (Tricotex) or a hydrogel (Intrasite), with Tricotex as a secondary dressing. Patients were instructed to use their dressings from the onset of moist desquamation, if it occurred. Results: Of the 357 patients, 100 (28%) developed moist desquamation. The time to healing was significantly prolonged (hazard ratio, 0.64; 95% confidence interval, 0.42-0.99), in patients assigned to gel dressings. No evidence was found that gel dressings had a significant impact on subjectively reported skin symptoms. Conclusion: The results of this study have not supported the routine use of hydrogels in the care of patients with moist desquamation and suggests that the healing times are prolonged, without any improvement in patient comfort

  19. Stability of impulsively-driven natural convection with unsteady base state: implications of an adiabatic boundary

    International Nuclear Information System (INIS)

    Ihle, Christian F.; Nino, Yarko

    2011-01-01

    Stability conditions of a quiescent, horizontally infinite fluid layer with adiabatic bottom subject to sudden cooling from above are studied. Here, at difference from Rayleigh-Benard convection, the temperature base state is never steady. Instability limits are studied using linear analysis while stability is analyzed using the energy method. Critical stability curves in terms of Rayleigh numbers and convection onset times were obtained for several kinematic boundary conditions. Stability curves resulting from energy and linear approaches exhibit the same temporal growth rate for large values of time, suggesting a bound for the temporal asymptotic behavior of the energy method. - Highlights: → Non-penetrative convection appears after a time-evolving temperature base state. → Global stability and instability limits were analyzed. → Critical Rayleigh numbers were computed for different kinematic boundary conditions. → Adiabatic, bottom boundary was found to have a de-stabilizing effect. → System is less stable than in Benard convection.

  20. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2017-01-01

    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  1. Empirical links between the local runaway greenhouse, super-greenhouse, and deep convection in Earth's tropics

    Science.gov (United States)

    Dewey, M. C.; Goldblatt, C.

    2017-12-01

    Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced

  2. A separate-effect-based new appraisal of convective boiling and its suppression

    International Nuclear Information System (INIS)

    Aounallah, Yacine

    2008-01-01

    The development of convective boiling heat transfer correlations and analytical models has been based almost exclusively on the knowledge of global heat transfer coefficients, while the predictive capabilities of the correlation constituting components (typically additive convection and boiling) have remained usually elusive. This becomes important when, for example, developing a mechanistic subcooled void model based on wall heat flux partitioning, or when applying a correlation beyond its developmental range. In the latter case, the preponderance of the individual heat transfer mechanisms, through the phenomenon of boiling suppression, can become significantly different, thus leading to uncharted uncertainty extrapolations. An examination of existing experimental data, obtained under fixed hydrodynamic conditions, has allowed the isolation of the boiling heat transfer contribution over a broad range of thermodynamic qualities (0 to 0.8) and mass fluxes (1,100 to 3,900 kg/(m 2 ·s)) for water at 7.2 MPa. Boiling suppression has been quantified, thus providing valuable new insights on the basic functional relationships of boiling in convective flows. This work has allowed a new interpretation and representation of the standard flow 'boiling map' (Collier's) to be developed. The convection enhancement and boiling suppression components (F and S) of the well-known Chen's correlation - an important constitutive relationship implemented in several best-estimate (realistic) thermal-hydraulics codes - have been individually determined, showing the pitfall of splitting the correlation for mechanistic boiling heat transfer modelling, and the important role of compensating errors in uncertainty extrapolation. An initial attempt to formulate a new correlation, based for the first time on segregated heat transfer components, is also included. (author)

  3. Transport of Formaldehyde to the Upper Troposphere In Deep Convective Storms During the 2012 DC3 Study

    Science.gov (United States)

    Fried, A.; Weibring, P.; Richter, D.; Walega, J.; Olson, J. R.; Crawford, J. H.; Barth, M. C.; Apel, E. C.; Hornbrook, R. S.; Bela, M. M.; Toon, O. B.; Blake, D. R.; Blake, N. J.; Luo, Z. J.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) campaign in the summer of 2012 provided an opportunity to study the impacts of deep convection on reactive and soluble precursors of ozone and HOx radicals, including CH2O, in the upper troposphere and lower stratosphere (UTLS) over North America. Formaldehyde measurements were acquired in the inflow and outflow of numerous storms on the NASA DC-8 and NSF/NCAR GV-aircraft employing fast, sensitive, and accurate difference frequency generation infrared absorption spectrometers. Since our Fall 2013 AGU Meeting poster, we have developed an improved methodology based upon 3 independent approaches, to determine the amount of CH2O that is scavenged by deep convective storms. The first approach is based upon WRF-Chem model simulations, which provides greater confidence in the determination of CH2O scavenging efficiencies and allows the estimation of CH2O ice retention factors.The second approach is a modified mixing model employing 4 non-reactive passive tracers (n,i-butane, n,i-pentane) to estimate altitude-dependent lateral entrainment rates. This information is coupled with time-dependent measurements in the outflow of various storms, which when extrapolated to time zero in the storm core, results in estimates of CH2O scavenging efficiencies. This analysis includes estimates of photochemically produced CH2O in the storm core. A third approach is based upon CH2O/n-butane ratio comparisons in both the storm inflow and outflow. Results from various storms over Oklahoma, Colorado, and Alabama will be presented. However, the analysis will primarily focus on the May 29, 2012 supercell storm in Oklahoma. During this storm, the 4 passive tracers produced a very consistent lateral entrainment rate of 0.083 ± 0.008 km-1, a value that broadly agrees with entrainment rates determined previously from analyzing moist static energy profiles (Luo et al., Geophys. Res. Lett., 2010). For this storm, the 3-independent approaches give CH2O

  4. Moist-condition Training for Cerebrovascular Anastomosis: A Practical Step after Mastering Basic Manipulations.

    Science.gov (United States)

    Shimizu, Satoru; Sekiguchi, Tomoko; Mochizuki, Takahiro; Sato, Kimitoshi; Koizumi, Hiroyuki; Nakayama, Kenji; Yamamoto, Isao; Kumabe, Toshihiro

    2015-01-01

    As cerebrovascular anastomosis is performed in moist conditions that may impede precise manipulations, surgeons must undergo extensive preoperative training. We developed a simple moist-condition training method. It involves placing a free-floating inner platform hosting an artery from a chicken wing in an outer container filled with tap water to just below the specimen. Trainees performed anastomosis under magnification. Training sessions mimicked difficulties encountered during operations such as poor visibility of the lumen and problems handling the sutures. A retrospective comparison of 100 wet- and 100 dry-condition training sessions for end-to-side anastomoses with 8 stitches showed that under moist condition the time required for the entire procedure was significantly longer (17.8 ± 2.1 vs. 15.3 ± 2.1 min, p bridge between training for basic manipulations under dry conditions and actual surgery.

  5. An acoustic-convective splitting-based approach for the Kapila two-phase flow model

    Energy Technology Data Exchange (ETDEWEB)

    Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2017-02-15

    In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.

  6. Prophylactic use of Mepitel Film prevents radiation-induced moist desquamation in an intra-patient randomised controlled clinical trial of 78 breast cancer patients

    International Nuclear Information System (INIS)

    Herst, Patries M.; Bennett, Noelle C.; Sutherland, Annie E.; Peszynski, Ruth I.; Paterson, Dean B.; Jasperse, Marieke L.

    2014-01-01

    Purpose: Safetac-based soft silicone dressings used in a management setting decrease the severity of radiation-induced acute skin reactions but do not affect moist desquamation rates. Here we investigate the prophylactic use of another Safetac product, Mepitel Film, on moist desquamation rates. Material and methods: A total of 80 breast cancer patients receiving radiation therapy were recruited between October 2012 and April 2013; 78 participants contributed data for analysis. Lateral and medial halves of the skin areas to be irradiated were randomised to Mepitel Film or aqueous cream; skin dose was measured using thermoluminescent dosimeters; skin reaction severity was assessed using RISRAS and RTOG scales. Results: Overall skin reaction severity was reduced by 92% (p < 0.0001) in favour of Mepitel Film (RISRAS). All patients developed some form of reaction in cream-treated skin which progressed to moist desquamation in 26% of patients (RTOG grades I: 28%; IIA: 46%; IIB: 18%; III: 8%). Only 44% of patients had a skin reaction under the Film, which did not progress to moist desquamation in any of the patients (RTOG grades I: 36%; IIA: 8%). Conclusions: Mepitel Film completely prevented moist desquamation and reduced skin reaction severity by 92% when used prophylactically in our cohort

  7. A comparative study of the efficacy of topical negative pressure moist dressings and conventional moist dressings in chronic wounds

    Directory of Open Access Journals (Sweden)

    Tauro Leo

    2007-01-01

    Full Text Available Aim: To assess the efficacy of topical negative pressure moist wound dressing as compared to conventional moist wound dressings in improving the healing process in chronic wounds and to prove that negative pressure dressings can be used as a much better treatment option in the management of chronic wounds. Materials and Methods: This is a prospective comparative study of data from 112 patients with chronic wounds, of which 56 patients underwent topical negative pressure dressings (17 diabetic, 10 pressure sores, nine ischemic, two varicose, 10 post-infective raw areas and eight traumatic - six had bone exposed, two orthopaedic prosthesis exposed. The remaining 56 patients underwent conventional moist dressings (20 diabetic, two ischemic, 15 pressure sores, three varicose, eight post-infective raw areas and eight traumatic - five had bone exposed, three orthopaedic prosthesis exposed. The results were compared after 10 days. The variables compared were, rate of granulation tissue formation as a percentage of ulcer area covered, skin graft take up as the percentage of ulcer surface area and duration of hospital stay. The variables were compared using Unpaired Student′s t test. A " P" value < 0.05 was considered significant. Results: Out of 56 patients who underwent topical negative pressure dressings, six (10.71% were failures, due to failure in maintaining topical negative pressure due to defective sealing technique; these were included into the study group. After 10 days, the mean rate of granulation tissue formation was 71.43% of ulcer surface area. All these 56 cases underwent split-thickness skin grafting. The mean graft take-up was 79.29%. The mean hospital stay was 32.64 days. In the remaining 56 patients, the mean rate of granulation tissue formation was 52.85% of ulcer surface area. The mean graft take-up was only 60.45% of the total ulcer surface area. The mean hospital stay was 60.45 days. Conclusion: To conclude, topical negative

  8. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  9. Moist Soil Management of Wetland Impoundments for Plants and Invertebrates

    Data.gov (United States)

    Department of the Interior — In year’s past an impoundment was drained (a drawdown) when floating-leaved plants covered more than 50% of the water area. Drawdowns encourage beneficial moist soil...

  10. Free nicotine content and strategic marketing of moist snuff tobacco products in the United States: 2000-2006.

    Science.gov (United States)

    Alpert, H R; Koh, H; Connolly, G N

    2008-10-01

    From 2000 to 2006, moist snuff sales have increased and now account for 71% of the smokeless tobacco market. Previous research has shown that major manufacturers of smokeless tobacco products manipulated free nicotine, the form most readily absorbed, to promote tolerance and addiction. This study examines the possibility that company-specific and brand-specific strategies of the major moist snuff manufacturers involve controlling free nicotine content and ease of dosing with products that are designed and targeted to specific groups. This study looks at the current total US moist snuff market with product design data from the Massachusetts Department of Public Health; moist snuff use from the National Survey on Drug Use and Health; market data from ACNielsen; and magazine advertising expenditures from TNS Media Intelligence. (1) The levels of free nicotine of moist snuff products have increased over time for several major manufacturers; (2) the number and variety of sub-brands have increased over time; (3) changes in design, as reflected by variation in free nicotine associated with pH or tobacco leaf, or both, have enhanced the ease and uniformity of dosing; (4) marketing through price and advertising has increased; and (5) youth use has increased. A combination of factors including brand proliferation, control of free nicotine and product design has most likely resulted in the expanded consumption of moist snuff, particularly among young people.

  11. EFFECTIVENESS OF PNF STRETCHING VERSUS STATIC STRETCHING ON PAIN AND HAMSTRING FLEXIBILITY FOLLOWING MOIST HEAT IN INDIVIDUALS WITH KNEE OSTEOARTHRITIS

    Directory of Open Access Journals (Sweden)

    Meena .V

    2016-10-01

    Full Text Available Background: Osteoarthritis (OA is a degenerative joint disease and one of the major public health problem that causesfunctional impairment and reduced quality of life. To compare the effectiveness of PNF Hold relax stretching versus Static stretching on pain and flexibility of hamstring following moist heat in individuals with knee osteoarthritis. Hamstring tightness is the major problem in knee osteoarthritis individuals. Therefore the need of study is comparing the effectiveness of PNF Hold relax stretching versus static stretching on pain and flexibility of hamstrings following moist heat in knee osteoarthritis participants. Determining the effects of PNF Hold relax stretching versus Static stretching along with moist heat on pain and hamstring flexibility by VAS and Active knee extension range of motion in knee osteoarthritis individuals. Methods: 30 subjects with symptoms of knee osteoarthritis were randomly distributed into 2 groups 15 in each group. PNF Hold relax stretching along with moist heat is compared to Static stretching along with moist heat. Pain was measured by Visual Analogue Scale (VAS and hamstring flexibility by Active knee Extension Range of Motion (AKEROM by universal goniometer. Measurements are taken pre and post intervention. Results: The results indicated PNF Hold relax stretching along with moist heat showed a statistically significant improvement in pain (p<0.05 and improvement in hamstring flexibility (p<0.05 when compared to Static stretching along with moist heat. Conclusion: Subjects with PNF Hold relax stretching along with moist heat showed significant improvement in pain reduction and improving hamstring flexibility than Static stretching along with moist heat.

  12. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  13. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  14. A New Model Hierarchy to Understand the Impact of Radiation and Convection on the Extratropical Circulation Response to Climate Change

    Science.gov (United States)

    Tan, Z.; Shaw, T.

    2017-12-01

    State-of-the-art climate models exhibit a large spread in the magnitude of projected poleward jet shift and Hadley cell expansion in response to warming. Interestingly, some idealized gray radiation models with simplified convective schemes produce an equatorward jet shift in response to warming. In order to understand the impact of radiation and convection on the circulation response and resolve the discrepancies across the model hierarchy, we introduce a new model radiation-convection hierarchy. The hierarchy spans idealized (gray) through sophisticated (RRTMG) radiation, and idealized (Betts-Miller) through sophisticated (eddy-diffusivity mass-flux scheme) convection schemes in the same general circulation model. It is used to systematically explore the impact of radiation and convection on the extratropical circulation response to climate change independent of mean surface temperature and meridional temperature gradient responses. With a gray radiation scheme, the jet stream shift depends on the prescribed stratospheric optical depth, which controls the climatological jet regime. A large optical depth leads to a split jet and an equatorward shift. A small optical depth leads to a poleward shift. The different shifts are connected to the vertical extent of tropical long wave cooling that impacts the subtropical jet and Hadley circulation. In spite of these sensitivities, the storm track position, defined by the meridonal eddy heat flux and moist static energy flux maxima, shifts robustly poleward. In contrast to gray radiation, with a comprehensive radiation scheme, the jet and storm track shift robustly poleward irrespective of radiative assumptions (clear sky versus cloudy sky, ozone versus no ozone). This response is reproduced by adding more spectral bands and including the water vapor feedback in the gray scheme. Dynamical sensitivities to convective assumption are also explored. Overall the new hierarchy highlights the importance of radiative and

  15. Evaluation the consistency of location of moist desquamation and skin high dose area for breast cancer patients receiving adjuvant radiotherapy after breast conservative surgery

    International Nuclear Information System (INIS)

    Sun, Li-Min; Huang, Eng-Yen; Liang, Ji-An; Meng, Fan-Yun; Chang, Gia-Hsin; Tsao, Min-Jen

    2013-01-01

    To evaluate whether the location of moist desquamation matches high dose area for breast cancer patients receiving adjuvant radiotherapy (RT) after breast conservative surgery. One hundred and nine breast cancer patients were enrolled to this study. Their highest skin dose area (the hot spot) was estimated from the treatment planning. We divided the irradiated field into breast; sternal/parasternal; axillary; and inframammary fold areas. The location for moist desquamation was recorded to see if it matches the hot spot. We also analyzed other possible risk factors which may be related to the moist desquamation. Forty-eight patients with 65 locations developed moist desquamation during the RT course. Patients with larger breast sizes and easy to sweat are two independent risk factors for moist desquamation. The distribution of moist desquamation occurred most in the axillary area. All nine patients with the hot spots located at the axillary area developed moist desquamation at the axillary area, and six out of seven patients with the hot spots located at the inframammary fold developed moist desquamation there. The majority of patients with moist desquamation over the breast or sternal/parasternal areas had the hot spots located at these areas. For a patient with moist desquamation, if a hot spot is located at the axillary or inframammary fold areas, it is very likely to have moist desquamation occur there. On the other hand, if moist desquamation occurs over the breast or sternal/parasternal areas, we can highly expect these two areas are also the hot spot locations

  16. Predation drives nesting success in moist highland grasslands: the ...

    African Journals Online (AJOL)

    By focusing on process-oriented data rather than inventory-type data, this study provides a robust understanding of the effects of agricultural management on grassland bird reproductive output in the moist highland grasslands (MHGs) of South Africa. Four-hundred and four nests of 12 grassland-breeding bird species were ...

  17. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  18. Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2016-06-01

    Full Text Available The Asian monsoon region is the most prominent moisture center of water vapor in the lower stratosphere (LS during boreal summer. Previous studies have suggested that the transport of water vapor to the Asian monsoon LS is controlled by dehydration temperatures and convection mainly over the Bay of Bengal and Southeast Asia. However, there is a clear geographic variation of convection associated with the seasonal and intra-seasonal variations of the Asian monsoon circulation, and the relative influence of such a geographic variation of convection vs. the variation of local dehydration temperatures on water vapor transport is still not clear. Using satellite observations from the Aura Microwave Limb Sounder (MLS and a domain-filling forward trajectory model, we show that almost half of the seasonal water vapor increase in the Asian monsoon LS are attributable to geographic variations of convection and resultant variations of the dehydration center, of which the influence is comparable to the influence of the local dehydration temperature increase. In particular, dehydration temperatures are coldest over the southeast and warmest over the northwest Asian monsoon region. Although the convective center is located over Southeast Asia, an anomalous increase of convection over the northwest Asia monsoon region increases local diabatic heating in the tropopause layer and air masses entering the LS are dehydrated at relatively warmer temperatures. Due to warmer dehydration temperatures, anomalously moist air enters the LS and moves eastward along the northern flank of the monsoon anticyclonic flow, leading to wet anomalies in the LS over the Asian monsoon region. Likewise, when convection increases over the Southeast Asia monsoon region, dry anomalies appear in the LS. On a seasonal scale, this feature is associated with the monsoon circulation, convection and diabatic heating marching towards the northwest Asia monsoon region from June to August. The

  19. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    Science.gov (United States)

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  20. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  1. The Case to Include Brand of Moist Snuff in Health Surveys.

    Science.gov (United States)

    Timberlake, David S

    2016-08-01

    Brand of smokeless tobacco was added to the most recent Tobacco Use Supplement to the Current Population Survey (TUS-CPS), but deleted from the Centers for Disease Control's National Adult Tobacco Survey. The objective of this study was to assess the utility of brand in distinguishing users of moist snuff. The sample consisted of participants from the 2010-2011 TUS-CPS who reported having used one of 14 brands of moist snuff in the past month (n = 2334). The brands were categorized into one of three types: snus, discount snuff, premium snuff. Multinomial logistic regression was employed for testing for associations between brand type and a series of demographic and tobacco use measures. Females, metropolitan residents, current smokers, and moderate users of snuff had significantly greater odds of using snus relative to premium snuff in the adjusted model (P discount versus premium snuff. Separate analyses among current smokers (n = 470) and former smokers (n = 70) revealed positive associations between smoking cessation attempts and smokers' switch to discount snuff. Differences among the three categories of snuff users are likely attributed to variations in marketing campaigns. The differences are sufficient to warrant inclusion of snuff brand in health surveys because brand type could serve as a proxy measure for snuff use and dependence. Inclusion of brand of moist snuff in health surveys will enable researchers to categorize snuff users by brand type. Findings from this study indicate that brand type, defined according to cost (ie, discount vs. premium brands) and type of preferred snuff (ie, snus vs. other moist snuff), can distinguish snuff users by various demographic and tobacco use measures. Consequently, categorization by brand type could be used as a proxy measure for studies whose surveys do not include detailed information on snuff use and behavior. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on

  2. Potential indirect effects of aerosol on tropical cyclone intensity: convective fluxes and cold-pool activity

    Science.gov (United States)

    Krall, G. M.; Cottom, W. R.

    2012-01-01

    Observational and model evidence suggest that a 2008 Western Pacific typhoon (NURI) ingested elevated concentrations of aerosol as it neared the Chinese coast. This study uses a regional model with two-moment bin-emulating microphysics to simulate the typhoon as it enters the field of elevated aerosol concentrations. A clean maritime field of cloud condensation nuclei (CCN) was prescribed as marine background CCN concentrations and then based on satellite and global aerosol model output, increased to pollution levels and further enhanced in sensitivity tests. The typhoon was simulated for 96 h beginning 17 August 2008. During the final 60 h CCN concentrations were enhanced as it neared the Philippines and coastal China. The model was initialized with both global reanalysis model data and irregularly spaced dropsonde data from the 2008 T-PARC observational campaign using an objective analysis routine. At 36 h, the internal nudging of the model was switched off and allowed to freely evolve on its own. As the typhoon encountered the elevated CCN in the sensitivity tests, a significant perturbation of windspeed, convective fluxes, and hydrometeor species behavior was simulated. Early during the ingestion of enhanced CCN, precipitation was reduced due to suppressed collision and coalescence, and storm winds increased in strength. Subsequently, owing to reduced fall speeds of the smaller drops, greater amounts of condensate were thrust into supercooled levels where the drops froze releasing greater amounts of latent heat of freezing. Convection thereby intensified which resulted in enhanced rainfall and more vigorous convectively-produced downdrafts. As the convection intensified in the outer rainbands the storm drifted over the developing cold-pools. The enhanced cold-pools blocked the inflow of warm, moist air into the core of the typhoon which led to a weakening of the typhoon with significantly reduced low level wind speeds. The very high amounts of pollution

  3. Convective overshoot at the solar tachocline

    Science.gov (United States)

    Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.

    2017-08-01

    At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.

  4. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    Directory of Open Access Journals (Sweden)

    Deo D Shirima

    Full Text Available We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI and above ground herbaceous biomass (AGBH along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m, stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps, soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand

  5. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    Science.gov (United States)

    Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental

  6. Results from a global survey of contact lens-wearer satisfaction with OPTI-FREE® PureMoist® Multi-Purpose Disinfecting Solution

    Directory of Open Access Journals (Sweden)

    Lemp J

    2013-11-01

    Full Text Available Jessie Lemp, Jami R Kern Global Medical Affairs, Alcon Laboratories, Inc, Fort Worth, Texas, USA Purpose: The objective of the study reported here was to obtain information on acceptance and satisfaction with OPTI-FREE® PureMoist® Multi-Purpose Disinfecting Solution (MPDS from contact lens wearers globally. Methods: Eligible contact lens wearers provided baseline demographic and lens-wear-regimen information, and advised their ocular dryness/discomfort level and current lens-wear experience. Volunteers received OPTI-FREE PureMoist MPDS and a survey consisting of ten statements about the trial solution. Volunteers were instructed to use the solution daily and to complete the survey after 2 weeks of use. Descriptive statistical analysis was conducted on data from the entire group, from the subset of respondents reporting ocular dryness and/or discomfort at trial initiation (symptomatic subgroup, and from each geographic region. Results: Volunteers from nine countries returned 10,610 surveys, in which 50% of respondents classified themselves as having ocular dryness/discomfort. Lens comfort and visual performance responses from the total population and the symptomatic subgroup were significantly more positive after 2 weeks of OPTI-FREE PureMoist use than at baseline, irrespective of the habitual lens-care solution. In the USA, Southeast Asia, and Europe, 14% to 20% more respondents reported that their contact lenses provided all-day comfort after 2 weeks of OPTI-FREE PureMoist use compared with baseline (P<0.0001. Australia reported 31% more patients with all-day comfort after OPTI-FREE PureMoist use (P<0.0001. Approximately four out of five respondents from both populations reported their intent to continue using OPTI-FREE PureMoist. Globally, 39% of all respondents and 58% of symptomatic respondents experienced reduced end-of-day dryness with their contact lenses after use of OPTI-FREE PureMoist (P<0.0001. Conclusion: Results from this large

  7. Numerical simulation of severe convective phenomena over Croatian and Hungarian territory

    Science.gov (United States)

    Mahović, Nataša Strelec; Horvath, Akos; Csirmaz, Kalman

    2007-02-01

    Squall lines and supercells cause severe weather and huge damages in the territory of Croatia and Hungary. These long living events can be recognised by radar very well, but the problem of early warning, especially successful numerical forecast of these phenomena, has not yet been solved in this region. Two case studies are presented here in which dynamical modelling approach gives promising results: a squall line preceding a cold front and a single supercell generated because of a prefrontal instability. The numerical simulation is performed using the PSU/NCAR meso-scale model MM5, with horizontal resolution of 3 km. Lateral boundary conditions are taken from the ECMWF model. The moist processes are resolved by Reisner mixed-phase explicit moisture scheme and for the radiation scheme a rapid radiative transfer model is applied. The analysis nudging technique is applied for the first two hours of the model run. The results of the simulation are very promising. The MM5 model reconstructed the appearance of the convective phenomena and showed the development of thunderstorm into the supercell phase. The model results give very detailed insight into wind changes showing the rotation of supercells, clearly distinguish warm core of the cell and give rather good precipitation estimate. The successful simulation of convective phenomena by a high-resolution MM5 model showed that even smaller scale conditions are contained in synoptic scale patterns, represented in this case by the ECMWF model.

  8. Cumulus parameterizations in chemical transport models

    Science.gov (United States)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  9. Singularités de la rhéologie de l'air humide saturé et diffusion moléculaire dans les milieux nuageuxSingularities in the rheology of saturated humid air, and molecular diffusion in cloods

    Science.gov (United States)

    Bois, Pierre-Antoine

    Under realistic assumptions, we propose a thermodynamical formalism providing, for the moist-saturated air (cloudy air), a generalized Fick's law. This Fick's law leads to a double diffusive rheology with Dufour effect. The form taken by the energy equation is slightly different from the classical form used in convection problems. We compare the equations with those of the convection in moist unsaturated air (the Dufour effect and all double diffusive effects disappear in this case). As application we demonstrate some consequences of this diffusion in cloudy convection. To cite this article: P.A. Bois, C. R. Mecanique 330 (2002) 627-632.

  10. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    Science.gov (United States)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  11. Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities

    KAUST Repository

    Allen, Rebecca

    2016-06-29

    We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.

  12. REVERSALS IN THE 6-CELLS CONVECTION DRIVEN

    Directory of Open Access Journals (Sweden)

    G.M. Vodinchar

    2015-12-01

    Full Text Available We describe the large-scale model geodynamo, which based on indirect data of inhomogeneities in the density of the Earth’s core. Convection structure is associated with spherical harmonic Y24 , which defines the basic poloidal component of velocity. Coriolis drift of this mode determines the toroidal component of velocity. Thus, 6 convective cells are formed. The model takes into account the feedback effect of the magnetic field on convection. It was ascertained that the model contains stable regimes of field generation. The velocity of convection and the dipole component of the magnetic field are close to the observed ones.

  13. Convective behaviour in vapour-gas-aerosol mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1986-01-01

    Unusual convective behaviour can occur in mixtures of gases and heavy vapour, including stabilization of mixtures hot at the base and 'upside-down' convection in mixtures hot at the top. Previous work produced a criterion for this behaviour which ignored the necessary presence of an aerosol. Modification arising from aerosol condensation is derived and is shown to involve the Lewis and condensation numbers of the mixture, as well as a quantity involving the temperature drop across a boundary layer. It becomes negligible at high temperatures, but can crucially affect the temperature for the onset of unusual behaviour. Aerosol formation produces an asymmetry between the convective forces in boundary layers in which the mixture is being heated and cooled, respectively, for example at the base and roof of a cavity. The convective behaviour discussed could occur in situations relevant to nuclear safety. (author)

  14. MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis

    Science.gov (United States)

    Ahn, Min-Seop; Kim, Daehyun; Sperber, Kenneth R.; Kang, In-Sik; Maloney, Eric; Waliser, Duane; Hendon, Harry

    2017-12-01

    The Madden-Julian Oscillation (MJO) simulation diagnostics developed by MJO Working Group and the process-oriented MJO simulation diagnostics developed by MJO Task Force are applied to 37 Coupled Model Intercomparison Project phase 5 (CMIP5) models in order to assess model skill in representing amplitude, period, and coherent eastward propagation of the MJO, and to establish a link between MJO simulation skill and parameterized physical processes. Process-oriented diagnostics include the Relative Humidity Composite based on Precipitation (RHCP), Normalized Gross Moist Stability (NGMS), and the Greenhouse Enhancement Factor (GEF). Numerous scalar metrics are developed to quantify the results. Most CMIP5 models underestimate MJO amplitude, especially when outgoing longwave radiation (OLR) is used in the evaluation, and exhibit too fast phase speed while lacking coherence between eastward propagation of precipitation/convection and the wind field. The RHCP-metric, indicative of the sensitivity of simulated convection to low-level environmental moisture, and the NGMS-metric, indicative of the efficiency of a convective atmosphere for exporting moist static energy out of the column, show robust correlations with a large number of MJO skill metrics. The GEF-metric, indicative of the strength of the column-integrated longwave radiative heating due to cloud-radiation interaction, is also correlated with the MJO skill metrics, but shows relatively lower correlations compared to the RHCP- and NGMS-metrics. Our results suggest that modifications to processes associated with moisture-convection coupling and the gross moist stability might be the most fruitful for improving simulations of the MJO. Though the GEF-metric exhibits lower correlations with the MJO skill metrics, the longwave radiation feedback is highly relevant for simulating the weak precipitation anomaly regime that may be important for the establishment of shallow convection and the transition to deep convection.

  15. Airborne measurements of turbulent trace gas fluxes and analysis of eddy structure in the convective boundary layer over complex terrain

    Science.gov (United States)

    Hasel, M.; Kottmeier, Ch.; Corsmeier, U.; Wieser, A.

    2005-03-01

    Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NO x transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O 3 at the surface. The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NO x loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.

  16. Combined moist airtight storage and feed fermentation of barley by the yeast Wickerhamomyces anomalus and a lactic acid bacteria consortium

    Directory of Open Access Journals (Sweden)

    Jenny eBorling Welin

    2015-04-01

    Full Text Available This study combined moist airtight storage of moist grain with pig feed fermentation. Starter cultures with the potential to facilitate both technologies were added to airtight stored moist crimped cereal grain, and the impact on storage microflora and the quality of feed fermentations generated from the grain was investigated. Four treatments were compared: three based on moist barley, either un inoculated (M, inoculated with Wickerhamomyces anomalus (W, or inoculated with W. anomalus and LAB starter culture, containing Pediococcus acidilactici DSM 16243, Pediococcus pentosaceus DSM 12834 and Lactobacillus plantarum DSM 12837 (WLAB; and one treatment based on dried barley (D. After 6 weeks of storage, four feed fermentations FM, FW, FWLAB, and FD, were initiated from M, W, WLAB and D, respectively, by mixing the grain with water to a dry matter content of 30%. Each treatment was fermented in batch initially for 7 days and then kept in a continuous mode by adding new feed daily with 50% back-slop. During the 6 week storage period, the average water activity decreased in M, W and WLAB from 0.96 to 0.85, and cereal pH decreased from approximately 6.0 at harvest to 4.5. Feed fermentation conferred a further pH decrease to 3.8 – 4.1. In M, W and WLAB, moulds and Enterobacteriaceae were mostly below detection limit, whereas both organism groups were detected in D. In fermented feed, Enterobacteriaceae were below detection limit in almost all conditions. Moulds were detected in FD, for most of the fermentation time in FM and at some sampling points in FW and FWLAB. Starter organisms, especially W. anomalus and L. plantarum comprised a considerable proportion of the yeast and LAB populations, respectively, in both stored grain and fermented feed. However, autochthonous Pichia kudriavzevii and Kazachstania exigua partially dominated the yeast populations in stored grain and fermented feed, respectively.

  17. A 10-year Ground-Based Radar Climatology of Convective Penetration of Stratospheric Intrusions and Associated Large-Scale Transport over the CONUS

    Science.gov (United States)

    Homeyer, C. R.

    2017-12-01

    Deep convection reaching the upper troposphere and lower stratosphere (UTLS) and its impact on atmospheric composition through rapid vertical transport of lower troposphere air and stratosphere-troposphere exchange has received increasing attention in the past 5-10 years. Most efforts focused on convection have been directed toward storms that reach and/or penetrate the coincident environmental lapse-rate tropopause. However, convection has also been shown to reach into large-scale stratospheric intrusions (depressions of stratospheric air lying well below the lapse-rate tropopause on the cyclonic side of upper troposphere jet streams). Such convective penetration of stratospheric intrusions is not captured by studies of lapse-rate tropopause-penetrating convection. In this presentation, it will be shown using hourly, high-quality mergers of ground-based radar observations from 2004 to 2013 in the contiguous United States (CONUS) and forward large-scale trajectory analysis that convective penetration of stratospheric intrusions: 1) is more frequent than lapse-rate tropopause-penetrating convection, 2) occurs over a broader area of the CONUS than lapse-rate tropopause-penetrating convection, and 3) can influence the composition of the lower stratosphere through large-scale advection of convectively influenced air to altitudes above the lapse-rate tropopause, which we find to occur for about 8.5% of the intrusion volumes reached by convection.

  18. Shallow to Deep Convection Transition over a Heterogeneous Land Surface Using the Land Model Coupled Large-Eddy Simulation

    Science.gov (United States)

    Lee, J.; Zhang, Y.; Klein, S. A.

    2017-12-01

    The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to

  19. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  20. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  1. Strategic Repositioning for Convection Business Case Study: AR Vendor

    OpenAIRE

    Anindita, Pratisara Satwika; Toha, Mohamad

    2013-01-01

    The study aims to determine suitable position and strategy in order to reach superiority in convection business based on the company strengths and weaknesses. A study conducted in late 2012 at AR Vendor, a home-based convection company which focus on the t-shirt screen printing service. In response to the issue of the below average profit margin, the company has to rethink their position and strategy in handling the convection business environment. While AR Vendor business may growth in accor...

  2. Investigating synoptic-scale monsoonal disturbances in an idealized moist model

    Science.gov (United States)

    Clark, S.; Ming, Y.

    2017-12-01

    Recent studies have highlighted the potential utility of a theory for a "moisture-dynamical" instability in explaining the time and spatial scales of intra-seasonal variability associated with the Indian summer monsoon. These studies suggest that a localized region in the subtropics with mean low-level westerly winds and mean temperature increasing poleward will allow the formation of westward propagating precipitation anomalies associated with moist Rossby-like waves. Here we test this theory in an idealized moist model with realistic radiative transfer by inducing a local poleward-increasing temperature gradient by placing a continent with simplified hydrology in the subtropics. We experiment with different treatments of land-surface hydrology, ranging from the extreme (treating land as having the same heat capacity as the slab ocean used in the model, and turning off evaporation completely over land) to the more realistic (bucket hydrology, with a decreased heat capacity over land), and different continental shapes, ranging from a zonally-symmetric continent, to Earth-like continental geometry. Precipitation rates produced by the simulations are analyzed using space-time spectral analysis, and connected to variability in the winds through regression analysis. The observed behavior is discussed with respect to predictions from the theory.

  3. Laser speckle imaging based on photothermally driven convection

    Science.gov (United States)

    Regan, Caitlin; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.

  4. Analysis of changes in tornadogenesis conditions over Northern Eurasia based on a simple index of atmospheric convective instability

    Science.gov (United States)

    Chernokulsky, A. V.; Kurgansky, M. V.; Mokhov, I. I.

    2017-12-01

    A simple index of convective instability (3D-index) is used for analysis of weather and climate processes that favor to the occurrence of severe convective events including tornadoes. The index is based on information on the surface air temperature and humidity. The prognostic ability of the index to reproduce severe convective events (thunderstorms, showers, tornadoes) is analyzed. It is shown that most tornadoes in North Eurasia are characterized by high values of the 3D-index; furthermore, the 3D-index is significantly correlated with the available convective potential energy. Reanalysis data (for recent decades) and global climate model simulations (for the 21st century) show an increase in the frequency of occurrence of favorable for tornado formation meteorological conditions in the regions of Northern Eurasia. The most significant increase is found on the Black Sea coast and in the south of the Far East.

  5. Research on Vehicle Temperature Regulation System Based on Air Convection Principle

    Science.gov (United States)

    Zhuge, Muzi; Li, Xiang; Liang, Caifeng

    2018-03-01

    The long time parking outdoors in the summer will lead to too high temperature in the car, and the harmful gas produced by the vehicle engine will stay in the confined space for a long time during the parking process, which will do great harm to the human body. If the air conditioning system is turned on before driving, the cooling rate is slow and the battery loss is large. To solve the above problems, we designed a temperature adjusting system based on the principle of air convection. We can choose the automatic mode or manual mode to achieve control of a convection window. In the automatic mode, the system will automatically detect the environmental temperature, through the sensor to complete the detection, and the signal is transmitted to the microcontroller to control the window open or close, in manual mode, the remote control of the window can be realized by Bluetooth. Therefore, the system has important practical significance to effectively regulate temperature, prolong battery life, and improve the safety and comfort of traffic vehicles.

  6. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    Science.gov (United States)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  7. Diagnosing the average spatio-temporal impact of convective systems – Part 1: A methodology for evaluating climate models

    Directory of Open Access Journals (Sweden)

    M. S. Johnston

    2013-12-01

    Full Text Available An earlier method to determine the mean response of upper-tropospheric water to localised deep convective systems (DC systems is improved and applied to the EC-Earth climate model. Following Zelinka and Hartmann (2009, several fields related to moist processes and radiation from various satellites are composited with respect to the local maxima in rain rate to determine their spatio-temporal evolution with deep convection in the central Pacific Ocean. Major improvements to the earlier study are the isolation of DC systems in time so as to prevent multiple sampling of the same event, and a revised definition of the mean background state that allows for better characterisation of the DC-system-induced anomalies. The observed DC systems in this study propagate westward at ~4 m s−1. Both the upper-tropospheric relative humidity and the outgoing longwave radiation are substantially perturbed over a broad horizontal extent and for periods >30 h. The cloud fraction anomaly is fairly constant with height but small maximum can be seen around 200 hPa. The cloud ice water content anomaly is mostly confined to pressures greater than 150 hPa and reaches its maximum around 450 hPa, a few hours after the peak convection. Consistent with the large increase in upper-tropospheric cloud ice water content, albedo increases dramatically and persists about 30 h after peak convection. Applying the compositing technique to EC-Earth allows an assessment of the model representation of DC systems. The model captures the large-scale responses, most notably for outgoing longwave radiation, but there are a number of important differences. DC systems appear to propagate eastward in the model, suggesting a strong link to Kelvin waves instead of equatorial Rossby waves. The diurnal cycle in the model is more pronounced and appears to trigger new convection further to the west each time. Finally, the modelled ice water content anomaly peaks at pressures greater than 500 h

  8. Comparision of vacuum-asisted closure and moist wound dressing in the treatment of diabetic foot ulcers.

    Science.gov (United States)

    Ravari, Hassan; Modaghegh, Mohammad-Hadi Saeed; Kazemzadeh, Gholam Hosein; Johari, Hamed Ghoddusi; Vatanchi, Attieh Mohammadzadeh; Sangaki, Abolghasem; Shahrodi, Mohammad Vahedian

    2013-01-01

    Vacuum-assisted closure (VAC) is a new method in wound care which speeds wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates. This study aims to evaluate its efficacy in the treatment of diabetic foot ulcers. Thirteen patients with diabetic foot ulcers were enrolled in the moist dressing group, and 10 patients in the VAC group. The site, size and depth of the wound were inspected and recorded before and every three days during the study period. Patient satisfaction and formation of granulation tissue were also assessed. Improvement of the wound in the form of reducing the diameter and depth and increasing proliferation of granulation tissue was significant in most of the patients of the VAC group after two weeks. Satisfaction of patients in the VAC group was evaluated as excellent as no amputation was done in this group. Wagner score was reduced in both the study groups, although this decrement was not significant in the moist dressing group. VAC appears to be as safe as and more efficacious than moist dressing for the treatment of diabetic foot ulcers.

  9. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  10. Experimental and numerical studies on the treatment of wet astronaut trash by forced-convection drying

    Science.gov (United States)

    Arquiza, J. M. R. Apollo; Morrow, Robert; Remiker, Ross; Hunter, Jean B.

    2017-09-01

    During long-term space missions, astronauts generate wet trash, including food containers with uneaten portions, moist hygiene wipes and wet paper towels. This waste produces two problems: the loss of water and the generation of odors and health hazards by microbial growth. These problems are solved by a closed-loop, forced-convection, heat-pump drying system which stops microbial activity by both pasteurization and desiccation, and recovers water in a gravity-independent porous media condensing heat exchanger. A transient, pseudo-homogeneous continuum model for the drying of wet ersatz trash was formulated for this system. The model is based on the conservation equations for energy and moisture applied to the air and solid phases and includes the unique trash characteristic of having both dry and wet solids. Experimentally determined heat and mass transfer coefficients, together with the moisture sorption equilibrium relationship for the wet material are used in the model. The resulting system of differential equations is solved by the finite-volume method as implemented by the commercial software COMSOL. Model simulations agreed well with experimental data under certain conditions. The validated model will be used in the optimization of the entire closed-loop system consisting of fan, air heater, dryer vessel, heat-pump condenser, and heat-recovery modules.

  11. A physically based algorithm for non-blackbody correction of the cloud top temperature for the convective clouds

    Science.gov (United States)

    Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.

    2012-12-01

    Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.

  12. Convective cells and transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  13. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  14. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  15. A novel topical protectant for the prevention of β-radiation induced moist desquamation

    International Nuclear Information System (INIS)

    Ma, L.; Wilcock, S.; Rezvani, M.; Hsia, C.

    2003-01-01

    Full text: Effective therapies for the prevention of radiation-induced skin burns that could be readily deployed under a nuclear accident or nuclear terrorism scenario are urgently needed. In this report we describe the efficacy of a novel radioprotectant (DMZ911) in a model of b-radiation induced moist desquamation (MD) in pig skin. DMZ911 is a nitroxide-based topical cream that effectively delivers the nitroxide into viable skin cells. Stable nitroxide compounds have been shown to be effective against both X-ray and ?-ray-induced damage in vivo and in vitro. A pig skin model of β-radiation-induced MD was employed in this study. Exposure to 30 Gy was used to induce skin lesions involving >80% moist desquamation in prescribed test sites on flank skin of female Large White pigs. DMZ911 or placebo was applied to various test sites 2 hours prior to radiation exposure. Lesions were scored based on the area of the test site containing 50% MD (severe) as determined by clinical assessment using blinded observers. Treatment with DMZ911 resulted in a 31% net reduction in MD when compared to placebo treated sites following an 8-week study period. This reduction was observed whether all sites or only those with severe MD were considered. Skin damage (as indicated by MD) from radiation exposure was significantly reduced by 31% (p = 0.05) following pretreatment with the novel topical radioprotectant DMZ911. This observation suggests that skin lesion development from radiation-induced oxidative damage cascades may be successfully inhibited by treatment with DMZ911. This topical therapeutic agent represents a novel treatment for nuclear radiation induced skin injury. DMZ911 may have unique applications in radiation oncology, cosmetic and therapeutic UV, laser, glycolic and dermabrasion procedures

  16. Simulated precipitation diurnal cycles over East Asia using different CAPE-based convective closure schemes in WRF model

    Science.gov (United States)

    Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun

    2018-03-01

    Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.

  17. Comparision of Vacuum-Asisted Closure and Moist Wound Dressing in the Treatment of Diabetic Foot Ulcers

    Science.gov (United States)

    Ravari, Hassan; Modaghegh, Mohammad-Hadi Saeed; Kazemzadeh, Gholam Hosein; Johari, Hamed Ghoddusi; Vatanchi, Attieh Mohammadzadeh; Sangaki, Abolghasem; Shahrodi, Mohammad Vahedian

    2013-01-01

    Background: Vacuum-assisted closure (VAC) is a new method in wound care which speeds wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates. This study aims to evaluate its efficacy in the treatment of diabetic foot ulcers. Materials and Methods: Thirteen patients with diabetic foot ulcers were enrolled in the moist dressing group, and 10 patients in the VAC group. The site, size and depth of the wound were inspected and recorded before and every three days during the study period. Patient satisfaction and formation of granulation tissue were also assessed. Results: Improvement of the wound in the form of reducing the diameter and depth and increasing proliferation of granulation tissue was significant in most of the patients of the VAC group after two weeks. Satisfaction of patients in the VAC group was evaluated as excellent as no amputation was done in this group. Wagner score was reduced in both the study groups, although this decrement was not significant in the moist dressing group. Conclusion: VAC appears to be as safe as and more efficacious than moist dressing for the treatment of diabetic foot ulcers. PMID:23723599

  18. Comparision of vacuum-asisted closure and moist wound dressing in the treatment of diabetic foot ulcers

    Directory of Open Access Journals (Sweden)

    Hassan Ravari

    2013-01-01

    Full Text Available Background: Vacuum-assisted closure (VAC is a new method in wound care which speeds wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates. This study aims to evaluate its efficacy in the treatment of diabetic foot ulcers. Materials and Methods: Thirteen patients with diabetic foot ulcers were enrolled in the moist dressing group, and 10 patients in the VAC group. The site, size and depth of the wound were inspected and recorded before and every three days during the study period. Patient satisfaction and formation of granulation tissue were also assessed. Results: Improvement of the wound in the form of reducing the diameter and depth and increasing proliferation of granulation tissue was significant in most of the patients of the VAC group after two weeks. Satisfaction of patients in the VAC group was evaluated as excellent as no amputation was done in this group. Wagner score was reduced in both the study groups, although this decrement was not significant in the moist dressing group. Conclusion: VAC appears to be as safe as and more efficacious than moist dressing for the treatment of diabetic foot ulcers.

  19. Enhanced object-based tracking algorithm for convective rain storms and cells

    Science.gov (United States)

    Muñoz, Carlos; Wang, Li-Pen; Willems, Patrick

    2018-03-01

    This paper proposes a new object-based storm tracking algorithm, based upon TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting). TITAN is a widely-used convective storm tracking algorithm but has limitations in handling small-scale yet high-intensity storm entities due to its single-threshold identification approach. It also has difficulties to effectively track fast-moving storms because of the employed matching approach that largely relies on the overlapping areas between successive storm entities. To address these deficiencies, a number of modifications are proposed and tested in this paper. These include a two-stage multi-threshold storm identification, a new formulation for characterizing storm's physical features, and an enhanced matching technique in synergy with an optical-flow storm field tracker, as well as, according to these modifications, a more complex merging and splitting scheme. High-resolution (5-min and 529-m) radar reflectivity data for 18 storm events over Belgium are used to calibrate and evaluate the algorithm. The performance of the proposed algorithm is compared with that of the original TITAN. The results suggest that the proposed algorithm can better isolate and match convective rainfall entities, as well as to provide more reliable and detailed motion estimates. Furthermore, the improvement is found to be more significant for higher rainfall intensities. The new algorithm has the potential to serve as a basis for further applications, such as storm nowcasting and long-term stochastic spatial and temporal rainfall generation.

  20. Performance Evaluation of PBL Schemes of ARW Model in Simulating Thermo-Dynamical Structure of Pre-Monsoon Convective Episodes over Kharagpur Using STORM Data Sets

    Science.gov (United States)

    Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.; Tyagi, Bhishma

    2016-05-01

    In the present study, advanced research WRF (ARW) model is employed to simulate convective thunderstorm episodes over Kharagpur (22°30'N, 87°20'E) region of Gangetic West Bengal, India. High-resolution simulations are conducted using 1 × 1 degree NCEP final analysis meteorological fields for initial and boundary conditions for events. The performance of two non-local [Yonsei University (YSU), Asymmetric Convective Model version 2 (ACM2)] and two local turbulence kinetic energy closures [Mellor-Yamada-Janjic (MYJ), Bougeault-Lacarrere (BouLac)] are evaluated in simulating planetary boundary layer (PBL) parameters and thermodynamic structure of the atmosphere. The model-simulated parameters are validated with available in situ meteorological observations obtained from micro-meteorological tower as well has high-resolution DigiCORA radiosonde ascents during STORM-2007 field experiment at the study location and Doppler Weather Radar (DWR) imageries. It has been found that the PBL structure simulated with the TKE closures MYJ and BouLac are in better agreement with observations than the non-local closures. The model simulations with these schemes also captured the reflectivity, surface pressure patterns such as wake-low, meso-high, pre-squall low and the convective updrafts and downdrafts reasonably well. Qualitative and quantitative comparisons reveal that the MYJ followed by BouLac schemes better simulated various features of the thunderstorm events over Kharagpur region. The better performance of MYJ followed by BouLac is evident in the lesser mean bias, mean absolute error, root mean square error and good correlation coefficient for various surface meteorological variables as well as thermo-dynamical structure of the atmosphere relative to other PBL schemes. The better performance of the TKE closures may be attributed to their higher mixing efficiency, larger convective energy and better simulation of humidity promoting moist convection relative to non

  1. HUBUNGAN PRINSIP DAN JENIS BALUTAN DENGAN PENERAPAN TEKNIK MOIST WOUND HEALING

    OpenAIRE

    Diah Merdekawati; Rasyidah AZ

    2017-01-01

    Salah satu komplikasi yang paling sering terjadi dilapangan pada penderita diabetes melitus yaitu adanya ulkus diabetikum atau gangren dan biasanya penyakit ini menyerang penderita pada usia produktif yaitu antara umur 30-50 tahun. Tujuan penelitian ini adalah untuk mengetahui hubungan prinsip dan jenis balutan dengan penerapan tehnik moist wound healing. Penelitian ini merupakan penelitian kuantitatif dengan metode cross secsional. Sebanyak 31 responden terlibat dalam penelitian ini. Pengump...

  2. Project "Convective Wind Gusts" (ConWinG)

    Science.gov (United States)

    Mohr, Susanna; Richter, Alexandra; Kunz, Michael; Ruck, Bodo

    2017-04-01

    Convectively-driven strong winds usually associated with thunderstorms frequently cause substantial damage to buildings and other structures in many parts of the world. Decisive for the high damage potential are the short-term wind speed maxima with duration of a few seconds, termed as gusts. Several studies have shown that convectively-driven gusts can reach even higher wind speeds compared to turbulent gusts associated with synoptic-scale weather systems. Due to the small-scale and non-stationary nature of convective wind gusts, there is a considerable lack of knowledge regarding their characteristics and statistics. Furthermore, their interaction with urban structures and their influence on buildings is not yet fully understood. For these two reasons, convective wind events are not included in the present wind load standards of buildings and structures, which so far have been based solely on the characteristics of synoptically-driven wind gusts in the near-surface boundary layer (e. g., DIN EN 1991-1-4:2010-12; ASCE7). However, convective and turbulent gusts differ considerably, e.g. concerning vertical wind-speed profiles, gust factors (i.e., maximum to mean wind speed), or exceedance probability curves. In an effort to remedy this situation, the overarching objective of the DFG-project "Convective Wind Gusts" (ConWinG) is to investigate the characteristics and statistics of convective gusts as well as their interaction with urban structures. Based on a set of 110 climate stations of the German Weather Service (DWD) between 1992 and 2014, we analyzed the temporal and spatial distribution, intensity, and occurrence probability of convective gusts. Similar to thunderstorm activity, the frequency of convective gusts decreases gradually from South to North Germany. A relation between gust intensity/probability to orography or climate conditions cannot be identified. Rather, high wind speeds, e.g., above 30 m/s, can be expected everywhere in Germany with almost

  3. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    Science.gov (United States)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex

  4. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Directory of Open Access Journals (Sweden)

    M. Keller

    2018-04-01

    Full Text Available Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM and 2 km grid spacing (convection-resolving model, CRM are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW using a vertically uniform warming and the other with vertically dependent warming (VW that enables changes in lapse rate.The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  5. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Science.gov (United States)

    Keller, Michael; Kröner, Nico; Fuhrer, Oliver; Lüthi, Daniel; Schmidli, Juerg; Stengel, Martin; Stöckli, Reto; Schär, Christoph

    2018-04-01

    Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM) and 2 km grid spacing (convection-resolving model, CRM) are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW) using a vertically uniform warming and the other with vertically dependent warming (VW) that enables changes in lapse rate. The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  6. Effect of heater geometry and cavity volume on the sensitivity of a thermal convection-based tilt sensor

    Science.gov (United States)

    Han, Maeum; Keon Kim, Jae; Kong, Seong Ho; Kang, Shin-Won; Jung, Daewoong

    2018-06-01

    This paper reports a micro-electro-mechanical-system (MEMS)-based tilt sensor using air medium. Since the working mechanism of the sensor is the thermal convection in a sealed chamber, structural parameters that can affect thermal convection must be considered to optimize the performance of the sensor. This paper presents the experimental results that were conducted by optimizing several parameters such as the heater geometry, input power and cavity volume. We observed that an increase in the heating power and cavity volume can improve the sensitivity, and heater geometry plays important role in performance of the sensor.

  7. Quantifying near-wall coherent structures in turbulent convection

    Science.gov (United States)

    Gunasegarane, G. S.; A Puthenveettil, Baburaj; K Agrawal, Yogesh; Schmeling, Daniel; Bosbach, Johannes; Arakeri, Jaywant; IIT Madras-DLR-IISc Collaboration

    2011-11-01

    We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of near- wall line plumes measured from these planforms, in a six decade range of Rayleigh numbers (105 < Ra <1011) and at three Prandtl numbers (Pr = 0 . 7 , 6 , 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of these near-wall plumes in turbulent convection. The plume length per unit area (Lp / A), made dimensionless by the near-wall length scale in turbulent convection (Zw) remains a constant for a given fluid. The Nusselt number is shown to be directly proportional to Lp H / A for a given fluid layer of height H. Increase in Pr has a weak influence in decreasing Lp / A . These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.

  8. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  9. A meshless method for modeling convective heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David B [Los Alamos National Laboratory

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  10. Bark traits and life-history strategies of tropical dry- and moist forest trees

    NARCIS (Netherlands)

    Poorter, L.; McNeil, A.; Hurtado, V.H.; Prins, H.H.T.; Putz, F.E.

    2014-01-01

    1.Bark is crucial to trees because it protects their stems against fire and other hazards and because of its importance for assimilate transport, water relationships and repair. We evaluate size-dependent changes in bark thickness for 50 woody species from a moist forest and 50 species from a dry

  11. Boundary-modulated Thermal Convection Model in the Mantle

    Science.gov (United States)

    Kurita, K.; Kumagai, I.

    2008-12-01

    Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This

  12. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Andreasen, Casper Schousboe; Aage, Niels

    stabilised finite elements implemented in a parallel multiphysics analysis and optimisation framework DFEM [1], developed and maintained in house. Focus is put on control of the temperature field within the solid structure and the problems can therefore be seen as conjugate heat transfer problems, where heat...... conduction governs in the solid parts of the design domain and couples to convection-dominated heat transfer to a surrounding fluid. Both loosely coupled and tightly coupled problems are considered. The loosely coupled problems are convection-diffusion problems, based on an advective velocity field from...

  13. Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes

    International Nuclear Information System (INIS)

    Chae, Myeong Seon; Chung, Bum Jin

    2013-01-01

    This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re 2 ∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree

  14. Evaluation of surface detail reproduction, dimensional stability and gypsum compatibility of monophase polyvinyl-siloxane and polyether elastomeric impression materials under dry and moist conditions.

    Science.gov (United States)

    Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N Suman; Tadi, Durga Prasad

    2016-01-01

    This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In

  15. Toxic and carcinogenic agents in dry and moist snuff.

    Science.gov (United States)

    Hoffmann, D; Adams, J D; Lisk, D; Fisenne, I; Brunnemann, K D

    1987-12-01

    The oral use of snuff is causatively associated with cancer of the oral cavity. Since most epidemiologic studies to date relate to the long-term use of dry snuff, which has dominated the U.S. smokeless tobacco market in the past, the concentrations of several toxic and carcinogenic agents in the three most popular dry snuff brands have been compared with those in the five most popular moist snuff brands sold in the United States. All eight samples were analyzed for nitrate, alkaloids, polyphenols, volatile carbonyl compounds, lead, cadmium, selenium, and the carcinogenic compounds benzo[a]pyrene (CAS: 50-32-8), polonium-210 (CAS: 13981-52-7), volatile N-nitrosamines (VNAs), N-nitrosodiethanolamine (CAS: 1116-54-7), and the tobacco-specific N-nitrosamines (TSNAs). Most of the snuff brands were rich in nitrate (greater than or equal to 1.5%), total polyphenols (greater than 2%), and in nicotine (greater than or equal to 1.5%), which is the habituating factor in tobacco use. Concentrations of the VNAs were significantly above the permissible limits set for some food products; the concentrations of the TSNAs in both snuff types exceeded the levels of nitrosamines in other consumer products by at least two to three orders of magnitude. The extremely high levels of the TSNAs in snuff have remained unchanged during the last decade and present the major carcinogenic risk factor for the oral use of snuff. Polonium-210 contributes further to the carcinogenic risk associated with snuff. The chemical-analytical data presented in this study do not indicate marked differences in the carcinogenic potential of moist snuff compared to dry snuff.

  16. Topology optimisation of natural convection problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations...... coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences...... in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach...

  17. Study of caprine bones after moist and dry heat processes by X-ray diffraction

    International Nuclear Information System (INIS)

    Barbosa, Caroline M.; Azeredo, Soraia R.; Lopes, Ricardo T.; Souza, Sheila M.F.M de

    2013-01-01

    Bone tissue is a biological material composed of hydroxyapatite (HAp) and collagen matrix. The bone X-ray diffraction (XRD) pattern presents characteristics of the hydroxyapatite crystallography planes. This paper presents the characterization by X-ray diffraction of caprine bone powder pattern and the comparison of this pattern with moist or dry heat cooked bone patterns. The parameters chosen to characterize the X-ray diffraction peaks were: angular position (2θ), full width at half maximumt (FWHM), and relative intensity (I rel ). The X-ray diffraction patterns were obtained with a Shimadzu XRD-6000 diffractometer. The caprine bone XRD pattern revealed a significant correlation of several crystallographic parameters (lattice data) with hydroxyapatite. The profiles of the three bone types analyzed presented differences. The study showed as small angular displacement (decrease of the 2θ angle) of some peaks was observed after moist and dry heat cooking processes. The characterization of bone tissue aimed to contribute to future analysis in the field of archeology. (author)

  18. Study of caprine bones after moist and dry heat processes by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Caroline M., E-mail: carolmattosb@yahoo.com.br [Instituto de Arqueologia Brasileira (IAB), Belford Roxo, RJ (Brazil); Azeredo, Soraia R.; Lopes, Ricardo T., E-mail: soraia@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/LIN/UFRJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Instrumentacao Nuclear; Souza, Sheila M.F.M de, E-mail: sferraz@ensp.fiocruz.br [Fundacao Oswaldo Cruz (ENSP/FIOCRUZ), Rio de Janeiro, RJ (Brazil). Escola Nacional de Saude Publica Sergio Arouca

    2013-07-01

    Bone tissue is a biological material composed of hydroxyapatite (HAp) and collagen matrix. The bone X-ray diffraction (XRD) pattern presents characteristics of the hydroxyapatite crystallography planes. This paper presents the characterization by X-ray diffraction of caprine bone powder pattern and the comparison of this pattern with moist or dry heat cooked bone patterns. The parameters chosen to characterize the X-ray diffraction peaks were: angular position (2θ), full width at half maximumt (FWHM), and relative intensity (I{sub rel}). The X-ray diffraction patterns were obtained with a Shimadzu XRD-6000 diffractometer. The caprine bone XRD pattern revealed a significant correlation of several crystallographic parameters (lattice data) with hydroxyapatite. The profiles of the three bone types analyzed presented differences. The study showed as small angular displacement (decrease of the 2θ angle) of some peaks was observed after moist and dry heat cooking processes. The characterization of bone tissue aimed to contribute to future analysis in the field of archeology. (author)

  19. Natural convection in a porous medium: External flows

    International Nuclear Information System (INIS)

    Cheng, P.

    1985-01-01

    Early theoretical work on heat transfer in porous media focussed its attention on the onset of natural convection and cellular convection in rectangular enclosures with heating from below. Recently, increased attention has been directed to the study of natural convection in a porous medium external to heated surfaces and bodies. Boundary layer approximations were introduced, and similarly solutions have been obtained for steady natural convection boundary layers adjacent to a heated flat plate, a horizontal cylinder and a sphere as well as other two-dimensional and axisymmetric bodies of arbitrary shape. Higher order boundary layer theories have been carried out to assess the accuracy of the boundary layer approximation. The effects of entrainments at the edge of the boundary layer, the inclination angle of the heated inclined plate, and the upstream geometry on the heat transfer characteristics have been investigated based on the method of matched asymptotic expansions. The conditions for the onset of vortex instability in porous layers heated from below were determined based on linear stability analyses. The effects of no-slip boundary conditions, non-Darcy and thermal dispersion, which were neglected in all of the previous theoretical investigations, have recently been re-examined. Experimental investigations on natural convection about a vertical and inclined heated plate, a horizontal cylinder, as well as plume rise from a horizontal line source of heat have been conducted. All of this work is reviewed in this paper

  20. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  1. Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2001-06-01

    Full Text Available Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel, but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here.Key words. Ionosphere (auroral

  2. Restoring dry and moist forests of the inland northwestern United States [Chapter 23

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham

    2015-01-01

    The complex topography of the Inland Northwestern United States (58.4 million ha) interacts with soils and a highly variable climate to provide a mosaic of dry and moist mixed conifer forest settings. Approximately 20% of the area is covered by dry forests dominated by Pinus ponderosa, Pseudotsuga menziesii and contains a diversity of lower vegetation ranging from a...

  3. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  4. Education: DNA replication using microscale natural convection.

    Science.gov (United States)

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  5. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  6. SOUND-SPEED INVERSION OF THE SUN USING A NONLOCAL STATISTICAL CONVECTION THEORY

    International Nuclear Information System (INIS)

    Zhang Chunguang; Deng Licai; Xiong Darun; Christensen-Dalsgaard, Jørgen

    2012-01-01

    Helioseismic inversions reveal a major discrepancy in sound speed between the Sun and the standard solar model just below the base of the solar convection zone. We demonstrate that this discrepancy is caused by the inherent shortcomings of the local mixing-length theory adopted in the standard solar model. Using a self-consistent nonlocal convection theory, we construct an envelope model of the Sun for sound-speed inversion. Our solar model has a very smooth transition from the convective envelope to the radiative interior, and the convective energy flux changes sign crossing the boundaries of the convection zone. It shows evident improvement over the standard solar model, with a significant reduction in the discrepancy in sound speed between the Sun and local convection models.

  7. Moist temperate forest butterflies of western Bhutan

    Directory of Open Access Journals (Sweden)

    Arun P. Singh

    2016-03-01

    Full Text Available Random surveys were carried out in moist temperate forests (1,860–3,116 m around Bunakha Village and Dochula Pass, near Thimphu in western Bhutan, recording 65 species of butterflies.  Of these, 11 species, viz., Straightwing Blue Orthomiella pontis pontis Elwes, Slate Royal Maneca bhotea bhotea Moore, Dull Green Hairstreak Esakiozephyrus icana Moore, Yellow Woodbrown Lethe nicetas Hewitson, Small Silverfork Zophoessa jalaurida elwesi Moore, Scarce Labyrinth, Neope pulahina (Evans, Chumbi Wall Chonala masoni Elwes, Pale Hockeystick Sailer Neptis manasa manasa Moore and White Commodore Parasarpa dudu dudu Westwood, are restricted to the eastern Himalaya, northeastern India and Myanmar.  Two other species, Tawny Mime Chiasa agestor agestor (Gray and Himalayan Spotted Flat Celaenorrhinus munda Moore have been only rarely recorded from Bhutan and a few individuals of the rare Bhutan Glory Bhutanitis lidderdalei Atkinson were also recorded near Bunakha.  

  8. The Stochastic Multicloud Model as part of an operational convection parameterisation in a comprehensive GCM

    Science.gov (United States)

    Peters, Karsten; Jakob, Christian; Möbis, Benjamin

    2015-04-01

    An adequate representation of convective processes in numerical models of the atmospheric circulation (general circulation models, GCMs) remains one of the grand challenges in atmospheric science. In particular, the models struggle with correctly representing the spatial distribution and high variability of tropical convection. It is thought that this model deficiency partly results from formulating current convection parameterisation schemes in a purely deterministic manner. Here, we use observations of tropical convection to inform the design of a novel convection parameterisation with stochastic elements. The novel scheme is built around the Stochastic MultiCloud Model (SMCM, Khouider et al 2010). We present the progress made in utilising SMCM-based estimates of updraft area fractions at cloud base as part of the deep convection scheme of a GCM. The updraft area fractions are used to yield one part of the cloud base mass-flux used in the closure assumption of convective mass-flux schemes. The closure thus receives a stochastic component, potentially improving modeled convective variability and coherence. For initial investigations, we apply the above methodology to the operational convective parameterisation of the ECHAM6 GCM. We perform 5-year AMIP simulations, i.e. with prescribed observed SSTs. We find that with the SMCM, convection is weaker and more coherent and continuous from timestep to timestep compared to the standard model. Total global precipitation is reduced in the SMCM run, but this reduces i) the overall error compared to observed global precipitation (GPCP) and ii) middle tropical tropospheric temperature biases compared to ERA-Interim. Hovmoeller diagrams indicate a slightly higher degree of convective organisation compared to the base case and Wheeler-Kiladis frequency wavenumber diagrams indicate slightly more spectral power in the MJO range.

  9. Condensation: Passenger Not Driver in Atmospheric Thermodynamics

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2016-11-01

    Full Text Available The second law of thermodynamics states that processes yielding work or at least capable of yielding work are thermodynamically spontaneous, and that those costing work are thermodynamically nonspontaneous. Whether a process yields or costs heat is irrelevant. Condensation of water vapor yields work and hence is thermodynamically spontaneous only in a supersaturated atmosphere; in an unsaturated atmosphere it costs work and hence is thermodynamically nonspontaneous. Far more of Earth’s atmosphere is unsaturated than supersaturated; based on this alone evaporation is far more often work-yielding and hence thermodynamically spontaneous than condensation in Earth’s atmosphere—despite condensation always yielding heat and evaporation always costing heat. Furthermore, establishment of the unstable or at best metastable condition of supersaturation, and its maintenance in the face of condensation that would wipe it out, is always work-costing and hence thermodynamically nonspontaneous in Earth’s atmosphere or anywhere else. The work required to enable supersaturation is most usually provided at the expense of temperature differences that enable cooling to below the dew point. In the case of most interest to us, convective weather systems and storms, it is provided at the expense of vertical temperature gradients exceeding the moist adiabatic. Thus, ultimately, condensation is a work-costing and hence thermodynamically nonspontaneous process even in supersaturated regions of Earth’s or any other atmosphere. While heat engines in general can in principle extract all of the work represented by any temperature difference until it is totally neutralized to isothermality, convective weather systems and storms in particular cannot. They can extract only the work represented by partial neutralization of super-moist-adiabatic lapse rates to moist-adiabaticity. Super-moist-adiabatic lapse rates are required to enable convection of saturated air

  10. A Physically Based Algorithm for Non-Blackbody Correction of Cloud-Top Temperature and Application to Convection Study

    Science.gov (United States)

    Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei

    2014-01-01

    Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.

  11. Southern Ocean Convection and tropical telleconnections

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  12. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    Science.gov (United States)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  13. Time dependent convection electric fields and plasma injection

    International Nuclear Information System (INIS)

    Kaye, S.M.; Kivelson, M.G.

    1979-01-01

    Large-scale electric fields associated with storms or substorms are responsible for inward convection and energization of plasma sheet plasma. Calculations based on steady state convection theory show that the response to such electric fields qualitatively accounts for many features of the injected particle distribution, but quantitative agreement with the theory has not yet been obtained. It is known that the predictions can be improved by introducing the concept of convection in response to a time dependent electric field. On the other hand, time dependent calculations are sensitive to the choice of initial conditions, and most models have failed to incorporate these conditions in a realistic and self-consistent manner. In this paper we present a more complete model consisting of realisic initial conditions and time dependent convection to explain a typical substorm-associated electron injection event. We find very good agreement between the observed electron flux changes and those predicted by our model

  14. Efficacy of Microwave Disinfection on Moist and Dry Dental Stone Casts with Different Irradiation Times

    Directory of Open Access Journals (Sweden)

    Mahmood Robati Anaraki

    2015-07-01

    Full Text Available Objectives: Dental practice contains the use of instruments and multiuse items that should be sterilized or disinfected properly. The aim of the current study was to investigate the effect of microwave irradiation on dental stone cast disinfection in moist and dry condition. Materials and Methods: In this in vitro study, 76 stone casts were prepared by a sterile method. The casts were contaminated by Pseudomonas aeruginosa (ATCC 9027, Staphylococcus aureus (ATCC 6538, Enterococcus faecalis (ATCC 29212 as well as Candida albicans (ATCC 10231. Half the samples were dried for two hours and the other half was studied while still moist. The samples were irradiated by a household microwave at 600 W for 3, 5 and 7 minutes. The microorganisms on the samples were extracted by immersion in tryptic soy broth and .001 ml of that was cultured in nutrient agar media, incubated overnight and counted and recorded as colony forming unit per milliliter (CFU/mL. Results: The findings showed that microorganisms reduced to 4.87 logarithm of CFU/mL value on dental cast within seven minutes in comparison with positive control. Although microbial count reduction was observed as a result of exposure time increase, comparison between moist and dried samples showed no significant difference. Conclusions: Seven-minute microwave irradiation at 600 W can effectively reduce the microbial load of dental stone casts. Wetting the casts does not seem to alter the efficacy of irradiation.   Keywords: Microwave Disinfection; Dental Stone Casts; Irradiation Times

  15. Fuzzy logic controllers and chaotic natural convection loops

    International Nuclear Information System (INIS)

    Theler, German

    2007-01-01

    The study of natural circulation loops is a subject of special concern for the engineering design of advanced nuclear reactors, as natural convection provides an efficient and completely passive heat removal system. However, under certain circumstances thermal-fluid-dynamical instabilities may appear, threatening the reactor safety as a whole.On the other hand, fuzzy logic controllers provide an ideal framework to approach highly non-linear control problems. In the present work, we develop a software-based fuzzy logic controller and study its application to chaotic natural convection loops.We numerically analyse the linguistic control of the loop known as the Welander problem in such conditions that, if the controller were not present, the circulation flow would be non-periodic unstable.We also design a Taka gi-Sugeno fuzzy controller based on a fuzzy model of a natural convection loop with a toroidal geometry, in order to stabilize a Lorenz-chaotic behaviour.Finally, we show experimental results obtained in a rectangular natural circulation loop [es

  16. Analysis and modeling of tropical convection observed by CYGNSS

    Science.gov (United States)

    Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.

  17. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    Science.gov (United States)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  18. Moisture Vertical Structure, Deep Convective Organization, and Convective Transition in the Amazon

    Science.gov (United States)

    Schiro, K. A.; Neelin, J. D.

    2017-12-01

    Constraining precipitation processes in climate models with observations is crucial to accurately simulating current climate and reducing uncertainties in future projections. Results from the Green Ocean Amazon (GOAmazon) field campaign (2014-2015) provide evidence that deep convection is strongly controlled by the availability of moisture in the free troposphere over the Amazon, much like over tropical oceans. Entraining plume buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the environment, yet differences in convective onset as a function of CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due to variability in the contribution of lower tropospheric humidity to the total column moisture. Boundary layer moisture shows a strong relationship to the onset during the day, which largely disappears during nighttime. Using S-Band radar, these transition statistics are examined separately for unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of occurrence with increasing moisture throughout the column, particularly in the lower free troposphere. Retrievals of vertical velocity from a radar wind profiler indicate updraft velocity and mass flux increasing with height through the lower troposphere. A deep-inflow mixing scheme motivated by this — corresponding to deep inflow of environmental air into a plume that grows with height — provides a weighting of boundary layer and free tropospheric air that yields buoyancies consistent with the observed onset of deep convection across seasons and times of day, across land and ocean sites, and for all convection types. This provides a substantial improvement relative to more traditional constant mixing assumptions, and a dramatic improvement relative to no mixing. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for unorganized convection.

  19. Vertical natural convection: application of the unifying theory of thermal convection

    NARCIS (Netherlands)

    Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.

    2015-01-01

    Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In

  20. Species-environment relationship in the herb-subshrub layer of a moist Savanna site, Federal District, Brazil.

    Science.gov (United States)

    Munhoz, C B R; Felfili, J M; Rodrigues, C

    2008-02-01

    The soils are seasonally or permanently saturated in the moist grassland savanna, locally known as Campo Limpo Umido. Soil moisture variation seems to determine spatial distribution of communities. The objective of this study is to analyse the relationship between environmental variables and the patterns of spatial distribution of species in the herbaceous-subshrub layer of an area of moist grassland at the Agua Limpa Farm, Brasília, DF (15 degrees 56' to 15 degrees 59' S and 47 degrees 55' to 47 degrees 58' W Gr.). An area of 400 x 400 m was divided into four sections of 200 x 200 m where four transects were randomly sampled. A line intercept method was adopted for the phytossociological study. Superficial soils samples (0-20 cm) were collected for chemical and textural analyses. Gravimetric soil moisture was measured quarterly during the study-year. A total of 85 species in 67 genera and 24 families were found. The diversity was high, Shannon's index, H', was 2.60 nats.cover(-1). Floristic composition of the transects in soils with a high gravimetric soil moisture and high content of organic matter and sand differed from those transects in soils with a lower gravimetric soil moisture indicating seasonal variation. A Canonical Correspondence Analysis (CCA) showed significant correlations between soil texture and soil moisture features and species distribution. Gravimetric soil moisture, organic matter, clay, silt and sand were significantly correlated to species distribution in the moist grassland determining mosaics in the vegetation.

  1. On the mapping of ionospheric convection into the magnetosphere

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Hoffman, R.A.

    1997-01-01

    Under steady state conditions and in the absence of parallel electric fields, ionospheric convection is a direct map of plasma and magnetic flux convection in the magnetosphere, and quantitative estimates can be obtained from the mapping along magnetic field lines of electrostatic ionospheric electric fields. The resulting magnetospheric electrostatic potential distribution then provides the convection electric field in various magnetospheric regions. We present a quantitative framework for the investigation of the applicability and limitations of this approach based on an analytical theory derived from first principles. Particular emphasis is on the role of parallel electric field regions and on inductive effects, such as expected during the growth and expansive phases of magnetospheric substorms. We derive quantitative estimates for the limits in which either effect leads to a significant decoupling between ionospheric and magnetospheric convection and provide an interpretation of ionospheric convection which is independent of the presence of inductive electric fields elsewhere in the magnetosphere. Finally, we present a study of the relation between average and instantaneous convection, using two periodic dynamical models. The models demonstrate and quantify the potential mismatch between the average electric fields in the ionosphere and the magnetosphere in strongly time-dependent cases that may exist even when they are governed entirely by ideal MHD

  2. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States

  3. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  4. Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. Y. Jia

    2014-11-01

    Full Text Available Absolute values of gravity wave momentum flux (GWMF deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument and the High Resolution Dynamics Limb Sounder (HIRDLS are correlated with sea surface temperature (SST with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs. Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT.

  5. Formulation of Low Peclet Number Based Grid Expansion Factor for the Solution of the Convection Diffusion Equation

    Directory of Open Access Journals (Sweden)

    A. Abdullah

    2018-04-01

    Full Text Available Convection-diffusion problems, due to its fundamental nature, are found in various science and engineering applications. In this research, the importance of the relationship between grid structure and flow parameters in such problems is emphasized. In particular, we propose a systematic technique in the selection of the grid expansion factor based on its logarithmic relationship with low Peclet number. Such linear mathematical connection between the two non-dimensional parameters serves as a guideline for more structured decision-making and improves the heuristic process in the determination of the computational domain grid for the numerical solution of convection-diffusion equations especially in the prediction of the concentration of the scalar. Results confirm the effectiveness of the new approach.

  6. Natural convection in heat-generating fluids

    International Nuclear Information System (INIS)

    Bol'shov, Leonid A; Kondratenko, Petr S; Strizhov, Valerii F

    2001-01-01

    Experimental and theoretical studies of convective heat transfer from a heat-generating fluid confined to a closed volume are reviewed. Theoretical results are inferred from analytical estimates based on the relevant conservation laws and the current understanding of the convective heat-transfer processes. Four basic and one asymptotic regime of heat transfer are identified depending on the heat generation rate. Limiting heat-transfer distribution patterns are found for the lower boundary. Heat transfer in a quasi-two-dimensional geometry is analyzed. Quasi-steady-state heat transfer from a cooling-down fluid without internal heat sources is studied separately. Experimental results and theoretical predictions are compared. (reviews of topical problems)

  7. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  8. Experimental transient natural convection heat transfer from a vertical cylindrical tank

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Uhia, Francisco J.; Alberto Dopazo, J.

    2011-01-01

    In this paper heat transfer experimental data is presented and compared to general correlations proposed in the literature for transient laminar free convection from a vertical cylindrical tank. The experimental data has been obtained from heating and cooling experiments carried out with a cylindrical full-scale hot water storage tank working under real operating conditions. The experimental device and the data acquisition system are described. The calculation procedures established to obtain the experimental values of the heat transfer coefficients, as well as the data reduction process, are detailed. The local convection and radiation heat transfer coefficients are obtained from different heating power conditions for local Rayleigh numbers within the range of 1x10 5 -3x10 8 . The great quantity of available experimental data allows a detailed analysis with a reliable empirical base. The experimental local convection heat transfer coefficients are correlated and compared to correlations proposed in open literature for engineering calculations. - Highlights: → Experimental data of transient local convection heat transfer coefficients from a cylindrical tank for heating and cooling processes is obtained. → The transient behaviour of the convection coefficients is dependent on temperature difference evolutions between the surface and the air. → The Nu.Ra -1/4 ratio decreases proportionally in (T s -T ∞ ) -0.9 . → A new correlation based on the semi-infinite region theory for laminar transient free convection is proposed.

  9. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

    Science.gov (United States)

    Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.

    2017-11-01

    Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.

  10. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  11. The relationships between precipitation, convective cloud and tropical cyclone intensity change

    Science.gov (United States)

    Ruan, Z.; Wu, Q.

    2017-12-01

    Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K

  12. Statistical thermodynamics and the size distributions of tropical convective clouds.

    Science.gov (United States)

    Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.

    2017-12-01

    Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.

  13. Convective transport resistance in the vitreous humor

    Science.gov (United States)

    Penkova, Anita; Sadhal, Satwindar; Ratanakijsuntorn, Komsan; Moats, Rex; Tang, Yang; Hughes, Patrick; Robinson, Michael; Lee, Susan

    2012-11-01

    It has been established by MRI visualization experiments that the convection of nanoparticles and large molecules with high rate of water flow in the vitreous humor will experience resistance, depending on the respective permeabilities of the injected solute. A set of experiments conducted with Gd-DTPA (Magnevist, Bayer AG, Leverkusen, Germany) and 30 nm gadolinium-based particles (Gado CELLTrackTM, Biopal, Worcester, MA) as MRI contrast agents showed that the degree of convective transport in this Darcy-type porous medium varies between the two solutes. These experiments consisted of injecting a mixture of the two (a 30 μl solution of 2% Magnevist and 1% nanoparticles) at the middle of the vitreous of an ex vivo whole bovine eye and subjecting the vitreous to water flow rate of 100 μl/min. The water (0.9% saline solution) was injected at the top of the eye, and was allowed to drain through small slits cut at the bottom of the eyeball. After 50 minutes of pumping, MRI images showed that the water flow carried the Gd-DTPA farther than the nanoparticles, even though the two solutes, being mixed, were subjected to the same convective flow conditions. We find that the convected solute lags the water flow, depending on the solute permeability. The usual convection term needs to be adjusted to allow for the filtration effect on the larger particles in the form (1- σ) u . ∇ c with important implications for the modeling of such systems.

  14. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.

  15. Characterizing the degree of convective clustering using radar reflectivity and its application to evaluating model simulations

    Science.gov (United States)

    Cheng, W. Y.; Kim, D.; Rowe, A.; Park, S.

    2017-12-01

    Despite the impact of mesoscale convective organization on the properties of convection (e.g., mixing between updrafts and environment), parameterizing the degree of convective organization has only recently been attempted in cumulus parameterization schemes (e.g., Unified Convection Scheme UNICON). Additionally, challenges remain in determining the degree of convective organization from observations and in comparing directly with the organization metrics in model simulations. This study addresses the need to objectively quantify the degree of mesoscale convective organization using high quality S-PolKa radar data from the DYNAMO field campaign. One of the most noticeable aspects of mesoscale convective organization in radar data is the degree of convective clustering, which can be characterized by the number and size distribution of convective echoes and the distance between them. We propose a method of defining contiguous convective echoes (CCEs) using precipitating convective echoes identified by a rain type classification algorithm. Two classification algorithms, Steiner et al. (1995) and Powell et al. (2016), are tested and evaluated against high-resolution WRF simulations to determine which method better represents the degree of convective clustering. Our results suggest that the CCEs based on Powell et al.'s algorithm better represent the dynamical properties of the convective updrafts and thus provide the basis of a metric for convective organization. Furthermore, through a comparison with the observational data, the WRF simulations driven by the DYNAMO large-scale forcing, similarly applied to UNICON Single Column Model simulations, will allow us to evaluate the ability of both WRF and UNICON to simulate convective clustering. This evaluation is based on the physical processes that are explicitly represented in WRF and UNICON, including the mechanisms leading to convective clustering, and the feedback to the convective properties.

  16. Hydration of the lower stratosphere by ice crystal geysers over land convective systems

    Directory of Open Access Journals (Sweden)

    S. Khaykin

    2009-03-01

    Full Text Available The possible impact of deep convective overshooting over land has been explored by six simultaneous soundings of water vapour, particles and ozone in the lower stratosphere next to Mesoscale Convective Systems (MCSs during the monsoon season over West Africa in Niamey, Niger in August 2006. The water vapour measurements were carried out using a fast response FLASH-B Lyman-alpha hygrometer. The high vertical resolution observations of the instrument show the presence of accumulation of enhanced water vapour layers between the tropopause at 370 K and the 420 K level. Most of these moist layers are shown connected with overshooting events occurring upwind as identified from satellite IR images over which the air mass probed by the sondes passed during the three previous days. In the case of a local overshoot identified by echo top turrets above the tropopause by the MIT C-band radar also in Niamey, tight coincidence was found between enhanced water vapour, ice crystal and ozone dip layers indicative of fast uplift of tropospheric air across the tropopause. The water vapour mixing ratio in the enriched layers exceeds frequently by 1–3 ppmv the average 6 ppmv saturation ratio at the tropopause and by up to 7 ppmv in the extreme case of local storm in coincidence with the presence of ice crystals. The presence of such layers strongly suggests hydration of the lower stratosphere by geyser-like injection of ice particles over overshooting turrets. The pile-like increase of water vapour up to 19 km seen by the high-resolution hygrometer during the season of maximum temperature of the tropopause, suggests that the above hydration mechanism may contribute to the summer maximum moisture in the lower stratosphere. If this interpretation is correct, hydration by ice geysers across the tropopause might be an important contributor to the stratospheric water vapour budget.

  17. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  18. Dry and Semi-Dry Tropical Cyclones

    Science.gov (United States)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  19. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2012-11-01

    Full Text Available The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model. To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model.

    A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude.

    Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition, depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme. Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold. However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction

  20. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    Science.gov (United States)

    Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.

    2012-11-01

    The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all

  1. A cost and clinical effectiveness analysis among moist wound healing dressings versus traditional methods in home care patients with pressure ulcers.

    Science.gov (United States)

    Souliotis, Kyriakos; Kalemikerakis, Ioannis; Saridi, Maria; Papageorgiou, Manto; Kalokerinou, Athena

    2016-05-01

    The aim of the study was a cost and clinical effectiveness analysis between moist wound healing dressings and gauze in a homecare set up for the treatment of stage III and IV pressure ulcers up to complete healing. In addition, we assessed the overall economic burden on the Healthcare System. Treatment method for each patient was chosen randomly by using sealed opaque envelopes. The authors monitored the healing progress and recorded treatment costs without interfering with the treatment process. The healing progress was estimated by using surface measurement transparent films. To estimate treatment costs, the authors took into account labor costs, cost of dressings, as well the cost of other materials such as cleansing gauzes, normal saline, syringes, examination gloves, antiseptics and adhesive tape. The patient group under treatment with moist wound healing dressings consisted of 27 men and 20 women aged 75.1 ± 8,6 and had an average ulcer surface of 43.5 ± 30.70 cm(2) ; the patient group under treatment with gauze comprised 25 men and 23 women aged 77.02 ± 8.02 and had an average ulcer surface 41.52 ± 29.41 cm(2) (p = 0.25, 95% CI, Student's t test). The average healing time for the moist wound healing dressings group' was 85.56 ± 52.09 days, while 121.4 ± 52.21 days for the "gauze group" (p = 0.0001, 95% CI, Student's t test). The dressing change frequency per patient was reduced in the "moist wound healing dressings group," 49.5 ± 29.61, compared with a dressing change frequency per patient of 222.6 ± 101.86 for the "gauze group" (p = 0.0001, 95% CI, Student's t test). The use of moist wound healing dressings had a lower total treatment cost of 1,351 € per patient compared with, the use of gauzes (3,888 €). © 2016 by the Wound Healing Society.

  2. Natural Convective Heat Transfer from Narrow Plates

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.

  3. On the determination of the neutral drag coefficient in the convective boundary layer

    DEFF Research Database (Denmark)

    Grachev, A.A.; Fairall, C.W.; Larsen, Søren Ejling

    1998-01-01

    Based on the idea that free convection can be considered as a particular case of forced convection, where the gusts driven by the large-scale eddies are scaled with the Deardorff convective velocity scale, a new formulation for the neutral drag coefficient, C-Dn, in the convective boundary layer...... for mean wind speed less than about 2 m s(-1). The new approach also clarifies several contradictory results from earlier works. Some aspects related to an alternate definition of the neutral drag coefficient and the wind speed and the stress averaging procedure are considered....

  4. Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics

    Science.gov (United States)

    Sreekanth, T. S.

    Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three

  5. Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline

    Directory of Open Access Journals (Sweden)

    Ravi Kanth A.S.V.

    2016-01-01

    Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.

  6. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  7. The effect of convection and semi-convection on the C/O yield of massive stars

    International Nuclear Information System (INIS)

    Dearborn, D.S.

    1979-01-01

    The C/O ratio produced during core helium burning affects the future evolution and nucleosynthetic yield of massive stars. This ratio is shown to be sensitive to the treatment of convection as well as uncertainties in nuclear rates. By minimizing the effect of semi-convection and reducing the size of the convective core, mass loss in OB stars increases the C/O ratio. (Author)

  8. Hydromagnetic slip flow of water based nano-fluids past a wedge with convective surface in the presence of heat generation (or) absorption

    International Nuclear Information System (INIS)

    Rahman, M.M.; Al-Lawatia, M.A.; Eltayeb, I.A.; Al-Salti, N.

    2012-01-01

    Heat transfer characteristics of a two-dimensional steady hydromagnetic slip flow of water based nano-fluids (TiO 2 -water, Al 2 O 3 -water, and Cu-water) over a wedge with convective surface taking into account the effects of heat generation (or absorption) has been investigated numerically. The local similarity solutions are obtained by using very robust computer algebra software MATLAB and presented graphically as well as in a tabular form. The results show that nano-fluid velocity is lower than the velocity of the base fluid and the existence of the nano-fluid leads to the thinning of the hydrodynamic boundary layer. The rate of shear stress is significantly influenced by the surface convection parameter and the slip parameter. It is higher for nano-fluids than the base fluid. The results also show that within the boundary layer the temperature of the nano-fluid is higher than the temperature of the base fluid. The rate of heat transfer is found to increase with the increase of the surface convection and the slip parameters. Addition of nano-particles to the base fluid induces the rate of heat transfer. The rate of heat transfer in the Cu-water nano-fluid is found to be higher than the rate of heat transfer in the TiO 2 -water and Al 2 O 3 -water nano-fluids. (authors)

  9. Experiments Using a Ground-Based Electrostatic Levitator and Numerical Modeling of Melt Convection for the Iron-Cobalt System in Support of Space Experiments

    Science.gov (United States)

    Lee, Jonghyun; SanSoucie, Michael P.

    2017-08-01

    Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.

  10. Convective Transport of Very-short-lived Bromocarbons to the Stratosphere

    Science.gov (United States)

    Liang, Qing; Atlas, Elliot Leonard; Blake, Donald Ray; Dorf, Marcel; Pfeilsticker, Klaus August; Schauffler, Sue Myhre

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies 8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, 150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (7.8-8.4 ppt) in the above active convective lofting regions. Of the total 8 ppt VSLS-originated bromine that enters the base of TTL at 150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (Br2, together, contribute 7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a 2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt.

  11. Investigation of tropical diurnal convection biases in a climate model using TWP-ICE observations and convection-permitting simulations

    Science.gov (United States)

    Lin, W.; Xie, S.; Jackson, R. C.; Endo, S.; Vogelmann, A. M.; Collis, S. M.; Golaz, J. C.

    2017-12-01

    Climate models are known to have difficulty in simulating tropical diurnal convections that exhibit distinct characteristics over land and open ocean. While the causes are rooted in deficiencies in convective parameterization in general, lack of representations of mesoscale dynamics in terms of land-sea breeze, convective organization, and propagation of convection-induced gravity waves also play critical roles. In this study, the problem is investigated at the process-level with the U.S. Department of Energy Accelerated Climate Modeling for Energy (ACME) model in short-term hindcast mode using the Cloud Associated Parameterization Testbed (CAPT) framework. Convective-scale radar retrievals and observation-driven convection-permitting simulations for the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) cases are used to guide the analysis of the underlying processes. The emphasis will be on linking deficiencies in representation of detailed process elements to the model biases in diurnal convective properties and their contrast among inland, coastal and open ocean conditions.

  12. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  13. Measurement of buoyancy driven convection and microaccelerations on board International Space Station with the use of convection sensor Dacon-M

    Science.gov (United States)

    Putin, Gennady; Belyaev, Mikhail; Babushkin, Igor; Glukhov, Alexander; Zilberman, Evgeny; Maksimova, Marina; Ivanov, Alexander; Sazonov, Viktor; Nikitin, Sergey; Zavalishin, Denis; Polezhaev, Vadim

    The system for studying buoyancy driven convection and low-frequency microaccelerations aboard spacecraft is described. The system consists of: 1. facility for experimentation on a spaceship - the convection sensor and electronic equipment for apparatus control and for acquisition and processing of relevant information; 2. facility for ground-based laboratory modeling of various fluid motion mechanisms in application to orbital flight environment; 3. the system for computer simulations of convection processes in a fluid cell of a sensor using the data on microaccelerations obtained by accelerometers and another devices aboard the orbital station. The arrangement and functioning of the sensor and control hardware are expounded. The results of terrestrial experiments performed in order to determine the sensitivity of the sensor are described. The results of experiments carried out in 2008 - 2011 with the “DACON-M” apparatus in different modules of the Russian Segment of International Space Station and for various regimes of Station activity are reported. Experimental data recorded by “DACON-M” apparatus have been compared with the calculations of acceleration components based on the telemetry information about the orientation of the Station.

  14. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Sun Tian-Tian; Chen Shao-Yong; Huang Jie; Mou Mao-Lin; Tang Chang-Jian; Wang Zhan-Hui; Peng Xiao-Dong

    2015-01-01

    A critical physical model, based on the ion temperature gradient (ITG) mode and the trapped electron mode (TEM), trying to explain the spatio-temporal dynamics of anomalous particle convection reversal (i.e., the particle convective flux reverses from inward to outward), is developed numerically. The dependence of density peaking and profile shape on the particle convection is studied. Only the inward pinch could lead to the increase of the density peaking. The validation of the critical model is also analyzed. A comparison of the estimates calculated by the model and the experimental results from the Tore Supra tokamak shows that they are qualitatively both consistent. (paper)

  15. Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review

    Science.gov (United States)

    Sharman, Robert D.; Trier, S. B.

    2018-03-01

    Thunderstorms are known to produce turbulence. Such turbulence is commonly referred to as convectively induced turbulence or CIT, and can be hazardous to aviation. Although this turbulence can occur both within and outside the convection, out-of-cloud CIT is particularly hazardous, since it occurs in clear air and cannot be seen by eye or onboard radar. Furthermore, due to its small scale and its ties to the underlying convection, it is very difficult to forecast. Guidelines for out-of-cloud CIT avoidance are available, but they are oversimplified and can be misleading. In the search for more appropriate and physically based avoidance guidelines, considerable research has been conducted in recent years on the nature of the phenomenon, and in particular, its connection to gravity waves generated by the convection. This paper reviews the advances in our understanding of out-of-cloud CIT and its relation to convective gravity waves, and provides several detailed examples of observed cases to elucidate some of the underlying dynamics.

  16. Comparison of shear bond strength between unfilled resin to dry enamel and dentin bonding to moist and dry enamel

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-05-01

    Full Text Available Statement of Problem: The use of dentine bondings on enamel and dentin in total etch protocols has recently become popular. Unfilled resin is hydrophobic and dentin bonding is hydrophilic in nature. This chemical difference could be effective in enamel bonding process. Purpose: The aim of this study was to compare the shear bond strength of unfilled resin to dry enamel and dentin bonding to dry and moist enamel. Materials and Methods: In this experimental study, a total of 30 incisor teeth were used. The specimens were randomly assigned to three groups of 10. 37% phosphoric acid etchant was applied to the enamel surfaces in each group for 15 seconds, rinsed with water for 20 seconds and dried for 20 seconds with compressed air in groups one and two. After conditioning, group 1 received unfilled resin (Margin Bond, Colten and group 2 received dentin bonding (Single Bond, 3M and in group 3 after conditioning and rinsing with water, a layer of dentin bonding (Single Bond was applied on wet enamel. The enamel and dentin bonding were light cured for 20 seconds. A ring mold 3.5 mm in diameter and 2 mm height was placed over the specimens to receive the composite filling material (Z100, 3M. The composite was cured for 40 seconds. The specimens were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. The findings were analyzed by ANOVA One-Way and Tukey HSD tests. Results: Shear bond strength of dentin bonding to dry enamel was significantly less than unfilled resin to dry enamel (P<0.05. There was no significant difference between the bond strength of dentin bonding to moist and dry enamel. In addition bond strength of dentin bonding to wet enamel was not significantly different from unfilled resin to dry enamel. Conclusion: Based on the findings of this study, it is suggested that enamel surface should remain slightly moist after etching before bonding with single bond but when using unfilled resin, the

  17. Behavior of highly radioactive iodine on charcoal in moist air

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Manning, S.R.; Martin, W.J.

    1976-01-01

    The behavior of highly radioactive iodine adsorbed on charcoal exposed to moist air (110 torr water vapor partial pressure) was investigated in a series of six experiments. The amount of radioactive 130 I on the well-insulated 28-cm 3 bed ranged from 50 to 570 Ci, and the relative humidity was 47 percent at the bed inlet temperature of 70 0 C. Radioactive iodine was released from the test beds at a continuous fractional release rate of approximately 7 x 10 -6 /hr for all types of charcoal tested. The chemical form of the released iodine was such that it was very highly penetrating with respect to the nine different types of commercial impregnated charcoals tested in backup collection beds. Two types of silver-nitrate-coated adsorption materials behaved similarly to the charcoals. Silver-exchanged type 13-X molecular sieve adsorbers were 20 to 50 times more efficient for adsorbing the highly penetrating iodine, but not as efficient as normally found for collecting methyl iodide. The chemical form of the highly penetrating iodine was not determined. When the moist air velocity was decreased from 28.5 fpm (25 0 C) to as low as 0.71 fpm (25 0 C), the charcoal bed temperature rose slowly and reached the ignition temperature in three of the experiments. At 0.71 fpm (25 0 C) the ignited charcoal beds reached maximum temperatures of 430 to 470 0 C because of the limited oxygen supply. The charcoal exposed for four years at Oak Ridge ignited at 283 0 C compared with 368 0 C for unused charcoal from the same batch. Two of the experiments used charcoal containing 1 or 2 percent TEDA (triethylene-diamine) and a proprietary flame retardant. The oxidation and ignition behavior of these charcoals did not appear to be affected adversely by the presence of the TEDA

  18. A comparison of whole body vibration and moist heat on lower extremity skin temperature and skin blood flow in healthy older individuals.

    Science.gov (United States)

    Lohman, Everett B; Sackiriyas, Kanikkai Steni Balan; Bains, Gurinder S; Calandra, Giovanni; Lobo, Crystal; Nakhro, Daniel; Malthankar, Gauri; Paul, Sherwine

    2012-07-01

    Tissue healing is an intricate process that is regulated by circulation. Heat modalities have been shown to improve skin circulation. Recent research supports that passive vibration increases circulation without risk of burns. Study purpose is to compare and determine effects of short duration vibration, moist heat, and a combination of the two on skin blood flow (SBF) and skin temperature (ST) in elderly, non-diabetic individuals following short-term exposure. Ten subjects, 3 female and 7 male (55-73 years of age), received two interventions over three days: 1--Active vibration, 2--passive vibration, 3--moist heat, 4--moist heat combined with passive vibration (MHPV), 5--a commercial massaging heating pad, and 6--no intervention. SBF and ST were measured using a MOOR Laser Doppler before and after the intervention and the third measurement were taken 10 minutes following. Mean SBF following a ten-minute intervention were significantly different in the combination of moist heat and passive vibration from the control, active vibration, and the commercial massaging heating pad. Compared to baseline measurements, this resulted in mean SBF elevation to 450% (at conclusion of 10 minutes of intervention) and 379% (10 minutes post). MHPV (p=0.02) showed significant changes in ST from the commercial massaging heating pad, passive vibration, and active vibration interventions. SBF in the lower legs showed greatest increase with MHPV. Interventions should be selected that are low risk while increasing lower extremity skin blood flow.

  19. Dynamics of acoustic-convective drying of sunflower cake

    Science.gov (United States)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  20. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    Science.gov (United States)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  1. Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region

    Energy Technology Data Exchange (ETDEWEB)

    Virts, Katrina S.; Houze, Robert A.

    2016-12-01

    Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Pre-monsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do pre-monsoon MCSs. During the monsoon season, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60 day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeast over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.

  2. Might electrical earthing affect convection of light

    International Nuclear Information System (INIS)

    Budrikis, Z.L.

    1982-01-01

    Partial convection of light by moving media was predicted by Fresnel and verified by Fizeau, Zeeman and others. It is accepted as an important argument in favour of the Special Theory of Relativity. The suggestion is made here that the convection is partial only when the propagating medium is moved with respect to its electrically earthed surroundings and that it would be total if an earthed shield was co-moving with the medium. This is based on a reinterpretation of Maxwell's equations wherein they are seen as macroscopic relationships that are in each case valid only in respect of a particular inertial frame of reference, the local electrical earth frame. (Auth.)

  3. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  4. The pattern of convection in the Sun

    International Nuclear Information System (INIS)

    Weiss, N.O.

    1976-01-01

    The structure of solar magnetic fields is dominated by the effects of convection, which should be incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the structure of main sequence stars, a better description of convection is needed for any detailed dynamo model. Recent work on nonlinear convection at low Prandt numbers is reviewed. There has been some progress towards a theory of compressible convection, though there is still no firm theoretical evidence for cells with scales less than the depth of the convecting layer. However, it remains likely that the pattern of solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these cells are briefly considered. (Auth.)

  5. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...

  6. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  7. Extended Subadiabatic Layer in Simulations of Overshooting Convection

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Petri J.; Arlt, Rainer [Leibniz-Institut für Astrophysik, An der Sternwarte 16, D-14482 Potsdam (Germany); Rheinhardt, Matthias; Käpylä, Maarit J.; Olspert, Nigul [ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto (Finland); Brandenburg, Axel [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Lagg, Andreas; Warnecke, Jörn [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-08-20

    We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the Schwarzschild criterion while the enthalpy flux is outward directed. This occurs when the heat conduction profile at the bottom of the CZ is smoothly varying, based either on a Kramers-like opacity prescription as a function of temperature and density or a static profile of a similar shape. We show that the subadiabatic layer arises due to nonlocal energy transport by buoyantly driven downflows in the upper parts of the CZ. Analysis of the force balance of the upflows and downflows confirms that convection is driven by cooling at the surface. We find that the commonly used prescription for the convective enthalpy flux being proportional to the negative entropy gradient does not hold in the stably stratified layers where the flux is positive. We demonstrate the existence of a non-gradient contribution to the enthalpy flux, which is estimated to be important throughout the convective layer. A quantitative analysis of downflows indicates a transition from a tree-like structure where smaller downdrafts merge into larger ones in the upper parts to a structure in the deeper parts where a height-independent number of strong downdrafts persist. This change of flow topology occurs when a substantial subadiabatic layer is present in the lower part of the CZ.

  8. Quantitative determination of the specific heat and the glass transition of moist samples by temperature modulated differential scanning calorimetry.

    Science.gov (United States)

    Schubnell, M; Schawe, J E

    2001-04-17

    In differential scanning calorimetry (DSC), remnant moisture loss in samples often overlaps and distorts other thermal events, e.g. glass transitions. To separate such overlapping processes, temperature modulated DSC (TMDSC) has been widely used. In this contribution we discuss the quantitative determination of the heat capacity of a moist sample from TMDSC measurements. The sample was a spray-dried pharmaceutical compound run in different pans (hermetically-sealed pan, pierced lid pan [50 microm] and open pan). The apparent heat capacity was corrected for the remaining amount of moisture. Using this procedure we could clearly identify the glass transition of the dry and the moist sample. We found that a moisture content of about 6.2% shifts the glass transition by about 50 degrees C.

  9. Mixed convection between horizontal plates and consequences for chemical vapor deposition flows

    International Nuclear Information System (INIS)

    Chiu, K.C.

    1986-01-01

    To simulate the fluid dynamics of VD systems, mixed convection between horizontal plates (AR = width/height = 10) heated from below was studied by laser Doppler anemometry in a range 1368 < Ra < 8300 and 15 < R3 < 170. The entrance effects were characterized by two lengths: one for the onset of bouyancy-driven instability, and one for the full development of longitudinal convection rolls. Explicit expressions for both entrance lengths are given in terms of Ra and Re. In addition, unsteady longitudinal convection rolls were observed. These are discussed in terms of the admixture of transverse convection rolls and/or contributions from upstream turbulence. For the fully developed region it is shown analytically that the transverse velocities of the longitudinal convection rolls, v and w, are independent of the forced flow and are identical to those of the two-dimensional Rayleigh-Benard convection rolls. These fundamental results serve as a base for the discussion of horizontal CVD flows. The entrance and sidewall effects are found to have pronounced influences on the flow patterns observed in CVD (AR = 2) reactors

  10. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  11. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  12. RESPON IMUNITAS BENIH LOBSTER, Panulirus homarus DENGAN PENGGUNAAN PROBIOTIK PADA PAKAN MOIST

    Directory of Open Access Journals (Sweden)

    Haryanti Haryanti

    2017-05-01

    Full Text Available Pemeliharaan benih lobster P. homarus masih menghadapi beberapa permasalahan, di antaranya infeksi penyakit bakteri (red body disease dan mortalitas yang tinggi. Tujuan penelitian ini adalah untuk mengkaji respons imunitas benih lobster P. homarus yang diberi pakan pelet basah (moist diets dengan penambahan probiotik. Pemeliharaan benih lobster dilakukan secara individu (1 ekor/keranjang. Lama pemeliharaan selama tiga bulan. Bobot awal puerulus P. homarus adalah 0,37 ± 0,05 g. Perlakuan meliputi pemberian pakan moist yang ditambahkan (A ragi Saccharomyces cerevisiae, (B kombinasi probiotik, Alteromonas sp. BY-9 dan Bacillus cereus BC, dan (C tanpa probiotik. Respons imunitas dianalisis dengan RT-qPCR melalui tujuh gen target terkait ekspresi imunitas, setelah diuji tantang dengan Vibrio harveyi (penyebab red body disease. Hasil penelitian menunjukkan bahwa sintasan benih lobster sebesar (A 32,22%; (B 29,63%; dan (C 33,33%. Pertumbuhan panjang dan bobot benih lobster tidak berbeda nyata (P>0,05. Respons imunitas benih lobster P. homarus pada perlakuan A dan B menunjukkan nilai ekspresi imun yang lebih tinggi dibandingkan dengan perlakuan C (tanpa probiotik. Ekspresi gen penyandi anti lipopolisakarida (ALFHa-1 meningkat pada (A rata-rata sebesar 3,44 kali dan (B 3,25 kali dibandingkan dengan perlakuan C (2,43 kali. Kelipatan ekspresi profenoloksidase (proPO benih lobster meningkat pada perlakuan A (penambahan ragi rata-rata sebesar 5,27 kali, sedangkan pada perlakuan B (kombinasi probiotik sebesar 12,92 kali. Ekspresi Clotting sistem (transglutaminase, clotting protein dan antioxidant defense mechanism (glutathione peroxidase/GPO dan SAA juga mengalami peningkatan pada perlakuan A dan B. A number of contrains including disease infections and significant mortality have been occurring in lobster aquaculture. The aim of this research was to observe the immune response of juvenile lobster P. homarus culture fed by moist pellet supplemented with

  13. Free-Tropospheric Moisture Convergence and Tropical Convective Regimes

    Science.gov (United States)

    Masunaga, H.

    2014-12-01

    It is known that quiescent periods with only shallow cumuli prevalent are frequently observed even in the deep Tropics, which is considered from the climatological perspectives as an area harboring vigorous deep convection. It is argued in this work that the free-tropospheric (FT) moisture convergence is a crucial factor for separating the stable maintenance of isolated shallow cumuli in the quiescent periods from the self-sustaining growth of organized convective systems in the dynamic periods over tropical oceans. The analysis is based on a variety of satellite measurements including Aqua AIRS T and q soundings and QuikSCAT surface wind, composited with reference to the time before or after the occurrence of precipitating clouds detected by TRMM PR. The FT moisture convergence and updraft moisture flux at cloud base are then derived from this dataset under large-scale moisture budget constraint (see Figure). Free-tropospheric precipitation efficiency (FTPE), or the ratio of precipitation to updraft moisture flux at cloud base, is introduced as a measure of convective intensity (rather than the population) over the large-scale domain. The following hypothesis is discussed in light of the analysis results. Isolated shallow cumuli would stay shallow when large-scale FT moisture is diverging (although moisture is weakly converging when integrated over the whole troposphere) since an increase in cumulus population would be counteracted by an additional moisture divergence in the FT. When large-scale FT convergence is positive, in contrast, developing clouds would induce a more moisture input and allow an unstable growth to a highly organized convective system. Zero FT moisture convergence may serve as the neutrality separating the negative feedback acting in the quiescent regime from the positive feedback instrumental for the dynamic regime.

  14. Sunspots and the physics of magnetic flux tubes. VI - Convective propulsion. VII - Heat flow in a convective downdraft

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    The effect of negative aerodynamic drag in an ideal fluid subject to convective instability is considered. It is shown that a cylinder moving in such a fluid is propelled forward in its motion by the convective forces and that the characteristic acceleration time is comparable to the onset time of convective motions in the fluid. It is suggested that convective propulsion plays an important role in the dynamics of flux tubes extending through the surface of the sun. The suppression of the upward heat flow in a Boussinesq convective cell with free upper and lower boundaries by a downdraft is then analyzed. Application to the solar convection zone indicates that downdrafts of 1 to 2 km/s at depths of 1000 to 4000 km beneath the visible surface of the sun are sufficient to reduce the upward heat flux to a small fraction of the ambient value.

  15. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.

    Science.gov (United States)

    Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.

    2017-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF

  16. A perturbational h4 exponential finite difference scheme for the convective diffusion equation

    International Nuclear Information System (INIS)

    Chen, G.Q.; Gao, Z.; Yang, Z.F.

    1993-01-01

    A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic

  17. Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of

  18. An experimental study of mixed convection

    International Nuclear Information System (INIS)

    Saez, Manuel

    1998-01-01

    The aim of our study is to establish a reliable data base for improving thermal-hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re=10"3 to 6*10"4 and Ri=10"-"4 to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed data base of turbulent mixed flow of free and forced convection. Part II presents the installation and the calibration system intended for probes calibration. Part III describes the measurement technique (constant-temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part IV relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part V presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the flow structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part V gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author) [fr

  19. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    AMSU-B brings out intense convection as a large depression of BTs (< 50K) at 150/176 GHz, cirrus and moist bands at 180/182 GHz. Mesoscale convection lines within WDs that last short time are shown here for the first time only in the AMSU-B images. Large-scale cirrus features are separated using the á trous wavelet ...

  1. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  2. Natural convection heat transfer from a horizontal cylinder in liquid sodium. Pt. 2. Generalized correlation for laminar natural convection heat transfer

    International Nuclear Information System (INIS)

    Hata, K.; Takeuchi, Y.

    1999-01-01

    For pt.I see ibid., vol.193, p.105-18, 1999. Rigorous numerical solution of natural convection heat transfer, from a horizontal cylinder with uniform surface heat flux or with uniform surface temperature, to liquid sodium was derived by solving the fundamental equations for laminar natural convection heat transfer without the boundary layer approximation. It was made clear that the local and average Nusselt numbers experimentally obtained and reported in part 1 of this paper were described well by the numerical solutions for uniform surface heat fluxes, but that those for uniform surface temperatures could not describe the angular distribution of the local Nusselt numbers and about 10% underpredicted the average Nusselt numbers. Generalized correlation for natural convection heat transfer from a horizontal cylinder with a uniform surface heat flux in liquid metals was presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. It was confirmed that the correlation can describe the authors' and other workers' experimental data on horizontal cylinders in various kinds of liquid metals for a wide range of Rayleigh numbers. Another correlation for a horizontal cylinder with a uniform surface temperature in liquid metals, which may be applicable for special cases such as natural convection heat transfer in a sodium-to-sodium heat exchanger etc. was also presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. These correlations can also describe the rigorous numerical solutions for non-metallic liquids and gases for the Prandtl numbers up to 10. (orig.)

  3. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  4. Alteration in contractile G-protein coupled receptor expression by moist snuff and nicotine in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang-Bao; Edvinsson, Lars

    2011-01-01

    The cardiovascular risk for users of use of Swedish snus/American snuff (moist tobacco) has been debated for a long time. The present study was designed to examine the effects of water- or lipid-soluble (DMSO-soluble) snus and nicotine, the most important substance in tobacco, on the expression...... kinases (MAPK). However, the effects of moist tobacco on the expression of GPCR are less studied. Rat middle cerebral arteries were isolated and organ cultured in serum-free medium for 24h in the presence of water-soluble snus (WSS), DMSO-soluble snus (DSS), or nicotine. The dose of snus and nicotine...... was kept at plasma level of snus users (25ng nicotine/ml). A high dose (250ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET(B) receptor agonist sarafotoxin 6c, 5-HT(1B) receptor agonist...

  5. Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images.

    Science.gov (United States)

    Xiangming Xiao; Stephen Hagen; Qingyuan Zhang; Michael Keller; Berrien Moore III

    2006-01-01

    Leaf phenology of tropical evergreen forests affects carbon and water fluxes. In an earlier study of a seasonally moist evergreen tropical forest site in the Amazon basin, time series data of Enhanced Vegetation Index (EVI) from the VEGETATION and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors showed an unexpected seasonal pattern, with higher EVI in the...

  6. Ten Year Analysis of Tropopause-Overshooting Convection Using GridRad Data

    Science.gov (United States)

    Cooney, John W.; Bowman, Kenneth P.; Homeyer, Cameron R.; Fenske, Tyler M.

    2018-01-01

    Convection that penetrates the tropopause (overshooting convection) rapidly transports air from the lower troposphere to the lower stratosphere, potentially mixing air between the two layers. This exchange of air can have a substantial impact on the composition, radiation, and chemistry of the upper troposphere and lower stratosphere (UTLS). In order to improve our understanding of the role convection plays in the transport of trace gases across the tropopause, this study presents a 10 year analysis of overshooting convection for the eastern two thirds of the contiguous United States for March through August of 2004 to 2013 based on radar observations. Echo top altitudes are estimated at hourly intervals using high-resolution, three-dimensional, gridded, radar reflectivity fields created by merging observations from available radars in the National Oceanic and Atmospheric Administration Next Generation Weather Radar (NEXRAD) network. Overshooting convection is identified by comparing echo top altitudes with tropopause altitudes derived from the ERA-Interim reanalysis. It is found that overshooting convection is most common in the central United States, with a weak secondary maximum along the southeast coast. The maximum number of overshooting events occur consistently between 2200 and 0200 UTC. Most overshooting events occur in May, June, and July when convection is deepest and the tropopause altitude is relatively low. Approximately 45% of the analyzed overshooting events (those with echo tops at least 1 km above the tropopause) have echo tops extending above the 380 K level into the stratospheric overworld.

  7. An infinite-dimensional model of free convection

    Energy Technology Data Exchange (ETDEWEB)

    Iudovich, V.I. (Rostovskii Gosudarstvennyi Universitet, Rostov-on-Don (USSR))

    1990-12-01

    An infinite-dimensional model is derived from the equations of free convection in the Boussinesq-Oberbeck approximation. The velocity field is approximated by a single mode, while the heat-conduction equation is conserved fully. It is shown that, for all supercritical Rayleigh numbers, there exist exactly two secondary convective regimes. The case of ideal convection with zero viscosity and thermal conductivity is examined. The averaging method is used to study convection regimes at high Reynolds numbers. 10 refs.

  8. MERRA 3D IAU Diagnostic, Moist Physics, Diurnal (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATUCPMST or tavgU_3d_mst_Cp data product is the MERRA Data Assimilation System 3-Dimensional moist process diagnostic that is time averaged on pressure levels...

  9. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  10. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  11. Assessment of RANS and LES Turbulence Modeling for Buoyancy-Aided/Opposed Forced and Mixed Convection

    Science.gov (United States)

    Clifford, Corey; Kimber, Mark

    2017-11-01

    Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.

  12. A shallow convection parameterization for the non-hydrostatic MM5 mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, N.L.; Kain, J.S.; Deng, A. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    A shallow convection parameterization suitable for the Pennsylvannia State University (PSU)/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) is being developed at PSU. The parameterization is based on parcel perturbation theory developed in conjunction with a 1-D Mellor Yamada 1.5-order planetary boundary layer scheme and the Kain-Fritsch deep convection model.

  13. A convection-allowing ensemble forecast based on the breeding growth mode and associated optimization of precipitation forecast

    Science.gov (United States)

    Li, Xiang; He, Hongrang; Chen, Chaohui; Miao, Ziqing; Bai, Shigang

    2017-10-01

    A convection-allowing ensemble forecast experiment on a squall line was conducted based on the breeding growth mode (BGM). Meanwhile, the probability matched mean (PMM) and neighborhood ensemble probability (NEP) methods were used to optimize the associated precipitation forecast. The ensemble forecast predicted the precipitation tendency accurately, which was closer to the observation than in the control forecast. For heavy rainfall, the precipitation center produced by the ensemble forecast was also better. The Fractions Skill Score (FSS) results indicated that the ensemble mean was skillful in light rainfall, while the PMM produced better probability distribution of precipitation for heavy rainfall. Preliminary results demonstrated that convection-allowing ensemble forecast could improve precipitation forecast skill through providing valuable probability forecasts. It is necessary to employ new methods, such as the PMM and NEP, to generate precipitation probability forecasts. Nonetheless, the lack of spread and the overprediction of precipitation by the ensemble members are still problems that need to be solved.

  14. Impact of Moist Physics Complexity on Tropical Cyclone Simulations from the Hurricane Weather Research and Forecast System

    Science.gov (United States)

    Kalina, E. A.; Biswas, M.; Newman, K.; Grell, E. D.; Bernardet, L.; Frimel, J.; Carson, L.

    2017-12-01

    The parameterization of moist physics in numerical weather prediction models plays an important role in modulating tropical cyclone structure, intensity, and evolution. The Hurricane Weather Research and Forecast system (HWRF), the National Oceanic and Atmospheric Administration's operational model for tropical cyclone prediction, uses the Scale-Aware Simplified Arakawa-Schubert (SASAS) cumulus scheme and a modified version of the Ferrier-Aligo (FA) microphysics scheme to parameterize moist physics. The FA scheme contains a number of simplifications that allow it to run efficiently in an operational setting, which includes prescribing values for hydrometeor number concentrations (i.e., single-moment microphysics) and advecting the total condensate rather than the individual hydrometeor species. To investigate the impact of these simplifying assumptions on the HWRF forecast, the FA scheme was replaced with the more complex double-moment Thompson microphysics scheme, which individually advects cloud ice, cloud water, rain, snow, and graupel. Retrospective HWRF forecasts of tropical cyclones that occurred in the Atlantic and eastern Pacific ocean basins from 2015-2017 were then simulated and compared to those produced by the operational HWRF configuration. Both traditional model verification metrics (i.e., tropical cyclone track and intensity) and process-oriented metrics (e.g., storm size, precipitation structure, and heating rates from the microphysics scheme) will be presented and compared. The sensitivity of these results to the cumulus scheme used (i.e., the operational SASAS versus the Grell-Freitas scheme) also will be examined. Finally, the merits of replacing the moist physics schemes that are used operationally with the alternatives tested here will be discussed from a standpoint of forecast accuracy versus computational resources.

  15. Natural convection in superposed fluid-porous layers

    CERN Document Server

    Bagchi, Aniruddha

    2013-01-01

    Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.

  16. Radar Observations of Convective Systems from a High-Altitude Aircraft

    Science.gov (United States)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations

  17. Primary Issues of Mixed Convection Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.

  18. Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign

    Directory of Open Access Journals (Sweden)

    R. C. Braga

    2017-06-01

    Full Text Available The objective of this study is to validate parameterizations that were recently developed for satellite retrievals of cloud condensation nuclei supersaturation spectra, NCCN(S, at cloud base alongside more traditional parameterizations connecting NCCN(S with cloud base updrafts and drop concentrations. This was based on the HALO aircraft measurements during the ACRIDICON–CHUVA campaign over the Amazon region, which took place in September 2014. The properties of convective clouds were measured with a cloud combination probe (CCP, a cloud and aerosol spectrometer (CAS-DPOL, and a CCN counter onboard the HALO aircraft. An intercomparison of the cloud drop size distributions (DSDs and the cloud water content (CWC derived from the different instruments generally shows good agreement within the instrumental uncertainties. To this end, the directly measured cloud drop concentrations (Nd near cloud base were compared with inferred values based on the measured cloud base updraft velocity (Wb and NCCN(S spectra. The measurements of Nd at cloud base were also compared with drop concentrations (Na derived on the basis of an adiabatic assumption and obtained from the vertical evolution of cloud drop effective radius (re above cloud base. The measurements of NCCN(S and Wb reproduced the observed Nd within the measurements uncertainties when the old (1959 Twomey's parameterization was used. The agreement between the measured and calculated Nd was only within a factor of 2 with attempts to use cloud base S, as obtained from the measured Wb, Nd, and NCCN(S. This underscores the yet unresolved challenge of aircraft measurements of S in clouds. Importantly, the vertical evolution of re with height reproduced the observation-based nearly adiabatic cloud base drop concentrations, Na. The combination of these results provides aircraft observational support for the various components of the satellite-retrieved methodology that was recently developed to

  19. Effect of an isolated elliptical terrain (Jeju Island on rainfall enhancement in a moist environment

    Directory of Open Access Journals (Sweden)

    Keun-OK Lee

    2014-03-01

    Full Text Available A series of idealised experiments using a cloud-resolving storm simulator (CReSS was performed to investigate the effects of the isolated elliptically shaped terrain of Jeju Island (oriented east–west, southern Korea, on the enhancement of pre-existing rainfall systems under the influence of prevailing southwesterly moist flows. Control parameters were the low-altitude wind speed (Froude numbers: 0.2, 0.4, 0.55 and the initial location of the elongated (oriented north–east rainfall system (off the northwestern or western shores of the island. Simulations were conducted for all combinations of initial location and wind regime. Overall, results indicate that weak southwesterlies flowing around the steep mountain on the island (height, 2 km generate two local convergences, on the northern lateral side and on the lee side of the island, both in regions of moist environments, thus producing conditions favourable for enhanced rainfall. As an eastward-moving rainfall system approaches the northwestern shore of the island, the southwesterlies at low altitudes accelerate between the system and the terrain, generating a local updraft region that causes rainfall enhancement onshore in advance of the system's arrival over the terrain. Thus, the prevailing southwesterlies at low altitudes that are parallel to the terrain are a crucial element for the enhancement. Relatively weak southwesterlies at low altitudes allow system enhancement on the lee side by generating a convergence of relatively weak go-around northwesterlies from the northern island and relatively strong moist southwesterlies from the southern island, thus producing a relatively long-lived rainfall system. As the southwesterlies strengthen, a dry descending air mass intensifies on the northeastern downwind side of the terrain, rapidly dissipating rainfall and resulting in a relatively short-lived rainfall system. A coexisting terrain-generated local convergence, combined with the absence

  20. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  1. An application of the unifying theory of thermal convection in vertical natural convection

    Science.gov (United States)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2014-11-01

    Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.

  2. Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores

    Science.gov (United States)

    Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David

    2017-10-01

    Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.

  3. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  4. Strong convective storm nowcasting using a hybrid approach of convolutional neural network and hidden Markov model

    Science.gov (United States)

    Zhang, Wei; Jiang, Ling; Han, Lei

    2018-04-01

    Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.

  5. Deriving Global Convection Maps From SuperDARN Measurements

    Science.gov (United States)

    Gjerloev, J. W.; Waters, C. L.; Barnes, R. J.

    2018-04-01

    A new statistical modeling technique for determining the global ionospheric convection is described. The principal component regression (PCR)-based technique is based on Super Dual Auroral Radar Network (SuperDARN) observations and is an advanced version of the PCR technique that Waters et al. (https//:doi.org.10.1002/2015JA021596) used for the SuperMAG data. While SuperMAG ground magnetic field perturbations are vector measurements, SuperDARN provides line-of-sight measurements of the ionospheric convection flow. Each line-of-sight flow has a known azimuth (or direction), which must be converted into the actual vector flow. However, the component perpendicular to the azimuth direction is unknown. Our method uses historical data from the SuperDARN database and PCR to determine a fill-in model convection distribution for any given universal time. The fill-in data process is driven by a list of state descriptors (magnetic indices and the solar zenith angle). The final solution is then derived from a spherical cap harmonic fit to the SuperDARN measurements and the fill-in model. When compared with the standard SuperDARN fill-in model, we find that our fill-in model provides improved solutions, and the final solutions are in better agreement with the SuperDARN measurements. Our solutions are far less dynamic than the standard SuperDARN solutions, which we interpret as being due to a lack of magnetosphere-ionosphere inertia and communication delays in the standard SuperDARN technique while it is inherently included in our approach. Rather, we argue that the magnetosphere-ionosphere system has inertia that prevents the global convection from changing abruptly in response to an interplanetary magnetic field change.

  6. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  7. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  8. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin

    2013-01-01

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept

  9. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  10. Constraining storm-scale forecasts of deep convective initiation with surface weather observations

    Science.gov (United States)

    Madaus, Luke

    Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics

  11. Overview of the Deep Convective Clouds and Chemistry Experiment

    Science.gov (United States)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Flocke, F. M.; Huntrieser, H.

    2012-12-01

    The Deep Convective Clouds and Chemistry (DC3) project conducted a 7-week field campaign during May and June 2012 to study thunderstorm dynamical, physical, and electrical characteristics, as well as their effects on the atmosphere's composition, especially ozone and particles in the climate-sensitive upper troposphere near the thunderstorm tops. The NSF/NCAR Gulfstream V (GV) and the NASA DC-8 aircraft flew 17 coordinated flights to sample low-level inflow and upper troposphere outflow air near thunderstorms and to sample convective outflow air as it chemically aged during the next 24 hours. The DLR Falcon aircraft observed the fresh storm outflow and also obtained measurements of aged outflow. In total, 19 cases of active thunderstorms and over 6 cases of photochemical aging were flown. The DC3 aircraft, based in Salina, Kansas, were equipped with instruments to measure a variety of gases, aerosols, and cloud particle characteristics in situ as well as the NASA DC-8 measuring the ozone and aerosol distribution by lidar. The aircraft targeted storms predicted to occur within range of coverage by ground-based radar pairs, lightning mapping arrays (LMAs), and frequent launches of balloon-borne instruments that could measure the storm's physical, kinematic, and lightning characteristics. This coverage occurred in three regions: 1) northeastern Colorado, 2) central Oklahoma to western Texas, and 3) northern Alabama. DC3 demonstrated that it is possible to sample with two aircraft the inflow and outflow of storms, which were simultaneously sampled by the ground radars, LMAs, and soundings. The DC3 data set is extensive and rich. This presentation will summarize the overall statistics of the DC3 measurements giving a general idea of storm characteristics, transport of trace gases, and photochemical aging of species. Examples will be given of specific thunderstorm cases, including a Colorado case where a biomass-burning plume was ingested by a storm, and of sampling a

  12. Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes

    International Nuclear Information System (INIS)

    Hammouda, I.; Mihoubi, D.

    2014-01-01

    Highlights: • Modelling of drying of deformable media. • Theoretical study of kaolin clay with three drying methods: convective, convective–microwave and convective infrared mode. • The stresses generated during convective, microwave/convective drying and infrared/convective drying. • The combined drying decrease the intensity of stresses developed during drying. - Abstract: A mathematical model is developed to simulate the response of a kaolin clay sample when subjected to convective, convective–microwave and convective–infrared mode. This model is proposed to describe heat, mass, and momentum transfers applied to a viscoelastic medium described by a Maxwell model with two branches. The combined drying methods were investigated to examine whether these types of drying may minimize cracking that can be generated in the product and to know whether the best enhancement is developed by the use of infra-red or microwave radiation. The numerical code allowed us to determine, and thus, compare the effect of the drying mode on drying rate, temperature, moisture content and mechanical stress evolutions during drying. The numerical results show that the combined drying decrease the intensity of stresses developed during drying and that convective–microwave drying is the best method that gives a good quality of dried product

  13. Comparison of ethanol hand sanitizer versus moist towelette packets for mealtime patient hand hygiene.

    Science.gov (United States)

    Rai, Herleen; Knighton, Shanina; Zabarsky, Trina F; Donskey, Curtis J

    2017-09-01

    To facilitate patient hand hygiene, there is a need for easy-to-use products. In a survey of 100 patients, a single-use ethanol hand sanitizer packet took less time to access than a single-use moist towelette packet (3 vs 23 seconds) and was preferred by 74% of patients for mealtime hand hygiene. Performance of patient hand hygiene increased when a reminder was provided at the time of meal tray delivery. Published by Elsevier Inc.

  14. Convectively Driven Tropopause-Level Cooling and Its Influences on Stratospheric Moisture

    Science.gov (United States)

    Kim, Joowan; Randel, William J.; Birner, Thomas

    2018-01-01

    Characteristics of the tropopause-level cooling associated with tropical deep convection are examined using CloudSat radar and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Extreme deep convection is sampled based on the cloud top height (>17 km) from CloudSat, and colocated temperature profiles from COSMIC are composited around the deep convection. Response of moisture to the tropopause-level cooling is also examined in the upper troposphere and lower stratosphere using microwave limb sounder measurements. The composite temperature shows an anomalous warming in the troposphere and a significant cooling near the tropopause (at 16-19 km) when deep convection occurs over the western Pacific, particularly during periods with active Madden-Julian Oscillation (MJO). The composite of the tropopause cooling has a large horizontal scale ( 6,000 km in longitude) with minimum temperature anomaly of -2 K, and it lasts more than 2 weeks with support of mesoscale convective clusters embedded within the envelope of the MJO. The water vapor anomalies show strong correlation with the temperature anomalies (i.e., dry anomaly in the cold anomaly), showing that the convectively driven tropopause cooling actively dehydrate the lower stratosphere in the western Pacific region. The moisture is also affected by anomalous Matsuno-Gill-type circulation associated with the cold anomaly, in which dry air spreads over a wide range in the tropical tropopause layer (TTL). These results suggest that convectively driven tropopause cooling and associated transient circulation play an important role in the large-scale dehydration process in the TTL.

  15. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  16. Wavelet Scale Analysis of Mesoscale Convective Systems for Detecting Deep Convection From Infrared Imagery

    Science.gov (United States)

    Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.

    2018-03-01

    Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.

  17. Heat Transfer Correlations for Free Convection from Suspended Microheaters

    Directory of Open Access Journals (Sweden)

    David GOSSELIN

    2016-08-01

    Full Text Available Portability and autonomy for biomedical diagnostic devices are two rising requirements. It is recognized that low-energy heating of such portable devices is of utmost importance for molecular recognition. This work focuses on screen-printed microheaters based on on Joule effect, which constitute an interesting solution for low-energy heating. An experimental study of the natural convection phenomena occurring with such microheaters is conducted. When they are suspended in the air, and because of the thinness of the supporting film, it is shown that the contributions of both the upward and downward faces have to be taken into account. A total Nusselt number and a total convective heat transfer coefficient have been used to describe the natural convection around these microheaters. In addition a relation between the Nusselt number and the Rayleigh number is derived, leading to an accurate prediction of the heating temperature (MRE< 2 %.

  18. Electromagnetic aquametry electromagnetic wave interaction with water and moist substances

    CERN Document Server

    Kupfer, Klaus

    2006-01-01

    This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.

  19. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  20. Numerical simulations of convectively excited gravity waves

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1983-01-01

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  1. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    Science.gov (United States)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  2. Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Chaboyer, Brian, E-mail: gregory.a.feiden@gmail.com, E-mail: brian.chaboyer@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-07-01

    We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.

  3. Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Lokanath, E-mail: lxm971@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Cheung, Fan-Bill [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Bajorek, Stephen M.; Tien, Kirk; Hoxie, Chris L. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2017-02-15

    Highlights: • Investigated the heat transfer during mixed laminar convection in a rod bundle with linearly varying heat flux. • The Nusselt number increases downstream of the inlet with increasing Richardson number. • Developed an enhancement factor to account for the effects of mixed convection over the forced laminar heat transfer. - Abstract: Heat transfer by mixed convection in a rod bundle occurs when convection is affected by both the buoyancy and inertial forces. Mixed convection can be assumed when the Richardson number (Ri = Gr/Re{sup 2}) is on the order of unity, indicating that both forced and natural convection are important contributors to heat transfer. In the present study, data obtained from the Rod Bundle Heat Transfer (RBHT) facility was used to determine the heat transfer coefficient in the mixed convection regime, which was found to be significantly larger than those expected assuming purely forced convection based on the inlet flow rate. The inlet Reynolds (Re) number for the tests ranged from 500 to 1300, while the Grashof (Gr) number varied from 1.5 × 10{sup 5} to 3.8 × 10{sup 6} yielding 0.25 < Ri < 4.3. Using results from RBHT test along with the correlation from the FLECHT-SEASET test program for laminar forced convection, a new correlation ​is proposed for mixed convection in a rod bundle. The new correlation accounts for the enhancement of heat transfer relative to laminar forced convection.

  4. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.

    2017-08-01

    Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we

  5. Mantle Convection on Modern Supercomputers

    Science.gov (United States)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  6. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  7. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.

    Science.gov (United States)

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.

  8. Transient Mixed Convection Validation for NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [Utah State Univ., Logan, UT (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  9. Transient Mixed Convection Validation for NGNP

    International Nuclear Information System (INIS)

    Smith, Barton; Schultz, Richard

    2015-01-01

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  10. Mixing in heterogeneous internally-heated convection

    Science.gov (United States)

    Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.

    2017-12-01

    Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low

  11. Segregation and convection in dendritic alloys

    Science.gov (United States)

    Poirier, D. R.

    1990-01-01

    Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.

  12. Regional modelling of tracer transport by tropical convection – Part 1: Sensitivity to convection parameterization

    Directory of Open Access Journals (Sweden)

    J. Arteta

    2009-09-01

    Full Text Available The general objective of this series of papers is to evaluate long duration limited area simulations with idealised tracers as a tool to assess tracer transport in chemistry-transport models (CTMs. In this first paper, we analyse the results of six simulations using different convection closures and parameterizations. The simulations are using the Grell and Dévényi (2002 mass-flux framework for the convection parameterization with different closures (Grell = GR, Arakawa-Shubert = AS, Kain-Fritch = KF, Low omega = LO, Moisture convergence = MC and an ensemble parameterization (EN based on the other five closures. The simulations are run for one month during the SCOUT-O3 field campaign lead from Darwin (Australia. They have a 60 km horizontal resolution and a fine vertical resolution in the upper troposphere/lower stratosphere. Meteorological results are compared with satellite products, radiosoundings and SCOUT-O3 aircraft campaign data. They show that the model is generally in good agreement with the measurements with less variability in the model. Except for the precipitation field, the differences between the six simulations are small on average with respect to the differences with the meteorological observations. The comparison with TRMM rainrates shows that the six parameterizations or closures have similar behaviour concerning convection triggering times and locations. However, the 6 simulations provide two different behaviours for rainfall values, with the EN, AS and KF parameterizations (Group 1 modelling better rain fields than LO, MC and GR (Group 2. The vertical distribution of tropospheric tracers is very different for the two groups showing significantly more transport into the TTL for Group 1 related to the larger average values of the upward velocities. Nevertheless the low values for the Group 1 fluxes at and above the cold point level indicate that the model does not simulate significant overshooting. For stratospheric tracers

  13. 10,000 - A reason to study granular heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Einav, I.; Rognon, P.; Gan, Y.; Miller, T.; Griffani, D. [Particles and Grains Laboratory, School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia)

    2013-06-18

    In sheared granular media, particle motion is characterized by vortex-like structures; here this is demonstrated experimentally for disks system undergoing indefinite deformation during simple shear, as often imposed by the rock masses hosting earthquake fault gouges. In traditional fluids it has been known for years that vortices represent a major factor of heat transfer enhancement via convective internal mixing, but in analyses of heat transfer through earthquake faults and base planes of landslides this has been continuously neglected. Can research proceed by neglecting heat convection by internal mixing? Our answer is astonishingly far from being yes.

  14. Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere

    Science.gov (United States)

    Chen, Zhiyuan; Morita, Kazuki

    2018-06-01

    We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.

  15. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  16. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  17. THE EFFECT OF SOLAR RADIATION ON AUTOMOBILE ENVIRONMENT THROUGH NATURAL CONVECTION AND MIXED CONVECTION

    Directory of Open Access Journals (Sweden)

    MD. FAISAL KADER

    2012-10-01

    Full Text Available In the present paper, the effect of solar radiation on automobiles has been studied by both experimentally and numerically. The numerical solution is done by an operation friendly and fast CFD code – SC/Tetra with a full scale model of a SM3 car and turbulence is modeled by the standard k-ε equation. Numerical analysis of the three-dimensional model predicts a detailed description of fluid flow and temperature distribution in the passenger compartment during both the natural convection due to the incoming solar radiation and mixed convection due to the flow from defrost nozzle and radiation. It can be seen that solar radiation is an important parameter to raise the compartment temperature above the ambient temperature during summer. During natural convection, the rate of heat transfer is fast at the initial period. In the mixed convection analyses, it is found that the temperature drops down to a comfortable range almost linearly at the initial stage. Experimental investigations are performed to determine the temperature contour on the windshield and the local temperature at a particular point for further validation of the numerical results.

  18. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  19. What Determines Upscale Growth of Oceanic Convection into MCSs?

    Science.gov (United States)

    Zipser, E. J.

    2017-12-01

    Over tropical oceans, widely scattered convection of various depths may or may not grow upscale into mesoscale convective systems (MCSs). But what distinguishes the large-scale environment that favors such upscale growth from that favoring "unorganized", scattered convection? Is it some combination of large-scale low-level convergence and ascending motion, combined with sufficient instability? We recently put this to a test with ERA-I reanalysis data, with disappointing results. The "usual suspects" of total column water vapor, large-scale ascent, and CAPE may all be required to some extent, but their differences between large MCSs and scattered convection are small. The main positive results from this work (already published) demonstrate that the strength of convection is well correlated with the size and perhaps "organization" of convective features over tropical oceans, in contrast to tropical land, where strong convection is common for large or small convective features. So, important questions remain: Over tropical oceans, how should we define "organized" convection? By size of the precipitation area? And what environmental conditions lead to larger and better organized MCSs? Some recent attempts to answer these questions will be described, but good answers may require more data, and more insights.

  20. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    Science.gov (United States)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  1. Improved scheme for parametrization of convection in the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME)

    Science.gov (United States)

    Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta

    2015-04-01

    NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of

  2. Application of a serial extended forecast experiment using the ECMWF model to interpret the predictive skill of tropical intraseasonal variability

    Energy Technology Data Exchange (ETDEWEB)

    Agudelo, P.A.; Hoyos, C.D.; Webster, P.J.; Curry, J.A. [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States)

    2009-05-15

    The extended-range forecast skill of the ECMWF operational forecast model is evaluated during tropical intraseasonal oscillation (ISO) events in the Indo-West Pacific warm pool. The experiment consists of ensemble extended serial forecasts including winter and summer ISO cases. The forecasts are compared with the ERA-40 analyses. The analysis focuses on understanding the origin of forecast errors by studying the vertical structure of relevant dynamical and moist convective features associated with the ISO. The useful forecast time scale for circulation anomalies is in average 13 days during winter compared to 7-8 days during summer. The forecast skill is not stationary and presents evidence of a flow-dependent nature, with states of the coupled system corresponding to long-lived convective envelopes associated with the ISO for which the skill is always low regardless of the starting date of the forecast. The model is not able to forecast skillfully the generation of specific humidity anomalies and results indicate that the convective processes in the model are associated with the erosion of the ISO forecast skill in the model. Circulation-associated anomalies are forecast better than moist convective associated anomalies. The model tends to generate a more stable atmosphere, limiting the model's capability to reproduce deep convective events, resulting in smaller humidity and circulation anomalies in the forecasts compared to those in ERA-40. (orig.)

  3. Current advances in polymer electrolyte fuel cells based on the promotional role of under-rib convection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K.S. [Industrial Technology Cooperation Center, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Kim, B.G.; Park, K.; Kim, H.M. [Department of Mechanical Engineering and High Safety Vehicle Core Technology Research Center, INJE University, 607 Eobang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of)

    2012-12-15

    Literature data on the promotional role of under-rib convection for polymer electrolyte fuel cells (PEFCs) fueled by hydrogen and methanol are structured and analyzed, thus providing a guide to improving fuel cell performance through the optimization of flow field interaction. Data are presented for both physical and electrochemical performance showing reactant mass transport, electrochemical reaction, water behavior, and power density enhanced by under-rib convection. Performance improvement studies ranging from single cell to stack are presented for measuring the performance of real operating conditions and large-scale setups. The flow field optimization techniques by under-rib convection are derived from the collected data over a wide range of experiments and modeling studies with a variety of components including both single cell and stack arrangements. Numerical models for PEFCs are presented with an emphasis on mass transfer and electrochemical reaction inside the fuel cell. The models are primarily used here as a tool in the parametric analysis of significant design features and to permit the design of the experiment. Enhanced flow field design that utilizes the promotional role of under-rib convection can contribute to commercializing PEFCs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  5. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  6. Extensional basin evolution in the presence of small-scale convection

    DEFF Research Database (Denmark)

    Petersen, Kenni Dinesen; Nielsen, S.B.; Clausen, O.R.

    2011-01-01

    -steady-state. Extension of the convecting equilibrium model causes the formation of rifts or continental margins which, posterior to extension, cools and subsides as predicted by the plate model. However, in contrast to the plate model, the ascended asthenosphere is not instantaneously decoupled from the convecting upper...... mantle below, and cooling is thus not entirely conductive above the former base of the lithosphere. This causes significantly protracted cooling and subsidence.We show that our model features improved consistency with subsidence data from several rifted margins and intracontinental basins. Furthermore...

  7. Efficacy of vacuum assisted closure in management of open wounds as compared to moist wound dressing-experience at CMH rawalpindi

    International Nuclear Information System (INIS)

    Iqbal, M.N.; Sajid, M.T.; Ahmed, Z.; Iqbal, M.H.

    2016-01-01

    Objective: To compare the efficacy of vacuum assisted closure (VAC) therapy against regular moist wound dressings in reducing the surface area of open chronic wounds by at least 5 mm/sup 2/ in terms of early closure of wound. Study Design: Randomized controlled trail. Place and Duration of Study: This study was conducted at general surgery department CMH/MH Rawalpindi from Jun 2011 to Dec 2011 over a period of 06 months. Material and Methods: A total of 278 patients (139 in each group) were included in this study. Group A received VAC therapy while moist wound dressings applied in group B. Results: Mean age was 54.9 +-7.2 and 53.4 +- 8.9 years in group A and B, respectively (statistically insignificant (p=0.12). In group A, 96 patients (69.0 percent) and in group B 92 patients (66.2 percent) were male while 43 patients (31.0 percent) in group A and 47 patients (33.8 percent) in group B were female the difference being statistically insignificant (p=0.608). In group A, 63 (45.3 percent) patients showed significant reduction in the size of the wound while only 41 (29.5 percent) patients in group B had adequate wound healing at the end of 04 weeks, the difference being statistically significant (p=0.0064). Conclusion: VAC therapy decreases wound size more effectively than moist wound dressing technique. It definitely reduces hospital stay and ensures early return to work. (author)

  8. Mobile Disdrometer Observations of Nocturnal Mesoscale Convective Systems During PECAN

    Science.gov (United States)

    Bodine, D. J.; Rasmussen, K. L.

    2015-12-01

    Understanding microphysical processes in nocturnal mesoscale convective systems (MCSs) is an important objective of the Plains Elevated Convection At Night (PECAN) experiment, which occurred from 1 June - 15 July 2015 in the central Great Plains region of the United States. Observations of MCSs were collected using a large array of mobile and fixed instrumentation, including ground-based radars, soundings, PECAN Integrated Sounding Arrays (PISAs), and aircraft. In addition to these observations, three mobile Parsivel disdrometers were deployed to obtain drop-size distribution (DSD) measurements to further explore microphysical processes in convective and stratiform regions of nocturnal MCSs. Disdrometers were deployed within close range of a multiple frequency network of mobile and fixed dual-polarization radars (5 - 30 km range), and near mobile sounding units and PISAs. Using mobile disdrometer and multiple-wavelength, dual-polarization radar data, microphysical properties of convective and stratiform regions of MCSs are investigated. The analysis will also examine coordinated Range-Height Indicator (RHI) scans over the disdrometers to elucidate vertical DSD structure. Analysis of dense observations obtained during PECAN in combination with mobile disdrometer DSD measurements contributes to a greater understanding of the structural characteristics and evolution of nocturnal MCSs.

  9. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  10. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.

    1985-01-01

    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  11. Convectively-driven cold layer and its influences on moisture in the UTLS

    Science.gov (United States)

    Kim, J.; Randel, W. J.; Birner, T.

    2016-12-01

    Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.

  12. Changes of mycorrhizal colonization along moist gradient in a vineyard of Eger (Hungary

    Directory of Open Access Journals (Sweden)

    Donkó Ádám

    2014-11-01

    Full Text Available The role of mycorrhizal fungi has special importance in the case of low soil moisture because the colonization of vine roots by mycorrhiza increases water and nutrient uptake and thus aids the avoidance of biotic and abiotic stresses of grape. Our aim was to investigate in the Eger wine region the changes of mycorrhizal colonization, water potential, and yield quality and quantity of grape roots at three altitudes, along a changing soil moist gradient. Our results show that the degree of mycorrhizal colonization is higher in drier areas, which supports the water and nutrient uptake of the host plant.

  13. Simulating moist convection with a quasi-elastic sigma coordinate model

    CSIR Research Space (South Africa)

    Bopape, Mary-Jane M

    2012-09-01

    Full Text Available Cloud Resolving Models (CRMs) employ microphysics parameterisations which are grouped into bin and bulk approaches. Bulk Microphysics Parameterisation (BMP) schemes specify a functional form for the particle distribution and predict one or more...

  14. Convective equilibrium and mixing-length theory for stellarator reactors

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given

  15. Climatology and Impact of Convection on the Tropical Tropopause Layer

    Science.gov (United States)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  16. The Double ITCZ Syndrome in GCMs: A Coupled Problem among Convection, Atmospheric and Ocean Circulations

    Science.gov (United States)

    Zhang, G. J.; Song, X.

    2017-12-01

    The double ITCZ bias has been a long-standing problem in coupled atmosphere-ocean models. A previous study indicates that uncertainty in the projection of global warming due to doubling of CO2 is closely related to the double ITCZ biases in global climate models. Thus, reducing the double ITCZ biases is not only important to getting the current climate features right, but also important to narrowing the uncertainty in future climate projection. In this work, we will first review the possible factors contributing to the ITCZ problem. Then, we will focus on atmospheric convection, presenting recent progress in alleviating the double ITCZ problem and its sensitivity to details of convective parameterization, including trigger conditions for convection onset, convective memory, entrainment rate, updraft model and closure in the NCAR CESM1. These changes together can result in dramatic improvements in the simulation of ITCZ. Results based on both atmospheric only and coupled simulations with incremental changes of convection scheme will be shown to demonstrate the roles of convection parameterization and coupled interaction between convection, atmospheric circulation and ocean circulation in the simulation of ITCZ.

  17. Phenomenology of convection-parameterization closure

    Directory of Open Access Journals (Sweden)

    J.-I. Yano

    2013-04-01

    Full Text Available Closure is a problem of defining the convective intensity in a given parameterization. In spite of many years of efforts and progress, it is still considered an overall unresolved problem. The present article reviews this problem from phenomenological perspectives. The physical variables that may contribute in defining the convective intensity are listed, and their statistical significances identified by observational data analyses are reviewed. A possibility is discussed for identifying a correct closure hypothesis by performing a linear stability analysis of tropical convectively coupled waves with various different closure hypotheses. Various individual theoretical issues are considered from various different perspectives. The review also emphasizes that the dominant physical factors controlling convection differ between the tropics and extra-tropics, as well as between oceanic and land areas. Both observational as well as theoretical analyses, often focused on the tropics, do not necessarily lead to conclusions consistent with our operational experiences focused on midlatitudes. Though we emphasize the importance of the interplays between these observational, theoretical and operational perspectives, we also face challenges for establishing a solid research framework that is universally applicable. An energy cycle framework is suggested as such a candidate.

  18. Numerical Simulation of Water/Al2O3 Nanofluid Turbulent Convection

    Directory of Open Access Journals (Sweden)

    Vincenzo Bianco

    2010-01-01

    Full Text Available Turbulent forced convection flow of a water-Al2O3 nanofluid in a circular tube subjected to a constant and uniform temperature at the wall is numerically analyzed. The two-phase mixture model is employed to simulate the nanofluid convection, taking into account appropriate thermophysical properties. Particles are assumed spherical with a diameter equal to 38 nm. It is found that convective heat transfer coefficient for nanofluids is greater than that of the base liquid. Heat transfer enhancement is increasing with the particle volume concentration and Reynolds number. Comparisons with correlations present in the literature are accomplished and a very good agreement is found with Pak and Cho (1998. As for the friction factor, it shows a good agreement with the classical correlation used for normal fluid, such as Blasius formula.

  19. Assessing Intraseasonal Variability Produced by Several Deep Convection Schemes in the NCAR CCM3.6

    Science.gov (United States)

    Maloney, E. D.

    2001-05-01

    The Hack, Zhang/McFarlane, and McRAS convection schemes produce very different simulations of intraseasonal variability in the NCAR CCM3.6. A robust analysis of simulation performance requires an expanded set of diagnostics. The use of only one criterion to analyze model Madden-Julian oscillation (MJO) variability, such as equatorial zonal wind variability, may give a misleading impression of model performance. Schemes that produce strong variability in zonal winds may sometimes lack a corresponding coherent signal in precipitation, suggesting that model convection and the large-scale circulation are not as strongly coupled as observed. The McRAS scheme, which includes a parametrization of unsaturated convective downdrafts, produces the best simulation of intraseasonal variability of the three schemes used. Downdrafts in McRAS create a moister equatorial troposphere, which increases equatorial convection. Composite analysis indicates a strong dependence of model intraseasonal variability on the frictional convergence mechanism, which may also be important in nature. The McRAS simulation has limitations, however. Indian Ocean variability is weak, and anomalous convection extends too far east across the Pacific. The dependence of convection on surface friction is too strong, and causes enhanced MJO convection to be associated with low-level easterly wind perturbations, unlike observed MJO convection. Anomalous vertical advection associated with surface convergence influences model convection by moistening the lower troposphere. Based on the work of Hendon (2000), coupling to an interactive ocean is unlikely to change the performance of the CCM3 with McRAS, due to the phase relationship between anomalous convection and zonal winds. Use of the analysis tools presented here indicates areas for improvement in the parametrization of deep convection by atmospheric GCMs.

  20. Numerical Simulation on Natural Convection Cooling of a FM Target

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Pil; Park, Su Ki [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The irradiated FM(Fission-Molly) target is unloaded from the irradiation hole during normal operation, and then cooled down in the reactor pool for a certain period of time. Therefore, it is necessary to identify the minimum decay time needed to cool down FM target sufficiently by natural convection. In the present work, numerical simulations are performed to predict cooling capability of a FM target cooled by natural convection using commercial computational fluid dynamics (CFD) code, CFX. The present study is carried out using CFD code to investigate cooling capability of a FM target cooled by natural convection. The steady state simulation as well as transient simulation is performed in the present work. Based on the transient simulation (T1), the minimum decay time that the maximum fuel temperature does not reach the design limit temperature (TONB-3 .deg. C) is around 15.60 seconds.

  1. Constraints on the properties of Pluto's nitrogen-ice rich layer from convection simulations

    Science.gov (United States)

    Wong, T.; McKinnon, W. B.; Schenk, P.

    2016-12-01

    Pluto's Sputnik Planum basin (informally named) displays regular cellular patterns strongly suggesting that solid-state convection is occurring in a several-kilometers-deep nitrogen-ice rich layer (McKinnon et al., Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour, Nature 534, 82-85, 2016). We investigate the behavior of thermal convection in 2-D that covers a range of parameters applicable to the nitrogen ice layer to constrain its properties such that these long-wavelength surface features can be explained. We perform a suite of numerical simulations of convection with basal heating and temperature-dependent viscosity in either exponential form or Arrhenius form. For a plausible range of Rayleigh numbers and viscosity contrasts for solid nitrogen, convection can occur in all possible regimes: sluggish lid, transitional, or stagnant lid, or the layer could be purely conducting. We suggest the range of depth and temperature difference across the layer for convection to occur. We observe that the plume dynamics can be widely different in terms of the aspect ratio of convecting cells, or the width and spacing of plumes, and also in the lateral movement of plumes. These differences depend on the regime of convection determined by the Rayleigh number and the actual viscosity contrast across the layer, but is not sensitive to whether the viscosity is in Arrhenius or exponential form. The variations in plume dynamics result in different types of dynamic topography, which can be compared with the observed horizontal and vertical scales of the cells in Sputnik Planum. Based on these simulations we suggest several different possibilities for the formation and evolution of Sputnik Planum, which may be a consequence of the time-dependent behavior of thermal convection.

  2. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  3. Conjugated heat transfer of natural convection in pool with internal heat sources and convection in the tube

    International Nuclear Information System (INIS)

    Li Longjian; Liu Hongtao; Cui Wenzhi

    2007-01-01

    The conjugated heat transfer of natural convection in pool with internal heat source and the forced convection in the tube was analyzed, and the corresponding three-dimensional physical and mathematical model was proposed. A control volume based finite element method was employed to solve numerically the problem. The computations were performed for different internal heat source intensity of the pool and the different flow velocity in the tube. The computed heat transfer coefficients on the inner and outer wall showed well consistency of those calculated with the empirical correlations. Compared with the measured total heat transfer coefficients between the fluids in and out of the tube, the computed ones showed also the well consistency, which implied that the numerical model proposed in this paper was reliable. The research results revealed that the total heat transfer coefficients between the fluids were strongly affected by the internal heat source intensity of the pool liquid and the flow velocity in the tube. (authors)

  4. A Warming Surface but a Cooling Top of Atmosphere Associated with Warm, Moist Air Mass Advection over the Ice and Snow Covered Arctic

    Science.gov (United States)

    Sedlar, J.

    2015-12-01

    Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.

  5. Behaviors and transitions along the path to magnetostrophic convection

    Science.gov (United States)

    Grannan, A. M.; Vogt, T.; Horn, S.; Hawkins, E. K.; Aggarwal, A.; Aurnou, J. M.

    2017-12-01

    The generation of magnetic fields in planetary and stellar interiors are believed to be controlled primarily by turbulent convection constrained by Coriolis and Lorentz forces in their electrically conducting fluid layers. Yet relatively few laboratory experiments are capable of investigating the different regimes of turbulent magnetohydrodynamic convection. In this work, we perform one laboratory experiment in a cylinder at a fixed heat flux using the liquid metal gallium in order to investigate, sequentially: Rayleigh-Bènard convection without any imposed constraints, magnetoconvection with a Lorentz constraint imposed by vertical magnetic field, rotating convection with a Coriolis constraint imposed by rotation, and finally the magnetostrophic convective regime where both Coriolis and Lorentz are imposed and equal. Using an array of internal and external temperature probes, we show that each regime along the path to magnetostrophic convection is unique. The behaviors and transitions in the dominant modes of convection as well as their fundamental frequencies and wavenumbers are investigated.

  6. Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model

    Directory of Open Access Journals (Sweden)

    W. Feng

    2011-06-01

    Full Text Available We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (reanalyses (ERA-40, ECMWF operational and ECMWF Interim to diagnose the updraft mass flux, convective precipitation and cloud top height.

    The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL, which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed.

    The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation.

    We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution gives stronger vertical tracer transport, however, it does not make a large change to the diagnosed convective updraft mass flux (i.e., the model results using the convection scheme fail to capture the strong convection transport up to 100 hPa as seen in the archived convective mass fluxes. Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a

  7. Heat transport in bubbling turbulent convection.

    Science.gov (United States)

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  8. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    Science.gov (United States)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  9. Benard convection in gaps and cavities

    International Nuclear Information System (INIS)

    Mueller, U.

    1981-04-01

    The article contains two parts. In the first part a condensed review of the most striking phenomena in Benard convection in laterally confined fluid layers is given. In the second part recent experimental and theoretical work on Benard convection in gaps is presented an analysed. (orig.) [de

  10. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.

    2005-01-01

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  11. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  12. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    Science.gov (United States)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  13. Convective behaviour in severe accidents

    International Nuclear Information System (INIS)

    Clement, C.F.

    1988-01-01

    The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs

  14. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  15. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  16. The Grell-Freitas Convective Parameterization: Recent Developments and Applications Within the NASA GEOS Global Model

    Science.gov (United States)

    Freitas, S.; Grell, G. A.; Molod, A.

    2017-12-01

    We implemented and began to evaluate an alternative convection parameterization for the NASA Goddard Earth Observing System (GEOS) global model. The parameterization (Grell and Freitas, 2014) is based on the mass flux approach with several closures, for equilibrium and non-equilibrium convection, and includes scale and aerosol awareness functionalities. Scale dependence for deep convection is implemented either through using the method described by Arakawa et al (2011), or through lateral spreading of the subsidence terms. Aerosol effects are included though the dependence of autoconversion and evaporation on the CCN number concentration.Recently, the scheme has been extended to a tri-modal spectral size approach to simulate the transition from shallow, congestus, and deep convection regimes. In addition, the inclusion of a new closure for non-equilibrium convection resulted in a substantial gain of realism in model simulation of the diurnal cycle of convection over the land. Also, a beta-pdf is employed now to represent the normalized mass flux profile. This opens up an additional venue to apply stochasticism in the scheme.

  17. Natural convection heat transfer coefficient for newborn baby - Thermal manikin assessed convective heat loses

    Science.gov (United States)

    Ostrowski, Ziemowit; Rojczyk, Marek

    2017-11-01

    The energy balance and heat exchange for newborn baby in radiant warmer environment are considered. The present study was performed to assess the body dry heat loss from an infant in radiant warmer, using copper cast anthropomorphic thermal manikin and controlled climate chamber laboratory setup. The total body dry heat losses were measured for varying manikin surface temperatures (nine levels between 32.5 °C and 40.1 °C) and ambient air temperatures (five levels between 23.5 °C and 29.7 °C). Radiant heat losses were estimated based on measured climate chamber wall temperatures. After subtracting radiant part, resulting convective heat loses were compared with computed ones (based on Nu correlations for common geometries). Simplified geometry of newborn baby was represented as: (a) single cylinder and (b) weighted sum of 5 cylinders and sphere. The predicted values are significantly overestimated relative to measured ones by: 28.8% (SD 23.5%) for (a) and 40.9% (SD 25.2%) for (b). This showed that use of adopted general purpose correlations for approximation of convective heat losses of newborn baby can lead to substantial errors. Hence, new Nu number correlating equation is proposed. The mean error introduced by proposed correlation was reduced to 1.4% (SD 11.97%), i.e. no significant overestimation. The thermal manikin appears to provide a precise method for the noninvasive assessment of thermal conditions in neonatal care.

  18. A Mass-Flux Scheme View of a High-Resolution Simulation of a Transition from Shallow to Deep Cumulus Convection.

    Science.gov (United States)

    Kuang, Zhiming; Bretherton, Christopher S.

    2006-07-01

    In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.

  19. Direct numerical simulation and statistical analysis of turbulent convection in lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Otic, I.; Grotzbach, G. [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern-und Energietechnik (Germany)

    2003-07-01

    Improved turbulent heat flux models are required to develop and analyze the reactor concept of an lead-bismuth cooled Accelerator-Driven-System. Because of specific properties of many liquid metals we have still no sensors for accurate measurements of the high frequency velocity fluctuations. So, the development of the turbulent heat transfer models which are required in our CFD (computational fluid dynamics) tools needs also data from direct numerical simulations of turbulent flows. We use new simulation results for the model problem of Rayleigh-Benard convection to show some peculiarities of the turbulent natural convection in lead-bismuth (Pr = 0.025). Simulations for this flow at sufficiently large turbulence levels became only recently feasible because this flow requires the resolution of very small velocity scales with the need for recording long-wave structures for the slow changes in the convective temperature field. The results are analyzed regarding the principle convection and heat transfer features. They are also used to perform statistical analysis to show that the currently available modeling is indeed not adequate for these fluids. Basing on the knowledge of the details of the statistical features of turbulence in this convection type and using the two-point correlation technique, a proposal for an improved statistical turbulence model is developed which is expected to account better for the peculiarities of the heat transfer in the turbulent convection in low Prandtl number fluids. (authors)

  20. ARM Support for the Plains Elevated Convection at Night (AS-PECAN) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Silver Spring, MD (United States); Geerts, B. [Univ. of Wyoming, Laramie, WY (United States)

    2016-04-01

    The Plains Elevated Convection at Night (PECAN) field campaign was a large multi-agency/multi-institutional experiment that targeted nighttime convection events in the central plains of the United States in order to better understand a range of processes that lead to the initiation and upscale growth of deep convection. Both weather and climate models struggle to properly represent the timing and intensity of precipitation in the central United States in their simulations. These models must be able to represent the interactions between the nocturnal stable boundary layer (SBL), the nocturnal low-level jet (LLJ), and a reservoir of convectively available potential energy (CAPE) that frequently exists above the SBL. Furthermore, a large fraction of the nocturnal precipitation is due to the organization of mesoscale convective systems (MCSs). In particular, there were four research foci for the PECAN campaign: •The initiation of elevated nocturnal convection focus seeks to elucidate the mesoscaleenvironmental characteristics and processes that lead to convection initiation (CI) and provide baseline data on the early evolution of mesoscale convective clusters. •The dynamics and internal structure and microphysics of nocturnal MCSs focus will investigatethe transition from surface-based to elevated storm structure, the interaction of cold pools generated by MCSs with the nocturnal stable boundary layer, and how the organization and evolution of elevated convection is influenced by the SBL and the vertical profile of wind and stability above the LLJ. •The bores and wave-like disturbances focus seeks to advance knowledge of the initiation of boredisturbances by convection, how the vertical profile of stability and winds modulate bore structure, the role of these disturbances in the initiation, maintenance, and organization of deep convection, and their impact on the LLJ and SBL. •The LLJ focus seeks to understand the processes that influence the spatial and

  1. Comparison of Numerical and Experimental Studies for Flow-Field Optimization Based on Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nguyen Duy Vinh

    2016-10-01

    Full Text Available The flow-field design based on under-rib convection plays an important role in enhancing the performance of polymer electrolyte membrane fuel cells (PEMFCs because it ensures the uniform distribution of the reacting gas and the facilitation of water. This research focused on developing suitable configurations of the anode and cathode bipolar plates to enhance the fuel cell performance based on under-rib convection. The work here evaluated the effects of flow-field designs, including a serpentine flow field with sub channel and by pass and a conventional serpentine flow-field on single-cell performance. Both the experiment and computer simulation indicated that the serpentine flow field with sub channel and by pass (SFFSB configuration enables more effective utilization of the electrocatalysts since it improves reactant transformation rate from the channel to the catalyst layer, thereby dramatically improving the fuel cell performance. The simulation and experimental results indicated that the power densities are increased by up to 16.74% and 18.21%, respectively, when applying suitable flow-field configurations to the anode and cathode bipolar plates. The findings in this are the foundation for enhancing efficient PEMFCs based on flow field design.

  2. Direct numerical simulation and modeling of turbulent natural convection in a vertical differentially heated slot; Simulation numerique directe et modelisation de la convection naturelle turbulente dans un canal differentiellement chauffe

    Energy Technology Data Exchange (ETDEWEB)

    Boudjemadi, R.

    1996-03-01

    The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10{sup 5} and 5.4*10{sup 5}. A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends.

  3. Mean-field theory of differential rotation in density stratified turbulent convection

    Science.gov (United States)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  4. The role of a convective surface in models of the radiative heat transfer in nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.

    2014-08-15

    Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of

  5. The impact of convection in the West African monsoon region on global weather forecasts - explicit vs. parameterised convection simulations using the ICON model

    Science.gov (United States)

    Pante, Gregor; Knippertz, Peter

    2017-04-01

    The West African monsoon is the driving element of weather and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the global model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the global model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone global simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the global model shows clear positive effects when evaluating the output of the global domain of the 2-way nesting simulation and the output of the stand-alone global model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in

  6. Recent advances in computational-analytical integral transforms for convection-diffusion problems

    Science.gov (United States)

    Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P.

    2017-10-01

    An unifying overview of the Generalized Integral Transform Technique (GITT) as a computational-analytical approach for solving convection-diffusion problems is presented. This work is aimed at bringing together some of the most recent developments on both accuracy and convergence improvements on this well-established hybrid numerical-analytical methodology for partial differential equations. Special emphasis is given to novel algorithm implementations, all directly connected to enhancing the eigenfunction expansion basis, such as a single domain reformulation strategy for handling complex geometries, an integral balance scheme in dealing with multiscale problems, the adoption of convective eigenvalue problems in formulations with significant convection effects, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Then, selected examples are presented that illustrate the improvement achieved in each class of extension, in terms of convergence acceleration and accuracy gain, which are related to conjugated heat transfer in complex or multiscale microchannel-substrate geometries, multidimensional Burgers equation model, and diffusive metal extraction through polymeric hollow fiber membranes. Numerical results are reported for each application and, where appropriate, critically compared against the traditional GITT scheme without convergence enhancement schemes and commercial or dedicated purely numerical approaches.

  7. Heat transfer of laminar mixed convection of liquid

    CERN Document Server

    Shang, De-Yi

    2016-01-01

    This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...

  8. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  9. Convection in multiphase fluid flows using lattice Boltzmann methods

    NARCIS (Netherlands)

    Biferale, L.; Perlekar, P.; Sbragaglia, M.; Toschi, F.

    2012-01-01

    We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the

  10. Some problems of free convection in a macrocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Luikov, A V; Berkovsky, B M; Kolpashchikov, V L

    1971-01-01

    Solution is given to a number of problems of free convection in incompressible viscous fluid in elementary macrocapillaries with nonuniform temperature distribution at the boundary. The fluid flow structure and effect of a magnetic field on convection in the case of conducting fluid has been studied in detail. The influence of macrocapillary properties on the flow structure, rate of convection, and temperature distribution has been estimated.

  11. Computational simulation of turbulent natural convection in a corium pool

    International Nuclear Information System (INIS)

    Vieira, Camila B.; Su, Jian; Niceno, Bojan

    2013-01-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10 8 to 10 15 . Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu i ). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v 2 -f (commonly called as v 2 -f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  12. An investigation of implicit turbulence modeling for laminar-turbulent transition in natural convection

    Science.gov (United States)

    Li, Chunggang; Tsubokura, Makoto; Wang, Weihsiang

    2017-11-01

    The automatic dissipation adjustment (ADA) model based on truncated Navier-Stokes equations is utilized to investigate the feasibility of using implicit large eddy simulation (ILES) with ADA model on the transition in natural convection. Due to the high Rayleigh number coming from the larger temperature difference (300K), Roe scheme modified for low Mach numbers coordinating ADA model is used to resolve the complicated flow field. Based on the qualitative agreement of the comparisons with DNS and experimental results and the capability of numerically predicating a -3 decay law for the temporal power spectrum of the temperature fluctuation, this study thus validates the feasibility of ILES with ADA model on turbulent natural convection. With the advantages of ease of implementation because no explicit modeling terms are needed and nearly free of tuning parameters, ADA model offers to become a promising tool for turbulent thermal convection. Part of the results is obtained using the K computer at the RIKEN Advanced Institute for Computational Science (Proposal number hp160232).

  13. Regime-dependent forecast uncertainty of convective precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Christian; Craig, George C. [Muenchen Univ. (Germany). Meteorologisches Inst.

    2011-04-15

    Forecast uncertainty of convective precipitation is influenced by all scales, but in different ways in different meteorological situations. Forecasts of the high resolution ensemble prediction system COSMO-DE-EPS of Deutscher Wetterdienst (DWD) are used to examine the dominant sources of uncertainty of convective precipitation. A validation with radar data using traditional as well as spatial verification measures highlights differences in precipitation forecast performance in differing weather regimes. When the forecast uncertainty can primarily be associated with local, small-scale processes individual members run with the same variation of the physical parameterisation driven by different global models outperform all other ensemble members. In contrast when the precipitation is governed by the large-scale flow all ensemble members perform similarly. Application of the convective adjustment time scale confirms this separation and shows a regime-dependent forecast uncertainty of convective precipitation. (orig.)

  14. Convective effects in a regulatory and proposed fire model

    International Nuclear Information System (INIS)

    Wix, S.D.; Hohnstreiter, G.F.

    1995-01-01

    Radiation is the dominant mode of heat transfer in large fires. However, convection can be as much as 10 to 20 percent of the total heat transfer to an object in a large fire. The current radioactive material transportation packaging regulations include convection as a mode of heat transfer in the accident condition scenario. The current International Atomic Energy Agency Safety Series 6 packaging regulation states ''the convection coefficient shall be that value which the designer can justify if the package were exposed to the specified fire''. The current Title 10, Code of Federal Regulations, Part 71 (10CFR71) packaging regulation states ''when significant, convection heat input must be included on the basis of still, ambient air at 800 degrees C (1475 degrees F)''. Two questions that can arise in an analysts mind from an examination of the packaging regulations is whether convection is significant and whether convection should be included in the design analysis of a radioactive materials transportation container. The objective of this study is to examine the convective effects on an actual radioactive materials transportation package using a regulatory and a proposed thermal boundary condition

  15. Experimental and theoretical study on forced convection film boiling heat transfer

    International Nuclear Information System (INIS)

    Liu, Qiusheng

    2001-01-01

    Theoretical solutions of forced convection film boiling heat transfer from horizontal cylinders in saturated liquids were obtained based on a two-phase laminar boundary layer film boiling model. It was clarified that author's experimental data for the cylinders with the nondimensional diameters, D, of around 1.3 in water and in Freon-113 agreed with the values of theoretical numerical solutions based on the two-phase laminar boundary layer model with the smooth vapor-liquid interface except those for low flow velocities. A forced convection film boiling heat transfer correlation including the radiation contribution from the cylinders with various diameters in saturated and subcooled liquids was developed based on the two-phase laminar boundary layer film boiling model and the experimental data for water and Freon-113 at wide ranges of flow velocities, surface superheats, system pressures and cylinder diameters. (author)

  16. Evaporative and Convective Instabilities for the Evaporation of a Binary Mixture in a Bilayer System

    Science.gov (United States)

    Guo, Weidong; Narayanan, Ranga

    2006-11-01

    Evaporative convection in binary mixtures arises in a variety of industrial processes, such as drying of paint and coating technology. There have been theories devoted to this problem either by assuming a passive vapor layer or by isolating the vapor fluid dynamics. Previous work on evaporative and convective instabilities in a single component bilayer system suggests that active vapor layers play a major role in determining the instability of the interface. We have investigated the evaporation convection in binary mixtures taking into account the fluid dynamics of both phases. The liquid mixture and its vapor are assumed to be confined between two horizontal plates with a base state of zero evaporation but with linear vertical temperature profile. When the vertical temperature gradient reaches a critical value, the evaporative instability, Rayleigh and Marangoni convection set in. The effects of vapor and liquid depth, various wave numbers and initial composition of the mixture on the evaporative and convective instability are determined. The physics of the instability are explained and detailed comparison is made between the Rayleigh, Marangoni and evaporative convection in pure component and those in binary mixtures.

  17. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  18. Natural convective heat transfer from square cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.

  19. Conduction and convection heat transfer characteristics of water-based au nanofluids in a square cavity with differentially heated side walls subjected to constant temperatures

    Directory of Open Access Journals (Sweden)

    Ternik Primož

    2014-01-01

    Full Text Available The present work deals with the natural convection in a square cavity filled with the water-based Au nanofluid. The cavity is heated on the vertical and cooled from the adjacent wall, while the other two horizontal walls are adiabatic. The governing differential equations have been solved by the standard finite volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticles’ volume fraction on the heat transfer characteristics of Au nanofluids at the given base fluid’s (i.e. water Rayleigh number. Accurate results are presented over a wide range of the base fluid Rayleigh number and the volume fraction of Au nanoparticles. It is shown that adding nanoparticles in a base fluid delays the onset of convection. Contrary to what is argued by many authors, we show by numerical simulations that the use of nanofluids can reduce the heat transfer rate instead of increasing it.

  20. Sensitivity analysis of the thermal performance of radiant and convective terminals for cooling buildings

    DEFF Research Database (Denmark)

    Le Dréau, J.; Heiselberg, P.

    2014-01-01

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g. active chilled beam, air conditioning) and radiant terminals. The mode of heat transfer of the two emitters is different: the first one is mainly based on convection, whereas the second one is based...... conducted to determine the parameters influencing their thermal performance the most. The air change rate, the outdoor temperature and the air temperature stratification have the largest effect on the cooling need (maintaining a constant operative temperature). For air change rates higher than 0.5 ACH...

  1. MERRA 3D IAU Diagnostic, Moist Physics, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPMST or tavg3_3d_mst_Cp data product is the MERRA Data Assimilation System 3-Dimensional moist process diagnostic that is time averaged on pressure levels...

  2. From convection rolls to finger convection in double-diffusive turbulence

    NARCIS (Netherlands)

    Yang, Yantao; Verzicco, Roberto; Lohse, Detlef

    2015-01-01

    Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars’ transfer rate and flow structures. Here we systematically investigate DDC flow

  3. Lattice Boltzmann model for melting with natural convection

    International Nuclear Information System (INIS)

    Huber, Christian; Parmigiani, Andrea; Chopard, Bastien; Manga, Michael; Bachmann, Olivier

    2008-01-01

    We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences

  4. A computational fluid dynamics model for designing heat exchangers based on natural convection

    NARCIS (Netherlands)

    Dirkse, M.H.; Loon, van W.K.P.; Walle, van der T.; Speetjens, S.L.; Bot, G.P.A.

    2006-01-01

    A computational fluid dynamics model was created for the design of a natural convection shell-and-tube heat exchanger with baffles. The flow regime proved to be turbulent and this was modelled using the k¿¿ turbulence model. The features of the complex geometry were simplified considerably resulting

  5. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  6. Hermite interpolant multiscaling functions for numerical solution of the convection diffusion equations

    Directory of Open Access Journals (Sweden)

    Elmira Ashpazzadeh

    2018-04-01

    Full Text Available A numerical technique based on the Hermite interpolant multiscaling functions is presented for the solution of Convection-diusion equations. The operational matrices of derivative, integration and product are presented for multiscaling functions and are utilized to reduce the solution of linear Convection-diusion equation to the solution of algebraic equations. Because of sparsity of these matrices, this method is computationally very attractive and reduces the CPU time and computer memory. Illustrative examples are included to demonstrate the validity and applicability of the new technique.

  7. Evaluation of a Mesoscale Convective System in Variable-Resolution CESM

    Science.gov (United States)

    Payne, A. E.; Jablonowski, C.

    2017-12-01

    Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.

  8. Multiscale Aspects of the Storm Producing the June 2013 Flooding in Uttarakhand, India

    Energy Technology Data Exchange (ETDEWEB)

    Houze, R. A. [Department of Atmospheric Sciences, University of Washington, Seattle, and Pacific Northwest National Laboratory, Richland, Washington; McMurdie, L. A. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Rasmussen, K. L. [Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado; Kumar, A. [NASA Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland; Chaplin, M. M. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington

    2017-11-01

    Conditions producing disastrous flooding in Uttarakhand, India, in June 2013 differed from conditions that produced other notorious floods in the Himalayan region in recent years. During the week preceding the Uttarakhand flood, deep convection moistened the mountainsides, making them vulnerable to flooding. However, the precipitation producing the flood was not associated with a deep convective event. Rather, an eastward-propagating upper-level trough in the westerlies extended abnormally far southward, with the jet reaching the Himalayas. The south end of the trough merged with a monsoon low moving westward across India. The merged system produced persistent moist low-level flow oriented normal to the Himalayas that advected large amounts of water vapor into the Uttarakhand region. The flow was moist neutral when it passed over the Himalayan barrier, and orographic lifting produced heavy continuous rain over the region for 2–3 days. The precipitation was largely stratiform in nature although embedded convection of moderate depth occurred along the foothills, where some mild instability was being released. The Uttarakhand flood had characteristics in common with major 2013 floods in the Rocky Mountains in Colorado and Alberta, Canada.

  9. Acceleration of tropical cyclogenesis by self-aggregation feedbacks.

    Science.gov (United States)

    Muller, Caroline J; Romps, David M

    2018-03-20

    Idealized simulations of tropical moist convection have revealed that clouds can spontaneously clump together in a process called self-aggregation. This results in a state where a moist cloudy region with intense deep convection is surrounded by extremely dry subsiding air devoid of deep convection. Because of the idealized settings of the simulations where it was discovered, the relevance of self-aggregation to the real world is still debated. Here, we show that self-aggregation feedbacks play a leading-order role in the spontaneous genesis of tropical cyclones in cloud-resolving simulations. Those feedbacks accelerate the cyclogenesis process by a factor of 2, and the feedbacks contributing to the cyclone formation show qualitative and quantitative agreement with the self-aggregation process. Once the cyclone is formed, wind-induced surface heat exchange (WISHE) effects dominate, although we find that self-aggregation feedbacks have a small but nonnegligible contribution to the maintenance of the mature cyclone. Our results suggest that self-aggregation, and the framework developed for its study, can help shed more light into the physical processes leading to cyclogenesis and cyclone intensification. In particular, our results point out the importance of the longwave radiative cooling outside the cyclone.

  10. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  11. Three caveats for linear stability theory: Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Greenside, H.S.

    1984-06-01

    Recent theories and experiments challenge the applicability of linear stability theory near the onset of buoyancy-driven (Rayleigh-Benard) convection. This stability theory, based on small perturbations of infinite parallel rolls, is found to miss several important features of the convective flow. The reason is that the lateral boundaries have a profound influence on the possible wave numbers and flow patterns even for the largest cells studied. Also, the nonlinear growth of incoherent unstable modes distorts the rolls, leading to a spatially disordered and sometimes temporally nonperiodic flow. Finally, the relation of the skewed varicose instability to the onset of turbulence (nonperiodic time dependence) is examined. Linear stability theory may not suffice to predict the onset of time dependence in large cells close to threshold

  12. Cold pool organization and the merging of convective updrafts in a Large Eddy Simulation

    Science.gov (United States)

    Glenn, I. B.; Krueger, S. K.

    2016-12-01

    Cold pool organization is a process that accelerates the transition from shallow to deep cumulus convection, and leads to higher deep convective cloud top heights. The mechanism by which cold pool organization enhances convection remains not well understood, but the basic idea is that since precipitation evaporation and a low equivalent potential temperature in the mid-troposphere lead to strong cold pools, the net cold pool effect can be accounted for in a cumulus parameterization as a relationship involving those factors. Understanding the actual physical mechanism at work will help quantify the strength of the relationship between cold pools and enhanced deep convection. One proposed mechanism of enhancement is that cold pool organization leads to reduced distances between updrafts, creating a local environment more conducive to convection as updrafts entrain parcels of air recently detrained by their neighbors. We take this hypothesis one step further and propose that convective updrafts actually merge, not just exchange recently processed air. Because entrainment and detrainment around an updraft draws nearby air in or pushes it out, respectively, they act like dynamic flow sources and sinks, drawing each other in or pushing each other away. The acceleration is proportional to the inverse square of the distance between two updrafts, so a small reduction in distance can make a big difference in the rate of merging. We have shown in previous research how merging can be seen as collisions between different updraft air parcels using Lagrangian Parcel Trajectories (LPTs) released in a Large Eddy Simulation (LES) during a period with organized deep convection. Now we use a Eulerian frame of reference to examine the updraft merging process during the transition from shallow to organized deep convection. We use a case based on the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) for our LES. We directly measure the rate of entrainment and the properties

  13. Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals

    Directory of Open Access Journals (Sweden)

    Adolfo Ribeiro

    2015-03-01

    Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪  Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.

  14. Natural convection in enclosures containing lead-bismuth and lead

    International Nuclear Information System (INIS)

    Dzodzo, M.; Cuckovic-Dzodzo, D.

    2001-01-01

    The design of liquid metal reactors such as Encapsulated Nuclear Heat Source (ENHS) which are based predominantly on the flow generated by natural convection effects demands knowledge of velocity and temperature fields, distribution of the local Nusselt numbers and values of the average Nusselt numbers for small coolant velocity regimes. Laminar natural convection in rectangular enclosures with different aspect ratios, containing lead-bismuth and lead is studied numerically in this paper. The numerical model takes into account variable properties of the liquid metals. The developed correlation for average Nusselt numbers is presented. It is concluded that average Nusselt numbers are lower than in 'normal' fluids (air, water and glycerol) for the same values of Rayleigh numbers. However, the heat flux, which can be achieved, is greater due to the high thermal conductivity of liquid metals. Some specific features of the flow fields generated by natural convection in liquid metals are presented. Their consequences on the design of heat exchangers for liquid metals are discussed. An application of the obtained results to the design of a new type of steam generator, which integrates the intermediate heat exchanger and secondary pool functions of the ENHS reactor, is presented. (authors)

  15. Magnetic particle mixing with magnetic micro-convection for microfluidics

    International Nuclear Information System (INIS)

    Kitenbergs, Guntars; Erglis, Kaspars; Perzynski, Régine; Cēbers, Andrejs

    2015-01-01

    In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the miscible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele–Shaw cell. Subsequent image analysis both qualitatively and quantitatively reveals the high enhancement of mixing efficiency provided by this method. The mixing efficiency dependence on the magnetic field and the physical limits is discussed. A suitable model for a continuous-flow microfluidics setup for mixing with magnetic micro-convection is also proposed and justified with an experiment. In addition, possible applications in improving the speed of ferrohydrodynamic sorting and magnetic label or selected tracer mixing in lab on a chip systems are noted. - Highlights: • We study the magnetic micro-convection as a mixing method in microfluidics. • We show that the method enhances mixing with magnetic field squared dependency. • We propose a flow cell setup for mixing and justify it with a sample experiment. • The mixing method can be easily implemented in an existing microfluidics setup

  16. High Ra, high Pr convection with viscosity gradients

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  17. Convective and large-scale mass flux profiles over tropical oceans determined from synergistic analysis of a suite of satellite observations

    Science.gov (United States)

    Masunaga, Hirohiko; Luo, Zhengzhao Johnny

    2016-07-01

    A new, satellite-based methodology is developed to evaluate convective mass flux and large-scale total mass flux. To derive the convective mass flux, candidate profiles of in-cloud vertical velocity are first constructed with a simple plume model under the constraint of ambient sounding and then narrowed down to the solution that matches satellite-derived cloud top buoyancy. Meanwhile, the large-scale total mass flux is provided separately from satellite soundings by a method developed previously. All satellite snapshots are sorted into a composite time series that delineates the evolution of a vigorous and organized convective system. Principal findings are the following. First, convective mass flux is modulated primarily by convective cloud cover, with the intensity of individual convection being less variable over time. Second, convective mass flux dominates the total mass flux only during the early hours of the convective evolution; as convective system matures, a residual mass flux builds up in the mass flux balance that is reminiscent of stratiform dynamics. The method developed in this study is expected to be of unique utility for future observational diagnosis of tropical convective dynamics and for evaluation of global climate model cumulus parameterizations in a global sense.

  18. Penetrative convection at high Rayleigh numbers

    Science.gov (United States)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  19. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  20. Study and development of an optical method for the measurement of convection coefficients; Etude et developpement d'une methode optique pour la mesure du coefficient de convection

    Energy Technology Data Exchange (ETDEWEB)

    Crowther, David J.

    1990-03-06

    This research thesis addresses the field of fluid-wall thermal exchanges in which the notion of exchange coefficient is notably useful to design, size and optimise devices. A first part reports a bibliographical study which gives an overview of solutions envisaged to determine the convection coefficient in permanent regime with the use of flow sensors, as well as in transient regime. Then, the author reports the development of an unsteady method which is based on the analysis of the cooling kinetics of the front face of a convecting wall, after a unique energetic perturbation (an infinitely brief pulse, or a finite duration energy step). This method is applied to the general case (wall with finite thickness) and to the case of a semi-infinite wall which is typical of materials which are weak thermal conductors. This is extended to the case of good thermal conductors by considering a thermally thin wall. After a detailed description of the experimental bench, above-mentioned solutions are applied to insulating and good thermal conducting materials. In order to validate results of an analysis in transient regime, they are compared with measurements performed in permanent regime with a flow-metering technique. The study of the principle of the dissipation-based flow sensor, and its operation are reported. Experimental results are presented for both methods (pulse and flow sensor), and compared in order to highlight the interest of the unsteady method [French] Difficile a mesurer, le coefficient de convection reste cependant une grandeur necessaire au calcul et a l'optimisation de tout systeme thermique. L'amelioration des capteurs thermiques permet aujourd'hui de concevoir une methode optique, utilisable a distance, et non destructive. Nous proposons dans ce but, un procede de mesure en regime transitoire base sur la radiometrie photothermique impulsionnelle. L'analyse du regime de relaxation d'une paroi, apres une brusque elevation de temperature, permet de remonter

  1. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  2. Comparision of Vacuum-Asisted Closure and Moist Wound Dressing in the Treatment of Diabetic Foot Ulcers

    OpenAIRE

    Ravari, Hassan; Modaghegh, Mohammad-Hadi Saeed; Kazemzadeh, Gholam Hosein; Johari, Hamed Ghoddusi; Vatanchi, Attieh Mohammadzadeh; Sangaki, Abolghasem; Shahrodi, Mohammad Vahedian

    2013-01-01

    Background: Vacuum-assisted closure (VAC) is a new method in wound care which speeds wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates. This study aims to evaluate its efficacy in the treatment of diabetic foot ulcers. Materials and Methods: Thirteen patients with diabetic foot ulcers were enrolled in the moist dressing group, and 10 patients in the VAC group. The site, size and depth of the wound were inspected and recorded before and every three days du...

  3. Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection

    Science.gov (United States)

    Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.

    2018-03-01

    There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and

  4. Experimental methods in natural convection

    International Nuclear Information System (INIS)

    Koster, J.N.

    1982-11-01

    Some common experimental techniques to determine local velocities and to visualize temperature fields in natural convection research are discussed. First the physics and practice of anemometers are discussed with emphasis put on optical anemometers. In the second and third case the physics and practice of the most developed interferometers are discussed; namely differential interferometry for visualization of temperature gradient fields and holographic interferometry for visualization of temperature fields. At the Institut fuer Reaktorbauelemente these three measuring techniques are applied for convection and pipe flow studies. (orig.) [de

  5. Induced convection cylindrical probe conductivity measurements on permeable media

    International Nuclear Information System (INIS)

    Fodemesi, S.P.; Beck, A.E.

    1983-01-01

    This chapter presents results from a program of investigation using the transient needle probe thermal conductivity technique on fluid saturated permeable media with a glass bead matrix. Uses eight additional radially located sensors in order to correlate the convection effects on the temperature sensor in the heater probe with convection behavior in the medium; all were scanned frequently with a data acquisition system, from the start of the experiment through a few hours of experimental time. Points out that with typical conditions encountered in oceanic heat flow work, induced convection may commence as early as 60 s from the start of the experiment. Finds that the convection effects are worse when the needle probe is oriented horizontally than when it is oriented vertically (gradients orthogonal to the gravitational field), and a correlation is made between permeability and the time of onset and the extent of convective effects. Indicates errors in conductivity as large as 40%. Suggests empirical techniques for detecting and correcting for thermal convection using probe sensor data alone

  6. Convective losses through an air-filled gap

    Energy Technology Data Exchange (ETDEWEB)

    Baum, V A; Ovezsakhatov, N

    1976-01-01

    Simplified formulas for the heat fluxes with given parameters of the air are used to calculate the specific heat losses by convection in a number of solar-energy systems (water heater, thermal generator, double-glazed window, and still). Heat losses by convection and radiation are compared.

  7. Optimization of convective-radiative fins by using differential quadrature element method

    International Nuclear Information System (INIS)

    Malekzadeh, P.; Rahideh, H.; Karami, G.

    2006-01-01

    A first endeavor to exploit the differential quadrature element method (DQEM) as a simple, accurate and computationally efficient numerical tool for the shape optimization of convective-radiating extended surfaces or fins is made. The formulations are general so that the spatial and spatial-temperature dependent geometrical and thermal parameters can easily be implemented. The thermal conductivity of the fin is assumed to vary as a linear function of the temperature. The effects of a convective-radiative condition at the fin tip and effective convective condition at the fin base are considered. The optimization of fins with uniform and step cross-sections is investigated. The accuracy of the method is demonstrated by comparing its results with those generated by Adomian's decomposition technique, Taylor transformation technique and finite difference method. It is shown that, using few grid points, highly accurate results are obtained. Less computational effort of the method with respect to the finite difference method is shown

  8. Computational simulation of turbulent natural convection in a corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Camila B.; Su, Jian, E-mail: camila@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Niceno, Bojan, E-mail: bojan.niceno@psi.ch [Paul Scherrer Institut (PSI), Villigen (Switzerland). Nuclear Energy and Safety

    2013-07-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10{sup 8} to 10{sup 15}. Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu{sub i}). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v{sup 2} -f (commonly called as v{sup 2}-f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  9. Prandtl-number Effects in High-Rayleigh-number Spherical Convection

    Science.gov (United States)

    Orvedahl, Ryan J.; Calkins, Michael A.; Featherstone, Nicholas A.; Hindman, Bradley W.

    2018-03-01

    Convection is the predominant mechanism by which energy and angular momentum are transported in the outer portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone are characterized in part by the Prandtl number \\Pr = ν/κ, where ν is the kinematic viscosity and κ is the thermal diffusion; in stars, \\Pr is extremely low, \\Pr ≈ 10‑7. The influence of \\Pr on the convective motions at the heart of the dynamo is not well understood since most numerical studies are limited to using \\Pr ≈ 1. We systematically vary \\Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower \\Pr generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing. Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in \\Pr . Importantly, we find that \\Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of the thermal boundary layer.

  10. Testing particle filters on convective scale dynamics

    Science.gov (United States)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  11. Meridional flow in the solar convection zone. I. Measurements from gong data

    Energy Technology Data Exchange (ETDEWEB)

    Kholikov, S. [National Solar Observatories, Tucson, AZ 85719 (United States); Serebryanskiy, A. [Ulugh Beg Astronomical Institute, Uzbek Academy of Science, Tashkent 100052 (Uzbekistan); Jackiewicz, J., E-mail: kholikov@noao.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-time differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.

  12. Specialists' meeting on evaluation of decay heat removal by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    Decay heat removal by natural convection (DHRNC) is essential to enhancing the safety of liquid metal fast reactors (LMFRs). Various design concepts related to DHRNC have been proposed and experimental and analytical studies have been carried out in a number of countries. The purpose of this Specialists' Meeting on 'Decay Heat Removal by Natural Convection' organized by the International Working Group on Fast Reactors IAEA, is to exchange information about the state of the art related to methodologies on evaluation of DHRNC features (experimental studies and code developments) and to discuss problems which need to be solved in order to evaluate DHRNC properly and reasonably. The following main topical areas were discussed by delegates: Overview; Experimental studies and code validation; Design study. Two main DHR systems for LMFR are under consideration: (i) direct reactor auxiliary cooling system (DRACS) with immersed DFIX in main vessel, intermediate sodium loop and sodium-air heat exchanger; and (ii) auxiliary cooling system which removes heat from the outside surface of the reactor vessel by natural convection of air (RVACS). The practicality and economic viability of the use of RVACS is possible up to a modular type reactor or a middle size reactor based on current technology. For the large monolithic plant concepts DRACS is preferable. The existing experimental results and the codes show encouraging results so that the decay heat removal by pure natural convection is feasible. Concerning the objective, 'passive safety', the DHR by pure natural convection is essential feature to enhance the reliability of DHR.

  13. Specialists' meeting on evaluation of decay heat removal by natural convection

    International Nuclear Information System (INIS)

    1993-02-01

    Decay heat removal by natural convection (DHRNC) is essential to enhancing the safety of liquid metal fast reactors (LMFRs). Various design concepts related to DHRNC have been proposed and experimental and analytical studies have been carried out in a number of countries. The purpose of this Specialists' Meeting on 'Decay Heat Removal by Natural Convection' organized by the International Working Group on Fast Reactors IAEA, is to exchange information about the state of the art related to methodologies on evaluation of DHRNC features (experimental studies and code developments) and to discuss problems which need to be solved in order to evaluate DHRNC properly and reasonably. The following main topical areas were discussed by delegates: Overview; Experimental studies and code validation; Design study. Two main DHR systems for LMFR are under consideration: (i) direct reactor auxiliary cooling system (DRACS) with immersed DFIX in main vessel, intermediate sodium loop and sodium-air heat exchanger; and (ii) auxiliary cooling system which removes heat from the outside surface of the reactor vessel by natural convection of air (RVACS). The practicality and economic viability of the use of RVACS is possible up to a modular type reactor or a middle size reactor based on current technology. For the large monolithic plant concepts DRACS is preferable. The existing experimental results and the codes show encouraging results so that the decay heat removal by pure natural convection is feasible. Concerning the objective, 'passive safety', the DHR by pure natural convection is essential feature to enhance the reliability of DHR

  14. Transient heat transfer for forced convection flow of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu

    1999-01-01

    Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)

  15. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  16. Industrial Application of Topology Optimization for Combined Conductive and Convective Heat Transfer Problems

    DEFF Research Database (Denmark)

    Zhou, Mingdong; Alexandersen, Joe; Sigmund, Ole

    2016-01-01

    This paper presents an industrial application of topology optimization for combined conductive and convective heat transfer problems. The solution is based on a synergy of computer aided design and engineering software tools from Dassault Systemes. The considered physical problem of steady......-state heat transfer under convection is simulated using SIMULIA-Abaqus. A corresponding topology optimization feature is provided by SIMULIA-Tosca. By following a standard workflow of design optimization, the proposed solution is able to accommodate practical design scenarios and results in efficient...

  17. Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century.

    Science.gov (United States)

    Ye, Hengchun; Fetzer, Eric J; Wong, Sun; Lambrigtsen, Bjorn H

    2017-01-01

    Convective precipitation-localized, short-lived, intense, and sometimes violent-is at the root of challenges associated with observation, simulation, and prediction of precipitation. The understanding of long-term changes in convective precipitation characteristics and their role in precipitation extremes and intensity over extratropical regions are imperative to future water resource management; however, they have been studied very little. We show that annual convective precipitation total has been increasing astonishingly fast, at a rate of 18.4%/°C, of which 16% is attributable to an increase in convective precipitation occurrence, and 2.4% is attributable to increased daily intensity based on the 35 years of two (combined) historical data sets of 3-hourly synoptic observations and daily precipitation. We also reveal that annual daily precipitation extreme has been increasing at a rate of about 7.4%/°C in convective events only. Concurrently, the overall increase in mean daily precipitation intensity is mostly due to increased convective precipitation, possibly at the expanse of nonconvective precipitation. As a result, transitional seasons are becoming more summer-like as convective becomes the dominant precipitation type that has accompanied higher daily extremes and intensity since the late 1980s. The data also demonstrate that increasing convective precipitation and daily extremes appear to be directly linearly associated with higher atmospheric water vapor accompanying a warming climate over northern Eurasia.

  18. Convective mixing and accretion in white dwarfs

    International Nuclear Information System (INIS)

    Koester, D.

    1976-01-01

    The evolution of convection zones in cooling white dwarfs with helium envelopes and outer hydrogen layers is calculated with a complete stellar evolution code. It is shown that white dwarfs of spectral type DB cannot be formed from DA stars by convective mixing. However, for cooler temperatures (Tsub(e) [de

  19. Radiation and heat generation effects in magnetohydrodynamic mixed convection flow of nanofluids

    Directory of Open Access Journals (Sweden)

    Gul Aaiza

    2018-01-01

    Full Text Available Radiation and heat generation effects in unsteady magnetohydrodynamic mixed convection flow of nanofluids along a vertical channel are investigated. Silver nanoparticles of spherical shapes and of different sizes in water as a convection-al base fluid are incorporated. The purpose of this study is to measure the effect of different sizes of nanoparticles on velocity and temperature. Keeping in mind the size, particle material, shape, clustering and Brownian motion of nanoparticles, Koo and Kleinstreuer model is used. The problem is modeled in terms of partial differential equations with physical boundary conditions. Analytical solutions are obtained for velocity and temperature, plotted and discussed. It is concluded that increasing the size of Ag nanoparticles (up to specific size, 30 nm, results in a very small velocity increment while for large particle size (30-100 nm, no change in velocity is observed. As the small size of nanoparticles has the highest thermal conductivity and viscosity. This change in velocity with size of nano-particles is found only in water-based nanofluids with low volume fraction 0.01 while at low volume concentration, no change is observed.

  20. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-10

    The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

  1. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  2. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  3. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  4. Nonlinear instability and convection in a vertically vibrated granular bed

    NARCIS (Netherlands)

    Shukla, P.; Ansari, I.H.; van der Meer, Roger M.; Lohse, Detlef; Alam, M.

    2014-01-01

    The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis of the hydrodynamic equations. The base state is assumed to be quasi-steady and the effect of harmonic

  5. Rayleigh-Benard Natural Convection Cell Formation and Nusselt number

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2013-01-01

    The experimental results lie within the predictions of the existing heat transfer correlations for the Rayleigh-Benard natural convections even though the material properties were different. For shorter separation distances, the heat transfers enhance due to the active interaction between heated and cooled plumes. For a step temperature difference, the time dependent Nusselt number variations were investigated. Both experimental and numerical results showed that with time the Nusselt number decreases monotonically to a minimum point presenting the onset of convection. As the hot and cold plumes increase and convey the heat to the other plates, the Nusselt number increases to the local maximum point, presenting the vertical movements of the plumes. Then, the Nusselt number fluctuates with the formation of square cells and larger vortices. This also predicted by the mass transfer experiment. The experiments and calculations show similar trend but the timings were different. These discrepancies are caused by the disturbances inherent in both systems. The molten pool is formed in a hypothetical severe accident condition at the lower head of reactor vessel and is stratified into two layers by the density difference: an upper metallic layer and a lower oxide pool. Rayleigh-Benard natural convection occurs in the metallic layer of relocated molten pool. This study aimed at the investigation of the time-dependent cell formation and Nusselt number variation in Rayleigh-Benard natural convection. Time dependent variation of Nusselt number was also measured experimentally and analyzed numerically to investigate the relationship between the cell formation and Nusselt number. Based on the analogy, heat transfer experiments were replaced by mass transfer experiments using a sulfuric acid-copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system. Numerical analysis using the commercial CFD program FLUENT 6.3 were carried out with the same material properties and heating conditions

  6. Convective Performance of Nanofluids in Commercial Electronics Cooling Systems

    International Nuclear Information System (INIS)

    Roberts, N.A.; Walker, D.G.

    2010-01-01

    Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle rapidly and cause clogging and damage to the surfaces of pumping and flow equipment. These problems are dramatically reduced in nanofluids. In the current work we investigate the performance of different volume loadings of water-based alumina nanofluids in a commercially available electronics cooling system. The commercially available system is a water block used for liquid cooling of a computational processing unit. The size of the nanoparticles in the study is 20-30 nm. Results show an enhancement in convective heat transfer due to the addition of nanoparticles in the commercial cooling system with volume loadings of nanoparticles up to 1.5% by volume. The enhancement in the convective performance observed is similar to what has been reported in well controlled and understood systems and is commensurate with bulk models. The current nanoparticle suspensions showed visible signs of settling which varied from hours to weeks depending on the size of the particles used.

  7. International symposium on transient convective heat transfer: book of abstracts

    International Nuclear Information System (INIS)

    1996-01-01

    The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting

  8. Natural Convection Analysis with Various Turbulent Models Using FLUENT

    International Nuclear Information System (INIS)

    Park, Yu Sun

    2007-01-01

    The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Especially, in last decades, natural convection in a close loop or cavity becomes the main issue in the molecular biology for the polymerase chain reaction (PCR). Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT, various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of flow characteristics. This work will suggest the best turbulent model of CFD for analyzing turbulent flows of the natural convection in an enclosure system

  9. A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    Volker Kuell

    2008-12-01

    Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.

  10. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  11. Non-invasive therapy for the prevention of moist desquamation following β-radiation exposure

    International Nuclear Information System (INIS)

    Ma, L.; Wilcock, S.; Rezvani, M.; Hsia, C.

    2003-01-01

    Full text: In an environment of potential nuclear mishap, effective therapies are lacking for radiation-induced skin burns. In this report we describe an effective, non-invasive therapy for post acute radiation exposure based on skin compression. A pig skin model of β-radiation-induced moist desquamation (MD) was employed in this study. Exposure to 30 Gy was used to induce skin lesions involving >80% MD in prescribed test sites on flank skin of female Large White pigs (n 18 per flank). The animals' left flank was placed under pressure from the weight of the pig's own body for 3 hours, immediately following radiation exposure. The right flank served as control, and was not subject to compression following irradiation. Percentage differences in MD were measured between sites on both flanks based on the the area of the test site containing 50% MD (severe) as determined by clinical assessment using blinded observers. The incidence of MD was significantly higher on the uncompressed right flank as compared to the compressed left flank (p < 0.005). A 61% and 45% reduction of MD was observed in both total and severe MD, respectively, during the 8-week study period. Radiation-induced MD was significantly reduced by immediate, mild skin compression (approx. 1.5 psi) for 3 hours immediately following exposure. This observation suggests that skin lesion development from radiation-induced oxidative damage cascades may be modulated non-invasively. Understanding the mechanism(s) at work and developing devices based on this non-invasive therapeutic principle may provide a novel treatment for consequent skin injury in radiation oncology, cosmetic and therapeutic UV, laser, glycolic and derm abrasion procedures

  12. Precipitation in a boiling soup: is microphysics driving the statistical properties of intense turbulent convection?

    Science.gov (United States)

    Parodi, A.; von Hardenberg, J.; Provenzale, A.

    2012-04-01

    Intense precipitation events are often associated with strong convective phenomena in the atmosphere. A deeper understanding of how microphysics affects the spatial and temporal variability of convective processes is relevant for many hydro-meteorological applications, such as the estimation of rainfall using remote sensing techniques and the ability to predict severe precipitation processes. In this paper, high-resolution simulations (0.1-1 km) of an atmosphere in radiative-convective equilibrium are performed using the Weather Research and Forecasting (WRF) model by prescribing different microphysical parameterizations. The dependence of fine-scale spatio-temporal properties of convective structures on microphysical details are investigated and the simulation results are compared with the known properties of radar maps of precipitation fields. We analyze and discuss similarities and differences and, based also on previous results on the dependence of precipitation statistics on the raindrop terminal velocity, try to draw some general inferences.

  13. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  14. Scaling of Convection and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Valencia, D. C.; O'Connell, R. J.; Sasselov, D. D.

    2006-12-01

    The discovery of three Super-Earths around different stars, possible only in the last year, prompts us to study the characteristics of our planet within a general context. The Earth, being the most massive terrestrial object in the solar system is the only planet that exhibits plate tectonics. We think this might not be a coincidence and explore the role that mass plays in determining the mode of convection. We use the scaling of convective vigor with Rayleigh number commonly used in parameterized convection. We study how the parameters controlling convection: Rayleigh number (Ra), boundary layer thickness (δ), internal temperature (T_i) and convective velocities (u) scale with mass. This is possible from the scaling of heat flux, mantle density, size and gravity with mass which we reported in Valencia, et. al 2006. The extrapolation to massive rocky planets is done from our knowledge of the Earth. Even though uncertainties arise from extrapolation and assumptions are needed we consider this simple scaling to be a first adequate step. As the mass of a planet increases, Ra increases, yielding a decrease in δ and an increase in u, while T_i increases very slightly. This is true for an isoviscous case and is more accentuated in a temperature dependent viscosity scenario. In a planet with vigorous convection (high u), a thin lithosphere (low δ) is easier to subduct and hence, initiate plate tectonics. The lithosphere also has to be dense enough (cold and thick) to have the bouyancy necessary for subduction. We calculate that a convective cycle for an isoviscous planet is τ ~ M^{-0.3} considering whole mantle convection. Meaning that if these planets have continents, the timescale for continental rearrangement is shorter (about half the Earth's for a 5 earth-mass planet). Additionally, we explore the negative feedback cycle between convection and temperature dependent viscosity and estimate a timescale for this effect.

  15. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  16. Parametric modulation of thermomagnetic convection in magnetic fluids.

    Science.gov (United States)

    Engler, H; Odenbach, S

    2008-05-21

    Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.

  17. Assimilation of ZDR Columns for Improving the Spin-Up and Forecasts of Convective Storms

    Science.gov (United States)

    Carlin, J.; Gao, J.; Snyder, J.; Ryzhkov, A.

    2017-12-01

    A primary motivation for assimilating radar reflectivity data is the reduction of spin-up time for modeled convection. To accomplish this, cloud analysis techniques seek to induce and sustain convective updrafts in storm-scale models by inserting temperature and moisture increments and hydrometeor mixing ratios into the model analysis from simple relations with reflectivity. Polarimetric radar data provide additional insight into the microphysical and dynamic structure of convection. In particular, the radar meteorology community has known for decades that convective updrafts cause, and are typically co-located with, differential reflectivity (ZDR) columns - vertical protrusions of enhanced ZDR above the environmental 0˚C level. Despite these benefits, limited work has been done thus far to assimilate dual-polarization radar data into numerical weather prediction models. In this study, we explore the utility of assimilating ZDR columns to improve storm-scale model analyses and forecasts of convection. We modify the existing Advanced Regional Prediction System's (ARPS) cloud analysis routine to adjust model temperature and moisture state variables using detected ZDR columns as proxies for convective updrafts, and compare the resultant cycled analyses and forecasts with those from the original reflectivity-based cloud analysis formulation. Results indicate qualitative and quantitative improvements from assimilating ZDR columns, including more coherent analyzed updrafts, forecast updraft helicity swaths that better match radar-derived rotation tracks, more realistic forecast reflectivity fields, and larger equitable threat scores. These findings support the use of dual-polarization radar signatures to improve storm-scale model analyses and forecasts.

  18. Mixed convection flow of sodium alginate (SA-NaAlg) based molybdenum disulphide (MoS2) nanofluids: Maxwell Garnetts and Brinkman models

    Science.gov (United States)

    Ahmed, Tarek Nabil; Khan, Ilyas

    2018-03-01

    This article aims to study the mixed convection heat transfer in non-Newtonian nanofluids over an infinite vertical plate. Mixed convection is caused due to buoyancy force and sudden plate motion. Sodium alginate (SA-NaAlg) is considered as non-Newtonian base fluid and molybdenum disulphide (MoS2) as nanoparticles are suspended in it. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell-Garnetts (MG) and Brinkman models, respectively. The flow is modeled in the form of partial differential equations with imposed physical conditions. Exact solutions for velocity and temperature fields are developed by means of the Laplace transform technique. Numerical computations are performed for different governing parameters such as non-Newtonian parameter, Grashof number and nanoparticle volume fraction and the results are plotted in various graphs. Results for skin friction and Nusselt number are presented in tabular form which show that increasing nanoparticle volume fraction leads to heat transfer enhancement and increasing skin friction.

  19. Stretched flow of Carreau nanofluid with convective boundary ...

    Indian Academy of Sciences (India)

    journal of. January 2016 physics pp. 3–17. Stretched flow of Carreau nanofluid with ... fluid over a flat plate subjected to convective surface condition. ... the steady laminar boundary layer flow over a permeable plate with a convective boundary.

  20. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Walko, Robert [Univ. of Miami, Coral Gables, FL (United States)

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of the atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.

  1. Convective aggregation in idealised models and realistic equatorial cases

    Science.gov (United States)

    Holloway, Chris

    2015-04-01

    Idealised explicit convection simulations of the Met Office Unified Model are shown to exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen previously in other models in several recent studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapour (CWV) field. To investigate the relevance of this behaviour to the real world, these idealized simulations are compared with five 15-day cases of real organized convection in the tropics, including multiple simulations of each case testing sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. Despite similar large-scale forcing via lateral boundary conditions, systematic differences in mean CWV, CWV distribution shape, and the length scale of CWV features are found between the different sensitivity runs, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations.

  2. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    Directory of Open Access Journals (Sweden)

    Murat Kuscu

    Full Text Available We consider a microfluidic molecular communication (MC system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA. However, analytical models are key for the information and communication technology (ICT, as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

  3. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

  4. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  5. Solar wind effects on ionospheric convection: a review

    DEFF Research Database (Denmark)

    Lu, G.; Cowley, S.W.H.; Milan, S.E.

    2002-01-01

    ), and travelling convection vortices (TCVs). Furthermore, the large-scale ionospheric convection configuration has also demonstrated a strong correspondence to variations in the interplanetary medium and substorm activity. This report briefly discusses the progress made over the past decade in studies...

  6. Life Cycle of Tropical Convection and Anvil in Observations and Models

    Science.gov (United States)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  7. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  8. Auroral-arc splitting by intrusion of a new convection channel

    Directory of Open Access Journals (Sweden)

    H. U. Frey

    Full Text Available During a run of the Common Programme Three of the EISCAT radar the splitting of an auroral arc was observed by high time-resolution, ground-based cameras when the UHF radar beam was close to the arc. The evening eastward electrojet situation with a large-scale northward ionospheric electric field was disturbed by the intrusion of a convection channel with southward electric field from the east. The interaction of the new convection channel with the auroral arc caused changes in arc brightness and arc splitting, i.e. the creation of a new arc parallel to the pre-existing auroral arc. The event is described as one possibility for the creation of parallel arcs during slightly disturbed magnetic conditions far from the Harang discontinuity.

  9. Auroral-arc splitting by intrusion of a new convection channel

    Directory of Open Access Journals (Sweden)

    H. U. Frey

    1996-12-01

    Full Text Available During a run of the Common Programme Three of the EISCAT radar the splitting of an auroral arc was observed by high time-resolution, ground-based cameras when the UHF radar beam was close to the arc. The evening eastward electrojet situation with a large-scale northward ionospheric electric field was disturbed by the intrusion of a convection channel with southward electric field from the east. The interaction of the new convection channel with the auroral arc caused changes in arc brightness and arc splitting, i.e. the creation of a new arc parallel to the pre-existing auroral arc. The event is described as one possibility for the creation of parallel arcs during slightly disturbed magnetic conditions far from the Harang discontinuity.

  10. Mixed thermal convection: fundamental issues and analysis of the planar case

    Directory of Open Access Journals (Sweden)

    JACQUES PADET

    2015-09-01

    Full Text Available This paper aims to renew interest on mixed thermal convection research and to emphasize three issues that arise from the present analysis: (i a clear definition of the reference temperature in the Boussinesq approximation; (ii a practical delimitation of the three convective modes, which are the forced convection (FC, mixed convection (MC and natural (or free convection (NC; (iii and, finally, a uniform description of the set FC/MC/NC in the similarity framework. The planar case, for which analytical solutions are available, allows a detailed illustration of the answers here advanced to the above issues.

  11. Is Convection Sensitive to Model Vertical Resolution and Why?

    Science.gov (United States)

    Xie, S.; Lin, W.; Zhang, G. J.

    2017-12-01

    Model sensitivity to horizontal resolutions has been studied extensively, whereas model sensitivity to vertical resolution is much less explored. In this study, we use the US Department of Energy (DOE)'s Accelerated Climate Modeling for Energy (ACME) atmosphere model to examine the sensitivity of clouds and precipitation to the increase of vertical resolution of the model. We attempt to understand what results in the behavior change (if any) of convective processes represented by the unified shallow and turbulent scheme named CLUBB (Cloud Layers Unified by Binormals) and the Zhang-McFarlane deep convection scheme in ACME. A short-term hindcast approach is used to isolate parameterization issues from the large-scale circulation. The analysis emphasizes on how the change of vertical resolution could affect precipitation partitioning between convective- and grid-scale as well as the vertical profiles of convection-related quantities such as temperature, humidity, clouds, convective heating and drying, and entrainment and detrainment. The goal is to provide physical insight into potential issues with model convective processes associated with the increase of model vertical resolution. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  13. A model for near-wall dynamics in turbulent Rayleigh Bénard convection

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    1998-10-01

    Experiments indicate that turbulent free convection over a horizontal surface (e.g. Rayleigh Bénard convection) consists of essentially line plumes near the walls, at least for moderately high Rayleigh numbers. Based on this evidence, we propose here a two-dimensional model for near-wall dynamics in Rayleigh Bénard convection and in general for convection over heated horizontal surfaces. The model proposes a periodic array of steady laminar two-dimensional plumes. A plume is fed on either side by boundary layers on the wall. The results from the model are obtained in two ways. One of the methods uses the similarity solution of Rotem & Classen (1969) for the boundary layer and the similarity solution of Fuji (1963) for the plume. We have derived expressions for mean temperature and temperature and velocity fluctuations near the wall. In the second approach, we compute the two-dimensional flow field in a two-dimensional rectangular open cavity. The number of plumes in the cavity depends on the length of the cavity. The plume spacing is determined from the critical length at which the number of plumes increases by one. The results for average plume spacing and the distribution of r.m.s. temperature and velocity fluctuations are shown to be in acceptable agreement with experimental results.

  14. Direct numerical simulation and modeling of turbulent natural convection in a vertical differentially heated slot

    International Nuclear Information System (INIS)

    Boudjemadi, R.

    1996-03-01

    The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10 5 and 5.4*10 5 . A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends

  15. The excitation of solar-like oscillations in a δ Sct star by efficient envelope convection

    DEFF Research Database (Denmark)

    Antoci, V.; Handler, G.; Kallinger, T.

    2011-01-01

    Delta Scuti (δSct) stars are opacity-driven pulsators with masses of 1.5-2.5Msolar, their pulsations resulting from the varying ionization of helium. In less massive stars such as the Sun, convection transports mass and energy through the outer 30per cent of the star and excites a rich spectrum...... of resonant acoustic modes. Based on the solar example, with no firm theoretical basis, models predict that the convective envelope in δSct stars extends only about 1per cent of the radius, but with sufficient energy to excite solar-like oscillations. This was not observed before the Kepler mission, so...... the presence of a convective envelope in the models has been questioned. Here we report the detection of solar-like oscillations in the δSct star HD187547, implying that surface convection operates efficiently in stars about twice as massive as the Sun, as the ad hoc models predicted....

  16. The effects of blocking in the subtropics on the phase speed of the MJO

    Science.gov (United States)

    Roundy, P. E.

    2016-12-01

    The phase speed of the MJO might be regulated by many different factors. Previous works have suggested that moist processes govern the phase speed, and our results show that intensification of convection is associated with reduction of phase speed down to about 5 ms-1. However, convection and rainfall decline with declining phase speeds below 5 ms-1. This presentation shows that increased Rossby wave breaking and blocking east of MJO deep convection is associated with reduced phase speed below about 6 ms-1. A wavelet filter is applied to extract time series characterized by selected zonal wavenumbers and frequencies at select equatorial base longitudes over the Indian and West Pacific Oceans. Results show that anomalies of active convection characterized by wavenumber 2 (the dominant scale of MJO convection over the warm pool) are associated with meridional potential vorticity (PV) gradients across the tropics to the east of the active convection that are near climatology for events moving east at 5 ms-1. These gradients are much weaker for slower events. The slowest phase speed events have almost no meridional PV gradients across the tropics between the mean latitudes of the subtropical jet streams, suggesting that jet exit regions occur immediately east of the deep convection, dumping mass in the upper troposphere over the region of suppressed convection. In the absence of PV gradients, synoptic to planetary scale waves moving into that environment break or cease to propagate linearly.

  17. A Generalized Evolution Criterion in Nonequilibrium Convective Systems

    Science.gov (United States)

    Ichiyanagi, Masakazu; Nisizima, Kunisuke

    1989-04-01

    A general evolution criterion, applicable to transport processes such as the conduction of heat and mass diffusion, is obtained as a direct version of the Le Chatelier-Braun principle for stationary states. The present theory is not based on any radical departure from the conventional one. The generalized theory is made determinate by proposing the balance equations for extensive thermodynamic variables which will reflect the character of convective systems under the assumption of local equilibrium. As a consequence of the introduction of source terms in the balance equations, there appear additional terms in the expression of the local entropy production, which are bilinear in terms of the intensive variables and the sources. In the present paper, we show that we can construct a dissipation function for such general cases, in which the premises of the Glansdorff-Prigogine theory are accumulated. The new dissipation function permits us to formulate a generalized evolution criterion for convective systems.

  18. Modelling of subcooled boiling and DNB-type boiling crisis in forced convection

    International Nuclear Information System (INIS)

    Bricard, Patrick

    1995-01-01

    This research thesis aims at being a contribution to the modelling of two phenomena occurring during a forced convection: the axial evolution of the vacuum rate, and the boiling crisis. Thus, the first part of this thesis addresses the prediction of the vacuum rate, and reports the development of a modelling of under-saturated convection in forced convection. The author reports the development and assessment of two-fluid one-dimensional model, the development of a finer analysis based on an averaging of local equations of right cross-sections in different areas. The second part of this thesis addresses the prediction of initiation of a boiling crisis. The author presents generalities and motivations for this study, reports a bibliographical study and a detailed analysis of mechanistic models present in this literature. A mechanism of boiling crisis is retained, and then further developed in a numerical modelling which is used to assess some underlying hypotheses [fr

  19. Direct simulation of natural convection in square porous enclosure

    International Nuclear Information System (INIS)

    Pourshaghaghy, A.; Hakkaki-Fard, A.; Mahdavi-Nejad, A.

    2007-01-01

    In this article, natural convection in a square porous enclosure is simulated by a direct numerical method. The solution method is based on a random distribution of solid blocks, which resembles the porous media within the cavity. The Navier-Stokes equations are solved directly in the fluid region without the assumption of volume averaging. The no-slip condition is applied on the surface of any solid particle, and the energy transport equation is solved separately for the solid phase and fluid flow. The local and average Nusselt numbers are presented for steady state for two different cases of thermal boundary conditions of the cavity walls. An oscillatory solution is observed for the local Nu number on the surface of the enclosure, and the critical Ra numbers are found in which natural convection flow is started within the cavity

  20. A fractal model for heat transfer of nanofluids by convection in a pool

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Boqi, E-mail: xiaoboqi2006@126.co [Department of Physics and Electromechanical Engineering, Sanming University, 25 Jingdong Road, Sanming 365004 (China); Yu Boming [School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Wang Zongchi; Chen Lingxia [Department of Physics and Electromechanical Engineering, Sanming University, 25 Jingdong Road, Sanming 365004 (China)

    2009-11-02

    Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.

  1. A fractal model for heat transfer of nanofluids by convection in a pool

    International Nuclear Information System (INIS)

    Xiao Boqi; Yu Boming; Wang Zongchi; Chen Lingxia

    2009-01-01

    Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.

  2. Improvement of Systematic Bias of mean state and the intraseasonal variability of CFSv2 through superparameterization and revised cloud-convection-radiation parameterization

    Science.gov (United States)

    Mukhopadhyay, P.; Phani Murali Krishna, R.; Goswami, Bidyut B.; Abhik, S.; Ganai, Malay; Mahakur, M.; Khairoutdinov, Marat; Dudhia, Jimmy

    2016-05-01

    such betterment in model mean state has been found to be due to the systematic improvement in moisture field, temperature profile and moist instability. The model also has better simulated the cloud and rainfall relation. This initiative demonstrates the role of cloud processes on the mean state of coupled GCM. As the superparameterization approach is computationally expensive, so in another approach, the conventional Simplified Arakawa Schubert (SAS) scheme is replaced by a revised SAS scheme (RSAS) and also the old and simplified cloud scheme of Zhao-Karr (1997) has been replaced by WSM6 in CFSV2 (hereafter CFS-CR). The primary objective of such modifications is to improve the distribution of convective rain in the model by using RSAS and the grid-scale or the large scale nonconvective rain by WSM6. The WSM6 computes the tendency of six class (water vapour, cloud water, ice, snow, graupel, rain water) hydrometeors at each of the model grid and contributes in the low, middle and high cloud fraction. By incorporating WSM6, for the first time in a global climate model, we are able to show a reasonable simulation of cloud ice and cloud liquid water distribution vertically and spatially as compared to Cloudsat observations. The CFS-CR has also showed improvement in simulating annual rainfall cycle and intraseasonal variability over the ISM region. These improvements in CFS-CR are likely to be associated with improvement of the convective and stratiform rainfall distribution in the model. These initiatives clearly address a long standing issue of resolving the cloud processes in climate model and demonstrate that the improved cloud and convective process paramterizations can eventually reduce the systematic bias and improve the model fidelity.

  3. Lagrangian evaluation of convective shower characteristics in a convection-permitting model

    Directory of Open Access Journals (Sweden)

    Erwan Brisson

    2018-01-01

    Full Text Available Convection-permitting models (CPMs have proven their usefulness in representing precipitation on a sub-daily scale. However, investigations on sub-hourly scales are still lacking, even though these are the scales for which showers exhibit the most variability. A Lagrangian approach is implemented here to evaluate the representation of showers in a CPM, using the limited-area climate model COSMO-CLM. This approach consists of tracking 5‑min precipitation fields to retrieve different features of showers (e.g., temporal pattern, horizontal speed, lifetime. In total, 312 cases are simulated at a resolution of 0.01 ° over Central Germany, and among these cases, 78 are evaluated against a radar dataset. The model is able to represent most observed features for different types of convective cells. In addition, the CPM reproduced well the observed relationship between the precipitation characteristics and temperature indicating that the COSMO-CLM model is sophisticated enough to represent the climatological features of showers.

  4. Unstable mixed convective transport in groundwater

    International Nuclear Information System (INIS)

    Schincariol, R.A.; Schwartz, F.W.

    1990-01-01

    This study is an experimental investigation of variable density groundwater flow in homogeneous and lenticular porous media. A solution of 500 mg/l Rhodamine WT dye served as the carrier for various concentrations of solute (NaCl) introduced into a two-dimensional flow tank at concentrations ranging from 1000 to 100,000 mg/l. At the scale of the experiments, mass transport depends upon both forced and free convection. In addition, density differences as low as 0.008 g/cm 3 (1000 mg/l NaCl) between a plume of dense water and ambient groundwater in homogeneous medium produces gravitational instabilities at realistic groundwater velocities. These instabilities are manifest by lobe-shaped protuberances that formed first along the bottom edge of the plume and later within the plume. As the density difference increases to 0.0015 g/cm 3 (2000 mg/l NaCl), 0.0037 g/cm 3 (5000 mg/l NaCl) or higher, this unstable mixing due to convective dispersion significantly alters the spreading process, resulting in a large degree of vertical spreading of the plume. In a lenticular medium the combination of convective dispersion and nonuniform flow due to heterogeneities results in relatively large dispersion. Scale considerations indicate that convective dispersion may provide an important component of mixing at the field scale. (Author) (30 refs., 12 figs., 3 tabs.)

  5. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  6. Characterization of Convective Plumes Associated With Oceanic Deep Convection in the Northwestern Mediterranean From High-Resolution In Situ Data Collected by Gliders

    Science.gov (United States)

    Margirier, Félix; Bosse, Anthony; Testor, Pierre; L'Hévéder, Blandine; Mortier, Laurent; Smeed, David

    2017-12-01

    Numerous gliders have been deployed in the Gulf of Lions (northwestern Mediterranean Sea) and in particular during episodes of open-ocean deep convection in the winter 2012-2013. The data collected represents an unprecedented density of in situ observations providing a first in situ statistical and 3-D characterization of the important mixing agents of the deep convection phenomenon, the so-called plumes. A methodology based on a glider-static flight model was applied to infer the oceanic vertical velocity signal from the glider navigation data. We demonstrate that during the active phase of mixing, the gliders underwent significant oceanic vertical velocities up to 18 cm s-1. Focusing on the data collected by two gliders during the 2012-2013 winter, 120 small-scale convective downward plumes were detected with a mean radius of 350 m and separated by about 2 km. We estimate that the plumes cover 27% of the convection area. Gliders detected downward velocities with a magnitude larger than that of the upward ones (-6 versus +2 cm s-1 on average). Along-track recordings of temperature and salinity as well as biogeochemical properties (dissolved oxygen, fluorescence, and turbidity) allow a statistical characterization of the water masses' properties in the plumes' core with respect to the "background": the average downward signal is of colder (-1.8 × 10-3 °C), slightly saltier (+4.9 × 10-4 psu) and thus denser waters (+7.5 × 10-4 kg m-3). The plunging waters are also on average more fluorescent (+2.3 × 10-2 μg L-1). The plumes are associated with a vertical diffusion coefficient of 7.0 m2 s-1 and their vertical velocity variance scales with the ratio of the buoyancy loss over the Coriolis parameter to the power 0.86.

  7. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2008-04-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double-moment cloud microphysics scheme developed for stratiform clouds, which is coupled to the HAM double-moment aerosol scheme, to convective clouds in the ECHAM5 general circulation model. This enables us to investigate whether more, and smaller cloud droplets suppress the warm rain formation in the lower parts of convective clouds and thus release more latent heat upon freezing, which would then result in more vigorous convection and more precipitation. In ECHAM5, including aerosol effects in large-scale and convective clouds (simulation ECHAM5-conv reduces the sensitivity of the liquid water path increase with increasing aerosol optical depth in better agreement with observations and large-eddy simulation studies. In simulation ECHAM5-conv with increases in greenhouse gas and aerosol emissions since pre-industrial times, the geographical distribution of the changes in precipitation better matches the observed increase in precipitation than neglecting microphysics in convective clouds. In this simulation the convective precipitation increases the most suggesting that the convection has indeed become more vigorous.

  8. Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation

    Science.gov (United States)

    Yang, D.

    2017-12-01

    The atmosphere can self-organize into long-lasting large-scale overturning circulations over an ocean surface with uniform temperature. This phenomenon is referred to as convective self-aggregation and has been argued to be important for tropical weather and climate systems. Here we use a 1D shallow water model and a 2D cloud-resolving model (CRM) to show that boundary-layer diabatic processes are essential for convective self-aggregation. We will show that boundary-layer radiative cooling, convective heating, and surface buoyancy flux help convection self-aggregate because they generate available potential energy (APE), which sustains the overturning circulation. We will also show that evaporative cooling in the boundary layer (cold pool) inhibits convective self-aggregation by reducing APE. Both the shallow water model and CRM results suggest that the enhanced virtual effect of water vapor can lead to convective self-aggregation, and this effect is mainly in the boundary layer. This study proposes new dynamical feedbacks for convective self-aggregation and complements current studies that focus on thermodynamic feedbacks.

  9. Dynamical System Analysis of Thermal Convection in a Horizontal Layer of Nanofluids Heated from Below

    Directory of Open Access Journals (Sweden)

    J. M. Jawdat

    2012-01-01

    Full Text Available The effect of nanofluids on chaotic convection in a fluid layer heated from below was studied in this paper for low Prandtl number based on the theory of dynamical systems. A low-dimensional, Lorenz-like model was obtained using Galerkin-truncated approximations. The fourth-order Runge-Kutta method was employed to solve the nonlinear system. The results show that inhibition of chaotic convection can be observed when using nanofluids.

  10. Lattice BGK simulation of natural convection

    International Nuclear Information System (INIS)

    Chen, Yu; Ohashi, Hirotada; Akiyama, Mamoru

    1995-01-01

    Recently a new thermal lattice Bhatnagar-Gross-Krook fluid model was suggested by the authors. In this study, this new model was applied into the numerical simulation of natural convection, namely the Rayleigh Benard flow. The critical number for the onset of convective phenomenon was numerically measured and compared with that of theoretical prediction. A gravity dependent deviation was found in the numerical simulation, which is explained as an unavoidable consequence of the incorporation of gravity force in the lattice BGK system. (author)

  11. Experimental and numerical investigation on natural convection heat transfer in nanofluids

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2014-01-01

    Currently, a lot of research is being carried out on the potential application of nanofluids as a coolant in nuclear reactors owing to their enhanced heat transfer characteristics as compared to base fluid. In this regards, an experimental study has been undertaken concerning natural convection heat transfer of nanofluids over a cylindrical heater with a constant wall heat flux condition. The heat flux was varied from 0-50000 W/m 2 and Rayleigh number range is 30000 to 1.65 X 10 5 . Results show that there was a reduction in natural convection heat transfer coefficient of nanofluids as compared to water. Experimental results were compared with existing models for similar geometry. However, the available correlation was found to be unable to predict experimental data. A new empirical model was developed based on the experimental data including the effect of nanoparticles concentration which predicts the experimental data satisfactorily. (author)

  12. Effects of variable thermal diffusivity on the structure of convection

    Science.gov (United States)

    Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.

    2018-03-01

    The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.

  13. A Global Analysis of Deforestation in Moist Tropical Forest Protected Areas.

    Science.gov (United States)

    Spracklen, B D; Kalamandeen, M; Galbraith, D; Gloor, E; Spracklen, D V

    2015-01-01

    Protected areas (PAs) have been established to conserve tropical forests, but their effectiveness at reducing deforestation is uncertain. To explore this issue, we combined high resolution data of global forest loss over the period 2000-2012 with data on PAs. For each PA we quantified forest loss within the PA, in buffer zones 1, 5, 10 and 15 km outside the PA boundary as well as a 1 km buffer within the PA boundary. We analysed 3376 tropical and subtropical moist forest PAs in 56 countries over 4 continents. We found that 73% of PAs experienced substantial deforestation pressure, with >0.1% a(-1) forest loss in the outer 1 km buffer. Forest loss within PAs was greatest in Asia (0.25% a(-1)) compared to Africa (0.1% a(-1)), the Neotropics (0.1% a(-1)) and Australasia (Australia and Papua New Guinea; 0.03% a(-1)). We defined performance (P) of a PA as the ratio of forest loss in the inner 1 km buffer compared to the loss that would have occurred in the absence of the PA, calculated as the loss in the outer 1 km buffer corrected for any difference in deforestation pressure between the two buffers. To remove the potential bias due to terrain, we analysed a subset of PAs (n = 1804) where slope and elevation in inner and outer 1 km buffers were similar (within 1° and 100 m, respectively). We found 41% of PAs in this subset reduced forest loss in the inner buffer by at least 25% compared to the expected inner buffer forest loss (P<0.75). Median performance (P) of subset reserves was 0.87, meaning a reduction in forest loss within the PA of 13%. We found PAs were most effective in Australasia (P = 0.16), moderately successful in the Neotropics (P = 0.72) and Africa (p = 0.83), but ineffective in Asia (P = 1). We found many countries have PAs that give little or no protection to forest loss, particularly in parts of Asia, west Africa and central America. Across the tropics, the median effectiveness of PAs at the national level improved with gross domestic product per

  14. Terminal project heat convection in thin cylinders

    International Nuclear Information System (INIS)

    Morales Corona, J.

    1992-01-01

    Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)

  15. Heat transfer by natural convection into an horizontal cavity

    International Nuclear Information System (INIS)

    Arevalo J, P.

    1998-01-01

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling's part that is described the regimes and correlations differences for boiling's curve. It is designed a horizontal cavity for realize the experimental part and it's mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it's present process from natural convection involving part boiling's subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it's proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling's subcooled. It is realize analysis graphics too where it's show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  16. The influence of convective current generator on the global current

    Directory of Open Access Journals (Sweden)

    V. N. Morozov

    2006-01-01

    Full Text Available The mathematical generalization of classical model of the global circuit with taking into account the convective current generator, working in the planetary boundary layer was considered. Convective current generator may be interpreted as generator, in which the electromotive force is generated by processes, of the turbulent transport of electrical charge. It is shown that the average potential of ionosphere is defined not only by the thunderstorm current generators, working at the present moment, but by the convective current generator also. The influence of the convective processes in the boundary layer on the electrical parameters of the atmosphere is not only local, but has global character as well. The numerical estimations, made for the case of the convective-unstable boundary layer demonstrate that the increase of the average potential of ionosphere may be of the order of 10% to 40%.

  17. Large Eddy Simulations of Severe Convection Induced Turbulence

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.

  18. Theoretical and experimental studies on transient forced convection heat transfer of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Shibahara, Makoto

    2008-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder and a plate (ribbon) one was experimentally and theoretically studied. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder and a plate (ribbon) one under wide experimental conditions. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. The values of numerical solution for surface temperature and heat flux were compared and discussed with authors' experimental data. (author)

  19. Examining Chaotic Convection with Super-Parameterization Ensembles

    Science.gov (United States)

    Jones, Todd R.

    This study investigates a variety of features present in a new configuration of the Community Atmosphere Model (CAM) variant, SP-CAM 2.0. The new configuration (multiple-parameterization-CAM, MP-CAM) changes the manner in which the super-parameterization (SP) concept represents physical tendency feedbacks to the large-scale by using the mean of 10 independent two-dimensional cloud-permitting model (CPM) curtains in each global model column instead of the conventional single CPM curtain. The climates of the SP and MP configurations are examined to investigate any significant differences caused by the application of convective physical tendencies that are more deterministic in nature, paying particular attention to extreme precipitation events and large-scale weather systems, such as the Madden-Julian Oscillation (MJO). A number of small but significant changes in the mean state climate are uncovered, and it is found that the new formulation degrades MJO performance. Despite these deficiencies, the ensemble of possible realizations of convective states in the MP configuration allows for analysis of uncertainty in the small-scale solution, lending to examination of those weather regimes and physical mechanisms associated with strong, chaotic convection. Methods of quantifying precipitation predictability are explored, and use of the most reliable of these leads to the conclusion that poor precipitation predictability is most directly related to the proximity of the global climate model column state to atmospheric critical points. Secondarily, the predictability is tied to the availability of potential convective energy, the presence of mesoscale convective organization on the CPM grid, and the directive power of the large-scale.

  20. Concentration field in traveling-wave and stationary convection in fluid mixtures

    International Nuclear Information System (INIS)

    Eaton, K.D.; Ohlsen, D.R.; Yamamoto, S.Y.; Surko, C.M.; Barten, W.; Luecke, M.; Kamps, M.; Kolodner, P.

    1991-01-01

    By comparison of measurements of shadowgraph images of convection in ethanol-water mixtures with the results of recent numerical calculations, we study the role of the concentration field in traveling-wave and stationary convection. The results confirm the existence of a large concentration contrast between adjacent traveling-wave convection rolls. This concentration modulation, which decreases as the Rayleigh number is increased and the transition to stationary convection is approached, is fundamental to the translation of the pattern

  1. Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.

    Science.gov (United States)

    Etheridge, Michael L; Choi, Jeunghwan; Ramadhyani, Satish; Bischof, John C

    2013-02-01

    , multiprobe freezing geometries. Accurately characterizing cryoprobe behavior in phantoms requires detailed knowledge of the freezing medium's properties throughout the range of expected temperatures and an appropriate description of the heat transfer across the probe's exchange surfaces. Here we demonstrate that convective exchange boundary conditions provide an accurate and versatile description of heat transfer from cryoprobes, offering potential advantages over the traditional constant surface heat flux and constant surface temperature descriptions. In addition, although this study was conducted on Joule-Thomson type cryoprobes, the general methodologies should extend to any probe that is based on convective exchange with a cryogenic fluid.

  2. Ignition and flame spread properties of wood, elaborated during a new test method based on convective heat flux

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    Ignition and flame spread properties on selected types of wood and wall papers are elaborated. Tests are established in a new test setup in which the test specimen can be fixed in different angles due to a horizontal level. The heat exposing the test objects is arranged as a convective flux......, established from a Bunsen burners pilot flame. This principal is somewhat in contrast to the more typical radiation established fluxes. For instance, the ISO 9239 (DS 2000) test method is based on a gas fired radiant panel. And in the ISO 5657 standard, the ignition properties are investigated on test...

  3. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  4. Introductory analysis of Benard-Marangoni convection

    International Nuclear Information System (INIS)

    Maroto, J A; Perez-Munuzuri, V; Romero-Cano, M S

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics

  5. Introductory analysis of Benard-Marangoni convection

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)

    2007-03-15

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.

  6. Sustainable land cover and terrain modification to enhance convection and precipitation in the arid region of the United Arab Emirates

    Science.gov (United States)

    Wulfmeyer, V.; Branch, O.; Adebabseh, A.; Temimi, M.

    2017-12-01

    Irrigated plantations and modified terrain can provide a sustainable means of enhancing convective rainfall in arid regions like the United Arab Emirates, or UAE, and can be used to aid ongoing cloud seeding operations through the geographic-localization of seedable cloud formation. The first method, the planting of vast irrigated plantations of hardy desert shrubs, can lead to wind convergence and vertical mixing through increased roughness and modified radiative balances. When upper-air atmospheric instability is present, these phenomena can initiate convection. The second method, increasing the elevation of moderate-sized mountains, is based on the correlation between elevation and the number of summertime convection initiation events observed in the mountains of the UAE and Oman. This augmentation of existing orographic features should therefore increase the likelihood and geographic range of convection initiation events. High-resolution simulations provide a powerful means of assessing the likely impacts of land surface modifications. Previous convection-permitting simulations have yielded some evidential support for these hypotheses, but higher resolutions down to 1 km provide more detail regarding convective processes and land surface representation. Using seasonal simulations with the WRF-NOAHMP land-atmosphere model at a 2.5 km resolution, we identify frequent zones of convergence and atmospheric instability in the UAE and select interesting cases. Using these results, as well as an agricultural feasibility study, we identify optimal plantation positions within the UAE. We then run realistic plantation scenarios for single case studies at 1 km resolution. Using the same cases, we simulate the impact of augmenting mountain elevations on convective processes, with the augmentation being achieved through GIS-based modification of the terrain data. For both methods, we assess the impacts quantitatively and qualitatively, and assess key processes and

  7. Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2009-01-01

    Full Text Available We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O3 relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O3 precursors due to both biomass burning and lightning. Assuming that O3 is well mixed (i.e., constant mixing ratio with height up to the tropopause, we can estimate the stratospheric column O3 over

  8. The diurnal interaction between convection and peninsular-scale forcing over South Florida

    Science.gov (United States)

    Cooper, H. J.; Simpson, J.; Garstang, M.

    1982-01-01

    One of the outstanding problems in modern meterology is that of describing in detail the manner in which larger scales of motion interact with, influence and are influenced by successively smaller scales of motion. The present investigation is concerned with a study of the diurnal evolution of convection, the interaction between the peninsular-scale convergence and convection, and the role of the feedback produced by the cloud-scale downdrafts in the maintenance of the convection. Attention is given to the analysis, the diurnal cycle of the network area-averaged divergence, convective-scale divergence, convective mass transports, and the peninsular scale divergence. The links established in the investigation between the large scale (peninsular), the mesoscale (network), and the convective scale (cloud) are found to be of fundamental importance to the understanding of the initiation, maintenance, and decay of deep precipitating convection and to its theoretical parameterization.

  9. Double Diffusive Natural Convection in a Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Y. Hao; J. Nitao; T.A. Buscheck; Y. Sun

    2006-01-01

    In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport

  10. Time-Distance Analysis of Deep Solar Convection

    Science.gov (United States)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2011-01-01

    Recently it was shown by Hanasoge, Duvall, and DeRosa (2010) that the upper limit to convective flows for spherical harmonic degrees ldeep-focusing Lime-distance technique used to develop the upper limit was applied to linear acoustic simulations of a solar interior perturbed by convective flows in order to calibrate the technique. This technique has been applied to other depths in the convection zone and the results will be presented. The deep-focusing technique has considerable sensitivity to the flow ' signals at the desired subsurface location ' However, as shown by Birch {ref}, there is remaining much sensitivity to near-surface signals. Modifications to the technique using multiple bounce signals have been examined in a search for a more refined sensitivity, or kernel function. Initial results are encouraging and results will be presented'

  11. Impacts of initial convective structure on subsequent squall line evolution

    Science.gov (United States)

    Varble, A.; Morrison, H.; Zipser, E. J.

    2017-12-01

    A Weather Research and Forecasting simulation of the 20 May 2011 MC3E squall line using 750-m horizontal grid spacing produces wide convective regions with strongly upshear tilted convective updrafts and mesoscale bowing segments that are not produced in radar observations. Similar features occur across several different bulk microphysics schemes, despite surface observations exhibiting cold pool equivalent potential temperature drops that are similar to and pressure rises that are greater than those in the simulation. Observed rear inflow remains more elevated than simulated, partly counteracting the cold pool circulation, whereas the simulated rear inflow descends to low levels, maintaining its strength and reinforcing the cold pool circulation that overpowers the pre-squall line low level vertical wind shear. The descent and strength of the simulated rear inflow is fueled by strong latent cooling caused by large ice water contents detrained from upshear tilted convective cores that accumulate at the rear of the stratiform region. This simulated squall evolution is sensitive to model resolution, which is too coarse to resolve individual convective drafts. Nesting a 250-m horizontal grid spacing domain into the 750-m domain substantially alters the initial convective cells with reduced latent cooling, weaker convective downdrafts, and a weaker initial cold pool. As the initial convective cells develop into a squall line, the rear inflow remains more elevated in the 250-m domain with a cold pool that eventually develops to be just as strong and deeper than the one in the 750-m run. Despite this, the convective cores remain more upright in the 250-m run with the rear inflow partly counteracting the cold pool circulation, whereas the 750-m rear inflow near the surface reinforces the shallower cold pool and causes bowing in the squall line. The different structure in the 750-m run produces excessive mid-level front-to-rear detrainment that widens the convective region

  12. Reanalysis of the Indian summer monsoon: four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework

    Science.gov (United States)

    Attada, Raju; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.

    2018-04-01

    This work is the first attempt to produce a multi-year downscaled regional reanalysis of the Indian summer monsoon (ISM) using the National Centers for Environmental Prediction (NCEP) operational analyses and Atmospheric Infrared Sounder (AIRS) version 5 temperature and moisture retrievals in a regional model. Reanalysis of nine monsoon seasons (2003-2011) are produced in two parallel setups. The first set of experiments simply downscale the original NCEP operational analyses, whilst the second one assimilates the AIRS temperature and moisture profiles. The results show better representation of the key monsoon features such as low level jet, tropical easterly jet, subtropical westerly jet, monsoon trough and the spatial pattern of precipitation when AIRS profiles are assimilated (compared to those without AIRS data assimilation). The distribution of temperature, moisture and meridional gradients of dynamical and thermodynamical fields over the monsoon region are better represented in the reanalysis that assimilates AIRS profiles. The change induced by AIRS data on the moist and thermodynamic conditions results in more realistic rendering of the vertical shear associated with the monsoon, which in turn leads to a proper moisture transport and the moist convective feedback. This feedback benefits the representation of the regional monsoon characteristics, the monsoon dynamics and the moist convective processes on the seasonal time scale. This study emphasizes the use of AIRS soundings for downscaling of ISM representation in a regional reanalysis.

  13. Reanalysis of the Indian summer monsoon: four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework

    KAUST Repository

    Attada, Raju

    2017-07-04

    This work is the first attempt to produce a multi-year downscaled regional reanalysis of the Indian summer monsoon (ISM) using the National Centers for Environmental Prediction (NCEP) operational analyses and Atmospheric Infrared Sounder (AIRS) version 5 temperature and moisture retrievals in a regional model. Reanalysis of nine monsoon seasons (2003–2011) are produced in two parallel setups. The first set of experiments simply downscale the original NCEP operational analyses, whilst the second one assimilates the AIRS temperature and moisture profiles. The results show better representation of the key monsoon features such as low level jet, tropical easterly jet, subtropical westerly jet, monsoon trough and the spatial pattern of precipitation when AIRS profiles are assimilated (compared to those without AIRS data assimilation). The distribution of temperature, moisture and meridional gradients of dynamical and thermodynamical fields over the monsoon region are better represented in the reanalysis that assimilates AIRS profiles. The change induced by AIRS data on the moist and thermodynamic conditions results in more realistic rendering of the vertical shear associated with the monsoon, which in turn leads to a proper moisture transport and the moist convective feedback. This feedback benefits the representation of the regional monsoon characteristics, the monsoon dynamics and the moist convective processes on the seasonal time scale. This study emphasizes the use of AIRS soundings for downscaling of ISM representation in a regional reanalysis.

  14. On a Five-Dimensional Chaotic System Arising from Double-Diffusive Convection in a Fluid Layer

    Directory of Open Access Journals (Sweden)

    R. Idris

    2013-01-01

    Full Text Available A chaotic system arising from double-diffusive convection in a fluid layer is investigated in this paper based on the theory of dynamical systems. A five-dimensional model of chaotic system is obtained using the Galerkin truncated approximation. The results showed that the transition from steady convection to chaos via a Hopf bifurcation produced a limit cycle which may be associated with a homoclinic explosion at a slightly subcritical value of the Rayleigh number.

  15. Convective heat transfer around vertical jet fires: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent, E-mail: bulentu.kozanoglu@udlap.mx [Universidad de las Americas, Puebla (Mexico); Zarate, Luis [Universidad Popular Autonoma del Estado de Puebla (Mexico); Gomez-Mares, Mercedes [Universita di Bologna (Italy); Casal, Joaquim [Universitat Politecnica de Catalunya (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Experiments were carried out to analyze convection around a vertical jet fire. Black-Right-Pointing-Pointer Convection heat transfer is enhanced increasing the flame length. Black-Right-Pointing-Pointer Nusselt number grows with higher values of Rayleigh and Reynolds numbers. Black-Right-Pointing-Pointer In subsonic flames, Nusselt number increases with Froude number. Black-Right-Pointing-Pointer Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.

  16. Do tropical wetland plants possess a convective gas flow mechanism?

    DEFF Research Database (Denmark)

    Jensen, Dennis Konnerup; Sorrell, Brian Keith; Brix, Hans

    2011-01-01

    Internal pressurization and convective gas flow, which can aerate wetland plants more efficiently than diffusion, are common in temperate species. Here, we present the first survey of convective flow in a range of tropical plants. The occurrence of pressurization and convective flow was determined...... in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature....... Nine of the 20 species studied were able to build up a static pressure of >50Pa, and eight species had convective flow rates higher than 1mlmin-1. There was a clear diel variation, with higher pressures and flows during the day than during the night, when pressures and flows were close to zero...

  17. Neutral beam injection and plasma convection in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Hiroe, S.

    1988-06-01

    Injection of a neutral beam into a plasma in a magnetic field has been studied by means of numerical plasma simulations. It is found that, in the absence of a rotational transform, the convection electric field arising from the polarization charges at the edges of the beam is dissipated by turbulent plasma convection, leading to anomalous plasma diffusion across the magnetic field. The convection electric field increases with the beam density and beam energy. In the presence of a rotational transform, polarization charges can be neutralized by the electron motion along the magnetic field. Even in the presence of a rotational transform, a steady-state convection electric field and, hence, anomalous plasma diffusion can develop when a neutral beam is constantly injected into a plasma. Theoretical investigations on the convection electric field are described for a plasma in the presence of rotational transform. 11 refs., 19 figs

  18. Impact of Aerosols on Convective Clouds and Precipitation

    Science.gov (United States)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics

  19. Simulation benchmark based on THAI-experiment on dissolution of a steam stratification by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, M., E-mail: freitag@becker-technologies.com; Schmidt, E.; Gupta, S.; Poss, G.

    2016-04-01

    Highlights: . • We studied the generation and dissolution of steam stratification in natural convection. • We performed a computer code benchmark including blind and open phases. • The dissolution of stratification predicted only qualitatively by LP and CFD models during the blind simulation phase. - Abstract: Locally enriched hydrogen as in stratification may contribute to early containment failure in the course of severe nuclear reactor accidents. During accident sequences steam might accumulate as well to stratifications which can directly influence the distribution and ignitability of hydrogen mixtures in containments. An international code benchmark including Computational Fluid Dynamics (CFD) and Lumped Parameter (LP) codes was conducted in the frame of the German THAI program. Basis for the benchmark was experiment TH24.3 which investigates the dissolution of a steam layer subject to natural convection in the steam-air atmosphere of the THAI vessel. The test provides validation data for the development of CFD and LP models to simulate the atmosphere in the containment of a nuclear reactor installation. In test TH24.3 saturated steam is injected into the upper third of the vessel forming a stratification layer which is then mixed by a superposed thermal convection. In this paper the simulation benchmark will be evaluated in addition to the general discussion about the experimental transient of test TH24.3. Concerning the steam stratification build-up and dilution of the stratification, the numerical programs showed very different results during the blind evaluation phase, but improved noticeable during open simulation phase.

  20. Application of ground-based, multi-channel microwave radiometer in the nowcasting of intense convective weather through instability indices of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Hong Kong (China)

    2011-08-15

    A ground-based microwave radiometer gives the possibility of providing continuously available temperature and humidity profiles of the troposphere, from which instability indices of the atmosphere could be derived. This paper studies the possibility of correlating the radiometer-based instability indices with the occurrence of intense convective activity, namely, the occurrence of lightning. The correlation so established could be useful for the nowcasting of convective weather: the weather forecaster follows the evolution of the radiometer-based instability indices in order to access the chance for lightning to occur. The quality of the radiometer-based instability indices is first established by comparing with the radiosonde-based indices. Though there are biases and spreads in the scatter plots of the two datasets, the radiometer-based indices appear to follow the trend of the radiosonde-based indices in spite of the differences in measurement locations and working principles of the two instruments. The thresholds of instability indices for the occurrence of lightning (using 1 discharge) are then determined, specifically for the radiometer in use and the climatological condition in Hong Kong. It turns out that, among all the indices considered in this paper, KI has the best performance in terms of probability of detection of lightning occurrence, particularly for non-summer months, by using an optimum threshold. Finally, the correlation between the instability index and the amount of lightning strokes (within a certain distance from the radiometer) is established. It turns out that the correlation is the best using the minimum value of humidity index, with correlation coefficient of 0.55. The distance from the radiometer considered is about 30 km (having the best correlation between the number of lightning discharges and the instability index), which may be taken as the area over which the radiometer's measurement is considered to be representative of the