WorldWideScience

Sample records for based land cover

  1. LandSat-Based Land Use-Land Cover (Raster)

    Data.gov (United States)

    Minnesota Department of Natural Resources — Raster-based land cover data set derived from 30 meter resolution Thematic Mapper satellite imagery. Classification is divided into 16 classes with source imagery...

  2. LandSat-Based Land Use-Land Cover (Vector)

    Data.gov (United States)

    Minnesota Department of Natural Resources — Vector-based land cover data set derived from classified 30 meter resolution Thematic Mapper satellite imagery. Classification is divided into 16 classes with source...

  3. Land Cover

    Data.gov (United States)

    Kansas Data Access and Support Center — The Land Cover database depicts 10 general land cover classes for the State of Kansas. The database was compiled from a digital classification of Landsat Thematic...

  4. Land Cover - Minnesota Land Cover Classification System

    Data.gov (United States)

    Minnesota Department of Natural Resources — Land cover data set based on the Minnesota Land Cover Classification System (MLCCS) coding scheme. This data was produced using a combination of aerial photograph...

  5. Classification of Land Cover and Land Use Based on Convolutional Neural Networks

    Science.gov (United States)

    Yang, Chun; Rottensteiner, Franz; Heipke, Christian

    2018-04-01

    Land cover describes the physical material of the earth's surface, whereas land use describes the socio-economic function of a piece of land. Land use information is typically collected in geospatial databases. As such databases become outdated quickly, an automatic update process is required. This paper presents a new approach to determine land cover and to classify land use objects based on convolutional neural networks (CNN). The input data are aerial images and derived data such as digital surface models. Firstly, we apply a CNN to determine the land cover for each pixel of the input image. We compare different CNN structures, all of them based on an encoder-decoder structure for obtaining dense class predictions. Secondly, we propose a new CNN-based methodology for the prediction of the land use label of objects from a geospatial database. In this context, we present a strategy for generating image patches of identical size from the input data, which are classified by a CNN. Again, we compare different CNN architectures. Our experiments show that an overall accuracy of up to 85.7 % and 77.4 % can be achieved for land cover and land use, respectively. The classification of land cover has a positive contribution to the classification of the land use classification.

  6. Image-based change estimation for land cover and land use monitoring

    Science.gov (United States)

    Jeremy Webb; C. Kenneth Brewer; Nicholas Daniels; Chris Maderia; Randy Hamilton; Mark Finco; Kevin A. Megown; Andrew J. Lister

    2012-01-01

    The Image-based Change Estimation (ICE) project resulted from the need to provide estimates and information for land cover and land use change over large areas. The procedure uses Forest Inventory and Analysis (FIA) plot locations interpreted using two different dates of imagery from the National Agriculture Imagery Program (NAIP). In order to determine a suitable...

  7. Effect of Feature Dimensionality on Object-based Land Cover ...

    African Journals Online (AJOL)

    Myburgh, G, Mnr

    features, it has not been demonstrated with land cover mapping in an ... classifiers were chosen for benchmarking as the latter is the most commonly .... Additional open-source libraries were acquired to complete the implementation of the.

  8. Land Cover Change Monitoring of Typical Functional Communities of Sichuan Province Based on ZY-3 Data

    Science.gov (United States)

    Li, G. M.; Li, S.; Ying, G. W.; Wu, X. P.

    2018-04-01

    According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.

  9. LAND COVER CHANGE MONITORING OF TYPICAL FUNCTIONAL COMMUNITIES OF SICHUAN PROVINCE BASED ON ZY-3 DATA

    Directory of Open Access Journals (Sweden)

    G. M. Li

    2018-04-01

    Full Text Available According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.

  10. Land use and land cover change based on historical space-time model

    Science.gov (United States)

    Sun, Qiong; Zhang, Chi; Liu, Min; Zhang, Yongjing

    2016-09-01

    Land use and cover change is a leading edge topic in the current research field of global environmental changes and case study of typical areas is an important approach understanding global environmental changes. Taking the Qiantang River (Zhejiang, China) as an example, this study explores automatic classification of land use using remote sensing technology and analyzes historical space-time change by remote sensing monitoring. This study combines spectral angle mapping (SAM) with multi-source information and creates a convenient and efficient high-precision land use computer automatic classification method which meets the application requirements and is suitable for complex landform of the studied area. This work analyzes the histological space-time characteristics of land use and cover change in the Qiantang River basin in 2001, 2007 and 2014, in order to (i) verify the feasibility of studying land use change with remote sensing technology, (ii) accurately understand the change of land use and cover as well as historical space-time evolution trend, (iii) provide a realistic basis for the sustainable development of the Qiantang River basin and (iv) provide a strong information support and new research method for optimizing the Qiantang River land use structure and achieving optimal allocation of land resources and scientific management.

  11. Feasibility Study of Land Cover Classification Based on Normalized Difference Vegetation Index for Landslide Risk Assessment

    Directory of Open Access Journals (Sweden)

    Thilanki Dahigamuwa

    2016-10-01

    Full Text Available Unfavorable land cover leads to excessive damage from landslides and other natural hazards, whereas the presence of vegetation is expected to mitigate rainfall-induced landslide potential. Hence, unexpected and rapid changes in land cover due to deforestation would be detrimental in landslide-prone areas. Also, vegetation cover is subject to phenological variations and therefore, timely classification of land cover is an essential step in effective evaluation of landslide hazard potential. The work presented here investigates methods that can be used for land cover classification based on the Normalized Difference Vegetation Index (NDVI, derived from up-to-date satellite images, and the feasibility of application in landslide risk prediction. A major benefit of this method would be the eventual ability to employ NDVI as a stand-alone parameter for accurate assessment of the impact of land cover in landslide hazard evaluation. An added benefit would be the timely detection of undesirable practices such as deforestation using satellite imagery. A landslide-prone region in Oregon, USA is used as a model for the application of the classification method. Five selected classification techniques—k-nearest neighbor, Gaussian support vector machine (GSVM, artificial neural network, decision tree and quadratic discriminant analysis support the viability of the NDVI-based land cover classification. Finally, its application in landslide risk evaluation is demonstrated.

  12. Constraining the Deforestation History of Europe: Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions

    Directory of Open Access Journals (Sweden)

    Jed O. Kaplan

    2017-12-01

    Full Text Available Anthropogenic land cover change (ALCC is the most important transformation of the Earth system that occurred in the preindustrial Holocene, with implications for carbon, water and sediment cycles, biodiversity and the provision of ecosystem services and regional and global climate. For example, anthropogenic deforestation in preindustrial Eurasia may have led to feedbacks to the climate system: both biogeophysical, regionally amplifying winter cold and summer warm temperatures, and biogeochemical, stabilizing atmospheric CO 2 concentrations and thus influencing global climate. Quantification of these effects is difficult, however, because scenarios of anthropogenic land cover change over the Holocene vary widely, with increasing disagreement back in time. Because land cover change had such widespread ramifications for the Earth system, it is essential to assess current ALCC scenarios in light of observations and provide guidance on which models are most realistic. Here, we perform a systematic evaluation of two widely-used ALCC scenarios (KK10 and HYDE3.1 in northern and part of central Europe using an independent, pollen-based reconstruction of Holocene land cover (REVEALS. Considering that ALCC in Europe primarily resulted in deforestation, we compare modeled land use with the cover of non-forest vegetation inferred from the pollen data. Though neither land cover change scenario matches the pollen-based reconstructions precisely, KK10 correlates well with REVEALS at the country scale, while HYDE systematically underestimates land use with increasing magnitude with time in the past. Discrepancies between modeled and reconstructed land use are caused by a number of factors, including assumptions of per-capita land use and socio-cultural factors that cannot be predicted on the basis of the characteristics of the physical environment, including dietary preferences, long-distance trade, the location of urban areas and social organization.

  13. Effect of Feature Dimensionality on Object-based Land Cover ...

    African Journals Online (AJOL)

    Geographic object-based image analysis (GEOBIA) allows the easy integration of such additional features into the classification process. This paper compares the performance of three supervised classifiers in a GEOBIA environment as an increasing number of object features are included as classification input.

  14. National Land Cover Database (NLCD) Land Cover Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database (NLCD) Land Cover Collection is produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC)...

  15. The National Land Cover Database

    Science.gov (United States)

    Homer, Collin G.; Fry, Joyce A.; Barnes, Christopher A.

    2012-01-01

    The National Land Cover Database (NLCD) serves as the definitive Landsat-based, 30-meter resolution, land cover database for the Nation. NLCD provides spatial reference and descriptive data for characteristics of the land surface such as thematic class (for example, urban, agriculture, and forest), percent impervious surface, and percent tree canopy cover. NLCD supports a wide variety of Federal, State, local, and nongovernmental applications that seek to assess ecosystem status and health, understand the spatial patterns of biodiversity, predict effects of climate change, and develop land management policy. NLCD products are created by the Multi-Resolution Land Characteristics (MRLC) Consortium, a partnership of Federal agencies led by the U.S. Geological Survey. All NLCD data products are available for download at no charge to the public from the MRLC Web site: http://www.mrlc.gov.

  16. Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach

    Science.gov (United States)

    Taufik, Afirah; Sakinah Syed Ahmad, Sharifah

    2016-06-01

    The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.

  17. Statistical Monitoring of Changes to Land Cover

    KAUST Repository

    Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying

    2018-01-01

    Accurate detection of changes in land cover leads to better understanding of the dynamics of landscapes. This letter reports the development of a reliable approach to detecting changes in land cover based on remote sensing and radiometric data

  18. Allegheny County Land Cover Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Land Cover dataset demarcates 14 land cover types by area; such as Residential, Commercial, Industrial, Forest, Agriculture, etc. If viewing this description on...

  19. Mekong Land Cover Dasboard: Regional Land Cover Mointoring Systems

    Science.gov (United States)

    Saah, D. S.; Towashiraporn, P.; Aekakkararungroj, A.; Phongsapan, K.; Triepke, J.; Maus, P.; Tenneson, K.; Cutter, P. G.; Ganz, D.; Anderson, E.

    2016-12-01

    SERVIR-Mekong, a USAID-NASA partnership, helps decision makers in the Lower Mekong Region utilize GIS and Remote Sensing information to inform climate related activities. In 2015, SERVIR-Mekong conducted a geospatial needs assessment for the Lower Mekong countries which included individual country consultations. The team found that many countries were dependent on land cover and land use maps for land resource planning, quantifying ecosystem services, including resilience to climate change, biodiversity conservation, and other critical social issues. Many of the Lower Mekong countries have developed national scale land cover maps derived in part from remote sensing products and geospatial technologies. However, updates are infrequent and classification systems do not always meet the needs of key user groups. In addition, data products stop at political boundaries and are often not accessible making the data unusable across country boundaries and with resource management partners. Many of these countries rely on global land cover products to fill the gaps of their national efforts, compromising consistency between data and policies. These gaps in national efforts can be filled by a flexible regional land cover monitoring system that is co-developed by regional partners with the specific intention of meeting national transboundary needs, for example including consistent forest definitions in transboundary watersheds. Based on these facts, key regional stakeholders identified a need for a land cover monitoring system that will produce frequent, high quality land cover maps using a consistent regional classification scheme that is compatible with national country needs. SERVIR-Mekong is currently developing a solution that leverages recent developments in remote sensing science and technology, such as Google Earth Engine (GEE), and working together with production partners to develop a system that will use a common set of input data sources to generate high

  20. Analysis of potential flooding in the education Jatinangor based approach morphology, land cover, and geology

    Science.gov (United States)

    Rifai, Achmad; Hadian, Sapari Dwi; Mufti, Iqbal Jabbari; Fathoni, Azmi Rizqi; Azy, Fikri Noor; Jihadi, Lutfan Harisan

    2017-07-01

    Jatinangor formerly an agricultural area dominated by rice field. Water in Jatinangor comes from a spring located in north Jatinangor or proximal region of Manglayang mountain to flow to the south and southwest Jatinangor up to Citarum River. Jatinangor plain that was once almost all the rice fields, but now become a land settlement that grew very rapidly since its founding colleges. Flow and puddle were originally be used for agricultural land, but now turned into a disaster risks for humans. The research method using qualitative methods with the weighing factor, scoring, and overlay maps. The cause of the flood is distinguished into two: the first is the natural factors such as the condition of landform, lithology, river flow patterns, and annual rainfall. The second is non-natural factors such as land cover of settlement, irrigation, and land use. The amount of flood risks using probability Gilbert White frequency, magnitude and duration of existing events then correlated with these factors. Based on the results of the study, were divided into 3 zones Jatinangor disaster-prone (high, medium, and safe). High flood zone is located in the South Jatinangor which covers an area Cikeruh Village, Sayang Village, Cipacing village, Mekargalih village, Cintamulya village, west of Jatimukti village, and South Hegarmanah village, has a dominant causative factor is the use of solid land, poor drainage, lithology lacustrine conditions with low permeability, and flat topography. Medium flood zone was located in the central and western regions covering Cibeusi village, Cileles village, south of Cilayung village, Hegarmanah village and Padjadjaran Region, has a dominant causative factor is rather dense land use, lithology breccias and Tuffaceous Sand with moderate permeability, topography is moderately steep. Safe flood zone is located in the east Jatinangor covering Jatiroke village, Cisepur village, east Hegarmanah village, has a dominant factor in the form of a rather steep

  1. A Joint Land Cover Mapping and Image Registration Algorithm Based on a Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Apisit Eiumnoh

    2013-10-01

    Full Text Available Traditionally, image registration of multi-modal and multi-temporal images is performed satisfactorily before land cover mapping. However, since multi-modal and multi-temporal images are likely to be obtained from different satellite platforms and/or acquired at different times, perfect alignment is very difficult to achieve. As a result, a proper land cover mapping algorithm must be able to correct registration errors as well as perform an accurate classification. In this paper, we propose a joint classification and registration technique based on a Markov random field (MRF model to simultaneously align two or more images and obtain a land cover map (LCM of the scene. The expectation maximization (EM algorithm is employed to solve the joint image classification and registration problem by iteratively estimating the map parameters and approximate posterior probabilities. Then, the maximum a posteriori (MAP criterion is used to produce an optimum land cover map. We conducted experiments on a set of four simulated images and one pair of remotely sensed images to investigate the effectiveness and robustness of the proposed algorithm. Our results show that, with proper selection of a critical MRF parameter, the resulting LCMs derived from an unregistered image pair can achieve an accuracy that is as high as when images are perfectly aligned. Furthermore, the registration error can be greatly reduced.

  2. Effect of landslides on the structural characteristics of land-cover based on complex networks

    Science.gov (United States)

    He, Jing; Tang, Chuan; Liu, Gang; Li, Weile

    2017-09-01

    Landslides have been widely studied by geologists. However, previous studies mainly focused on the formation of landslides and never considered the effect of landslides on the structural characteristics of land-cover. Here we define the modeling of the graph topology for the land-cover, using the satellite images of the earth’s surface before and after the earthquake. We find that the land-cover network satisfies the power-law distribution, whether the land-cover contains landslides or not. However, landslides may change some parameters or measures of the structural characteristics of land-cover. The results show that the linear coefficient, modularity and area distribution are all changed after the occurence of landslides, which means the structural characteristics of the land-cover are changed.

  3. Global land cover mapping at 30 m resolution: A POK-based operational approach

    Science.gov (United States)

    Chen, Jun; Chen, Jin; Liao, Anping; Cao, Xin; Chen, Lijun; Chen, Xuehong; He, Chaoying; Han, Gang; Peng, Shu; Lu, Miao; Zhang, Weiwei; Tong, Xiaohua; Mills, Jon

    2015-05-01

    Global Land Cover (GLC) information is fundamental for environmental change studies, land resource management, sustainable development, and many other societal benefits. Although GLC data exists at spatial resolutions of 300 m and 1000 m, a 30 m resolution mapping approach is now a feasible option for the next generation of GLC products. Since most significant human impacts on the land system can be captured at this scale, a number of researchers are focusing on such products. This paper reports the operational approach used in such a project, which aims to deliver reliable data products. Over 10,000 Landsat-like satellite images are required to cover the entire Earth at 30 m resolution. To derive a GLC map from such a large volume of data necessitates the development of effective, efficient, economic and operational approaches. Automated approaches usually provide higher efficiency and thus more economic solutions, yet existing automated classification has been deemed ineffective because of the low classification accuracy achievable (typically below 65%) at global scale at 30 m resolution. As a result, an approach based on the integration of pixel- and object-based methods with knowledge (POK-based) has been developed. To handle the classification process of 10 land cover types, a split-and-merge strategy was employed, i.e. firstly each class identified in a prioritized sequence and then results are merged together. For the identification of each class, a robust integration of pixel-and object-based classification was developed. To improve the quality of the classification results, a knowledge-based interactive verification procedure was developed with the support of web service technology. The performance of the POK-based approach was tested using eight selected areas with differing landscapes from five different continents. An overall classification accuracy of over 80% was achieved. This indicates that the developed POK-based approach is effective and feasible

  4. A web-based system for supporting global land cover data production

    Science.gov (United States)

    Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu

    2015-05-01

    Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.

  5. Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2012-09-01

    Full Text Available We present a novel and innovative automated processing environment for the derivation of land cover (LC and land use (LU information. This processing framework named TWOPAC (TWinned Object and Pixel based Automated classification Chain enables the standardized, independent, user-friendly, and comparable derivation of LC and LU information, with minimized manual classification labor. TWOPAC allows classification of multi-spectral and multi-temporal remote sensing imagery from different sensor types. TWOPAC enables not only pixel-based classification, but also allows classification based on object-based characteristics. Classification is based on a Decision Tree approach (DT for which the well-known C5.0 code has been implemented, which builds decision trees based on the concept of information entropy. TWOPAC enables automatic generation of the decision tree classifier based on a C5.0-retrieved ascii-file, as well as fully automatic validation of the classification output via sample based accuracy assessment.Envisaging the automated generation of standardized land cover products, as well as area-wide classification of large amounts of data in preferably a short processing time, standardized interfaces for process control, Web Processing Services (WPS, as introduced by the Open Geospatial Consortium (OGC, are utilized. TWOPAC’s functionality to process geospatial raster or vector data via web resources (server, network enables TWOPAC’s usability independent of any commercial client or desktop software and allows for large scale data processing on servers. Furthermore, the components of TWOPAC were built-up using open source code components and are implemented as a plug-in for Quantum GIS software for easy handling of the classification process from the user’s perspective.

  6. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling

    International Nuclear Information System (INIS)

    Chen, Liang; Dirmeyer, Paul A

    2016-01-01

    To assess the biogeophysical impacts of land cover/land use change (LCLUC) on surface temperature, two observation-based metrics and their applicability in climate modeling were explored in this study. Both metrics were developed based on the surface energy balance, and provided insight into the contribution of different aspects of land surface change (such as albedo, surface roughness, net radiation and surface heat fluxes) to changing climate. A revision of the first metric, the intrinsic biophysical mechanism, can be used to distinguish the direct and indirect effects of LCLUC on surface temperature. The other, a decomposed temperature metric, gives a straightforward depiction of separate contributions of all components of the surface energy balance. These two metrics well capture observed and model simulated surface temperature changes in response to LCLUC. Results from paired FLUXNET sites and land surface model sensitivity experiments indicate that surface roughness effects usually dominate the direct biogeophysical feedback of LCLUC, while other effects play a secondary role. However, coupled climate model experiments show that these direct effects can be attenuated by large scale atmospheric changes (indirect feedbacks). When applied to real-time transient LCLUC experiments, the metrics also demonstrate usefulness for assessing the performance of climate models and quantifying land–atmosphere interactions in response to LCLUC. (letter)

  7. Citizen science land cover classification based on ground and satellite imagery: Case study Day River in Vietnam

    Science.gov (United States)

    Nguyen, Son Tung; Minkman, Ellen; Rutten, Martine

    2016-04-01

    Citizen science is being increasingly used in the context of environmental research, thus there are needs to evaluate cognitive ability of humans in classifying environmental features. With the focus on land cover, this study explores the extent to which citizen science can be applied in sensing and measuring the environment that contribute to the creation and validation of land cover data. The Day Basin in Vietnam was selected to be the study area. Different methods to examine humans' ability to classify land cover were implemented using different information sources: ground based photos - satellite images - field observation and investigation. Most of the participants were solicited from local people and/or volunteers. Results show that across methods and sources of information, there are similar patterns of agreement and disagreement on land cover classes among participants. Understanding these patterns is critical to create a solid basis for implementing human sensors in earth observation. Keywords: Land cover, classification, citizen science, Landsat 8

  8. Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope

    Science.gov (United States)

    Deshmukh, Dhananjay Suresh; Chaube, Umesh Chandra; Ekube Hailu, Ambaye; Aberra Gudeta, Dida; Tegene Kassa, Melaku

    2013-06-01

    The CN represents runoff potential is estimated using three different methods for three watersheds namely Barureva, Sher and Umar watershed located in Narmada basin. Among three watersheds, Sher watershed has gauging site for the runoff measurements. The CN computed from the observed rainfall-runoff events is termed as CN(PQ), land use and land cover (LULC) is termed as CN(LU) and the CN based on land slope is termed as SACN2. The estimated annual CN(PQ) varies from 69 to 87 over the 26 years data period with median 74 and average 75. The range of CN(PQ) from 70 to 79 are most significant values and these truly represent the AMC II condition for the Sher watershed. The annual CN(LU) was computed for all three watersheds using GIS and the years are 1973, 1989 and 2000. Satellite imagery of MSS, TM and ETM+ sensors are available for these years and obtained from the Global Land Cover Facility Data Center of Maryland University USA. The computed CN(LU) values show rising trend with the time and this trend is attributed to expansion of agriculture area in all watersheds. The predicted values of CN(LU) with time (year) can be used to predict runoff potential under the effect of change in LULC. Comparison of CN(LU) and CN(PQ) values shows close agreement and it also validates the classification of LULC. The estimation of slope adjusted SA-CN2 shows the significant difference over conventional CN for the hilly forest lands. For the micro watershed planning, SCS-CN method should be modified to incorporate the effect of change in land use and land cover along with effect of land slope.

  9. GAP Land Cover - Image

    Data.gov (United States)

    Minnesota Department of Natural Resources — This raster dataset is a simple image of the original detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of...

  10. GAP Land Cover - Vector

    Data.gov (United States)

    Minnesota Department of Natural Resources — This vector dataset is a detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of combined two-season pairs of...

  11. A review of supervised object-based land-cover image classification

    Science.gov (United States)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial

  12. Implementación de la metodología Corine Land Cover con imágenes Ikonos The Corine Land Cover method based on Ikonos images

    Directory of Open Access Journals (Sweden)

    Germán Mauricio Valencia Hernández

    2009-07-01

    Full Text Available En Colombia, desde hace algunos años, se viene trabajando en la construcción de cartografía temática de usos del suelo escala 1:100.000, utilizando la metodología desarrollada en Europa y denominada Corine Land Cover (CLC. Esto se ha logrado con el apoyo del Instituto Forestal Nacional de Francia (ONF a varios organismos nacionales, como el Instituto Geográfico Agustín Codazzi (IGAC, la Corporación Autónoma Regional Cormagdalena y el Instituto de Estudios Ambientales (IDEAM. El objetivo de la investigación fue determinar los cambios en el uso del suelo entre 1992 y 2005 para una región de los Andes colombianos, además identificar las potencialidades y limitaciones de la metodología CLC en el ámbito colombiano. Para ello se ajustó la leyenda a las condiciones de Colombia, se mejoró la unidad mínima de mapeo a 0.5 ha, y se utilizaron como fuentes de información escenas Ikonos Geo no ortorrectificadas. Con la metodología aplicada en esta investigación, se encontró entre los años 1992 y 2005, una disminución del área total en fragmentos boscosos, una disminución del área total en pastos, y un aumento en cultivos. Esta metodología puede ser utilizada en tareas de actualización de coberturas del suelo que requieran un alto nivel de detalle, sin embargo, se recomienda disminuir los errores geométricos con imágenes ortorrectificadas al trabajar en zonas de alta pendiente como es el caso de los Andes colombianos.During the last few years, the European Corine Land Cover method has been used in Colombia in order to update land use maps. Four institutes have been involved in this process: The National Forest Institute of France (ONF, El Instituto Geográfico Agustin Codazzi (IGAC, La Corporación Autonoma Regional Cormagdalena, and El instituto de Estudios Ambientales (IDEAM. The goal of this paper was to determine Land use-land cover change based on the CLC method. The study ranges between 1992 and 2005 along a transect of the

  13. Impacts of land cover transitions on surface temperature in China based on satellite observations

    Science.gov (United States)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short

  14. Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

    Science.gov (United States)

    Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil

    2013-01-01

    The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648

  15. The Analysis of Land Use Based on CORINE Land Cover in the Romanian Part of the Tisa Catchment Area

    Directory of Open Access Journals (Sweden)

    CIPRIAN MOLDOVAN

    2010-01-01

    Full Text Available The analysis of the land use structure of the 13 counties of the Romanian part of Tisa catchment area has been made according to the 2000 edition of CORINE Land Cover, while the 1990 edition has been used for comparative purposes. Out of the total area of 8,269,229.48 hectares, the forests cover 37.92%, the arable lands 35.02% and the grasslands 17.97%. The other types of land use have lower weights, such as the continuous and discontinuous urban fabric 4.81%, the orchards 1.10% and the vineyards 0.98%. In the category of forests, the following types of land use are included: broad-leaved forests, which form the majority (24.72%, coniferous forests (6.22%, mixed forests (3.46% and transitional woodland-shrub areas (3.52%. The forests are mainly located in the Carpathians and the hills. The non-irrigated arable lands (23.50% are predominant within the arable lands. They lie mostly in the Western Plain and in the basins and corridors of the Transylvanian Depression and the Western Hills. The analysis of the dynamics of the land use structure between 1990 and 2000 indicates a relative stability in the case of forests, a decrease of arable lands and an increase of grasslands.

  16. Land Use and Land Cover Change in Guangzhou, China, from 1998 to 2003, Based on Landsat TM /ETM+ Imagery

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2007-07-01

    Full Text Available Land use and land cover change is a major issue in global environment change,and is especially significant in rapidly developing regions in the world. With its economicdevelopment, population growth, and urbanization, Guangzhou, a major metropolitan inSouth China, have experienced a dramatic land use and land cover (LULC change over thepast 30 years. Fast LULC change have resulted in degradation of its ecosystems andaffected adversely the environment. It is urgently needed to monitor its LULC changes andto analyses the consequences of these changes in order to provide information for policy-makers to support sustainable development. This study employed two Landsat TM/ETM images in the dry season to detect LULC patterns in 1998 and 2003, and to examine LULCchanges during the period from 1998 to 2003. The type, rate, and pattern of the changesamong five counties of Guangzhou Municipality were analyzed in details by post-classification method. LULC conversion matrix was produced for each county in order toexplore and explain the urban expansion and cropland loss, the most significant types ofLULC change. Land use conversion matrixes of five counties were discussed respectivelyin order to explore and explain the inherence of land use change. The results showed thaturban expansion in these five counties kept an even rate of increase, while substantialamount of cropland vanished during the period. It is also noted that the conversion between cropland and orchard land was intensive. Forest land became the main source of new croplands.

  17. Land Cover/Land Use Classification and Change Detection Analysis with Astronaut Photography and Geographic Object-Based Image Analysis

    Science.gov (United States)

    Hollier, Andi B.; Jagge, Amy M.; Stefanov, William L.; Vanderbloemen, Lisa A.

    2017-01-01

    For over fifty years, NASA astronauts have taken exceptional photographs of the Earth from the unique vantage point of low Earth orbit (as well as from lunar orbit and surface of the Moon). The Crew Earth Observations (CEO) Facility is the NASA ISS payload supporting astronaut photography of the Earth surface and atmosphere. From aurora to mountain ranges, deltas, and cities, there are over two million images of the Earth's surface dating back to the Mercury missions in the early 1960s. The Gateway to Astronaut Photography of Earth website (eol.jsc.nasa.gov) provides a publically accessible platform to query and download these images at a variety of spatial resolutions and perform scientific research at no cost to the end user. As a demonstration to the science, application, and education user communities we examine astronaut photography of the Washington D.C. metropolitan area for three time steps between 1998 and 2016 using Geographic Object-Based Image Analysis (GEOBIA) to classify and quantify land cover/land use and provide a template for future change detection studies with astronaut photography.

  18. LAND USE/LAND COVER CHANGES IN SEMI-ARID MOUNTAIN LANDSCAPE IN SOUTHERN INDIA: A GEOINFORMATICS BASED MARKOV CHAIN APPROACH

    Directory of Open Access Journals (Sweden)

    S. A. Rahaman

    2017-05-01

    Full Text Available Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005 and IRS P6- LISS IV (2015 images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015 were identified and projected for (2020 and 2025; Normalized Difference Vegetation Index (NDVI were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.

  19. Land Use/land Cover Changes in Semi-Arid Mountain Landscape in Southern India: a Geoinformatics Based Markov Chain Approach

    Science.gov (United States)

    Rahaman, S. A.; Aruchamy, S.; Balasubramani, K.; Jegankumar, R.

    2017-05-01

    Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc) changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005) and IRS P6- LISS IV (2015) images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015) were identified and projected for (2020 and 2025); Normalized Difference Vegetation Index (NDVI) were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.

  20. Remote Sensing Based Two-Stage Sampling for Accuracy Assessment and Area Estimation of Land Cover Changes

    Directory of Open Access Journals (Sweden)

    Heinz Gallaun

    2015-09-01

    Full Text Available Land cover change processes are accelerating at the regional to global level. The remote sensing community has developed reliable and robust methods for wall-to-wall mapping of land cover changes; however, land cover changes often occur at rates below the mapping errors. In the current publication, we propose a cost-effective approach to complement wall-to-wall land cover change maps with a sampling approach, which is used for accuracy assessment and accurate estimation of areas undergoing land cover changes, including provision of confidence intervals. We propose a two-stage sampling approach in order to keep accuracy, efficiency, and effort of the estimations in balance. Stratification is applied in both stages in order to gain control over the sample size allocated to rare land cover change classes on the one hand and the cost constraints for very high resolution reference imagery on the other. Bootstrapping is used to complement the accuracy measures and the area estimates with confidence intervals. The area estimates and verification estimations rely on a high quality visual interpretation of the sampling units based on time series of satellite imagery. To demonstrate the cost-effective operational applicability of the approach we applied it for assessment of deforestation in an area characterized by frequent cloud cover and very low change rate in the Republic of Congo, which makes accurate deforestation monitoring particularly challenging.

  1. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    Science.gov (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  2. POLSAR LAND COVER CLASSIFICATION BASED ON HIDDEN POLARIMETRIC FEATURES IN ROTATION DOMAIN AND SVM CLASSIFIER

    Directory of Open Access Journals (Sweden)

    C.-S. Tao

    2017-09-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets’ scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy

  3. Land-cover change detection

    Science.gov (United States)

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  4. From land cover change to land function dynamics: A major challenge to improve land characterization

    NARCIS (Netherlands)

    Verburg, P.H.; Steeg, van de J.; Veldkamp, A.; Willemen, L.

    2009-01-01

    Land cover change has always had a central role in land change science. This central role is largely the result of the possibilities to map and characterize land cover based on observations and remote sensing. This paper argues that more attention should be given to land use and land functions and

  5. Investigating the impact of land cover change on peak river flow in UK upland peat catchments, based on modelled scenarios

    Science.gov (United States)

    Gao, Jihui; Holden, Joseph; Kirkby, Mike

    2014-05-01

    Changes to land cover can influence the velocity of overland flow. In headwater peatlands, saturation means that overland flow is a dominant source of runoff, particularly during heavy rainfall events. Human modifications in headwater peatlands may include removal of vegetation (e.g. by erosion processes, fire, pollution, overgrazing) or pro-active revegetation of peat with sedges such as Eriophorum or mosses such as Sphagnum. How these modifications affect the river flow, and in particular the flood peak, in headwater peatlands is a key problem for land management. In particular, the impact of the spatial distribution of land cover change (e.g. different locations and sizes of land cover change area) on river flow is not clear. In this presentation a new fully distributed version of TOPMODEL, which represents the effects of distributed land cover change on river discharge, was employed to investigate land cover change impacts in three UK upland peat catchments (Trout Beck in the North Pennines, the Wye in mid-Wales and the East Dart in southwest England). Land cover scenarios with three typical land covers (i.e. Eriophorum, Sphagnum and bare peat) having different surface roughness in upland peatlands were designed for these catchments to investigate land cover impacts on river flow through simulation runs of the distributed model. As a result of hypothesis testing three land cover principles emerged from the work as follows: Principle (1): Well vegetated buffer strips are important for reducing flow peaks. A wider bare peat strip nearer to the river channel gives a higher flow peak and reduces the delay to peak; conversely, a wider buffer strip with higher density vegetation (e.g. Sphagnum) leads to a lower peak and postpones the peak. In both cases, a narrower buffer strip surrounding upstream and downstream channels has a greater effect than a thicker buffer strip just based around the downstream river network. Principle (2): When the area of change is equal

  6. Simulating feedbacks in land use and land cover change models

    NARCIS (Netherlands)

    Verburg, P.H.

    2006-01-01

    In spite of the many advances in land use and land cover change modelling over the past decade many challenges remain. One of these challenges relates to the explicit treatment of feedback mechanisms in descriptive models of the land use system. This paper argues for model-based analysis to explore

  7. Remote Sensing GIS Based Spatio-temporal Land Use/ Cover Study ...

    African Journals Online (AJOL)

    Vegetations showed loss and gain changes. Forested areas were diminished greatly due to their conversion to other forms of land use/cover across the whole period. Much of the original dense forests (171.16 sq. km of the area) were lost with 5.186 sq.km average annual loss. Extreme forest loss was recorded during the ...

  8. A Landsat-Based Assessment of Mobile Bay Land Use and Land Cover Change from 1974 to 2008

    Science.gov (United States)

    Spruce, Joseph; Ellis, Jean; Smoot, James; Swann, Roberta; Graham, William

    2009-01-01

    The Mobile Bay region has experienced noteworthy land use and land cover (LULC) change in the latter half of the 20th century. Accompanying this change has been urban expansion and a reduction of rural land uses. Much of this LULC change has reportedly occurred since the landfall of Hurricane Frederic in 1979. The Mobile Bay region provides great economic and ecologic benefits to the Nation, including important coastal habitat for a broad diversity of fisheries and wildlife. Regional urbanization threatens the estuary s water quality and aquatic-habitat dependent biota, including commercial fisheries and avian wildlife. Coastal conservation and urban land use planners require additional information on historical LULC change to support coastal habitat restoration and resiliency management efforts. This presentation discusses results of a Gulf of Mexico Application Pilot project that was conducted in 2008 to quantify and assess LULC change from 1974 to 2008. This project was led by NASA Stennis Space Center and involved multiple Gulf of Mexico Alliance (GOMA) partners, including the Mobile Bay National Estuary Program (NEP), the U.S. Army Corps of Engineers, the National Oceanic and Atmospheric Administration s (NOAA s) National Coastal Data Development Center (NCDDC), and the NOAA Coastal Services Center. Nine Landsat images were employed to compute LULC products because of their availability and suitability for the application. The project also used Landsat-based national LULC products, including coastal LULC products from NOAA s Coastal Change & Analysis Program (C-CAP), available at 5-year intervals since 1995. Our study was initiated in part because C-CAP LULC products were not available to assess the region s urbanization prior to 1995 and subsequent to post Hurricane Katrina in 2006. This project assessed LULC change across the 34-year time frame and at decadal and middecadal scales. The study area included the majority of Mobile and Baldwin counties that

  9. Landscapes‘ Capacities to Provide Ecosystem Services – a Concept for Land-Cover Based Assessments

    Directory of Open Access Journals (Sweden)

    Benjamin Burkhard

    2009-12-01

    Full Text Available Landscapes differ in their capacities to provide ecosystem goods and services, which are the benefits humans obtain from nature. Structures and functions of ecosystems needed to sustain the provision of ecosystem services are altered by various human activities. In this paper, a concept for the assessment of multiple ecosystem services is proposed as a basis for discussion and further development of a respective evaluation instrument. Using quantitative and qualitative assessment data in combination with land cover and land use information originated from remote sensing and GIS, impacts of human activities can be evaluated. The results reveal typical patterns of different ecosystems‘ capacities to provide ecosystem services. The proposed approach thus delivers useful integrative information for environmental management and landscape planning, aiming at a sustainable use of services provided by nature. The research concept and methodological framework presented here for discussion have initially been applied in different case studies and shall be developed further to provide a useful tool for the quantification and spatial modelling of multiple ecosystem services in different landscapes. An exemplary application of the approach dealing with food provision in the Halle-Leipzig region in Germany is presented. It shows typical patterns of ecosystem service distribution around urban areas. As the approach is new and still rather general, there is great potential for improvement, especially with regard to a data-based quantification of the numerous hypotheses, which were formulated as base for the assessment. Moreover, the integration of more detailed landscape information on different scales will be needed in future in order to take the heterogeneous distribution of landscape properties and values into account. Therefore, the purpose of this paper is to foster critical discussions on the methodological development presented here.

  10. Image-based change estimation (ICE): monitoring land use, land cover and agent of change information for all lands

    Science.gov (United States)

    Kevin Megown; Andy Lister; Paul Patterson; Tracey Frescino; Dennis Jacobs; Jeremy Webb; Nicholas Daniels; Mark Finco

    2015-01-01

    The Image-based Change Estimation (ICE) protocols have been designed to respond to several Agency and Department information requirements. These include provisions set forth by the 2014 Farm Bill, the Forest Service Action Plan and Strategic Plan, the 2012 Planning Rule, and the 2015 Planning Directives. ICE outputs support the information needs by providing estimates...

  11. Statistical Monitoring of Changes to Land Cover

    KAUST Repository

    Zerrouki, Nabil

    2018-04-06

    Accurate detection of changes in land cover leads to better understanding of the dynamics of landscapes. This letter reports the development of a reliable approach to detecting changes in land cover based on remote sensing and radiometric data. This approach integrates the multivariate exponentially weighted moving average (MEWMA) chart with support vector machines (SVMs) for accurate and reliable detection of changes to land cover. Here, we utilize the MEWMA scheme to identify features corresponding to changed regions. Unfortunately, MEWMA schemes cannot discriminate between real changes and false changes. If a change is detected by the MEWMA algorithm, then we execute the SVM algorithm that is based on features corresponding to detected pixels to identify the type of change. We assess the effectiveness of this approach by using the remote-sensing change detection database and the SZTAKI AirChange benchmark data set. Our results show the capacity of our approach to detect changes to land cover.

  12. Development of a digital land cover data base for the Selawik National Wildlife Refuge

    Science.gov (United States)

    Markon, Carl J.; Kirk, William

    1994-01-01

    Digital land cover and terrain data of the Selawik National Wildlife Refuge were produced by the U.S. Geological Survey's (USGS) Earth Resources Observation Systems Alaska Field Office for the U.S. Fish and Wildlife Service. These and other environmental data were incorporated into a Fish and Wildlife Service geographic information system to prepare a comprehensive conservation plan and an environmental impact statement for the refuge and to assist in research and management of the refuge.

  13. A Mixed Land Cover Spatio-temporal Data Model Based on Object-oriented and Snapshot

    Directory of Open Access Journals (Sweden)

    LI Yinchao

    2016-07-01

    Full Text Available Spatio-temporal data model (STDM is one of the hot topics in the domains of spatio-temporal database and data analysis. There is a common view that a universal STDM is always of high complexity due to the various situation of spatio-temporal data. In this article, a mixed STDM is proposed based on object-oriented and snapshot models for modelling and analyzing landcover change (LCC. This model uses the object-oriented STDM to describe the spatio-temporal processes of land cover patches and organize their spatial and attributive properties. In the meantime, it uses the snapshot STDM to present the spatio-temporal distribution of LCC on the whole via snapshot images. The two types of models are spatially and temporally combined into a mixed version. In addition to presenting the spatio-temporal events themselves, this model could express the transformation events between different classes of spatio-temporal objects. It can be used to create database for historical data of LCC, do spatio-temporal statistics, simulation and data mining with the data. In this article, the LCC data in Heilongjiang province is used for case study to validate spatio-temporal data management and analysis abilities of mixed STDM, including creating database, spatio-temporal query, global evolution analysis and patches spatio-temporal process expression.

  14. Land cover mapping of North and Central America—Global Land Cover 2000

    Science.gov (United States)

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  15. Completion of the National Land Cover Database (NLCD) 1992-2001 Land Cover Change Retrofit Product

    Science.gov (United States)

    The Multi-Resolution Land Characteristics Consortium has supported the development of two national digital land cover products: the National Land Cover Dataset (NLCD) 1992 and National Land Cover Database (NLCD) 2001. Substantial differences in imagery, legends, and methods betwe...

  16. A SEMI-AUTOMATIC RULE SET BUILDING METHOD FOR URBAN LAND COVER CLASSIFICATION BASED ON MACHINE LEARNING AND HUMAN KNOWLEDGE

    Directory of Open Access Journals (Sweden)

    H. Y. Gu

    2017-09-01

    Full Text Available Classification rule set is important for Land Cover classification, which refers to features and decision rules. The selection of features and decision are based on an iterative trial-and-error approach that is often utilized in GEOBIA, however, it is time-consuming and has a poor versatility. This study has put forward a rule set building method for Land cover classification based on human knowledge and machine learning. The use of machine learning is to build rule sets effectively which will overcome the iterative trial-and-error approach. The use of human knowledge is to solve the shortcomings of existing machine learning method on insufficient usage of prior knowledge, and improve the versatility of rule sets. A two-step workflow has been introduced, firstly, an initial rule is built based on Random Forest and CART decision tree. Secondly, the initial rule is analyzed and validated based on human knowledge, where we use statistical confidence interval to determine its threshold. The test site is located in Potsdam City. We utilised the TOP, DSM and ground truth data. The results show that the method could determine rule set for Land Cover classification semi-automatically, and there are static features for different land cover classes.

  17. Land Use and Land Cover Change Analysis along the Coastal ...

    African Journals Online (AJOL)

    Agribotix GCS 077

    are carried out on the land usually effect changes in its cover. ... The FAO document on land cover classification systems, (2000) partly answers this ... over the surface land, including water, vegetation, bare soils and or artificial structures. ... diseases may occur more readily in areas exposed by Land Use and Land Cover ...

  18. Analysis and Evaluation of IKONOS Image Fusion Algorithm Based on Land Cover Classification

    Institute of Scientific and Technical Information of China (English)

    Xia; JING; Yan; BAO

    2015-01-01

    Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object images was also depended upon the sensor types and special research purposes. Firstly,five fusion methods,i. e. IHS,Brovey,PCA,SFIM and Gram-Schmidt,were briefly described in the paper. And then visual judgment and quantitative statistical parameters were used to assess the five algorithms. Finally,in order to determine which one is the best suitable fusion method for land cover classification of IKONOS image,the maximum likelihood classification( MLC) was applied using the above five fusion images. The results showed that the fusion effect of SFIM transform and Gram-Schmidt transform were better than the other three image fusion methods in spatial details improvement and spectral information fidelity,and Gram-Schmidt technique was superior to SFIM transform in the aspect of expressing image details. The classification accuracy of the fused image using Gram-Schmidt and SFIM algorithms was higher than that of the other three image fusion methods,and the overall accuracy was greater than 98%. The IHS-fused image classification accuracy was the lowest,the overall accuracy and kappa coefficient were 83. 14% and 0. 76,respectively. Thus the IKONOS fusion images obtained by the Gram-Schmidt and SFIM were better for improving the land cover classification accuracy.

  19. Improving Land Cover Mapping: a Mobile Application Based on ESA Sentinel 2 Imagery

    Science.gov (United States)

    Melis, M. T.; Dessì, F.; Loddo, P.; La Mantia, C.; Da Pelo, S.; Deflorio, A. M.; Ghiglieri, G.; Hailu, B. T.; Kalegele, K.; Mwasi, B. N.

    2018-04-01

    The increasing availability of satellite data is a real value for the enhancement of environmental knowledge and land management. Possibilities to integrate different source of geo-data are growing and methodologies to create thematic database are becoming very sophisticated. Moreover, the access to internet services and, in particular, to web mapping services is well developed and spread either between expert users than the citizens. Web map services, like Google Maps or Open Street Maps, give the access to updated optical imagery or topographic maps but information on land cover/use - are not still provided. Therefore, there are many failings in the general utilization -non-specialized users- and access to those maps. This issue is particularly felt where the digital (web) maps could form the basis for land use management as they are more economic and accessible than the paper maps. These conditions are well known in many African countries where, while the internet access is becoming open to all, the local map agencies and their products are not widespread.

  20. LAND COVER CHANGE DETECTION BASED ON GENETICALLY FEATURE AELECTION AND IMAGE ALGEBRA USING HYPERION HYPERSPECTRAL IMAGERY

    Directory of Open Access Journals (Sweden)

    S. T. Seydi

    2015-12-01

    Full Text Available The Earth has always been under the influence of population growth and human activities. This process causes the changes in land use. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Satellite remote sensing has several advantages for monitoring land use/cover resources, especially for large geographic areas. Change detection and attribution of cultivation area over time present additional challenges for correctly analyzing remote sensing imagery. In this regards, for better identifying change in multi temporal images we use hyperspectral images. Hyperspectral images due to high spectral resolution created special placed in many of field. Nevertheless, selecting suitable and adequate features/bands from this data is crucial for any analysis and especially for the change detection algorithms. This research aims to automatically feature selection for detect land use changes are introduced. In this study, the optimal band images using hyperspectral sensor using Hyperion hyperspectral images by using genetic algorithms and Ratio bands, we select the optimal band. In addition, the results reveal the superiority of the implemented method to extract change map with overall accuracy by a margin of nearly 79% using multi temporal hyperspectral imagery.

  1. Landscape-based upstream-downstream prevalence of land-use/cover change drivers in southeastern rift escarpment of Ethiopia.

    Science.gov (United States)

    Temesgen, Habtamu; Wu, Wei; Legesse, Abiyot; Yirsaw, Eshetu; Bekele, Belew

    2018-02-23

    Characterized by high population density on a rugged topography, the Gedeo-Abaya landscape dominantly contains a multi-strata traditional agroforests showing the insight of Gedeo farmers on natural resource management practices. Currently, this area has been losing its resilience and is becoming unable to sustain its inhabitants. Based on both RS-derived and GIS-computed land-use/cover changes (LUCC) as well as socioeconomic validations, this article explored the LUCC and agroecological-based driver patterns in Gedeo-Abaya landscape from 1986 to 2015. A combination of geo-spatial technology and cross-sectional survey design were employed to detect the drivers behind these changes. The article discussed that LUCC and the prevalence of drivers are highly diverse and vary throughout agroecological zones. Except for the population, most downstream top drivers are perceived as insignificant in the upstream region and vice versa. In the downstream, land-use/cover (LUC) classes are more dynamic, diverse, and challenged by nearly all anticipated drivers than are upstream ones. Agroforestry LUC has been increasing (by 25% of its initial cover) and is becoming the predominant cover type, although socioeconomic analysis and related findings show its rapid LUC modification. A rapid reduction of woodland/shrubland (63%) occurred in the downstream, while wetland/marshy land increased threefold (158%), from 1986 to 2015 with annual change rates of - 3.7 and + 6%, respectively. Land degradation induced by changes in land use is a serious problem in Africa, especially in the densely populated sub-Saharan regions such as Ethiopia (FAO 2015). Throughout the landscape, LUCC is prominently affecting land-use system of the study landscape due to population pressure in the upstream region and drought/rainfall variability, agribusiness investment, and charcoaling in the downstream that necessitate urgent action.

  2. VT National Land Cover Dataset - 2001

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The NLCD2001 layer available from VCGI is a subset of the the National Land Cover Database 2001 land cover layer for mapping zone 65 was produced...

  3. 1990 Kansas Land Cover Patterns Update

    Data.gov (United States)

    Kansas Data Access and Support Center — In 2008, an update of the 1990 Kansas Land Cover Patterns (KLCP) database was undertaken. The 1990 KLCP database depicts 10 general land cover classes for the State...

  4. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual

    Science.gov (United States)

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2017-02-15

    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  5. Land cover changes in central Sonora Mexico

    Science.gov (United States)

    Diego Valdez-Zamudio; Alejandro Castellanos-Villegas; Stuart Marsh

    2000-01-01

    Remote sensing techniques have been demonstrated to be very effective tools to help detect, analyze, and evaluate land cover changes in natural areas of the world. Changes in land cover can generally be attributed to either natural or anthropogenic forces. Multitemporal satellite imagery and airborne videography were used to detect, analyze, and evaluate land cover...

  6. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    Science.gov (United States)

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.

  7. Image Fusion-Based Land Cover Change Detection Using Multi-Temporal High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Biao Wang

    2017-08-01

    Full Text Available Change detection is usually treated as a problem of explicitly detecting land cover transitions in satellite images obtained at different times, and helps with emergency response and government management. This study presents an unsupervised change detection method based on the image fusion of multi-temporal images. The main objective of this study is to improve the accuracy of unsupervised change detection from high-resolution multi-temporal images. Our method effectively reduces change detection errors, since spatial displacement and spectral differences between multi-temporal images are evaluated. To this end, a total of four cross-fused images are generated with multi-temporal images, and the iteratively reweighted multivariate alteration detection (IR-MAD method—a measure for the spectral distortion of change information—is applied to the fused images. In this experiment, the land cover change maps were extracted using multi-temporal IKONOS-2, WorldView-3, and GF-1 satellite images. The effectiveness of the proposed method compared with other unsupervised change detection methods is demonstrated through experimentation. The proposed method achieved an overall accuracy of 80.51% and 97.87% for cases 1 and 2, respectively. Moreover, the proposed method performed better when differentiating the water area from the vegetation area compared to the existing change detection methods. Although the water area beneath moderate and sparse vegetation canopy was captured, vegetation cover and paved regions of the water body were the main sources of omission error, and commission errors occurred primarily in pixels of mixed land use and along the water body edge. Nevertheless, the proposed method, in conjunction with high-resolution satellite imagery, offers a robust and flexible approach to land cover change mapping that requires no ancillary data for rapid implementation.

  8. National Land Cover Database 2001 (NLCD01)

    Science.gov (United States)

    LaMotte, Andrew E.

    2016-01-01

    This 30-meter data set represents land use and land cover for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System (see http://water.usgs.gov/GIS/browse/nlcd01-partition.jpg). The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004), (see: http://www.mrlc.gov/mrlc2k.asp). The NLCD 2001 was created by partitioning the United States into mapping zones. A total of 68 mapping zones (see http://water.usgs.gov/GIS/browse/nlcd01-mappingzones.jpg), were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  9. Validation of land use / land cover changes for Denmark

    DEFF Research Database (Denmark)

    Levin, Gregor; Johannsen, Vivian Kvist; Caspersen, Ole Hjort

    2018-01-01

    This report presents applied methods and results for a validation of land use and land cover changes for 1990 and 2014-2016. Results indicate that generally, accuracies of land use and land cover. However, afforestation and particularly deforestation are significantly overestimated....

  10. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating

    Science.gov (United States)

    Matikainen, Leena; Karila, Kirsi; Hyyppä, Juha; Litkey, Paula; Puttonen, Eetu; Ahokas, Eero

    2017-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with passive multispectral information from aerial images, has shown its high feasibility for automated mapping processes. The main benefits have been achieved in the mapping of elevated objects such as buildings and trees. Recently, the first multispectral airborne laser scanners have been launched, and active multispectral information is for the first time available for 3D ALS point clouds from a single sensor. This article discusses the potential of this new technology in map updating, especially in automated object-based land cover classification and change detection in a suburban area. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from an object-based random forests analysis suggest that the multispectral ALS data are very useful for land cover classification, considering both elevated classes and ground-level classes. The overall accuracy of the land cover classification results with six classes was 96% compared with validation points. The classes under study included building, tree, asphalt, gravel, rocky area and low vegetation. Compared to classification of single-channel data, the main improvements were achieved for ground-level classes. According to feature importance analyses, multispectral intensity features based on several channels were more useful than those based on one channel. Automatic change detection for buildings and roads was also demonstrated by utilising the new multispectral ALS data in combination with old map vectors. In change detection of buildings, an old digital surface model (DSM) based on single-channel ALS data was also used. Overall, our analyses suggest that the new data have high potential for further increasing the automation level in mapping. Unlike passive aerial imaging commonly used in mapping, the multispectral ALS technology is independent of external illumination conditions, and there are

  11. Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis

    Science.gov (United States)

    Ghimire, Bardan; Williams, Christopher A.; Masek, Jeffrey; Gao, Feng; Wang, Zhuosen; Schaaf, Crystal; He, Tao

    2014-12-01

    Widespread anthropogenic land cover change over the last five centuries has influenced the global climate system through both biogeochemical and biophysical processes. Models indicate that warming from carbon emissions associated with land cover conversion has been partially offset by cooling from elevated albedo, but considerable uncertainty remains partly because of uncertainty in model treatments of albedo. This study incorporates a new spatially and temporally explicit, land cover specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product) to provide more precise, observationally derived estimates of albedo impacts from anthropogenic land cover change with a complete range of data set specific uncertainty. The mean annual global albedo increase due to land cover change during 1700-2005 was estimated as 0.00106 ± 0.00008 (mean ± standard deviation), mainly driven by snow exposure due to land cover transitions from natural vegetation to agriculture. This translates to a top-of-atmosphere radiative cooling of -0.15 ± 0.1 W m-2 (mean ± standard deviation). Our estimate was in the middle of the Intergovernmental Panel on Climate Change Fifth Assessment Report range of -0.05 to -0.25 W m-2 and incorporates variability in albedo within land cover classes.

  12. The Regional Land Cover Monitoring System: Building regional capacity through innovative land cover mapping approaches

    Science.gov (United States)

    Saah, D.; Tenneson, K.; Hanh, Q. N.; Aekakkararungroj, A.; Aung, K. S.; Goldstein, J.; Cutter, P. G.; Maus, P.; Markert, K. N.; Anderson, E.; Ellenburg, W. L.; Ate, P.; Flores Cordova, A. I.; Vadrevu, K.; Potapov, P.; Phongsapan, K.; Chishtie, F.; Clinton, N.; Ganz, D.

    2017-12-01

    Earth observation and Geographic Information System (GIS) tools, products, and services are vital to support the environmental decision making by governmental institutions, non-governmental agencies, and the general public. At the heart of environmental decision making is the monitoring land cover and land use change (LCLUC) for land resource planning and for ecosystem services, including biodiversity conservation and resilience to climate change. A major challenge for monitoring LCLUC in developing regions, such as Southeast Asia, is inconsistent data products at inconsistent intervals that have different typologies across the region and are typically made in without stakeholder engagement or input. Here we present the Regional Land Cover Monitoring System (RLCMS), a novel land cover mapping effort for Southeast Asia, implemented by SERVIR-Mekong, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries. The RLCMS focuses on mapping biophysical variables (e.g. canopy cover, tree height, or percent surface water) at an annual interval and in turn using those biophysical variables to develop land cover maps based on stakeholder definitions of land cover classes. This allows for flexible and consistent land cover classifications that can meet the needs of different institutions across the region. Another component of the RLCMS production is the stake-holder engagement through co-development. Institutions that directly benefit from this system have helped drive the development for regional needs leading to services for their specific uses. Examples of services for regional stakeholders include using the RLCMS to develop maps using the IPCC classification scheme for GHG emission reporting and developing custom annual maps as an input to hydrologic modeling/flood forecasting systems. In addition to the implementation of this system and the service stemming from the RLCMS in Southeast Asia, it is

  13. International Coalition Land Use/Land Cover

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set is a product of an effort to update Minnesota's 1969 land use inventory. The project was funded in 1989 by the State Legislature per recommendation...

  14. Land Use and Land Cover - MO 2015 Silver Land Cover (GDB)

    Data.gov (United States)

    NSGIC State | GIS Inventory — MoRAP produced and integrated data to map land cover and wetlands for the Upper Silver Creek Watershed in Illinois. LiDAR elevation and vegetation height information...

  15. Land Use and Land Cover - MO 2015 Meramec Land Cover (GDB)

    Data.gov (United States)

    NSGIC State | GIS Inventory — MoRAP produced and integrated data to map land cover and wetlands for the Meramec River bottomland in Missouri. LiDAR elevation and vegetation height information and...

  16. Assessment of environmental responses to land use/land cover ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-12-17

    Dec 17, 2013 ... 49.86% of the land cover has been converted to other land uses, ... management information system and policies that will ensure sustainable management of fragile ...... growth in agricultural output such as food and fiber.

  17. Assessing the influence of land use land cover pattern, socio economic factors and air quality status to predict morbidity on the basis of logistic based regression model

    Science.gov (United States)

    Dixit, A.; Singh, V. K.

    2017-12-01

    Recent studies conducted by World Health Organisation (WHO) estimated that 92 % of the total world population are living in places where the air quality level has exceeded the WHO standard limit for air quality. This is due to the change in Land Use Land Cover (LULC) pattern, socio economic drivers and anthropogenic heat emission caused by manmade activity. Thereby, many prevalent human respiratory diseases such as lung cancer, chronic obstructive pulmonary disease and emphysema have increased in recent times. In this study, a quantitative relationship is developed between land use (built-up land, water bodies, and vegetation), socio economic drivers and air quality parameters using logistic based regression model over 7 different cities of India for the winter season of 2012 to 2016. Different LULC, socio economic, industrial emission sources, meteorological condition and air quality level from the monitoring stations are taken to estimate the influence on morbidity of each city. Results of correlation are analyzed between land use variables and monthly concentration of pollutants. These values range from 0.63 to 0.76. Similarly, the correlation value between land use variable with socio economic and morbidity ranges from 0.57 to 0.73. The performance of model is improved from 67 % to 79 % in estimating morbidity for the year 2015 and 2016 due to the better availability of observed data.The study highlights the growing importance of incorporating socio-economic drivers with air quality data for evaluating morbidity rate for each city in comparison to just change in quantitative analysis of air quality.

  18. Border Lakes land-cover classification

    Science.gov (United States)

    Marvin Bauer; Brian Loeffelholz; Doug. Shinneman

    2009-01-01

    This document contains metadata and description of land-cover classification of approximately 5.1 million acres of land bordering Minnesota, U.S.A. and Ontario, Canada. The classification focused on the separation and identification of specific forest-cover types. Some separation of the nonforest classes also was performed. The classification was derived from multi-...

  19. Land Use Land Cover Changes in Detection of Water Quality: A Study Based on Remote Sensing and Multivariate Statistics

    Directory of Open Access Journals (Sweden)

    Ang Kean Hua

    2017-01-01

    Full Text Available Malacca River water quality is affected due to rapid urbanization development. The present study applied LULC changes towards water quality detection in Malacca River. The method uses LULC, PCA, CCA, HCA, NHCA, and ANOVA. PCA confirmed DS, EC, salinity, turbidity, TSS, DO, BOD, COD, As, Hg, Zn, Fe, E. coli, and total coliform. CCA confirmed 14 variables into two variates; first variate involves residential and industrial activities; and second variate involves agriculture, sewage treatment plant, and animal husbandry. HCA and NHCA emphasize that cluster 1 occurs in urban area with Hg, Fe, total coliform, and DO pollution; cluster 3 occurs in suburban area with salinity, EC, and DS; and cluster 2 occurs in rural area with salinity and EC. ANOVA between LULC and water quality data indicates that built-up area significantly polluted the water quality through E. coli, total coliform, EC, BOD, COD, TSS, Hg, Zn, and Fe, while agriculture activities cause EC, TSS, salinity, E. coli, total coliform, arsenic, and iron pollution; and open space causes contamination of turbidity, salinity, EC, and TSS. Research finding provided useful information in identifying pollution sources and understanding LULC with river water quality as references to policy maker for proper management of Land Use area.

  20. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Science.gov (United States)

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  1. Towards Seamless Validation of Land Cover Data

    Science.gov (United States)

    Chuprikova, Ekaterina; Liebel, Lukas; Meng, Liqiu

    2018-05-01

    This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty patterns associated with the fusion of various land cover data sets including GlobeLand30, CORINE (CLC2006, Germany) and land cover data derived from Volunteered Geographic Information (VGI) such as Open Street Map (OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. Such an endeavor aims to pave a way towards a seamless validation of global land cover data on the one hand and a targeted knowledge discovery in areas with higher uncertainty values on the other hand.

  2. Evaluating The Land Use And Land Cover Dynamics In Borena ...

    African Journals Online (AJOL)

    The integration of satellite remote sensing and GIS was an effective approach for analyzing the direction, rate, and spatial pattern of land use change. Three land use and land cover maps were produced by analyzing remotely sensed images of Landsat satellite imageries at three time points (1972,1985,and 2003) .

  3. Scenarios of land cover in China

    Science.gov (United States)

    Yue, Tian Xiang; Fan, Ze Meng; Liu, Ji Yuan

    2007-02-01

    A method for surface modeling of land cover change (SMLC) is developed on the basis of establishing transition probability matrixes between land cover types and HLZ types. SMLC is used to simulate land cover scenarios of China for the years 2039, 2069 and 2099, for which HLZ scenarios are first simulated in terms of HadCM3 climatic scenarios that are downscaled in zonal model of spatial climate change in China. This paper also analyzes spatial distribution of land cover types, area change and mean center shift of each land cover type, ecotope diversity, and patch connectivity under the land cover scenarios. The results show that cultivated land would decrease and woodland would expand greatly with climatic change, which coincides with consequences expected by implementation of Grain-for-Green policy. Nival area would shrink, and desertification area would expand at a comparatively slow rate in future 100 years. Climate change would generally cause less ecotope diversity and more patch connectivity. Ecosystems in China would have a pattern of beneficial cycle after efficient ecological conservation and restoration. However, if human activities would exceed regulation capacity of ecosystems themselves, the ecosystems in China might deteriorate more seriously.

  4. EnviroAtlas - Land Cover for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the percentage of land area that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006...

  5. CLC2000 land cover database of the Netherlands; monitoring land cover changes between 1986 and 2000

    OpenAIRE

    Hazeu, G.W.

    2003-01-01

    The 1986 CORINE land cover database of the Netherlands was revised and updated on basis of Landsat satellite images and ancillary data. Interpretation of satellite images from 1986 and 2000 resulted in the CLC2000, CLC1986rev and CLCchange databases. A standard European legend and production methodology was applied. Thirty land cover classes were discerned. Most extended land cover types were pastures (231), arable land (211) and complex cultivation patterns (242). Between 1986 and 2000 aroun...

  6. Enhancement of Tropical Land Cover Mapping with Wavelet-Based Fusion and Unsupervised Clustering of SAR and Landsat Image Data

    Science.gov (United States)

    LeMoigne, Jacqueline; Laporte, Nadine; Netanyahuy, Nathan S.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.

  7. C-CAP Niihau 2005 Land Cover

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land cover derived from high resolution imagery according to the Coastal Change Analysis Program (C-CAP) protocol. This data set utilized 1...

  8. Land cover fire proneness in Europe

    Directory of Open Access Journals (Sweden)

    Mario Gonzalez Pereira

    2014-12-01

    Full Text Available Aim of study: This study aims to identify and characterize the spatial and temporal evolution of the types of vegetation that are most affected by forest fires in Europe. The characterization of the fuels is an important issue of the fire regime in each specific ecosystem while, on the other hand, fire is an important disturbance for global vegetation dynamics.Area of study: Southern European countries: Portugal, Spain, France, Italy and Greece.Material and Methods: Corine Land Cover maps for 2000 and 2006 (CLC2000, CLC2006 and burned area (BA perimeters, from 2000 to 2013 in Europe are combined to access the spatial and temporal evolution of the types of vegetation that are most affected by wild fires using descriptive statistics and Geographical Information System (GIS techniques.Main results: The spatial and temporal distribution of BA perimeters, vegetation and burnt vegetation by wild fires was performed and different statistics were obtained for Mediterranean and entire Europe, confirming the usefulness of the proposed land cover system. A fire proneness index is proposed to assess the fire selectivity of land cover classes. The index allowed to quantify and to compare the propensity of vegetation classes and countries to fire.Research highlights: The usefulness and efficiency of the land cover classification scheme and fire proneness index. The differences between northern Europe and southern Europe and among the Mediterranean region in what concerns to vegetation cover, fire incidence, area burnt in land cover classes and fire proneness between classes for the different countries.Keywords: Fire proneness; Mixed forests; Land cover/land use; Fire regime; Europe; GIS; Corine land cover

  9. Rule-based land cover classification from very high-resolution satellite image with multiresolution segmentation

    Science.gov (United States)

    Haque, Md. Enamul; Al-Ramadan, Baqer; Johnson, Brian A.

    2016-07-01

    Multiresolution segmentation and rule-based classification techniques are used to classify objects from very high-resolution satellite images of urban areas. Custom rules are developed using different spectral, geometric, and textural features with five scale parameters, which exploit varying classification accuracy. Principal component analysis is used to select the most important features out of a total of 207 different features. In particular, seven different object types are considered for classification. The overall classification accuracy achieved for the rule-based method is 95.55% and 98.95% for seven and five classes, respectively. Other classifiers that are not using rules perform at 84.17% and 97.3% accuracy for seven and five classes, respectively. The results exploit coarse segmentation for higher scale parameter and fine segmentation for lower scale parameter. The major contribution of this research is the development of rule sets and the identification of major features for satellite image classification where the rule sets are transferable and the parameters are tunable for different types of imagery. Additionally, the individual objectwise classification and principal component analysis help to identify the required object from an arbitrary number of objects within images given ground truth data for the training.

  10. Optimal Decision Fusion for Urban Land-Use/Land-Cover Classification Based on Adaptive Differential Evolution Using Hyperspectral and LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yanfei Zhong

    2017-08-01

    Full Text Available Hyperspectral images and light detection and ranging (LiDAR data have, respectively, the high spectral resolution and accurate elevation information required for urban land-use/land-cover (LULC classification. To combine the respective advantages of hyperspectral and LiDAR data, this paper proposes an optimal decision fusion method based on adaptive differential evolution, namely ODF-ADE, for urban LULC classification. In the ODF-ADE framework the normalized difference vegetation index (NDVI, gray-level co-occurrence matrix (GLCM and digital surface model (DSM are extracted to form the feature map. The three different classifiers of the maximum likelihood classifier (MLC, support vector machine (SVM and multinomial logistic regression (MLR are used to classify the extracted features. To find the optimal weights for the different classification maps, weighted voting is used to obtain the classification result and the weights of each classification map are optimized by the differential evolution algorithm which uses a self-adaptive strategy to obtain the parameter adaptively. The final classification map is obtained after post-processing based on conditional random fields (CRF. The experimental results confirm that the proposed algorithm is very effective in urban LULC classification.

  11. Towards realistic Holocene land cover scenarios: integration of archaeological, palynological and geomorphological records and comparison to global land cover scenarios.

    Science.gov (United States)

    De Brue, Hanne; Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Accurate and spatially explicit landscape reconstructions for distinct time periods in human history are essential for the quantification of the effect of anthropogenic land cover changes on, e.g., global biogeochemical cycles, ecology, and geomorphic processes, and to improve our understanding of interaction between humans and the environment in general. A long-term perspective covering Mid and Late Holocene land use changes is recommended in this context, as it provides a baseline to evaluate human impact in more recent periods. Previous efforts to assess the evolution and intensity of agricultural land cover in past centuries or millennia have predominantly focused on palynological records. An increasing number of quantitative techniques has been developed during the last two decades to transfer palynological data to land cover estimates. However, these techniques have to deal with equifinality issues and, furthermore, do not sufficiently allow to reconstruct spatial patterns of past land cover. On the other hand, several continental and global databases of historical anthropogenic land cover changes based on estimates of global population and the required agricultural land per capita have been developed in the past decennium. However, at such long temporal and spatial scales, reconstruction of past anthropogenic land cover intensities and spatial patterns necessarily involves many uncertainties and assumptions as well. Here, we present a novel approach that combines archaeological, palynological and geomorphological data for the Dijle catchment in the central Belgium Loess Belt in order to arrive at more realistic Holocene land cover histories. Multiple land cover scenarios (> 60.000) are constructed using probabilistic rules and used as input into a sediment delivery model (WaTEM/SEDEM). Model outcomes are confronted with a detailed geomorphic dataset on Holocene sediment fluxes and with REVEALS based estimates of vegetation cover using palynological data from

  12. Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit product

    Science.gov (United States)

    Fry, J.A.; Coan, Michael; Homer, Collin G.; Meyer, Debra K.; Wickham, J.D.

    2009-01-01

    The Multi-Resolution Land Characteristics Consortium has supported the development of two national digital land cover products: the National Land Cover Dataset (NLCD) 1992 and National Land Cover Database (NLCD) 2001. Substantial differences in imagery, legends, and methods between these two land cover products must be overcome in order to support direct comparison. The NLCD 1992-2001 Land Cover Change Retrofit product was developed to provide more accurate and useful land cover change data than would be possible by direct comparison of NLCD 1992 and NLCD 2001. For the change analysis method to be both national in scale and timely, implementation required production across many Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) path/rows simultaneously. To meet these requirements, a hybrid change analysis process was developed to incorporate both post-classification comparison and specialized ratio differencing change analysis techniques. At a resolution of 30 meters, the completed NLCD 1992-2001 Land Cover Change Retrofit product contains unchanged pixels from the NLCD 2001 land cover dataset that have been cross-walked to a modified Anderson Level I class code, and changed pixels labeled with a 'from-to' class code. Analysis of the results for the conterminous United States indicated that about 3 percent of the land cover dataset changed between 1992 and 2001.

  13. An Alternative Approach to Overcome the Limitation of HRUs in Analyzing Hydrological Processes Based on Land Use/Cover Change

    Directory of Open Access Journals (Sweden)

    Fanhao Meng

    2018-04-01

    Full Text Available Since the concept of hydrological response units (HRUs is used widely in hydrological modeling, the land use change scenarios analysis based on HRU may have direct influence on hydrological processes due to its simplified flow routing and HRU spatial distribution. This paper intends to overcome this issue based on a new analysis approach to explain what impacts for the impact of land use/cover change on hydrological processes (LUCCIHP, and compare whether differences exist between the conventional approach and the improved approach. Therefore, we proposed a sub-basin segmentation approach to obtain more reasonable impact assessment of LUCC scenario by re-discretizing the HRUs and prolonging the flow path in which the LUCC occurs. As a scenario study, the SWAT model is used in the Aksu River Basin, China, to simulate the response of hydrological processes to LUCC over ten years. Moreover, the impacts of LUCC on hydrological processes before and after model modification are compared and analyzed at three levels (catchment scale, sub-basin scale and HRU scale. Comparative analysis of Nash–Sutcliffe coefficient (NSE, RSR and Pbias, model simulations before and after model improvement shows that NSE increased by up to 2%, RSR decreased from 0.73 to 0.72, and Pbias decreased from 0.13 to 0.05. The major LUCCs affecting hydrological elements in this basin are related to the degradation of grassland and snow/ice and expansion of farmland and bare land. Model simulations before and after model improvement show that the average variation of flow components in typical sub-basins (surface runoff, lateral flow and groundwater flow are changed by +11.09%, −4.51%, and −6.58%, and +10.53%, −1.55%, and −8.98% from the base period model scenario, respectively. Moreover, the spatial response of surface runoff at the HRU level reveals clear spatial differences between before and after model improvement. This alternative approach illustrates the potential

  14. Development of 2010 national land cover database for the Nepal.

    Science.gov (United States)

    Uddin, Kabir; Shrestha, Him Lal; Murthy, M S R; Bajracharya, Birendra; Shrestha, Basanta; Gilani, Hammad; Pradhan, Sudip; Dangol, Bikash

    2015-01-15

    Land cover and its change analysis across the Hindu Kush Himalayan (HKH) region is realized as an urgent need to support diverse issues of environmental conservation. This study presents the first and most complete national land cover database of Nepal prepared using public domain Landsat TM data of 2010 and replicable methodology. The study estimated that 39.1% of Nepal is covered by forests and 29.83% by agriculture. Patch and edge forests constituting 23.4% of national forest cover revealed proximate biotic interferences over the forests. Core forests constituted 79.3% of forests of Protected areas where as 63% of area was under core forests in the outside protected area. Physiographic regions wise forest fragmentation analysis revealed specific conservation requirements for productive hill and mid mountain regions. Comparative analysis with Landsat TM based global land cover product showed difference of the order of 30-60% among different land cover classes stressing the need for significant improvements for national level adoption. The online web based land cover validation tool is developed for continual improvement of land cover product. The potential use of the data set for national and regional level sustainable land use planning strategies and meeting several global commitments also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Estimating land use / land cover changes in Denmark from 1990 - 2012

    DEFF Research Database (Denmark)

    Levin, Gregor; Kastrup Blemmer, Morten; Gyldenkærne, Steen

    According to the article 3(4) of the Kyoto Protocol, Denmark is obliged to document sequestration and emission of carbon dioxide from land use and land cover and changes in these. This report documents and describes applied data end developed methods aiming at estimating amounts and changes in land...... use and land cover for Denmark for since 1990. Estimation of land use and land cover categories and changes in these is predominantly based on existing categorical (i.e. pre-classified) geographical information. Estimations are elaborated for the period from 1990 to 2005, from 2005 to 2011 and from...... 2011 to 2012. Due to limited availability of historical spatially explicit information, estimations of change in land use and land cover from 1990 up to 2011 do, to some degree, involve decisions based on expert knowledge. Due to a significant increase in the availability of detailed spatially specific...

  16. 2006-2012 Land Cover and Use Changes in Romania – An Overall Assessment Based on Corine Data

    Directory of Open Access Journals (Sweden)

    Petrişor Alexandru-Ionuţ

    2017-10-01

    Full Text Available Land cover and use changes are an important component of the global changes, and in relationship with their transitional dynamics reflect the impact of socio-economic transition. This study is aimed at exploring the land cover and use changes occurred during 2006-2012 in Romania with respect to their spatial distribution over the regions of development and main transitional dynamics. The results suggest that the main drivers of change are deforestation and urbanization, accounting for 3/4 of all changes, and that the most affected regions are the northwest, southwest, center and northeast ones. Overall, the findings suggest a continuation of the trends from the previous periods, characteristic to transition economies.

  17. Land cover mapping of Greater Mesoamerica using MODIS data

    Science.gov (United States)

    Giri, Chandra; Jenkins, Clinton N.

    2005-01-01

    A new land cover database of Greater Mesoamerica has been prepared using moderate resolution imaging spectroradiometer (MODIS, 500 m resolution) satellite data. Daily surface reflectance MODIS data and a suite of ancillary data were used in preparing the database by employing a decision tree classification approach. The new land cover data are an improvement over traditional advanced very high resolution radiometer (AVHRR) based land cover data in terms of both spatial and thematic details. The dominant land cover type in Greater Mesoamerica is forest (39%), followed by shrubland (30%) and cropland (22%). Country analysis shows forest as the dominant land cover type in Belize (62%), Cost Rica (52%), Guatemala (53%), Honduras (56%), Nicaragua (53%), and Panama (48%), cropland as the dominant land cover type in El Salvador (60.5%), and shrubland as the dominant land cover type in Mexico (37%). A three-step approach was used to assess the quality of the classified land cover data: (i) qualitative assessment provided good insight in identifying and correcting gross errors; (ii) correlation analysis of MODIS- and Landsat-derived land cover data revealed strong positive association for forest (r2 = 0.88), shrubland (r2 = 0.75), and cropland (r2 = 0.97) but weak positive association for grassland (r2 = 0.26); and (iii) an error matrix generated using unseen training data provided an overall accuracy of 77.3% with a Kappa coefficient of 0.73608. Overall, MODIS 500 m data and the methodology used were found to be quite useful for broad-scale land cover mapping of Greater Mesoamerica.

  18. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods

    Science.gov (United States)

    Xian, George; Homer, Collin G.; Fry, Joyce

    2009-01-01

    The recent release of the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for national land cover conditions. To enable the updating of this land cover information in a consistent and continuous manner, a prototype method was developed to update land cover by an individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, land cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls, South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show that the vast majority of land cover change was captured and updated with overall land cover classification accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping efficiency and has the potential to provide users a flexible method to generate updated land cover at national and regional scales by using NLCD 2001 as the baseline.

  19. USGS National Land Cover Dataset (NLCD) Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 1992, NLCD 2001, NLCD 2006, and NLCD 2011 are National Land Cover Database classification schemes based primarily on Landsat data along with ancillary data...

  20. Land cover classification using reformed fuzzy C-means

    Indian Academy of Sciences (India)

    This paper uses segmentation based on unsupervised clustering techniques for classification of land cover. ∗ ... and unsupervised classification can be solved by FCM. ..... They also act as input to the development and monitoring of a range of ...

  1. Review of Land Use and Land Cover Change research progress

    Science.gov (United States)

    Chang, Yue; Hou, Kang; Li, Xuxiang; Zhang, Yunwei; Chen, Pei

    2018-02-01

    Land Use and Land Cover Change (LUCC) can reflect the pattern of human land use in a region, and plays an important role in space soil and water conservation. The study on the change of land use patterns in the world is of great significance to cope with global climate change and sustainable development. This paper reviews the main research progress of LUCC at home and abroad, and suggests that land use change has been shifted from land use planning and management to land use change impact and driving factors. The development of remote sensing technology provides the basis and data for LUCC with dynamic monitoring and quantitative analysis. However, there is no uniform standard for land use classification at present, which brings a lot of inconvenience to the collection and analysis of land cover data. Globeland30 is an important milestone contribution to the study of international LUCC system. More attention should be paid to the accuracy and results contrasting test of land use classification obtained by remote sensing technology.

  2. The Land Use and Cover Change in Miombo Woodlands under Community Based Forest Management and Its Implication to Climate Change Mitigation: A Case of Southern Highlands of Tanzania

    Directory of Open Access Journals (Sweden)

    Z. J. Lupala

    2015-01-01

    Full Text Available In Tanzania, miombo woodland is the most significant forest vegetation with both ecological and socioeconomic importance. The vegetation has been threatened from land use and cover change due to unsustainable utilization. Over the past two decades, community based forest management (CBFM has been practiced to address the problem. Given the current need to mitigate global climate change, little is known on the influence of CBFM to the land use and cover change in miombo woodlands and therefore compromising climate change mitigation strategies. This study explored the dynamic of land use and covers change and biomass due to CBFM and established the implication to climate change mitigation. The study revealed increasing miombo woodland cover density with decreasing unsustainable utilization. The observed improvement in cover density and biomass provides potential for climate change mitigation strategies. CBFM also developed solidarity, cohesion, and social control of miombo woodlands illegal extraction. This further enhances permanence, reduces leakage, and increases accountability requirement for carbon credits. Collectively with these promising results, good land use plan at village level and introduction of alternative income generating activities can be among the best options to further reduce land use change and biomass loss in miombo woodlands.

  3. Building a Continental Scale Land Cover Monitoring Framework for Australia

    Science.gov (United States)

    Thankappan, Medhavy; Lymburner, Leo; Tan, Peter; McIntyre, Alexis; Curnow, Steven; Lewis, Adam

    2012-04-01

    Land cover information is critical for national reporting and decision making in Australia. A review of information requirements for reporting on national environmental indicators identified the need for consistent land cover information to be compared against a baseline. A Dynamic Land Cover Dataset (DLCD) for Australia has been developed by Geoscience Australia and the Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES) recently, to provide a comprehensive and consistent land cover information baseline to enable monitoring and reporting for sustainable farming practices, water resource management, soil erosion, and forests at national and regional scales. The DLCD was produced from the analysis of Enhanced Vegetation Index (EVI) data at 250-metre resolution derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period from 2000 to 2008. The EVI time series data for each pixel was modelled as 12 coefficients based on the statistical, phenological and seasonal characteristics. The time series were then clustered in coefficients spaces and labelled using ancillary information on vegetation and land use at the catchment scale. The accuracy of the DLCD was assessed using field survey data over 25,000 locations provided by vegetation and land management agencies in State and Territory jurisdictions, and by ABARES. The DLCD is seen as the first in a series of steps to build a framework for national land cover monitoring in Australia. A robust methodology to provide annual updates to the DLCD is currently being developed at Geoscience Australia. There is also a growing demand from the user community for land cover information at better spatial resolution than currently available through the DLCD. Global land cover mapping initiatives that rely on Earth observation data offer many opportunities for national and international programs to work in concert and deliver better outcomes by streamlining efforts on development and

  4. Mapping Urban Green Infrastructure: A Novel Landscape-Based Approach to Incorporating Land Use and Land Cover in the Mapping of Human-Dominated Systems

    Directory of Open Access Journals (Sweden)

    Matthew Dennis

    2018-01-01

    Full Text Available Common approaches to mapping green infrastructure in urbanised landscapes invariably focus on measures of land use or land cover and associated functional or physical traits. However, such one-dimensional perspectives do not accurately capture the character and complexity of the landscapes in which urban inhabitants live. The new approach presented in this paper demonstrates how open-source, high spatial and temporal resolution data with global coverage can be used to measure and represent the landscape qualities of urban environments. Through going beyond simple metrics of quantity, such as percentage green and blue cover, it is now possible to explore the extent to which landscape quality helps to unpick the mixed evidence presented in the literature on the benefits of urban nature to human well-being. Here we present a landscape approach, employing remote sensing, GIS and data reduction techniques to map urban green infrastructure elements in a large U.K. city region. Comparison with existing urban datasets demonstrates considerable improvement in terms of coverage and thematic detail. The characterisation of landscapes, using census tracts as spatial units, and subsequent exploration of associations with social–ecological attributes highlights the further detail that can be uncovered by the approach. For example, eight urban landscape types identified for the case study city exhibited associations with distinct socioeconomic conditions accountable not only to quantities but also qualities of green and blue space. The identification of individual landscape features through simultaneous measures of land use and land cover demonstrated unique and significant associations between the former and indicators of human health and ecological condition. The approach may therefore provide a promising basis for developing further insight into processes and characteristics that affect human health and well-being in urban areas, both in the United

  5. Use of UAV-Borne Spectrometer for Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Sowmya Natesan

    2018-04-01

    Full Text Available Unmanned aerial vehicles (UAV are being used for low altitude remote sensing for thematic land classification using visible light and multi-spectral sensors. The objective of this work was to investigate the use of UAV equipped with a compact spectrometer for land cover classification. The UAV platform used was a DJI Flamewheel F550 hexacopter equipped with GPS and Inertial Measurement Unit (IMU navigation sensors, and a Raspberry Pi processor and camera module. The spectrometer used was the FLAME-NIR, a near-infrared spectrometer for hyperspectral measurements. RGB images and spectrometer data were captured simultaneously. As spectrometer data do not provide continuous terrain coverage, the locations of their ground elliptical footprints were determined from the bundle adjustment solution of the captured images. For each of the spectrometer ground ellipses, the land cover signature at the footprint location was determined to enable the characterization, identification, and classification of land cover elements. To attain a continuous land cover classification map, spatial interpolation was carried out from the irregularly distributed labeled spectrometer points. The accuracy of the classification was assessed using spatial intersection with the object-based image classification performed using the RGB images. Results show that in homogeneous land cover, like water, the accuracy of classification is 78% and in mixed classes, like grass, trees and manmade features, the average accuracy is 50%, thus, indicating the contribution of hyperspectral measurements of low altitude UAV-borne spectrometers to improve land cover classification.

  6. Impacts of Land Cover Changes on Climate over China

    Science.gov (United States)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  7. Land cover and water yield: inference problems when comparing catchments with mixed land cover

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2012-09-01

    Full Text Available Controlled experiments provide strong evidence that changing land cover (e.g. deforestation or afforestation can affect mean catchment streamflow (Q. By contrast, a similarly strong influence has not been found in studies that interpret Q from multiple catchments with mixed land cover. One possible reason is that there are methodological issues with the way in which the Budyko framework was used in the latter type studies. We examined this using Q data observed in 278 Australian catchments and by making inferences from synthetic Q data simulated by a hydrological process model (the Australian Water Resources Assessment system Landscape model. The previous contrasting findings could be reproduced. In the synthetic experiment, the land cover influence was still present but not accurately detected with the Budyko- framework. Likely sources of interpretation bias demonstrated include: (i noise in land cover, precipitation and Q data; (ii additional catchment climate characteristics more important than land cover; and (iii covariance between Q and catchment attributes. These methodological issues caution against the use of a Budyko framework to quantify a land cover influence in Q data from mixed land-cover catchments. Importantly, however, our findings do not rule out that there may also be physical processes that modify the influence of land cover in mixed land-cover catchments. Process model simulations suggested that lateral water redistribution between vegetation types and recirculation of intercepted rainfall may be important.

  8. Influence of land development on stormwater runoff from a mixed land use and land cover catchment.

    Science.gov (United States)

    Paule-Mercado, M A; Lee, B Y; Memon, S A; Umer, S R; Salim, I; Lee, C-H

    2017-12-01

    Mitigating for the negative impacts of stormwater runoff is becoming a concern due to increased land development. Understanding how land development influences stormwater runoff is essential for sustainably managing water resources. In recent years, aggregate low impact development-best management practices (LID-BMPs) have been implemented to reduce the negative impacts of stormwater runoff on receiving water bodies. This study used an integrated approach to determine the influence of land development and assess the ecological benefits of four aggregate LID-BMPs in stormwater runoff from a mixed land use and land cover (LULC) catchment with ongoing land development. It used data from 2011 to 2015 that monitored 41 storm events and monthly LULC, and a Personalized Computer Storm Water Management Model (PCSWMM). The four aggregate LID-BMPs are: ecological (S1), utilizing pervious covers (S2), and multi-control (S3) and (S4). These LID-BMPs were designed and distributed in the study area based on catchment characteristics, cost, and effectiveness. PCSWMM was used to simulate the monitored storm events from 2014 (calibration: R 2 and NSE>0.5; RMSE 0.5; RMSE runoff data and LULC change patterns (only 2015 for LID-BMPs) were used. Results show that the expansion of bare land and impervious cover, soil alteration, and high amount of precipitation influenced the stormwater runoff variability during different phases of land development. The four aggregate LID-BMPs reduced runoff volume (34%-61%), peak flow (6%-19%), and pollutant concentrations (53%-83%). The results of this study, in addition to supporting local LULC planning and land development activities, also could be applied to input data for empirical modeling, and designing sustainable stormwater management guidelines and monitoring strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development of a 30 m Spatial Resolution Land Cover of Canada: Contribution to the Harmonized North America Land Cover Dataset

    Science.gov (United States)

    Pouliot, D.; Latifovic, R.; Olthof, I.

    2017-12-01

    Land cover is needed for a large range of environmental applications regarding climate impacts and adaption, emergency response, wildlife habitat, air quality, water yield, etc. In Canada a 2008 user survey revealed that the most practical scale for provision of land cover data is 30 m, nationwide, with an update frequency of five years (Ball, 2008). In response to this need the Canada Centre for Remote Sensing has generated a 30 m land cover of Canada for the base year 2010 as part of a planned series of maps at the recommended five year update frequency. This land cover is the Canadian contribution to the North American Land Change Monitoring System initiative, which seeks to provide harmonized land cover across Canada, the United States, and Mexico. The methodology developed in this research utilized a combination of unsupervised and machine learning techniques to map land cover, blend results between mapping units, locally optimize results, and process some thematic attributes with specific features sets. Accuracy assessment with available field data shows it was on average 75% for the five study areas assessed. In this presentation an overview of the unique processing aspects, example results, and initial accuracy assessment will be discussed.

  10. LandSense: A Citizen Observatory and Innovation Marketplace for Land Use and Land Cover Monitoring

    Science.gov (United States)

    Moorthy, Inian; Fritz, Steffen; See, Linda; McCallum, Ian

    2017-04-01

    Currently within the EU's Earth Observation (EO) monitoring framework, there is a need for low-cost methods for acquiring high quality in-situ data to create accurate and well-validated environmental monitoring products. To help address this need, a new four year Horizon 2020 project entitled LandSense will link remote sensing data with modern participatory data collection methods that involve citizen scientists. This paper will describe the citizen science activities within the LandSense Observatory that aim to deliver concrete, measurable and quality-assured ground-based data that will complement existing satellite monitoring systems. LandSense will deploy advanced tools, services and resources to mobilize and engage citizens to collect in-situ observations (i.e. ground-based data and visual interpretations of EO imagery). Integrating these citizen-driven in-situ data collections with established authoritative and open access data sources will help reduce costs, extend GEOSS and Copernicus capacities, and support comprehensive environmental monitoring systems. Policy-relevant campaigns will be implemented in close collaboration with multiple stakeholders to ensure that citizen observations address user requirements and contribute to EU-wide environmental governance and decision-making. Campaigns for addressing local and regional Land Use and Land Cover (LULC) issues are planned for select areas in Austria, France, Germany, Spain, Slovenia and Serbia. Novel LandSense services (LandSense Campaigner, FarmLand Support, Change Detector and Quality Assurance & Control) will be deployed and tested in these areas to address critical LULC issues (i.e. urbanization, agricultural land use and forest/habitat monitoring). For example, local residents in the cities of Vienna, Tulln, and Heidelberg will help cooperatively detect and map changes in land cover and green space to address key issues of urban sprawl, land take and flooding. Such campaigns are facilitated through

  11. Carbon Assessment of Hawaii Land Cover Map (CAH_LandCover)

    Data.gov (United States)

    Department of the Interior — While there have been many maps produced that depict vegetation for the state of Hawai‘i only a few of these display land cover for all of the main Hawaiian Islands,...

  12. Monitoring and Analysing Land Use/Cover Changes in an Arid Region Based on Multi-Satellite Data: The Kashgar Region, Northwest China

    Directory of Open Access Journals (Sweden)

    Ayisulitan Maimaitiaili

    2018-01-01

    Full Text Available In arid regions, oases ecosystems are fragile and sensitive to climate change, and water is the major limiting factor for environmental and socio-economic developments. Understanding the drivers of land use/cover change (LUCC in arid regions is important for the development of management strategies to improve or prevent environmental deterioration and loss of natural resources. The Kashgar Region is the key research area in this study; it is a typical mountain-alluvial plain-oasis-desert ecosystem in an arid region, and is one of the largest oases in Xinjiang Uyghur Autonomous Region, China. In addition, the Kashgar Region is an important cotton and grain production area. This study’s main objectives are to quantify predominant LUCCs and identify their driving forces, based on the integration of multiple remote sensors and applications of environmental and socio-economic data. Results showed that LUCCs have been significant in the Kashgar Region during the last 42 years. Cultivated land and urban/built-up lands were the most changed land cover (LC, by 3.6% and 0.4% from 1972 to 10.2% and 3% in 2014, respectively. By contrast, water and forest areas declined. Grassland and snow-covered areas have fluctuated along with climate and human activities. Bare land was changed slightly from 1972 to 2014. According to the land use transfer matrix, cultivated land replaced grass- and forestland. Urban/built-up land mainly expanded over cultivated and bare land. LUCCs were triggered by the interplay of natural and social drivers. Increasing runoff, caused by regional climate changes in seasonal variation, and snow melt water, have provided water resources for LC changes. In the same way, population growth, changes in land tenure, and socio-economic development also induced LUCCs. However, expansion of cultivated land and urban/built-up land led to increased water consumption and stressed fragile water systems during on-going climate changes. Therefore

  13. Carbon emissions from land use and land-cover change

    Directory of Open Access Journals (Sweden)

    R. A. Houghton

    2012-12-01

    Full Text Available The net flux of carbon from land use and land-cover change (LULCC accounted for 12.5% of anthropogenic carbon emissions from 1990 to 2010. This net flux is the most uncertain term in the global carbon budget, not only because of uncertainties in rates of deforestation and forestation, but also because of uncertainties in the carbon density of the lands actually undergoing change. Furthermore, there are differences in approaches used to determine the flux that introduce variability into estimates in ways that are difficult to evaluate, and not all analyses consider the same types of management activities. Thirteen recent estimates of net carbon emissions from LULCC are summarized here. In addition to deforestation, all analyses considered changes in the area of agricultural lands (croplands and pastures. Some considered, also, forest management (wood harvest, shifting cultivation. None included emissions from the degradation of tropical peatlands. Means and standard deviations across the thirteen model estimates of annual emissions for the 1980s and 1990s, respectively, are 1.14 ± 0.23 and 1.12 ± 0.25 Pg C yr−1 (1 Pg = 1015 g carbon. Four studies also considered the period 2000–2009, and the mean and standard deviations across these four for the three decades are 1.14 ± 0.39, 1.17 ± 0.32, and 1.10 ± 0.11 Pg C yr−1. For the period 1990–2009 the mean global emissions from LULCC are 1.14 ± 0.18 Pg C yr−1. The standard deviations across model means shown here are smaller than previous estimates of uncertainty as they do not account for the errors that result from data uncertainty and from an incomplete understanding of all the processes affecting the net flux of carbon from LULCC. Although these errors have not been systematically evaluated, based on partial analyses available in the literature and expert opinion, they are estimated to be on the order of ± 0.5 Pg C yr−1.

  14. Change of Land Use/Cover in Tianjin City Based on the Markov and Cellular Automata Models

    Directory of Open Access Journals (Sweden)

    Ruci Wang

    2017-05-01

    Full Text Available In recent years, urban areas have been expanding rapidly in the world, especially in developing countries. With this rapid urban growth, several environmental and social problems have appeared. Better understanding of land use and land cover (LULC change will facilitate urban planning and constrain these potential problems. As one of the four municipalities in China, Tianjin has experienced rapid urbanization and such trend is expected to continue. Relying on remote sensing (RS and geographical information system (GIS tools, this study investigates LULC change in Tianjin city. First, we used RS to generate classification maps for 1995, 2005, and 2015. Then, simulation models were applied to evaluate the LULC changes. Analysis of the 1995, 2005, and 2015 LULC maps shows that more than 10% of the cropland areas were transformed into built-up areas. Finally, by employing the Markov model and cellular automata (CA model, the LULC in 2025 and 2035 were simulated and forecasted. Our analysis contributes to the understanding of the development process in the Tianjin area, which will facilitate future planning, as well as constraining the potential negative consequences brought by future LULC changes.

  15. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery

    OpenAIRE

    Moran, Emilio Federico.

    2010-01-01

    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervi...

  16. ISLSCP II IGBP DISCover and SiB Land Cover, 1992-1993

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set describes the geographic distributions of 17 classes of land cover based on the International Geosphere-Biosphere DISCover land cover legend (Loveland...

  17. Sensitivity of selected landscape pattern metrics to land-cover misclassification and differences in land-cover composition

    Science.gov (United States)

    James D. Wickham; Robert V. O' Neill; Kurt H. Riitters; Timothy G. Wade; K. Bruce Jones

    1997-01-01

    Calculation of landscape metrics from land-cover data is becoming increasingly common. Some studies have shown that these measurements are sensitive to differences in land-cover composition, but none are known to have tested also their a sensitivity to land-cover misclassification. An error simulation model was written to test the sensitivity of selected land-scape...

  18. Support Vector Data Description Model to Map Specific Land Cover with Optimal Parameters Determined from a Window-Based Validation Set

    Directory of Open Access Journals (Sweden)

    Jinshui Zhang

    2017-04-01

    Full Text Available This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD, to determine optimal parameters for support vector data description (SVDD model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient (C and kernel width (s, in mapping homogeneous specific land cover.

  19. Land cover's refined classification based on multi source of remote sensing information fusion: a case study of national geographic conditions census in China

    Science.gov (United States)

    Cheng, Tao; Zhang, Jialong; Zheng, Xinyan; Yuan, Rujin

    2018-03-01

    The project of The First National Geographic Conditions Census developed by Chinese government has designed the data acquisition content and indexes, and has built corresponding classification system mainly based on the natural property of material. However, the unified standard for land cover classification system has not been formed; the production always needs converting to meet the actual needs. Therefore, it proposed a refined classification method based on multi source of remote sensing information fusion. It takes the third-level classes of forest land and grassland for example, and has collected the thematic data of Vegetation Map of China (1:1,000,000), attempts to develop refined classification utilizing raster spatial analysis model. Study area is selected, and refined classification is achieved by using the proposed method. The results show that land cover within study area is divided principally among 20 classes, from subtropical broad-leaved forest (31131) to grass-forb community type of low coverage grassland (41192); what's more, after 30 years in the study area, climatic factors, developmental rhythm characteristics and vegetation ecological geographical characteristics have not changed fundamentally, only part of the original vegetation types have changed in spatial distribution range or land cover types. Research shows that refined classification for the third-level classes of forest land and grassland could make the results take on both the natural attributes of the original and plant community ecology characteristics, which could meet the needs of some industry application, and has certain practical significance for promoting the product of The First National Geographic Conditions Census.

  20. Use of Binary Partition Tree and energy minimization for object-based classification of urban land cover

    Science.gov (United States)

    Li, Mengmeng; Bijker, Wietske; Stein, Alfred

    2015-04-01

    Two main challenges are faced when classifying urban land cover from very high resolution satellite images: obtaining an optimal image segmentation and distinguishing buildings from other man-made objects. For optimal segmentation, this work proposes a hierarchical representation of an image by means of a Binary Partition Tree (BPT) and an unsupervised evaluation of image segmentations by energy minimization. For building extraction, we apply fuzzy sets to create a fuzzy landscape of shadows which in turn involves a two-step procedure. The first step is a preliminarily image classification at a fine segmentation level to generate vegetation and shadow information. The second step models the directional relationship between building and shadow objects to extract building information at the optimal segmentation level. We conducted the experiments on two datasets of Pléiades images from Wuhan City, China. To demonstrate its performance, the proposed classification is compared at the optimal segmentation level with Maximum Likelihood Classification and Support Vector Machine classification. The results show that the proposed classification produced the highest overall accuracies and kappa coefficients, and the smallest over-classification and under-classification geometric errors. We conclude first that integrating BPT with energy minimization offers an effective means for image segmentation. Second, we conclude that the directional relationship between building and shadow objects represented by a fuzzy landscape is important for building extraction.

  1. Land Use and Land Cover - LAND_COVER_PRESETTLEMENT_IDNR_IN: Generalized Presettlement Vegetation Types of Indiana, Circa 1820 (Indiana Department of Natural Resources, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — LAND_COVER_PRESETTLEMENT_IDNR_IN.SHP is a polygon shapefile showing generalized presettlement vegetation types of Indiana, circa 1820. The work was based on original...

  2. Millennium Ecosystem Assessment: MA Rapid Land Cover Change

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Rapid Land Cover Change provides data and information on global and regional land cover change in raster format for...

  3. South African National Land-Cover Change Map

    African Journals Online (AJOL)

    Fritz Schoeman

    monitoring land-cover change at a national scale over time using EO data. 2. .... assist with final results reporting and analysis on a sub-national level. ..... South African Land-Cover Characteristics Database: A synopsis of the landscape.

  4. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    Science.gov (United States)

    Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.

    2014-06-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.

  5. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    International Nuclear Information System (INIS)

    Deilmai, B Rokni; Ahmad, B Bin; Zabihi, H

    2014-01-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification

  6. Relationship between Organic Carbon Runoff to River and Land Cover

    Science.gov (United States)

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.

    2017-12-01

    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.

  7. CLC2000 land cover database of the Netherlands; monitoring land cover changes between 1986 and 2000

    NARCIS (Netherlands)

    Hazeu, G.W.

    2003-01-01

    The 1986 CORINE land cover database of the Netherlands was revised and updated on basis of Landsat satellite images and ancillary data. Interpretation of satellite images from 1986 and 2000 resulted in the CLC2000, CLC1986rev and CLCchange databases. A standard European legend and production

  8. Geovisualization of land use and land cover using bivariate maps and Sankey flow diagrams

    Science.gov (United States)

    Strode, Georgianna; Mesev, Victor; Thornton, Benjamin; Jerez, Marjorie; Tricarico, Thomas; McAlear, Tyler

    2018-05-01

    The terms `land use' and `land cover' typically describe categories that convey information about the landscape. Despite the major difference of land use implying some degree of anthropogenic disturbance, the two terms are commonly used interchangeably, especially when anthropogenic disturbance is ambiguous, say managed forestland or abandoned agricultural fields. Cartographically, land use and land cover are also sometimes represented interchangeably within common legends, giving with the impression that the landscape is a seamless continuum of land use parcels spatially adjacent to land cover tracts. We believe this is misleading, and feel we need to reiterate the well-established symbiosis of land uses as amalgams of land covers; in other words land covers are subsets of land use. Our paper addresses this spatially complex, and frequently ambiguous relationship, and posits that bivariate cartographic techniques are an ideal vehicle for representing both land use and land cover simultaneously. In more specific terms, we explore the use of nested symbology as ways to represent graphically land use and land cover, where land cover are circles nested with land use squares. We also investigate bivariate legends for representing statistical covariance as a means for visualizing the combinations of land use and cover. Lastly, we apply Sankey flow diagrams to further illustrate the complex, multifaceted relationships between land use and land cover. Our work is demonstrated on data representing land use and cover data for the US state of Florida.

  9. Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1 Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2015-11-01

    Full Text Available Land cover plays an important role in the climate and biogeochemistry of the Earth system. It is of great significance to produce and evaluate the global land cover (GLC data when applying the data to the practice at a specific spatial scale. The objective of this study is to evaluate and validate the consistency of the Moderate Resolution Imaging Spectroradiometer (MODIS land cover product (MCD12Q1 at a provincial scale (Anhui Province, China based on the Chinese 30 m GLC product (GlobeLand30. A harmonization method is firstly used to reclassify the land cover types between five classification schemes (International Geosphere Biosphere Programme (IGBP global vegetation classification, University of Maryland (UMD, MODIS-derived Leaf Area Index and Fractional Photosynthetically Active Radiation (LAI/FPAR, MODIS-derived Net Primary Production (NPP, and Plant Functional Type (PFT of MCD12Q1 and ten classes of GlobeLand30, based on the knowledge rule (KR and C4.5 decision tree (DT classification algorithm. A total of five harmonized land cover types are derived including woodland, grassland, cropland, wetland and artificial surfaces, and four evaluation indicators are selected including the area consistency, spatial consistency, classification accuracy and landscape diversity in the three sub-regions of Wanbei, Wanzhong and Wannan. The results indicate that the consistency of IGBP is the best among the five schemes of MCD12Q1 according to the correlation coefficient (R. The “woodland” LAI/FPAR is the worst, with a spatial similarity (O of 58.17% due to the misclassification between “woodland” and “others”. The consistency of NPP is the worst among the five schemes as the agreement varied from 1.61% to 56.23% in the three sub-regions. Furthermore, with the biggest difference of diversity indices between LAI/FPAR and GlobeLand30, the consistency of LAI/FPAR is the weakest. This study provides a methodological reference for evaluating the

  10. The Significance of Land Cover Delineation on Soil Erosion Assessment.

    Science.gov (United States)

    Efthimiou, Nikolaos; Psomiadis, Emmanouil

    2018-04-25

    The study aims to evaluate the significance of land cover delineation on soil erosion assessment. To that end, RUSLE (Revised Universal Soil Loss Equation) was implemented at the Upper Acheloos River catchment, Western Central Greece, annually and multi-annually for the period 1965-92. The model estimates soil erosion as the linear product of six factors (R, K, LS, C, and P) considering the catchment's climatic, pedological, topographic, land cover, and anthropogenic characteristics, respectively. The C factor was estimated using six alternative land use delineations of different resolution, namely the CORINE Land Cover (CLC) project (2000, 2012 versions) (1:100,000), a land use map conducted by the Greek National Agricultural Research Foundation (NAGREF) (1:20,000), a land use map conducted by the Greek Payment and Control Agency for Guidance and Guarantee Community Aid (PCAGGCA) (1:5,000), and the Landsat 8 16-day Normalized Difference Vegetation Index (NDVI) dataset (30 m/pixel) (two approximations) based on remote sensing data (satellite image acquired on 07/09/2016) (1:40,000). Since all other factors remain unchanged per each RUSLE application, the differences among the yielded results are attributed to the C factor (thus the land cover pattern) variations. Validation was made considering the convergence between simulated (modeled) and observed sediment yield. The latter was estimated based on field measurements conducted by the Greek PPC (Public Power Corporation). The model performed best at both time scales using the Landsat 8 (Eq. 13) dataset, characterized by a detailed resolution and a satisfactory categorization, allowing the identification of the most susceptible to erosion areas.

  11. PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain

    Directory of Open Access Journals (Sweden)

    Chensong Tao

    2017-07-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR. Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM/decision tree (DT classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM/96.38% (with DT, while that of the conventional classification method is 93.87% (with SVM/94.12% (with DT, respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM/99.39% (with DT, which is also higher

  12. Hydrological Responses of Climate and Land Use/Cover Changes in Tao'er River Basin Based on the SWAT Model

    Science.gov (United States)

    Liu, J.; Kou, L.

    2015-12-01

    Abstract: The changes of both climate and land use/cover have some impact on the water resources. For Tao'er River Basin, these changes have a direct impact on the land use pattern adjustment, wetland protection, connection project between rivers and reservoirs, local social and economic development, etc. Therefore, studying the impact of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT) is used as the research method. With historical actual measured runoff data and the yearly land use classification caught by satellite remote sensing maps, analyze the impact of climate change on the runoff of Tao'er River. And according to the land use/cover classification of 1990, 2000 and 2010, analyze the land use/cover change in the recent 30 years, the impact of the land use/cover change on the river runoff and the contribution coefficient of farmland, woodland, grassland and other major land-use types to the runoff. These studies can provide some references to the rational allocation of water resource and adjustment of land use structure in this area.

  13. Land use/cover disturbance due to tourism in Jeseníky Mountain, Czech Republic: A remote sensing and GIS based approach

    OpenAIRE

    Mukesh Singh Boori; Vít Voženílek; Komal Choudhary

    2015-01-01

    The Jeseníky Mountains tourism in Czech Republic is unique for its floristic richness. This is caused mainly by the altitude division and polymorphism of the landscape, climate and soil structure. This study assesses the impacts of tourism on the land cover in the Jeseníky Mountain region by comparing multi-temporal Landsat imageries (1991, 2001 and 2013) to describe the rate and extent of land-cover changes. This was achieved through spectral classification of different land cover classes an...

  14. Carbon dioxide emissions from forestry and peat land using land-use/land-cover changes in North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Sulistyono, N.; Slamet, B.; Wati, R.

    2018-03-01

    Forestry and peat land including land-based is one of the critical sectors in the inventory of CO2 emissions and mitigation efforts of climate change. The present study analyzed the land-use and land-cover changes between 2006 and 2012 in North Sumatra, Indonesia with emphasis to CO2 emissions. The land-use/land-cover consists of twenty-one classes. Redd Abacus software version 1.1.7 was used to measure carbon emission source as well as the predicted 2carbon dioxide emissions from 2006-2024. Results showed that historical emission (2006-2012) in this province, significant increases in the intensive land use namely dry land agriculture (109.65%), paddy field (16.23%) and estate plantation (15.11%). On the other hand, land-cover for forest decreased significantly: secondary dry land forest (7.60%), secondary mangrove forest (9.03%), secondary swamp forest (33.98%), and the largest one in the mixed dry land agriculture (79.96%). The results indicated that North Sumatra province is still a CO2 emitter, and the most important driver of emissions mostly derived from agricultural lands that contributed 2carbon dioxide emissions by 48.8%, changing from forest areas into degraded lands (classified as barren land and shrub) shared 30.6% and estate plantation of 22.4%. Mitigation actions to reduce carbon emissions was proposed such as strengthening the forest land, rehabilitation of degraded area, development and plantation forest, forest protection and forest fire control, and reforestation and conservation activity. These mitigation actions have been simulated to reduce 15% for forestry and 18% for peat land, respectively. This data is likely to contribute to the low emission development in North Sumatra.

  15. Geospatial Analysis of Land Use and Land Cover Changes for Discharge at Way Kualagaruntang Watershed in Bandar Lampung

    OpenAIRE

    Yuniarti, Fieni; K, Dyah Indriana; Winarno, Dwi Joko

    2013-01-01

    Land use and land cover change in a watershed might drive some impacts, such as high amounts of discharge fluctuations. Way Kuala Garuntang Watersheed is one of watershed in Bandar Lampung that has changed significantly. This study analyzed land use and land cover change to determine how much its influence on discharce fluctuations based on Geographics Information System. The method used in this study comprised of hidrology, spatial and sensitivity analysis. Hidrology analysis based on daily ...

  16. Monitoring land Cover Changes and Fragmentation dynamics in the ...

    African Journals Online (AJOL)

    Monitoring land Cover Changes and Fragmentation dynamics in the subtropical thicket of the Eastern Cape Province, South Africa. ... Baseline land use/cover maps and fragmentation analyses in a temporal framework are valuable for gaining insights into, among other things, carbon stock change trends. Keywords: Land ...

  17. Validation of Land Cover Products Using Reliability Evaluation Methods

    Directory of Open Access Journals (Sweden)

    Wenzhong Shi

    2015-06-01

    Full Text Available Validation of land cover products is a fundamental task prior to data applications. Current validation schemes and methods are, however, suited only for assessing classification accuracy and disregard the reliability of land cover products. The reliability evaluation of land cover products should be undertaken to provide reliable land cover information. In addition, the lack of high-quality reference data often constrains validation and affects the reliability results of land cover products. This study proposes a validation schema to evaluate the reliability of land cover products, including two methods, namely, result reliability evaluation and process reliability evaluation. Result reliability evaluation computes the reliability of land cover products using seven reliability indicators. Process reliability evaluation analyzes the reliability propagation in the data production process to obtain the reliability of land cover products. Fuzzy fault tree analysis is introduced and improved in the reliability analysis of a data production process. Research results show that the proposed reliability evaluation scheme is reasonable and can be applied to validate land cover products. Through the analysis of the seven indicators of result reliability evaluation, more information on land cover can be obtained for strategic decision-making and planning, compared with traditional accuracy assessment methods. Process reliability evaluation without the need for reference data can facilitate the validation and reflect the change trends of reliabilities to some extent.

  18. The GOFC-GOLD/CEOS Land Cover Harmonization and Validation Initiative: Technical Design and Implementation

    Science.gov (United States)

    Herold, M.; Woodcock, C.; Stehman, S.; Nightingale, J.; Friedl, M.; Schmullius, C.

    2010-12-01

    A global effort to assess the accuracy of existing and future land cover products derived from a variety of satellite sensors over a range of spatial resolutions is being led by the Land Cover Implementation Team (LC-IT) of GOFC/GOLD (Global Observation of Land Cover Dynamics) in conjunction with the CEOS (Committee on Earth Observation Satellites) WGCV (Working Group on Calibration and Validation) LPV (Land Product Validation) subgroup. The first phase of this effort is complete and culminated in a publication of community consensus "best practices" for validation of global land cover datasets (2). The next phase is to implement the recommendations outlined in the "best practices" document. A "living database" of global randomized sample sites will form the basis of accuracy assessment for a host of global land cover products (GLC2000, MODIS land cover, GLOBCOVER, United Nation's Forest Resource Assessment (FRA2010), and the Mid-Decadal Global Land Survey. This "living dataset" will also be a community resource available for use in validation of regional or national mapping efforts using LCCS (UN FAO's Land Cover Classification System). Based on the known accuracy of existing land cover products, GOFC/GOLD will to develop and update a "best currently available" global land cover map. Individual geographic regions may be selected from different land cover products (global, national or regional), or they may be combined in various ways

  19. Land cover change in coastal watersheds 1996 to 2010

    Science.gov (United States)

    Nate Herold

    2016-01-01

    Land use and land cover play a significant role as drivers of environmental change. Information on what is changing and where those changes are occurring is essential if we are to improve our understanding of...

  20. the implications of land use/cover dynamics on resources

    African Journals Online (AJOL)

    2017-12-04

    Dec 4, 2017 ... Land use maps were produced using the GIS software packages of ... Keywords: Land use/cover, Dynamics, Remote Sensing Techniques, Geographic Information System, .... sporadic floods and landslides in Bambui which.

  1. National Land Cover Database (NLCD) Percent Developed Imperviousness Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database (NLCD) Percent Developed Imperviousness Collection is produced through a cooperative project conducted by the Multi-Resolution Land...

  2. Land and Forest Management by Land Use/ Land Cover Analysis and Change Detection Using Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    Ankana

    2016-01-01

    Full Text Available Remote sensing and Geographical Information System (GIS are the most effective tools in spatial data analysis. Natural resources like land, forest and water, these techniques have proved a valuable source of information generation as well as in the management and planning purposes. This study aims to suggest possible land and forest management strategies in Chakia tahsil based on land use and land cover analysis and the changing pattern observed during the last ten years. The population of Chakia tahsil is mainly rural in nature. The study has revealed that the northern part of the region, which offers for the settlement and all the agricultural practices constitutes nearly 23.48% and is a dead level plain, whereas the southern part, which constitute nearly 76.6% of the region is characterized by plateau and is covered with forest. The southern plateau rises abruptly from the northern alluvial plain with a number of escarpments. The contour line of 100 m mainly demarcates the boundary between plateau and plain. The plateau zone is deeply dissected and highly rugged terrain. The resultant topography comprises of a number of mesas and isolated hillocks showing elevation differences from 150 m to 385 m above mean sea level. Being rugged terrain in the southern part, nowadays human encroachment are taking place for more land for the cultivation. The changes were well observed in the land use and land cover in the study region. A large part of fallow land and open forest were converted into cultivated land.

  3. Central American Vegetation/Land Cover Classification and Conservation Status

    Data.gov (United States)

    National Aeronautics and Space Administration — The Central American Vegetation/Land Cover Classification and Conservation Status data set consists of GIS coverages of vegetation classes (forests, woodlands,...

  4. Estimating Accuracy of Land-Cover Composition From Two-Stage Clustering Sampling

    Science.gov (United States)

    Land-cover maps are often used to compute land-cover composition (i.e., the proportion or percent of area covered by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), ...

  5. Land Cover Classification Using ALOS Imagery For Penang, Malaysia

    International Nuclear Information System (INIS)

    Sim, C K; Abdullah, K; MatJafri, M Z; Lim, H S

    2014-01-01

    This paper presents the potential of integrating optical and radar remote sensing data to improve automatic land cover mapping. The analysis involved standard image processing, and consists of spectral signature extraction and application of a statistical decision rule to identify land cover categories. A maximum likelihood classifier is utilized to determine different land cover categories. Ground reference data from sites throughout the study area are collected for training and validation. The land cover information was extracted from the digital data using PCI Geomatica 10.3.2 software package. The variations in classification accuracy due to a number of radar imaging processing techniques are studied. The relationship between the processing window and the land classification is also investigated. The classification accuracies from the optical and radar feature combinations are studied. Our research finds that fusion of radar and optical significantly improved classification accuracies. This study indicates that the land cover/use can be mapped accurately by using this approach

  6. Remote sensing and GIS-based integrated analysis of land cover change in Duzce plain and its surroundings (north western Turkey).

    Science.gov (United States)

    Ikiel, Cercis; Ustaoglu, Beyza; Dutucu, Ayse Atalay; Kilic, Derya Evrim

    2013-02-01

    The aim of this study is to research natural land cover change caused by the permanent effects of human activities in Duzce plain and its surroundings, and to determine the current status of the land cover. For this purpose, two Landsat TM images were used in the study for the years 1987 and 2010. These images are analysed by using data image processing techniques in ERDAS Imagine©10.0 and ArcGIS©10.0 software. Land cover change nomenclature is classified according to the Coordination of Information on the Environment Level 2 Classification (1--urban fabric, 2--industrial, commercial and transport units, 3--heterogeneous agricultural areas, 4--forests, and 5--inland wetlands). Furthermore, the image analysis results are confirmed by the field research. According to the results, a decrease of 33.5 % was recorded in forest areas from 24,840.7 to 16,529.0 ha; an increase of 11.2 % was recorded in heterogeneous agricultural areas from 47,702.7 to 53,051.7 ha. Natural vegetation, which is the large part of land cover in the research area, has been changing rapidly because of rapid urbanisation and agricultural activities. As a result, it is concluded that significant changes have occurred on the natural land cover between the years 1987 and 2010 in the Duzce plain and its surroundings.

  7. Land Cover Monitoring for Water Resources Management in Angola

    Science.gov (United States)

    Miguel, Irina; Navarro, Ana; Rolim, Joao; Catalao, Joao; Silva, Joel; Painho, Marco; Vekerdy, Zoltan

    2016-08-01

    The aim of this paper is to assess the impact of improved temporal resolution and multi-source satellite data (SAR and optical) on land cover mapping and monitoring for efficient water resources management. For that purpose, we developed an integrated approach based on image classification and on NDVI and SAR backscattering (VV and VH) time series for land cover mapping and crop's irrigation requirements computation. We analysed 28 SPOT-5 Take-5 images with high temporal revisiting time (5 days), 9 Sentinel-1 dual polarization GRD images and in-situ data acquired during the crop growing season. Results show that the combination of images from different sources provides the best information to map agricultural areas. The increase of the images temporal resolution allows the improvement of the estimation of the crop parameters, and then, to calculate of the crop's irrigation requirements. However, this aspect was not fully exploited due to the lack of EO data for the complete growing season.

  8. Historical Image Registration and Land-Use Land-Cover Change Analysis

    Directory of Open Access Journals (Sweden)

    Fang-Ju Jao

    2014-12-01

    Full Text Available Historical aerial images are important to retain past ground surface information. The land-use land-cover change in the past can be identified using historical aerial images. Automatic historical image registration and stitching is essential because the historical image pose information was usually lost. In this study, the Scale Invariant Feature Transform (SIFT algorithm was used for feature extraction. Subsequently, the present study used the automatic affine transformation algorithm for historical image registration, based on SIFT features and control points. This study automatically determined image affine parameters and simultaneously transformed from an image coordinate system to a ground coordinate system. After historical aerial image registration, the land-use land-cover change was analyzed between two different years (1947 and 1975 at the Tseng Wen River estuary. Results show that sandbars and water zones were transformed into a large number of fish ponds between 1947 and 1975.

  9. A high accuracy land use/cover retrieval system

    Directory of Open Access Journals (Sweden)

    Alaa Hefnawy

    2012-03-01

    Full Text Available The effects of spatial resolution on the accuracy of mapping land use/cover types have received increasing attention as a large number of multi-scale earth observation data become available. Although many methods of semi automated image classification of remotely sensed data have been established for improving the accuracy of land use/cover classification during the past 40 years, most of them were employed in single-resolution image classification, which led to unsatisfactory results. In this paper, we propose a multi-resolution fast adaptive content-based retrieval system of satellite images. Through our proposed system, we apply a Super Resolution technique for the Landsat-TM images to have a high resolution dataset. The human–computer interactive system is based on modified radial basis function for retrieval of satellite database images. We apply the backpropagation supervised artificial neural network classifier for both the multi and single resolution datasets. The results show significant improved land use/cover classification accuracy for the multi-resolution approach compared with those from single-resolution approach.

  10. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005

    Science.gov (United States)

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel

    2008-01-01

    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see http://earthexplorer.usgs.gov or http://glovis.usgs.gov). This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land-cover

  11. Land change monitoring, assessment, and projection (LCMAP) revolutionizes land cover and land change research

    Science.gov (United States)

    Young, Steven

    2017-05-02

    When nature and humanity change Earth’s landscapes - through flood or fire, public policy, natural resources management, or economic development - the results are often dramatic and lasting.Wildfires can reshape ecosystems. Hurricanes with names like Sandy or Katrina will howl for days while altering the landscape for years. One growing season in the evolution of drought-resistant genetics can transform semiarid landscapes into farm fields.In the past, valuable land cover maps created for understanding the effects of those events - whether changes in wildlife habitat, water-quality impacts, or the role land use and land cover play in affecting weather and climate - came out at best every 5 to 7 years. Those high quality, high resolution maps were good, but users always craved more: even higher quality data, additional land cover and land change variables, more detailed legends, and most importantly, more frequent land change information.Now a bold new initiative called Land Change Monitoring, Assessment, and Projection (LCMAP) promises to fulfill that demand.Developed at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, LCMAP provides definitive, timely information on how, why, and where the planet is changing. LCMAP’s continuous monitoring process can detect changes as they happen every day that Landsat satellites acquire clear observations. The result will be to place near real-time information in the hands of land and resource managers who need to understand the effects these changes have on landscapes.

  12. CORINE land cover and floristic variation in a Mediterranean wetland.

    Science.gov (United States)

    Giallonardo, Tommaso; Landi, Marco; Frignani, Flavio; Geri, Francesco; Lastrucci, Lorenzo; Angiolini, Claudia

    2011-11-01

    The aims of the present study were to: (1) investigate whether CORINE land cover classes reflect significant differences in floristic composition, using a very detailed CORINE land cover map (scale 1:5000); (2) decompose the relationships between floristic assemblages and three groups of explanatory variables (CORINE land cover classes, environmental characteristics and spatial structure) into unique and interactive components. Stratified sampling was used to select a set of 100-m(2) plots in each land cover class identified in the semi-natural wetland surrounding a lake in central Italy. The following six classes were considered: stable meadows, deciduous oak dominated woods, hygrophilous broadleaf dominated woods, heaths and shrublands, inland swamps, canals or watercourses. The relationship between land cover classes and floristic composition was tested using several statistical techniques in order to determine whether the results remained consistent with different procedures. The variation partitioning approach was applied to identify the relative importance of three groups of explanatory variables in relation to floristic variation. The most important predictor was land cover, which explained 20.7% of the variation in plant distribution, although the hypothesis that each land cover class could be associated with a particular floristic pattern was not verified. Multi Response Permutation Analysis did not indicate a strong floristic separability between land cover classes and only 9.5% of species showed a significant indicator value for a specific land cover class. We suggest that land cover classes linked with hygrophilous and herbaceous communities in a wetland may have floristic patterns that vary with fine scale and are not compatible with a land cover map.

  13. ISLSCP II Historical Land Cover and Land Use, 1700-1990

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Historical Land Cover and Land Use data set was developed to provide the global change community with historical land use estimates. The data set...

  14. A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery.

    Directory of Open Access Journals (Sweden)

    Dong Jiang

    Full Text Available Land cover data represent a fundamental data source for various types of scientific research. The classification of land cover based on satellite data is a challenging task, and an efficient classification method is needed. In this study, an automatic scheme is proposed for the classification of land use using multispectral remote sensing images based on change detection and a semi-supervised classifier. The satellite image can be automatically classified using only the prior land cover map and existing images; therefore human involvement is reduced to a minimum, ensuring the operability of the method. The method was tested in the Qingpu District of Shanghai, China. Using Environment Satellite 1(HJ-1 images of 2009 with 30 m spatial resolution, the areas were classified into five main types of land cover based on previous land cover data and spectral features. The results agreed on validation of land cover maps well with a Kappa value of 0.79 and statistical area biases in proportion less than 6%. This study proposed a simple semi-automatic approach for land cover classification by using prior maps with satisfied accuracy, which integrated the accuracy of visual interpretation and performance of automatic classification methods. The method can be used for land cover mapping in areas lacking ground reference information or identifying rapid variation of land cover regions (such as rapid urbanization with convenience.

  15. The impact of Future Land Use and Land Cover Changes on Atmospheric Chemistry-Climate Interactions

    NARCIS (Netherlands)

    Ganzeveld, L.N.; Bouwman, L.

    2010-01-01

    To demonstrate potential future consequences of land cover and land use changes beyond those for physical climate and the carbon cycle, we present an analysis of large-scale impacts of land cover and land use changes on atmospheric chemistry using the chemistry-climate model EMAC (ECHAM5/MESSy

  16. U.S. landowner behavior, land use and land cover changes, and climate change mitigation.

    Science.gov (United States)

    Ralph J. Alig

    2003-01-01

    Landowner behavior is a major determinant of land use and land cover changes. an important consideration for policy analysts concerned with global change. Study of landowner behavior aids in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change by reducing net greenhouse gas emissions. Afforestation,...

  17. Assessing the Impact of Land Use and Land Cover Change on Global Water Resources

    Science.gov (United States)

    Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.

    2007-12-01

    Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land

  18. Plant life form based habitat monitoring in a European landscape framework for early warning of changes in land cover and biodiversity

    DEFF Research Database (Denmark)

    Brandt, Jesper; Olsen, Martin; Bloch-Petersen, Margit

    and habitat composition and quality. The focus on essential features of the habitat that can be expressed easily and quantitatively for identification and mapping of small but significant changes at a landscape level has resulted in the reintroduction of Raunkiaers plant life form concept from 1907...... of agricultural land use, general land cover and tree and shrub cover of small biotopes), it has not been difficult to integrate the BioHab framework in the SBMP-monitoring system, thus permitting the monitoring system to deliver an additional important European perspective with only very limited extra resources...

  19. C-CAP Land Cover, Kauai, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land derived from high resolution imagery and was analyzed according to the Coastal Change Analysis Program (C-CAP) protocol to determine...

  20. C-CAP Land Cover, Niihau, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land derived from high resolution imagery and was analyzed according to the Coastal Change Analysis Program (C-CAP) protocol to determine...

  1. Percent Agricultural Land Cover on Steep Slopes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  2. Evaluation of historical land cover, land use, and land-use change emissions in the GCAM integrated assessment model

    Science.gov (United States)

    Calvin, K. V.; Wise, M.; Kyle, P.; Janetos, A. C.; Zhou, Y.

    2012-12-01

    Integrated Assessment Models (IAMs) are often used as science-based decision-support tools for evaluating the consequences of climate and energy policies, and their use in this framework is likely to increase in the future. However, quantitative evaluation of these models has been somewhat limited for a variety of reasons, including data availability, data quality, and the inherent challenges in projections of societal values and decision-making. In this analysis, we identify and confront methodological challenges involved in evaluating the agriculture and land use component of the Global Change Assessment Model (GCAM). GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. GCAM then calculates both emissions from land-use practices, and long-term changes in carbon stocks in different land uses, thus providing simulation information that can be compared to observed historical data. In this work, we compare GCAM results, both in recent historic and future time periods, to historical data sets. We focus on land use, land cover, land-use change emissions, and albedo.

  3. Land use/land cover study of urban features using spot imagery

    International Nuclear Information System (INIS)

    Mahmood, S.A.; Qureshi, J.; Abbas, I.

    2005-01-01

    This study is based on visual interpretation and classification of the urban area of Peshawar. Cloud free satellite image of the French SPOT System in panchromatic mode at 100m/pixel spatial detail was used for this purpose. The coverage area comprised nearly (7.5 x 6)sq. km. on the ground depicting the major portion of the city. Various image interpretation elements were exploited to accomplish the study, thirteen land cover classes were identified and demarcated on a tracing sheet. Having prepared the base map. Satellite image map was constructed by assigning disparate colors to the identified features. Dimensions of some of the prominent, regular and liner features were computed from the image. The results indicate that high-resolution satellite image can be effectively used for mapping and area estimation of urban land use/land cover features. (author)

  4. Land use/cover disturbance due to tourism in Jeseníky Mountain, Czech Republic: A remote sensing and GIS based approach

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori

    2015-06-01

    Full Text Available The Jeseníky Mountains tourism in Czech Republic is unique for its floristic richness. This is caused mainly by the altitude division and polymorphism of the landscape, climate and soil structure. This study assesses the impacts of tourism on the land cover in the Jeseníky Mountain region by comparing multi-temporal Landsat imageries (1991, 2001 and 2013 to describe the rate and extent of land-cover changes. This was achieved through spectral classification of different land cover classes and by assessing the change in forest; settlements; pasture and agriculture in relation to increasing distances (5, 10 and 15 km from three tourism sites with the help of ArcGIS software. The results indicate that the area was deforested (11.13% from 1991 to 2001 than experienced forest regrowth (6.71% from 2001 to 2013. In the first decade pasture and agriculture areas increased and then in next decade decreased. The influence of tourism facilities on land cover is also variable. Around each of the tourism site sampled, there was a general trend of forest removal decreasing as the distance from each village increased, which indicates tourism does have a negative impact on forests. However there was an opposite trend from 2001 to 2013 that indicates conservation area. The interplay among global (tourism, climate, regional (national policies, large-river management and local (construction and agriculture, energy and water sources to support the tourism industry factors drives a distinctive but complex pattern of land-use and land-cover disturbance.

  5. The effects of changing land cover on streamflow simulation in Puerto Rico

    Science.gov (United States)

    A.E. Van Beusekom; L.E. Hay; R.J. Viger; W.A. Gould; J.A. Collazo; A. Henareh Khalyani

    2014-01-01

    This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from...

  6. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  7. An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms

    Directory of Open Access Journals (Sweden)

    René Roland Colditz

    2015-07-01

    Full Text Available Land cover mapping for large regions often employs satellite images of medium to coarse spatial resolution, which complicates mapping of discrete classes. Class memberships, which estimate the proportion of each class for every pixel, have been suggested as an alternative. This paper compares different strategies of training data allocation for discrete and continuous land cover mapping using classification and regression tree algorithms. In addition to measures of discrete and continuous map accuracy the correct estimation of the area is another important criteria. A subset of the 30 m national land cover dataset of 2006 (NLCD2006 of the United States was used as reference set to classify NADIR BRDF-adjusted surface reflectance time series of MODIS at 900 m spatial resolution. Results show that sampling of heterogeneous pixels and sample allocation according to the expected area of each class is best for classification trees. Regression trees for continuous land cover mapping should be trained with random allocation, and predictions should be normalized with a linear scaling function to correctly estimate the total area. From the tested algorithms random forest classification yields lower errors than boosted trees of C5.0, and Cubist shows higher accuracies than random forest regression.

  8. Scale-dependent effects of land cover on water physico-chemistry and diatom-based metrics in a major river system, the Adour-Garonne basin (South Western France)

    International Nuclear Information System (INIS)

    Tudesque, Loïc; Tisseuil, Clément; Lek, Sovan

    2014-01-01

    The scale dependence of ecological phenomena remains a central issue in ecology. Particularly in aquatic ecology, the consideration of the accurate spatial scale in assessing the effects of landscape factors on stream condition is critical. In this context, our study aimed at assessing the relationships between multi-spatial scale land cover patterns and a variety of water quality and diatom metrics measured at the stream reach level. This investigation was conducted in a major European river system, the Adour-Garonne river basin, characterized by a wide range of ecological conditions. Redundancy analysis (RDA) and variance partitioning techniques were used to disentangle the different relationships between land cover, water-chemistry and diatom metrics. Our results revealed a top-down “cascade effect” indirectly linking diatom metrics to land cover patterns through water physico-chemistry, which occurred at the largest spatial scales. In general, the strength of the relationships between land cover, physico-chemistry, and diatoms was shown to increase with the spatial scale, from the local to the basin scale, emphasizing the importance of continuous processes of accumulation throughout the river gradient. Unexpectedly, we established that the influence of land cover on the diatom metric was of primary importance both at the basin and local scale, as a result of discontinuous but not necessarily antagonist processes. The most detailed spatial grain of the Corine land cover classification appeared as the most relevant spatial grain to relate land cover to water chemistry and diatoms. Our findings provide suitable information to improve the implementation of effective diatom-based monitoring programs, especially within the scope of the European Water Framework Directive. - Highlights: •The spatial scale dependence of the “cascade effect” in a river system has been demonstrated. •The strength of the relationships between land cover and diatoms through

  9. USGS Land Cover (NLCD) Overlay Map Service from The National Map - National Geospatial Data Asset (NGDA) National Land Cover Database (NLCD)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 1992, NLCD 2001, NLCD 2006, and NLCD 2011 are National Land Cover Database classification schemes based primarily on Landsat data along with ancillary data...

  10. Updating land-cover change via analysis based on elevation and distance to settlements: A case study from Turkey

    Directory of Open Access Journals (Sweden)

    Ali Ihsan Kad\\u0131o\\u011Fullar\\u0131

    2017-01-01

    Full Text Available Introducción: Conocer el cambio del paisaje y la dinámica del bosque con base en los parámetros topográficos y las actividades humanas es importante para el manejo sostenible de los ecosistemas forestales. Objetivo: Actualizar el análisis de los cambios en el uso del suelo y cobertura terrestre en Gümüşhane Forest Enterprise en el noreste de Turquía. Materiales y métodos: Los cambios en las mejoras forestales en un periodo 26 años (1987-2013 se analizaron de acuerdo con las clases de uso de suelo y cobertura terrestre utilizando planes de manejo forestal. Las transiciones temporales entre el uso del suelo y los tipos de cobertura se documentaron y evaluaron con base en los parámetros topográficos y la distancia de los asentamientos, utilizando mapas de elevación y buffers de anillo. Resultados y discusión: El periodo mostró una rápida mejoría forestal con un incremento de 50,910 ha y tasa de mejora anual de 1.58 %. Mientras que la zona de elevación más arbolada (66.6 % - 40,124 ha se localizó entre 1,501 y 2,000 m, la tasa de forestación más alta (22.4 % - 13,509 ha se encontró a una distancia de más de 500 m de las áreas de asentamiento entre 1971 y 2013. Los bosques de Gümüşhane se fragmentaron debido a un aumento de áreas forestales productivas entre 1971 y 2013. Conclusión: Se obtuvieron datos importantes sobre la dinámica de los ecosistemas forestales en Gümüşhane Forest Enterprise. Existe un fuerte vínculo entre los cambios en el uso de suelo y la cubierta forestal, la presión social, la distancia de los asentamientos y la clase de elevación.

  11. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    Science.gov (United States)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  12. GLOBAL LAND COVER CLASSIFICATION USING MODIS SURFACE REFLECTANCE PROSUCTS

    Directory of Open Access Journals (Sweden)

    K. Fukue

    2016-06-01

    Full Text Available The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year SR(Surface Reflectance and NBAR(Nadir BRDF-Adjusted Reflectance products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  13. A hierarchical approach of hybrid image classification for land use and land cover mapping

    Directory of Open Access Journals (Sweden)

    Rahdari Vahid

    2018-01-01

    Full Text Available Remote sensing data analysis can provide thematic maps describing land-use and land-cover (LULC in a short period. Using proper image classification method in an area, is important to overcome the possible limitations of satellite imageries for producing land-use and land-cover maps. In the present study, a hierarchical hybrid image classification method was used to produce LULC maps using Landsat Thematic mapper TM for the year of 1998 and operational land imager OLI for the year of 2016. Images were classified using the proposed hybrid image classification method, vegetation cover crown percentage map from normalized difference vegetation index, Fisher supervised classification and object-based image classification methods. Accuracy assessment results showed that the hybrid classification method produced maps with total accuracy up to 84 percent with kappa statistic value 0.81. Results of this study showed that the proposed classification method worked better with OLI sensor than with TM. Although OLI has a higher radiometric resolution than TM, the produced LULC map using TM is almost accurate like OLI, which is because of LULC definitions and image classification methods used.

  14. Chittenden County, Vermont land cover project

    Science.gov (United States)

    Malloy, D. E.

    1981-01-01

    The testing of LANDSAT applicability to urban and agricultural land use analysis at the substate level is described. It is concluded that the LANDSAT system has a place in Vermont and places like it, but that the present operation is inadequate and the need for technology transfer and excellent communication between the producers and users is fundamental to the future of the system and for the realization of benefit from the investment.

  15. Multisource Data Fusion Framework for Land Use/Land Cover Classification Using Machine Vision

    Directory of Open Access Journals (Sweden)

    Salman Qadri

    2017-01-01

    Full Text Available Data fusion is a powerful tool for the merging of multiple sources of information to produce a better output as compared to individual source. This study describes the data fusion of five land use/cover types, that is, bare land, fertile cultivated land, desert rangeland, green pasture, and Sutlej basin river land derived from remote sensing. A novel framework for multispectral and texture feature based data fusion is designed to identify the land use/land cover data types correctly. Multispectral data is obtained using a multispectral radiometer, while digital camera is used for image dataset. It has been observed that each image contained 229 texture features, while 30 optimized texture features data for each image has been obtained by joining together three features selection techniques, that is, Fisher, Probability of Error plus Average Correlation, and Mutual Information. This 30-optimized-texture-feature dataset is merged with five-spectral-feature dataset to build the fused dataset. A comparison is performed among texture, multispectral, and fused dataset using machine vision classifiers. It has been observed that fused dataset outperformed individually both datasets. The overall accuracy acquired using multilayer perceptron for texture data, multispectral data, and fused data was 96.67%, 97.60%, and 99.60%, respectively.

  16. Land cover change of watersheds in Southern Guam from 1973 to 2001.

    Science.gov (United States)

    Wen, Yuming; Khosrowpanah, Shahram; Heitz, Leroy

    2011-08-01

    Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.

  17. Pairing FLUXNET sites to validate model representations of land-use/land-cover change

    Science.gov (United States)

    Chen, Liang; Dirmeyer, Paul A.; Guo, Zhichang; Schultz, Natalie M.

    2018-01-01

    Land surface energy and water fluxes play an important role in land-atmosphere interactions, especially for the climatic feedback effects driven by land-use/land-cover change (LULCC). These have long been documented in model-based studies, but the performance of land surface models in representing LULCC-induced responses has not been investigated well. In this study, measurements from proximate paired (open versus forest) flux tower sites are used to represent observed deforestation-induced changes in surface fluxes, which are compared with simulations from the Community Land Model (CLM) and the Noah Multi-Parameterization (Noah-MP) land model. Point-scale simulations suggest the CLM can represent the observed diurnal and seasonal changes in net radiation (Rnet) and ground heat flux (G), but difficulties remain in the energy partitioning between latent (LE) and sensible (H) heat flux. The CLM does not capture the observed decreased daytime LE, and overestimates the increased H during summer. These deficiencies are mainly associated with models' greater biases over forest land-cover types and the parameterization of soil evaporation. Global gridded simulations with the CLM show uncertainties in the estimation of LE and H at the grid level for regional and global simulations. Noah-MP exhibits a similar ability to simulate the surface flux changes, but with larger biases in H, G, and Rnet change during late winter and early spring, which are related to a deficiency in estimating albedo. Differences in meteorological conditions between paired sites is not a factor in these results. Attention needs to be devoted to improving the representation of surface heat flux processes in land models to increase confidence in LULCC simulations.

  18. The causes of land-use and land-cover change : moving beyond the myths

    NARCIS (Netherlands)

    Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; George, P.S.; Homewood, K.; Imbernon, J.; Leemans, R.; Xiubin Li,; Moran, E.F.; Mortimore, M.; Ramakrishnan, P.S.; Richards, J.F.; Skanes, H.; Steffen, W.; Stone, G.D.; Svedin, U.; Veldkamp, A.; Vogel, C.; Jianchu Xu,

    2001-01-01

    Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are

  19. Next generation of global land cover characterization, mapping, and monitoring

    Science.gov (United States)

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  20. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004

    Energy Technology Data Exchange (ETDEWEB)

    John, Ranjeet; Chen Jiquan; Lu Nan; Wilske, Burkhard, E-mail: ranjeet.john@utoledo.ed [Department of Environmental Sciences, University of Toledo, Toledo, OH 43606 (United States)

    2009-10-15

    The semi-arid grasslands in Inner Mongolia (IM) are under increasing stress owing to climate change and rapid socio-economic development in the recent past. We investigated changes in land cover/land use and landscape structure between 1992 and 2004 through the analysis of AVHRR and MODIS derived land cover data. The scale of analysis included the regional level (i.e. the whole of IM) as well as the level of the dominant biomes (i.e. the grassland and desert). We quantified proportional change, rate of change and the changes in class-level landscape metrics using the landscape structure analysis program FRAGSTATS. The dominant land cover types, grassland and barren, 0.47 and 0.27 million km{sup 2}, respectively, have increased proportionally. Cropland and urban land use also increased to 0.15 million km{sup 2} and 2197 km{sup 2}, respectively. However, the results further indicated increases in both the homogeneity and fragmentation of the landscape. Increasing homogeneity was mainly related to the reduction in minority cover types such as savanna, forests and permanent wetlands and increasing cohesion, aggregation index and clumpy indices. Conversely, increased fragmentation of the landscape was based on the increase in patch density and the interspersion/juxtaposition index (IJI). It is important to note the socio-economic growth in this fragile ecosystem, manifested by an increasing proportion of agricultural and urban land use not just at the regional level but also at the biome level in the context of regional climate change and increasing water stress.

  1. Land cover/land use change in semi-arid Inner Mongolia: 1992-2004

    International Nuclear Information System (INIS)

    John, Ranjeet; Chen Jiquan; Lu Nan; Wilske, Burkhard

    2009-01-01

    The semi-arid grasslands in Inner Mongolia (IM) are under increasing stress owing to climate change and rapid socio-economic development in the recent past. We investigated changes in land cover/land use and landscape structure between 1992 and 2004 through the analysis of AVHRR and MODIS derived land cover data. The scale of analysis included the regional level (i.e. the whole of IM) as well as the level of the dominant biomes (i.e. the grassland and desert). We quantified proportional change, rate of change and the changes in class-level landscape metrics using the landscape structure analysis program FRAGSTATS. The dominant land cover types, grassland and barren, 0.47 and 0.27 million km 2 , respectively, have increased proportionally. Cropland and urban land use also increased to 0.15 million km 2 and 2197 km 2 , respectively. However, the results further indicated increases in both the homogeneity and fragmentation of the landscape. Increasing homogeneity was mainly related to the reduction in minority cover types such as savanna, forests and permanent wetlands and increasing cohesion, aggregation index and clumpy indices. Conversely, increased fragmentation of the landscape was based on the increase in patch density and the interspersion/juxtaposition index (IJI). It is important to note the socio-economic growth in this fragile ecosystem, manifested by an increasing proportion of agricultural and urban land use not just at the regional level but also at the biome level in the context of regional climate change and increasing water stress.

  2. Data mining algorithms for land cover change detection: a review

    Indian Academy of Sciences (India)

    Sangram Panigrahi

    2017-11-24

    Nov 24, 2017 ... values, poor quality measurement, high resolution and high dimensional data. The land cover .... These data sets also include quality assurance information, ...... 2012 A new data mining framework for forest fire mapping.

  3. 2005 Kansas Land Cover Patterns, Level I, Kansas River Watershed

    Data.gov (United States)

    Kansas Data Access and Support Center — The Upper Kansas River Watershed Land Cover Patterns map represents Phase 1 of a two-phase mapping initiative occurring over a three-year period as part of a...

  4. National Land Cover Database (NLCD) Percent Tree Canopy Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database (NLCD) Percent Tree Canopy Collection is a product of the U.S. Forest Service (USFS), and is produced through a cooperative project...

  5. Unsupervised land cover change detection: meaningful sequential time series analysis

    CSIR Research Space (South Africa)

    Salmon, BP

    2011-06-01

    Full Text Available An automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short...

  6. 2005 C-CAP Land Cover of Oahu, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land cover derived from high resolution imagery according to the Coastal Change Analysis Program (C-CAP) protocol. This data set utilized...

  7. 2005 Kansas Land Cover Patterns, Level IV, Kansas River Watershed

    Data.gov (United States)

    Kansas Data Access and Support Center — The 2005 Kansas Land Cover Patterns (KLCP) Mapping Initiative was a two-phase mapping endeavor that occurred over a three-year period (2007-2009). Note that while...

  8. Assessing Wetland Health Using a Newly Developed Land Cover ...

    African Journals Online (AJOL)

    Citizen science combines environmental research with environmental education .... health of the wetland using land cover type impacts. Once the impact is ... to interpret the findings of the quantitative method using the qualitative findings.

  9. The effects of changing land cover on streamflow simulation in Puerto Rico

    Science.gov (United States)

    Van Beusekom, Ashley; Hay, Lauren E.; Viger, Roland; Gould, William A.; Collazo, Jaime; Henareh Khalyani, Azad

    2014-01-01

    This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from four land cover scenes for the period 1953-2012. The PRMS simulations based on static land cover illustrated consistent differences in simulated streamflow across the island. It was determined that the scale of the analysis makes a difference: large regions with localized areas that have undergone dramatic land cover change may show negligible difference in total streamflow, but streamflow simulations using dynamic land cover parameters for a highly altered subwatershed clearly demonstrate the effects of changing land cover on simulated streamflow. Incorporating dynamic parameterization in these highly altered watersheds can reduce the predictive uncertainty in simulations of streamflow using PRMS. Hydrologic models that do not consider the projected changes in land cover may be inadequate for water resource management planning for future conditions.

  10. Temporal change detection of land use/land cover using GIS and ...

    African Journals Online (AJOL)

    Satellite images for the years 1972, 1989, 1999 and 2016 were used for LULC ... built-up areas, pastures and bare land, agricultural land and water bodies. For the accuracy of assessment classifications, matrix error and KAPPA ... Keywords: land use/land cover change; change detection; classification; remote sensing; GIS ...

  11. Extraction of land cover change information from ENVISAT-ASAR data in Chengdu Plain

    Science.gov (United States)

    Xu, Wenbo; Fan, Jinlong; Huang, Jianxi; Tian, Yichen; Zhang, Yong

    2006-10-01

    Land cover data are essential to most global change research objectives, including the assessment of current environmental conditions and the simulation of future environmental scenarios that ultimately lead to public policy development. Chinese Academy of Sciences generated a nationwide land cover database in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in 1990s. In order to improve the reliability of the database, we will update the database anytime. But it is difficult to obtain remote sensing data to extract land cover change information in large-scale. It is hard to acquire optical remote sensing data in Chengdu plain, so the objective of this research was to evaluate multitemporal ENVISAT advanced synthetic aperture radar (ASAR) data for extracting land cover change information. Based on the fieldwork and the nationwide 1:100000 land cover database, the paper assesses several land cover changes in Chengdu plain, for example: crop to buildings, forest to buildings, and forest to bare land. The results show that ENVISAT ASAR data have great potential for the applications of extracting land cover change information.

  12. VT Generalized Land Cover Land Use for Champlain Basin - SAL 1992

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Circa 1992 land use - land cover (LULC) for the Lake Champlain Basin. This layer was created by performing a retrospective change detection on the...

  13. VT Generalized Land Cover Land Use for Champlain Basin - SAL 2001

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Circa 2001 land use / land cover (LULC) for the Lake Champlain Basin. The goal in creating this layer was to generate an "improved" version of...

  14. Temporal stability of soil moisture under different land uses/cover in the Loess Plateau based on a finer spatiotemporal scale

    OpenAIRE

    Zhou, J.; Fu, B. J.; Lü, N.; Gao, G. Y.; Lü, Y. H.; Wang, S.

    2013-01-01

    The Temporal stability of soil moisture (TSSM) is an important factor to evaluate the value of available water resources in a water-controlled ecosystem. In this study we used the evapotranspiration-TSSM (ET-TSSM) model and a new sampling design to examine the soil water dynamics and water balance of different land uses/cover types in a hilly landscape of the Loess Plateau under a finer spatiotemporal scale. Our primary focus is to examine the difference amo...

  15. Land User and Land Cover Maps of Europe: a Webgis Platform

    Science.gov (United States)

    Brovelli, M. A.; Fahl, F. C.; Minghini, M.; Molinari, M. E.

    2016-06-01

    This paper presents the methods and implementation processes of a WebGIS platform designed to publish the available land use and land cover maps of Europe at continental scale. The system is built completely on open source infrastructure and open standards. The proposed architecture is based on a server-client model having GeoServer as the map server, Leaflet as the client-side mapping library and the Bootstrap framework at the core of the front-end user interface. The web user interface is designed to have typical features of a desktop GIS (e.g. activate/deactivate layers and order layers by drag and drop actions) and to show specific information on the activated layers (e.g. legend and simplified metadata). Users have the possibility to change the base map from a given list of map providers (e.g. OpenStreetMap and Microsoft Bing) and to control the opacity of each layer to facilitate the comparison with both other land cover layers and the underlying base map. In addition, users can add to the platform any custom layer available through a Web Map Service (WMS) and activate the visualization of photos from popular photo sharing services. This last functionality is provided in order to have a visual assessment of the available land coverages based on other user-generated contents available on the Internet. It is supposed to be a first step towards a calibration/validation service that will be made available in the future.

  16. Minnesota Land Use and Cover - A 1990's Census of the Land - Tiled

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set integrates six different source data sets to provide a simplified overall view of Minnesota's land use / cover. The six source data sets covered...

  17. Using ASTER Imagery in Land Use/cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project

    Directory of Open Access Journals (Sweden)

    Recep Gundogan

    2008-02-01

    Full Text Available The satellite imagery has been effectively utilized for classifying land covertypes and detecting land cover conditions. The Advanced Spaceborne Thermal Emissionand Reflection Radiometer (ASTER sensor imagery has been widely used in classificationprocess of land cover. However, atmospheric corrections have to be made by preprocessingsatellite sensor imagery since the electromagnetic radiation signals received by the satellitesensors can be scattered and absorbed by the atmospheric gases and aerosols. In this study,an ASTER sensor imagery, which was converted into top-of-atmosphere reflectance(TOA, was used to classify the land use/cover types, according to COoRdination ofINformation on the Environment (CORINE land cover nomenclature, for an arearepresenting the heterogonous characteristics of eastern Mediterranean regions inKahramanmaras, Turkey. The results indicated that using the surface reflectance data ofASTER sensor imagery can provide accurate (i.e. overall accuracy and kappa values of83.2% and 0.79, respectively and low-cost cover mapping as a part of inventory forCORINE Land Cover Project.

  18. Temporal Land Cover Analysis for Net Ecosystem Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Yinghai; Coleman, Andre M.; Diefenderfer, Heida L.

    2013-04-09

    We delineated 8 watersheds contributing to previously defined river reaches within the 1,468-km2 historical floodplain of the tidally influenced lower Columbia River and estuary. We assessed land-cover change at the watershed, reach, and restoration site scales by reclassifying remote-sensing data from the National Oceanic and Atmospheric Administration Coastal Change Analysis Program’s land cover/land change product into forest, wetland, and urban categories. The analysis showed a 198.3 km2 loss of forest cover during the first 6 years of the Columbia Estuary Ecosystem Restoration Program, 2001–2006. Total measured urbanization in the contributing watersheds of the estuary during the full 1996-2006 change analysis period was 48.4 km2. Trends in forest gain/loss and urbanization differed between watersheds. Wetland gains and losses were within the margin of error of the satellite imagery analysis. No significant land cover change was measured at restoration sites, although it was visible in aerial imagery, therefore, the 30-m land-cover product may not be appropriate for assessment of early-stage wetland restoration. These findings suggest that floodplain restoration sites in reaches downstream of watersheds with decreasing forest cover will be subject to increased sediment loads, and those downstream of urbanization will experience effects of increased impervious surfaces on hydrologic processes.

  19. Use of AMSR-E microwave satellite data for land surface characteristics and snow cover variation

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori

    2016-12-01

    Full Text Available This data article contains data related to the research article entitled “Global land cover classification based on microwave polarization and gradient ratio (MPGR” [1] and “Microwave polarization and gradient ratio (MPGR for global land surface phenology” [2]. This data article presents land surface characteristics and snow cover variation information from sensors like EOS Advanced Microwave Scanning Radiometer (AMSR-E. This data article use the HDF Explorer, Matlab, and ArcGIS software to process the pixel latitude, longitude, snow water equivalent (SWE, digital elevation model (DEM and Brightness Temperature (BT information from AMSR-E satellite data to provide land surface characteristics and snow cover variation data in all-weather condition at any time. This data information is useful to discriminate different land surface cover types and snow cover variation, which is turn, will help to improve monitoring of weather, climate and natural disasters.

  20. Land Use-Land Cover dynamics of Huluka watershed, Central Rift Valley, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hagos Gebreslassie

    2014-12-01

    Full Text Available Land Use-Land Cover (LULC dynamic has of human kind age and is one of the phenomenons which interweave the socio economic and environmental issues in Ethiopia. Huluka watershed is one of the watersheds in Central Rift Valley of Ethiopia which drains to Lake Langano. Few decades ago the stated watershed was covered with dense acacia forest. But, nowadays like other part of Ethiopia, it is experiencing complex dynamics of LULC. The aim of this research was thus to evaluate the LULC dynamics seen in between 1973–2009. This was achieved through collecting qualitative and quantitative data using Geographic Information System (GIS and Remote Sensing (RS technique. Field observations, discussion with elders were also employed to validate results from remotely sensed data. Based on the result, eight major dynamic LULC classes were identified from the watershed. Of these LULC classes, only cultivated and open lands had shown continuous and progressive expansion mainly at the expense of grass, shrub and forest lands. The 25% and 0% of cultivated and open land of the watershed in 1973 expanded to 84% and 4% in 2009 respectively while the 29%, 18% and 22% of grass, shrub and forest land of the watershed in 1973 degraded to 3.5%, 4% and 1.5% in 2009 respectively. As a result, land units which had been used for pastoralist before 1973 were identified under mixed agricultural system after 2000. In the end, this study came with a recommendation of an intervention of concerned body to stop the rapid degradation of vegetation on the watershed.

  1. Space-based monitoring of land-use/land-cover in the Upper Rio Grande Basin: An opportunity for understanding urbanization trends in a water-scarce transboundary river basin.

    Science.gov (United States)

    Mubako, S. T.; Hargrove, W. L.; Heyman, J. M.; Reyes, C. S.

    2016-12-01

    Urbanization is an area of growing interest in assessing the impact of human activities on water resources in arid regions. Remote sensing techniques provide an opportunity to analyze land cover change over time, and are useful in monitoring areas undergoing rapid urban growth. This case study for the water-scarce Upper Rio Grande River Basin uses a supervised classification algorithm to quantify the rate and evaluate the pattern of urban sprawl. A focus is made on the fast growing El-Paso-Juarez metropolitan area on the US-Mexico border and the City of Las Cruces in New Mexico, areas where environmental challenges and loss of agricultural and native land to urban development are major concerns. Preliminary results show that the land cover is dominantly native with some significant agriculture along the Rio Grande River valley. Urban development across the whole study area expanded from just under 3 percent in 1990, to more than 11 percent in 2015. The urban expansion is occurring mainly around the major urban areas of El Paso, Ciudad Juarez, and Las Cruces, although there is visible growth of smaller urban settlements scattered along the Rio Grande River valley during the same analysis period. The proportion of native land cover fluctuates slightly depending on how much land is under crops each analysis year, but there is a decreasing agricultural land cover trend suggesting that land from this sector is being lost to urban development. This analysis can be useful in planning to protect the environment, preparing for growth in infrastructure such as schools, increased traffic demands, and monitoring availability of resources such as groundwater as the urban population grows.

  2. Understanding Land Use and Land Cover Dynamics from 1976 to 2014 in Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Baolei Zhang

    2017-03-01

    Full Text Available Long-term intensive land use/cover changes (LUCCs of the Yellow River Delta (YRD have been happening since the 1960s. The land use patterns of the LUCCs are crucial for bio-diversity conservation and/or sustainable development. This study quantified patterns of the LUCCs, explored the systematic transitions, and identified wetland change trajectory for the period 1976–2014 in the YRD. Landsat imageries of 1976, 1984, 1995, 2006, and 2014 were used to derive nine land use classes. Post classification change detection analysis based on enhanced transition matrix was applied to identify land use dynamics and trajectory of wetland change. The five cartographic outputs for changes in land use underlined major decreases in natural wetland areas and increases in artificial wetland and non-wetland, especially aquafarms, salt pans and construction lands. The systematic transitions in the YRD were wetland degradation, wetland artificialization, and urbanization. Wetland change trajectory results demonstrated that the main wetland changes were wetland degradation and wetland artificialization. Coastline change is the subordinate reason for natural wetland degradation in comparison with human activities. The results of this study allowed for an improvement in the understanding of the LUCC processes and enabled researchers and planners to focus on the most important signals of systematic landscape transitions while also allowing for a better understanding of the proximate causes of changes.

  3. Exploring dust emission responses to land cover change using an ecological land classification

    Science.gov (United States)

    Galloza, Magda S.; Webb, Nicholas P.; Bleiweiss, Max P.; Winters, Craig; Herrick, Jeffrey E.; Ayers, Eldon

    2018-06-01

    Despite efforts to quantify the impacts of land cover change on wind erosion, assessment uncertainty remains large. We address this uncertainty by evaluating the application of ecological site concepts and state-and-transition models (STMs) for detecting and quantitatively describing the impacts of land cover change on wind erosion. We apply a dust emission model over a rangeland study area in the northern Chihuahuan Desert, New Mexico, USA, and evaluate spatiotemporal patterns of modelled horizontal sediment mass flux and dust emission in the context of ecological sites and their vegetation states; representing a diversity of land cover types. Our results demonstrate how the impacts of land cover change on dust emission can be quantified, compared across land cover classes, and interpreted in the context of an ecological model that encapsulates land management intensity and change. Results also reveal the importance of established weaknesses in the dust model soil characterisation and drag partition scheme, which appeared generally insensitive to the impacts of land cover change. New models that address these weaknesses, coupled with ecological site concepts and field measurements across land cover types, could significantly reduce assessment uncertainties and provide opportunities for identifying land management options.

  4. IRSeL-An approach to enhance continuity and accuracy of remotely sensed land cover data

    Science.gov (United States)

    Rathjens, H.; Dörnhöfer, K.; Oppelt, N.

    2014-09-01

    Land cover data gives the opportunity to study interactions between land cover status and environmental issues such as hydrologic processes, soil properties, or biodiversity. Land cover data often are based on classification of remote sensing data that seldom provides the requisite accuracy, spatial availability and temporal observational frequency for environmental studies. Thus, there is a high demand for accurate and spatio-temporal complete time series of land cover. In the past considerable research was undertaken to increase land cover classification accuracy, while less effort was spent on interpolation techniques. The purpose of this article is to present a space-time interpolation and revision approach for remotely sensed land cover data. The approach leverages special properties known for agricultural areas such as crop rotations or temporally static land cover classes. The newly developed IRSeL-tool (Interpolation and improvement of Remotely Sensed Land cover) corrects classification errors and interpolates missing land cover pixels. The easy-to-use tool solely requires an initial land cover data set. The IRSeL specific interpolation and revision technique, the data input requirements and data output structure are described in detail. A case study in an area around the city of Neumünster in Northern Germany from 2006 to 2012 was performed for IRSeL validation with initial land cover data sets (Landsat TM image classifications) for the years 2006, 2007, 2009, 2010 and 2011. The results of the case study showed that IRSeL performs well; including years with no classification data overall accuracy values for IRSeL interpolated pixels range from 0.63 to 0.81. IRSeL application significantly increases the accuracy of the land cover data; overall accuracy values rise 0.08 in average resulting in overall accuracy values of at least 0.86. Considering estimated reliabilities, the IRSeL tool provides a temporally and spatially completed and revised land cover

  5. Recent land cover history and nutrient retention in riparian wetlands

    Science.gov (United States)

    Hogan, D.M.; Walbridge, M.R.

    2009-01-01

    Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus]. ?? 2009 Springer Science+Business Media, LLC.

  6. GlobeLand30 as an alternative fine-scale global land cover map

    DEFF Research Database (Denmark)

    Jokar Arsanjani, Jamal; Tayyebi, A.; Vaz, E.

    2016-01-01

    land cover information such as developing countries. In this study, we look at GlobeLand30 of 2010 for Iran in order to find out the accuracy of this dataset as well as its implications. By having looked at 6 selected study sites around larger cities representing dissimilar eco-regions covering rural...

  7. Land use/Land Cover Changes and Causes of Deforestation in the ...

    African Journals Online (AJOL)

    The objective of this paper is to provide the non-existent data on land use/land cover changes in the Wilberforce Island for the purposes of determining the causes of deforestation and changes in the vegetation cover for a 13 – year period. Accordingly, 125 questionnaires were administered in five communities to determine ...

  8. Remote sensing as a source of land cover information utilized in the universal soil loss equation

    Science.gov (United States)

    Morris-Jones, D. R.; Morgan, K. M.; Kiefer, R. W.; Scarpace, F. L.

    1979-01-01

    In this study, methods for gathering the land use/land cover information required by the USLE were investigated with medium altitude, multi-date color and color infrared 70-mm positive transparencies using human and computer-based interpretation techniques. Successful results, which compare favorably with traditional field study methods, were obtained within the test site watershed with airphoto data sources and human airphoto interpretation techniques. Computer-based interpretation techniques were not capable of identifying soil conservation practices but were successful to varying degrees in gathering other types of desired land use/land cover information.

  9. Land use/land cover and scale influences on in-stream nitrogen uptake kinetics

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; McNamara, Rebecca

    2012-06-01

    Land use/land cover change often leads to increased nutrient loading to streams; however, its influence on stream ecosystem nutrient transport remains poorly understood. Given the deleterious impacts elevated nutrient loading can have on aquatic ecosystems, it is imperative to improve understanding of nutrient retention capacities across stream scales and watershed development gradients. We performed 17 nutrient addition experiments on six streams across the West Fork Gallatin Watershed, Montana, USA, to quantify nitrogen uptake kinetics and retention dynamics across stream sizes (first to fourth order) and along a watershed development gradient. We observed that stream nitrogen (N) uptake kinetics and spiraling parameters varied across streams of different development intensity and scale. In more developed watersheds we observed a fertilization affect. This fertilization affect was evident as increased ash-free dry mass, chlorophylla, and ambient and maximum uptake rates in developed as compared to undeveloped streams. Ash-free dry mass, chlorophylla, and the number of structures in a subwatershed were significantly correlated to nutrient spiraling and kinetic parameters, while ambient and average annual N concentrations were not. Additionally, increased maximum uptake capacities in developed streams contributed to low in-stream nutrient concentrations during the growing season, and helped maintain watershed export at low levels during base flow. Our results indicate that land use/land cover change can enhance in-stream uptake of limiting nutrients and highlight the need for improved understanding of the watershed dynamics that control nutrient export across scales and development intensities for mitigation and protection of aquatic ecosystems.

  10. Land-Use and Land-Cover Mapping Using a Gradable Classification Method

    Directory of Open Access Journals (Sweden)

    Keigo Kitada

    2012-05-01

    Full Text Available Conventional spectral-based classification methods have significant limitations in the digital classification of urban land-use and land-cover classes from high-resolution remotely sensed data because of the lack of consideration given to the spatial properties of images. To recognize the complex distribution of urban features in high-resolution image data, texture information consisting of a group of pixels should be considered. Lacunarity is an index used to characterize different texture appearances. It is often reported that the land-use and land-cover in urban areas can be effectively classified using the lacunarity index with high-resolution images. However, the applicability of the maximum-likelihood approach for hybrid analysis has not been reported. A more effective approach that employs the original spectral data and lacunarity index can be expected to improve the accuracy of the classification. A new classification procedure referred to as “gradable classification method” is proposed in this study. This method improves the classification accuracy in incremental steps. The proposed classification approach integrates several classification maps created from original images and lacunarity maps, which consist of lacnarity values, to create a new classification map. The results of this study confirm the suitability of the gradable classification approach, which produced a higher overall accuracy (68% and kappa coefficient (0.64 than those (65% and 0.60, respectively obtained with the maximum-likelihood approach.

  11. Land use/land cover changes around Rameshwaram Island, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gowthaman, R.; Dwarakish, G.S.; Sanilkumar, V.

    Land-use/land cover changes are studied using the Indian Remote Sensing satellite (IRS-1C, IRS-6) Linear Image Self-scan Sensor (LISS) III data of 1998 and 2010 Coastal land use categories such as sand, vegetation, coral reef and water have been...

  12. Land management and land-cover change have impacts of similar magnitude on surface temperature

    DEFF Research Database (Denmark)

    Luyssaert, Sebastiaan; Jammet, Mathilde; Stoy, Paul C.

    2014-01-01

    Anthropogenic changes to land cover (LCC) remain common, but continuing land scarcity promotes the widespread intensification of land management changes (LMC) to better satisfy societal demand for food, fibre, fuel and shelter1. The biophysical effects of LCC on surface climate are largely unders...

  13. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic...

  14. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  15. Impact of land cover changes on the South African climate

    International Nuclear Information System (INIS)

    Ngwana, T I; Demory, M-E; Vidale, P L; Plant, R S; Mbedzi, M P

    2010-01-01

    The Joint UK Land Environmental Simulator (JULES) was run offline to investigate the sensitivity of land surface type changes over South Africa. Sensitivity tests were made in idealised experiments where the actual land surface cover is replaced by a single homogeneous surface type. The vegetation surface types on which some of the experiments were made are static. Experimental tests were evaluated against the control. The model results show among others that the change of the surface cover results in changes of other variables such as soil moisture, albedo, net radiation and etc. These changes are also visible in the spin up process. The model shows different surfaces spinning up at different cycles. Because JULES is the land surface model of Unified Model, the results could be more physically meaningful if it is coupled to the Unified Model.

  16. Assessment of the thematic accuracy of land cover maps

    DEFF Research Database (Denmark)

    Høhle, Joachim

    2015-01-01

    were applied (‘Decision Tree’ and ‘Support Vector Machine’) using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures...... methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width......Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (‘building’, ‘hedge and bush’, ‘grass’, ‘road and parking lot’, ‘tree’, ‘wall and car port’) had to be derived. Two classification methods...

  17. Deriving a per-field land use and land cover map in an agricultural mosaic catchment

    Science.gov (United States)

    Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C. L.; Tenhunen, J.

    2014-09-01

    Detailed data on land use and land cover constitute important information for Earth system models, environmental monitoring and ecosystem services research. Global land cover products are evolving rapidly; however, there is still a lack of information particularly for heterogeneous agricultural landscapes. We censused land use and land cover field by field in the agricultural mosaic catchment Haean in South Korea. We recorded the land cover types with additional information on agricultural practice. In this paper we introduce the data, their collection and the post-processing protocol. Furthermore, because it is important to quantitatively evaluate available land use and land cover products, we compared our data with the MODIS Land Cover Type product (MCD12Q1). During the studied period, a large portion of dry fields was converted to perennial crops. Compared to our data, the forested area was underrepresented and the agricultural area overrepresented in MCD12Q1. In addition, linear landscape elements such as waterbodies were missing in the MODIS product due to its coarse spatial resolution. The data presented here can be useful for earth science and ecosystem services research. The data are available at the public repository Pangaea (doi:110.1594/PANGAEA.823677).

  18. Land cover and topography affect the land transformation caused by wind facilities.

    Directory of Open Access Journals (Sweden)

    Jay E Diffendorfer

    Full Text Available Land transformation (ha of surface disturbance/MW associated with wind facilities shows wide variation in its reported values. In addition, no studies have attempted to explain the variation across facilities. We digitized land transformation at 39 wind facilities using high resolution aerial imagery. We then modeled the effects of turbine size, configuration, land cover, and topography on the levels of land transformation at three spatial scales. The scales included strings (turbines with intervening roads only, sites (strings with roads connecting them, buried cables and other infrastructure, and entire facilities (sites and the roads or transmission lines connecting them to existing infrastructure. An information theoretic modeling approach indicated land cover and topography were well-supported variables affecting land transformation, but not turbine size or configuration. Tilled landscapes, despite larger distances between turbines, had lower average land transformation, while facilities in forested landscapes generally had the highest land transformation. At site and string scales, flat topographies had the lowest land transformation, while facilities on mesas had the largest. The results indicate the landscape in which the facilities are placed affects the levels of land transformation associated with wind energy. This creates opportunities for optimizing wind energy production while minimizing land cover change. In addition, the results indicate forecasting the impacts of wind energy on land transformation should include the geographic variables affecting land transformation reported here.

  19. Investigating the Feasibility of Geo-Tagged Photographs as Sources of Land Cover Input Data

    Directory of Open Access Journals (Sweden)

    Vyron Antoniou

    2016-05-01

    Full Text Available Geo-tagged photographs are used increasingly as a source of Volunteered Geographic Information (VGI, which could potentially be used for land use and land cover applications. The purpose of this paper is to analyze the feasibility of using this source of spatial information for three use cases related to land cover: Calibration, validation and verification. We first provide an inventory of the metadata that are collected with geo-tagged photographs and then consider what elements would be essential, desirable, or unnecessary for the aforementioned use cases. Geo-tagged photographs were then extracted from Flickr, Panoramio and Geograph for an area of London, UK, and classified based on their usefulness for land cover mapping including an analysis of the accompanying metadata. Finally, we discuss protocols for geo-tagged photographs for use of VGI in relation to land cover applications.

  20. A satellite based scheme for predicting the effects of land cover change on local microclimate and surface hydrology: Development of an operational regional planning tool

    Science.gov (United States)

    Arthur, Sandra Traci

    Humans have diverse goals for their use of land: mining, water supply, aesthetic enjoyment, recreation, transportation, housing, etc. Any individual living within an actively developing community can look back in time and note how, perhaps slowly but nonetheless dramatically, the total land area dedicated to human use has increased. As our society's basic functioning intensifies, the disappearance of "free" open space is apparent---today, even conservation areas are carefully designated, mapped and controlled. This transition in land use is a result of many individual decisions that occur throughout space and time, often with little concern for the potential impacts on the local environment. Two specific environmental components---the microclimate and surface hydrology---are the focus of this thesis. This study, as well as related tools and bodies of knowledge, should be used to broaden the scientific basis behind land use management decisions. It will be shown that development can induce predictable changes in measures of the local radiant surface temperature and evapotranspiration fraction---as long as certain features of the development are known. Specifically, the vegetation changes that accompany the development must be noted, as well as the initial climatic state of the land parcel. Additionally, plots of runoff vs. rainfall for gauged basins will be interpreted in terms of the proportion of the basin contributing to a storm event's runoff signal. For a particular basin, four distinct runoff responses, separated by season and antecedent moisture conditions, will be distinguished. The response for the non-summer months under typical antecedent moisture conditions will be shown to be the most representative of and responsive to a basin's land use patterns. A scheme that makes use of satellite-derived land cover patterns and other physical attributes of the basin in order to determine this particular runoff response will be presented. The Soil Conservation

  1. Land-cover change and avian diversity in the conterminous United States

    Science.gov (United States)

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Jeffrey G. Masek; Volker C. Radeloff

    2012-01-01

    Changes in land use and land cover have affected and will continue to affect biological diversity worldwide. Yet, understanding the spatially extensive effects of land-cover change has been challenging because data that are consistent over space and time are lacking. We used the U.S. National Land Cover Dataset Land Cover Change Retrofit Product and North American...

  2. A Multivariate Approach to Study Drivers of Land-Cover Changes through Remote Sensing in the Dry Chaco of Argentina

    OpenAIRE

    Laura E. Hoyos; Marcelo R. Cabido; Ana M. Cingolani

    2018-01-01

    Land-cover changes are driven by different combinations of biophysical, economic, and cultural drivers that are acting at different scales. We aimed to (1) analyze trends in land use and land cover changes (conversion, abandonment, forest persistence) in the dry Chaco in central Argentina (1979 to 2010), and (2) examine how physical and socio-economic drivers have influenced those changes. Based on Landsat data, we obtained the proportion of 16 classes of land cover changes for 81 individual ...

  3. The Land Cover Dynamics and Conversion of Agricultural Land in Northwestern Bangladesh, 1973-2003.

    Science.gov (United States)

    Pervez, M.; Seelan, S. K.; Rundquist, B. C.

    2006-05-01

    The importance of land cover information describing the nature and extent of land resources and changes over time is increasing; this is especially true in Bangladesh, where land cover is changing rapidly. This paper presents research into the land cover dynamics of northwestern Bangladesh for the period 1973-2003 using Landsat satellite images in combination with field survey data collected in January and February 2005. Land cover maps were produced for eight different years during the study period with an average 73 percent overall classification accuracy. The classification results and post-classification change analysis showed that agriculture is the dominant land cover (occupying 74.5 percent of the study area) and is being reduced at a rate of about 3,000 ha per year. In addition, 6.7 percent of the agricultural land is vulnerable to temporary water logging annually. Despite this loss of agricultural land, irrigated agriculture increased substantially until 2000, but has since declined because of diminishing water availability and uncontrolled extraction of groundwater driven by population pressures and the extended need for food. A good agreement (r = 0.73) was found between increases in irrigated land and the depletion of the shallow groundwater table, a factor affecting widely practiced small-scale irrigation in northwestern Bangladesh. Results quantified the land cover change patterns and the stresses placed on natural resources; additionally, they demonstrated an accurate and economical means to map and analyze changes in land cover over time at a regional scale, which can assist decision makers in land and natural resources management decisions.

  4. Land cover in Upper Egypt assessed using regional and global land cover products derived from MODIS imagery.

    Science.gov (United States)

    Fuller, Douglas O; Parenti, Michael S; Gad, Adel M; Beier, John C

    2012-01-01

    Irrigation along the Nile River has resulted in dramatic changes in the biophysical environment of Upper Egypt. In this study we used a combination of MODIS 250 m NDVI data and Landsat imagery to identify areas that changed from 2001-2008 as a result of irrigation and water-level fluctuations in the Nile River and nearby water bodies. We used two different methods of time series analysis -- principal components (PCA) and harmonic decomposition (HD), applied to the MODIS 250 m NDVI images to derive simple three-class land cover maps and then assessed their accuracy using a set of reference polygons derived from 30 m Landsat 5 and 7 imagery. We analyzed our MODIS 250 m maps against a new MODIS global land cover product (MOD12Q1 collection 5) to assess whether regionally specific mapping approaches are superior to a standard global product. Results showed that the accuracy of the PCA-based product was greater than the accuracy of either the HD or MOD12Q1 products for the years 2001, 2003, and 2008. However, the accuracy of the PCA product was only slightly better than the MOD12Q1 for 2001 and 2003. Overall, the results suggest that our PCA-based approach produces a high level of user and producer accuracies, although the MOD12Q1 product also showed consistently high accuracy. Overlay of 2001-2008 PCA-based maps showed a net increase of 12 129 ha of irrigated vegetation, with the largest increase found from 2006-2008 around the Districts of Edfu and Kom Ombo. This result was unexpected in light of ambitious government plans to develop 336 000 ha of irrigated agriculture around the Toshka Lakes.

  5. Impacts of land use and land cover on surface and air temperature in urban landscapes

    Science.gov (United States)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P urbanized regions of southern California, USA decrease Ta and LST and spatial variation in LST, while built surfaces and land uses have the opposite effect. Furthermore

  6. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    Science.gov (United States)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  7. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders

    Science.gov (United States)

    Rußwurm, Marc; Körner, Marco

    2018-03-01

    Earth observation (EO) sensors deliver data with daily or weekly temporal resolution. Most land use and land cover (LULC) approaches, however, expect cloud-free and mono-temporal observations. The increasing temporal capabilities of today's sensors enables the use of temporal, along with spectral and spatial features. Domains, such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells, which reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, we achieved in our experiments state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing compared to other classification approaches.

  8. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China

    Directory of Open Access Journals (Sweden)

    Huiran Han

    2015-04-01

    Full Text Available Land use and land cover (LULC models are essential for analyzing LULC change and predicting land use requirements and are valuable for guiding reasonable land use planning and management. However, each LULC model has its own advantages and constraints. In this paper, we explore the characteristics of LULC change and simulate future land use demand by combining a CLUE-S model with a Markov model to deal with some shortcomings of existing LULC models. Using Beijing as a case study, we describe the related driving factors from land-adaptive variables, regional spatial variables and socio-economic variables and then simulate future land use scenarios from 2010 to 2020, which include a development scenario (natural development and rapid development and protection scenarios (ecological and cultivated land protection. The results indicate good consistency between predicted results and actual land use situations according to a Kappa statistic. The conversion of cultivated land to urban built-up land will form the primary features of LULC change in the future. The prediction for land use demand shows the differences under different scenarios. At higher elevations, the geographical environment limits the expansion of urban built-up land, but the conversion of cultivated land to built-up land in mountainous areas will be more prevalent by 2020; Beijing, however, still faces the most pressure in terms of ecological and cultivated land protection.

  9. Modelling land change: the issue of use and cover in wide-scale applications

    NARCIS (Netherlands)

    Bakker, M.M.; Veldkamp, A.

    2008-01-01

    In this article, the underlying causes for the apparent mismatch between land cover and land use in the context of wide-scale land change modelling are explored. A land use-land cover (LU/LC) ratio is proposed as a relevant landscape characteristic. The one-to-one ratio between land use and land

  10. Conversion of land use and cover in northwest Amazon (Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Antonio da Silva Junior

    2014-09-01

    Full Text Available The increasing use of natural resources in a disorderly way has been demanding constant monitoring and ecological-economic zoning. The knowledge on land use and cover allows that measures that guarantee the preservation, maintenance of the environment and space management be appropriate to the reality, since through these factors it is possible to follow the probable environmental impacts and the socioeconomic development of a place in several contexts. The Geographical Information System (GIS and remote sensing techniques have been applied to land use and land cover mapping. This study aimed to analyze the conversion of land use from different perspectives, concerning geoprocessing techniques, in the southeastern of Roraima State, Brazil, in two distinct periods. In order to verify the land use and cover, two analyses were conducted, using the Spring and TerraView softwares. Great part of the cultivated areas was converted into capoeira, what probably denotes an ending of profitable agriculture, as well as its abandonment caused by the nutritional deficiency of the soil, that became inappropriate for cultivation in the subsequent years. A fuzzy logic would possibly fit well to the types of data analyzed, because the attribute query is overly complex.

  11. Integrating land cover and terrain characteristics to explain plague ...

    African Journals Online (AJOL)

    Literature suggests that higher resolution remote sensing data integrated in Geographic Information System (GIS) can provide greater possibility to refine the analysis of land cover and terrain characteristics for explanation of abundance and distribution of plague hosts and vectors and hence of health risk hazards to ...

  12. 1 Integrating land cover and terrain characteristics to explain plague ...

    African Journals Online (AJOL)

    influence of land cover and terrain factors on the abundance and spatial distribution ... factors operating at diverse scales, including climate (Debien et al., 2009; Ben Ari .... A cloud free three-band SPOT 5 image captured on 27 February 2007, ...

  13. Trends in Coastal Development and Land Cover Change: The Case ...

    African Journals Online (AJOL)

    KwaZulu-Natal. Abstract—Current land cover and development in the coastal zone of KwaZulu- ... 75% by 2025 in some regions (Hinrichsen, 1995). .... Functional divisions and case study areas on the KZN coast. .... Extent of development and access via major road networks along the KZN North and South Coasts. 198.

  14. Land cover classification using reformed fuzzy C-means

    Indian Academy of Sciences (India)

    This paper explains the task of land cover classification using reformed fuzzy C means. Clustering is the assignment of objects into groups called clusters so that objects from the same cluster are more similar to each other than objects from different clusters. The most basic attribute for clustering of an image is its luminance ...

  15. South African National Land-Cover Change Map | Schoeman ...

    African Journals Online (AJOL)

    Globally, countries face a changing environment due to population growth, increase in agricultural production, increasing demand on natural resources, climate change and resultant degradation of the natural environment. One means of monitoring this changing scenario is through land-cover change mapping. Modern ...

  16. Land use and land cover mapping: City of Palm Bay, Florida

    Science.gov (United States)

    Barile, D. D.; Pierce, R.

    1977-01-01

    Two different computer systems were compared for use in making land use and land cover maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban areas were unclassified. The General Electric Image 100 produced a map depicting eight land cover categories classifying 68 percent of the total area. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test areas compared and Image 100 was in agreement 70 percent and 80 percent.

  17. Tsunami exposure estimation with land-cover data: Oregon and the Cascadia subduction zone

    Science.gov (United States)

    Wood, N.

    2009-01-01

    A Cascadia subduction-zone earthquake has the potential to generate tsunami waves which would impact more than 1000 km of coastline on the west coast of the United States and Canada. Although the predictable extent of tsunami inundation is similar for low-lying land throughout the region, human use of tsunami-prone land varies, creating variations in community exposure and potential impacts. To better understand such variations, land-cover information derived from midresolution remotely-sensed imagery (e.g., 30-m-resolution Landsat Thematic Mapper imagery) was coupled with tsunami-hazard information to describe tsunami-prone land along the Oregon coast. Land-cover data suggest that 95% of the tsunami-prone land in Oregon is undeveloped and is primarily wetlands and unconsolidated shores. Based on Spearman rank correlation coefficients (rs), correlative relationships are strong and statistically significant (p < 0.05) between city-level estimates of the amount of land-cover pixels classified as developed (impervious cover greater than 20%) and the amount of various societal assets, including residential and employee populations, homes, businesses, and tax-parcel values. Community exposure to tsunami hazards, described here by the amount and relative percentage of developed land in tsunami-prone areas, varies considerably among the 26 communities of the study area, and these variations relate to city size. Correlative relationships are strong and significant (p < 0.05) for community exposure rankings based on land-cover data and those based on aggregated socioeconomic data. In the absence of socioeconomic data or community-based knowledge, the integration of hazards information and land-cover information derived from midresolution remotely-sensed imagery to estimate community exposure may be a useful first step in understanding variations in community vulnerability to regional hazards.

  18. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data

    Science.gov (United States)

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.

    2007-01-01

    Aim  Our aim was to produce a uniform ‘regional’ land-cover map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land Cover 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional area estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub

  19. Characterizing Degradation Gradients through Land Cover Change Analysis in Rural Eastern Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Zahn Münch

    2017-02-01

    Full Text Available Land cover change analysis was performed for three catchments in the rural Eastern Cape, South Africa, for two time steps (2000 and 2014, to characterize landscape conversion trajectories for sustained landscape health. Land cover maps were derived: (1 from existing data (2000; and (2 through object-based image analysis (2014 of Landsat 8 imagery. Land cover change analysis was facilitated using land cover labels developed to identify landscape change trajectories. Land cover labels assigned to each intersection of the land cover maps at the two time steps provide a thematic representation of the spatial distribution of change. While land use patterns are characterized by high persistence (77%, the expansion of urban areas and agriculture has occurred predominantly at the expense of grassland. The persistence and intensification of natural or invaded wooded areas were identified as a degradation gradient within the landscape, which amounted to almost 10% of the study area. The challenge remains to determine significant signals in the landscape that are not artefacts of error in the underlying input data or scale of analysis. Systematic change analysis and accurate uncertainty reporting can potentially address these issues to produce authentic output for further modelling.

  20.   Quantitative reconstruction of past land cover in Denmark - The first results

    DEFF Research Database (Denmark)

    Nielsen, Anne Birgitte; Odgaard, Bent Vad

    reflects a frequency change in the same direction of the mother plant may be unsubstantiated. Here, we present a first attempt at pollen based quantitative reconstruction of land cover around 9 Danish lake sites for the past 2500 years, based on models of pollen dispersal and -deposition (Prentice, 1985...... and local pollen signals at small sites, thus providing reconstructions of local vegetation around the sites. Results reflect rather stable land cover through the last 2500 years at the regional level but strong forest-open land dynamics at the local scale. The approach should be applicable to any...

  1. Clifton, AZ 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  2. Tularosa, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  3. Gallup, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  4. Clifton, AZ 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  5. Brownfield, TX 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  6. Dalhart, TX 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  7. Hobbs, NM 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  8. Albuquerque, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  9. Douglas, AZ 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  10. Gallup, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  11. Roswell, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  12. Socorro, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  13. Clovis, NM 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  14. Douglas, AZ 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  15. Roswell, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  16. Shiprock, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  17. Aztec, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  18. Aztec, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  19. Socorro, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  20. Carlsbad, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  1. Raton, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  2. Shiprock, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  3. Tucumcari, NM 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  4. Albuquerque, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  5. Raton, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  6. Carlsbad, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  7. Tularosa, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  8. Simulation of the influence of historical land cover changes on the global climate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Nanjing Univ. of Aeronautics and Astronautics (China). College of Civil Aviation; Chinese Academy of Sciences, Beijing (China). Key Lab. of Regional Climate-Environment for East Asia; Yan, X. [Chinese Academy of Sciences, Beijing (China). Key Lab. of Regional Climate-Environment for East Asia; Beijing Normal Univ. (China). State Key Lab. of Earth Surface Processes and Resource Ecology (ESPRE); Wang, Z. [British Antarctic Survey, Cambridge (United Kingdom)

    2013-09-01

    In order to estimate biogeophysical effects of historical land cover change on climate during last three centuries, a set of experiments with a climate system model of intermediate complexity (MPM-2) is performed. In response to historical deforestation, the model simulates a decrease in annual mean global temperature in the range of 0.07-0.14 C based on different grassland albedos. The effect of land cover changes is most pronounced in the middle northern latitudes with maximum cooling reaching approximately 0.6 C during northern summer. The cooling reaches 0.57 C during northern spring owing to the large effects of land surface albedo. These results suggest that land cover forcing is important for study on historical climate change and that more research is necessary in the assessment of land management options for climate change mitigation. (orig.)

  9. Generation and Assessment of Urban Land Cover Maps Using High-Resolution Multispectral Aerial Images

    DEFF Research Database (Denmark)

    Höhle, Joachim; Höhle, Michael

    2013-01-01

    a unique method for the automatic generation of urban land cover maps. In the present paper, imagery of a new medium-format aerial camera and advanced geoprocessing software are applied to derive normalized digital surface models and vegetation maps. These two intermediate products then become input...... to a tree structured classifier, which automatically derives land cover maps in 2D or 3D. We investigate the thematic accuracy of the produced land cover map by a class-wise stratified design and provide a method for deriving necessary sample sizes. Corresponding survey adjusted accuracy measures...... and their associated confidence intervals are used to adequately reflect uncertainty in the assessment based on the chosen sample size. Proof of concept for the method is given for an urban area in Switzerland. Here, the produced land cover map with six classes (building, wall and carport, road and parking lot, hedge...

  10. Analyzing Land Use/Land Cover Changes Using Remote Sensing and GIS in Rize, North-East Turkey.

    Science.gov (United States)

    Reis, Selçuk

    2008-10-01

    Mapping land use/land cover (LULC) changes at regional scales is essential for a wide range of applications, including landslide, erosion, land planning, global warming etc. LULC alterations (based especially on human activities), negatively effect the patterns of climate, the patterns of natural hazard and socio-economic dynamics in global and local scale. In this study, LULC changes are investigated by using of Remote Sensing and Geographic Information Systems (GIS) in Rize, North-East Turkey. For this purpose, firstly supervised classification technique is applied to Landsat images acquired in 1976 and 2000. Image Classification of six reflective bands of two Landsat images is carried out by using maximum likelihood method with the aid of ground truth data obtained from aerial images dated 1973 and 2002. The second part focused on land use land cover changes by using change detection comparison (pixel by pixel). In third part of the study, the land cover changes are analyzed according to the topographic structure (slope and altitude) by using GIS functions. The results indicate that severe land cover changes have occurred in agricultural (36.2%) (especially in tea gardens), urban (117%), pasture (-72.8%) and forestry (-12.8%) areas has been experienced in the region between 1976 and 2000. It was seen that the LULC changes were mostly occurred in coastal areas and in areas having low slope values.

  11. Analyzing Land Use/Land Cover Changes Using Remote Sensing and GIS in Rize, North-East Turkey

    Directory of Open Access Journals (Sweden)

    Selçuk Reis

    2008-10-01

    Full Text Available Mapping land use/land cover (LULC changes at regional scales is essential for a wide range of applications, including landslide, erosion, land planning, global warming etc. LULC alterations (based especially on human activities, negatively effect the patterns of climate, the patterns of natural hazard and socio-economic dynamics in global and local scale. In this study, LULC changes are investigated by using of Remote Sensing and Geographic Information Systems (GIS in Rize, North-East Turkey. For this purpose, firstly supervised classification technique is applied to Landsat images acquired in 1976 and 2000. Image Classification of six reflective bands of two Landsat images is carried out by using maximum likelihood method with the aid of ground truth data obtained from aerial images dated 1973 and 2002. The second part focused on land use land cover changes by using change detection comparison (pixel by pixel. In third part of the study, the land cover changes are analyzed according to the topographic structure (slope and altitude by using GIS functions. The results indicate that severe land cover changes have occurred in agricultural (36.2% (especially in tea gardens, urban (117%, pasture (-72.8% and forestry (-12.8% areas has been experienced in the region between 1976 and 2000. It was seen that the LULC changes were mostly occurred in coastal areas and in areas having low slope values.

  12. Land cover change mapping using MODIS time series to improve emissions inventories

    Science.gov (United States)

    López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie

    2016-04-01

    MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.

  13. Land use/cover classification in the Brazilian Amazon using satellite images.

    Science.gov (United States)

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira

    2012-09-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

  14. an assessment of the land use and land cover changes in shurugwi

    African Journals Online (AJOL)

    Dr Osondu

    Zimbabwe's fast-track land reform programme and other economic activities have caused ... Geographic Information System and remote sensing techniques. ... 1990 and 2009 Landsat images of the district were downloaded from the Global Land cover Facility as well ... Information System (GIS) are now providing new.

  15. Land use and land cover dynamics in the Brazilian Amazon: an overview

    Science.gov (United States)

    Robert Walker; Alfredo Kingo Oyama Homma

    1996-01-01

    This paper presents a theoretical discussion of processes linking land use decisions and land cover outcomes at household level, with an emphasis on small proceduers. Evidence from the literature substantiating the existence of domestic cycle phenomena is brought forward and interpreted for the Brazilian case. Also considered are the relative disposition of production...

  16. A proposed periodic national inventory of land use land cover change

    Science.gov (United States)

    Hans T. Schreuder; Paul W. Snook; Raymond L. Czaplewski; Glenn P. Catts

    1986-01-01

    Three alternatives using digital thematic mapper (TM), analog TM, and a combination of either digital or analog TM data with low altitude photography are discussed for level I and level II land use/land cover classes for a proposed national inventory. Digital TM data should prove satisfactory for estimating acreage in level I classes, although estimates of precision...

  17. Santa Fe, NM 1:250,000 Quad USGS Land Use/Land Cover, 1986

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  18. Projecting land-use and land cover change in a subtropical urban watershed

    Science.gov (United States)

    John J. Lagrosa IV; Wayne C. Zipperer; Michael G. Andreu

    2018-01-01

    Urban landscapes are heterogeneous mosaics that develop via significant land-use and land cover (LULC) change. Current LULC models project future landscape patterns, but generally avoid urban landscapes due to heterogeneity. To project LULC change for an urban landscape, we parameterize an established LULC model (Dyna-CLUE) under baseline conditions (continued current...

  19. Gallup, NM AZ 1:250,000 Quad USGS Land Use/Land Cover, 1986

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  20. El Paso, TX NM 1:250,000 Quad USGS Land Use/Land Cover, 1986

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  1. Tularosa, NM 1:250,000 Quad USGS Land Use/Land Cover, 1986

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  2. Las Cruces, NM TX 1:250,000 Quad USGS Land Use/Land Cover, 1986

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  3. Internal Migration and Land Use and Land Cover Changes in the Middle Mountains of Nepal

    Directory of Open Access Journals (Sweden)

    Bhawana KC

    2017-11-01

    Full Text Available The movement of rural households from remote uplands to valley floors and to semiurban and urban areas (internal migration is a common phenomenon in the middle mountain districts of Nepal. Understanding the causes and effects of internal migration is critical to the development and implementation of policies that promote land use planning and sustainable resource management. Using geospatial information technologies and social research methods, we investigated the causes and effects of internal migration on land use and land cover patterns in a western mountain district of Nepal between 1998 and 2013. The results show a decreasing number of households at high elevations (above 1400 m, where an increase in forest cover has been observed with a consequent decrease in agricultural land and shrub- or grassland. At lower elevations (below 1400 m, forest cover has remained constant over the last 25 years, and the agricultural land area has increased but has become geometrically complex to meet the diverse needs and living requirements of the growing population. Our findings indicate that internal migration plays an important role in shaping land use and land cover change in the middle mountains of Nepal and largely determines the resource management, utilization, and distribution patterns within a small geographic unit. Therefore, land use planning must take an integrated and interdisciplinary approach rather than considering social, environmental, and demographic information in isolation.

  4. Saint Johns, AZ NM 1:250,000 Quad USGS Land Use/Land Cover, 1986

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  5. Drivers and Implications of Land Use and Land Cover Change in the ...

    African Journals Online (AJOL)

    This study explores the major drivers of Land-use/Land-cover (LULC) dynamics and the observed environmental degradation as a response to these changes in the Modjo watershed, central Ethiopia. Data for this study were generated through household survey and supplemented with remotely sensed image interpretation ...

  6. Historical Land-Cover Change and Land-Use Conversions Global Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A set of three estimates of land-cover types and annual transformations of land use are provided on a global 0.5 x0.5 degree lat/lon grid at annual time steps. The...

  7. Silver City, NM AZ 1:250,000 Quad USGS Land Use/Land Cover, 1986

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source...

  8. Land use, population dynamics, and land-cover change in Eastern Puerto Rico

    Science.gov (United States)

    W.A. Gould; S. Martinuzzi; I.K. Páres-Ramos

    2012-01-01

    We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Survey’s Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land...

  9. Land use/land cover and land capability data for evaluating land utilization and official land use planning in Indramayu Regency, West Java, Indonesia

    Science.gov (United States)

    Ambarwulan, W.; Widiatmaka; Nahib, I.

    2018-05-01

    Land utilization in Indonesia is regulated in an official spatial land use planning (OSLUP), stipulated by government regulations. However in fact, land utilizations are often develops inconsistent with regulations. OSLUP itself is also not usually compatible with sustainable land utilizations. This study aims to evaluate current land utilizations and OSLUP in Indramayu Regency, West Java. The methodology used is the integrated analysis using land use and land cover (LU/LC) data, land capability data and spatial pattern in OSLUP. Actual LU/LC are interpreted using SPOT-6 imagery of 2014. The spatial data of land capabilities are derived from land capability classification using field data and laboratory analysis. The confrontation between these spatial data is interpreted in terms of future direction for sustainable land use planning. The results shows that Indramayu regency consists of 8 types of LU/LC. Land capability in research area range from class II to VIII. Only a small portion of the land in Indramayu has been used in accordance with land capability, but most of the land is used exceeding its land capability.

  10. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study.

    Science.gov (United States)

    Bajocco, S; De Angelis, A; Perini, L; Ferrara, A; Salvati, L

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  11. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study

    Science.gov (United States)

    Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L.

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  12. Land cover change impact on urban flood modeling (case study: Upper Citarum watershed)

    Science.gov (United States)

    Siregar, R. I.

    2018-03-01

    The upper Citarum River watershed utilizes remote sensing technology in Geographic Information System to provide information on land coverage by interpretation of objects in the image. Rivers that pass through urban areas will cause flooding problems causing disadvantages, and it disrupts community activities in the urban area. Increased development in a city is related to an increase in the number of population growth that added by increasing quality and quantity of life necessities. Improved urban lifestyle changes have an impact on land cover. The impact in over time will be difficult to control. This study aims to analyze the condition of flooding in urban areas caused by upper Citarum watershed land-use change in 2001 with the land cover change in 2010. This modeling analyzes with the help of HEC-RAS to describe flooded inundation urban areas. Land cover change in upper Citarum watershed is not very significant; it based on the results of data processing of land cover has the difference of area that changed is not enormous. Land cover changes for the floods increased dramatically to a flow coefficient for 2001 is 0.65 and in 2010 at 0.69. In 2001, the inundation area about 105,468 hectares and it were about 92,289 hectares in 2010.

  13. Developing a New North American Land Cover Product at 30m Resolution: Methods, Results and Future Plans

    Science.gov (United States)

    Homer, C.; Colditz, R. R.; Latifovic, R.; Llamas, R. M.; Pouliot, D.; Danielson, P.; Meneses, C.; Victoria, A.; Ressl, R.; Richardson, K.; Vulpescu, M.

    2017-12-01

    Land cover and land cover change information at regional and continental scales has become fundamental for studying and understanding the terrestrial environment. With recent advances in computer science and freely available image archives, continental land cover mapping has been advancing to higher spatial resolution products. The North American Land Change Monitoring System (NALCMS) remains the principal provider of seamless land cover maps of North America. Founded in 2006, this collaboration among the governments of Canada, Mexico and the United States has released two previous products based on 250m MODIS images, including a 2005 land cover and a 2005-2010 land cover change product. NALCMS has recently completed the next generation North America land cover product, based upon 30m Landsat images. This product now provides the first ever 30m land cover produced for the North American continent, providing 19 classes of seamless land cover. This presentation provides an overview of country-specific image classification processes, describes the continental map production process, provides results for the North American continent and discusses future plans. NALCMS is coordinated by the Commission for Environmental Cooperation (CEC) and all products can be obtained at their website - www.cec.org.

  14. Accuracy assessment of seven global land cover datasets over China

    Science.gov (United States)

    Yang, Yongke; Xiao, Pengfeng; Feng, Xuezhi; Li, Haixing

    2017-03-01

    Land cover (LC) is the vital foundation to Earth science. Up to now, several global LC datasets have arisen with efforts of many scientific communities. To provide guidelines for data usage over China, nine LC maps from seven global LC datasets (IGBP DISCover, UMD, GLC, MCD12Q1, GLCNMO, CCI-LC, and GlobeLand30) were evaluated in this study. First, we compared their similarities and discrepancies in both area and spatial patterns, and analysed their inherent relations to data sources and classification schemes and methods. Next, five sets of validation sample units (VSUs) were collected to calculate their accuracy quantitatively. Further, we built a spatial analysis model and depicted their spatial variation in accuracy based on the five sets of VSUs. The results show that, there are evident discrepancies among these LC maps in both area and spatial patterns. For LC maps produced by different institutes, GLC 2000 and CCI-LC 2000 have the highest overall spatial agreement (53.8%). For LC maps produced by same institutes, overall spatial agreement of CCI-LC 2000 and 2010, and MCD12Q1 2001 and 2010 reach up to 99.8% and 73.2%, respectively; while more efforts are still needed if we hope to use these LC maps as time series data for model inputting, since both CCI-LC and MCD12Q1 fail to represent the rapid changing trend of several key LC classes in the early 21st century, in particular urban and built-up, snow and ice, water bodies, and permanent wetlands. With the highest spatial resolution, the overall accuracy of GlobeLand30 2010 is 82.39%. For the other six LC datasets with coarse resolution, CCI-LC 2010/2000 has the highest overall accuracy, and following are MCD12Q1 2010/2001, GLC 2000, GLCNMO 2008, IGBP DISCover, and UMD in turn. Beside that all maps exhibit high accuracy in homogeneous regions; local accuracies in other regions are quite different, particularly in Farming-Pastoral Zone of North China, mountains in Northeast China, and Southeast Hills. Special

  15. The Improvement of Land Cover Classification by Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Liya Sun

    2015-06-01

    Full Text Available Land cover classification has been widely investigated in remote sensing for agricultural, ecological and hydrological applications. Landsat images with multispectral bands are commonly used to study the numerous classification methods in order to improve the classification accuracy. Thermal remote sensing provides valuable information to investigate the effectiveness of the thermal bands in extracting land cover patterns. k-NN and Random Forest algorithms were applied to both the single Landsat 8 image and the time series Landsat 4/5 images for the Attert catchment in the Grand Duchy of Luxembourg, trained and validated by the ground-truth reference data considering the three level classification scheme from COoRdination of INformation on the Environment (CORINE using the 10-fold cross validation method. The accuracy assessment showed that compared to the visible and near infrared (VIS/NIR bands, the time series of thermal images alone can produce comparatively reliable land cover maps with the best overall accuracy of 98.7% to 99.1% for Level 1 classification and 93.9% to 96.3% for the Level 2 classification. In addition, the combination with the thermal band improves the overall accuracy by 5% and 6% for the single Landsat 8 image in Level 2 and Level 3 category and provides the best classified results with all seven bands for the time series of Landsat TM images.

  16. Theorizing Land Cover and Land Use Changes: The Case of Tropical Deforestation

    Science.gov (United States)

    Walker, Robert

    2004-01-01

    This article addresses land-cover and land-use dynamics from the perspective of regional science and economic geography. It first provides an account of the so-called spatially explicit model, which has emerged in recent years as a key empirical approach to the issue. The article uses this discussion as a springboard to evaluate the potential utility of von Thuenen to the discourse on land-cover and land-use change. After identifying shortcomings of current theoretical approaches to land use in mainly urban models, the article filters a discussion of deforestation through the lens of bid-rent and assesses its effectiveness in helping us comprehend the destruction of tropical forest in the Amazon basin. The article considers the adjustments that would have to be made to existing theory to make it more useful to the empirical issues.

  17. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon.

    Science.gov (United States)

    Lu, Dengsheng; Li, Guiying; Moran, Emilio; Hetrick, Scott

    2013-01-01

    This paper provides a comparative analysis of land use and land cover (LULC) changes among three study areas with different biophysical environments in the Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired in the years of 1990/1991, 1999/2000, and 2008/2010 were used to examine LULC change trajectories with the post-classification comparison approach. A classification system composed of six classes - forest, savanna, other-vegetation (secondary succession and plantations), agro-pasture, impervious surface, and water, was designed for this study. A hierarchical-based classification method was used to classify Landsat images into thematic maps. This research shows different spatiotemporal change patterns, composition and rates among the three study areas and indicates the importance of analyzing LULC change at multiple scales. The LULC change analysis over time for entire study areas provides an overall picture of change trends, but detailed change trajectories and their spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon scale provides the information of the changes in patch sizes over time, while the LULC change at census sector scale gives new insights on how human-induced activities (e.g., urban expansion, roads, and land use history) affect LULC change patterns and rates. This research indicates the necessity to implement change detection at multiple scales for better understanding the mechanisms of LULC change patterns and rates.

  18. Land Use and Land Cover (LULC) Change Detection in Islamabad and its Comparison with Capital Development Authority (CDA) 2006 Master Plan

    Science.gov (United States)

    Hasaan, Zahra

    2016-07-01

    Remote sensing is very useful for the production of land use and land cover statistics which can be beneficial to determine the distribution of land uses. Using remote sensing techniques to develop land use classification mapping is a convenient and detailed way to improve the selection of areas designed to agricultural, urban and/or industrial areas of a region. In Islamabad city and surrounding the land use has been changing, every day new developments (urban, industrial, commercial and agricultural) are emerging leading to decrease in vegetation cover. The purpose of this work was to develop the land use of Islamabad and its surrounding area that is an important natural resource. For this work the eCognition Developer 64 computer software was used to develop a land use classification using SPOT 5 image of year 2012. For image processing object-based classification technique was used and important land use features i.e. Vegetation cover, barren land, impervious surface, built up area and water bodies were extracted on the basis of object variation and compared the results with the CDA Master Plan. The great increase was found in built-up area and impervious surface area. On the other hand vegetation cover and barren area followed a declining trend. Accuracy assessment of classification yielded 92% accuracies of the final land cover land use maps. In addition these improved land cover/land use maps which are produced by remote sensing technique of class definition, meet the growing need of legend standardization.

  19. Interrelationships between soil cover and plant cover depending on land use

    Directory of Open Access Journals (Sweden)

    Tiina Köster

    2013-05-01

    Full Text Available Interrelationships between soil cover and plant cover of normally developed (or postlithogenic mineral soils are analysed on the basis of four sampling soil groups. The four-link pedo-ecological sequence of analysed soils, rendzinas → brown soils → pseudopodzolic soils → gley-podzols, forms a representative cross section in relation to the normal mineral soils of Estonia. All groups differ substantially from each other in terms of soil properties (calcareousness, acidity, nutrition conditions, profile fabric and humus cover. The primary tasks of the research were (1 to elucidate the main pedo-ecological characteristics of the four soil groups and their suitability for plant cover, (2 to evaluate comparatively soils in terms of productivity, sustainability, biodiversity and environmental protection ability and (3 to analyse possibilities for ecologically sound matching of soil cover with suitable plant cover. On the basis of the same material, the influence of land-use change on humus cover (epipedon fabric, properties of the entire soil cover and soil–plant interrelationship were also analysed. An ecosystem approach enables us to observe particularities caused by specific properties of a soil type (species, variety in biological turnover and in the formation of biodiversity.

  20. Land use/land cover change geo-informative Tupu of Nujiang River in Northwest Yunnan Province

    Science.gov (United States)

    Wang, Jin-liang; Yang, Yue-yuan; Huang, You-ju; Fu, Lei; Rao, Qing

    2008-10-01

    Land Use/Land Cover Change (LUCC) is the core components of global change researches. It is significant for understanding regional ecological environment and LUCC mechanism of large scale to develop the study of LUCC of regional level. Nujiang River is the upper reaches of a big river in the South Asia--Salween River. Nujiang River is a typical mountainous river which is 3200 kilometer long and its basin area is 32.5 × 105 square kilometer. It locates in the core of "Three Parallel Rivers" World Natural Heritage. It is one of international biodiversity conservation center of the world, the ecological fragile zone and key ecological construction area, as well as a remote undeveloped area with high diversity ethnic. With the rapidly development of society and economy, the land use and land cover changed in a great degree. The function of ecosystem has being degraded in some areas which will not only impact on the ecological construction of local area, but also on the ecological safety of lower reaches -- Salween River. Therefore it is necessary to carry out the research of LUCC of Nujiang River. Based on the theory and methods of geo-information Tupu, the "Spatial Pattern" and "Change Process" of land use of middle reach in Nujiang River from 1974 to 2004 had been studied in quantification and integration, so as to provide a case study in local area and mesoscale in time. Supported by the remote sensing and GIS technology, LUCC Tupu of 1974-2004 had been built and the characteristics of LUCC have been analyzed quantificationally. The results showed that the built-up land (Included in this category are cities, towns, villages, strip developments along highways, transportation, power, and communications facilities, and areas such as those occupied by mills, shopping centers, industrial and commercial complexes, and institutions that may, in some instances, be isolated from urban areas), agriculture land, shrubbery land, meadow & grassland, difficultly/unused land

  1. Rubber and Land-Cover Land-Use Change in Mainland Southeast Asia

    Science.gov (United States)

    Fox, J. M.; Hurni, K.

    2017-12-01

    Over the past half century, the five countries of Mainland Southeast Asia (MSEA) - Cambodia, Laos, Myanmar, Thailand, and Vietnam - have witnessed major shifts from predominantly subsistence agrarian economies to increasingly commercialized agriculture. Major drivers of change include policy initiatives that fostered regional economic integration and promoted among other changes rapid expansion of boom-crop plantations. Among the many types of commercial boom crops promoted and grown in MSEA are numerous tree-based products such as rubber, coffee, tree species for pulp and paper (particularly eucalyptus and acacia), cashews, and fruits such as oranges, lychees, and longans. The project proposal hypothesized that most (but not all) tree crops replaced swidden cultivation fields and hence are not necessarily accompanied by deforestation. We used MODIS EVI and SWIR time-series from 2001-2014 to classify changes in tree cover across MSEA; a total of 6849 sample points were used to train the classifier (75%) and verification (25%). The classification consists of 24 classes and 17 classes represent tree crops. Project results suggest that 4.4 m ha of rubber have been planted since 2003; 50% of rubber is planted on former evergreen forest land, 18% on deciduous forest land, and 32% on low vegetation area (former crop lands, bushes, scrub). Tree crops occupy about 8% of the landscape (half of that is rubber). Due to the differences in their political and economic histories these countries display different LCLUCs. In northern Laos, smallholder rubber plantations dominate and shifting cultivation is common in the upland. In southern Laos, large-scale plantations of rubber, coffee, eucalyptus, and sugarcane are widespread. In Thailand, vast areas are covered by annual agriculture; fruit trees and rubber are the prevailing tree crops and are mostly planted by smallholders. In Cambodia, large-scale rubber plantations have expanded in recent years on forest lands; smallholder

  2. Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product

    Science.gov (United States)

    Ganguly, Sangram; Friedl, Mark A.; Tan, Bin; Zhang, Xiaoyang; Verma, Manish

    2010-01-01

    Information related to land surface phenology is important for a variety of applications. For example, phenology is widely used as a diagnostic of ecosystem response to global change. In addition, phenology influences seasonal scale fluxes of water, energy, and carbon between the land surface and atmosphere. Increasingly, the importance of phenology for studies of habitat and biodiversity is also being recognized. While many data sets related to plant phenology have been collected at specific sites or in networks focused on individual plants or plant species, remote sensing provides the only way to observe and monitor phenology over large scales and at regular intervals. The MODIS Global Land Cover Dynamics Product was developed to support investigations that require regional to global scale information related to spatiotemporal dynamics in land surface phenology. Here we describe the Collection 5 version of this product, which represents a substantial refinement relative to the Collection 4 product. This new version provides information related to land surface phenology at higher spatial resolution than Collection 4 (500-m vs. 1-km), and is based on 8-day instead of 16-day input data. The paper presents a brief overview of the algorithm, followed by an assessment of the product. To this end, we present (1) a comparison of results from Collection 5 versus Collection 4 for selected MODIS tiles that span a range of climate and ecological conditions, (2) a characterization of interannual variation in Collections 4 and 5 data for North America from 2001 to 2006, and (3) a comparison of Collection 5 results against ground observations for two forest sites in the northeastern United States. Results show that the Collection 5 product is qualitatively similar to Collection 4. However, Collection 5 has fewer missing values outside of regions with persistent cloud cover and atmospheric aerosols. Interannual variability in Collection 5 is consistent with expected ranges of

  3. Evaluating Impacts of Land Use/Land Cover Change on Water Resources in Semiarid Regions

    Science.gov (United States)

    Scanlon, B. R.; Faunt, C. C.; Pool, D. R.; Reedy, R. C.

    2017-12-01

    Land use/land cover (LU/LC) changes play an integral role in water resources by controlling the partitioning of water at the land surface. Here we evaluate impacts of changing LU/LC on water resources in response to climate variation and change and land use change related to agriculture using data from semiarid regions in the southwestern U.S. Land cover changes in response to climate can amplify or dampen climate impacts on water resources. Changes from wet Pleistocene to much drier Holocene climate resulted in expansion of perennial vegetation, amplifying climate change impacts on water resources by reducing groundwater recharge as shown in soil profiles in the southwestern U.S.. In contrast, vegetation response to climate extremes, including droughts and floods, dampen impacts of these extremes on water resources, as shown by water budget monitoring in the Mojave Desert. Agriculture often involves changes from native perennial vegetation to annual crops increasing groundwater recharge in many semiarid regions. Irrigation based on conjunctive use of surface water and groundwater increases water resource availability, as shown in the Central Valley of California and in southern Arizona. Surface water irrigation in these regions is enhanced by water transported from more humid settings through extensive pipelines. These projects have reversed long-term declining groundwater trends in some regions. While irrigation design has often focused on increased efficiency, "more crop per drop", optimal water resource management may benefit more from inefficient (e.g. flood irrigation) surface-water irrigation combined with efficient (e.g. subsurface drip) irrigation to maximize groundwater recharge, as seen in parts of the Central Valley. Flood irrigation of perennial crops, such as almonds and vineyards, during winter is being considered in the Central Valley to enhance groundwater recharge. Managed aquifer recharge can be considered a special case of conjunctive use of

  4. Anthropogenic Influences in Land Use/Land Cover Changes in Mediterranean Forest Landscapes in Sicily

    Directory of Open Access Journals (Sweden)

    Donato S. La Mela Veca

    2016-01-01

    Full Text Available This paper analyzes and quantifies the land use/land cover changes of the main forest and semi-natural landscape types in Sicily between 1955 and 2012. We analyzed seven representative forest and shrubland landscapes in Sicily. These study areas were chosen for their importance in the Sicilian forest panorama. We carried out a diachronic survey on historical and current aerial photos; all the aerial images used to survey the land use/land cover changes were digitalized and georeferenced in the UTM WGS84 system. In order to classify land use, the Regional Forest Inventory 2010 legend was adopted for the more recent images, and the CORINE Land Cover III level used for the older, lower resolution images. This study quantifies forest landscape dynamics; our results show for almost all study areas an increase of forest cover and expansion, whereas a regressive dynamic is found in rural areas due to intensive agricultural and pasturage uses. Understanding the dynamics of forest landscapes could enhance the role of forestry policy as a tool for landscape management and regional planning.

  5. Multi-temporal and Dual-polarization Interferometric SAR for Land Cover Type Classification

    Directory of Open Access Journals (Sweden)

    WANG Xinshuang

    2015-05-01

    Full Text Available In order to study SAR land cover classification method, this paper uses the multi-dimensional combination of temporal,polarization and InSAR data. The area covered by space borne data of ALOS PALSAR in Xunke County,Heilongjiang Province was chosen as test site. A land cover classification technique of SVM based on multi-temporal, multi-polarization and InSAR data had been proposed, using the sensitivity to land cover type of multi-temporal, multi-polarization SAR data and InSAR measurements, and combing time series characteristic of backscatter coefficient and correlation coefficient to identify ground objects. The results showed the problem of confusion between forest land and urban construction land can be nicely solved, using the correlation coefficient between HH and HV, and also combing the selected temporal, polarization and InSAR characteristics. The land cover classification result with higher accuracy is gotten using the classification algorithm proposed in this paper.

  6. LAND COVER ASSESSMENT OF INDIGENOUS COMMUNITIES IN THE BOSAWAS REGION OF NICARAGUA

    Science.gov (United States)

    Data derived from remotely sensed images were utilized to conduct land cover assessments of three indigenous communities in northern Nicaragua. Historical land use, present land cover and land cover change processes were all identified through the use of a geographic informat...

  7. Landspotting: collecting essential land cover information via an attractive internet game

    Science.gov (United States)

    Fritz, Steffen; McCallum, Ian; Perger, Christoph; Christian, Schill; Florian, Kraxner; Erik, Lindquist; Michael, Obersteiner

    2010-05-01

    Based on the geo-wiki.org concept of collecting land cover information via crowdsourcing, we present a novel approach on how to get the crowd involved. Internet games as well as social networks are becoming increasingly popular and the full potential is yet to be exploited. However, thus far, few if any games provide anything other than entertainment. Can an attractive philanthropic game be created which uses the crowd to collect essential information needed to help to acquire better data to improve the understanding of the earth system? Since accurate and up to date information on global land cover plays a very important role in a number of different research fields such as climate change, monitoring of tropical deforestation, land use monitoring and land-use modelling, but still shows high levels of disagreement, the game will focus on how this essential land cover calibration and validation data can be collected in areas where uncertainty is currently highest. In the current version of the land spotting game, we combine uncertainty hotspot information from three global land cover datasets (GLC, MODIS and GlobCover). With an ever increasing amount of high resolution images available on Google Earth, it is becoming increasingly possible to distinguish land cover features with a high degree of accuracy. We first direct the landspotting game community to certain hotspots of land cover uncertainty and then ask them to enter/record the type of land cover they see (for this they will be able to acquire a certain number of points), possibly uploading pictures at that location (additional points will be received). Even though the development of the game "landspotting.org" is still underway, we illustrate what the functionality will be and what features are envisaged for the near future. Landspotting.org will be designed in such a way as to challenge users to help map out the remaining areas of confusion over the globe - possibly in the form of an adventure game. Users

  8. Land use, land cover, and drainage on the Albemarle-Pamlico Peninsula, Eastern North Carolina, 1974

    Science.gov (United States)

    Daniel, C.C.

    1978-01-01

    A land use, land cover, and drainage map of the 2,000-square-mile Albermarle-Pamlico peninsula of eastern North Carolina has been prepared, at a scale of 1:125,000, as part of a larger study of the effects of large-scale land clearing on regional hydrology. The peninsula includes the most extensive area of wetland in North Carolina and one of the largest in the country. In recent years the pace of land clearing on the peninsula has accelerated as land is being converted from forest, swamp, and brushland to agricultural use. Conversion of swamps to intensive farming operations requires profound changes in the landscape. Vegetation is uprooted and burned and ditches and canals are dug to remove excess water. What is the impact of these changes on ground-water supplies and on the streams and surrounding coastal waters which receive the runoff This map will aid in answering these and similar questions that have arisen about the patterns of land use and the artificial drainage system that removes excess water from the land. By showing both land use and drainage, this map can be used to identify those areas where water-related problems may occur and help assess the nature and causes of these problems. The map covers the entire area east of the Suffolk Scarp, an area of about 2,000 square miles, for the year 1974 using data from 1974-76. Land use and land cover were compiled and modified from the U.S. Geological Survey 's Rocky Mount and Manteo LUDA maps. Additional information came from U.S. Geological Survey orthophotoquads, Landsat imagery, and field checking. Drainage was mapped from orthophotoquads, some field inspection, and 7-1/2 minute topographic quadrangle maps.

  9. Operational monitoring of land-cover change using multitemporal remote sensing data

    Science.gov (United States)

    Rogan, John

    2005-11-01

    Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation

  10. Sustaining forest landscape connectivity under different land cover change scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, L.; Rodriguez-Freire, M.; Mateo-Sanchez, M. C.; Estreguil, C.; Saura, S.

    2012-11-01

    Managing forest landscapes to sustain functional connectivity is considered one of the key strategies to counteract the negative effects of climate and human-induced changes in forest species pools. With this objective, we evaluated whether a robust network of forest connecting elements can be identified so that it remains efficient when facing different types of potential land cover changes that may affect forest habitat networks and ecological fluxes. For this purpose we considered changes both in the forested areas and in the non-forest intervening landscape matrix. We combined some of the most recent developments in graph theory with models of land cover permeability and least-cost analysis through the forest landscape. We focused on a case of study covering the habitat of a forest dwelling bird (nuthatch, Sitta europaea) in the region of Galicia (NW Spain). Seven land-use change scenarios were analysed for their effects on connecting forest elements (patches and links): one was the simplest case in which the landscape is represented as a binary forest/non-forest pattern (and where matrix heterogeneity is disregarded), four scenarios in which forest lands were converted to other cover types (to scrubland due to wildfires, to extensive and intensive agriculture, and to urban areas), and two scenarios that only involved changes in the non-forested matrix (re naturalization and intensification). Our results show that while the network of connecting elements for the species was very robust to the conversion of the forest habitat patches to different cover types, the different change scenarios in the landscape matrix could more significantly weaken its long-term validity and effectiveness. This is particularly the case when most of the key connectivity providers for the nuthatch are located outside the protected areas or public forests in Galicia, where biodiversity-friendly measures might be more easily implemented. We discuss how the methodology can be applied to

  11. Monitoring land use/land cover changes using CORINE land cover data: a case study of Silivri coastal zone in Metropolitan Istanbul.

    Science.gov (United States)

    Yilmaz, Rüya

    2010-06-01

    The objective of the present study was to assess changes in land use/land cover patterns in the coastal town of Silivri, a part of greater Istanbul administratively. In the assessment, remotely sensed data, in the form of satellite images, and geographic information systems were used. Types of land use/land cover were designated as the percentage of the total area studied. Results calculated from the satellite data for land cover classification were compared successfully with the database Coordination of Information on the Environment (CORINE). This served as a reference to appraise the reliability of the study presented here. The CORINE Program was established by the European Commission to create a harmonized Geographical Information System on the state of the environment in the European Community. Unplanned urbanization is causing land use changes mainly in developing countries such as Turkey. This situation in Turkey is frequently observed in the city of Istanbul. There are only a few studies of land use-land cover changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Istanbul. The research area comprised greater Silivri Town which is situated by the coast of Marmara Sea, and it is located approximately 60 km west of Istanbul. The city of Istanbul is one of the largest metropolises in Europe with ca. 15 million inhabitants. Additionally, greater Silivri is located near the terminal point of the state highway connecting Istanbul with Europe. Measuring of changes occurring in land use would help control future planning of settlements; hence, it is of importance for the Greater Silivri and Silivri Town. Following our evaluations, coastal zone of Silivri was classified into the land use groups of artificial surfaces agricultural areas and forests and seminatural areas with 47.1%, 12.66%, and 22.62%, respectively.

  12. Land Use and Land Cover Change in Forest Frontiers: The Role of Household Life Cycles

    Science.gov (United States)

    Walker, Robert

    2002-01-01

    Tropical deforestation remains a critical issue given its present rate and a widespread consensus regarding its implications for the global carbon cycle and biodiversity. Nowhere is the problem more pronounced than in the Amazon basin, home to the world's largest intact, tropical forest. This article addresses land cover change processes at household level in the Amazon basin, and to this end adapts a concept of domestic life cycle to the current institutional environment of tropical frontiers. In particular, it poses a risk minimization model that integrates demography with market-based factors such as transportation costs and accessibility. In essence, the article merges the theory of Chayanov with the household economy framework, in which markets exist for inputs (including labor), outputs, and capital. The risk model is specified and estimated, using survey data for 261 small producers along the Transamazon Highway in the eastern sector of the Brazilian Amazon.

  13. Land Use and Land Cover - Volusia County Future Land Use (FLU) 2010

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Volusia County Future Land Use 2010. This is the original land use map for 2010. It was drafted for the comprehensive plan in 1990 and contains adopted amendments.

  14. Study on Classification Accuracy Inspection of Land Cover Data Aided by Automatic Image Change Detection Technology

    Science.gov (United States)

    Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.

    2018-04-01

    The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.

  15. Analysing land cover and land use change in the Matobo National Park and surroundings in Zimbabwe

    Science.gov (United States)

    Scharsich, Valeska; Mtata, Kupakwashe; Hauhs, Michael; Lange, Holger; Bogner, Christina

    2016-04-01

    Natural forests are threatened worldwide, therefore their protection in National Parks is essential. Here, we investigate how this protection status affects the land cover. To answer this question, we analyse the surface reflectance of three Landsat images of Matobo National Park and surrounding in Zimbabwe from 1989, 1998 and 2014 to detect changes in land cover in this region. To account for the rolling countryside and the resulting prominent shadows, a topographical correction of the surface reflectance was required. To infer land cover changes it is not only necessary to have some ground data for the current satellite images but also for the old ones. In particular for the older images no recent field study could help to reconstruct these data reliably. In our study we follow the idea that land cover classes of pixels in current images can be transferred to the equivalent pixels of older ones if no changes occurred meanwhile. Therefore we combine unsupervised clustering with supervised classification as follows. At first, we produce a land cover map for 2014. Secondly, we cluster the images with clara, which is similar to k-means, but suitable for large data sets. Whereby the best number of classes were determined to be 4. Thirdly, we locate unchanged pixels with change vector analysis in the images of 1989 and 1998. For these pixels we transfer the corresponding cluster label from 2014 to 1989 and 1998. Subsequently, the classified pixels serve as training data for supervised classification with random forest, which is carried out for each image separately. Finally, we derive land cover classes from the Landsat image in 2014, photographs and Google Earth and transfer them to the other two images. The resulting classes are shrub land; forest/shallow waters; bare soils/fields with some trees/shrubs; and bare light soils/rocks, fields and settlements. Subsequently the three different classifications are compared and land changes are mapped. The main changes are

  16. A Review of Land-Cover Mapping Activities in Coastal Alabama and Mississippi

    Science.gov (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Brock, John C.

    2010-01-01

    INTRODUCTION Land-use and land-cover (LULC) data provide important information for environmental management. Data pertaining to land-cover and land-management activities are a common requirement for spatial analyses, such as watershed modeling, climate change, and hazard assessment. In coastal areas, land development, storms, and shoreline modification amplify the need for frequent and detailed land-cover datasets. The northern Gulf of Mexico coastal area is no exception. The impact of severe storms, increases in urban area, dramatic changes in land cover, and loss of coastal-wetland habitat all indicate a vital need for reliable and comparable land-cover data. Four main attributes define a land-cover dataset: the date/time of data collection, the spatial resolution, the type of classification, and the source data. The source data are the foundation dataset used to generate LULC classification and are typically remotely sensed data, such as aerial photography or satellite imagery. These source data have a large influence on the final LULC data product, so much so that one can classify LULC datasets into two general groups: LULC data derived from aerial photography and LULC data derived from satellite imagery. The final LULC data can be converted from one format to another (for instance, vector LULC data can be converted into raster data for analysis purposes, and vice versa), but each subsequent dataset maintains the imprint of the source medium within its spatial accuracy and data features. The source data will also influence the spatial and temporal resolution, as well as the type of classification. The intended application of the LULC data typically defines the type of source data and methodology, with satellite imagery being selected for large landscapes (state-wide, national data products) and repeatability (environmental monitoring and change analysis). The coarse spatial scale and lack of refined land-use categories are typical drawbacks to satellite-based

  17. Impact of land cover and land use change on runoff characteristics.

    Science.gov (United States)

    Sajikumar, N; Remya, R S

    2015-09-15

    Change in Land Cover and Land Use (LCLU) influences the runoff characteristics of a drainage basin to a large extent, which in turn, affects the surface and groundwater availability of the area, and hence leads to further change in LCLU. This forms a vicious circle. Hence it becomes essential to assess the effect of change in LCLU on the runoff characteristics of a region in general and of small watershed levels (sub-basin levels) in particular. Such an analysis can effectively be carried out by using watershed simulation models with integrated GIS frame work. SWAT (Soil and Water Analysis Tool) model, being one of the versatile watershed simulation models, is found to be suitable for this purpose as many GIS integration modules are available for this model (e.g. ArcSWAT, MWSWAT). Watershed simulation using SWAT requires the land use and land cover data, soil data and many other features. With the availability of repository of satellite imageries, both from Indian and foreign sources, it becomes possible to use the concurrent local land use and land cover data, thereby enabling more accurate modelling of small watersheds. Such availability will also enable us to assess the effect of LCLU on runoff characteristics and their reverse impact. The current study assesses the effect of land use and land cover on the runoff characteristics of two watersheds in Kerala, India. It also assesses how the change in land use and land cover in the last few decades affected the runoff characteristics of these watersheds. It is seen that the reduction in the forest area amounts to 60% and 32% in the analysed watersheds. However, the changes in the surface runoff for these watersheds are not comparable with the changes in the forest area but are within 20%. Similarly the maximum (peak) value of runoff has increased by an amount of 15% only. The lesser (aforementioned) effect than expected might be due to the fact that forest has been converted to agricultural purpose with major

  18. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  19. Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin of Northwest China

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2015-01-01

    Full Text Available This study evaluated hydrological impacts of potential climate and land use changes in Heihe River Basin of Northwest China. The future climate data for the simulation with Soil and Water Assessment Tool (SWAT were prepared using a dynamical downscaling method. The future land uses were simulated with the Dynamic Land Use System (DLS model by establishing Multinomial Logistic Regression (MNL model for six land use types. In 2006–2030, land uses in the basin will experience a significant change with a prominent increase in urban areas, a moderate increase in grassland, and a great decrease in unused land. Besides, the simulation results showed that in comparison to those during 1981–2005 the temperature and precipitation during 2006–2030 will change by +0.8°C and +10.8%, respectively. The land use change and climate change will jointly make the water yield change by +8.5%, while they will separately make the water yield change by −1.8% and +9.8%, respectively. The predicted large increase in future precipitation and the corresponding decrease in unused land will have substantial impacts on the watershed hydrology, especially on the surface runoff and streamflow. Therefore, to mitigate negative hydrological impacts and utilize positive impacts, both land use and climate changes should be considered in water resource planning for the Heihe River Basin.

  20. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa

    Science.gov (United States)

    Namugize, Jean Nepomuscene; Jewitt, Graham; Graham, Mark

    2018-06-01

    Land use and land cover change are major drivers of water quality deterioration in watercourses and impoundments. However, understanding of the spatial and temporal variability of land use change characteristics and their link to water quality parameters in catchments is limited. As a contribution to address this limitation, the objective of this study is to assess the linkages between biophysico-chemical water quality parameters and land use and land cover (LULC) classes in the upper reaches of the uMngeni Catchment, a rapidly developing catchment in South Africa. These were assessed using Geographic Information Systems tools and statistical analyses for the years 1994, 2000, 2008 and 2011 based on changes over time of eight LULC classes and available water quality information. Natural vegetation, forest plantations and cultivated areas occupy 85% of the catchment. Cultivated, urban/built-up and degraded areas increased by 6%, 4.5% and 3%, respectively coinciding with a decrease in natural vegetation by 17%. Variability in the concentration of water quality parameters from 1994 to 2011 and an overall decline in water quality were observed. Escherichia coli (E. coli) levels exceeding the recommended guidelines for recreation and public health protection was noted as a major issue at seven of the nine sampling points. Overall, water supply reservoirs in the catchment retained over 20% of nutrients and over 85% of E. coli entering them. A relationship between land use types and water quality variables was found. However, the degree and magnitude of the associations varies between sub-catchments and is difficult to quantify. This highlights the complexity and the site-specific nature of relationships between land use types and water quality parameters in the catchment. Thus, this study provides useful findings on the general relationship between land use and land cover and water quality degradation, but highlights the risks of applying simple relationships or adding

  1. Land-cover change in the Ozark Highlands, 1973-2000

    Science.gov (United States)

    Karstensen, Krista A.

    2010-01-01

    Led by the Geographic Analysis and Monitoring Program of the U.S. Geological Survey (USGS) in collaboration with the U.S. Environmental Protection Agency (EPA) and the National Aeronautics and Space Administration (NASA), the Land-Cover Trends Project was initiated in 1999 and aims to document the types, geographic distributions, and rates of land-cover change on a region by region basis for the conterminous United States, and to determine some of the key drivers and consequences of the change (Loveland and others, 2002). For 1973, 1980, 1986, 1992, and 2000 land-cover maps derived from the Landsat series are classified by visual interpretation, inspection of historical aerial photography and ground survey, into 11 land-cover classes. The classes are defined to capture land cover that is discernable in Landsat data. A stratified probability-based sampling methodology undertaken within the 84 Omernik Level III Ecoregions (Omernik, 1987) was used to locate the blocks, with 9 to 48 blocks per ecoregion. The sampling was designed to enable a statistically robust 'scaling up' of the sample-classification data to estimate areal land-cover change within each ecoregion (Loveland and others, 2002; Stehman and others, 2005). At the time of writing, approximately 90 percent of the 84 conterminous United States ecoregions have been processed by the Land-Cover Trends Project. Results from these completed ecoregions illustrate that across the conterminous United States there is no single profile of land-cover/land-use change, rather, there are varying pulses affected by clusters of change agents (Loveland and others, 2002). Land-Cover Trends Project results for the conterminous United States to-date are being used for collaborative environmental change research with partners such as; the National Science Foundation, the National Oceanic and Atmospheric Administration, and the U.S. Fish and Wildlife Service. The strategy has also been adapted for use in a NASA global

  2. IMPLEMENTATION STRATEGY FOR PRODUCTION OF NATIONAL LAND-COVER DATA (NLCD) FROM THE LANDSAT 7 THEMATIC MAPPER SATELLITE

    Science.gov (United States)

    As environmental programs within and outside the federal government continue to move away from point-based studies to larger and larger spatial (not cartographic) scale, the need for land-cover and other geographic data have become ineluctable. The national land-cover mapping pr...

  3. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes

    Science.gov (United States)

    Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhi-Liang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd; Wein, Anne; Liu, Shu-Guang; Kanengieter, Ronald; Acevedo, William

    2012-01-01

    Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and land-management activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.

  4. Monitoring Urban Land Cover/land Use Change in Algiers City Using Landsat Images (1987-2016)

    Science.gov (United States)

    Bouchachi, B.; Zhong, Y.

    2017-09-01

    Monitoring the Urban Land Cover/Land Use change detection is important as one of the main driving forces of environmental change because Urbanization is the biggest changes in form of Land, resulting in a decrease in cultivated areas. Using remote sensing ability to solve land resources problems. The purpose of this research is to map the urban areas at different times to monitor and predict possible urban changes, were studied the annual growth urban land during the last 29 years in Algiers City. Improving the productiveness of long-term training in land mapping, were have developed an approach by the following steps: 1) pre-processing for improvement of image characteristics; 2) extract training sample candidates based on the developed methods; and 3) Derive maps and analyzed of Algiers City on an annual basis from 1987 to 2016 using a Supervised Classifier Support Vector Machine (SVMs). Our result shows that the strategy of urban land followed in the region of Algiers City, developed areas mostly were extended to East, West, and South of Central Regions. The urban growth rate is linked with National Office of Statistics data. Future studies are required to understand the impact of urban rapid lands on social, economy and environmental sustainability, it will also close the gap in data of urbanism available, especially on the lack of reliable data, environmental and urban planning for each municipality in Algiers, develop experimental models to predict future land changes with statistically significant confidence.

  5. Land-cover change research at the U.S. Geological Survey-assessing our nation's dynamic land surface

    Science.gov (United States)

    Wilson, Tamara S.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed an unprecedented, 27-year assessment of land-use and land-cover change for the conterminous United States. For the period 1973 to 2000, scientists generated estimates of change in major types of land use and land cover, such as development, mining, agriculture, forest, grasslands, and wetlands. To help provide the insight that our Nation will need to make land-use decisions in coming decades, the historical trends data is now being used by the USGS to help model potential future land use/land cover under different scenarios, including climate, environmental, economic, population, public policy, and technological change.

  6. Using the FORE-SCE model to project land-cover change in the southeastern United States

    Science.gov (United States)

    Sohl, Terry; Sayler, Kristi L.

    2008-01-01

    A wide variety of ecological applications require spatially explicit current and projected land-use and land-cover data. The southeastern United States has experienced massive land-use change since European settlement and continues to experience extremely high rates of forest cutting, significant urban development, and changes in agricultural land use. Forest-cover patterns and structure are projected to change dramatically in the southeastern United States in the next 50 years due to population growth and demand for wood products [Wear, D.N., Greis, J.G. (Eds.), 2002. Southern Forest Resource Assessment. General Technical Report SRS-53. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, 635 pp]. Along with our climate partners, we are examining the potential effects of southeastern U.S. land-cover change on regional climate. The U.S. Geological Survey (USGS) Land Cover Trends project is analyzing contemporary (1973-2000) land-cover change in the conterminous United States, providing ecoregion-by-ecoregion estimates of the rates of change, descriptive transition matrices, and changes in landscape metrics. The FORecasting SCEnarios of future land-cover (FORE-SCE) model used Land Cover Trends data and theoretical, statistical, and deterministic modeling techniques to project future land-cover change through 2050 for the southeastern United States. Prescriptions for future proportions of land cover for this application were provided by ecoregion-based extrapolations of historical change. Logistic regression was used to develop relationships between suspected drivers of land-cover change and land cover, resulting in the development of probability-of-occurrence surfaces for each unique land-cover type. Forest stand age was initially established with Forest Inventory and Analysis (FIA) data and tracked through model iterations. The spatial allocation procedure placed patches of new land cover on the landscape until the scenario

  7. Analysis of spatial distribution of land cover maps accuracy

    Science.gov (United States)

    Khatami, R.; Mountrakis, G.; Stehman, S. V.

    2017-12-01

    Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain

  8. Land cover, land use changes and air pollution in Asia: a synthesis

    Science.gov (United States)

    Vadrevu, Krishna; Ohara, Toshimasa; Justice, Chris

    2017-12-01

    A better understanding of land cover/land use changes (LCLUC) and their interactions with the atmospheric environment is essential for the sustainable management of natural resources, environmental protection, air quality, agricultural planning and food security. The 15 papers published in this focus issue showcase a variety of studies relating to drivers and impacts of LCLUC and air pollution in different South/Southeast Asian (S/SEA) countries. This synthesis article, in addition to giving context to the articles in this focus issue, also reviews the broad linkages between population, LCLUC and air pollution. Additionally, we identify knowledge gaps and research priorities that are essential in addressing air pollution issues in the region. We conclude that for effective pollution mitigation in S/SEA countries, quantifying drivers, sources and impacts of pollution need a thorough data analysis through ground-based instrumentation, models and integrated research approaches. We also stress the need for the development of sustainable technologies and strengthening the scientific and resource management communities through capacity building and training activities to address air pollution issues in S/SEA countries.

  9. Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey

    Science.gov (United States)

    Bektas Balcik, F.

    2012-12-01

    Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.

  10. Land Cover Classification from Multispectral Data Using Computational Intelligence Tools: A Comparative Study

    Directory of Open Access Journals (Sweden)

    André Mora

    2017-11-01

    Full Text Available This article discusses how computational intelligence techniques are applied to fuse spectral images into a higher level image of land cover distribution for remote sensing, specifically for satellite image classification. We compare a fuzzy-inference method with two other computational intelligence methods, decision trees and neural networks, using a case study of land cover classification from satellite images. Further, an unsupervised approach based on k-means clustering has been also taken into consideration for comparison. The fuzzy-inference method includes training the classifier with a fuzzy-fusion technique and then performing land cover classification using reinforcement aggregation operators. To assess the robustness of the four methods, a comparative study including three years of land cover maps for the district of Mandimba, Niassa province, Mozambique, was undertaken. Our results show that the fuzzy-fusion method performs similarly to decision trees, achieving reliable classifications; neural networks suffer from overfitting; while k-means clustering constitutes a promising technique to identify land cover types from unknown areas.

  11. Land-Use and Land-Cover Change around Mobile Bay, Alabama from 1974-2008

    Science.gov (United States)

    Ellis, Jean; Spruce, Joseph P.; Swann, Roberta; Smooth, James C.

    2009-01-01

    This document summarizes the major findings of a Gulf of Mexico Application Pilot project led by NASA Stennis Space Center (SSC) in conjunction with a regional collaboration network of the Gulf of Mexico Alliance (GOMA). NASA researchers processed and analyzed multi-temporal Landsat data to assess land-use and land-cover (LULC) changes in the coastal counties of Mobile and Baldwin, AL between 1974 and 2008. Our goal was to create satellite-based LULC data products using methods that could be transferable to other coastal areas of concern within the Gulf of Mexico. The Mobile Bay National Estuary Program (MBNEP) is the primary end-user, however, several other state and local groups may benefit from the project s data products that will be available through NOAA-NCDDC s Regional Ecosystem Data Management program. Mobile Bay is a critical ecologic and economic region in the Gulf of Mexico and to the entire country. Mobile Bay was designated as an estuary of national significance in 1996. This estuary receives the fourth largest freshwater inflow in the United States. It provides vital nursery habitat for commercially and recreationally important fish species. It has exceptional aquatic and terrestrial bio-diversity, however, its estuary health is influenced by changing LULC patterns, such as urbanization. Mobile and Baldwin counties have experienced a population growth of 1.1% and 20.5% from 2000-2006. Urban expansion and population growth are likely to accelerate with the construction and operation of the ThyssenKrupp steel mill in the northeast portion of Mobile County. Land-use and land-cover change can negatively impact Gulf coast water quality and ecological resources. The conversion of forest to urban cover types impacts the carbon cycle and increases the freshwater and sediment in coastal waters. Increased freshwater runoff decreases salinity and increases the turbidity of coastal waters, thus impacting the growth potential of submerged aquatic vegetation (SAV

  12. Land Cover Influence on Wet Season Storm Runoff Generation and Hydrologic Flowpaths in Central Panama

    Science.gov (United States)

    Birch, A. L.; Stallard, R. F.; Barnard, H. R.

    2017-12-01

    While relationships between land use/land cover and hydrology are well studied and understood in temperate parts of the world, little research exists in the humid tropics, where hydrologic research is often decades behind. Specifically, quantitative information on how physical and biological differences across varying land covers influence runoff generation and hydrologic flowpaths in the humid tropics is scarce; frequently leading to poorly informed hydrologic modelling and water policy decision making. This research effort seeks to quantify how tropical land cover change may alter physical hydrologic processes in the economically important Panama Canal Watershed (Republic of Panama) by separating streamflow into its different runoff components using end member mixing analysis. The samples collected for this project come from small headwater catchments of four varying land covers (mature tropical forest, young secondary forest, active pasture, recently clear-cut tropical forest) within the Smithsonian Tropical Research Institute's Agua Salud Project. During the past three years, samples have been collected at the four study catchments from streamflow and from a number of water sources within hillslope transects, and have been analyzed for stable water isotopes, major cations, and major anions. Major ion analysis of these samples has shown distinct geochemical differences for the potential runoff generating end members sampled (soil moisture/ preferential flow, groundwater, overland flow, throughfall, and precipitation). Based on this finding, an effort was made from May-August 2017 to intensively sample streamflow during wet season storm events, yielding a total of 5 events of varying intensity in each land cover/catchment, with sampling intensity ranging from sub-hourly to sub-daily. The focus of this poster presentation will be to present the result of hydrograph separation's done using end member mixing analysis from this May-August 2017 storm dataset. Expected

  13. Measurement of semantic similarity for land use and land cover classification systems

    Science.gov (United States)

    Deng, Dongpo

    2008-12-01

    Land use and land cover (LULC) data is essential to environmental and ecological research. However, semantic heterogeneous of land use and land cover classification are often resulted from different data resources, different cultural contexts, and different utilities. Therefore, there is need to develop a method to measure, compare and integrate between land cover categories. To understand the meaning and the use of terminology from different domains, the common ontology approach is used to acquire information regarding the meaning of terms, and to compare two terms to determine how they might be related. Ontology is a formal specification of a shared conceptualization of a domain of interest. LULC classification system is a ontology. The semantic similarity method is used to compare to entities of three LULC classification systems: CORINE (European Environmental Agency), Oregon State, USA), and Taiwan. The semantic properties and relations firstly have been extracted from their definitions of LULC classification systems. Then semantic properties and relations of categories in three LULC classification systems are mutually compared. The visualization of semantic proximity is finally presented to explore the similarity or dissimilarity of data. This study shows the semantic similarity method efficiently detect semantic distance in three LULC classification systems and find out the semantic similar objects.

  14. Impact of land cover and population density on land surface temperature: case study in Wuhan, China

    Science.gov (United States)

    Li, Lin; Tan, Yongbin; Ying, Shen; Yu, Zhonghai; Li, Zhen; Lan, Honghao

    2014-01-01

    With the rapid development of urbanization, the standard of living has improved, but changes to the city thermal environment have become more serious. Population urbanization is a driving force of residential expansion, which predominantly influences the land surface temperature (LST). We obtained the land covers and LST maps of Wuhan from Landsat-5 images in 2000, 2002, 2005, and 2009, and discussed the distribution of land use/cover change and LST variation, and we analyzed the correlation between population distribution and LST values in residential regions. The results indicated massive variation of land cover types, which was shown as a reduction in cultivatable land and the expansion of building regions. High-LST regions concentrated on the residential and industrial areas with low vegetation coverage. In the residential region, the population density (PD) had effects on the LST values. Although the area or variation of residential regions was close, lower PD was associated with lower mean LST or LST variation. Thus, decreasing the high-LST regions concentration by reducing the PD may alleviate the urban heat island effect on the residential area. Taken together, these results can provide supports for urban planning projects and studies on city ecological environments.

  15. Land Use Land Cover Change in the fringe of eThekwini ...

    African Journals Online (AJOL)

    Concerns on urban environmental quality, increasing knowledge on impacts of climate change and pursuit for sustainable development have increased the need for past, current and future knowledge on the transformation of remnant urban fringe green ecosystems. Using land-cover change modeler and a Markov chain ...

  16. Detection and Mapping of Land Use and Land Cover Classes of a ...

    African Journals Online (AJOL)

    FIRST LADY

    Cover Classes of a Developing City in Southeastern. Region of Nigeria .... The emergence of small and medium sized agro-husbandry industries in the peripheral, semi- ..... lack of spatial specialization a hindrance to integrated land management and development .... Journal of Applied Sciences Asian Network for Scientific ...

  17. Detecting and quantifying land use/land cover dynamics in Wadla ...

    African Journals Online (AJOL)

    A study was conducted in Wadla Delanta Massif to investigate land use/cover dynamics over the last four decades (1973-2014) using satellite images (1973 MSS, 1995 TM and 2014 ETM+). Global positioning system ... in the study area. Keywords: GIS, Image classification, Remote sensing, Supervised classification ...

  18. 81 An Assessment of the land use and land cover changes in ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Three satellite images for three different years (1991, 2000 and 2009) were used to come up with a ... land cover change maps among other data resources that are .... in agro-ecological region 3 that receives an average rainfall of .... After field observation and collection of .... the image along with statistical comparison of.

  19. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    Science.gov (United States)

    Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.

    2018-01-01

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.

  20. Land cover change detection in West Jilin using ETM+ images

    Institute of Scientific and Technical Information of China (English)

    Edward M.Osei,Jr.; ZHOU Yun-xuan

    2004-01-01

    In order to assess the information content and accuracy ofLandsat ETM+ digital images in land cover change detection,change-detection techniques of image differencing,normalized difference vegetation index,principal components analysis and tasseled-cap transformation were applied to yield 13 images. These images were thresholded into change and no change areas. The thresholded images were then checked in terms of various accuracies. The experiment results show that kappa coefficients of the 13 images range from 48.05 ~78.09. Different images do detect different types of changes. Images associated with changes in the near-infrared-reflectance or greenness detects crop-type changes and changes between vegetative and non-vegetative features. A unique means of using only Landsat imagery without reference data for the assessment of change in arid land are presented. Images of 12th June, 2000 and 2nd June, 2002 are used to validate the means. Analyses of standard accuracy and spatial agreement are performed to compare the new images (hereafter called "change images" ) representing the change between the two dates. Spatial agreement evaluates the conformity in the classified "change pixels" and "no-change pixels" at the same location on different change images and comprehensively examines the different techniques. This method would enable authorities to monitor land degradation efficiently and accurately.

  1. LBA-ECO ND-01 Land Cover Classification, Rondonia, Brazil: 1975-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a time series of land cover classifications for Ariquemes, Ji-Parana, and Luiza, research sites in Rondonia, Brazil. The land cover...

  2. C-CAP Santa Cruz 2001 era High Resolution Land Cover Metadata

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset represents land cover for the San Lorenzo River basin in Santa Cruz County, California derived from high resolution imagery. The land cover features in...

  3. EnviroAtlas - Paterson, NJ - Meter-Scale Urban Land Cover (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Paterson, New Jersey EnviroAtlas Meter-Scale Urban Land Cover (MULC) data comprises approximately 66 km2 around the city of Paterson. The land cover data were...

  4. EnviroAtlas - Des Moines, IA - Meter-Scale Urban Land Cover (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Des Moines, IA EnviroAtlas Meter-Scale Urban Land Cover (MULC) Data were generated from the High Resolution Land Cover (HRLC) product created by the Iowa...

  5. NLCD - MODIS land cover- albedo dataset for the continental United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution...

  6. A change detection strategy for monitoring vegetative and land-use cover types using remotely-sensed, satellite-based data

    International Nuclear Information System (INIS)

    Hallum, C.

    1993-01-01

    Changes to the environment are of critical concern in the world today; consequently, monitoring such changes and assessing their impacts are tasks demanding considerably higher priority. The ecological impacts of the natural global cycles of gases and particulates in the earth's atmosphere are highly influenced by the extent of changes to vegetative canopy characteristics which dictates the need for capability to detect and assess the magnitude of such changes. The primary emphasis of this paper is on the determination of the size and configuration of the sampling unit that maximizes the probability of its intersection with a 'change' area. Assessment of the significance of the 'change' in a given locality is also addressed and relies on a statistical approach that compares the number of elemental units exceeding a reflectance threshold when compared to a previous point in time. Consideration is also given to a technical framework that supports quantifying the magnitude of the 'change' over large areas (i.e., the estimated area changing from forest to agricultural land-use). The latter entails a multistage approach which utilizes satellite-based and other related data sources

  7. Modelling Spatial Compositional Data: Reconstructions of past land cover and uncertainties

    DEFF Research Database (Denmark)

    Pirzamanbein, Behnaz; Lindström, Johan; Poska, Anneli

    2018-01-01

    In this paper, we construct a hierarchical model for spatial compositional data, which is used to reconstruct past land-cover compositions (in terms of coniferous forest, broadleaved forest, and unforested/open land) for five time periods during the past $6\\,000$ years over Europe. The model...... to a fast MCMC algorithm. Reconstructions are obtained by combining pollen-based estimates of vegetation cover at a limited number of locations with scenarios of past deforestation and output from a dynamic vegetation model. To evaluate uncertainties in the predictions a novel way of constructing joint...... confidence regions for the entire composition at each prediction location is proposed. The hierarchical model's ability to reconstruct past land cover is evaluated through cross validation for all time periods, and by comparing reconstructions for the recent past to a present day European forest map...

  8. Land cover in single-family housing areas and how it correlates with urban form

    DEFF Research Database (Denmark)

    Nielsen, Mette Boye; Jensen, Marina Bergen

    2015-01-01

    Land cover composition is a valuable indicator of the ecological performance of a city. Single-family housing areas constitute a substantial part of most cities and may as such play an important role for sustainable urban development. From aerial photos we performed detailed GIS-based mapping...... of land cover in three detached single-family housing areas in Denmark of different urban form but comparable housing densities (ranging from 10.0 to 11.3 houses per hectare). The findings were subjected to statistical analysis and landscape metrics. Land cover varied with urban form: A traditional...... spatial configuration with rectangular parcels contained significantly more vegetation and less impervious surfaces per parcel than newer Radburn-inspired configurations with more quadratic parcels. Correlation analysis showed size of paved access ways to be positively correlated with distance from road...

  9. Impacts of land use/cover change on ecosystem services for Xiamen

    Science.gov (United States)

    Shi, L.; Cui, S.

    2009-12-01

    Based on remote sensing images of Xiamen in 1987, 1997 and 2007, the process of ecosystem service alteration resulting from land use/cover change was quantitatively analyzed through RS and GIS techniques. Consulting relative researches, an integrated assessment model was built to evaluating regional ecosystem services of Xiamen. The results showed that the total ecosystem service value of Xiamen was increased by 14.67%, from 3271.5 million to 3751.39 RMB. The relative change rate of supplying service, regulation service, cultural service and supporting service were 97.8%, -25.1%, 165.0% and -44.7% respectively, which indicated that land use/ cover change had positive effects on supplying and cultural service, whereas it had negatively affected both regulation service and supporting service. Land use/cover types of Xiamen in 1987, 1997 and 2007 Ecosystem values of Xiamen in 1987, 1997 and 2007 10 thousand RMB

  10. Data Mining Relationships Among Urban Socioeconomic, Land Cover, and Remotely Sensed Ecological Data

    Science.gov (United States)

    Mennis, J.; Wessman, C.; Golubiewski, N.

    2003-12-01

    This research investigates the relationships among socioeconomic character, land cover, and ecological function in a rapidly urbanizing region, the Front Range of Colorado. We use novel spatial geographic information systems- (GIS-) based data integration and data mining techniques to integrate and analyze diverse spatial data sets. These data include elevation data, transportation data, land cover data derived from aerial photography, block group-level U.S. Census data, and vegetation greenness (NDVI) data derived from Landsat imagery. These data are used to derive a variety of U.S. block group-level variables indicating demographic, geographic, ecological, and land cover characteristics. We employ spatial association rule mining, decision tree induction, and spatial on-line analytical processing (OLAP), in addition to more conventional multivariate statistical techniques, to investigate relationships among these variables.

  11. A comprehensive change detection method for updating the National Land Cover Database to circa 2011

    Science.gov (United States)

    Jin, Suming; Yang, Limin; Danielson, Patrick; Homer, Collin G.; Fry, Joyce; Xian, George

    2013-01-01

    The importance of characterizing, quantifying, and monitoring land cover, land use, and their changes has been widely recognized by global and environmental change studies. Since the early 1990s, three U.S. National Land Cover Database (NLCD) products (circa 1992, 2001, and 2006) have been released as free downloads for users. The NLCD 2006 also provides land cover change products between 2001 and 2006. To continue providing updated national land cover and change datasets, a new initiative in developing NLCD 2011 is currently underway. We present a new Comprehensive Change Detection Method (CCDM) designed as a key component for the development of NLCD 2011 and the research results from two exemplar studies. The CCDM integrates spectral-based change detection algorithms including a Multi-Index Integrated Change Analysis (MIICA) model and a novel change model called Zone, which extracts change information from two Landsat image pairs. The MIICA model is the core module of the change detection strategy and uses four spectral indices (CV, RCVMAX, dNBR, and dNDVI) to obtain the changes that occurred between two image dates. The CCDM also includes a knowledge-based system, which uses critical information on historical and current land cover conditions and trends and the likelihood of land cover change, to combine the changes from MIICA and Zone. For NLCD 2011, the improved and enhanced change products obtained from the CCDM provide critical information on location, magnitude, and direction of potential change areas and serve as a basis for further characterizing land cover changes for the nation. An accuracy assessment from the two study areas show 100% agreement between CCDM mapped no-change class with reference dataset, and 18% and 82% disagreement for the change class for WRS path/row p22r39 and p33r33, respectively. The strength of the CCDM is that the method is simple, easy to operate, widely applicable, and capable of capturing a variety of natural and

  12. GENERATION OF 2D LAND COVER MAPS FOR URBAN AREAS USING DECISION TREE CLASSIFICATION

    DEFF Research Database (Denmark)

    Höhle, Joachim

    2014-01-01

    A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects...... of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes ‘building’ (99%, 95% CI: 95%-100%) and ‘road and parking lot’ (90%, 95% CI: 83%-95%). Some...

  13. High-Precision Land-Cover-Land-Use GIS Mapping and Land Availability and Suitability Analysis for Grass Biomass Production in the Aroostook River Valley, Maine, USA

    Directory of Open Access Journals (Sweden)

    Chunzeng Wang

    2015-03-01

    Full Text Available High-precision land-cover-land-use GIS mapping was performed in four major townships in Maine’s Aroostook River Valley, using on-screen digitization and direct interpretation of very high spatial resolution satellite multispectral imagery (15–60 cm and high spatial resolution LiDAR data (2 m and the field mapping method. The project not only provides the first-ever high-precision land-use maps for northern Maine, but it also yields accurate hectarage estimates of different land-use types, in particular grassland, defined as fallow land, pasture, and hay field. This enables analysis of potential land availability and suitability for grass biomass production and other sustainable land uses. The results show that the total area of fallow land in the four towns is 7594 hectares, which accounts for 25% of total open land, and that fallow plots equal to or over four hectares in size total 4870, or 16% of open land. Union overlay analysis, using the Natural Resources Conservation Service (NRCS soil data, indicates that only a very small percentage of grassland (4.9% is on “poorly-drained” or “very-poorly-drained” soils, and that most grassland (85% falls into the “farmland of state importance” or “prime farmland” categories, as determined by NRCS. It is concluded that Maine’s Aroostook River Valley has an ample base of suitable, underutilized land for producing grass biomass.

  14. Predicting future land cover change and its impact on streamflow and sediment load in a trans-boundary river basin

    Directory of Open Access Journals (Sweden)

    J. Wang

    2018-06-01

    Full Text Available Sediment load can provide very important perspective on erosion of river basin. The changes of human-induced vegetation cover, such as deforestation or afforestation, affect sediment yield process of a catchment. We have already evaluated that climate change and land cover change changed the historical streamflow and sediment yield, and land cover change is the main factor in Red river basin. But future streamflow and sediment yield changes under potential future land cover change scenario still have not been evaluated. For this purpose, future scenario of land cover change is developed based on historical land cover changes and land change model (LCM. In addition, future leaf area index (LAI is simulated by ecological model (Biome-BGC based on future land cover scenario. Then future scenarios of land cover change and LAI are used to drive hydrological model and new sediment rating curve. The results of this research provide information that decision-makers need in order to promote water resources planning efforts. Besides that, this study also contributes a basic framework for assessing climate change impacts on streamflow and sediment yield that can be applied in the other basins around the world.

  15. Application of spectrometer cropscan MSR 16R and Landsat imagery for identification the spectral characteristics of land cover

    Science.gov (United States)

    Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee

    2013-09-01

    The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.

  16. Spatiotemporal Variability of Carbon Flux from Different Land Use and Land Cover Changes: A Case Study in Hubei Province, China

    Directory of Open Access Journals (Sweden)

    Li Gao

    2014-04-01

    Full Text Available Carbon sources and sinks as a result of land use and land cover changes (LUCC are significant for global climate change. This paper aims to identify and analyze the temporal and spatial changes of land use-based carbon emission in the Hubei Province in China. We use a carbon emission coefficient to calculate carbon emissions in different land use patterns in Hubei Province from 1998 to 2009. The results indicate that regional land use is facing tremendous pressure from rapid carbon emission growth. Source:sink ratios and average carbon emission intensity values of urban land are increasing, while slow-growing carbon sinks fail to offset the rapidly expanding carbon sources. Overall, urban land carbon emissions have a strong correlation with the total carbon emissions, and will continue to increase in the future mainly due to the surge of industrialization and urbanization. Furthermore, carbon emission in regions with more developed industrial structures is much higher than in regions with less advanced industrial structures. Lastly, carbon emission per unit of GDP has declined since 2004, indicating that a series of reform measures i.e., economic growth mode transformation and land-use structure optimization, has initiated the process of carbon emission reduction.

  17. An Operational Framework for Land Cover Classification in the Context of REDD+ Mechanisms. A Case Study from Costa Rica

    Directory of Open Access Journals (Sweden)

    Alfredo Fernández-Landa

    2016-07-01

    Full Text Available REDD+ implementation requires robust, consistent, accurate and transparent national land cover historical data and monitoring systems. Satellite imagery is the only data source with enough periodicity to provide consistent land cover information in a cost-effective way. The main aim of this paper is the creation of an operational framework for monitoring land cover dynamics based on Landsat imagery and open-source software. The methodology integrates the entire land cover and land cover change mapping processes to produce a consistent series of Land Cover maps. The consistency of the time series is achieved through the application of a single trained machine learning algorithm to radiometrically normalized imagery using iteratively re-weighted multivariate alteration detection (IR-MAD across all dates of the historical period. As a result, seven individual Land Cover maps of Costa Rica were produced from 1985/1986 to 2013/2014. Post-classification land cover change detection was performed to evaluate the land cover dynamics in Costa Rica. The validation of the land cover maps showed an overall accuracy of 87% for the 2013/2014 map, 93% for the 2000/2001 map and 89% for the 1985/1986 map. Land cover changes between forest and non-forest classes were validated for the period between 2001 and 2011, obtaining an overall accuracy of 86%. Forest age-classes were generated through a multi-temporal analysis of the maps. By linking deforestation dynamics with forest age, a more accurate discussion of the carbon emissions along the time series can be presented.

  18. Spatio-temporal variability of land use/land cover change (LULCC within the Huron River: Effects on stream flows

    Directory of Open Access Journals (Sweden)

    Cheyenne Lei

    Full Text Available We investigated possible influences of land use/land cover change (LULCC and precipitation on spatiotemporal changes in extreme stream flows within the watershed of the Huron River Basin during the summer seasons from 1992 to 2011. Within the basin, the urban landscape increased from 8% to 16% during the study period, while forest and agricultural lands declined by 7%. There was an increase in landscape heterogeneity within the watershed that varied from 1.21% in 1992 to 1.34% in 2011, with agricultural practices and forest regions competing due to the expansion of varying intensities of urban development. Normalized stream discharge from multiple subwatersheds increased over time, with an average increase from 0.21 m3 s−1 m to 1.64 m3 s−1 m over the study period. Land use and precipitation affected stream discharge, with increasing urban development exhibiting a 37% chance of affecting extreme stream flows within the watershed. More importantly, much of the precipitation observed within the watershed temporally affected stream discharge based on expansion of urban settlement within the basin. This caused a higher likelihood of flashiness, as runoff is more concentrated and stream flow became more variable. We concluded that, within the watersheds of the Huron River, LULCC is the major determinant of increased stream flow and potential flooding. Keywords: Urbanization, Land use, Land cover, Climate, Hydrology, ArcGIS, FRAGSTATS

  19. Soil chemical and physical properties that differentiate urban land-use and cover types

    Science.gov (United States)

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  20. Does estuarine health relate to catchment land-cover in the East ...

    African Journals Online (AJOL)

    Possible links between catchment and buffer zone land-cover class composition and the health of the East Kleinemonde Estuary were explored. There was a relationship between catchment land-cover and estuarine health within all assessed catchment delineations. Natural land-cover was determined to be the best ...

  1. Standard land-cover classification scheme for remote-sensing applications in South Africa

    CSIR Research Space (South Africa)

    Thompson, M

    1996-01-01

    Full Text Available For large areas, satellite remote-sensing techniques have now become the single most effective method for land-cover and land-use data acquisition. However, the majority of land-cover (and land-use) classification schemes used have been developed...

  2. HYDROLOGIC MODEL UNCERTAINTY ASSOCIATED WITH SIMULATING FUTURE LAND-COVER/USE SCENARIOS: A RETROSPECTIVE ANALYSIS

    Science.gov (United States)

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  3. Effect of land-use/land-cover change on the future of rainfed agriculture in the Jenin Governorate, Palestine

    NARCIS (Netherlands)

    Thawaba, Salem; Abu-Madi, Maher; Özerol, Gül

    2017-01-01

    Land cover has been changed by humans throughout history. At the global level, population growth and socio-economic development have a significant impact on land resources. Recently, scholars added climate change as one of the major factors affecting land-cover transformation. In the West Bank of

  4. NASA Land Cover and Land Use Change (LCLUC): an interdisciplinary research program.

    Science.gov (United States)

    Justice, Chris; Gutman, Garik; Vadrevu, Krishna Prasad

    2015-01-15

    Understanding Land Cover/Land Use Change (LCLUC) in diverse regions of the world and at varied spatial scales is one of the important challenges in global change research. In this article, we provide a brief overview of the NASA LCLUC program, its focus areas, and the importance of satellite remote sensing observations in LCLUC research including future directions. The LCLUC Program was designed to be a cross-cutting theme within NASA's Earth Science program. The program aims to develop and use remote sensing technologies to improve understanding of human interactions with the environment. Since 1997, the NASA LCLUC program has supported nearly 280 research projects on diverse topics such as forest loss and carbon, urban expansion, land abandonment, wetland loss, agricultural land use change and land use change in mountain systems. The NASA LCLUC program emphasizes studies where land-use changes are rapid or where there are significant regional or global LCLUC implications. Over a period of years, the LCLUC program has contributed to large regional science programs such as Land Biosphere-Atmosphere (LBA), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the Monsoon Area Integrated Regional Study (MAIRS). The primary emphasis of the program will remain on using remote sensing datasets for LCLUC research. The program will continue to emphasize integration of physical and social sciences to address regional to global scale issues of LCLUC for the benefit of society. Copyright © 2014. Published by Elsevier Ltd.

  5. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  6. A stochastic Forest Fire Model for future land cover scenarios assessment

    Directory of Open Access Journals (Sweden)

    M. D'Andrea

    2010-10-01

    Full Text Available Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary – each cell either contains a tree or it is empty – and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM, addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  7. ANALYSING THE EFFECTS OF DIFFERENT LAND COVER TYPES ON LAND SURFACE TEMPERATURE USING SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    A. Şekertekin

    2015-12-01

    Full Text Available Monitoring Land Surface Temperature (LST via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  8. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    Science.gov (United States)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  9. Investigation of accuracy of CORINE 2006 land cover data used in watershed studies

    Directory of Open Access Journals (Sweden)

    Ayhan Ateşoğlu

    2016-01-01

    Full Text Available There have been many studies concerning the use of sustainable natural resources. The planning concerning the results of watershed-based studies is made for the future. The issue to be considered in these studies, is obtaining accurate data. The most important data of the studies in the watershed basin is obtaining land cover/use data. Land cover / land classification done by using remote sensing and GIS and monitoring the change periodically are both easy and economical. To this end, CORINE (Coordination of Information on the Environment land cover program was initiated by The European Commission (CEC. The accuracy of CORINE 2006 land cover data was evaluated using high resolution Google Earth data in two separate test areas located in the Black Sea and Central Anatolia region. Random 5000 points for each test area were assigned to classes according to the CORINE classification method using Google Earth and were compared with the CORINE 2006 data. The accuracy of first test area in Black Sea region was calculated as 51.80% the accuracy of second test area in Central Anatolia region was calculated as 55.32%. For each test area, CORINE 2006 data has not been found to be up to date and has been detected to have low accuracy.

  10. EnviroAtlas - Percent Stream Buffer Zone As Natural Land Cover for the Conterminous United States

    Science.gov (United States)

    This EnviroAtlas dataset shows the percentage of land area within a 30 meter buffer zone along the National Hydrography Dataset (NHD) high resolution stream network, and along water bodies such as lakes and ponds that are connected via flow to the streams, that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006 National Land Cover Dataset (NLCD) for each Watershed Boundary Dataset (WBD) 12-digit hydrological unit (HUC) in the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Land Cover Classification Using Integrated Spectral, Temporal, and Spatial Features Derived from Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    Yongguang Zhai

    2018-03-01

    Full Text Available Obtaining accurate and timely land cover information is an important topic in many remote sensing applications. Using satellite image time series data should achieve high-accuracy land cover classification. However, most satellite image time-series classification methods do not fully exploit the available data for mining the effective features to identify different land cover types. Therefore, a classification method that can take full advantage of the rich information provided by time-series data to improve the accuracy of land cover classification is needed. In this paper, a novel method for time-series land cover classification using spectral, temporal, and spatial information at an annual scale was introduced. Based on all the available data from time-series remote sensing images, a refined nonlinear dimensionality reduction method was used to extract the spectral and temporal features, and a modified graph segmentation method was used to extract the spatial features. The proposed classification method was applied in three study areas with land cover complexity, including Illinois, South Dakota, and Texas. All the Landsat time series data in 2014 were used, and different study areas have different amounts of invalid data. A series of comparative experiments were conducted on the annual time-series images using training data generated from Cropland Data Layer. The results demonstrated higher overall and per-class classification accuracies and kappa index values using the proposed spectral-temporal-spatial method compared to spectral-temporal classification methods. We also discuss the implications of this study and possibilities for future applications and developments of the method.

  12. Effects of Land Use/Cover Changes and Urban Forest Configuration on Urban Heat Islands in a Loess Hilly Region: Case Study Based on Yan’an City, China

    Directory of Open Access Journals (Sweden)

    Xinping Zhang

    2017-07-01

    Full Text Available In this study Yan’an City, a typical hilly valley city, was considered as the study area in order to explain the relationships between the surface urban heat island (SUHI and land use/land cover (LULC types, the landscape pattern metrics of LULC types and land surface temperature (LST and remote sensing indexes were retrieved from Landsat data during 1990–2015, and to find factors contributed to the green space cool island intensity (GSCI through field measurements of 34 green spaces. The results showed that during 1990–2015, because of local anthropogenic activities, SUHI was mainly located in lower vegetation cover areas. There was a significant suburban-urban gradient in the average LST, as well as its heterogeneity and fluctuations. Six landscape metrics comprising the fractal dimension index, percentage of landscape, aggregation index, division index, Shannon’s diversity index, and expansion intensity of the classified LST spatiotemporal changes were paralleled to LULC changes, especially for construction land, during the past 25 years. In the urban area, an index-based built-up index was the key positive factor for explaining LST increases, whereas the normalized difference vegetation index and modified normalized difference water index were crucial factors for explaining LST decreases during the study periods. In terms of the heat mitigation performance of green spaces, mixed forest was better than pure forest, and the urban forest configuration had positive effects on GSCI. The results of this study provide insights into the importance of species choice and the spatial design of green spaces for cooling the environment.

  13. Effects of Land Use/Cover Changes and Urban Forest Configuration on Urban Heat Islands in a Loess Hilly Region: Case Study Based on Yan’an City, China

    Science.gov (United States)

    Zhang, Xinping; Hao, Hongke; Zhang, Fangfang; Hu, Youning

    2017-01-01

    In this study Yan’an City, a typical hilly valley city, was considered as the study area in order to explain the relationships between the surface urban heat island (SUHI) and land use/land cover (LULC) types, the landscape pattern metrics of LULC types and land surface temperature (LST) and remote sensing indexes were retrieved from Landsat data during 1990–2015, and to find factors contributed to the green space cool island intensity (GSCI) through field measurements of 34 green spaces. The results showed that during 1990–2015, because of local anthropogenic activities, SUHI was mainly located in lower vegetation cover areas. There was a significant suburban-urban gradient in the average LST, as well as its heterogeneity and fluctuations. Six landscape metrics comprising the fractal dimension index, percentage of landscape, aggregation index, division index, Shannon’s diversity index, and expansion intensity of the classified LST spatiotemporal changes were paralleled to LULC changes, especially for construction land, during the past 25 years. In the urban area, an index-based built-up index was the key positive factor for explaining LST increases, whereas the normalized difference vegetation index and modified normalized difference water index were crucial factors for explaining LST decreases during the study periods. In terms of the heat mitigation performance of green spaces, mixed forest was better than pure forest, and the urban forest configuration had positive effects on GSCI. The results of this study provide insights into the importance of species choice and the spatial design of green spaces for cooling the environment. PMID:28933770

  14. Effects of Land Use/Cover Changes and Urban Forest Configuration on Urban Heat Islands in a Loess Hilly Region: Case Study Based on Yan'an City, China.

    Science.gov (United States)

    Zhang, Xinping; Wang, Dexiang; Hao, Hongke; Zhang, Fangfang; Hu, Youning

    2017-07-26

    In this study Yan'an City, a typical hilly valley city, was considered as the study area in order to explain the relationships between the surface urban heat island (SUHI) and land use/land cover (LULC) types, the landscape pattern metrics of LULC types and land surface temperature (LST) and remote sensing indexes were retrieved from Landsat data during 1990-2015, and to find factors contributed to the green space cool island intensity (GSCI) through field measurements of 34 green spaces. The results showed that during 1990-2015, because of local anthropogenic activities, SUHI was mainly located in lower vegetation cover areas. There was a significant suburban-urban gradient in the average LST, as well as its heterogeneity and fluctuations. Six landscape metrics comprising the fractal dimension index, percentage of landscape, aggregation index, division index, Shannon's diversity index, and expansion intensity of the classified LST spatiotemporal changes were paralleled to LULC changes, especially for construction land, during the past 25 years. In the urban area, an index-based built-up index was the key positive factor for explaining LST increases, whereas the normalized difference vegetation index and modified normalized difference water index were crucial factors for explaining LST decreases during the study periods. In terms of the heat mitigation performance of green spaces, mixed forest was better than pure forest, and the urban forest configuration had positive effects on GSCI. The results of this study provide insights into the importance of species choice and the spatial design of green spaces for cooling the environment.

  15. Integration of land use and land cover inventories for landscape management and planning in Italy.

    Science.gov (United States)

    Sallustio, Lorenzo; Munafò, Michele; Riitano, Nicola; Lasserre, Bruno; Fattorini, Lorenzo; Marchetti, Marco

    2016-01-01

    There are both semantic and technical differences between land use (LU) and land cover (LC) measurements. In cartographic approaches, these differences are often neglected, giving rise to a hybrid classification. The aim of this paper is to provide a better understanding and characterization of the two classification schemes using a comparison that allows maximization of the informative power of both. The analysis was carried out in the Molise region (Central Italy) using sample information from the Italian Land Use Inventory (IUTI). The sampling points were classified with a visual interpretation of aerial photographs for both LU and LC in order to estimate surfaces and assess the changes that occurred between 2000 and 2012. The results underscore the polarization of land use and land cover changes resulting from the following: (a) recolonization of natural surfaces, (b) strong dynamisms between the LC classes in the natural and semi-natural domain and (c) urban sprawl on the lower hills and plains. Most of the observed transitions are attributable to decreases in croplands, natural grasslands and pastures, owing to agricultural abandonment. The results demonstrate that a comparison between LU and LC estimates and their changes provides an understanding of the causes of misalignment between the two criteria. Such information may be useful for planning policies in both natural and semi-natural contexts as well as in urban areas.

  16. An assessment of support vector machines for land cover classification

    Science.gov (United States)

    Huang, C.; Davis, L.S.; Townshend, J.R.G.

    2002-01-01

    The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.

  17. Ecology of Land Cover Change in Glaciated Tropical Mountains

    Directory of Open Access Journals (Sweden)

    Kenneth R. Young

    2014-12-01

    Full Text Available Tropical mountains contain unique biological diversity, and are subject to many consequences of global climate change, exasperated by concurrent socioeconomic shifts. Glaciers are in a negative mass balance, exposing substrates to primary succession and altering downslope wetlands and streams. A review of recent trends and future predictions suggests a likely reduction in areas of open habitat for species of high mountains due to greater woody plant cover, accompanied by land use shifts by farmers and pastoralists along the environmental gradients of tropical mountains. Research is needed on the biodiversity and ecosystem consequences of successional change, including the direct effects of retreating glaciers and the indirect consequences of combined social and ecological drivers in lower elevations. Areas in the high mountains that are protected for nature conservation or managed collectively by local communities represent opportunities for integrated research and development approaches that may provide ecological spaces for future species range shifts.

  18. A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover

    Directory of Open Access Journals (Sweden)

    Akpona Okujeni

    2014-07-01

    Full Text Available Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR, kernel ridge regression (KRR, artificial neural networks (NN, random forest regression (RFR and partial least squares regression (PLSR. Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, grass- and tree-covered areas. SVR and KRR models proved to be stable with regard to the spatial and spectral differences between both images and effectively utilized the higher complexity of the synthetic training mixtures for improving estimates for coarser resolution data. Observed deficiencies mainly relate to known problems arising from spectral similarities or shadowing. The remaining regressors either revealed erratic (NN or limited (RFR and PLSR performances when comprehensively mapping urban land cover. Our findings suggest that the combination of kernel-based regression methods, such as SVR and KRR, with synthetically mixed training data is well suited for quantifying urban land cover from imaging spectrometer data at multiple scales.

  19. Urban land use and land cover change analysis and modeling a case study area Malatya, Turkey

    OpenAIRE

    Baysal, Gülendam

    2013-01-01

    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. This research was conducted to analyze the land use and land cover changes and to model the changes for the case study area Malatya, Turkey. The first step of the study was acquisition of multi temporal data in order to detect the changes over the time. For this purpose satellite images (Landsat 1990-2000-2010) have been used. In order to acquire data from satel...

  20. Study Of Land Cover And Condition Catchment Area Groundwater Aquifer In Tanah Merah North Samarinda District Using Resistivity Geoelectric Sounding

    Directory of Open Access Journals (Sweden)

    Djayus

    2017-06-01

    Full Text Available Land cover is a biophysical cover that maintains land conditions in water balance. The purpose of this research is to know the condition of land cover water catchment groundwater aquifer and correlation. This research begins by collecting data on land cover soil type rainfall slopes and groundwaterinformation. Field activities include observation and data collection of land cover geological conditions community wells and geoelectric sounding. Land cover data is classified according to circumstances and conditions. Geoelectric sounding data was analyzed with IP2WIN software interpretation of lithologic variation of rocks and depth based on resistivity value. Plot the position of each lithology sounding with Surfer software obtained kontour rock field boundary and 3D model of the aquifer position.The results showed that the land cover consisted of vegetated areas forests 27221 Ha 4032 and agricultural land 18336 Ha 2716 non-vegetation area 9880 Ha 1464 constructed land Open land 116.33 Ha 17.23 and water body 4.35 Ha 0.64 The condition of land cover in this water catchment area has decreased 6838 Ha 1014 from the previous condition 34059 Ha 5046 to 27221 Ha 4032. Referring to Permenhut RI No. 32 in 2009 total score catchment area 33 including the somewhat critical condition. Groundwater aquifers based on 3D sounding geolistrik modeling consist of a free aquifer for shallow groundwater depth of water level between 2-30 m with thickness 2-65 m and a distorted aquifer for groundwaterin depth of water between 75-150 m With thickness 75-125 m depth of community well 10-45 m. The transfer of land into open pit mines resulted in the destruction of the balance and water system the decreasing decreasing the discharge of the well water of the community drill the failure and the lack of new water discharge of the new wells the loss of groundwaterin several dug wells landslides and mud floods on the farmland

  1. Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal

    Directory of Open Access Journals (Sweden)

    Yikalo H. Araya

    2010-06-01

    Full Text Available The expansion of cities entails the abandonment of forest and agricultural lands, and these lands’ conversion into urban areas, which results in substantial impacts on ecosystems. Monitoring these changes and planning urban development can be successfully achieved using multitemporal remotely sensed data, spatial metrics, and modeling. In this paper, urban land use change analysis and modeling was carried out for the Concelhos of Setúbal and Sesimbra in Portugal. An existing land cover map for the year 1990, together with two derived land cover maps from multispectral satellite images for the years 2000 and 2006, were utilized using an object-oriented classification approach. Classification accuracy assessment revealed satisfactory results that fulfilled minimum standard accuracy levels. Urban land use dynamics, in terms of both patterns and quantities, were studied using selected landscape metrics and the Shannon Entropy index. Results show that urban areas increased by 91.11% between 1990 and 2006. In contrast, the change was only 6.34% between 2000 and 2006. The entropy value was 0.73 for both municipalities in 1990, indicating a high rate of urban sprawl in the area. In 2006, this value, for both Sesimbra and Setúbal, reached almost 0.90. This is demonstrative of a tendency toward intensive urban sprawl. Urban land use change for the year 2020 was modeled using a Cellular Automata based approach. The predictive power of the model was successfully validated using Kappa variations. Projected land cover changes show a growing tendency in urban land use, which might threaten areas that are currently reserved for natural parks and agricultural lands.

  2. Reconstructing Historical Land Cover Type and Complexity by Synergistic Use of Landsat Multispectral Scanner and CORONA

    Directory of Open Access Journals (Sweden)

    Amir Reza Shahtahmassebi

    2017-07-01

    Full Text Available Survey data describing land cover information such as type and diversity over several decades are scarce. Therefore, our capacity to reconstruct historical land cover using field data and archived remotely sensed data over large areas and long periods of time is somewhat limited. This study explores the relationship between CORONA texture—a surrogate for actual land cover type and complexity—with spectral vegetation indices and texture variables derived from Landsat MSS under the Spectral Variation Hypothesis (SVH such as to reconstruct historical continuous land cover type and complexity. Image texture of CORONA was calculated using a mean occurrence measure while image textures of Landsat MSS were calculated by occurrence and co-occurrence measures. The relationship between these variables was evaluated using correlation and regression techniques. The reconstruction procedure was undertaken through regression kriging. The results showed that, as expected, texture based on the visible bands and corresponding indices indicated larger correlation with CORONA texture, a surrogate of land cover (correlation >0.65. In terms of prediction, the combination of the first-order mean of band green, second-order measure of tasseled cap brightness, second-order mean of Normalized Visible Index (NVI and second-order entropy of NIR yielded the best model with respect to Akaike’s Information Criterion (AIC, r-square, and variance inflation factors (VIF. The regression model was then used in regression kriging to map historical continuous land cover. The resultant maps indicated the type and degree of complexity in land cover. Moreover, the proposed methodology minimized the impacts of topographic shadow in the region. The performance of this approach was compared with two conventional classification methods: hard classifiers and continuous classifiers. In contrast to conventional techniques, the technique could clearly quantify land cover complexity and

  3. LBA-ECO LC-01 Landsat TM Land Use/Land Cover, Northern Ecuadorian Amazon: 1986-1999

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains Landsat TM imagery for the years 1986, 1989, 1996, and 1999, that have been classified into four land use/land cover (LULC) classes:...

  4. LBA-ECO LC-01 Landsat TM Land Use/Land Cover, Northern Ecuadorian Amazon: 1986-1999

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Landsat TM imagery for the years 1986, 1989, 1996, and 1999, that have been classified into four land use/land cover (LULC) classes: Forest,...

  5. EnviroAtlas - Percent Land Cover with Potentially Restorable Wetlands on Agricultural Land per 12-Digit HUC - Contiguous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the percent land cover with potentially restorable wetlands on agricultural land for each 12-digit Hydrologic Unit (HUC) watershed in...

  6. Quality Evaluation of Land-Cover Classification Using Convolutional Neural Network

    Science.gov (United States)

    Dang, Y.; Zhang, J.; Zhao, Y.; Luo, F.; Ma, W.; Yu, F.

    2018-04-01

    Land-cover classification is one of the most important products of earth observation, which focuses mainly on profiling the physical characters of the land surface with temporal and distribution attributes and contains the information of both natural and man-made coverage elements, such as vegetation, soil, glaciers, rivers, lakes, marsh wetlands and various man-made structures. In recent years, the amount of high-resolution remote sensing data has increased sharply. Accordingly, the volume of land-cover classification products increases, as well as the need to evaluate such frequently updated products that is a big challenge. Conventionally, the automatic quality evaluation of land-cover classification is made through pixel-based classifying algorithms, which lead to a much trickier task and consequently hard to keep peace with the required updating frequency. In this paper, we propose a novel quality evaluation approach for evaluating the land-cover classification by a scene classification method Convolutional Neural Network (CNN) model. By learning from remote sensing data, those randomly generated kernels that serve as filter matrixes evolved to some operators that has similar functions to man-crafted operators, like Sobel operator or Canny operator, and there are other kernels learned by the CNN model that are much more complex and can't be understood as existing filters. The method using CNN approach as the core algorithm serves quality-evaluation tasks well since it calculates a bunch of outputs which directly represent the image's membership grade to certain classes. An automatic quality evaluation approach for the land-cover DLG-DOM coupling data (DLG for Digital Line Graphic, DOM for Digital Orthophoto Map) will be introduced in this paper. The CNN model as an robustness method for image evaluation, then brought out the idea of an automatic quality evaluation approach for land-cover classification. Based on this experiment, new ideas of quality evaluation

  7. A reconstruction of global agricultural areas and land cover for the last millennium

    Science.gov (United States)

    Pongratz, J.; Reick, C.; Raddatz, T.; Claussen, M.

    2008-09-01

    Humans have substantially modified the Earth's land cover, especially by transforming natural ecosystems to agricultural areas. In preindustrial times, the expansion of agriculture was probably the dominant process by which humankind altered the Earth system, but little is known about its extent, timing, and spatial pattern. This study presents an approach to reconstruct spatially explicit changes in global agricultural areas (cropland and pasture) and the resulting changes in land cover over the last millennium. The reconstruction is based on published maps of agricultural areas for the last three centuries. For earlier times, a country-based method is developed that uses population data as a proxy for agricultural activity. With this approach, the extent of cropland and pasture is consistently estimated since AD 800. The resulting reconstruction of agricultural areas is combined with a map of potential vegetation to estimate the resulting historical changes in land cover. Uncertainties associated with this approach, in particular owing to technological progress in agriculture and uncertainties in population estimates, are quantified. About 5 million km2 of natural vegetation are found to be transformed to agriculture between AD 800 and 1700, slightly more to cropland (mainly at the expense of forested area) than to pasture (mainly at the expense of natural grasslands). Historical events such as the Black Death in Europe led to considerable dynamics in land cover change on a regional scale. The reconstruction can be used with global climate and ecosystem models to assess the impact of human activities on the Earth system in preindustrial times.

  8. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992-2015)

    Science.gov (United States)

    Li, Wei; MacBean, Natasha; Ciais, Philippe; Defourny, Pierre; Lamarche, Céline; Bontemps, Sophie; Houghton, Richard A.; Peng, Shushi

    2018-01-01

    Land-use and land-cover change (LULCC) impacts local energy and water balance and contributes on global scale to a net carbon emission to the atmosphere. The newly released annual ESA CCI (climate change initiative) land cover maps provide continuous land cover changes at 300 m resolution from 1992 to 2015, and can be used in land surface models (LSMs) to simulate LULCC effects on carbon stocks and on surface energy budgets. Here we investigate the absolute areas and gross and net changes in different plant functional types (PFTs) derived from ESA CCI products. The results are compared with other datasets. Global areas of forest, cropland and grassland PFTs from ESA are 30.4, 19.3 and 35.7 million km2 in the year 2000. The global forest area is lower than that from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) or Houghton and Nassikas (2017) while cropland area is higher than LUH2v2h (Hurtt et al., 2011), in which cropland area is from HYDE 3.2 (Klein Goldewijk et al., 2016). Gross forest loss and gain during 1992-2015 are 1.5 and 0.9 million km2 respectively, resulting in a net forest loss of 0.6 million km2, mainly occurring in South and Central America. The magnitudes of gross changes in forest, cropland and grassland PFTs in the ESA CCI are smaller than those in other datasets. The magnitude of global net cropland gain for the whole period is consistent with HYDE 3.2 (Klein Goldewijk et al., 2016), but most of the increases happened before 2004 in ESA and after 2007 in HYDE 3.2. Brazil, Bolivia and Indonesia are the countries with the largest net forest loss from 1992 to 2015, and the decreased areas are generally consistent with those from Hansen et al. (2013) based on Landsat 30 m resolution images. Despite discrepancies compared to other datasets, and uncertainties in converting into PFTs, the new ESA CCI products provide the first detailed long-term time series of land-cover change and can be implemented in LSMs to characterize recent carbon dynamics

  9. Conversion of traditional agricultural land to built-up areas. Land use/cover changes in the municipality of Valencia (1956-2012

    Directory of Open Access Journals (Sweden)

    Antonio Valera Lozano

    2017-01-01

    Full Text Available The aim of this study is to understand the land use-cover dynamics from the mid- 1950s to 2012 in the municipality of Valencia, eastern Spain. The study area is a very interesting example of the many land use and land cover changes in the landscape of Mediterranean alluvial plains. The analysis was based on photo interpretation of aerial photographs (1956, 1984, 2006 and 2012 and GIS based methodology. At a detailed scale (1:10,000, results show that there has been a highly dynamic process produced by the extent of land developed as urban area. In 1956 11,112 hectares were occupied by agricultural land and natural areas. During fifty five years, the sealed surface was 2,396 hectares. In 2012 the built-up extent was around 33% of the studied area. In the municipality of Valencia much of the land converted to urban use was once highly productive agricultural land.

  10. Modeling Historical Land Cover and Land Use: A Review fromContemporary Modeling

    Directory of Open Access Journals (Sweden)

    Laura Alfonsina Chang-Martínez

    2015-09-01

    Full Text Available Spatially-explicit land cover land use change (LCLUC models are becoming increasingly useful tools for historians and archaeologists. Such kinds of models have been developed and used by geographers, ecologists and land managers over the last few decades to carry out prospective scenarios. In this paper, we review historical models to compare them with prospective models, with the assumption that the ample experience gained in the development of models of prospective simulation can benefit the development of models having as their objective the simulation of changes that happened in the past. The review is divided into three sections: in the first section, we explain the functioning of contemporary LCLUC models; in the second section, we analyze historical LCLUC models; in the third section, we compare the former two types of models, and finally, we discuss the contributions to historical LCLUC models of contemporary LCLUC models.

  11. Integrating Crowdsourced Data with a Land Cover Product: A Bayesian Data Fusion Approach

    Directory of Open Access Journals (Sweden)

    Sarah Gengler

    2016-06-01

    Full Text Available For many environmental applications, an accurate spatial mapping of land cover is a major concern. Currently, land cover products derived from satellite data are expected to offer a fast and inexpensive way of mapping large areas. However, the quality of these products may also largely depend on the area under study. As a result, it is common that various products disagree with each other, and the assessment of their respective quality still relies on ground validation datasets. Recently, crowdsourced data have been suggested as an alternate source of information that might help overcome this problem. However, crowdsourced data still remain largely discarded in scientific studies due to their inherent poor quality assurance. The aim of this paper is to present an efficient methodology that allows the user to code information brought by crowdsourced data even if no prior quality estimation is at hand and possibly to fuse this information with existing land cover products in order to improve their accuracy. It is first suggested that information brought by volunteers can be coded as a set of inequality constraints about the probabilities of the various land use classes at the visited places. This in turn allows estimating optimal probabilities based on a maximum entropy principle and to proceed afterwards with a spatial interpolation of these volunteers’ information. Finally, a Bayesian data fusion approach can be used for fusing multiple volunteers’ contributions with a remotely-sensed land cover product. This methodology is illustrated in this paper by focusing on the mapping of croplands in Ethiopia, where the aim is to improve the mapping of cropland as coming out from a land cover product with mitigated performances. It is shown how crowdsourced information can seriously improve the quality of the final product. The corresponding results also suggest that a prior assessing of remotely-sensed data quality can seriously improve the benefit

  12. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Kerry A Brown

    Full Text Available Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  13. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands.

    Science.gov (United States)

    Cohen, Justin M; Ernst, Kacey C; Lindblade, Kim A; Vulule, John M; John, Chandy C; Wilson, Mark L

    2010-11-16

    Identification of high-risk malaria foci can help enhance surveillance or control activities in regions where they are most needed. Associations between malaria risk and land-use/land-cover are well-recognized, but these environmental characteristics are closely interrelated with the land's topography (e.g., hills, valleys, elevation), which also influences malaria risk strongly. Parsing the individual contributions of land-cover/land-use variables to malaria risk requires examining these associations in the context of their topographic landscape. This study examined whether environmental factors like land-cover, land-use, and urban density improved malaria risk prediction based solely on the topographically-determined context, as measured by the topographic wetness index. The topographic wetness index, an estimate of predicted water accumulation in a defined area, was generated from a digital terrain model of the landscape surrounding households in two neighbouring western Kenyan highland communities. Variables determined to best encompass the variance in this topographic wetness surface were calculated at a household level. Land-cover/land-use information was extracted from a high-resolution satellite image using an object-based classification method. Topographic and land-cover variables were used individually and in combination to predict household-level malaria in the communities through an iterative split-sample model fitting and testing procedure. Models with only topographic variables were compared to those with additional predictive factors related to land-cover/land-use to investigate whether these environmental factors improved prediction of malaria based on the shape of the land alone. Variables related to topographic wetness proved most useful in predicting the households of individuals contracting malaria in this region of rugged terrain. Other variables related to human modification of the environment also demonstrated clear associations with

  14. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Vulule John M

    2010-11-01

    Full Text Available Abstract Background Identification of high-risk malaria foci can help enhance surveillance or control activities in regions where they are most needed. Associations between malaria risk and land-use/land-cover are well-recognized, but these environmental characteristics are closely interrelated with the land's topography (e.g., hills, valleys, elevation, which also influences malaria risk strongly. Parsing the individual contributions of land-cover/land-use variables to malaria risk requires examining these associations in the context of their topographic landscape. This study examined whether environmental factors like land-cover, land-use, and urban density improved malaria risk prediction based solely on the topographically-determined context, as measured by the topographic wetness index. Methods The topographic wetness index, an estimate of predicted water accumulation in a defined area, was generated from a digital terrain model of the landscape surrounding households in two neighbouring western Kenyan highland communities. Variables determined to best encompass the variance in this topographic wetness surface were calculated at a household level. Land-cover/land-use information was extracted from a high-resolution satellite image using an object-based classification method. Topographic and land-cover variables were used individually and in combination to predict household-level malaria in the communities through an iterative split-sample model fitting and testing procedure. Models with only topographic variables were compared to those with additional predictive factors related to land-cover/land-use to investigate whether these environmental factors improved prediction of malaria based on the shape of the land alone. Results Variables related to topographic wetness proved most useful in predicting the households of individuals contracting malaria in this region of rugged terrain. Other variables related to human modification of the

  15. Effect of land use land cover change on soil erosion potential in an agricultural watershed.

    Science.gov (United States)

    Sharma, Arabinda; Tiwari, Kamlesh N; Bhadoria, P B S

    2011-02-01

    Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha(-1) year(-1) in the year 1989 to 13.21 t ha(-1) year(-1) in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.

  16. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Annett Bartsch

    2016-11-01

    Full Text Available Most applications of land cover maps that have been derived from satellite data over the Arctic require higher thematic detail than available in current global maps. A range of application studies has been reviewed, including up-scaling of carbon fluxes and pools, permafrost feature mapping and transition monitoring. Early land cover mapping studies were driven by the demand to characterize wildlife habitats. Later, in the 1990s, up-scaling of in situ measurements became central to the discipline of land cover mapping on local to regional scales at several sites across the Arctic. This includes the Kuparuk basin in Alaska, the Usa basin and the Lena Delta in Russia. All of these multi-purpose land cover maps have been derived from Landsat data. High resolution maps (from optical satellite data serve frequently as input for the characterization of periglacial features and also flux tower footprints in recent studies. The most used map to address circumpolar issues is the CAVM (Circum Arctic Vegetation Map based on AVHRR (1 km and has been manually derived. It provides the required thematic detail for many applications, but is confined to areas north of the treeline, and it is limited in spatial detail. A higher spatial resolution circumpolar land cover map with sufficient thematic content would be beneficial for a range of applications. Such a land cover classification should be compatible with existing global maps and applicable for multiple purposes. The thematic content of existing global maps has been assessed by comparison to the CAVM and regional maps. None of the maps provides the required thematic detail. Spatial resolution has been compared to used classes for local to regional applications. The required thematic detail increases with spatial resolution since coarser datasets are usually applied over larger areas covering more relevant landscape units. This is especially of concern when the entire Arctic is addressed. A spatial

  17. Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Ruci Wang

    2018-06-01

    Full Text Available Simulating future land use/cover changes is of great importance for urban planners and decision-makers, especially in metropolitan areas, to maintain a sustainable environment. This study examines the changes in land use/cover in the Tokyo metropolitan area (TMA from 2007 to 2017 as a first step in using supervised classification. Second, based on the map results, we predicted the expected patterns of change in 2027 and 2037 by employing a hybrid model composed of cellular automata and the Markov model. The next step was to decide the model inputs consisting of the modeling variables affecting the distribution of land use/cover in the study area, for instance distance to central business district (CBD and distance to railways, in addition to the classified maps of 2007 and 2017. Finally, we considered three scenarios for simulating land use/cover changes: spontaneous, sub-region development, and green space improvement. Simulation results show varied patterns of change according to the different scenarios. The sub-region development scenario is the most promising because it balances between urban areas, resources, and green spaces. This study provides significant insight for planners about change trends in the TMA and future challenges that might be encountered to maintain a sustainable region.

  18. Land-Cover Change Analysis and Simulation in Conakry (Guinea, Using Hybrid Cellular-Automata and Markov Model

    Directory of Open Access Journals (Sweden)

    Arafan Traore

    2018-04-01

    Full Text Available In this study, land-cover change in the capital Conakry of Guinea was simulated using the integrated Cellular Automata and Markov model (CA-Markov in the Geographic Information System (GIS and Remote Sensing (RS. Historical land-cover change information was derived from 1986, 2000 and 2016 Landsat data. Using the land-cover change maps of 1986 and 2000, the land-cover change map for 2016 was simulated based on the Markov model in IDRISSI software (Clark University, Worcester, MA, USA. The simulated result was compared with the 2016 land-cover map for validation using the Relative Operating Characteristic (ROC. The ROC result showed a very strong agreement between the two maps. From this result, the land-cover change map for 2025 was simulated using CA-Markov model. The result has indicated that the proportion of the urban area was 49% in 2016, and it is expected to increase to 52% by 2025, while vegetation will decrease from 35% in 2016 to 32% in 2025. This study suggests that the rapid land-cover change has been led by both rapid population growth and extreme poverty in rural areas, which will result in migration into Conakry. The results of this study will provide bases for assessing the sustainability and the management of the urban area and for taking actions to mitigate the degradation of the urban environment.

  19. TESTING OF LAND COVER CLASSIFICATION FROM MULTISPECTRAL AIRBORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    K. Bakuła

    2016-06-01

    Full Text Available Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images, spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and

  20. Land Use/Land Cover Changes and Its Response to Hydrological Characteristics in the Upper Reaches of Minjiang River

    Science.gov (United States)

    Ma, Kai; Huang, Xiaorong; Guo, Biying; Wang, Yanqiu; Gao, Linyun

    2018-06-01

    Land use changes alter the hydrological characteristics of the land surface, and have significant impacts on hydrological cycle and water balance, the analysis of complex effects on natural systems has become one of the main concerns. In this study, we generated the land use conversion matrixes using ArcGIS and selected several landscape indexes (contagion index, CONTAG, Shannon's diversity index, SHDI, etc.) to evaluate the impact of land use/cover changes on hydrological process in the upper reaches of Minjiang River. We also used a statistical regression model which was established based on hydrology and precipitation data during the period of 1959-2008 to simulate the impacts of different land use conditions on rainfall and runoff in different periods. Our results showed that the simulated annual mean flow from 1985 to 1995 and 1995 to 2008 are 9.19 and 1.04 m3 s-1 lower than the measured values, respectively, which implied that the ecological protection measures should be strengthened in the study area. Our study could provide a scientific basis for water resource management and proper land use planning of upper reaches of Minjiang River.

  1. Land use/land cover mapping using multi-scale texture processing of high resolution data

    Science.gov (United States)

    Wong, S. N.; Sarker, M. L. R.

    2014-02-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road.

  2. Land use/land cover mapping using multi-scale texture processing of high resolution data

    International Nuclear Information System (INIS)

    Wong, S N; Sarker, M L R

    2014-01-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road

  3. Land Use/Cover Changes between 1966 and 1996 in Chirokella ...

    African Journals Online (AJOL)

    Abstract: Keywords: Land Cover; Dynamic; Expansion; Exposed Land; ReductionTwo periods of panchromatic aerial photographs taken in 1966 and 1996 were analyzed to determine spatial and temporal land cover changes occurring in Chirokella micro-watershed, Southeastern Ethiopia. Theresults of the analysis were ...

  4. Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty

    Science.gov (United States)

    Jan Seibert; Jeffrey J. McDonnell

    2010-01-01

    The effect of land-use or land-cover change on stream runoff dynamics is not fully understood. In many parts of the world, forest management is the major land-cover change agent. While the paired catchment approach has been the primary methodology used to quantify such effects, it is only possible for small headwater catchments where there is uniformity in...

  5. Measuring land-use and land-cover change using the U.S. department of agriculture's cropland data layer: Cautions and recommendations

    Science.gov (United States)

    Lark, Tyler J.; Mueller, Richard M.; Johnson, David M.; Gibbs, Holly K.

    2017-10-01

    Monitoring agricultural land is important for understanding and managing food production, environmental conservation efforts, and climate change. The United States Department of Agriculture's Cropland Data Layer (CDL), an annual satellite imagery-derived land cover map, has been increasingly used for this application since complete coverage of the conterminous United States became available in 2008. However, the CDL is designed and produced with the intent of mapping annual land cover rather than tracking changes over time, and as a result certain precautions are needed in multi-year change analyses to minimize error and misapplication. We highlight scenarios that require special considerations, suggest solutions to key challenges, and propose a set of recommended good practices and general guidelines for CDL-based land change estimation. We also characterize a problematic issue of crop area underestimation bias within the CDL that needs to be accounted for and corrected when calculating changes to crop and cropland areas. When used appropriately and in conjunction with related information, the CDL is a valuable and effective tool for detecting diverse trends in agriculture. By explicitly discussing the methods and techniques for post-classification measurement of land-cover and land-use change using the CDL, we aim to further stimulate the discourse and continued development of suitable methodologies. Recommendations generated here are intended specifically for the CDL but may be broadly applicable to additional remotely-sensed land cover datasets including the National Land Cover Database (NLCD), Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover products, and other regional, national, and global land cover classification maps.

  6. Management Effectiveness and Land Cover Change in Dynamic Cultural Landscapes - Assessing a Central European Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    Bettina Ohnesorge

    2013-12-01

    Full Text Available Protected areas are a central pillar of efforts to safeguard biodiversity and ecosystem services, but their contribution to the conservation and management of European cultural landscapes that have complex spatial-temporal dynamics is unclear. The conservation strategy of biosphere reserves aims at integrating biodiversity and ecosystem service conservation with economic development by designating zones of differing protection and use intensities. It is applied worldwide to protect and manage valuable cultural landscapes. Using the example of a German biosphere reserve, we developed a framework to assess the effectiveness of Central European reserves in meeting their land cover related management goals. Based on digital biotope maps, we defined and assessed land cover change processes that were relevant to the reserve management's goals over a period of 13 years. We then compared these changes in the reserve's core, buffer, and transition zones and in a surrounding reference area by means of a geographical information system. (Un-desirable key processes related to management aims were defined and compared for the various zones. We found that - despite an overall land cover persistence of approximately 85% across all zones - differences in land cover changes can be more prominent across zones inside the reserve than between the areas inside and outside of it. The reserve as a whole performed better than the surrounding reference area when using land cover related management goals as a benchmark. However, some highly desirable targets, such as the conversion of coniferous plantations into seminatural forests or the gain of valuable biotope types, affected larger areas in the nonprotected reference area than in the transition zone.

  7. Land-use and Land-cover Change from 1974 to 2008 around Mobile Bay

    Science.gov (United States)

    Ellis, Jean; Spruce, Joseph; Smoot, James; Hilbert, Kent; Swann, Roberta

    2008-01-01

    This project is a Gulf of Mexico Application Pilot in which NASA Stennis Space Center (SSC) is working within a regional collaboration network of the Gulf of Mexico Alliance. NASA researchers, with support from the NASA SSC Applied Science Program Steering Committee, employed multi-temporal Landsat data to assess land-use and land-cover (LULC) changes in the coastal counties of Mobile and Baldwin, AL, between 1974 and 2008. A multi-decadal time-series, coastal LULC product unique to NASA SSC was produced. The geographic extent and nature of change was quantified for the open water, barren, upland herbaceous, non-woody wetland, upland forest, woody wetland, and urban landscapes. The National Oceanic and Atmospheric Administration (NOAA) National Coastal Development Data Center (NCDDC) will assist with the transition of the final product to the operational end user, which primarily is the Mobile Bay National Estuary Program (MBNEP). We found substantial LULC change over the 34-year study period, much more than is evident when the change occurring in the last years. Between 1974 and 2008, the upland forest landscape lost almost 6% of the total acreage, while urban land cover increased by slightly more than 3%. With exception to open water, upland forest is the dominant landscape, accounting for about 25-30% of the total area.

  8. Land cover change or land use intensification: simulating land system change with a global-scale land change model

    NARCIS (Netherlands)

    van Asselen, S.; Verburg, P.H.

    2013-01-01

    Land-use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land-use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land

  9. LACO-Wiki: A land cover validation tool and a new, innovative teaching resource for remote sensing and the geosciences

    Science.gov (United States)

    See, Linda; Perger, Christoph; Dresel, Christopher; Hofer, Martin; Weichselbaum, Juergen; Mondel, Thomas; Steffen, Fritz

    2016-04-01

    The validation of land cover products is an important step in the workflow of generating a land cover map from remotely-sensed imagery. Many students of remote sensing will be given exercises on classifying a land cover map followed by the validation process. Many algorithms exist for classification, embedded within proprietary image processing software or increasingly as open source tools. However, there is little standardization for land cover validation, nor a set of open tools available for implementing this process. The LACO-Wiki tool was developed as a way of filling this gap, bringing together standardized land cover validation methods and workflows into a single portal. This includes the storage and management of land cover maps and validation data; step-by-step instructions to guide users through the validation process; sound sampling designs; an easy-to-use environment for validation sample interpretation; and the generation of accuracy reports based on the validation process. The tool was developed for a range of users including producers of land cover maps, researchers, teachers and students. The use of such a tool could be embedded within the curriculum of remote sensing courses at a university level but is simple enough for use by students aged 13-18. A beta version of the tool is available for testing at: http://www.laco-wiki.net.

  10. Land Cover as a Framework For Assessing the Risk of Water Pollution

    Science.gov (United States)

    James D. Wickham; Kurt H. Riitters; Robert V. O' Neill; Kenneth H. Reckhow; Timothy G. Wade; K. Bruce Jones

    2000-01-01

    A survey of numerous field studies shows that nitrogen and phosphorous export coefficients are significantly different across forest, agriculture, and urban land-cover types. We used simulations to estimate the land-cover composition at which there was a significant risk of nutrient loads representative of watersheds without forest cover. The results suggest that at...

  11. Livelihood profiling and sensitivity of livelihood strategies to land cover dynamics and agricultural variability

    Science.gov (United States)

    Berchoux, Tristan; Hutton, Craig; Watmough, Gary; Amoako Johnson, Fiifi; Atkinson, Peter

    2017-04-01

    With population increase and the urbanisation of rural areas, land scarcity is one of the biggest challenges now faced by communities in agrarian societies. At the household level, loss of land can be due to physical processes such as erosion, to social constraints such as inheritance, or to financial constraints such as loan reimbursement or the need of cash. For rural households, whose livelihoods are mainly based on agriculture, a decrease in the area of land cultivated can have significant consequences on their livelihood strategies, thus on their livelihood outcomes. However, it is still unclear how changes in cultivated area and agricultural productivity influence households' livelihood systems, including community capitals and households' livelihood strategies. This study aims to answer this gap by combining together earth observation from space, national census and participatory qualitative data into a community-wise analysis of the relationships between land cover dynamics, variability in agricultural production and livelihood activities. Its overarching aim is to investigate how land cover dynamics relates to changes in livelihood strategies and livelihood capitals. The study demonstrates that a change in land cover influences livelihood activities differently depending on the community capitals that households have access to. One significant aspect of integrating land dynamics with livelihood activities is its capacity to provide insights on the relationships between climate, agriculture, livelihood dynamics and rural development. More broadly, it gives policymakers new methods to characterise livelihood dynamics, thus to monitor some of the key Sustainable Development Goals: food security (SDG2), employment dynamics (SDG8), inequalities (SDG10) and sustainability of communities (SDG11).

  12. The impact of anthropogenic land use and land cover change on regional climate extremes.

    Science.gov (United States)

    Findell, Kirsten L; Berg, Alexis; Gentine, Pierre; Krasting, John P; Lintner, Benjamin R; Malyshev, Sergey; Santanello, Joseph A; Shevliakova, Elena

    2017-10-20

    Land surface processes modulate the severity of heat waves, droughts, and other extreme events. However, models show contrasting effects of land surface changes on extreme temperatures. Here, we use an earth system model from the Geophysical Fluid Dynamics Laboratory to investigate regional impacts of land use and land cover change on combined extremes of temperature and humidity, namely aridity and moist enthalpy, quantities central to human physiological experience of near-surface climate. The model's near-surface temperature response to deforestation is consistent with recent observations, and conversion of mid-latitude natural forests to cropland and pastures is accompanied by an increase in the occurrence of hot-dry summers from once-in-a-decade to every 2-3 years. In the tropics, long time-scale oceanic variability precludes determination of how much of a small, but significant, increase in moist enthalpy throughout the year stems from the model's novel representation of historical patterns of wood harvesting, shifting cultivation, and regrowth of secondary vegetation and how much is forced by internal variability within the tropical oceans.

  13. Recent land cover and use changes in Miombo woodlands of ...

    African Journals Online (AJOL)

    Forest and wood land ecosystems in Tanzania occupy more than 45% of the land area, more than two thirds of which made up of the Miombo woodland. The main form of land use in the Miombo region has long been shifting and small-scale sedentary cultivation. The lack of infrastructure and prevalence of deadly diseases ...

  14. Anthropogenical Drivers on Land Use/Cover Change and their ...

    African Journals Online (AJOL)

    The study recommended to the government to facilitate participatory land use planning at village level, agro-forestry, provision of extensions services, and modern family planning services to check overpopulation for sustainable land use and improvement of rural livelihoods in and beyond the study area. Keywords: Land ...

  15. Land use and land cover change in the Western Cape Province: quantification of changes & understanding of driving factors

    CSIR Research Space (South Africa)

    Tizora, P

    2016-07-01

    Full Text Available changes in land use and land cover (LULC) and incited issues such as urban sprawl, marginalization of the poor, limited public access to resources, land degradation and climate change. This paper seeks to understand the most significant drivers of LULC...

  16. A multi-temporal analysis approach for land cover mapping in support of nuclear incident response

    Science.gov (United States)

    Sah, Shagan; van Aardt, Jan A. N.; McKeown, Donald M.; Messinger, David W.

    2012-06-01

    Remote sensing can be used to rapidly generate land use maps for assisting emergency response personnel with resource deployment decisions and impact assessments. In this study we focus on constructing accurate land cover maps to map the impacted area in the case of a nuclear material release. The proposed methodology involves integration of results from two different approaches to increase classification accuracy. The data used included RapidEye scenes over Nine Mile Point Nuclear Power Station (Oswego, NY). The first step was building a coarse-scale land cover map from freely available, high temporal resolution, MODIS data using a time-series approach. In the case of a nuclear accident, high spatial resolution commercial satellites such as RapidEye or IKONOS can acquire images of the affected area. Land use maps from the two image sources were integrated using a probability-based approach. Classification results were obtained for four land classes - forest, urban, water and vegetation - using Euclidean and Mahalanobis distances as metrics. Despite the coarse resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. The classifications were augmented using this fused approach, with few supplementary advantages such as correction for cloud cover and independence from time of year. We concluded that this method would generate highly accurate land maps, using coarse spatial resolution time series satellite imagery and a single date, high spatial resolution, multi-spectral image.

  17. EnviroAtlas - Green Bay, WI - Meter-Scale Urban Land Cover (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Green Bay, WI Meter-Scale Urban Land Cover (MULC) dataset comprises 936 km2 around the city of Green Bay, surrounding towns, tribal lands and rural areas in...

  18. PRESENTATION ON--LAND-COVER CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDVI DATA

    Science.gov (United States)

    Monitoring the locations and distributions of land-cover changes is important for establishing linkages between policy decisions, regulatory actions and subsequent landuse activities. Past efforts incorporating two-date change detection using moderate resolution data (e.g., Lands...

  19. EnviroAtlas - 2011 Agricultural Land Cover on Steep Slopes for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset represents the percentage land area that is classified as agricultural land cover that occurs on slopes above a given threshold for each...

  20. EnviroAtlas - 2011 Land Cover by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset represents the percentage of land area that is classified as natural, forest, wetland, agricultural, natural, and developed land cover using...

  1. MODELING OF FUTURE LAND COVER LAND USE CHANGE IN NORTH CAROLINA USING MARKOV CHAIN AND CELLULAR AUTOMATA MODEL

    OpenAIRE

    Mohammad Sayemuzzaman; Manoj K. Jha

    2014-01-01

    State wide variant topographic features in North Carolina attract the hydro-climatologist. There is none modeling study found that predict future Land Cover Land Use (LCLU) change for whole North Carolina. In this study, satellite-derived land cover maps of year 1992, 2001 and 2006 of North Carolina were integrated within the framework of the Markov-Cellular Automata (Markov-CA) model which combines the Markov chain and Cellular Automata (CA) techniques. A Multi-Criteria Evaluation (MCE) was ...

  2. Complex land use and cover trajectories in the northern Choco bioregion of Colombia

    Science.gov (United States)

    Santos, Carolina

    The Choco bioregion in Northwestern Colombia is a lowland rain forest and hotspot of biodiversity. Significant land use and cover change (LUCC) is occurring throughout the region driven by global markets, illicit drug production, and civil unrest. The dominant land cover conversion is from primary forest to African Palm plantations, mediated and modified by complex combinations of social and biophysical drivers. This research combined a remote sensing based methodology to monitor LUCC in the region with an analytical approach for evaluating the possible trajectories of LUCC in a complex biological, socio-economical, and political environment. Synoptic LUCC models were developed using textural classification derived from Synthetic Aperture Radar (SAR) images for the period 1995 to 2010. LUCC models along with empirical social and spatial biophysical drivers were used to project historical land use trajectories. DINAMICA EGO a complex systems based spatial analytical framework was adopted as the platform to model land use change. The RADAR backscatter was able to capture areas were forest has been converted to African Oil Palm Plantations. However, an in depth characterization of the LUC dynamics was problematic given the spectral and spatial limitations of the sensor combined with the lack of ground data. The results of the LUC model suggest that under the current socio-political conditions African oil palm plantations will continue to expand toward forested areas into the territories traditionally inhabited by Afro-Colombians and Indigenous populations. Insecure land tenure appears as a main driver of the transformation in close association with the conditions created by the armed conflict, and the drug traffic. The rate of the transformation appears to slow down in the period after 2007. However, according to the model by 2020 most of the area inhabited by ethnic groups will be transform to AOP. This study contributes towards the understanding of land use change

  3. Land cover mapping after the tsunami event over Nanggroe Aceh Darussalam (NAD) province, Indonesia

    Science.gov (United States)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Alias, A. N.; Mohd. Saleh, N.; Wong, C. J.; Surbakti, M. S.

    2008-03-01

    Remote sensing offers an important means of detecting and analyzing temporal changes occurring in our landscape. This research used remote sensing to quantify land use/land cover changes at the Nanggroe Aceh Darussalam (Nad) province, Indonesia on a regional scale. The objective of this paper is to assess the changed produced from the analysis of Landsat TM data. A Landsat TM image was used to develop land cover classification map for the 27 March 2005. Four supervised classifications techniques (Maximum Likelihood, Minimum Distance-to- Mean, Parallelepiped and Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier) were performed to the satellite image. Training sites and accuracy assessment were needed for supervised classification techniques. The training sites were established using polygons based on the colour image. High detection accuracy (>80%) and overall Kappa (>0.80) were achieved by the Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier in this study. This preliminary study has produced a promising result. This indicates that land cover mapping can be carried out using remote sensing classification method of the satellite digital imagery.

  4. Analysis On Land Cover In Municipality Of Malang With Landsat 8 Image Through Unsupervised Classification

    Science.gov (United States)

    Nahari, R. V.; Alfita, R.

    2018-01-01

    Remote sensing technology has been widely used in the geographic information system in order to obtain data more quickly, accurately and affordably. One of the advantages of using remote sensing imagery (satellite imagery) is to analyze land cover and land use. Satellite image data used in this study were images from the Landsat 8 satellite combined with the data from the Municipality of Malang government. The satellite image was taken in July 2016. Furthermore, the method used in this study was unsupervised classification. Based on the analysis towards the satellite images and field observations, 29% of the land in the Municipality of Malang was plantation, 22% of the area was rice field, 12% was residential area, 10% was land with shrubs, and the remaining 2% was water (lake/reservoir). The shortcoming of the methods was 25% of the land in the area was unidentified because it was covered by cloud. It is expected that future researchers involve cloud removal processing to minimize unidentified area.

  5. EVALUATION OF LAND USE/LAND COVER DATASETS FOR URBAN WATERSHED MODELING

    International Nuclear Information System (INIS)

    S.J. BURIAN; M.J. BROWN; T.N. MCPHERSON

    2001-01-01

    Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size

  6. Impacts of historic and projected land-cover, land-use, and land-management change on carbon and water fluxes: The Land Use Model Intercomparison Project (LUMIP)

    Science.gov (United States)

    Lawrence, D. M.; Lombardozzi, D. L.; Lawrence, P.; Hurtt, G. C.

    2017-12-01

    Human land-use activities have resulted in large changes to the Earth surface, with resulting implications for climate. In the future, land-use activities are likely to intensify to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the broad question of impacts of land-use and land-cover change (LULCC) as well as more detailed science questions to get at process-level attribution, uncertainty, and data requirements in more depth and sophistication than possible in a multi-model context to date. LUMIP is multi-faceted and aims to advance our understanding of land-use change from several perspectives. In particular, LUMIP includes a factorial set of land-only simulations that differ from each other with respect to the specific treatment of land use or land management (e.g., irrigation active or not, crop fertilization active or not, wood harvest on or not), or in terms of prescribed climate. This factorial series of experiments serves several purposes and is designed to provide a detailed assessment of how the specification of land-cover change and land management affects the carbon, water, and energy cycle response to land-use change. The potential analyses that are possible through this set of experiments are vast. For example, comparing a control experiment with all land management active to an experiment with no irrigation allows a multi-model assessment of whether or not the increasing use of irrigation during the 20th century is likely to have significantly altered trends of regional water and energy fluxes (and therefore climate) and/or crop yield and carbon fluxes in agricultural regions. Here, we will present preliminary results from the factorial set of experiments utilizing the Community Land Model (CLM5). The analyses presented here will help guide multi-model analyses once the full set of LUMIP simulations are available.

  7. A prototype for automation of land-cover products from Landsat Surface Reflectance Data Records

    Science.gov (United States)

    Rover, J.; Goldhaber, M. B.; Steinwand, D.; Nelson, K.; Coan, M.; Wylie, B. K.; Dahal, D.; Wika, S.; Quenzer, R.

    2014-12-01

    Landsat data records of surface reflectance provide a three-decade history of land surface processes. Due to the vast number of these archived records, development of innovative approaches for automated data mining and information retrieval were necessary. Recently, we created a prototype utilizing open source software libraries for automatically generating annual Anderson Level 1 land cover maps and information products from data acquired by the Landsat Mission for the years 1984 to 2013. The automated prototype was applied to two target areas in northwestern and east-central North Dakota, USA. The approach required the National Land Cover Database (NLCD) and two user-input target acquisition year-days. The Landsat archive was mined for scenes acquired within a 100-day window surrounding these target dates, and then cloud-free pixels where chosen closest to the specified target acquisition dates. The selected pixels were then composited before completing an unsupervised classification using the NLCD. Pixels unchanged in pairs of the NLCD were used for training decision tree models in an iterative process refined with model confidence measures. The decision tree models were applied to the Landsat composites to generate a yearly land cover map and related information products. Results for the target areas captured changes associated with the recent expansion of oil shale production and agriculture driven by economics and policy, such as the increase in biofuel production and reduction in Conservation Reserve Program. Changes in agriculture, grasslands, and surface water reflect the local hydrological conditions that occurred during the 29-year span. Future enhancements considered for this prototype include a web-based client, ancillary spatial datasets, trends and clustering algorithms, and the forecasting of future land cover.

  8. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    Science.gov (United States)

    Yang, He; Ma, Ben; Du, Qian; Yang, Chenghai

    2010-08-01

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified class pairs, such as roof and trail, road and roof. These classes may be difficult to be separated because they may have similar spectral signatures and their spatial features are not distinct enough to help their discrimination. In addition, misclassification incurred from within-class trivial spectral variation can be corrected by using pixel connectivity information in a local window so that spectrally homogeneous regions can be well preserved. Our experimental results demonstrate the efficiency of the proposed approaches in classification accuracy improvement. The overall performance is competitive to the object-based SVM classification.

  9. Forests as landscapes of social inequality: tropical forest cover and land distribution among shifting cultivators

    Directory of Open Access Journals (Sweden)

    Oliver T. Coomes

    2016-09-01

    Full Text Available Can social inequality be seen imprinted in a forest landscape? We studied the relationship between land holding, land use, and inequality in a peasant community in the Peruvian Amazon where farmers practice swidden-fallow cultivation. Longitudinal data on land holding, land use, and land cover were gathered through field-level surveys (n = 316 and household interviews (n = 51 in 1994/1995 and 2007. Forest cover change between 1965 and 2007 was documented through interpretation of air photos and satellite imagery. We introduce the concept of "land use inequality" to capture differences across households in the distribution of forest fallowing and orchard raising as key land uses that affect household welfare and the sustainability of swidden-fallow agriculture. We find that land holding, land use, and forest cover distribution are correlated and that the forest today reflects social inequality a decade prior. Although initially land-poor households may catch up in terms of land holdings, their use and land cover remain impoverished. Differential land use investment through time links social inequality and forest cover. Implications are discussed for the study of forests as landscapes of inequality, the relationship between social inequality and forest composition, and the forest-poverty nexus.

  10. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    Science.gov (United States)

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  11. "Land-Cover Conversion in Amazonia, The Role of ENV" Ironment and Substrate composition in Modifying SOI

    Science.gov (United States)

    Roberts, Dar A.; Chadwick, Oliver A.; Batista, Getulio T.

    2003-01-01

    LBA research from the first phase of LBA focused on three broad categories: 1) mapping land cover and quantifying rates of change, persistence of pasture, and area of recovering forest; 2) evaluating the role of environmental factors and land-use history on soil biogeochemistry; and 3) quantifying the natural and human controls on stream nutrient concentrations. The focus of the research was regional, concentrating primarily in the state of RondBnia, but also included land-cover mapping in the vicinity of Maraba, Para, and Manaus, Amazonas. Remote sensing analysis utilized Landsat Thematic Mapper (TM) and Multispectral Scanner (MS S) data to map historical patterns of land-cover change. Specific questions addressed by the remote sensing component of the research included: 1) what is the areal extent of dominant land-cover classes? 2) what are the rates of change of dominant land cover through processes of deforestation, disturbance and regeneration? and 3) what are the dynamic properties of each class that characterize temporal variability, duration, and frequency of repeat disturbance? Biogeochemical analysis focused on natural variability and impacts of land-use/land-cover changes on soil and stream biogeochemical properties at the regional scale. An emphasis was given to specific soil properties considered to be primary limiting factors regionally, including phosphorus, nitrogen, base cations and cation-exchange properties. Stream sampling emphasized the relative effects of the rates and timing of land-cover change on stream nutrients, demonstrating that vegetation conversion alone does not impact nutrients as much as subsequent land use and urbanization.

  12. Mapping decadal land cover changes in the woodlands of north eastern Namibia using the Landsat satellite archive (1975-2014)

    Science.gov (United States)

    Wingate, Vladimir; Phinn, Stuart; Kuhn, Nikolaus

    2016-04-01

    Woodland savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to intensive land uses. This study investigates the land cover changes over 108,038 km2 in NE Namibia using multi-sensor Landsat imagery, at decadal intervals from 1975 to 2014, with a post-classification change detection method and supervised Regression Tree classifiers. We discuss likely impacts of land tenure and reforms over the past four decades on changes in land use and land cover. These included losses, gains and exchanges between predominant land cover classes. Exchanges comprised logical conversions between woodland and agricultural classes, implying woodland clearing for arable farming, cropland abandonment and vegetation succession. The dominant change was a reduction in the area of the woodland class due to the expansion of the agricultural class, specifically, small-scale cereal and pastoral production. Woodland area decreased from 90% of the study area in 1975 to 83% in 2014, while cleared land increased from 9% to 14%. We found that the main land cover changes are conversion from woodland to agricultural and urban land uses, driven by urban expansion and woodland clearing for subsistence-based agriculture and pastoralism.

  13. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems.

    Science.gov (United States)

    Kimball, Heather L; Selmants, Paul C; Moreno, Alvaro; Running, Steve W; Giardina, Christian P

    2017-01-01

    Gross primary production (GPP) is the Earth's largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.

  14. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery

    Science.gov (United States)

    Belgiu, Mariana; ǎguţ, Lucian, , Dr; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules.

  15. Agricultural land cover changes in metropolitan areas of Poland for the period 1990–2012

    Directory of Open Access Journals (Sweden)

    Nalej Marta

    2016-06-01

    Full Text Available Agricultural land covers more than half the area of metropolitan areas in Poland, and is therefore particularly prone to the influences of the processes associated with their development. The aim of the study was to analyse changes in agricultural land cover within the metropolitan areas of Poland for the years 1990–2012; and to capture their dynamics, types and directions. The percentage share of the total study area, for each of the forms of agricultural land cover and their changes were traced, with the spatial distribution of the changes also being determined. The results of the study show that in metropolitan areas, agricultural land cover is undergoing transformations that do not result in the loss of agricultural lands, or that involve a decrease in surface area due to their change into anthropogenic forms of land cover. The greatest transitions occurred between 2000 and 2006 and were observed in the outer zones of metropolitan areas.

  16. Impact of Land Use Land Cover Change on East Asian monsoon

    Science.gov (United States)

    Chilukoti, N.; Xue, Y.; Liu, Y.; Lee, J.

    2017-12-01

    Humans modify the Earth's terrestrial surface on a continental scale by removing natural vegetation for crops/grazing. The current rates, extents and intensities of Land Use and Land Cover Change (LULCC) are greater than ever in history. The earlier studies of Land-atmosphere interactions used specified land surface conditions without interannual variations. In this study using NCEP CFSv2 coupled with Simplified Simple Biosphere (SSiB) model, biogeophysical impacts of LULCC on climate variability, anomaly, and changes are investigated by using the LULCC map from the Hurtt et al. (2006, 2011), which covered 66 years from 1950-2015 with annual variability. We combined the changes in crop and pasture fractions and consider as LULCC. A methodology had been developed to convert the Hurtt LULCC change map with 1° resolution to the GCM grid points. Since the GCM has only one dominant type, when the crop and pasture frction value at one point was larger than the critical value, that grid was assigned as degraded. Comprehensive evaluation was conducted to ensure the consistence of the trend of land degradation in the Hurtt's map and in the GCM LULCC map. In the degraded point, trees were changed to low vegetation or grasses, and low vegetation to bare soil. A set of surface parameters such as leaf area index, vegetation height, roughness length, and soil parameters, associated with vegetation are changed to show the degradation effects. We integrated the model with the potential vegetation map and the map with LULCC from 1950 to 2015, and the results indicate the LULCC causes precipitation reduction globally, with the strongest signals over monsoon regions. For instance, the degradation in Mexico, West Africa, south and East Asia and South America produced significant precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. Meanwhile, it has also found that the LULCC enhances the surface warming during the summer in monsoon

  17. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    Science.gov (United States)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2

  18. Assessing land use/cover changes: a nationwide multidate spatial database for Mexico

    Science.gov (United States)

    Mas, Jean-François; Velázquez, Alejandro; Díaz-Gallegos, José Reyes; Mayorga-Saucedo, Rafael; Alcántara, Camilo; Bocco, Gerardo; Castro, Rutilio; Fernández, Tania; Pérez-Vega, Azucena

    2004-10-01

    A nationwide multidate GIS database was generated in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in Mexico. Existing cartography on land use/cover at a 1:250,000 scale was revised to select compatible inputs regarding the scale, the classification scheme and the mapping method. Digital maps from three different dates (the late 1970s, 1993 and 2000) were revised, evaluated, corrected and integrated into a GIS database. In order to improve the reliability of the database, an attempt was made to assess the accuracy of the digitalisation procedure and to detect and correct unlikely changes due to thematic errors in the maps. Digital maps were overlaid in order to generate LUCC maps, transition matrices and to calculate rates of conversion. Based upon this database, rates of deforestation between 1976 and 2000 were evaluated as 0.25 and 0.76% per year for temperate and tropical forests, respectively.

  19. Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.

    Science.gov (United States)

    Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

    2014-04-01

    Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.

  20. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques

    Science.gov (United States)

    Kumar, Lalit; Ghosh, Manoj Kumer

    2012-01-01

    Land cover change is a significant issue for environmental managers for sustainable management. Remote sensing techniques have been shown to have a high probability of recognizing land cover patterns and change detection due to periodic coverage, data integrity, and provision of data in a broad range of the electromagnetic spectrum. We evaluate the applicability of remote sensing techniques for land cover pattern recognition, as well as land cover change detection of the Hatiya Island, Bangladesh, and quantify land cover changes from 1977 to 1999. A supervised classification approach was used to classify Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM), and Multispectral Scanner (MSS) images into eight major land cover categories. We detected major land cover changes over the 22-year study period. During this period, marshy land, mud, mud with small grass, and bare soil had decreased by 85%, 46%, 44%, and 24%, respectively, while agricultural land, medium forest, forest, and settlement had positive changes of 26%, 45%, 363%, and 59%, respectively. The primary drivers of such landscape change were erosion and accretion processes, human pressure, and the reforestation and land reclamation programs of the Bangladesh Government.

  1. Sensitivity of WRF-simulated planetary boundary layer height to land cover and soil changes

    Directory of Open Access Journals (Sweden)

    Ferenc Ács

    2014-09-01

    Full Text Available Planetary boundary layer (PBL height sensitivity to both so-called single and accumulated land cover and soil changes is investigated in shallow convection under cloud-free conditions to compare the effects. Single land cover type and soil changes are carried out to be able to unequivocally separate the cause and effect relationships. The Yonsei University scheme in the framework of the Weather Research Forecasting (WRF mesoscale modeling system is used as a research tool. The area investigated lies in the Carpathian Basin, where anticyclonic weather type influence dominated on the five summer days chosen for simulations. Observation-based methods applied for validating diurnal PBL height courses manifest great deviations reaching 500–1300 m. The obtained deviations are somewhat smaller around midday and greater at night. They can originate either from the differences in the measuring principles or from the differences in the atmospheric profiles used. Concerning sensitivity analyses, we showed that PBL height differences caused by soil change are comparable with the PBL height differences caused by land cover change. The differences are much greater in the single than in the accumulated tests. Space averaged diurnal course difference around midday reaching a few tens of meters can be presumably treated as strongly significant. PBL height differences obtained in the sensitivity analyses are, at least in our case, smaller than those obtained by applying different observation based methods. The results may be utilized in PBL height diurnal course analyses.

  2. Hydrometric, Hydrochemical, and Hydrogeophysical Runoff Characterization Across Multiple Land Covers in the Agua Salud Project, Panama

    Science.gov (United States)

    Litt, Guy Finley

    As the Panama Canal Authority faces sensitivity to water shortages, managing water resources becomes crucial for the global shipping industry's security. These studies address knowledge gaps in tropical water resources to aid hydrological model development and validation. Field-based hydrological investigations in the Agua Salud Project within the Panama Canal Watershed employed multiple tools across a variety of land covers to investigate hydrological processes. Geochemical tracers informed where storm runoff in a stream comes from and identified electrical conductivity (EC) as an economical, high sample frequency tracer during small storms. EC-based hydrograph separation coupled with hydrograph recession rate analyses identified shallow and deep groundwater storage-discharge relationships that varied by season and land cover. A series of plot-scale electrical resistivity imaging geophysical experiments coupled with rainfall simulation characterized subsurface flow pathway behavior and quantified respectively increasing infiltration rates across pasture, 10 year old secondary succession forest, teak (tectona grandis), and 30 year old secondary succession forest land covers. Additional soil water, groundwater, and geochemical studies informed conceptual model development in subsurface flow pathways and groundwater, and identified future research needs.

  3. Do Surface Energy Fluxes Reveal Land Use/Land Cover Change in South Florida?: A Remote Sensing Perspective

    Science.gov (United States)

    Kandel, H. P.; Melesse, A. M.

    2017-12-01

    Series of changes on land use/ land cover in South Florida resulting from drainage and development activities during early to mid-20th followed by restoration measures since late-20th century have had prominent impacts on hydrologic regime and energy fluxes in the region. Previous results from numerical modeling and MODIS-based analysis have shown a shift in dominance of heat fluxes: from latent to sensible along the axes of urbanization, and an opposite along the axes of restoration. This study implements a slightly modified version of surface energy balance algorithm (SEBAL) on cloud-masked Landsat imageries archived over the period of 30-years combined with ground-meteorological data for South Florida using spatial analysis model in ArcGIS and calculates energy flux components: sensible heat flux, latent heat flux, and ground heat flux. The study finally computes variation of Bowen's ratio (BR) and daily evapotranspiration (ET) rate over various land covers for different years. Coexistences are apparent between increased BR and increased intensity of urbanization, and between increased daily ET rates and improved best management practices in agricultural areas. An increase in mean urban BR from 1.67 in 1984 to 3.06 in 2010 show plausible link of BR with urban encroachment of open lands, and expulsion of additional heat by increased population/automobiles/factories/air conditioning units. Likewise, increase in mean agricultural daily ET rates from 0.21 mm/day to 3.60 mm/day between 1984 to 2010 probably shows the effects of improved moisture conditions on the northern farm lands as the results of restoration practices. Once new observed data become available to corroborate these results, remote sensing methods-owing to their greater spatial and temporal details-can be used as assessment measures both for the progress of restoration evaluation and for the extent detection of human-induced climate change.

  4. MODIS-derived atmospheric water vapor (AWV) content and its correlation to land use and land cover in Northeast China

    Science.gov (United States)

    Song, Kaishan; Wu, Junjie; Li, Lin; Wang, Zongming; Lu, Dongmei; Du, Jia; Zhang, Bai

    2010-08-01

    Atmospheric water vapor (AWV) content is closely related to precipitation that in turn has effects on the productivity of agricultural, forestry and range land. MODIS images have been used for AWV retrieval, and the method uses either two (0.841-0.876 μm and 0.915-0.965 μm) or three (0.841-0.876, 0.915-0.965 and 1.230-0-1.250 μm) MODIS channel ratios. We applied both methods to the MODIS data over Northeast China acquired from June to August, 2008 to retrieve AWV content, and the results were validated on ground observed data from 10 radio sonde stations characterized by various land cover. The bulk results indicate that the two-channel ratio outperformed the three-channel ratio based on the coefficient of determination R2 = 0.81 vs. 0.78. The validation results for individual land cover types also support this observation with R2 = 0.92 vs. 0.84 for woodland, 0.82 vs. 0.79 for cropland, 0.90 vs. 0.86 for grassland and 0.673 vs. 0.669 for urban areas. The spatial distribution of AWV derived using the two-channel ratio method was correlated to land-use classification data, and a high correlation was evident when other conditions were similar. With the exception of dry cropland, the amount of average water vapor content over different land use types demonstrates a consistent order: water-body > paddy-field > woodland > grassland > barren for the analyzed multi-temporal MODIS data. This order partially matches the evapotranspiration pattern of underlying surface, and future work is required for analyzing the association of the landscape pattern with AWV in the region.

  5. Local- and landscape-scale land cover affects microclimate and water use in urban gardens.

    Science.gov (United States)

    Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M

    2018-01-01

    Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the

  6. Land use and land cover dynamics on the campus of Federal University of Lavras from 1964 to 2009

    Directory of Open Access Journals (Sweden)

    Elizabeth Ferreira

    2013-03-01

    Full Text Available This study identified, quantified and analyzed changes in land use and cover on the campus of Federal University of Lavras campus, located in Lavras city (Minas Gerais State. The 2009 QuickBird satellite imagery and 1985, 1979, 1971, 1964 vertical aerial photographs were used to produce a set of land use and land cover maps. The work started with the orthorectification of the QuickBird satellite imagery and vertical aerial photographs. The identification and definition of land cover and land use classes were obtained from field surveys in 2009. First, the land cover and land use maps were made from that information. Finally, the quantification and analysis of changes were performed at the imagery time range. The results showed that in 2009 the "urbanized area class" of the campus reached 65.79 ha and that the most significant increase of this class occurred between the years 1964 (6.24 ha and 1971 (24.4 ha. The smallest area of "forest land class" found on the campus was 38.38 ha in 1971, and from 1979 on this situation has been improved reaching 113.18 ha of "forest land class" in 2009. For the "water class" there was not any dam constructed yet in the campus before 1971. Most of the campus area, previously used for "agricultural land class" had a significant reduction within this category, from 384.19 ha in 1964 to 271.16 ha in 2009.

  7. Trends in Coastal Development and Land Cover Change: The Case ...

    African Journals Online (AJOL)

    Oceanographic Research Institute, PO Box 10712, Marine Parade, 4056 Durban, ... and continues to undergo rapid development due to a number of causes, ... coastal vulnerability, with the impact of .... land, agriculture and mining land, disturbed ..... attributable to the construction of Richards ... iSimangaliso wetland park.

  8. Louisiana Land Cover Data Set, UTM Zone 15 NAD83, USGS [landcover_la_nlcd_usgs_2001.tif

    Data.gov (United States)

    Louisiana Geographic Information Center — The National Land Cover Database 2001 land cover layer for mapping zone 37A was produced through a cooperative project conducted by the Multi-Resolution Land...

  9. Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana

    Science.gov (United States)

    Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard

    2015-03-01

    The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.

  10. Potential solar radiation and land cover contributions to digital climate surface modeling

    Science.gov (United States)

    Puig, Pol; Batalla, Meritxell; Pesquer, Lluís; Ninyerola, Miquel

    2016-04-01

    Overview: We have designed a series of ad-hoc experiments to study the role of factors that a priori have a strong weight in developing digital models of temperature and precipitation, such as solar radiation and land cover. Empirical test beds have been designed to improve climate (mean air temperature and total precipitation) digital models using statistical general techniques (multiple regression) with residual correction (interpolated with inverse weighting distance). Aim: Understand what roles these two factors (solar radiation and land cover) play to incorporate them into the process of generating mapping of temperature and rainfall. Study area: The Iberian Peninsula and supported in this, Catalonia and the Catalan Pyrenees. Data: The dependent variables used in all experiments relate to data from meteorological stations precipitation (PL), mean temperature (MT), average temperature minimum (MN) and maximum average temperature (MX). These data were obtained monthly from the AEMET (Agencia Estatal de Meteorología). Data series of stations covers the period between 1950 to 2010. Methodology: The idea is to design ad hoc, based on a sample of more equitable space statistician, to detect the role of radiation. Based on the influence of solar radiation on the temperature of the air from a quantitative point of view, the difficulty in answering this lies in the fact that there are lots of weather stations located in areas where solar radiation is similar. This suggests that the role of the radiation variable remains "off" when, instead, we intuitively think that would strongly influence the temperature. We have developed a multiple regression analysis between these meteorological variables as the dependent ones (Temperature and rainfall), and some geographical variables: altitude (ALT), latitude (LAT), continentality (CON) and solar radiation (RAD) as the independent ones. In case of the experiment with land covers, we have used the NDVI index as a proxy of land

  11. The Application of Remote Sensing Data to GIS Studies of Land Use, Land Cover, and Vegetation Mapping in the State of Hawaii

    Science.gov (United States)

    Hogan, Christine A.

    1996-01-01

    A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation

  12. Discrimination of land cover from a multiparameter SAR data set

    International Nuclear Information System (INIS)

    Pierdicca, N.; Castracane, P.; Basili, P.; Ciotti, P.; Marzano, F.S.

    2001-01-01

    The identification of the most valuable radar observation parameters (e.g., frequency, polarisation, incidence angle) is important both for designing non-redundant high-performance sensors (i.e. selection of frequency bands and polarizations) and for specifying mission operation requirements (i.e. temporal sampling, incidence angle). Moreover, the task of classifying multiparameter SAR images may require to adopt a strategy that implies the selection of a number of features among those available from this kind of sensors. In this paper it has performed this kind of analysis in a specific area of interest to account for the particular conditions in which remotely sensed data are going to be used. The paper summarises the results of the analysis of the radar data acquired during the MAC Europe '91 and X-SAR/SIR-C campaigns over the Montespertoli test site in Italy. The analysis is based mainly on a statistical approach aiming at demonstrating what is the contribution of different measurements performed by the polarimetric SAR for discriminating the surface coverage. The work is intended to furnish a guideline to develop an optimal strategy for acquiring and processing polarimetric data to be used for land classification

  13. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    Science.gov (United States)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  14. Mapping land cover in urban residential landscapes using fine resolution imagery and object-oriented classification

    Science.gov (United States)

    A knowledge of different types of land cover in urban residential landscapes is important for building social and economic city-wide policies including landscape ordinances and water conservation programs. Urban landscapes are typically heterogeneous, so classification of land cover in these areas ...

  15. Assessing the land cover situation in Surkhang, Upper Mustang, Nepal, using an ASTER image

    NARCIS (Netherlands)

    Sharma, B.D.; Clevers, J.G.P.W.; Graaf, de N.R.; Chapagain, N.R.

    2003-01-01

    This paper describes the remote sensing technique used to prepare a land cover map of Surkhang, Upper Mustang Nepal. The latest ASTER image (October 2002) and an ASTER DEM were used for the land cover classification. The study was carried out in Surkhang Village Development Committee (area 799 km2)

  16. Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia)

    NARCIS (Netherlands)

    Feranec, J.; Hazeu, G.W.; Christensen, S.; Jaffrain, G.

    2007-01-01

    We present a land cover change detection methodology in the framework of the IMAGE and CORINE Land Cover 2000 (I&CLC2000) project managed jointly by the European Environment Agency in Copenhagen, Denmark and the Joint Research Centre of the European Commission in Ispra, Italy. The generated data

  17. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    Science.gov (United States)

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  18. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia

    Science.gov (United States)

    Dirk Pflugmacher; Olga N. Krankina; Warren B. Cohen; Mark A. Friedl; Damien Sulla-Menashe; Robert E. Kennedy; Peder Nelson; Tatiana V. Loboda; Tobias Kuemmerle; Egor Dyukarev; Vladimir Elsadov; Viacheslav I. Kharuk

    2011-01-01

    Information on land cover at global and continental scales is critical for addressing a range of ecological, socioeconomic and policy questions. Global land cover maps have evolved rapidly in the last decade, but efforts to evaluate map uncertainties have been limited, especially in remote areas like Northern Eurasia. Northern Eurasia comprises a particularly diverse...

  19. Detecting land cover change by evaluating the internal covariance matrix of the extended Kalman filter

    CSIR Research Space (South Africa)

    Salmon, BP

    2012-07-01

    Full Text Available - fective way to monitor and evaluate land cover changes. An operator making an image-to-image comparison is still a com- mon method in most organizations when mapping land cover change, which is time consuming and resource intensive. Au- tomated change...

  20. A procedure to obtain a refined European land use/cover map

    NARCIS (Netherlands)

    Batista e Silva, F.; Lavalle, C.; Koomen, E.

    2013-01-01

    Available land use/cover maps differ in their spatial extent and in their thematic, spatial, and temporal resolutions. Due to the costs of producing such maps, there is usually a trade-off between spatial extent and resolution. The only European-wide, consistent, and multi-temporal land use/cover

  1. Alternative method to validate the seasonal land cover regions of the conterminous United States

    Science.gov (United States)

    Zhiliang Zhu; Donald O. Ohlen; Raymond L. Czaplewski; Robert E. Burgan

    1996-01-01

    An accuracy assessment method involving double sampling and the multivariate composite estimator has been used to validate the prototype seasonal land cover characteristics database of the conterminous United States. The database consists of 159 land cover classes, classified using time series of 1990 1-km satellite data and augmented with ancillary data including...

  2. Buruli Ulcer Disease and Its Association with Land Cover in Southwestern Ghana.

    Directory of Open Access Journals (Sweden)

    Jianyong Wu

    2015-06-01

    Full Text Available Buruli ulcer (BU, one of 17 neglected tropical diseases, is a debilitating skin and soft tissue infection caused by Mycobacterium ulcerans. In tropical Africa, changes in land use and proximity to water have been associated with the disease. This study presents the first analysis of BU at the village level in southwestern Ghana, where prevalence rates are among the highest globally, and explores fine and medium-scale associations with land cover by comparing patterns both within BU clusters and surrounding landscapes.We obtained 339 hospital-confirmed BU cases in southwestern Ghana between 2007 and 2010. The clusters of BU were identified using spatial scan statistics and the percentages of six land cover classes were calculated based on Landsat and Rapid Eye imagery for each of 154 villages/towns. The association between BU prevalence and each land cover class was calculated using negative binomial regression models. We found that older people had a significantly higher risk for BU after considering population age structure. BU cases were positively associated with the higher percentage of water and grassland surrounding each village, but negatively associated with the percent of urban. The results also showed that BU was clustered in areas with high percentage of mining activity, suggesting that water and mining play an important and potentially interactive role in BU occurrence.Our study highlights the importance of multiple land use changes along the Offin River, particularly mining and agriculture, which might be associated with BU disease in southwestern Ghana. Our study is the first to use both medium- and high-resolution imagery to assess these changes. We also show that older populations (≥ 60 y appear to be at higher risk of BU disease than children, once BU data were weighted by population age structures.

  3. Urban Land Cover Mapping Accuracy Assessment - A Cost-benefit Analysis Approach

    Science.gov (United States)

    Xiao, T.

    2012-12-01

    One of the most important components in urban land cover mapping is mapping accuracy assessment. Many statistical models have been developed to help design simple schemes based on both accuracy and confidence levels. It is intuitive that an increased number of samples increases the accuracy as well as the cost of an assessment. Understanding cost and sampling size is crucial in implementing efficient and effective of field data collection. Few studies have included a cost calculation component as part of the assessment. In this study, a cost-benefit sampling analysis model was created by combining sample size design and sampling cost calculation. The sampling cost included transportation cost, field data collection cost, and laboratory data analysis cost. Simple Random Sampling (SRS) and Modified Systematic Sampling (MSS) methods were used to design sample locations and to extract land cover data in ArcGIS. High resolution land cover data layers of Denver, CO and Sacramento, CA, street networks, and parcel GIS data layers were used in this study to test and verify the model. The relationship between the cost and accuracy was used to determine the effectiveness of each sample method. The results of this study can be applied to other environmental studies that require spatial sampling.

  4. Effects of land cover change on the tropical circulation in a GCM

    Science.gov (United States)

    Jonko, Alexandra Karolina; Hense, Andreas; Feddema, Johannes Jan

    2010-09-01

    Multivariate statistics are used to investigate sensitivity of the tropical atmospheric circulation to scenario-based global land cover change (LCC), with the largest changes occurring in the tropics. Three simulations performed with the fully coupled Parallel Climate Model (PCM) are compared: (1) a present day control run; (2) a simulation with present day land cover and Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 greenhouse gas (GHG) projections; and (3) a simulation with SRES A2 land cover and GHG projections. Dimensionality of PCM data is reduced by projection onto a priori specified eigenvectors, consisting of Rossby and Kelvin waves produced by a linearized, reduced gravity model of the tropical circulation. A Hotelling T 2 test is performed on projection amplitudes. Effects of LCC evaluated by this method are limited to diabatic heating. A statistically significant and recurrent signal is detected for 33% of all tests performed for various combinations of parameters. Taking into account uncertainties and limitations of the present methodology, this signal can be interpreted as a Rossby wave response to prescribed LCC. The Rossby waves are shallow, large-scale motions, trapped at the equator and most pronounced in boreal summer. Differences in mass and flow fields indicate a shift of the tropical Walker circulation patterns with an anomalous subsidence over tropical South America.

  5. Impacts of land cover data selection and trait parameterisation on dynamic modelling of species' range expansion.

    Directory of Open Access Journals (Sweden)

    Risto K Heikkinen

    Full Text Available Dynamic models for range expansion provide a promising tool for assessing species' capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina and one generalist (Issoria lathonia. Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity, with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning.

  6. A Decade of Annual National Land Cover Products - the Cropland Data Layer

    Science.gov (United States)

    Mueller, R.; Johnson, D. M.; Sandborn, A.; Willis, P.; Ebinger, L.; Yang, Z.; Seffrin, R.; Boryan, C. G.; Hardin, R.

    2017-12-01

    The Cropland Data Layer (CDL) is a national land cover product produced by the US Department of Agriculture/National Agricultural Statistics Service (NASS) to assess planted crop acreage on an annual basis. The 2017 CDL product serves as the decadal anniversary for the mapping of conterminous US agriculture. The CDL is a supervised land cover classification derived from medium resolution Earth observing satellites that capture crop phenology throughout the growing season, leveraging confidentially held ground reference information from the USDA Farm Service Agency (FSA) as training data. The CDL currently uses ancillary geospatial data from the US Geological Survey's National Land Cover Database (NLCD), and Imperviousness and Forest Canopy layers as well as the National Elevation Dataset as training for the non-agricultural domain. Accuracy assessments are documented and released annually with metadata publication. NASS is currently reprocessing the 2008 and 2009 CDL products to 30m resolution. They were originally processed and released at 56m based on the Resourcesat-1 AWiFS sensor. Additionally, best practices learned from processing the FSA ground reference data were applied to the historical training set, providing an enhanced classification at 30m. The release of these reprocessed products in the fall of 2017, along with the 2017 CDL annual product will be discussed and will complete a decade's worth of annual 30m products. Discussions of change and trend analytics as well as partnerships with key industry stakeholders will be displayed on the evolution and improvements made to this decadal geospatial crop specific land cover product.

  7. Using remote sensing imagery and GIS to identify land cover and land use within Ceahlau Massif (Romania

    Directory of Open Access Journals (Sweden)

    GEORGE CRACU

    2014-11-01

    Full Text Available Using remote sensing imagery and GIS to identify land cover and land use within Ceahlău Massif (Romania. In this study we considerer land cover and land use asessment within Ceahlău Massif (Romania using satellite imagery and GIS . To achieve this goal, we used a Landsat 7 ETM + satellite image, which was processed using specialized software in analyzing satellite images and GIS software in several stages:  Downloading, importing and layer stack of all spectral bands composing satellite image;  Establishment of areas of interest for each category of land cover and land use, which were digitized on - screen and for which spectral signatures characteristics were established;  Supervised image classification using Maximum Likelihood Method;  Importing the resulting m ap (raster in GIS environment and creating the final land cover/land use map for Ceahlău Massif. In the study area we identified nine land cover/land use classes: deciduous forests, mixed forests, coniferous forests, secondary grasslands, subalpine vegeta tion, alpine meadows, agricultural land, lakes and built area. By analizing the spatial distribution of these classes, it was found that forests are the best represented class, occupying an area of 188.4 km² (56.4% of total, followed by secondary grassl and, which occupies an area of 68.2 km² (20.4% of total, lakes (26.6 km² or 7.98% of total and agricultural land (16.1 km² or 4.86%

  8. C-CAP Land Cover, Kauai, Hawaii 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land derived from high resolution imagery and was analyzed according to the Coastal Change Analysis Program (C-CAP) protocol to determine...

  9. C-CAP Land Cover, Territory of Guam 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land derived from high resolution imagery and was analyzed according to the Coastal Change Analysis Program (C-CAP) protocol to determine...

  10. Nitrogen Discharge due to Climate Change and Land Cover Change

    Data.gov (United States)

    U.S. Environmental Protection Agency — Simulated model output for the figures in the associated publication. Data are SWAT model simulation results for different scenarios of land-use change and climate...

  11. 2011 C-CAP Land Cover of Oahu, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land derived from high resolution imagery and was analyzed according to the Coastal Change Analysis Program (C-CAP) protocol to determine...

  12. C-CAP Land Cover, Big Island, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of land derived from high resolution imagery and was analyzed according to the Coastal Change Analysis Program (C-CAP) protocol to determine...

  13. Percent Agricultural Land Cover on Steep Slopes (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type....

  14. Active Collection of Land Cover Sample Data from Geo-Tagged Web Texts

    Directory of Open Access Journals (Sweden)

    Dongyang Hou

    2015-05-01

    Full Text Available Sample data plays an important role in land cover (LC map validation. Traditionally, they are collected through field survey or image interpretation, either of which is costly, labor-intensive and time-consuming. In recent years, massive geo-tagged texts are emerging on the web and they contain valuable information for LC map validation. However, this kind of special textual data has seldom been analyzed and used for supporting LC map validation. This paper examines the potential of geo-tagged web texts as a new cost-free sample data source to assist LC map validation and proposes an active data collection approach. The proposed approach uses a customized deep web crawler to search for geo-tagged web texts based on land cover-related keywords and string-based rules matching. A data transformation based on buffer analysis is then performed to convert the collected web texts into LC sample data. Using three provinces and three municipalities directly under the Central Government in China as study areas, geo-tagged web texts were collected to validate artificial surface class of China’s 30-meter global land cover datasets (GlobeLand30-2010. A total of 6283 geo-tagged web texts were collected at a speed of 0.58 texts per second. The collected texts about built-up areas were transformed into sample data. User’s accuracy of 82.2% was achieved, which is close to that derived from formal expert validation. The preliminary results show that geo-tagged web texts are valuable ancillary data for LC map validation and the proposed approach can improve the efficiency of sample data collection.

  15. Las Cruces, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  16. Santa Fe, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  17. Silver City, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  18. El Paso, TX 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  19. Silver City, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  20. Saint Johns, AZ 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  1. Fort Sumner, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  2. Las Cruces, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  3. El Paso, TX 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  4. Santa Fe, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  5. Saint Johns, AZ 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  6. Fort Sumner, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  7. Analysis of land cover/use changes using Landsat 5 TM data and indices.

    Science.gov (United States)

    Ettehadi Osgouei, Paria; Kaya, Sinasi

    2017-04-01

    Urban expansion and unprecedented rural to urban transition, along with a huge population growth, are major driving forces altering land cover/use in metropolitan areas. Many of the land cover classes such as farmlands, wetlands, forests, and bare soils have been transformed during the past years into human settlements. Identification of the city growth trends and the impact of it on the vegetation cover of an area is essential for a better understanding of the sustainability of urban development processes, both planned and unplanned. Analyzing the causes and consequences of land use dynamics helps local government, urban planners, and managers for the betterment of future plans and minimizing the negative effects.This study determined temporal changes in vegetation cover and built-up area in Istanbul (Turkey) using the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and built-up area index (BUAI). The temporal data were based on Landsat 5 Thematic Mapper (TM) images acquired in June of 1984, 2002, 2007, 2009, and 2011. The NDVI was applied to all the Landsat images, and the resulting NDVI images were overlaid to generate an NDVI layer stack image. The same procedure was repeated using the SAVI and BUAI images. The layer stack images revealed those areas that had changed in terms of the different indices over the years. To determine temporal change trends, the values of 150 randomly selected control points were extracted from the same locations in the NDVI, SAVI, and BUAI layer stack images. The results obtained from these control points showed that vegetation cover decreased considerably because of a remarkable increase in the built-up area.

  8. Integrative Regional Studies in the Mississippi Basin: Investigating the Effects of Land Use / Land Cover Change on Land and Water Resources

    Science.gov (United States)

    Foley, J. A.

    2003-12-01

    Over the last two hundred years, much of the Mississippi basin has been converted from forest, savanna and grassland to mosaic of agricultural and urban areas. Furthermore, technological changes -- especially those dealing with agricultural practices like fertilizer use -- have also had a widespread affect on environmental systems in the basin. Taken together, the massive transformation of land cover and agricultural land use practices have had a tremendous effect on the hydrological, biogeochemical and ecological processes occurring within the region. This transformation of the basin has a significant impact on human welfare and that other of other species, primarily through changing the distribution of ecosystem "goods and services" produced there. Here we present results that examine how large-scale changes in land use and land cover of the basin may have affected: (i) large-scale water balance and hydrology; (ii) water quality, especially nitrate concentrations; (iii) ecosystem productivity and carbon storage; and (iv) agricultural yield. In this study, we use a combination of process-based ecosystem models (for both natural ecosystems and agricultural systems), large-scale hydrological routing models, and detailed historical land use and climatic datasets. By comparing the response of different environmental processes to combinations of land use and climatic drivers, we may examine the underlying "resilience" of these ecosystems -- and how they may respond to environmental changes. Furthermore, we examine the tradeoffs between ecosystem goods and services -- such as a potential balance between increasing crop yields and decreasing water quality -- on a regional scale. Such regional-scale integrative studies are only now in their infancy. But they represent a framework for exploring the complex interactions between human societies, local landscapes, and regional environmental processes. Such "place-based" integrative studies should be compared to other regions

  9. Investigating the feasibility of geo-Tagged photographs as sources of land cover input data

    OpenAIRE

    Antoniou, Vyron; Fonte, Cidália Costa; See, Linda; Estima, Jacinto; Arsanjani, Jamal Jokar; Lupia, Flavio; Minghini, Marco; Foody, Giles; Fritz, Steffen

    2016-01-01

    Geo-Tagged photographs are used increasingly as a source of Volunteered Geographic Information (VGI), which could potentially be used for land use and land cover applications. The purpose of this paper is to analyze the feasibility of using this source of spatial information for three use cases related to land cover: Calibration, validation and verification. We first provide an inventory of the metadata that are collected with geo-Tagged photographs and then consider what elements would be es...

  10. Hydrochemistry and land cover in the upper Naryn river basin, Kyrgyzstan

    Science.gov (United States)

    Schneider, K.; Dernedde, Y.; Breuer, L.; Frede, H. G.

    2009-04-01

    concentrations remain below detection limit for the most part. The study shows that tributaries of high electrical conductivity do not affect hydrochemistry of the main river during summer because glacier and snow melt dominates runoff generation. Daily cycles of increased runoff due to snow and ice melt in the afternoon could be observed along the tributaries in the upper parts of the study area. Effects of agricultural production on ecohydrology remain weak as application of fertilizers and pesticides is currently low due to financial constraints. The data will be linked to land use data derived from satellite image products in order to analyse the effect of land cover and land cover changes on ecohydrological processes. Former observation of remote sensing data and related literature showed evidence for a change in land use management in the Naryn Valley. In 2008 training areas of land use classes for a supervised classification of 2008 remote sensing data have been recorded. A land use classification of the Naryn Valley on the base of Landsat ETM+ Data of 2008 and 1993 was done to get information on land use change on a regional scale. The classification uses spectral and spatial data in a hard classifier and object oriented combined approach. Comparing the two datasets with respect to changes in pattern of irrigated area and pasture area, change in cultivated crops and the change of agricultural cell sizes gives further information for hydrological modeling and land use monitoring purposes.

  11. Exploring Land Use and Land Cover of Geotagged Social-Sensing Images Using Naive Bayes Classifier

    Directory of Open Access Journals (Sweden)

    Asamaporn Sitthi

    2016-09-01

    Full Text Available Online social media crowdsourced photos contain a vast amount of visual information about the physical properties and characteristics of the earth’s surface. Flickr is an important online social media platform for users seeking this information. Each day, users generate crowdsourced geotagged digital imagery containing an immense amount of information. In this paper, geotagged Flickr images are used for automatic extraction of low-level land use/land cover (LULC features. The proposed method uses a naive Bayes classifier with color, shape, and color index descriptors. The classified images are mapped using a majority filtering approach. The classifier performance in overall accuracy, kappa coefficient, precision, recall, and f-measure was 87.94%, 82.89%, 88.20%, 87.90%, and 88%, respectively. Labeled-crowdsourced images were filtered into a spatial tile of a 30 m × 30 m resolution using the majority voting method to reduce geolocation uncertainty from the crowdsourced data. These tile datasets were used as training and validation samples to classify Landsat TM5 images. The supervised maximum likelihood method was used for the LULC classification. The results show that the geotagged Flickr images can classify LULC types with reasonable accuracy and that the proposed approach improves LULC classification efficiency if a sufficient spatial distribution of crowdsourced data exists.

  12. Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-11-01

    Full Text Available Decision tree classification is one of the most efficient methods for obtaining land use/land cover (LULC information from remotely sensed imageries. However, traditional decision tree classification methods cannot effectively eliminate the influence of mixed pixels. This study aimed to integrate pixel unmixing and decision tree to improve LULC classification by removing mixed pixel influence. The abundance and minimum noise fraction (MNF results that were obtained from mixed pixel decomposition were added to decision tree multi-features using a three-dimensional (3D Terrain model, which was created using an image fusion digital elevation model (DEM, to select training samples (ROIs, and improve ROI separability. A Landsat-8 OLI image of the Yunlong Reservoir Basin in Kunming was used to test this proposed method. Study results showed that the Kappa coefficient and the overall accuracy of integrated pixel unmixing and decision tree method increased by 0.093% and 10%, respectively, as compared with the original decision tree method. This proposed method could effectively eliminate the influence of mixed pixels and improve the accuracy in complex LULC classifications.

  13. Hydrological impacts of global land cover change and human water use

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2017-11-01

    Full Text Available Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or include the impact of land cover change. Here we use PCR-GLOBWB, a combined global hydrological and water resources model, to assess the impacts of land cover change as well as human water use globally in different climatic zones. Our results show that land cover change has a strong effect on the global hydrological cycle, on the same order of magnitude as the effect of human water use (applying irrigation, abstracting water, for industrial use for example, including reservoirs, etc.. When globally averaged, changing the land cover from that of 1850 to that of 2000 increases discharge through reduced evapotranspiration. The effect of land cover change shows large spatial variability in magnitude and sign of change depending on, for example, the specific land cover change and climate zone. Overall, land cover effects on evapotranspiration are largest for the transition of tall natural vegetation to crops in energy-limited equatorial and warm temperate regions. In contrast, the inclusion of irrigation, water abstraction and reservoirs reduces global discharge through enhanced evaporation over irrigated areas and reservoirs as well as through water consumption. Hence, in some areas land cover change and water distribution both reduce discharge, while in other areas the effects may partly cancel out. The relative importance of both types of impacts varies spatially across climatic zones. From this study we conclude that land cover change needs to be considered when studying anthropogenic impacts on water resources.

  14. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations

    Directory of Open Access Journals (Sweden)

    W. Li

    2017-11-01

    Full Text Available The use of dynamic global vegetation models (DGVMs to estimate CO2 emissions from land-use and land-cover change (LULCC offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite- and inventory-based biomass observations to constrain historical cumulative LULCC emissions (ELUCc from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and ELUCc. This method is applicable on the global and regional scale. The original DGVM estimates of ELUCc range from 94 to 273 PgC during 1901–2012. After constraining by current biomass observations, we derive a best estimate of 155 ± 50 PgC (1σ Gaussian error. The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained ELUCc is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.

  15. Inventory and change detection of urban land cover in Illinois using Landsat Thematic Mapper data

    International Nuclear Information System (INIS)

    Cook, E.A.; Iverson, L.R.

    1991-01-01

    In order to provide information about urban forests and other vegetative land cover in Illinois cities, Landsat TM data from June 17, 1988, were classified for the Chicago metropolitan region and five urban areas of central Illinois. Ten land cover classes were identified, including three types of forestland, cropland, two grassland categories, two urban classes, water, and miscellaneous vegetation. The cities inventoried have a significantly higher proportion of forests and forested residential areas than the surrounding rural areas because of preservation measures and accruement of tree cover from landscaping. Short-term change in land cover for the Chicago region was also assessed by postclassification comparison of the 1988 data with similarly derived data from a June 3, 1985, TM scene. The largest single category of change in the six-county area was cropland to urban land use. A majority of cover loss was conversion of forested tracts to residential areas, and forest cover increase was negligible. 16 refs

  16. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013.

    Science.gov (United States)

    Li, Gen; Zhang, Fangmin; Jing, Yuanshu; Liu, Yibo; Sun, Ge

    2017-10-15

    Land surface evapotranspiration (ET) is a central component of the Earth's global energy balance and water cycle. Understanding ET is important in quantifying the impacts of human influences on the hydrological cycle and thus helps improving water use efficiency and strengthening water use planning and watershed management. China has experienced tremendous land use and land cover changes (LUCC) as a result of urbanization and ecological restoration under a broad background of climate change. This study used MODIS data products to analyze how LUCC and climate change affected ET in China in the period 2001-2013. We examined the separate contribution to the estimated ET changes by combining LUCC and climate data. Results showed that the average annual ET in China decreased at a rate of -0.6mm/yr from 2001 to 2013. Areas in which ET decreased significantly were mainly distributed in the northwest China, the central of southwest China, and most regions of south central and east China. The trends of four climatic factors including air temperature, wind speed, sunshine duration, and relative humidity were determined, while the contributions of these four factors to ET were quantified by combining the ET and climate datasets. Among the four climatic factors, sunshine duration and wind speed had the greatest influence on ET. LUCC data from 2001 to 2013 showed that forests, grasslands and croplands in China mutually replaced each other. The reduction of forests had much greater effects on ET than change by other land cover types. Finally, through quantitative separation of the distinct effects of climate change and LUCC on ET, we conclude that climate change was the more significant than LULC change in influencing ET in China during the period 2001-2013. Effective water resource management and vegetation-based ecological restoration efforts in China must consider the effects of climate change on ET and water availability. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impacts of land use/cover classification accuracy on regional climate simulations

    Science.gov (United States)

    Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.

    2007-03-01

    Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.

  18. An Algorithm Approach for the Analysis of Urban Land-Use/Cover: Logic Filters

    Directory of Open Access Journals (Sweden)

    Şinasi Kaya

    2014-11-01

    Full Text Available Accurate classification of land-use/cover based on remotely sensed data is important for interpreters who analyze time or event-based change on certain areas. Any method that has user flexibility on area selection provides great simplicity during analysis, since the analyzer may need to work on a specific area of interest instead of dealing with the entire remotely sensed data. The objectives of the paper are to develop an automation algorithm using Matlab & Simulink on user selected areas, to filter V-I-S (Vegetation, Impervious, Soil components using the algorithm, to analyze the components according to upper and lower threshold values based on each band histogram, and finally to obtain land-use/cover map combining the V-I-S components. LANDSAT 5TM satellite data covering Istanbul and Izmit regions are utilized, and 4, 3, 2 (RGB band combination is selected to fulfill the aims of the study. These referred bands are normalized, and V-I-S components of each band are determined. This methodology that uses Matlab & Simulink program is equally successful like the unsupervised and supervised methods. Practices with these methods that lead to qualitative and quantitative assessments of selected urban areas will further provide important spatial information and data especially to the urban planners and decision-makers.

  19. Three Global Land Cover and Use Stage considering Environmental Condition and Economic Development

    Science.gov (United States)

    Lee, W. K.; Song, C.; Moon, J.; Ryu, D.

    2016-12-01

    The Mid-Latitude zone can be broadly defined as part of the hemisphere between around 30° - 60° latitude. This zone is a home to over more than 50% of the world population and encompasses about 36 countries throughout the principal regions which host most of the global problems related to development and poverty. Mid-Latitude region and its ecotone demands in-depth analysis, however, latitudinal approach has not been widely recognized, considering that many of natural resources and environment indicators, as well as social and economic indicators are based on administrative basis or by country and regional boundaries. This study sets the land cover change and use stage based on environmental condition and economic development. Because various land cover and use among the regions, form vegetated parts of East Asia and Mediterranean to deserted parts of Central Asia, the forest area was varied between countries. In addition, some nations such as North Korea, Afghanistan, Pakistan showed decreasing trends in forest area whereas some nations showed increasing trends in forest area. The economic capacity for environmental activities and policies for restoration were different among countries. By adopting the standard from IMF or World Bank, developing and developed counties were classified. Based on the classification, this study suggested the land cover and use stages as degradation, restoration, and sustainability. As the degradation stage, the nations which had decreasing forest area with less environmental restoration capacity based on economic size were selected. As the restoration stage, the nation which had increasing forest area or restoration capacity were selected. In the case of the sustainability, the nation which had enough restoration capacity with increasing forest area or small ratio in forest area decreasing were selected. In reviewing some of the past and current major environmental challenges that regions of Mid-Latitudes are facing, grouping by

  20. Land-Cover Change in the East Central Texas Plains, 1973-2000

    Science.gov (United States)

    Karstensen, Krista A.

    2009-01-01

    Project Background: The Geographic Analysis and Monitoring (GAM) Program of the U.S. Geological Survey (USGS) Land Cover Trends project is focused on understanding the rates, trends, causes, and consequences of contemporary U.S. land-use and land-cover change. The objectives of the study are to: (1) develop a comprehensive methodology for using sampling and change analysis techniques and Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) data for measuring regional land-cover change across the United States, (2) characterize the types, rates and temporal variability of change for a 30-year period, (3) document regional driving forces and consequences of change, and (4) prepare a national synthesis of land-cover change (Loveland and others, 1999). Using the 1999 Environmental Protection Agency (EPA) Level III ecoregions derived from Omernik (1987) as the geographic framework, geospatial data collected between 1973 and 2000 were processed and analyzed to characterize ecosystem responses to land-use changes. The 27-year study period was divided into five temporal periods: 1973-1980, 1980-1986, 1986-1992, 1992-2000, and 1973-2000. General land-cover classes such as water, developed, grassland/shrubland, and agriculture for these periods were interpreted from Landsat MSS, TM, and Enhanced Thematic Mapper Plus imagery to categorize land-cover change and evaluate using a modified Anderson Land-Use Land-Cover Classification System for image interpretation. The interpretation of these land-cover classes complement the program objective of looking at land-use change with cover serving as a surrogate for land use. The land-cover change rates are estimated using a stratified, random sampling of 10-kilometer (km) by 10-km blocks allocated within each ecoregion. For each sample block, satellite images are used to interpret land-cover change for the five time periods previously mentioned. Additionally, historical aerial photographs from similar timeframes and other