WorldWideScience

Sample records for based interface system

  1. A Universal Intelligent System-on-Chip Based Sensor Interface

    Directory of Open Access Journals (Sweden)

    Gabriele Ferri

    2010-08-01

    Full Text Available The need for real-time/reliable/low-maintenance distributed monitoring systems, e.g., wireless sensor networks, has been becoming more and more evident in many applications in the environmental, agro-alimentary, medical, and industrial fields. The growing interest in technologies related to sensors is an important indicator of these new needs. The design and the realization of complex and/or distributed monitoring systems is often difficult due to the multitude of different electronic interfaces presented by the sensors available on the market. To address these issues the authors propose the concept of a Universal Intelligent Sensor Interface (UISI, a new low-cost system based on a single commercial chip able to convert a generic transducer into an intelligent sensor with multiple standardized interfaces. The device presented offers a flexible analog and/or digital front-end, able to interface different transducer typologies (such as conditioned, unconditioned, resistive, current output, capacitive and digital transducers. The device also provides enhanced processing and storage capabilities, as well as a configurable multi-standard output interface (including plug-and-play interface based on IEEE 1451.3. In this work the general concept of UISI and the design of reconfigurable hardware are presented, together with experimental test results validating the proposed device.

  2. ATCA-based ATLAS FTK input interface system

    International Nuclear Information System (INIS)

    The first stage of the ATLAS Fast TracKer (FTK) is an ATCA-based input interface system, where hits from the entire silicon tracker are clustered and organized into overlapping η-φ trigger towers before being sent to the tracking engines. First, FTK Input Mezzanine cards receive hit data and perform clustering to reduce data volume. Then, the ATCA-based Data Formatter system will organize the trigger tower data, sharing data among boards over full mesh backplanes and optic fibers. The board and system level design concepts and implementation details, as well as the operation experiences from the FTK full-chain testing, will be presented

  3. Age Based User Interface in Mobile Operating System

    CERN Document Server

    Sharma, Sumit; Singh, Paramjit; Mahajan, Aditya; 10.5121/ijcsea.2012.2215

    2012-01-01

    This paper proposes the creation of different interfaces in the mobile operating system for different age groups. The different age groups identified are kids, elderly people and all others. The motive behind creating different interfaces is to make the smartphones of today's world usable to all age groups.

  4. Interface design approach for system on chip based on configuration

    OpenAIRE

    Maalej, Issam; Gogniat, Guy; Abid, Mohamed; Philippe, Jean Luc

    2003-01-01

    Communication synthesis is an essential step in hardware/software co-synthesis: many embedded systems use automatic generation of interface for point to point communication or use external supports of communication as standard bus or micro network. In this paper, we address the problem of hardware – software interface design in codesign approach for real-time applications. We refer to the hardware component as hardware accelerator and the software component as processor. In our approach, the ...

  5. Interface Agent for Computer-based Tutoring Systems.

    Science.gov (United States)

    Dang, Trang; Ghenniwa, Hamada; Kamel, Mohamed

    1999-01-01

    Proposes an interface agent for intelligent tutoring systems that creates a collaborative learning environment between the learner and the tutoring software. Describes implementation of a prototype using the IBM Agent Builder Environment Toolkit to use with an intelligent tutoring system for algebra and considers benefits in a lifelong learning…

  6. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    Science.gov (United States)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  7. Interface design for an audio based information retrieval system

    OpenAIRE

    Johnson, James Robert

    1992-01-01

    This project involves a telephone-based information retrieval system. Users interact with the computer by pressing buttons on a telephone keypad and listening to the computer respond by way of a speech synthesizer. The purpose of this project is to redesign and revise an existing information retrieval system. The goals of this project include simplifying the job of the menu designer and providing a way so experience can aid users to perform a given task faster than previously possible. Key...

  8. DESIGN OF A VISUAL INTERFACE FOR ANN BASED SYSTEMS

    OpenAIRE

    Ramazan BAYINDIR; SESVEREN, Ömer

    2008-01-01

    Artificial intelligence application methods have been used for control of many systems with parallel of technological development besides conventional control techniques. Increasing of artificial intelligence applications have required to education in this area. In this paper, computer based an artificial neural network (ANN) software has been presented to learning and understanding of artificial neural networks. By means of the developed software, the training of the artificial neural networ...

  9. The web-based user interface for EAST plasma control system

    International Nuclear Information System (INIS)

    The plasma control system (PCS) plays a vital role at EAST for fusion science experiments. Its software application consists of two main parts: an IDL graphical user interface for setting a large number of plasma parameters to specify each discharge, several programs for performing the real-time feedback control and managing the whole control system. The PCS user interface can be used from any X11 Windows client with privileged access to the PCS computer system. However, remote access to the PCS system via the IDL user interface becomes an extreme inconvenience due to the high network latency to draw or operate the interfaces. In order to realize lower latency for remote access to the PCS system, a web-based system has been developed for EAST recently. The setup data are retrieved from the PCS system and client-side JavaScript draws the interfaces into the user's browser. The user settings are also sent back to the PCS system for controlling discharges. These technologies allow the web-based user interface to be viewed by authorized users with a web browser and have it communicate with PCS server processes directly. It works together with the IDL interface and provides a new way to aid remote participation

  10. Human-Robot Interface over the Web Based Intelligent System

    Directory of Open Access Journals (Sweden)

    Desa Hazry

    2006-01-01

    Full Text Available This research extends the capability for the new technology platform by Remote Data Inspection System (RDIS server from Furukawa Co., Ltd. Enabling the integration of standard Hypertext Markup Language (HTML programming and RDIS tag programming to create a user-friendly “point-and-click” web-based control mechanism. The integration allows the users to send commands to mobile robot over the Internet. Web-based control enables human to extend his action and intelligence to remote locations. Three mechanisms for web-based controls are developed: Manual remote control, continuous operation event and autonomous navigational control. In the manual remote control the user is fully responsible for the robot action and the robot do not use any sophisticated algorithms. The continuous operation event is the extension of the basic movement of a manual remote control mechanism. In the autonomous navigation control, the user has more flexibility to tell the robot to carry out specific tasks. Using this method, mobile robot can be controlled via the web, from any places connected to the network without constructing specific infrastructures for communication.

  11. The general detector test system under Linux based on root interface

    International Nuclear Information System (INIS)

    This paper has introduced a general detector test system based on graph interface that under Linux operating system. This system can install expediently according to the different requirement of experiment. It can realize the control for high voltage; realize the automation measure the curve of efficiency and counting rate; the measurement of the signal amplitude, charge and time under different high voltage. (authors)

  12. Integrating and Interfacing Library Systems.

    Science.gov (United States)

    Boss, Richard W.

    1985-01-01

    This overview of local library online systems that integrate several functions covers functional integration, benefits of integrated systems, turnkey systems, minicomputer and microcomputer-based systems, interfacing automated systems, types of interfaces, linking homogenous and heterogeneous systems, role of vendors, library applications, linking…

  13. Man-system interface based on automatic speech recognition: integration to a virtual control desk

    International Nuclear Information System (INIS)

    This work reports the implementation of a man-system interface based on automatic speech recognition, and its integration to a virtual nuclear power plant control desk. The later is aimed to reproduce a real control desk using virtual reality technology, for operator training and ergonomic evaluation purpose. An automatic speech recognition system was developed to serve as a new interface with users, substituting computer keyboard and mouse. They can operate this virtual control desk in front of a computer monitor or a projection screen through spoken commands. The automatic speech recognition interface developed is based on a well-known signal processing technique named cepstral analysis, and on artificial neural networks. The speech recognition interface is described, along with its integration with the virtual control desk, and results are presented. (author)

  14. Blind Source Separation Based of Brain Computer Interface System: A review

    OpenAIRE

    Ahmed Kareem Abdullah; Zhang Chao Zhu

    2014-01-01

    This study reviews the originality and development of the Brain Computer Interface (BCI) system and focus on the BCI system design based on Blind Source Separation (BSS) techniques. The study also provides the recent trends and discusses some of a new ideas for BSS techniques in BCI architecture, articles which discussing the BCI system development were analysed, types of the BCI systems and the recent BCI design were explored. Since 1970 when the research of BCI system began in the Californi...

  15. ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE

    International Nuclear Information System (INIS)

    Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which can complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper

  16. Microprocessor-based interface for oceanography

    Science.gov (United States)

    Hansen, G. R.

    1979-01-01

    Ocean floor imaging system incorporates five identical microprocessor-based interface units each assigned to specific sonar instrument to simplify system. Central control module based on same microprocessor eliminates need for custom tailoring hardware interfaces for each instrument.

  17. Development of intelligent interface for simulation execution by module-based simulation system

    International Nuclear Information System (INIS)

    An intelligent user support for the two phases of simulation execution was newly developed for Module-based Simulation System (MSS). The MSS has been in development as a flexible simulation environment to improve software productivity in complex, large-scale dynamic simulation of nuclear power plant. The AI programing by Smalltalk-80 was applied to materialize the two user-interface programs for (i) semantic diagnosis of the simulation program generated automatically by MSS, and (ii) consultation system by which user can set up consistent numerical input data files necessary for executing a MSS-generated program. Frame theory was utilized in those interface programs to represent the four knowledge bases, which are (i) usage information on module library in MSS and MSS-generated program, and (ii) expertise knowledge on nuclear power plant analysis such as material properties and reactor system configuration. Capabilities of those interface programs were confirmed by some example practice on LMFBR reactor dynamic calculation, and it was demonstrated that the knowledge-based systemization was effective to improve software work environment. (author)

  18. Human-machine interfaces based on EMG and EEG applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Sarcinelli-Filho Mario

    2008-03-01

    Full Text Available Abstract Background Two different Human-Machine Interfaces (HMIs were developed, both based on electro-biological signals. One is based on the EMG signal and the other is based on the EEG signal. Two major features of such interfaces are their relatively simple data acquisition and processing systems, which need just a few hardware and software resources, so that they are, computationally and financially speaking, low cost solutions. Both interfaces were applied to robotic systems, and their performances are analyzed here. The EMG-based HMI was tested in a mobile robot, while the EEG-based HMI was tested in a mobile robot and a robotic manipulator as well. Results Experiments using the EMG-based HMI were carried out by eight individuals, who were asked to accomplish ten eye blinks with each eye, in order to test the eye blink detection algorithm. An average rightness rate of about 95% reached by individuals with the ability to blink both eyes allowed to conclude that the system could be used to command devices. Experiments with EEG consisted of inviting 25 people (some of them had suffered cases of meningitis and epilepsy to test the system. All of them managed to deal with the HMI in only one training session. Most of them learnt how to use such HMI in less than 15 minutes. The minimum and maximum training times observed were 3 and 50 minutes, respectively. Conclusion Such works are the initial parts of a system to help people with neuromotor diseases, including those with severe dysfunctions. The next steps are to convert a commercial wheelchair in an autonomous mobile vehicle; to implement the HMI onboard the autonomous wheelchair thus obtained to assist people with motor diseases, and to explore the potentiality of EEG signals, making the EEG-based HMI more robust and faster, aiming at using it to help individuals with severe motor dysfunctions.

  19. The NC (numerically controlled) assistant: Interfacing knowledge based manufacturing tools to CAD/CAM systems

    Energy Technology Data Exchange (ETDEWEB)

    Burd, W.C.

    1988-01-01

    A knowledge based computer program that assists programmers of numerically controlled (NC) machine tools is described. The program uses part features identified by the NC programmer and a set of expert system manufacturing rules to select cutting parameters and produce NC part programs. An expert system shell determines the NC sequence and the machining parameters. Several point-to-point NC functions are currently in production. A CAD/CAM system interface for milling and turning functions is also described. 2 refs., 24 figs.

  20. A Neuromorphic Event-Based Neural Recording System for Smart Brain-Machine-Interfaces.

    Science.gov (United States)

    Corradi, Federico; Indiveri, Giacomo

    2015-10-01

    Neural recording systems are a central component of Brain-Machince Interfaces (BMIs). In most of these systems the emphasis is on faithful reproduction and transmission of the recorded signal to remote systems for further processing or data analysis. Here we follow an alternative approach: we propose a neural recording system that can be directly interfaced locally to neuromorphic spiking neural processing circuits for compressing the large amounts of data recorded, carrying out signal processing and neural computation to extract relevant information, and transmitting only the low-bandwidth outcome of the processing to remote computing or actuating modules. The fabricated system includes a low-noise amplifier, a delta-modulator analog-to-digital converter, and a low-power band-pass filter. The bio-amplifier has a programmable gain of 45-54 dB, with a Root Mean Squared (RMS) input-referred noise level of 2.1 μV, and consumes 90 μW . The band-pass filter and delta-modulator circuits include asynchronous handshaking interface logic compatible with event-based communication protocols. We describe the properties of the neural recording circuits, validating them with experimental measurements, and present system-level application examples, by interfacing these circuits to a reconfigurable neuromorphic processor comprising an array of spiking neurons with plastic and dynamic synapses. The pool of neurons within the neuromorphic processor was configured to implement a recurrent neural network, and to process the events generated by the neural recording system in order to carry out pattern recognition. PMID:26513801

  1. Icinga Monitoring System Interface

    CERN Document Server

    Neculae, Alina Georgiana

    2014-01-01

    The aim of this project is to develop a web interface that would be used by the Icinga monitoring system to manage the CMS online cluster, in the experimental site. The interface would allow users to visualize the information in a compressed and intuitive way, as well as modify the information of each individual object and edit the relationships between classes.

  2. Real-Time Brain-Computer Interface System Based on Motor Imagery

    Institute of Scientific and Technical Information of China (English)

    Tie-Jun Liu; Ping Yang; Xu-Yong Peng; Yu Huang; De-Zhong Yao

    2009-01-01

    A brain-computer interface (BCI) real-time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments.A key problem to be solved for practical applications is real-time data collection and processing.In this paper,a real-time BCI system is implemented on computer with electroencephalogram amplifier.In our implementation,the on-line voting method is adopted for feedback control strategy,and the voting results are used to control the cursor horizontal movement.Three subjects take part in the experiment.The results indicate that the best accuracy is 90%.

  3. An intelligent human-machine system based on an ecological interface design concept

    International Nuclear Information System (INIS)

    It seems both necessary and promising to develop an intelligent human-machine system, considering the objective of the human-machine system and the recent advance in cognitive engineering and artificial intelligence together with the ever-increasing importance of human factor issues in nuclear power plant operation and maintenance. It should support human operators in their knowledge-based behaviour and allow them to cope with unanticipated abnormal events, including recovery from erroneous human actions. A top-down design approach has been adopted based on cognitive work analysis, and (1) an ecological interface, (2) a cognitive model-based advisor and (3) a robust automatic sequence controller have been established. These functions have been integrated into an experimental control room. A validation test was carried out by the participation of experienced operators and engineers. The results showed the usefulness of this system in supporting the operator's supervisory plant control tasks. ((orig.))

  4. Development of an X Window based operator's interface for a core monitoring system

    International Nuclear Information System (INIS)

    The components, functioning and programming concepts of the man-machine interface applied in an upgraded version of the core monitoring system and reactor information system VERONA for WWER-440 type nuclear power reactors, installed at the Paks Nuclear Power Plant, are described. The application of the X Window standard Graphical User Interface facilitated modular interface design and made program development easier and faster. (author) 3 refs.; 13 figs

  5. Oracle-based data archiver system and interface design for SSRF

    International Nuclear Information System (INIS)

    SSRF, as a national scientific base in China to provide synchrotron radiations from IR to hard X-rays for hundreds of scientists working simultaneously on the experimental stations, needs an efficient software platform for the facility control and user service. It uses a distributed control system of EPICS, which is commonly used home and abroad in large scientific facilities. Channel Archiver is an archiving toolset for EPICS, which is used to store and retrieve different types of data generated by EPICS. Based on analysis of Archive System, we have found some ways to overcome the defects in existing, and designed a new archiver system using Oracle database. This offers a unified interface for varieties of programs. (authors)

  6. End user interface and knowledge base editing system of CSPAR: a knowledge-based consultation system for preventive maintenance in nuclear plants

    International Nuclear Information System (INIS)

    Consultation System for Prevention of Abnormal-event Recurrence (CSPAR) is a knowledge-based system to analyze the same kind of events to a given fault reported on a nuclear power plant and to give users some informations for effective measures preventing them. This report discusses the interfaces of CSPAR for both end-users and knowledge-base editors. The interfaces are highly interactive and multi-window oriented. The features are as follows: (1) The end-user interfaces has Japanese language processing facility, which enables the users to consult CSPAR with various synonims and related terms for knowledge-base handling; (2) The knowledge-base editing system is used by knowledge-base editors for maintaining the knowledge on both plants' equipments and abnormal events sequences. It has facilities for easy maintenance of knowledge-bases, which includes a graphic oriented browser, a knowledge-base retriever, and a knowledge-base checker. (author)

  7. The graphics-based human interface to the DISYS diagnostic/control guidance system at EBR-2

    International Nuclear Information System (INIS)

    An initial graphics based interface to the real-time DISYS diagnostic system has been developed using the multi-tasking capabilities of the UNIX operating system and X-Windows 11 Xlib graphics library. This system is interfaced to live plant data at the Experimental Breeder Reactor (EBR-2) for the Argon Cooling System of fuel handling operations and the steam plant. The interface includes an intelligent process schematic which highlights problematic components and sensors based on the results of the diagnostic computations. If further explanation of a faulted component is required, the user can call up a display of the diagnostic computations presented in a tree-like diagram. Numerical data on the process schematic and optional diagnostic tree are updated as new real-time data becomes available. The initial X-Windows 11 based interface will be further enhanced using VI Corporation DATAVIEWS graphical data base software. 5 refs., 6 figs

  8. An X window based graphics user interface for radiation information processing system developed with object-oriented programming technology

    International Nuclear Information System (INIS)

    X Window is a network-oriented and network transparent windowing system, and now dominant in the Unix domain. The object-oriented programming technology can be used to change the extensibility of a software system remarkably. An introduction to graphics user interface is given. And how to develop a graphics user interface for radiation information processing system with object-oriented programming technology, which is based on X Window and independent of application is described briefly

  9. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system

    Directory of Open Access Journals (Sweden)

    Daniel Brüderle

    2009-06-01

    Full Text Available Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  10. Vision based interface system for hands free control of an intelligent wheelchair

    Directory of Open Access Journals (Sweden)

    Kim Eun

    2009-08-01

    Full Text Available Abstract Background Due to the shift of the age structure in today's populations, the necessities for developing the devices or technologies to support them have been increasing. Traditionally, the wheelchair, including powered and manual ones, is the most popular and important rehabilitation/assistive device for the disabled and the elderly. However, it is still highly restricted especially for severely disabled. As a solution to this, the Intelligent Wheelchairs (IWs have received considerable attention as mobility aids. The purpose of this work is to develop the IW interface for providing more convenient and efficient interface to the people the disability in their limbs. Methods This paper proposes an intelligent wheelchair (IW control system for the people with various disabilities. To facilitate a wide variety of user abilities, the proposed system involves the use of face-inclination and mouth-shape information, where the direction of an IW is determined by the inclination of the user's face, while proceeding and stopping are determined by the shapes of the user's mouth. Our system is composed of electric powered wheelchair, data acquisition board, ultrasonic/infra-red sensors, a PC camera, and vision system. Then the vision system to analyze user's gestures is performed by three stages: detector, recognizer, and converter. In the detector, the facial region of the intended user is first obtained using Adaboost, thereafter the mouth region is detected based on edge information. The extracted features are sent to the recognizer, which recognizes the face inclination and mouth shape using statistical analysis and K-means clustering, respectively. These recognition results are then delivered to the converter to control the wheelchair. Result & conclusion The advantages of the proposed system include 1 accurate recognition of user's intention with minimal user motion and 2 robustness to a cluttered background and the time-varying illumination

  11. The Los Alamos accelerator control system data base: A generic instrumentation interface

    International Nuclear Information System (INIS)

    Controlling experimental-physics applications requires a control system that can be quickly integrated and easily modified. One aspect of the control system is the interface to the instrumentation. An instrumentation set has been chosen to implement the basic functions needed to monitor and control these applications. A data-driven interface to this instrumentation set provides the required quick integration of the control system. This type of interface is limited by its built-in capabilities. Therefore, these capabilities must provide an adequate range of functions to be of any use. The data-driven interface must support the instrumentation range requird, the events on which to read or control the instrumentation and a method for manipulating the data to calculate terms or close control loops. The database for the Los Alamos Accelerator Control System addresses these requirements. (orig.)

  12. Power Quality Enhancement in Wind Connected Grid System Interface Based On Static Switched Filter Compensator (SSFC

    Directory of Open Access Journals (Sweden)

    Lakshmi Prasanna Vatti

    2014-11-01

    Full Text Available Wind energy has become one of the significant alternative renewable energy resources because of its abundance and the strong drive for its commercialization. Dynamic electric load variations and wind velocity excursions cause excessive changes in the prime mover kinetic energy and the corresponding electrical power injected into the AC grid utility system. In this paper, a scheme based on the low cost static switched filter compensator (SSFC is presented for voltage sag/swell compensation, power factor improvement in distribution grid networks with the dispersed wind energy interface. The SSFC scheme is based on an intermittent switching process between two shunt capacitor banks to be one of them in parallel with the capacitor of a tuned arm filter. Two regulators based on a tri- loop dynamic error driven inter-coupled weighted modified proportional-integralderivative (PID controller which is used to modulate the PWM. The Static Switched Filter Compensation (SSFC compensation scheme which enhances the system power quality has been fully validated using MATLAB–Simulink. The effectiveness of this compensation scheme approach is demonstrated using a study case of 3 bus system. Simulation results show that there is improvement in harmonics reduction, voltage sag/swell compensation, power factor improvement at generator bus, load bus, and infinite bus respectively

  13. UNIVERSAL INTERFACE TO MULTIPLE OPERATIONS SYSTEMS

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1986-01-01

    Alternative ways to provide access to operations systems that maintain, test, and configure complex telephone networks are being explored. It is suggested that a universal interface that provides simultaneous access to multiple operations systems that execute in different hardware and software...... environments, can be provided by an architecture that is based on the separation of presentation issues from application issues and on a modular interface management system that consists of a virtual user interface, physical user interface, and interface agent. The interface functionality that is needed...

  14. A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System

    Science.gov (United States)

    Resalat, Seyed Navid; Saba, Valiallah

    2016-01-01

    Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifier to select the best feature sets in the offline mode. The data set was recorded in 3-class tasks of the left hand, the right hand, and the foot motor imagery. Results: The experimental results showed that Auto-Regressive (AR), Mean Absolute Value (MAV), and Band Power (BP) features have higher accuracy values,75% more than those for the other features. Discussion: These features were selected for the designed real-time navigation. The corresponding results revealed the subject-specific nature of the MI-based BCI system; however, the Power Spectral Density (PSD) based α-BP feature had the highest averaged accuracy.

  15. Interface Testing for RTOS System Tasks based on the Run-Time Monitoring

    International Nuclear Information System (INIS)

    Safety critical embedded system requires high dependability of not only hardware but also software. It is intricate to modify embedded software once embedded. Therefore, it is necessary to have rigorous regulations to assure the quality of safety critical embedded software. IEEE V and V (Verification and Validation) process is recommended for software dependability, but a more quantitative evaluation method like software testing is necessary. In case of safety critical embedded software, it is essential to have a test that reflects unique features of the target hardware and its operating system. The safety grade PLC (Programmable Logic Controller) is a safety critical embedded system where hardware and software are tightly coupled. The PLC has HdS (Hardware dependent Software) and it is tightly coupled with RTOS (Real Time Operating System). Especially, system tasks that are tightly coupled with target hardware and RTOS kernel have large influence on the dependability of the entire PLC. Therefore, interface testing for system tasks that reflects the features of target hardware and RTOS kernel becomes the core of the PLC integration test. Here, we define interfaces as overlapped parts between two different layers on the system architecture. In this paper, we identify interfaces for system tasks and apply the identified interfaces to the safety grade PLC. Finally, we show the test results through the empirical study

  16. Man-Machine Interface System for Neuromuscular Training and Evaluation Based on EMG and MMG Signals

    OpenAIRE

    Patricia Fernández; Albano Carrera; Ramon Durán; Ramon de la Rosa; Alonso Alonso

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is c...

  17. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system

    Science.gov (United States)

    Robinson, Neethu; Guan, Cuntai; Vinod, A. P.

    2015-12-01

    Objective. The various parameters that define a hand movement such as its trajectory, speed, etc, are encoded in distinct brain activities. Decoding this information from neurophysiological recordings is a less explored area of brain-computer interface (BCI) research. Applying non-invasive recordings such as electroencephalography (EEG) for decoding makes the problem more challenging, as the encoding is assumed to be deep within the brain and not easily accessible by scalp recordings. Approach. EEG based BCI systems can be developed to identify the neural features underlying movement parameters that can be further utilized to provide a detailed and well defined control command set to a BCI output device. A real-time continuous control is better suited for practical BCI systems, and can be achieved by continuous adaptive reconstruction of movement trajectory than discrete brain activity classifications. In this work, we adaptively reconstruct/estimate the parameters of two-dimensional hand movement trajectory, namely movement speed and position, from multi-channel EEG recordings. The data for analysis is collected by performing an experiment that involved center-out right-hand movement tasks in four different directions at two different speeds in random order. We estimate movement trajectory using a Kalman filter that models the relation between brain activity and recorded parameters based on a set of defined predictors. We propose a method to define these predictor variables that includes spatial, spectral and temporally localized neural information and to select optimally informative variables. Main results. The proposed method yielded correlation of (0.60 ± 0.07) between recorded and estimated data. Further, incorporating the proposed predictor subset selection, the correlation achieved is (0.57 ± 0.07, p {\\lt }0.004) with significant gain in stability of the system, as well as dramatic reduction in number of predictors (76%) for the savings of computational

  18. PC-based Human Machine Interface Control for Packaging System in Pharmaceutical Factory

    OpenAIRE

    Zin Mar Tun; Theingi; Kyaw Thiha

    2014-01-01

    Moving from trend to tradition, more and more manufacturers are adding human machine interface (HMI) to their manufacturing process. A good HMI will increase the productivity of the operator and machine, increase uptime and assist in providing consistent product quality. In this system, HMI is developed to monitor the whole process and control the functions of process. The system is designed and constructed to control and monitor drug bottle packaging operation in the pharmaceutical factory. ...

  19. A python based interface for the tandem-linac control system

    International Nuclear Information System (INIS)

    The control system for the Tandem-LINAC accelerator system at IUAC is a client-server design running on a network of PCs under the GNU/Linux operating system. The computers connected to the devices in the accelerator run a server program. The computers providing the user interface runs different kinds of client programs that communicates to the servers over a TCT/IP network to control/monitor the accelerator parameters. Both the programs were written in C language and some programming expertise was required to write the client programs. The addition of a Python language interface has enabled the users to write programs for specific tasks like data logging and partial automation of the operation with minimal effort. (author)

  20. Brain Computer Interface Learning for Systems Based on Electrocorticography and Intracortical Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    2015-06-01

    Full Text Available A brain-computer interface (BCI system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  1. PC-based Human Machine Interface Control for Packaging System in Pharmaceutical Factory

    Directory of Open Access Journals (Sweden)

    Zin Mar Tun

    2014-12-01

    Full Text Available Moving from trend to tradition, more and more manufacturers are adding human machine interface (HMI to their manufacturing process. A good HMI will increase the productivity of the operator and machine, increase uptime and assist in providing consistent product quality. In this system, HMI is developed to monitor the whole process and control the functions of process. The system is designed and constructed to control and monitor drug bottle packaging operation in the pharmaceutical factory. PC is interfaced with hardware module using serial interfacing circuit. The monitoring and running conditions are shown by motors and sensors on the screen of computer using a group of program as Visual Basic.Net and Mikro C. The robotic arm used as packager is constructed using aluminum and the gripper is made by plastic. The control circuit is consisted of PIC, DC motors, motor drivers, LDR and limit switches. It is also used own programs using VB.NET instead of off-the-shelf software. . The software is designed of the real time monitoring for packaging process and included signal sensing, supervisory control using PIC, data acquisition and visualization programs. This research is studied to develop automation manufacturing technology in Myanmar industries and implement the software package to control the operations.

  2. A MATLAB-based interface for the beam-transport system of an AMS facility

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Guzmán, J.M., E-mail: jm_gomez@us.es [Centro Nacional de Aceleradores (CNA), University of Seville (Spain); Dpto. de Física Atómica, Molecular y Nuclear, University of Seville (Spain); Gómez-Morilla, I. [Technische Universität Dresden, Fakultät Maschinenwesen, Professur für Magnetofluiddynamik (Germany); Enamorado-Báez, S.M.; Moreno-Suárez, A.I.; Pinto-Gómez, A.R. [Centro Nacional de Aceleradores (CNA), University of Seville (Spain)

    2013-12-01

    In this paper we present a MATLAB code built to model the transport of a charged particle beam through the Accelerator Mass Spectrometry (AMS) facility located at the Centro Nacional de Aceleradores (CNA, Seville, Spain). We determine the beam transport through the optical system using the transfer matrix formalism in two different approaches (ray tracing and the beam-envelope approach) and describe it in terms of cross section size and emittance. The beam size results given by MATLAB are compared with the measured beam size in three of the four image points that the system has, obtaining a good agreement between them. This suggests that the first-order transfer matrix formalism is enough to simulate the optical behavior of the system. The present version of this interface enables the user to control, interact with and display a beam transport system. Parameters involved in the optics such as voltages applied to the lenses, terminal voltage and charge state of the selected ion can be modified using this interface, which gives great generality, as the optics behavior of the AMS system can be simulated for any ion species prior to operation.

  3. A MATLAB-based interface for the beam-transport system of an AMS facility

    International Nuclear Information System (INIS)

    In this paper we present a MATLAB code built to model the transport of a charged particle beam through the Accelerator Mass Spectrometry (AMS) facility located at the Centro Nacional de Aceleradores (CNA, Seville, Spain). We determine the beam transport through the optical system using the transfer matrix formalism in two different approaches (ray tracing and the beam-envelope approach) and describe it in terms of cross section size and emittance. The beam size results given by MATLAB are compared with the measured beam size in three of the four image points that the system has, obtaining a good agreement between them. This suggests that the first-order transfer matrix formalism is enough to simulate the optical behavior of the system. The present version of this interface enables the user to control, interact with and display a beam transport system. Parameters involved in the optics such as voltages applied to the lenses, terminal voltage and charge state of the selected ion can be modified using this interface, which gives great generality, as the optics behavior of the AMS system can be simulated for any ion species prior to operation

  4. Integrated Real-Time Control And Processing Systems For Multi-Channel Near-Infrared Spectroscopy Based Brain Computer Interfaces

    OpenAIRE

    Matthews, Fiachra

    2010-01-01

    This thesis outlines approaches to improve the signal processing and anal- ysis of Near-infrared spectroscopy (NIRS) based brain-computer interfaces (BCI). These approaches were developed in conjunction with the implemen- tation of a new customized exible multi-channel NIRS based BCI hardware system (Soraghan, 2010). Using a comparable functional imaging modality the assumptions on which NIRS-BCI have been reassessed, with regard to cognitive task selection, active area ...

  5. PCIE interface design for high-speed image storage system based on SSD

    Science.gov (United States)

    Wang, Shiming

    2015-02-01

    This paper proposes and implements a standard interface of miniaturized high-speed image storage system, which combines PowerPC with FPGA and utilizes PCIE bus as the high speed switching channel. Attached to the PowerPC, mSATA interface SSD(Solid State Drive) realizes RAID3 array storage. At the same time, a high-speed real-time image compression patent IP core also can be embedded in FPGA, which is in the leading domestic level with compression rate and image quality, making that the system can record higher image data rate or achieve longer recording time. The notebook memory card buckle type design is used in the mSATA interface SSD, which make it possible to complete the replacement in 5 seconds just using single hand, thus the total length of repeated recordings is increased. MSI (Message Signaled Interrupts) interruption guarantees the stability and reliability of continuous DMA transmission. Furthermore, only through the gigabit network, the remote display, control and upload to backup function can be realized. According to an optional 25 frame/s or 30 frame/s, upload speeds can be up to more than 84 MB/s. Compared with the existing FLASH array high-speed memory systems, it has higher degree of modularity, better stability and higher efficiency on development, maintenance and upgrading. Its data access rate is up to 300MB/s, realizing the high speed image storage system miniaturization, standardization and modularization, thus it is fit for image acquisition, storage and real-time transmission to server on mobile equipment.

  6. Navigation with a passive brain based interface

    NARCIS (Netherlands)

    Erp, J.B.F. van; Werkhoven, P.J.; Thurlings, M.E.; Brouwer, A.-M.

    2009-01-01

    In this paper, we describe a Brain Computer Interface (BCI) for navigation. The system is based on detecting brain signals that are elicited by tactile stimulation on the torso indicating the desired direction.

  7. An Automated Graphical User Interface based System for the Extraction of Retinal Blood Vessels using Kirsch’s Template

    OpenAIRE

    Joshita Majumdar; Souvik Tewary; Shreyosi Chakraborty; Debasish Kundu; Sudipta Ghosh; Sauvik Das Gupta

    2015-01-01

    The assessment of Blood Vessel networks plays an important role in a variety of medical disorders. The diagnosis of Diabetic Retinopathy (DR) and its repercussions including micro aneurysms, haemorrhages, hard exudates and cotton wool spots is one such field. This study aims to develop an automated system for the extraction of blood vessels from retinal images by employing Kirsch’s Templates in a MATLAB based Graphical User Interface (GUI). Here, a RGB or Grey image of the retina (Fundus Phot...

  8. A novel mu rhythm-based brain computer interface design that uses a programmable system on chip

    OpenAIRE

    Joshi, R Rohan; Saraswat, Prateek; Gajendran, Rudhram

    2012-01-01

    This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the...

  9. Man-Machine Interface System for Neuromuscular Training and Evaluation Based on EMG and MMG Signals

    Directory of Open Access Journals (Sweden)

    Patricia Fernández

    2010-12-01

    Full Text Available This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System, a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES and, as a novelty, the myomechanic signals (MMS. In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals.

  10. EEG Based Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Syed M. Saddique

    2009-08-01

    Full Text Available Brain-Computer Interface (BCI has added a new value to efforts being made under human machine interfaces. It has not only introduced new dimensions in machine control but the researchers round the globe are still exploring the possible uses of such applications. BCIs have given a hope where alternative communication channels can be created for the persons having severe motor disabilities. This work is based upon utilizing the brain signals of a human being via scalp Electroencephalography (EEG to get the control of a robot’s navigation which can be visualized as controlling one’s surrounding environment without physical strain. In this work when a person thinks of a motor activity, it gets performed. The procedure includes acquisition and analysis of brain signals via EEG equipment, development of a classification system using AI techniques and propagating the subsequent control signals to Lego-robot via parallel port. This has been depicted in [1] as a generic block diagram.

  11. Automated Fluid Interface System (AFIS)

    Science.gov (United States)

    1990-01-01

    Automated remote fluid servicing will be necessary for future space missions, as future satellites will be designed for on-orbit consumable replenishment. In order to develop an on-orbit remote servicing capability, a standard interface between a tanker and the receiving satellite is needed. The objective of the Automated Fluid Interface System (AFIS) program is to design, fabricate, and functionally demonstrate compliance with all design requirements for an automated fluid interface system. A description and documentation of the Fairchild AFIS design is provided.

  12. Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating.

    Science.gov (United States)

    Palui, Goutam; Aldeek, Fadi; Wang, Wentao; Mattoussi, Hedi

    2015-01-01

    Interfacing inorganic nanoparticles and biological systems with the aim of developing novel imaging and sensing platforms has generated great interest and much activity. However, the effectiveness of this approach hinges on the ability of the surface ligands to promote water-dispersion of the nanoparticles with long term colloidal stability in buffer media. These surface ligands protect the nanostructures from the harsh biological environment, while allowing coupling to target molecules, which can be biological in nature (e.g., proteins and peptides) or exhibit specific photo-physical characteristics (e.g., a dye or a redox-active molecule). Amphiphilic block polymers have provided researchers with versatile molecular platforms with tunable size, composition and chemical properties. Hence, several groups have developed a wide range of polymers as ligands or micelle capsules to promote the transfer of a variety of inorganic nanomaterials to buffer media (including magnetic nanoparticles and semiconductor nanocrystals) and render them biocompatible. In this review, we first summarize the established synthetic routes to grow high quality nanocrystals of semiconductors, metals and metal oxides. We then provide a critical evaluation of the recent developments in the design, optimization and use of various amphiphilic copolymers to surface functionalize the above nanocrystals, along with the strategies used to conjugate them to target biomolecules. We finally conclude by providing a summary of the most promising applications of these polymer-coated inorganic platforms in sensor design, and imaging of cells and tissues. PMID:25029116

  13. Natural language interface for nuclear data bases

    International Nuclear Information System (INIS)

    A natural language interface has been developed for access to information from a data base, simulating a nuclear plant reliability data system (NPRDS), one of the several existing data bases serving the nuclear industry. In the last decade, the importance of information has been demonstrated by the impressive diffusion of data base management systems. The present methods that are employed to access data bases fall into two main categories of menu-driven systems and use of data base manipulation languages. Both of these methods are currently used by NPRDS. These methods have proven to be tedious, however, and require extensive training by the user for effective utilization of the data base. Artificial intelligence techniques have been used in the development of several intelligent front ends for data bases in nonnuclear domains. Lunar is a natural language program for interface to a data base describing moon rock samples brought back by Apollo. Intellect is one of the first data base question-answering systems that was commercially available in the financial area. Ladder is an intelligent data base interface that was developed as a management aid to Navy decision makers. A natural language interface for nuclear data bases that can be used by nonprogrammers with little or no training provides a means for achieving this goal for this industry

  14. Development of user interface to support automatic program generation of nuclear power plant analysis by module-based simulation system

    International Nuclear Information System (INIS)

    Module-based Simulation System (MSS) has been developed to realize a new software work environment enabling versatile dynamic simulation of a complex nuclear power system flexibly. The MSS makes full use of modern software technology to replace a large fraction of human software works in complex, large-scale program development by computer automation. Fundamental methods utilized in MSS and developmental study on human interface system SESS-1 to help users in generating integrated simulation programs automatically are summarized as follows: (1) To enhance usability and 'communality' of program resources, the basic mathematical models of common usage in nuclear power plant analysis are programed as 'modules' and stored in a module library. The information on usage of individual modules are stored in module database with easy registration, update and retrieval by the interactive management system. (2) Target simulation programs and the input/output files are automatically generated with simple block-wise languages by a precompiler system for module integration purpose. (3) Working time for program development and analysis in an example study of an LMFBR plant thermal-hydraulic transient analysis was demonstrated to be remarkably shortened, with the introduction of an interface system SESS-1 developed as an automatic program generation environment. (author)

  15. Systems interface biology

    OpenAIRE

    Francis J Doyle; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Henc...

  16. Hardware and Software Design of FPGA-based PCIe Gen3 interface for APEnet+ network interconnect system

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2015-12-01

    In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.

  17. Optimizing human-system interface automation design based on a skill-rule-knowledge framework

    International Nuclear Information System (INIS)

    This study considers the technological change that has occurred in complex systems within the past 30 years. The role of human operators in controlling and interacting with complex systems following the technological change was also investigated. Modernization of instrumentation and control systems and components leads to a new issue of human-automation interaction, in which human operational performance must be considered in automated systems. The human-automation interaction can differ in its types and levels. A system design issue is usually realized: given these technical capabilities, which system functions should be automated and to what extent? A good automation design can be achieved by making an appropriate human-automation function allocation. To our knowledge, only a few studies have been published on how to achieve appropriate automation design with a systematic procedure. Further, there is a surprising lack of information on examining and validating the influences of levels of automation (LOAs) on instrumentation and control systems in the advanced control room (ACR). The study we present in this paper proposed a systematic framework to help in making an appropriate decision towards types of automation (TOA) and LOAs based on a 'Skill-Rule-Knowledge' (SRK) model. From the evaluating results, it was shown that the use of either automatic mode or semiautomatic mode is insufficient to prevent human errors. For preventing the occurrences of human errors and ensuring the safety in ACR, the proposed framework can be valuable for making decisions in human-automation allocation.

  18. Design of interface for industrial CT data transfers system base on ARM9 and FPGA

    International Nuclear Information System (INIS)

    A design base on ARM9 microprocessor produced by samsung company and FPGA produced by altera company. Details on hardware connection technology between S3C2410 and FPGA via AHB bus. The design also introduce realization of the timing control of AHB bus in QuartusII environment and drivers development for AHB bus under the Linux operation system. The results realize the data transfer steadily and rapidly in Industrial CT Data Transfers System. The design display advantage of ARM and FPGA. And also give good instructions for other similar design on dual core. (authors)

  19. Delphi Interface Maintenance System

    Data.gov (United States)

    Department of Transportation — DIMS is the primary financial information system for tracking federally funded highway projects. It tracks authorizations, obligations, apportionments, allocations,...

  20. Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System

    OpenAIRE

    Daniel Brüderle; Eric Müller; Davison, Andrew P.; Eilif Muller; Johannes Schemmel; Karlheinz Meier

    2009-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based...

  1. A Novel Mu Rhythm-based Brain Computer Interface Design that uses a Programmable System on Chip.

    Science.gov (United States)

    Joshi, Rohan; Saraswat, Prateek; Gajendran, Rudhram

    2012-01-01

    This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the BCI, preliminary testing is carried out by training three subjects who were able to demonstrate control over their electroencephalogram by moving a cursor present at the center of the screen towards the indicated direction with an average accuracy greater than 70% and a bit communication rate of up to 7 bits/min. PMID:23493871

  2. Broadband network on-line data acquisition system with web based interface for control and basic analysis

    Science.gov (United States)

    Polkowski, Marcin; Grad, Marek

    2016-04-01

    Passive seismic experiment "13BB Star" is operated since mid 2013 in northern Poland and consists of 13 broadband seismic stations. One of the elements of this experiment is dedicated on-line data acquisition system comprised of both client (station) side and server side modules with web based interface that allows monitoring of network status and provides tools for preliminary data analysis. Station side is controlled by ARM Linux board that is programmed to maintain 3G/EDGE internet connection, receive data from digitizer, send data do central server among with additional auxiliary parameters like temperatures, voltages and electric current measurements. Station side is controlled by set of easy to install PHP scripts. Data is transmitted securely over SSH protocol to central server. Central server is a dedicated Linux based machine. Its duty is receiving and processing all data from all stations including auxiliary parameters. Server side software is written in PHP and Python. Additionally, it allows remote station configuration and provides web based interface for user friendly interaction. All collected data can be displayed for each day and station. It also allows manual creation of event oriented plots with different filtering abilities and provides numerous status and statistic information. Our solution is very flexible and easy to modify. In this presentation we would like to share our solution and experience. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  3. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems

    OpenAIRE

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S.; Rudell, Jacques C.

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal re...

  4. Tangible display systems: direct interfaces for computer-based studies of surface appearance

    Science.gov (United States)

    Darling, Benjamin A.; Ferwerda, James A.

    2010-02-01

    When evaluating the surface appearance of real objects, observers engage in complex behaviors involving active manipulation and dynamic viewpoint changes that allow them to observe the changing patterns of surface reflections. We are developing a class of tangible display systems to provide these natural modes of interaction in computer-based studies of material perception. A first-generation tangible display was created from an off-the-shelf laptop computer containing an accelerometer and webcam as standard components. Using these devices, custom software estimated the orientation of the display and the user's viewing position. This information was integrated with a 3D rendering module so that rotating the display or moving in front of the screen would produce realistic changes in the appearance of virtual objects. In this paper, we consider the design of a second-generation system to improve the fidelity of the virtual surfaces rendered to the screen. With a high-quality display screen and enhanced tracking and rendering capabilities, a secondgeneration system will be better able to support a range of appearance perception applications.

  5. A Two-Stage State Recognition Method for Asynchronous SSVEP-Based Brain-Computer Interface System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zimu; DENG Zhidong

    2013-01-01

    A two-stage state recognition method is proposed for asynchronous SSVEP (steady-state visual evoked potential) based brain-computer interface (SBCI) system.The two-stage method is composed of the idle state (IS) detection and control state (CS) discrimination modules.Based on blind source separation and continuous wavelet transform techniques,the proposed method integrates functions of multi-electrode spatial filtering and feature extraction.In IS detection module,a method using the ensemble IS feature is proposed.In CS discrimination module,the ensemble CS feature is designed as feature vector for control intent classification.Further,performance comparisons are investigated among our IS detection module and other existing ones.Also the experimental results validate the satisfactory performance of our CS discrimination module.

  6. FloodViewer : Web-based visual interface to a flood forecasting system

    OpenAIRE

    Nilsson, Andreas

    2002-01-01

    This diploma work has been done as a part of the EC funded projects, MUSIC VK1- CT-2000-00058 and SmartDoc IST-2000-28137. The objective was to create an intuitive and easy to use visualization of flood forecasting data provided in the MUSIC project. This visualization is focused on the Visual User Interface and is built on small, reusable components. The visualization, FloodViewer, is small enough to ensure the possibility of distribution via the Internet, yet capable of enabling collaborati...

  7. Experimental Evaluation of a SIP-Based Home Gateway with Multiple Wireless Interfaces for Domotics Systems

    Directory of Open Access Journals (Sweden)

    Rosario G. Garroppo

    2012-01-01

    Full Text Available In modern houses, the presence of sensors and actuators is increasing, while communication services and entertainment systems had long since settled into everyday life. The utilization of wireless communication technologies, such as ZigBee, Wi-Fi, and Bluetooth, is attractive because of their short installation times and low costs. The research is moving towards the integration of the various home appliances and devices into a single domotics system, able to exploit the cooperation among the diverse subsystems and offer the end-user a single multiservice platform. In this scenario, the paper presents the experimental evaluation of a domotics framework centered on a SIP-based home gateway (SHG. While SIP is used to build a common control plane, the SHG is in charge of translating the user commands from and to the specific domotics languages. The analysis has been devoted to assess both the performance of the SHG software framework and the negative effects produced by the simultaneous interference among the three widespread wireless technologies.

  8. Design of external sensors board based on Bluetooth interface of smart phones for structural health monitoring system

    Science.gov (United States)

    Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping

    2016-04-01

    As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.

  9. Testing the Self-Similarity Exponent to Feature Extraction in Motor Imagery Based Brain Computer Interface Systems

    Science.gov (United States)

    Rodríguez-Bermúdez, Germán; Sánchez-Granero, Miguel Ángel; García-Laencina, Pedro J.; Fernández-Martínez, Manuel; Serna, José; Roca-Dorda, Joaquín

    2015-12-01

    A Brain Computer Interface (BCI) system is a tool not requiring any muscle action to transmit information. Acquisition, preprocessing, feature extraction (FE), and classification of electroencephalograph (EEG) signals constitute the main steps of a motor imagery BCI. Among them, FE becomes crucial for BCI, since the underlying EEG knowledge must be properly extracted into a feature vector. Linear approaches have been widely applied to FE in BCI, whereas nonlinear tools are not so common in literature. Thus, the main goal of this paper is to check whether some Hurst exponent and fractal dimension based estimators become valid indicators to FE in motor imagery BCI. The final results obtained were not optimal as expected, which may be due to the fact that the nature of the analyzed EEG signals in these motor imagery tasks were not self-similar enough.

  10. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.

    Science.gov (United States)

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs). PMID:24301987

  11. Interface Management in Concurrent Engineering Facilities for Systems and Service Systems Engineering: A Model-based Approach

    OpenAIRE

    Gianni, Daniele; D'Ambrogio, Andrea; Schaus, Volker; Gerndt, Andreas; Lisi, Marco; De Simone, Pierluigi

    2014-01-01

    Concurrent engineering facilities (CEFs) are successfully used in the aeropsace sector to design systems and services that that fulfill the requirements. Model-based systems engineering (MBSE) enables the effective (i.e., unambiguous) communication in the collaborative activities within concurrent engineering and service systems engineering facilities. The advantages obtained by the MBSE approach can be further scaled up by an innovative approach that take into explicit account the representa...

  12. Development of an Interface System Based on Hand Gesture Recognition for Electrical Appliance Operation in Daily Life Scene

    Science.gov (United States)

    Iwashita, Jun-Ichi; Tozawa, Yoshiaki; Nakamura, Akio

    We develop an interface system using hand gestures to operate electrical appliances intuitively in a daily life scene. Hand-waving detected in the image is used as a cue to start the system, to distinguish gestures based on the user's intension of operation from other daily-life motions, and to specify the position of the user's hand. Hand-waving detection is implemented based on combination of dynamic background subtraction method and skin color extraction. In addition, we focus on changes of brightness value in each pixel. The user selects a target appliance to operate by pointing out with a hand under a ceiling camera with fisheye lens. The appliance within the region that the user indicates is decided as target one. A PTZ camera is also used to zoom in the user's hand area and to observe hand gestures. The shape of the hand is basically recognized using HLAC features. We add a size of hand region as a new feature to the HLAC and employ a coarse-to-fine strategy using image pyramid. Robustness and the success rate of gesture recognition, consequently, are improved. In this paper, we prepare seven types of hand shapes to operate the channel of TV. Effectiveness of the proposed system is shown through experiments.

  13. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    Science.gov (United States)

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system. PMID:25764705

  14. Web-based Interface in Public Cluster

    CERN Document Server

    Akbar, Z

    2007-01-01

    A web-based interface dedicated for cluster computer which is publicly accessible for free is introduced. The interface plays an important role to enable secure public access, while providing user-friendly computational environment for end-users and easy maintainance for administrators as well. The whole architecture which integrates both aspects of hardware and software is briefly explained. It is argued that the public cluster is globally a unique approach, and could be a new kind of e-learning system especially for parallel programming communities.

  15. Experimental Evaluation of a SIP-Based Home Gateway with Multiple Wireless Interfaces for Domotics Systems

    OpenAIRE

    Rosario G. Garroppo; Loris Gazzarrini; Stefano Giordano; Luca Tavanti

    2012-01-01

    In modern houses, the presence of sensors and actuators is increasing, while communication services and entertainment systems had long since settled into everyday life. The utilization of wireless communication technologies, such as ZigBee, Wi-Fi, and Bluetooth, is attractive because of their short installation times and low costs. The research is moving towards the integration of the various home appliances and devices into a single domotics system, able to exploit the cooperation among the ...

  16. Development of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals

    OpenAIRE

    Movahedi, Mohammad Mehdi; Mehdizadeh, Alireza; Alipour, Abolfazl

    2013-01-01

    BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed. In addition, we suggested that LED light sources can provide proper signals for speller BCIs and they can be used in future.

  17. EPICS system: system structure and user interface

    International Nuclear Information System (INIS)

    This paper present the user's view of and the general organization of the EPICS control system at Fermilab. Various subsystems of the EPICS control system are discussed. These include the user command language, software protection, the device database, remote computer interfaces, and several application utilities. This paper is related to two other papers on EPICS: an overview paper and a detailed implementation paper

  18. The web based user interface of RODOS

    International Nuclear Information System (INIS)

    Full text: The interaction between the RODOS system and its users has three main objectives: (1) operation of the system in its automatic and interactive modes including the processing of meteorological and radiological on-line data, and the choice of module chains for performing the necessary calculations; (2) input of data defining the accident situation, such as source term information, intervention criteria and timing of emergency actions; (3) selection and presentation of results in the form of spatial and temporal distributions of activity concentrations, areas affected by emergency actions and countermeasures, and their radiological and economic consequences. Users of category A have direct access to the RODOS system via local or wide area networks through the client/server protocol Internet/X. Any internet connected X desktop machine, such as Unix workstations from different vendors, X- terminals, Linux PCs, and PCs with X-emulation can be used. A number of X-Windows based graphical user interfaces (GUIs) provide direct access to all functionalities of the RODOS system and allow for handling the various user interactions with the RODOS system described above. Among others, the user can trigger or interrupt the automatic processing mode, execute application programs simultaneously, modify and delete data, import data sets from databases, and change configuration files. As the user interacts directly with in-memory active processes, the system responses immediately after having performed the necessary calculations. For obtaining the requested results, the users must know, which chain of application software has to be selected, how to interact with their interfaces, which sort of initialization data have to be assigned, etc. This flexible interaction with RODOS implies that only experienced and well-trained users are able to operate the system and to obtain correct and sensible information. A new interface has been developed which is based an the commonly used

  19. Development of the Java-based Man-Machine Interfacing System for remote experiments on JT-60

    International Nuclear Information System (INIS)

    The Man-Machine Interfacing System for JT-60 remote experiment was developed using the Java language, independent of the platform. The purpose of this development is to construct an environment that can support the participation in the experiment on JT-60 via the network from the outside. This report deals with the technical solutions and the equipped functions of this system in this development. (author)

  20. User Interface Development Based on Ontologies

    Institute of Scientific and Technical Information of China (English)

    A; S; Kleshchev; M; Y; Chernyakhovskaya; V; V; Gribova

    2002-01-01

    The user interface is a central component of any mo de rn application program. It determines how well end users accept, learn, and effi ciently work with the application program. The user interface is very difficult to design, to implement, to modify. It takes approximately 70% of the time requ ired for designing an application program. All the existing tools for user interface design can be divided into two basic c ategories-Interface Builders and Model-based Interface development tools, whic h trace t...

  1. An Automated Graphical User Interface based System for the Extraction of Retinal Blood Vessels using Kirsch’s Template

    Directory of Open Access Journals (Sweden)

    Joshita Majumdar

    2015-06-01

    Full Text Available The assessment of Blood Vessel networks plays an important role in a variety of medical disorders. The diagnosis of Diabetic Retinopathy (DR and its repercussions including micro aneurysms, haemorrhages, hard exudates and cotton wool spots is one such field. This study aims to develop an automated system for the extraction of blood vessels from retinal images by employing Kirsch’s Templates in a MATLAB based Graphical User Interface (GUI. Here, a RGB or Grey image of the retina (Fundus Photography is used to obtain the traces of blood vessels. We have incorporated a range of Threshold values for the blood vessel extraction which would provide the user with greater flexibility and ease. This paper also deals with the more generalized implementation of various MATLAB functions present in the image processing toolbox of MATLAB to create a basic image processing editor with different features like noise addition and removal, image cropping, resizing & rotation, histogram adjust, separately viewing the red, green and blue components of a colour image along with brightness control, that are used in a basic image editor. We have combined both Kirsch’s Template and various MATLAB Algorithms to obtain enhanced images which would allow the ophthalmologist to edit and intensify the images as per his/her requirement for diagnosis. Even a non technical person can manage to identify severe discrepancies because of its user friendly appearance. The GUI contains very commonly used English Language viz. Load, Colour Contrast Panel, Image Clarity etc that can be very easily understood. It is an attempt to incorporate maximum number of image processing techniques under one GUI to obtain higher performance. Also it would provide a cost effective solution towards obtaining high definition and resolution images of blood vessel extracted Retina in economically backward regions where costly machine like OCT (Optical Coherence Tomography, MRI (Magnetic Resonance

  2. Geographic information system/watershed model interface

    Science.gov (United States)

    Fisher, Gary T.

    1989-01-01

    Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.

  3. A Real-Time Model-Based Human Motion Tracking and Analysis for Human-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Chung-Lin Huang

    2004-09-01

    Full Text Available This paper introduces a real-time model-based human motion tracking and analysis method for human computer interface (HCI. This method tracks and analyzes the human motion from two orthogonal views without using any markers. The motion parameters are estimated by pattern matching between the extracted human silhouette and the human model. First, the human silhouette is extracted and then the body definition parameters (BDPs can be obtained. Second, the body animation parameters (BAPs are estimated by a hierarchical tritree overlapping searching algorithm. To verify the performance of our method, we demonstrate different human posture sequences and use hidden Markov model (HMM for posture recognition testing.

  4. Task planning systems with natural language interface

    International Nuclear Information System (INIS)

    In this report, a natural language analyzer and two different task planning systems are described. In 1988, we have introduced a Japanese language analyzer named CS-PARSER for the input interface of the task planning system in the Human Acts Simulation Program (HASP). For the purpose of a high speed analysis, we have modified a dictionary system of the CS-PARSER by using C language description. It is found that the new dictionary system is very useful for a high speed analysis and an efficient maintenance of the dictionary. For the study of the task planning problem, we have modified a story generating system named Micro TALE-SPIN to generate a story written in Japanese sentences. We have also constructed a planning system with natural language interface by using the CS-PARSER. Task planning processes and related knowledge bases of these systems are explained. A concept design for a new task planning system will be also discussed from evaluations of above mentioned systems. (author)

  5. Man machine interface based on speech recognition

    International Nuclear Information System (INIS)

    This work reports the development of a Man Machine Interface based on speech recognition. The system must recognize spoken commands, and execute the desired tasks, without manual interventions of operators. The range of applications goes from the execution of commands in an industrial plant's control room, to navigation and interaction in virtual environments. Results are reported for isolated word recognition, the isolated words corresponding to the spoken commands. For the pre-processing stage, relevant parameters are extracted from the speech signals, using the cepstral analysis technique, that are used for isolated word recognition, and corresponds to the inputs of an artificial neural network, that performs recognition tasks. (author)

  6. Human-system Interfaces for Automatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    OHara, J.M.; Higgins,J. (BNL); Fleger, S.; Barnes V. (NRC)

    2010-11-07

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, our study identified several topics for additional research.

  7. Critical interfaces in geosynthetic multilayer liner system of a landfill

    Directory of Open Access Journals (Sweden)

    Qian Xuede

    2008-12-01

    Full Text Available This study is to identify the critical interface in a geosynthetic multilayer liner system by examining the effects of the interface shear strength of liner components, leachate level, leachate buildup cases, and peak and residual interface strengths. According to current landfill design procedures, conducting stability analysis along the same interface at both the back slope and base may result in a non-conservative result. The critical interfaces with the minimum factor of safety are generally found at different locations along the back slope and base. The critical interface for a multilayer liner system cannot simply be assumed during stability analysis. It can shift from one interface to another with changes in the leachate level and with different leachate buildup cases. The factor of safety for an interface with a high friction angle and low apparent cohesion generally drops much more quickly than it does under inverse conditions when the leachate level increases. The failure interface in a liner system under residual conditions is usually different from the failure interface under peak conditions.

  8. Critical interfaces in geosynthetic multilayer liner system of a landfill

    Institute of Scientific and Technical Information of China (English)

    Qian Xuede

    2008-01-01

    This study is to identify the critical interface in a geosynthetic multilayer liner system by examining the effects of the interface shear strength of liner components, leachate level, leachate buildup cases, and peak and residual interface strengths. According to current landfill design procedures, conducting stability analysis along the same interface at both the back slope and base may result in a non-conservative result. The critical interfaces with the minimum factor of safety are generally found at different locations along the back slope and base. The critical interface for a multilayer liner system cannot simply be assumed during stability analysis. It can shift from one interface to another with changes in the leachate level and with different leachate buildup cases. The factor of safety for an interface with a high friction angle and low apparent cohesion generally drops much more quickly than it does under inverse conditions when the leachate level increases. The failure interface in a liner system under residual conditions is usually different from the failure interface under peak conditions.

  9. Brain emotional learning based Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Abdolreza Asadi Ghanbari

    2012-09-01

    Full Text Available A brain computer interface (BCI enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction and classification operations. Classification is crucial as it has a substantial effect on the BCI speed and bit rate. Recent developments of brain-computer interfaces (BCIs bring forward some challenging problems to the machine learning community, of which classification of time-varying electrophysiological signals is a crucial one. Constructing adaptive classifiers is a promising approach to deal with this problem. In this paper, we introduce adaptive classifiers for classify electroencephalogram (EEG signals. The adaptive classifier is brain emotional learning based adaptive classifier (BELBAC, which is based on emotional learning process. The main purpose of this research is to use a structural model based on the limbic system of mammalian brain, for decision making and control engineering applications. We have adopted a network model developed by Moren and Balkenius, as a computational model that mimics amygdala, orbitofrontal cortex, thalamus, sensory input cortex and generally, those parts of the brain thought responsible for processing emotions. The developed method was compared with other methods used for EEG signals classification (support vector machine (SVM and two different neural network types (MLP, PNN. The result analysis demonstrated an efficiency of the proposed approach.

  10. Web-based Java application to advanced JT-60 Man-Machine Interfacing System for remote experiments

    International Nuclear Information System (INIS)

    Since remote participation in ITER experiments is planned, it is expected to demonstrate that the JT-60SA experiment is controlled from a Japanese remote experiment center located in Rokkasho-mura, Aomori-ken, Japan as a part of the ITER-BA project. Functions required for this experiment are monitoring of the discharge sequence status, handling of the discharge parameter, checking of experiment data, and monitoring of plant data, all of which are included in the existing JT-60 Man-Machine Interfacing System (MMIF). The MMIF is now only available to on-site users at the Naka site due to network safety. The motivation for remote MMIF is prompted by the issue of developing and achieving compatibility with network safety. The Java language has been chosen to implement this task. This paper deals with details of the JT-60 MMIF for the remote experiment that has evolved using the Java language

  11. Ground Systems Development Environment (GSDE) interface requirements analysis

    Science.gov (United States)

    Church, Victor E.; Philips, John; Hartenstein, Ray; Bassman, Mitchell; Ruskin, Leslie; Perez-Davila, Alfredo

    1991-01-01

    A set of procedural and functional requirements are presented for the interface between software development environments and software integration and test systems used for space station ground systems software. The requirements focus on the need for centralized configuration management of software as it is transitioned from development to formal, target based testing. This concludes the GSDE Interface Requirements study. A summary is presented of findings concerning the interface itself, possible interface and prototyping directions for further study, and results of the investigation of the Cronus distributed applications environment.

  12. The research of the test-class method based on interface object in the software integration test of the large container inspection system

    International Nuclear Information System (INIS)

    Software test is the important stage in software process. The has been mature theory, method and model for unit test in practice. But for integration test, there is not regular method to adhere to. The author presents a new method, developed during the development of the large container inspection system, named test class method based on interface object. In this method a set of basic test-class based on the concept of class in the object-oriented method is established and the method of combining the interface graph and the class set is used to describe the test process. So the strict control and the scientific management for the test process are achieved. The conception of test database is introduced in this method, thus the traceability and the repeatability of test process are improved

  13. The research of the test-class method based on interface object in the software integration test of the large container inspection system

    International Nuclear Information System (INIS)

    Software test is the important stage in software process. There has been mature theory, method and model for unit test in practice. But for integration test, there is not regular method to adhere to. The author presents a new method, developed during the development of the large container inspection system, named test-class method based on interface object. A set of basis test-class based on the concept of class in the object-oriented method is established and the method of combining the interface graph and the class set is used to describe the test process. So the strict control and the scientific management for the test process are achieved. The conception of test database is introduced in this method, thus the traceability and the repeatability of test process are improved

  14. On Building a Search Interface Discovery System

    Science.gov (United States)

    Shestakov, Denis

    A huge portion of the Web known as the deep Web is accessible via search interfaces to myriads of databases on the Web. While relatively good approaches for querying the contents of web databases have been recently proposed, one cannot fully utilize them having most search interfaces unlocated. Thus, the automatic recognition of search interfaces to online databases is crucial for any application accessing the deep Web. This paper describes the architecture of the I-Crawler, a system for finding and classifying search interfaces. The I-Crawler is intentionally designed to be used in the deep web characterization surveys and for constructing directories of deep web resources.

  15. Electroencephalogram-based brain-computer interface system%基于脑电的脑-机接口系统

    Institute of Scientific and Technical Information of China (English)

    任亚莉

    2011-01-01

    BACKGROUND: Brain-computer interfaces (BCI) provide a direct communication and control channel for sending messages and instructions from brain to external computers or other electronic devices. Using the non-muscular channel, subjects with severe neuromuscular dysfunction can directly express their thought and manipulate the external devices without using human language and actions. This greatly enhances the ability of these subjects to manage external event and improves their quality of life.OBJECTIVE: To summarize latest research advances and problems in the BCI and discuss the research direction of BCI.METHODS: The literatures on BCI were searched on the PubMed database published from January 1990 to December 2009 with the key words "brain-computer interface, rehabilitation" in English. In addition, the related articles were also searched on CNKI-KNS published between January 1990 and December 2009 with the key words "brain-computer interface, signal processing and electroencephalography" in Chinese.RESULTS AND CONCLUSION: Researches of BCI system is still at a developing stage. There are some disadvantages, such as low rate of communications instability, especially for algorithm improvement and selection of signal processing.%背景:脑-机接口是在人脑与计算机或其它电子设备之间建立的直接交流和控制通道,通过这种通道,人就可以直接通过脑来表达想法或操纵设备,而不需要语言或动作,这可以有效增强身体严重残疾的患者与外界交流或控制外部环境的能力,以提高患者的生活质量.目的:总结近年来国内外有关脑-机接口系统的研究进展及存在的问题,探讨该领域进一步发展的方向.方法:应用计算机检索PubMed数据库中1990-01/2009-12脑-机接口方面的文献,检索词"brain-computer interface,Rehabilitatian",并限定语言为English;同时检索CNKI-KNS 1990-01/2009-12脑-机接口方面的文献,检索词为"脑-机接口,信号处理,脑电

  16. Human machine interface for research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Most present design of Human Machine Interface for Research Reactor Instrumentation and Control System is modular-based, comprise of several cabinets such as Reactor Protection System, Control Console, Information Console as well as Communication Console. The safety, engineering and human factor will be concerned for the design. Redundancy and separation of signal and power supply are the main factor for safety consideration. The design of Operator Interface absolutely takes consideration of human and environmental factors. Physical parameters, experiences, trainability and long-established habit patterns are very important for user interface, instead of the Aesthetic and Operator-Interface Geometry. Physical design for New Instrumentation and Control System of RTP are proposed base on the state-of- the-art Human Machine Interface design. (author)

  17. Design and implementation of SNMP-based GE-PON network management system with a web interface

    Science.gov (United States)

    Cao, Chang; Yao, Yu; Wang, Bo; Zhang, Yongjun; Gu, Wanyi

    2007-11-01

    This paper introduces a novel method to design SNMP-based network management system of GE-PON and its management applications. Then it introduces how to establish a web server on GE-PON NMS platform, and methods to realize the system in the Manager and Agent. Finally, a simulation result is given to show the feasibility and superiority of this method.

  18. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10−7 Pa, irrespective of plasma operation, and a leak rate of less than 10−10 Pa m3 s−1. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  19. Concept of software interface for BCI systems

    Science.gov (United States)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  20. Interfaces to symbolic computation systems: reconsidering experience of Bergman

    Directory of Open Access Journals (Sweden)

    Svetlana Cojocaru

    2005-10-01

    Full Text Available The article is based on experience of implementation of computer algebra system Bergman and on analysis of other symbolic computation systems. It is noted that many symbolic computation systems meet similar interface problems. Necessity of strict separation of calculation engine and interface shell, functions of these components, and requirements to them are motivated. The described approach will be used at future development of Bergman.

  1. Sketch-based Interfaces and Modeling

    CERN Document Server

    Jorge, Joaquim

    2011-01-01

    The field of sketch-based interfaces and modeling (SBIM) is concerned with developing methods and techniques to enable users to interact with a computer through sketching - a simple, yet highly expressive medium. SBIM blends concepts from computer graphics, human-computer interaction, artificial intelligence, and machine learning. Recent improvements in hardware, coupled with new machine learning techniques for more accurate recognition, and more robust depth inferencing techniques for sketch-based modeling, have resulted in an explosion of both sketch-based interfaces and pen-based computing

  2. HONselect: multilingual assistant search engine operated by a concept-based interface system to decentralized heterogeneous sources.

    Science.gov (United States)

    Boyer, C; Baujard, V; Scherrer, J R

    2001-01-01

    Any new user to the Internet will think that to retrieve the relevant document is an easy task especially with the wealth of sources available on this medium, but this is not the case. Even experienced users have difficulty formulating the right query for making the most of a search tool in order to efficiently obtain an accurate result. The goal of this work is to reduce the time and the energy necessary in searching and locating medical and health information. To reach this goal we have developed HONselect [1]. The aim of HONselect is not only to improve efficiency in retrieving documents but to respond to an increased need for obtaining a selection of relevant and accurate documents from a breadth of various knowledge databases including scientific bibliographical references, clinical trials, daily news, multimedia illustrations, conferences, forum, Web sites, clinical cases, and others. The authors based their approach on the knowledge representation using the National Library of Medicine's Medical Subject Headings (NLM, MeSH) vocabulary and classification [2,3]. The innovation is to propose a multilingual "one-stop searching" (one Web interface to databases currently in English, French and German) with full navigational and connectivity capabilities. The user may choose from a given selection of related terms the one that best suit his search, navigate in the term's hierarchical tree, and access directly to a selection of documents from high quality knowledge suppliers such as the MEDLINE database, the NLM's ClinicalTrials.gov server, the NewsPage's daily news, the HON's media gallery, conference listings and MedHunt's Web sites [4, 5, 6, 7, 8, 9]. HONselect, developed by HON, a non-profit organisation [10], is a free online available multilingual tool based on the MeSH thesaurus to index, select, retrieve and display accurate, up to date, high-level and quality documents. PMID:11604753

  3. Dynamically Generated Interfaces in XML Based Architecture

    CERN Document Server

    Gupta, Minit

    2009-01-01

    Providing on-line services on the Internet will require the definition of flexible interfaces that are capable of adapting to the user's characteristics. This is all the more important in the context of medical applications like home monitoring, where no two patients have the same medical profile. Still, the problem is not limited to the capacity of defining generic interfaces, as has been made possible by UIML, but also to define the underlying information structures from which these may be generated. The DIATELIC project deals with the tele-monitoring of patients under peritoneal dialysis. By means of XML abstractions, termed as "medical components", to represent the patient's profile, the application configures the customizable properties of the patient's interface and generates a UIML document dynamically. The interface allows the patient to feed the data manually or use a device which allows "automatic data acquisition". The acquired medical data is transferred to an expert system, which analyses the dat...

  4. Transistor-based interface circuitry

    Science.gov (United States)

    Taubman, Matthew S.

    2007-02-13

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  5. User Interface Aspects of a Human-Hand Simulation System

    Directory of Open Access Journals (Sweden)

    Beifang Yi

    2005-10-01

    Full Text Available This paper describes the user interface design for a human-hand simulation system, a virtual environment that produces ground truth data (life-like human hand gestures and animations and provides visualization support for experiments on computer vision-based hand pose estimation and tracking. The system allows users to save time in data generation and easily create any hand gestures. We have designed and implemented this user interface with the consideration of usability goals and software engineering issues.

  6. Man-machine interface in expert systems for NPPs

    International Nuclear Information System (INIS)

    Different modes of man-machine interface organization in expert systems (ES) are discussed. Some of the points of consideration are similar to other man-machine systems, and some are specific ES interface problems, such as knowledge formalization and acquisition, different modes of dialogue with different kinds of terminal users as well as problems related to explanation. All discussions are based on personal experience in ES project developments in different nuclear application areas. (author). 5 refs

  7. Polymer based interfaces as bioinspired 'smart skins'.

    Science.gov (United States)

    De Rossi, Danilo; Carpi, Federico; Scilingo, Enzo Pasquale

    2005-11-30

    This work reports on already achieved results and ongoing research on the development of complex interfaces between humans and external environment, based on organic synthetic materials and used as smart 'artificial skins'. They are conceived as wearable and flexible systems with multifunctional characteristics. Their features are designed to mimic or augment a broad-spectrum of properties shown by biological skins of humans and/or animals. The discussion is here limited to those properties whose mimicry/augmentation is achievable with currently available technologies based on polymers and oligomers. Such properties include tactile sensing, thermal sensing/regulation, environmental energy harvesting, chromatic mimetism, ultra-violet protection, adhesion and surface mediation of mobility. Accordingly, bioinspired devices and structures, proposed as suitable functional analogous of natural architectures, are analysed. They consist of organic piezoelectric sensors, thermoelectric and pyroelectric sensors and generators, photoelectric generators, thermal and ultra-violet protection systems, electro-, photo- and thermo-chromic devices, as well as structures for improved adhesion and reduced fluid-dynamic friction. PMID:16111642

  8. Research of brain-computer interface automatic vehicle system based on SSVEP%基于SSVEP的脑-机接口自动车系统研究

    Institute of Scientific and Technical Information of China (English)

    赵丽; 孙永; 马彦臻; 何洋

    2011-01-01

    This paper mainly carried out proposes the research of SSVEP brain-computer interface automatic vehicle control systems,which describes the principles of the visual evoked potentials that used in brain-computer interface,and the single-chip is used to designs visual stimulation. Base on the LABVIEW platform, it also uses Hilbert Huang Transform to extract evoked potential vector continuously,which produces brain-computer interface control signals that can be applied to automatic vehicle control system to control the car around before and after exercise. According to a lot of experiments to verify,this sistem can send out the control commands that the correct rate is higher than 83% and can also send a command less than 5 seconds compared with the average time based on SSVEP,so it proves that the system is feasible and has a high application value.%阐述了视觉诱发电位用于脑-机接口的原理,系统采用单片机设计视觉刺激器,同时在LABVIEW平台上,利用希尔伯特黄变换实时提取诱发电位向量,产生脑机接口控制信号,并用于自动车控制系统,从而控制小车的前后左右运动.通过大量实验验证,设计的基于稳态视觉诱发电位的脑-机接口自动车控制系统,发送控制命令正确率高于83%,发送一个命令的平均时间低于5 s,证明该系统的方案是可行的,具有较高的应用价值.

  9. Development of Baby-EBM Interface System

    International Nuclear Information System (INIS)

    This paper explains the works being done to develop an interface system for Baby-Electron Beam Machine (EBM). The function of the system is for the safety, controlling and monitoring the Baby-EBM. The integration for the system is using data acquisition (DAQ) hardware and LabVIEW to develop the software. (author)

  10. Brain-Computer Interfacing for Intelligent Systems

    OpenAIRE

    Nijholt, Anton; Tan, Desney; Pfurtscheller, Gert; Brunner, Clemens; R. Millán, del, José; Allison, Brandan; Graimann, Bernhard; Florin POPESCU; Blankertz, Benjamin; Müller, Klaus-R

    2008-01-01

    Advances in cognitive neuroscience and brain-imaging technologies give us the unprecedented ability to interface directly with brain activity. These technologies let us monitor physical processes in the brain that correspond with certain forms of thought. Researchers have begun using these technologies to build brain-computer interfaces (BCIs)—communication systems that don't depend on the brain's normal output pathways of peripheral nerves and muscles. Four short articles provide a quick ove...

  11. Coal-shale interface detection system

    Science.gov (United States)

    Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)

    1979-01-01

    A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  12. Spectrometer user interface to computer systems

    International Nuclear Information System (INIS)

    A computer system for use in radiation spectrometry should be designed around the needs and comprehension of the user and his operating environment. To this end, the functions of the system should be built in a modular and independent fashion such that they can be joined to the back end of an appropriate user interface. The point that this interface should be designed rather than just allowed to evolve is illustrated by reference to four related computer systems of differing complexity and function. The physical user interfaces in all cases are keyboard terminals, and the virtues and otherwise of these devices are discussed and compared with others. The language interface needs to satisfy a number of requirements, often conflicting. Among these, simplicity and speed of operation compete with flexibility and scope. Both experienced and novice users need to be considered, and any individual's needs may vary from naive to complex. To be efficient and resilient, the implementation must use an operating system, but the user needs to be protected from its complex and unfamiliar syntax. At the same time the interface must allow the user access to all services appropriate to his needs. The user must also receive an image of privacy in a multi-user system. The interface itself must be stable and exhibit continuity between implementations. Some of these conflicting needs have been overcome by the SABRE interface with languages operating at several levels. The foundation is a simple semimnemonic command language that activates indididual and independent functions. The commands can be used with positional parameters or in an interactive dialogue the precise nature of which depends upon the operating environment and the user's experience. A command procedure or macrolanguage allows combinations of commands with conditional branching and arithmetic features. Thus complex but repetitive operations are easily performed

  13. DQS advisor: a visual interface and knowledge-based system to balance dose, quality, and reconstruction speed in iterative CT reconstruction with application to NLM-regularization

    Science.gov (United States)

    Zheng, Z.; Papenhausen, E.; Mueller, K.

    2013-11-01

    Motivated by growing concerns with regards to the x-ray dose delivered to the patient, low-dose computed tomography (CT) has gained substantial interest in recent years. However, achieving high-quality CT reconstructions from the limited projection data collected at reduced x-ray radiation is challenging, and iterative algorithms have been shown to perform much better than conventional analytical schemes in these cases. A problem with iterative methods in general is that they require users to set many parameters, and if set incorrectly high reconstruction time and/or low image quality are likely consequences. Since the interactions among parameters can be complex and thus effective settings can be difficult to identify for a given scanning scenario, these choices are often left to a highly-experienced human expert. To help alleviate this problem, we devise a computer-based assistant for this purpose, called dose, quality and speed (DQS)-advisor. It allows users to balance the three most important CT metrics--DQS--by ways of an intuitive visual interface. Using a known gold-standard, the system uses the ant-colony optimization algorithm to generate the most effective parameter settings for a comprehensive set of DQS configurations. A visual interface then presents the numerical outcome of this optimization, while a matrix display allows users to compare the corresponding images. The interface allows users to intuitively trade-off GPU-enabled reconstruction speed with quality and dose, while the system picks the associated parameter settings automatically. Further, once the knowledge has been generated, it can be used to correctly set the parameters for any new CT scan taken at similar scenarios.

  14. DQS advisor: a visual interface and knowledge-based system to balance dose, quality, and reconstruction speed in iterative CT reconstruction with application to NLM-regularization

    International Nuclear Information System (INIS)

    Motivated by growing concerns with regards to the x-ray dose delivered to the patient, low-dose computed tomography (CT) has gained substantial interest in recent years. However, achieving high-quality CT reconstructions from the limited projection data collected at reduced x-ray radiation is challenging, and iterative algorithms have been shown to perform much better than conventional analytical schemes in these cases. A problem with iterative methods in general is that they require users to set many parameters, and if set incorrectly high reconstruction time and/or low image quality are likely consequences. Since the interactions among parameters can be complex and thus effective settings can be difficult to identify for a given scanning scenario, these choices are often left to a highly-experienced human expert. To help alleviate this problem, we devise a computer-based assistant for this purpose, called dose, quality and speed (DQS)-advisor. It allows users to balance the three most important CT metrics–-DQS-–by ways of an intuitive visual interface. Using a known gold-standard, the system uses the ant-colony optimization algorithm to generate the most effective parameter settings for a comprehensive set of DQS configurations. A visual interface then presents the numerical outcome of this optimization, while a matrix display allows users to compare the corresponding images. The interface allows users to intuitively trade-off GPU-enabled reconstruction speed with quality and dose, while the system picks the associated parameter settings automatically. Further, once the knowledge has been generated, it can be used to correctly set the parameters for any new CT scan taken at similar scenarios. (paper)

  15. Laterally Mobile, Functionalized Self-Assembled Monolayers at the Fluorous-Aqueous Interface in a Plug-Based Microfluidic System: Characterization and Testing with Membrane Protein Crystallization

    OpenAIRE

    Kreutz, Jason E.; Li, Liang; Roach, L. Spencer; Hatakeyama, Takuji; Ismagilov, Rustem F.

    2009-01-01

    This paper describes a method to generate functionalizable, mobile self-assembled monolayers (SAMs) in plug-based microfluidics. Control of interfaces is advancing studies of biological interfaces, heterogeneous reactions, and nanotechnology. SAMs have been useful for such studies, but they are not laterally mobile. Lipid-based methods, though mobile, are not easily amenable to setting up the hundreds of experiments necessary for crystallization screening. Here we demonstrate a method, comple...

  16. A Graphical User Interface in WLAN Monitoring and Management System

    Directory of Open Access Journals (Sweden)

    Jiantao Gu

    2012-04-01

    Full Text Available This paper aims at providing a graphical user interface for WLAN monitoring and management system “WLAN Inspector”, which gives network operators the software and performance management tools necessary to monitor and manage network availability, achieve real-time monitoring (7 × 24 hours and intelligent management, report on IP networks performance, and troubleshoot issues through a single Web-based graphical user interface. The overall framework design of graphical interface, brief description of each module, and the detailed design in the basic information interface are discussed in this paper. The WLAN monitoring and management system has multiple functions: real-time network monitoring, real-time protocol analysis, information, statistics, safety testing and network performance monitoring, etc. This system can give Video Frame Capture for Mac, analyze the WLAN traffic characteristics, detect possible security vulnerabilities, and give the appropriate solution.

  17. A Graphical User Interface in WLAN Monitoring and Management System

    OpenAIRE

    Jiantao Gu; Jun Zheng; Shufen Zhang

    2012-01-01

    This paper aims at providing a graphical user interface for WLAN monitoring and management system “WLAN Inspector”, which gives network operators the software and performance management tools necessary to monitor and manage network availability, achieve real-time monitoring (7 × 24 hours) and intelligent management, report on IP networks performance, and troubleshoot issues through a single Web-based graphical user interface. The overall framework design of graphical interfa...

  18. A design of FPGA based intelligent data handling interfacing card.

    Directory of Open Access Journals (Sweden)

    Anandaraj D

    2015-05-01

    Full Text Available With the increasing demand in the custom built logic for avionics systems, FPGA is used in this proposed interfacing card design. This FPGA based intelligent data handling card (IDHC for the IVHM system, will interface the data from aircraft subsystems to the aircraft digital data bus. This IDHC interfacing card is based on the Virtex-5 FPGA (Field Programmable Gate Array, which provides flexibility by re-programming, so that it can be configured to the required functionality. Fault detection can be done within the FPGA and only the anomalies passed to the computer, so that the bus bandwidth can be utilized effectively and also excessive wiring can be eliminated, that would have been required for multiple individual systems. The work concentrates on designing the schematic using OrCAD.

  19. Web Services interface of SSRF archive data analysis system

    Institute of Scientific and Technical Information of China (English)

    LI Lin; SHEN Liren; ZHU Qing; WAN Tianmin

    2007-01-01

    Accelerator database stores various static parameters and real-time data of accelerator. SSRF (Shanghai Synchrotron Radiation Facility) adopts relational database to save the data. We developed a data retrieval system based on XML Web Services for accessing the archive data. It includes a bottom layer interface and an interface applicable for accelerator physics. Client samples exemplifying how to consume the interface are given. The users can browse, retrieve and plot data by the client samples. Also, we give a method to test its stability. The test result and performance are described.

  20. Web services interface of SSRF archive data analysis system

    International Nuclear Information System (INIS)

    Accelerator database stores various static parameters and real-time data of accelerator. SSRF (Shanghai Synchrotron Radiation Facility) adopts relational database to save the data. We developed a data retrieval system based on XML Web Services for accessing the archive data. It includes a bottom layer interface and an interface applicable for accelerator physics. Client samples exemplifying how to consume the interface are given. The users can browse, retrieve and plot data by the client samples. Also, we give a method to test its stability. The test result and performance are described. (authors)

  1. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    International Nuclear Information System (INIS)

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs

  2. Evaluation of a voice interface management system

    OpenAIRE

    TATTEGRAIN-VESTE, Hélène; BRUYAS, Marie-Pierre; Bellet, Thierry; PACHIAUDI,G; FORZY,JF; D. Martini; Baligand, B.; SIMOES,A; CARVALHAIS, J; Lockwood, P.

    2001-01-01

    The final prototype of a centralized voice information system, developed under the framework of the european cemvocas (centralised management of vocal interfaces aiming at a better automotive safety) project, was evaluated. This system manages all types of voice messages to the driver (i.e., input and output voice flows to and from car telephone, radio, and driver assistance systems) to minimize their disruptive impact on the basic task of driving. Analysis of the results included evaluation ...

  3. A conductivity-based interface tracking method for microfluidic application

    Science.gov (United States)

    Salgado, Juan David; Horiuchi, Keisuke; Dutta, Prashanta

    2006-05-01

    A novel conductivity-based interface tracking method is developed for 'lab-on-a-chip' applications to measure the velocity of the liquid-gas boundary during the filling process. This interface tracking system consists of two basic components: a fluidic circuit and an electronic circuit. The fluidic circuit is composed of a microchannel network where a number of very thin electrodes are placed in the flow path to detect the location of the liquid-gas interface in order to quantify the speed of a traveling liquid front. The electronic circuit is placed on a microelectronic chip that works as a logical switch. This interface tracking method is used to evaluate the performance of planar electrokinetic micropumps formed on a hybrid poly-di-methyl-siloxane (PDMS)-glass platform. In this study, the thickness of the planar micropump is set to be 10 µm, while the externally applied electric field is ranged from 100 V mm-1 to 200 V mm-1. For a particular geometric and electrokinetic condition, repeatable flow results are obtained from the speed of the liquid-gas interface. Flow results obtained from this interface tracking method are compared to those of other existing flow measuring techniques. The maximum error of this interface tracking sensor is less than 5%, even in an ultra low flow velocity.

  4. Internet-based interface for STRMDEPL08

    Science.gov (United States)

    Reeves, Howard W.; Asher, A. Jeremiah

    2010-01-01

    The core of the computer program STRMDEPL08 that estimates streamflow depletion by a pumping well with one of four analytical solutions was re-written in the Javascript software language and made available through an internet-based interface (web page). In the internet-based interface, the user enters data for one of the four analytical solutions, Glover and Balmer (1954), Hantush (1965), Hunt (1999), and Hunt (2003), and the solution is run for constant pumping for a desired number of simulation days. Results are returned in tabular form to the user. For intermittent pumping, the interface allows the user to request that the header information for an input file for the stand-alone executable STRMDEPL08 be created. The user would add the pumping information to this header information and run the STRMDEPL08 executable that is available for download through the U.S. Geological Survey. Results for the internet-based and stand-alone versions of STRMDEPL08 are shown to match.

  5. Brain-Computer Interface In Control Systems

    OpenAIRE

    Soukup, Michael

    2014-01-01

    A Brain-Computer Interface (BCI) is a system that allows for direct communication between the brain and an external device. Originally, the motivation for developing BCIs has been to provide severely disabled individuals with a basic communication system. Recent years, BCIs directed at regular consumers in practical control applications have gained popularity as well, for which the ultimate goal is to provide a more natural way of communicating with machines. However, BCIs intended at use in ...

  6. Mesh-based parallel code coupling interface

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, K.; Steckel, B. (eds.) [GMD - Forschungszentrum Informationstechnik GmbH, St. Augustin (DE). Inst. fuer Algorithmen und Wissenschaftliches Rechnen (SCAI)

    2001-04-01

    MpCCI (mesh-based parallel code coupling interface) is an interface for multidisciplinary simulations. It provides industrial end-users as well as commercial code-owners with the facility to combine different simulation tools in one environment. Thereby new solutions for multidisciplinary problems will be created. This opens new application dimensions for existent simulation tools. This Book of Abstracts gives a short overview about ongoing activities in industry and research - all presented at the 2{sup nd} MpCCI User Forum in February 2001 at GMD Sankt Augustin. (orig.) [German] MpCCI (mesh-based parallel code coupling interface) definiert eine Schnittstelle fuer multidisziplinaere Simulationsanwendungen. Sowohl industriellen Anwender als auch kommerziellen Softwarehersteller wird mit MpCCI die Moeglichkeit gegeben, Simulationswerkzeuge unterschiedlicher Disziplinen miteinander zu koppeln. Dadurch entstehen neue Loesungen fuer multidisziplinaere Problemstellungen und fuer etablierte Simulationswerkzeuge ergeben sich neue Anwendungsfelder. Dieses Book of Abstracts bietet einen Ueberblick ueber zur Zeit laufende Arbeiten in der Industrie und in der Forschung, praesentiert auf dem 2{sup nd} MpCCI User Forum im Februar 2001 an der GMD Sankt Augustin. (orig.)

  7. The Usefulness and Feasibility of Mobile Interface in Tuberculosis Notification (MITUN Voice Based System for Notification of Tuberculosis by Private Medical Practitioners--A Pilot Project.

    Directory of Open Access Journals (Sweden)

    Banurekha Velayutham

    Full Text Available Tuberculosis (TB is a notifiable disease and health care providers are required to notify every TB case to local authorities. We conducted a pilot study to determine the usefulness and feasibility of mobile interface in TB notification (MITUN voice based system for notification of TB cases by private medical practitioners.The study was conducted during September 2013 to October 2014 in three zones of Chennai, an urban setting in South India. Private clinics wherein services are provided by single private medical practitioners were approached. The steps involved in MITUN included: Registration of the practitioners and notification of TB cases by them through voice interactions. Pre and post-intervention questionnaires were administered to collect information on TB notification practices and feasibility of MITUN after an implementation period of 6 months.A total of 266 private medical practitioners were approached for the study. Of them, 184 (69% participated in the study; of whom 11 (6% practitioners used MITUN for TB notification. Reasons for not using MITUN include lack of time, referral of patients to government facility, issues related to patient confidentiality and technical problems. Suggestions for making mobile phone based TB notification process user-friendly included reducing call duration, including only crucial questions and using missed call or SMS options.The performance (feasibility and usefulness of MITUN voice based system for TB notification in the present format was sub-optimal. Perceived problems, logistical and practical issues preclude scale-up of notification of TB by private practitioners.

  8. SU-E-T-595: Design of a Graphical User Interface for An In-House Monte Carlo Based Treatment Planning System: Planning and Contouring Tools

    International Nuclear Information System (INIS)

    Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systems (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process

  9. SU-E-T-595: Design of a Graphical User Interface for An In-House Monte Carlo Based Treatment Planning System: Planning and Contouring Tools

    Energy Technology Data Exchange (ETDEWEB)

    EMAM, M; Eldib, A [Al-Azhar University, Cairo (Egypt); Lin, M [Fox Chase Cancer Center, Philadelphia, PA (United States); University of Maryland School of Medicine, Baltimore, MD (United States); Li, J; Chibani, O; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systems (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process.

  10. Design of system update based on U-boot through USB interface%基于U-boot的USB接口系统更新方案设计

    Institute of Scientific and Technical Information of China (English)

    余柳冰; 高明煜

    2011-01-01

    In order to improve the system-updating speed of embedded devices on the basis of low cost, both advantages and disadvantages of serial port, network and USB interface were analyzed. A system-updating method through USB interface based on universal boot loader( U-boot) was implemented . The implementation of USB device driver in U-boot was introduced,the movement of the interrupt vector table was analyzed, and the updating function was successfully accomplished on AT91SAM9261 processor. The experimental results show that the fast updating speed about 500 KB/s has been achieved with simple hardware configuration in practice.%为了在保证较低成本的基础上提高嵌入式设备的系统更新速度,分析了串口、网络以及USB接口这3种可选方案的优、缺点,研究并设计了基于通用加载器( U-boot)的USB接口系统更新方案.具体介绍了U-boot下USB设备端口驱动的实现,着重分析了U-boot下中断向量表的搬移过程,并在AT91 SAM9261处理器平台上实现了基于U-boot的系统下载更新功能.实验结果证明,该方案可以在简单的硬件配置上达到500 KB/s左右的更新速度.

  11. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development. 21 refs., 3 figs

  12. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development

  13. Testing of the Automated Fluid Interface System

    Science.gov (United States)

    Johnston, A. S.; Tyler, Tony R.

    1998-01-01

    The Automated Fluid Interface System (AFIS) is an advanced development prototype satellite servicer. The device was designed to transfer consumables from one spacecraft to another. An engineering model was built and underwent development testing at Marshall Space Flight Center. While the current AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit.

  14. Advanced User Interfaces for Product Management Systems

    OpenAIRE

    Gundelsweiler, Fredrik; Reiterer, Harald

    2008-01-01

    Few of today s EPDM (electronic product data management) systems make use of valuable approaches in user interface design and information visualization as suggested by researchers. In this paper, we describe a design approach addressing the problems of searching, browsing, visualizing and filtering information in hierarchically structured graphs. The main problem areas we identified are the amount of data, the possibly complex hierarchical structure in combination with a chronological version...

  15. A damage mechanics based general purpose interface/contact element

    Science.gov (United States)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  16. Arabic Interface Analysis Based on Cultural Markers

    Directory of Open Access Journals (Sweden)

    Mohammadi Akheela Khanum

    2012-01-01

    Full Text Available This study examines the Arabic interface design elements that are largely influenced by the cultural values. Cultural markers are examined in websites from educational, business, and media. Cultural values analysis is based on Geert Hofstedes cultural dimensions. The findings show that there are cultural markers which are largely influenced by the culture and that the Hofstedes score for Arab countries is partially supported by the website design components examined in this study. Moderate support was also found for the long term orientation, for which Hoftsede has no score.

  17. Arabic Interface Analysis Based on Cultural Markers

    CERN Document Server

    Khanum, Mohammadi Akheela; Chaurasia, Mousmi A

    2012-01-01

    This study examines the Arabic interface design elements that are largely influenced by the cultural values. Cultural markers are examined in websites from educational, business, and media. Cultural values analysis is based on Geert Hofstede's cultural dimensions. The findings show that there are cultural markers which are largely influenced by the culture and that the Hofstede's score for Arab countries is partially supported by the website design components examined in this study. Moderate support was also found for the long term orientation, for which Hoftsede has no score.

  18. fNIRS-based brain-computer interfaces: a review

    OpenAIRE

    Noman eNaseer; Keum-Shik eHong

    2015-01-01

    A brain-computer interface (BCI) is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The mos...

  19. Building the System Interface Management Environment for the Development of Complex System

    Directory of Open Access Journals (Sweden)

    Sung Gyun Oh

    2015-07-01

    Full Text Available Advanced systems have common characteristics of complexity as the level of their demanded emergent capability and the resulting interfaces among their components increase. These characteristics make it difficult to manage the interfaces and the failure of the management can lead to the failure of development projects. This study proposes a model-based systems engineering approach to facilitate the interface management for an IPT environment. A demonstration of the proposed approach to the magnetic levitation railway development project is provided to identify and control interfaces.

  20. Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface

    Directory of Open Access Journals (Sweden)

    Bushell Michael E

    2011-05-01

    Full Text Available Abstract Background Constraint-based approaches facilitate the prediction of cellular metabolic capabilities, based, in turn on predictions of the repertoire of enzymes encoded in the genome. Recently, genome annotations have been used to reconstruct genome scale metabolic reaction networks for numerous species, including Homo sapiens, which allow simulations that provide valuable insights into topics, including predictions of gene essentiality of pathogens, interpretation of genetic polymorphism in metabolic disease syndromes and suggestions for novel approaches to microbial metabolic engineering. These constraint-based simulations are being integrated with the functional genomics portals, an activity that requires efficient implementation of the constraint-based simulations in the web-based environment. Results Here, we present Acorn, an open source (GNU GPL grid computing system for constraint-based simulations of genome scale metabolic reaction networks within an interactive web environment. The grid-based architecture allows efficient execution of computationally intensive, iterative protocols such as Flux Variability Analysis, which can be readily scaled up as the numbers of models (and users increase. The web interface uses AJAX, which facilitates efficient model browsing and other search functions, and intuitive implementation of appropriate simulation conditions. Research groups can install Acorn locally and create user accounts. Users can also import models in the familiar SBML format and link reaction formulas to major functional genomics portals of choice. Selected models and simulation results can be shared between different users and made publically available. Users can construct pathway map layouts and import them into the server using a desktop editor integrated within the system. Pathway maps are then used to visualise numerical results within the web environment. To illustrate these features we have deployed Acorn and created a

  1. 应用VB开发GPIB接口的电源控制器测试系统%Test system for PCU based on GPIB interface with VB language

    Institute of Scientific and Technical Information of China (English)

    孙芳方; 叶卫东; 钱锐

    2011-01-01

    Power Control Unit (PCU)is an important component of space power system, it is more important to test the performance of PCU before equipped in satellite. Test system for PCU that is based on GPIB interface with VB language in Windows is described, it can on-line program and real-time control the simulator, acquire the telemetry signal and send the telecommand ,it also can control quantities of batteries when they are charged or discharged.%电源控制器(PCU)是卫星电源分系统的重要组成部分,在装入卫星前需要对其性能进行测试.介绍在Windows操作系统下,用VB软件开发基于GPIB接口的对PCU进行测试的系统,该系统能够完成对地面模拟设备的在线编程和实时控制、对遥测信号的采集、遥控指令的发送,以及蓄电池充放电量的管理等功能.

  2. A Framework for Effective User Interface Design for Web-Based Electronic Commerce Applications

    Directory of Open Access Journals (Sweden)

    Justyna Burns

    2001-01-01

    Full Text Available Efficient delivery of relevant product information is increasingly becoming the central basis of competition between firms. The interface design represents the central component for successful information delivery to consumers. However, interface design for web-based information systems is probably more an art than a science at this point in time. Much research is needed to understand properties of an effective interface for electronic commerce. This paper develops a framework identifying the relationship between user factors, the role of the user interface and overall system success for web-based electronic commerce. The paper argues that web-based systems for electronic commerce have some similar properties to decision support systems (DSS and adapts an established DSS framework to the electronic commerce domain. Based on a limited amount of research studying web browser interface design, the framework identifies areas of research needed and outlines possible relationships between consumer characteristics, interface design attributes and measures of overall system success.

  3. 基于ARM技术的电站仿真机接口系统的开发%Design and implementation of interface system of simulator based on ARM technology

    Institute of Scientific and Technical Information of China (English)

    王爱珍; 成守宇

    2012-01-01

    In order to improve the technology of the simulator input&. Output interface system based on serial communication bus in a low communication rate, the distribution of the limited distance and difficult to debug, a distributed intelligent input &- output interface system based on the ARM and Ethernet technology is proposed. The design and implementation of a intelligent input&- output interface system based on embedded microprocessor chip ARM and Ethernet technology is introduced, including the system design, the hardware realization, definition of the table of the configuration and I/O management &- communication software, etc. The hardware and software of this I/O interface system is debugged and run, and the result indicates that this 1/ 0 interface system have a high data transfer rate , a big range of the distributing, and also can easily expand, this I/O interface system meets the design and application requirement of simulation system.%为了改善基于串行总线技术的电站仿真机接口系统通信速率低、分布距离有限、扩展不方便以及调试困难,提出了基于ARM技术和以太网技术的分布式智能化输入输出接口系统.基于提出的分布式仿真机接口系统思想,分别从系统设计、系统软硬实现以及组态设计等进行了设计和实现.系统实际应用表明,基于ARM技术和以太网技术的接口系统通信速率高、分布距离远和扩展更方便,能够满足电站全范围仿真机输入输出接口的需要.

  4. Systems and methods for monitoring a solid-liquid interface

    Science.gov (United States)

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  5. Brain-computer interfaces based on event-related potentials: toward fast, reliable and easy-to-use communication systems for people with neurodegenerative disease

    OpenAIRE

    Kaufmann, Tobias

    2013-01-01

    Objective: Brain Computer Interfaces (BCI) provide a muscle independent interaction channel making them particularly valuable for individuals with severe motor impairment. Thus, different BCI systems and applications have been proposed as assistive technology (AT) solutions for such patients. The most prominent system for communication utilizes event-related potentials (ERP) obtained from the electroencephalogram (EEG) to allow for communication on a character-by-character basis. Yet in their...

  6. Risk Interfaces to Support Integrated Systems Analysis and Development

    Science.gov (United States)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark; Anton, Wilma; Havenhill, Maria

    2016-01-01

    Objectives for systems analysis capability: Develop integrated understanding of how a complex human physiological-socio-technical mission system behaves in spaceflight. Why? Support development of integrated solutions that prevent unwanted outcomes (Implementable approaches to minimize mission resources(mass, power, crew time, etc.)); Support development of tools for autonomy (need for exploration) (Assess and maintain resilience -individuals, teams, integrated system). Output of this exercise: -Representation of interfaces based on Human System Risk Board (HSRB) Risk Summary information and simple status based on Human Research Roadmap; Consolidated HSRB information applied to support communication; Point-of-Departure for HRP Element planning; Ability to track and communicate status of collaborations. 4

  7. Laterally Mobile, Functionalized Self-Assembled Monolayers at the Fluorous−Aqueous Interface in a Plug-Based Microfluidic System: Characterization and Testing with Membrane Protein Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Kreutz, Jason E.; Li, Liang; Roach, L. Spencer; Hatakeyama, Takuji; Ismagilov, Rustem F.; (UC)

    2009-11-04

    This paper describes a method to generate functionalizable, mobile self-assembled monolayers (SAMs) in plug-based microfluidics. Control of interfaces is advancing studies of biological interfaces, heterogeneous reactions, and nanotechnology. SAMs have been useful for such studies, but they are not laterally mobile. Lipid-based methods, though mobile, are not easily amenable to setting up the hundreds of experiments necessary for crystallization screening. Here we demonstrate a method, complementary to current SAM and lipid methods, for rapidly generating mobile, functionalized SAMs. This method relies on plugs, droplets surrounded by a fluorous carrier fluid, to rapidly explore chemical space. Specifically, we implemented his-tag binding chemistry to design a new fluorinated amphiphile, RfNTA, using an improved one-step synthesis of RfOEG under Mitsunobu conditions. RfNTA introduces specific binding of protein at the fluorous-aqueous interface, which concentrates and orients proteins at the interface, even in the presence of other surfactants. We then applied this approach to the crystallization of a his-tagged membrane protein, Reaction Center from Rhodobacter sphaeroides, performed 2400 crystallization trials, and showed that this approach can increase the range of crystal-producing conditions, the success rate at a given condition, the rate of nucleation, and the quality of the crystal formed.

  8. Based on Embedded System Which Nucleus in the Implementation Method of the Common Interface%嵌入式Nucleus系统中驱动接口的实现

    Institute of Scientific and Technical Information of China (English)

    刘洲洲; 李贺

    2012-01-01

    Which Nucleus is a real -time embedded operating system. Comprehensive study on the system which Nucleus common interface method. First, the core of which Nucleus of summarized; Secondly,this paper expounds the system layer and drive which Nucleus of solutions; Given the interface function after the solution which Nucleus.%Nucleus是一种实时的嵌入式操作系统.深入全面地探讨了Nucleus中驱动通用接口的实现方法.首先对Nucleus的内核进行了概述;其次阐述了Nucleus的系统层和驱动层解决方法;最后给出Nucleus解决后的接口函数.

  9. Support for User Interfaces for Distributed Systems

    Science.gov (United States)

    Eychaner, Glenn; Niessner, Albert

    2005-01-01

    An extensible Java(TradeMark) software framework supports the construction and operation of graphical user interfaces (GUIs) for distributed computing systems typified by ground control systems that send commands to, and receive telemetric data from, spacecraft. Heretofore, such GUIs have been custom built for each new system at considerable expense. In contrast, the present framework affords generic capabilities that can be shared by different distributed systems. Dynamic class loading, reflection, and other run-time capabilities of the Java language and JavaBeans component architecture enable the creation of a GUI for each new distributed computing system with a minimum of custom effort. By use of this framework, GUI components in control panels and menus can send commands to a particular distributed system with a minimum of system-specific code. The framework receives, decodes, processes, and displays telemetry data; custom telemetry data handling can be added for a particular system. The framework supports saving and later restoration of users configurations of control panels and telemetry displays with a minimum of effort in writing system-specific code. GUIs constructed within this framework can be deployed in any operating system with a Java run-time environment, without recompilation or code changes.

  10. Building intuitive 3D interfaces for virtual reality systems

    Science.gov (United States)

    Vaidya, Vivek; Suryanarayanan, Srikanth; Seitel, Mathias; Mullick, Rakesh

    2007-03-01

    An exploration of techniques for developing intuitive, and efficient user interfaces for virtual reality systems. Work seeks to understand which paradigms from the better-understood world of 2D user interfaces remain viable within 3D environments. In order to establish this a new user interface was created that applied various understood principles of interface design. A user study was then performed where it was compared with an earlier interface for a series of medical visualization tasks.

  11. Desirable Elements for a Particle System Interface

    Directory of Open Access Journals (Sweden)

    Daniel Schroeder

    2014-01-01

    Full Text Available Particle systems have many applications, with the most popular being to produce special effects in video games and films. To permit particle systems to be created quickly and easily, Particle System Interfaces (PSIs have been developed. A PSI is a piece of software designed to perform common tasks related to particle systems for clients, while providing them with a set of parameters whose values can be adjusted to create different particle systems. Most PSIs are inflexible, and when clients require functionality that is not supported by the PSI they are using, they are forced to either find another PSI that meets their requirements or, more commonly, create their own particle system or PSI from scratch. This paper presents three original contributions. First, it identifies 18 features that a PSI should provide in order to be capable of creating diverse effects. If these features are implemented in a PSI, clients will be more likely to be able to accomplish all desired effects related to particle systems with one PSI. Secondly, it introduces a novel use of events to determine, at run time, which particle system code to execute in each frame. Thirdly, it describes a software architecture called the Dynamic Particle System Framework (DPSF. Simulation results show that DPSF possesses all 18 desirable features.

  12. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.

    Directory of Open Access Journals (Sweden)

    Jose Gonzalez-Vargas

    Full Text Available Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns and/or the user has a considerable impairment (limited number of available signal sources. In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate, decoding (one signal to recognize, and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair, or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces in order to improve the usability of existing low

  13. Materials considerations for interfaces between transportation, storage and disposal systems

    International Nuclear Information System (INIS)

    The purpose of this paper is to evaluate the interfaces between transportation, storage and disposal systems, and to identify materials issues that should be addressed in future work. Based on the results of this work, two areas of materials degradation relating to multi-purpose canister (MPC) interfaces should be addressed: (1) moist corrosion during long-term (100 years) storage particularly in storage casks where carbon steel is employed because of galvanic coupling with the MPC stainless steel surface, and, more importantly, (2) the effect of crevice corrosion, at the MPC surface/Alloy 825 interface, on the contribution of the Alloy 825 barrier to controlled release of radionuclides during the long disposal period (10,000 years)

  14. Tool coupling for the design and operation of building energy and control systems based on the Functional Mock-up Interface standard

    Energy Technology Data Exchange (ETDEWEB)

    Nouidui, Thierry Stephane; Wetter, Michael

    2014-03-01

    This paper describes software tools developed at the Lawrence Berkeley National Laboratory (LBNL) that can be coupled through the Functional Mock-up Interface standard in support of the design and operation of building energy and control systems. These tools have been developed to address the gaps and limitations encountered in legacy simulation tools. These tools were originally designed for the analysis of individual domains of buildings, and have been difficult to integrate with other tools for runtime data exchange. The coupling has been realized by use of the Functional Mock-up Interface for co-simulation, which standardizes an application programming interface for simulator interoperability that has been adopted in a variety of industrial domains. As a variety of coupling scenarios are possible, this paper provides users with guidance on what coupling may be best suited for their application. Furthermore, the paper illustrates how tools can be integrated into a building management system to support the operation of buildings. These tools may be a design model that is used for real-time performance monitoring, a fault detection and diagnostics algorithm, or a control sequence, each of which may be exported as a Functional Mock-up Unit and made available in a building management system as an input/output block. We anticipate that this capability can contribute to bridging the observed performance gap between design and operational energy use of buildings.

  15. Advanced operator interface design for CANDU-3 fuel handling system

    International Nuclear Information System (INIS)

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System'. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author)

  16. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant control rooms as a result of several factors. These include: (1) incorporation of new systems such as safety parameter display systems, (2) backfitting of current control rooms with new technologies when existing hardware is no longer supported by equipment vendors, and (3) development of advanced control room concepts. Control rooms of the future will be developed almost exclusively with advanced instrumentation and controls based upon digital technology. In addition, the control room operator will be interfacing with more intelligent systems which will be capable of providing information processing support to the operator. These developments may have significant implications for plant safety in that they will greatly affect the operator's role in the system as well as the ways in which he interacts with it. At present, however, the only guidance available to the Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces is NUREG-0700. It is a document which was written prior to these technological changes and is, therefore, tailored to the technologies used in traditional control rooms. Thus, the present guidance needs to be updated since it is inadequate to serve as the basis for NRC staff review of such advanced or hybrid control room designs. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline suitable for use in performing human factors reviews of advanced operator interfaces. This guideline will take the form of a portable, interactive, computer-based document that may be conveniently used by an inspector in the field, as well as a text-based document

  17. A brain-computer interface based cognitive training system for healthy elderly: a randomized control pilot study for usability and preliminary efficacy.

    Directory of Open Access Journals (Sweden)

    Tih-Shih Lee

    Full Text Available Cognitive decline in aging is a pressing issue associated with significant healthcare costs and deterioration in quality of life. Previously, we reported the successful use of a novel brain-computer interface (BCI training system in improving symptoms of attention deficit hyperactivity disorder. Here, we examine the feasibility of the BCI system with a new game that incorporates memory training in improving memory and attention in a pilot sample of healthy elderly. This study investigates the safety, usability and acceptability of our BCI system to elderly, and obtains an efficacy estimate to warrant a phase III trial. Thirty-one healthy elderly were randomized into intervention (n = 15 and waitlist control arms (n = 16. Intervention consisted of an 8-week training comprising 24 half-hour sessions. A usability and acceptability questionnaire was administered at the end of training. Safety was investigated by querying users about adverse events after every session. Efficacy of the system was measured by the change of total score from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS before and after training. Feedback on the usability and acceptability questionnaire was positive. No adverse events were reported for all participants across all sessions. Though the median difference in the RBANS change scores between arms was not statistically significant, an effect size of 0.6SD was obtained, which reflects potential clinical utility according to Simon's randomized phase II trial design. Pooled data from both arms also showed that the median change in total scores pre and post-training was statistically significant (Mdn = 4.0; p<0.001. Specifically, there were significant improvements in immediate memory (p = 0.038, visuospatial/constructional (p = 0.014, attention (p = 0.039, and delayed memory (p<0.001 scores. Our BCI-based system shows promise in improving memory and attention in healthy

  18. Design for opreating interface of sonar buoy system simulator based on VC++ and OpenGL%基于VC++和OpenGL声纳浮标系统模拟器操作界面设计

    Institute of Scientific and Technical Information of China (English)

    王承祥; 鞠建波; 陶晨辰

    2012-01-01

    从声纳浮标模拟器的操作界面需求入手,设计了一种可移植的操作界面的软件框架,对声纳操作界面进行了仿真.重点介绍了操作界面所需要的各个模块,以及为每个模块设计的基于C++语言的软件开发类库,可以利用模块类库实现声纳浮标搜潜模拟器的界面需求,使模拟器界面和实际装备完全一致,使模拟器起到教学和训练的作用.%Proceeding from the need of operating interface of sonar buoy system simulator, a kind of software frame of the transplantable operating interface was designed to simulate the sonar operating interface. The every module that is needed for operating interface and the VC+H+-based software development class libraries designed for every module are emphatically introduced. The requirement for operating interface can be satisfied by utilizing this class libraries, which make the operating interface of simulator consistent with the real equipment, so the simulator can play a role of teaching and training.

  19. XML-based analysis interface for particle physics data analysis

    International Nuclear Information System (INIS)

    The letter emphasizes on an XML-based interface and its framework for particle physics data analysis. The interface uses a concise XML syntax to describe, in data analysis, the basic tasks: event-selection, kinematic fitting, particle identification, etc. and a basic processing logic: the next step goes on if and only if this step succeeds. The framework can perform an analysis without compiling by loading the XML-interface file, setting p in run-time and running dynamically. An analysis coding in XML instead of C++, easy-to-understood arid use, effectively reduces the work load, and enables users to carry out their analyses quickly. The framework has been developed on the BESⅢ offline software system (BOSS) with the object-oriented C++ programming. These functions, required by the regular tasks and the basic processing logic, are implemented with both standard modules or inherited from the modules in BOSS. The interface and its framework have been tested to perform physics analysis. (authors)

  20. Workstation Modelling and Development: Clinical Definition of a Picture Archiving and Communications System (PACS) User Interface

    Science.gov (United States)

    Braudes, Robert E.; Mun, Seong K.; Sibert, John L.; Schnizlein, John; Horii, Steven C.

    1989-05-01

    A PACS must provide a user interface which is acceptable to all potential users of the system. Observations and interviews have been conducted with six radiology services at the Georgetown University Medical Center, Department of Radiology, in order to evaluate user interface requirements for a PACS system. Based on these observations, a conceptual model of radiology has been developed. These discussions have also revealed some significant differences in the user interface requirements between the various services. Several underlying factors have been identified which may be used as initial predictors of individual user interface styles. A user model has been developed which incorporates these factors into the specification of a tailored PACS user interface.

  1. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  2. Bringing Control System User Interfaces to the Web

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xihui [ORNL; Kasemir, Kay [ORNL

    2013-01-01

    With the evolution of web based technologies, especially HTML5 [1], it becomes possible to create web-based control system user interfaces (UI) that are cross-browser and cross-device compatible. This article describes two technologies that facilitate this goal. The first one is the WebOPI [2], which can seamlessly display CSS BOY [3] Operator Interfaces (OPI) in web browsers without modification to the original OPI file. The WebOPI leverages the powerful graphical editing capabilities of BOY and provides the convenience of re-using existing OPI files. On the other hand, it uses generic JavaScript and a generic communication mechanism between the web browser and web server. It is not optimized for a control system, which results in unnecessary network traffic and resource usage. Our second technology is the WebSocket-based Process Data Access (WebPDA) [4]. It is a protocol that provides efficient control system data communication using WebSocket [5], so that users can create web-based control system UIs using standard web page technologies such as HTML, CSS and JavaScript. WebPDA is control system independent, potentially supporting any type of control system.

  3. User interface design : for existing system monitoring application

    OpenAIRE

    Mishra, Prashamsa

    2013-01-01

    The main purpose of the project was to make use of elements of interface design to create an application. Another purpose was to see how Enoro (customer) Generis system (customer's internal system) merges with the web in particular application. The goal was to create an application web interface for existing System Monitoring application. ASP.NET framework with C# programming language, Enoro Generis System and user interface design elements were used for creating the application. The app...

  4. Research of Digital Interface Layout Design based on Eye-tracking

    Directory of Open Access Journals (Sweden)

    Shao Jiang

    2015-01-01

    Full Text Available The aim of this paper is to improve the low service efficiency and unsmooth human-computer interaction caused by currently irrational layouts of digital interfaces for complex systems. Also, three common layout structures for digital interfaces are to be presented and five layout types appropriate for multilevel digital interfaces are to be summarized. Based on the eye tracking technology, an assessment was conducted in advantages and disadvantages of different layout types through subjects’ search efficiency. Based on data and results, this study constructed a matching model which is appropriate for multilevel digital interface layout and verified the fact that the task element is a significant and important aspect of layout design. A scientific experimental model of research on digital interfaces for complex systems is provided. Both data and conclusions of the eye movement experiment provide a reference for layout designs of interfaces for complex systems with different task characteristics.

  5. Web Database Query Interface Annotation Based on User Collaboration

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIN Can; MENG Xiaofeng

    2006-01-01

    A vision based query interface annotation method is used to relate attributes and form elements in form-based web query interfaces, this method can reach accuracy of 82%.And a user participation method is used to tune the result; user can answer "yes" or "no" for existing annotations, or manually annotate form elements.Mass feedback is added to the annotation algorithm to produce more accurate result.By this approach, query interface annotation can reach a perfect accuracy.

  6. Modal Transition Systems as the Basis for Interface Theories and Product Lines

    DEFF Research Database (Denmark)

    Nyman, Ulrik

    and a subset of modal transition systems is proved. The developed interface theory, which can describe liveness properties, is also applied as a behavioral variability theory for product line development. The two last papers of the thesis concern themselves with modal and mixed transition systems. The......, Mixed Transition Systems, Modal Specifications, Mixed Specifications, Interfaces, Interface Theory, Interface Automata, I/O automata, Modal I/O Automata, Behavioral Inequalities, Consistency, Common Implementation, Thorough Refinement, Operational Characterization, Synthesizing Implementations......This thesis presents research taking its outset in component-based software development, interface theory and software product lines, as well as modeling formalisms for describing component based software systems and their interfaces. The main part of the thesis consists of five papers. The first...

  7. Salt Repository Project transportation system interface requirements: Transportation system/repository receiving facility interface requirements

    International Nuclear Information System (INIS)

    This report is a preliminary review of the interface between the transportation system and the repository receiving facility for a nuclear waste mined geologic disposal system in salt. Criteria for generic cask and facility designs are developed. These criteria are derived by examining the interfaces that occur as a result of the operations needed to receive nuclear waste at a repository. These criteria provide the basis for design of a safe, operable, practical nuclear waste receiving facility. The processing functions required to move the shipping unit from the gate into the unloading area and back to the gate for dispatch are described. Criteria for a generic receiving facility are discussed but no specific facility design is presented or evaluated. The criteria are stated in general terms to allow application to a wide variety of cask and facility designs. 9 refs., 6 figs., 4 tabs

  8. Development of a Musical-based Interaction System for the Waseda Flutist Robot-Implementation of a Real-time Vision Interface Based on the Particle Filter Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jorge Solis; Atsuo Takanishi

    2010-01-01

    -The aim of this paper is to create an interface for robot interaction.Specifically,musical performance parameters (i.e.vibrato expression) of the Waseda Flutist Robot No.4 Refined Ⅳ (WF-4RIV) are to be manipulated.This research focused on enabling the WF-4RIV to interact with human players (musicians) in a natural way.In this paper,as the first approach,a vision processing algorithm,which is able to track the 3D-orientation and position of a musical instrument,was developed.In particular,the robot acquires image data through two cameras attached to its head.Using color histogram matching and a particle filter,the position of the musician's hands on the instrument are tracked.Analysis of this data determines orientation and location of the instrument.These parameters are mapped to manipulate the musical expression of the WF4RIV,more specifically sound vibrato and volume values.The authors present preliminary experiments to determine if the robot may dynamically change musical paramenters while interacting with a human player (i.e.vibrato etc.).From the experimental results,they may confirm the feasibility of the interaction during the performance,although further research must be carried out to consider the physical constraints of the flutist robot.

  9. Project and implementation of the human/system interface laboratory

    International Nuclear Information System (INIS)

    Analog instrumentation is being increasingly replaced by digital technology in new nuclear power plants, such as Angra III, as well as in existing operating plants, such as Angra I and II, for modernization and life-extension projects. In this new technological environment human factors issues aims to minimize failures in nuclear power plants operation due to human error. It is well known that 30% to 50% of the detected unforeseen problems involve human errors. Presently, human factors issues must be considered during the development of advanced human-system interfaces for the plant. IAEA has considered the importance of those issues and has published TECDOC's and Safety Series Issues on the matter. Thus, there is a need to develop methods and criteria to asses, compare, optimize and validate the human-system interface associated with totally new or hybrid control rooms. Also, the use of computer based operator aids is en evolving area. In order to assist on the development of methods and criteria and to evaluate the effects of the new design concepts and computerized support systems on operator performance, research simulators with advanced control rooms technology, such the IEN's Human System Interface Laboratory, will provide the necessary setting. (author)

  10. Human Systems Interface Design Methods Using Ecological Interface Design Principles

    International Nuclear Information System (INIS)

    The results of this study categorized into two parts. The first part is the guidelines for EID designs. The procedure to observe for EID design is composed of 6 steps; 1) to define a target system, 2) to make an abstraction hierarchy model, 3) to check the link structure among each components included in the layers of abstraction hierarchy model, 4) to transform information requirements to variables, 5) to make the graphs related to each variables, 6) to check the graphs by visual display design principles and heuristic rules. The second part is an EID design alternative for nuclear power plant. The EID for high level function represents the energy balance and energy flow in each loop of nuclear power plant. The EID for middle level function represents the performance indicators of each equipment involved in the all processes of changing from coolants to steam. The EID for low level function represents the values measured in each equipment such as temperature, pressure, water level and so on

  11. A continuously growing web-based interface structure databank

    International Nuclear Information System (INIS)

    The macroscopic properties of materials can be significantly influenced by the presence of microscopic interfaces. The complexity of these interfaces coupled with the vast configurational space in which they reside has been a long-standing obstacle to the advancement of true bottom-up material behavior predictions. In this vein, atomistic simulations have proven to be a valuable tool for investigating interface behavior. However, before atomistic simulations can be utilized to model interface behavior, meaningful interface atomic structures must be generated. The generation of structures has historically been carried out disjointly by individual research groups, and thus, has constituted an overlap in effort across the broad research community. To address this overlap and to lower the barrier for new researchers to explore interface modeling, we introduce a web-based interface structure databank (www.isdb.cee.cornell.edu) where users can search, download and share interface structures. The databank is intended to grow via two mechanisms: (1) interface structure donations from individual research groups and (2) an automated structure generation algorithm which continuously creates equilibrium interface structures. In this paper, we describe the databank, the automated interface generation algorithm, and compare a subset of the autonomously generated structures to structures currently available in the literature. To date, the automated generation algorithm has been directed toward aluminum grain boundary structures, which can be compared with experimentally measured population densities of aluminum polycrystals. (paper)

  12. Impact of mental representational systems on design interface.

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S. A.

    1998-02-25

    The purpose of the studies conducted at Argonne National Laboratory is to understand the impact mental representational systems have in identifying how user comfort parameters influence how information is to best be presented. By understanding how each individual perceives information based on the three representational systems (visual, auditory and kinesthetic modalities), it has been found that a different approach must be taken in the design of interfaces resulting in an outcome that is much more effective and representative of the users mental model. This paper will present current findings and future theories to be explored.

  13. Research of Digital Interface Layout Design based on Eye-tracking

    OpenAIRE

    Shao Jiang; Xue Chengqi; Wang Fang; Wang Haiyan; Tang Wencheng; Chen Mo; Kang Mingwu

    2015-01-01

    The aim of this paper is to improve the low service efficiency and unsmooth human-computer interaction caused by currently irrational layouts of digital interfaces for complex systems. Also, three common layout structures for digital interfaces are to be presented and five layout types appropriate for multilevel digital interfaces are to be summarized. Based on the eye tracking technology, an assessment was conducted in advantages and disadvantages of different layout types through subjects’ ...

  14. Ecological user interface for emergency management decision support systems

    DEFF Research Database (Denmark)

    Andersen, V.

    2003-01-01

    The user interface for decision support systems is normally structured for presenting relevant data for the skilled user in order to allow fast assessment and action of the hazardous situation, or for more complex situations to present the relevant rules and procedures to be followed in order to...... abstraction supporting the situation assessment and remedial actions based on the domain knowledge of the user. The concept of ecological user interface has been tested and appreciated in a variety of other domains using prototypes designed to be representative of industrial processes. The purpose of this...... paper is to discuss the possibility of using the same principles for emergency management with the aim of improved performance in complex and unanticipated situations....

  15. HealthFace: A web-based remote monitoring interface for medical healthcare systems based on a wireless body area sensor network

    OpenAIRE

    KIRBAŞ, İsmail; BAYILMIŞ, Cüneyt

    2012-01-01

    The wireless body area sensor network (WBASN) is a type of wireless sensor network. The wireless sensor nodes in a WBASN are placed on, near, or within a human body. In a medical healthcare system, WBASNs continuously provide healthcare monitoring, especially of elderly or ill people, wherever the patient goes. Wireless nodes sense and process human vital signs such as heart rate, blood pressure, body temperature, and respiration. They then send collected data to a medical center v...

  16. User interface for integrated computer aided design systems

    Science.gov (United States)

    Schwing, James L.

    1986-01-01

    The purpose was the development of a user interface and other appropriate tools to be used in Computer Aided Design systems which can integrate a wide variety of independently developed design and analysis tools. The interface was intended for the integration of programs to be used in the conceptual design of aerospace systems. A user's manual is included.

  17. Redesigning the user interface of handwriting recognition system for preschool children

    Directory of Open Access Journals (Sweden)

    Mohd Nizam SAAD

    2011-01-01

    Full Text Available Nowadays there are handwriting recognition systems that can be occupied to assist children learning how to write properly. However, one of the major barriers that hinders them using the system is its complex user interface where the designed is based on adult preferences. Therefore in this paper, we present the guideline to redesign the user interfaces via our experience developing a handwriting recognition system for pre-school children named Handwriting-based Learning Number (HLN. The redesign process has followed eight guidelines and rules as presented by Schniederman. The user interface satisfaction evaluation result done using Questionnaire for User Interface Satisfaction (QUIS is very convincing where the users are almost satisfied with the redesign process that we did to the user interface. Hence we found that the guidelines are very useful and developers are all welcome to follow it if they intend to do similar system like us.

  18. A nonlinear interface formulation for soil–structure interaction systems

    OpenAIRE

    Haikal, Ghardir

    2014-01-01

    Finite element simulations of soil–structure interaction systems require the use of nonconfirming meshes (NCM) to increase accuracy in capturing the behavior in each material and along the interface. The use of NCM meshes, however, presents a number of challenges in modeling the soil–structure contact interface. The main issue in modeling contact with NCMs is how to ensure geometric compatibility and a complete transfer of surface tractions through the interface in the presence of large mater...

  19. Natural user interface based on gestures recognition using Leap Motion sensor

    Directory of Open Access Journals (Sweden)

    L. Sousa

    2015-11-01

    Full Text Available Natural User Interface (NUI is a term used for human-computer interfaces where the interface is invisible or becomes invisible after successive user-immersion levels, it is typically based on the human nature or human natural elements. Currently several three-dimensional (3D sensors and system can be used to interpret specific human gestures, enabling a completely hands-free control of electronic devices, manipulating objects in a virtual world or interacting with augmented reality applications. This paper presents a set of methods to recognize 3D gestures, and some human-computer interfaces applications using a Leap Motion sensor

  20. High-Conductance Thermal Interfaces Based on Carbon Nanotubes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel thermal interface material (TIM) that is based on an array of vertical carbon nanotubes (CNTs) for high heat flux applications. For...

  1. Monitoring of intratidal lung mechanics: a Graphical User Interface for a model-based decision support system for PEEP-titration in mechanical ventilation.

    Science.gov (United States)

    Buehler, S; Lozano-Zahonero, S; Schumann, S; Guttmann, J

    2014-12-01

    In mechanical ventilation, a careful setting of the ventilation parameters in accordance with the current individual state of the lung is crucial to minimize ventilator induced lung injury. Positive end-expiratory pressure (PEEP) has to be set to prevent collapse of the alveoli, however at the same time overdistension should be avoided. Classic approaches of analyzing static respiratory system mechanics fail in particular if lung injury already prevails. A new approach of analyzing dynamic respiratory system mechanics to set PEEP uses the intratidal, volume-dependent compliance which is believed to stay relatively constant during one breath only if neither atelectasis nor overdistension occurs. To test the success of this dynamic approach systematically at bedside or in an animal study, automation of the computing steps is necessary. A decision support system for optimizing PEEP in form of a Graphical User Interface (GUI) was targeted. Respiratory system mechanics were analyzed using the gliding SLICE method. The resulting shapes of the intratidal compliance-volume curve were classified into one of six categories, each associated with a PEEP-suggestion. The GUI should include a graphical representation of the results as well as a quality check to judge the reliability of the suggestion. The implementation of a user-friendly GUI was successfully realized. The agreement between modelled and measured pressure data [expressed as root-mean-square (RMS)] tested during the implementation phase with real respiratory data from two patient studies was below 0.2 mbar for data taken in volume controlled mode and below 0.4 mbar for data taken in pressure controlled mode except for two cases with RMS automatic categorisation of curve shape into one of six shape-categories provides the rational decision-making model for PEEP-titration. PMID:24549460

  2. Thermal analysis of charring materials based on pyrolysis interface model

    Directory of Open Access Journals (Sweden)

    Huang Hai-Ming

    2014-01-01

    Full Text Available Charring thermal protection systems have been used to protect hypersonic vehicles from high heat loads. The pyrolysis of charring materials is a complicated physical and chemical phenomenon. Based on the pyrolysis interface model, a simulating approach for charring ablation has been designed in order to obtain one dimensional transient thermal behavior of homogeneous charring materials in reentry capsules. As the numerical results indicate, the pyrolysis rate and the surface temperature under a given heat flux rise abruptly in the beginning, then reach a plateau, but the temperature at the bottom rises very slowly to prevent the structural materials from being heated seriously. Pyrolysis mechanism can play an important role in thermal protection systems subjected to serious aerodynamic heat.

  3. A Formal Approach to User Interface Design using Hybrid System Theory Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optimal Synthesis Inc.(OSI) proposes to develop an aiding tool for user interface design that is based on mathematical formalism of hybrid system theory. The...

  4. SWAN: An expert system with natural language interface for tactical air capability assessment

    Science.gov (United States)

    Simmons, Robert M.

    1987-01-01

    SWAN is an expert system and natural language interface for assessing the war fighting capability of Air Force units in Europe. The expert system is an object oriented knowledge based simulation with an alternate worlds facility for performing what-if excursions. Responses from the system take the form of generated text, tables, or graphs. The natural language interface is an expert system in its own right, with a knowledge base and rules which understand how to access external databases, models, or expert systems. The distinguishing feature of the Air Force expert system is its use of meta-knowledge to generate explanations in the frame and procedure based environment.

  5. A Robust Camera-Based Interface for Mobile Entertainment.

    Science.gov (United States)

    Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier

    2016-01-01

    Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user's head by processing the frames provided by the mobile device's front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device's orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user's perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people. PMID:26907288

  6. Integrating HMM-Based Speech Recognition With Direct Manipulation In A Multimodal Korean Natural Language Interface

    CERN Document Server

    Lee, G; Kim, S; Lee, Geunbae; Lee, Jong-Hyeok; Kim, Sangeok

    1996-01-01

    This paper presents a HMM-based speech recognition engine and its integration into direct manipulation interfaces for Korean document editor. Speech recognition can reduce typical tedious and repetitive actions which are inevitable in standard GUIs (graphic user interfaces). Our system consists of general speech recognition engine called ABrain {Auditory Brain} and speech commandable document editor called SHE {Simple Hearing Editor}. ABrain is a phoneme-based speech recognition engine which shows up to 97% of discrete command recognition rate. SHE is a EuroBridge widget-based document editor that supports speech commands as well as direct manipulation interfaces.

  7. Waste assay measurement integration system user interface

    International Nuclear Information System (INIS)

    The Waste Assay Measurement Integration System (WAMIS) is being developed to improve confidence in and lower the uncertainty of waste characterization data. There are two major components to the WAMIS: a data access and visualization component and a data interpretation component. The intent of the access and visualization software is to provide simultaneous access to all data sources that describe the contents of any particular container of waste. The visualization software also allows the user to display data at any level from raw to reduced output. Depending on user type, the software displays a menuing hierarchy, related to level of access, that allows the user to observe only those data sources s/he has been authorized to view. Access levels include system administrator, physicist, QA representative, shift operations supervisor, and data entry. Data sources are displayed in separate windows and presently include (1) real-time radiography video, (2) gamma spectra, (3) passive and active neutron, (4) radionuclide mass estimates, (5) total alpha activity (Ci), (6) container attributes, (7) thermal power (w), and (8) mass ratio estimates for americium, plutonium, and uranium isotopes. The data interpretation component is in the early phases of design, but will include artificial intelligence, expert system, and neural network techniques. The system is being developed on a Pentium PC using Microsoft Visual C++. Future generations of WAMIS will be UNIX based and will incorporate more generically radiographic/tomographic, gamma spectroscopic/tomographics, neutron, and prompt gamma measurements

  8. Design and Evaluation of Human System Interfaces (HSIs)

    International Nuclear Information System (INIS)

    In the safe operation of nuclear power plants and other complex process industries the performance of the control room crews plays an important role. In this respect a well-functioning and well-designed Human-System Interface (HSI) is crucial for safe and efficient operation of the plant. It is therefore essential that the design, development and evaluation of both control rooms and HSI-solutions are conducted in a well-structured way, applying sound human factors principles and guidelines in all phases of the HSI development process. Many nuclear power plants around the world are currently facing major modernisation of their control rooms. In this process computerised, screen-based HSIs replace old conventional operator interfaces. In new control rooms, both in the nuclear field and in other process industries, fully digital, screen-based control rooms are becoming the standard. It is therefore of particular importance to address the design and evaluation of screen-based HSIs in a systematic and consistent way in order to arrive at solutions which take proper advantage of the possibilities for improving operator support through the use of digital, screen-based HSIs, at the same time avoiding pitfalls and problems in the use of this technology. The Halden Reactor Project, in cooperation with the OECD Nuclear Energy Agency, organised an International Summer School on ''Design and Evaluation of Human-System Interfaces (HSIs)'' in Halden, Norway in the period August 25th - 29th, 2003. The Summer School addressed the different steps in design, development and evaluation of HSIs, and the human factors principles, standards and guidelines which should be followed in this process. The lectures comprised both theoretical background, as well as examples of good and bad HSI design, thereby providing practical advice in design and evaluation of operator interfaces and control room solutions to the participants in the Summer School. This CD contains the Proceedings of the

  9. Design and Evaluation of Human System Interfaces (HSIs)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the safe operation of nuclear power plants and other complex process industries the performance of the control room crews plays an important role. In this respect a well-functioning and well-designed Human-System Interface (HSI) is crucial for safe and efficient operation of the plant. It is therefore essential that the design, development and evaluation of both control rooms and HSI-solutions are conducted in a well-structured way, applying sound human factors principles and guidelines in all phases of the HSI development process. Many nuclear power plants around the world are currently facing major modernisation of their control rooms. In this process computerised, screen-based HSIs replace old conventional operator interfaces. In new control rooms, both in the nuclear field and in other process industries, fully digital, screen-based control rooms are becoming the standard. It is therefore of particular importance to address the design and evaluation of screen-based HSIs in a systematic and consistent way in order to arrive at solutions which take proper advantage of the possibilities for improving operator support through the use of digital, screen-based HSIs, at the same time avoiding pitfalls and problems in the use of this technology. The Halden Reactor Project, in cooperation with the OECD Nuclear Energy Agency, organised an International Summer School on ''Design and Evaluation of Human-System Interfaces (HSIs)'' in Halden, Norway in the period August 25th - 29th, 2003. The Summer School addressed the different steps in design, development and evaluation of HSIs, and the human factors principles, standards and guidelines which should be followed in this process. The lectures comprised both theoretical background, as well as examples of good and bad HSI design, thereby providing practical advice in design and evaluation of operator interfaces and control room solutions to the participants in the Summer School. This CD contains the

  10. CSI computer system/remote interface unit acceptance test results

    Science.gov (United States)

    Sparks, Dean W., Jr.

    1992-01-01

    The validation tests conducted on the Control/Structures Interaction (CSI) Computer System (CCS)/Remote Interface Unit (RIU) is discussed. The CCS/RIU consists of a commercially available, Langley Research Center (LaRC) programmed, space flight qualified computer and a flight data acquisition and filtering computer, developed at LaRC. The tests were performed in the Space Structures Research Laboratory (SSRL) and included open loop excitation, closed loop control, safing, RIU digital filtering, and RIU stand alone testing with the CSI Evolutionary Model (CEM) Phase-0 testbed. The test results indicated that the CCS/RIU system is comparable to ground based systems in performing real-time control-structure experiments.

  11. Prospects of brain-machine interfaces for space system control

    Science.gov (United States)

    Menon, Carlo; de Negueruela, Cristina; Millán, José del R.; Tonet, Oliver; Carpi, Federico; Broschart, Michael; Ferrez, Pierre; Buttfield, Anna; Tecchio, Franca; Sepulveda, Francisco; Citi, Luca; Laschi, Cecilia; Tombini, Mario; Dario, Paolo; Maria Rossini, Paolo; De Rossi, Danilo

    2009-02-01

    The dream of controlling and guiding computer-based systems using human brain signals has slowly but steadily become a reality. The available technology allows real-time implementation of systems that measure neuronal activity, convert their signals, and translate their output for the purpose of controlling mechanical and electronic systems. This paper describes the state of the art of non-invasive brain-machine interfaces (BMIs) and critically investigates both the current technological limits and the future potential that BMIs have for space applications. We present an assessment of the advantages that BMIs can provide and justify the preferred candidate concepts for space applications together with a vision of future directions for their implementation.

  12. Implementation of a template management interface for document systems

    OpenAIRE

    Kmet, Damjan

    2010-01-01

    In the development of document management systems we are often confronted with the implementation of office packages into the document management system. By doing this, we face similar concerns regarding the implementation of the template, therefore we can put the requirements together and create an interface to manage the template into the document management system. The interface can shorten the time required for the construction and maintenance of templates of the office packages in the do...

  13. The intelligent user interface for NASA's advanced information management systems

    Science.gov (United States)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  14. Power converter interfaces for electrochemical energy storage systems – A review

    International Nuclear Information System (INIS)

    Highlights: • A review of power converter interfaces for electrochemical energy storage (EES) system is presented. • EES devices and their specificities regarding to integration with the electrical systems are also described. • Power converters are divided into standard, multilevel and multiport technology. • The smart storage concept and the interface requirements to integrate the EES devices are also reviewed. - Abstract: Energy storage concept that supports important technologies for electrical systems is well established and widely recognized. Several energy storage techniques are available, including an electrochemical energy storage system used to support electrical systems. These storage systems require interfaces based on power electronic converters for interconnection with an electrical system. This paper reviews the literature covering the various types of interfaces developed for electrochemical energy storage systems. Different electrochemical energy storage devices and their specificities regarding to integration with the electrical systems are described. . The various power converter interfaces that can be used for electrochemical energy storage systems are presented. These interfaces have been divided into standard, multilevel and multiport technology. The main characteristics and specificity of each topology considering its application to electrochemical energy storage systems are presented. The review also covers the smart storage concept and the requirements of the interface to integrate the electrochemical energy storage devices upon this concept

  15. Guidance for Human-system Interfaces to Automatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; Higgins, J.; Stephen Fleger; Valerie Barnes

    2010-09-27

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions, including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: Levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration.

  16. 一种基于两种不同范式的混合型脑-机接口系统%A Hybrid Brain-Computer Interface System Based on Two Different Paradigms

    Institute of Scientific and Technical Information of China (English)

    李翔; 高小榕; 高上凯

    2012-01-01

    training of the two paradigms,then accepted tests of switching the system interface and input characters. Results of the experiments show that subjects can operate the system well after certain training,with a shortest average time of 3. 9 s in single-step motor imagery operation,and accuracy up to 93. 3% in character input. The system provides less fatigue,more task types and more flexible control than the single sensory modality based brain-computer interfaces.

  17. Ground Systems Development Environment (GSDE) interface requirements analysis: Operations scenarios

    Science.gov (United States)

    Church, Victor E.; Phillips, John

    1991-01-01

    This report is a preliminary assessment of the functional and data interface requirements to the link between the GSDE GS/SPF (Amdahl) and the Space Station Control Center (SSCC) and Space Station Training Facility (SSTF) Integration, Verification, and Test Environments (IVTE's). These interfaces will be involved in ground software development of both the control center and the simulation and training systems. Our understanding of the configuration management (CM) interface and the expected functional characteristics of the Amdahl-IVTE interface is described. A set of assumptions and questions that need to be considered and resolved in order to complete the interface functional and data requirements definitions are presented. A listing of information items defined to describe software configuration items in the GSDE CM system is included. It also includes listings of standard reports of CM information and of CM-related tools in the GSDE.

  18. Development and Application of a System Based on Free interface Component Mode Synthesis%自由界面模态综合求解系统的开发与应用

    Institute of Scientific and Technical Information of China (English)

    温争鸣; 胡于进

    2014-01-01

    To popularize the application of free-interface component mode synthesis,a procedure of implement of free interface CMS based on Nastransolver and DMAP language is proposed and asystem is developed.The system modules are designedaccording to the basic algorithm of free interfaceCMS.The results of this system were verifiedthrough practical examples and compared withthe holistic analysis results of Nastran,whichproved the effectiveness and correctness of thissystem.%为了推广自由界面模态综合法的应用,基于求解功能强大的 Nastran 求解器和 DMAP 开发语言,研制开发了自由界面模态综合求解系统,结合自由界面模态综合法的计算流程设计了系统的功能模块。最后,通过多个实例对求解系统进行了测试,通过与 Nastran 整体计算结果进行对比,验证了系统的正确性和有效性。

  19. Graphene-Based Interfaces Do Not Alter Target Nerve Cells.

    Science.gov (United States)

    Fabbro, Alessandra; Scaini, Denis; León, Verónica; Vázquez, Ester; Cellot, Giada; Privitera, Giulia; Lombardi, Lucia; Torrisi, Felice; Tomarchio, Flavia; Bonaccorso, Francesco; Bosi, Susanna; Ferrari, Andrea C; Ballerini, Laura; Prato, Maurizio

    2016-01-26

    Neural-interfaces rely on the ability of electrodes to transduce stimuli into electrical patterns delivered to the brain. In addition to sensitivity to the stimuli, stability in the operating conditions and efficient charge transfer to neurons, the electrodes should not alter the physiological properties of the target tissue. Graphene is emerging as a promising material for neuro-interfacing applications, given its outstanding physico-chemical properties. Here, we use graphene-based substrates (GBSs) to interface neuronal growth. We test our GBSs on brain cell cultures by measuring functional and synaptic integrity of the emerging neuronal networks. We show that GBSs are permissive interfaces, even when uncoated by cell adhesion layers, retaining unaltered neuronal signaling properties, thus being suitable for carbon-based neural prosthetic devices. PMID:26700626

  20. Math Search for the Masses: Multimodal Search Interfaces and Appearance-Based Retrieval

    OpenAIRE

    Zanibbi, Richard; Orakwue, Awelemdy

    2015-01-01

    We summarize math search engines and search interfaces produced by the Document and Pattern Recognition Lab in recent years, and in particular the min math search interface and the Tangent search engine. Source code for both systems are publicly available. "The Masses" refers to our emphasis on creating systems for mathematical non-experts, who may be looking to define unfamiliar notation, or browse documents based on the visual appearance of formulae rather than their mathematical semantics.

  1. Voice recognition interface for a radiology information system

    International Nuclear Information System (INIS)

    The greatest pitfalls in the introduction of computer technology into a nontraditional computer environment, such as a medical department, often lie in the lack of user friendliness in the human interface. For this reason, the authors have sought to design a voice recognition user interface for standard report generation on their department radiology information system. They report how they have successfully implemented a voice interface in the clinical report generation system for most standard mammographic studies. They have found that the voice system provides a simple, user-friendly interface that is more widely accepted in a medical environment because of its similarities to traditional dictation. Although the system requires some initial time for voice training, it avoids potential delays in transcription and proofreading

  2. New Heuristics for Interfacing Human Motor System using Brain Waves

    Directory of Open Access Journals (Sweden)

    Mohammed El-Dosuky

    2012-09-01

    Full Text Available There are many new forms of interfacing human users to machines. We persevere here electric-mechanical form of interaction between human and machine. The emergence of brain-computer interface allows mind-to-movement systems. The story of the Pied Piper inspired us to devise some new heuristics for interfacing human motor system using brain waves, by combining head helmet and LumbarMotionMonitor. For the simulation we use java GridGain. Brain responses of classified subjects during training indicates that Probe can be the best stimulus to rely on in distinguishing between knowledgeable and not knowledgeable

  3. New Heuristics for Interfacing Human Motor System using Brain Waves

    OpenAIRE

    Mohammed El-Dosuky; Ahmed El-Bassiouny; Taher Hamza; Magdy Rashad

    2012-01-01

    There are many new forms of interfacing human users to machines. We persevere here electric-mechanical form of interaction between human and machine. The emergence of brain-computer interface allows mind-to-movement systems. The story of the Pied Piper inspired us to devise some new heuristics for interfacing human motor system using brain waves, by combining head helmet and LumbarMotionMonitor. For the simulation we use java GridGain. Brain responses of classified subjects during training in...

  4. Operator interface to the ORIC control system

    International Nuclear Information System (INIS)

    The Oak Ridge Isochronous Cyclotron (ORIC) was built in the early 1960s with a hard-wired manual control system. Presently, it serves as a variable-energy heavy-ion cyclotron with an internal ion source, or as an energy booster for the new 25 MV tandem electrostatic accelerator of the Holifield Heavy Ion Facility. One factor which has kept the cyclotron the productive research tool it is today is the gradual transfer of its control functions to a computer-based system beginning in the 1970s. This particular placement of a computer between an accelerator and its operators afforded some unique challenges and opportunities that would not be encountered today. Historically, the transformation began at a time when computers were just beginning to gain acceptance as reliable operational tools. Veteran operators with tens of years of accelerator experience justifiably expressed skepticism that this improvement would aid them, particularly if they had to re-learn how to operate the machine. The confidence of the operators was gained when they realized that one of the primary principles of ergonomics was being upheld. The computer software and hardware was being designed to serve them and not the computer

  5. An adaptive interface (KNOWBOT) for nuclear power industry data bases

    International Nuclear Information System (INIS)

    An adaptive interface, KNOWBOT, has been designed to solve some of the problems that face the users of large centralized databases. The interface applies the neural network approach to information retrieval from a database. The database is a subset of the Nuclear Plant Reliability Data System (NPRDS). KNOWBOT preempts an existing database interface and works in conjunction with it. By design, KNOWBOT starts as a tabula rasa but acquires knowledge through its interactions with the user and the database. The interface uses its gained knowledge to personalize the database retrieval process and to induce new queries. In addition, the interface forgets the information that is no longer needed by the user. These self-organizing features of the interface reduce the scope of the database to the subsets that are highly relevant to the user needs. A proof-of-principle version of this interface has been implemented in Common LISP on a Texas Instruments Explorer I workstation. Experiments with KNOWBOT have successfully demonstrated the robustness of the model especially with induction and self-organization

  6. The Johnson Space Center Management Information Systems (JSCMIS): An interface for organizational databases

    Science.gov (United States)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Management Information and Decision Support Environment (MIDSE) is a research activity to build and test a prototype of a generic human interface on the Johnson Space Center (JSC) Information Network (CIN). The existing interfaces were developed specifically to support operations rather than the type of data which management could use. The diversity of the many interfaces and their relative difficulty discouraged occasional users from attempting to use them for their purposes. The MIDSE activity approached this problem by designing and building an interface to one JSC data base - the personnel statistics tables of the NASA Personnel and Payroll System (NPPS). The interface was designed against the following requirements: generic (use with any relational NOMAD data base); easy to learn (intuitive operations for new users); easy to use (efficient operations for experienced users); self-documenting (help facility which informs users about the data base structure as well as the operation of the interface); and low maintenance (easy configuration to new applications). A prototype interface entitled the JSC Management Information Systems (JSCMIS) was produced. It resides on CIN/PROFS and is available to JSC management who request it. The interface has passed management review and is ready for early use. Three kinds of data are now available: personnel statistics, personnel register, and plan/actual cost.

  7. Resident database interfaces to the DAVID system, a heterogeneous distributed database management system

    Science.gov (United States)

    Moroh, Marsha

    1988-01-01

    A methodology for building interfaces of resident database management systems to a heterogeneous distributed database management system under development at NASA, the DAVID system, was developed. The feasibility of that methodology was demonstrated by construction of the software necessary to perform the interface task. The interface terminology developed in the course of this research is presented. The work performed and the results are summarized.

  8. Invariant-Based Automatic Testing of AJAX User Interfaces

    NARCIS (Netherlands)

    Mesbah, A.; Van Deursen, A.

    2009-01-01

    This paper is a pre-print of: Ali Mesbah and Arie van Deursen. Invariant-Based Automatic Testing of AJAX User Interfaces. In Proceedings of the 31st International Conference on Software Engineering (ICSE’09), Research Papers, Vancouver, Canada, IEEE Computer Society, 2009. AJAX-based Web 2.0 applic

  9. Nanoscale properties of graphene-based interfaces

    OpenAIRE

    Miniussi, Elisa

    2014-01-01

    Il tema fondamentale della mia attività di ricerca di dottorato è stato la produzione e caratterizzazione di interfacce a base di grafene. Negli ultimi dieci anni, il grafene, il singolo strato perfettamente bidimensionale di atomi di carbonio, si è imposto all'attenzione della comunità scientifica come un materiale rivoluzionario con eccezionali proprietà meccaniche, elettroniche e termiche, potenzialmente in grado di superare il silicio nella prossima generazione di dispositivi elettronici...

  10. Signal interfacing between systems and cabinets for a phased I and C safety systems upgrade in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Tae, E-mail: nalburushim@khnp.co.kr [Nuclear Engineering and Technology Institute, KHNP Co., Ltd., 25-1 Jang-dong, Yuseong-gu, Daejeon (Korea, Republic of); Sung, Chan Ho; Lee, Jae Ki [Nuclear Engineering and Technology Institute, KHNP Co., Ltd., 25-1 Jang-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2011-08-15

    Highlights: > We build the methodology for I and C system upgrade in nuclear power plants. > We describe the interface requirements reflecting a phase upgrade. > Interface requirements we suggest are system configuration, signal interface, and cabinet configuration. - Abstract: This paper presents a standpoint of signal interface for a phased upgrade of instrumentation and control (I and C) systems in a pressurized water reactor (PWR) type nuclear power plant (NPP) in Korea. YongGwang nuclear (YGN) power plant units 3 and 4, which was constructed as a basis model for an optimized power reactor 1000 (OPR1000), is selected as a demonstration model for the presentation. A methodology for building interface requirements is suggested for a phased I and C systems upgrade, maintaining the same functions as those of existing systems, improving functions without violating the compliance requirements, and establishing a safe and economical upgrade schedule. For this, signal interfaces, from the standpoint of safety systems, between I and C cabinets in auxiliary electrical equipment rooms (EER) A and B and the main control room (MCR), the signal interface between the cabinet and the main control board (MCB), and the signal interface between the cabinet and the remote shutdown panel (RSP) are described. This paper focuses on the description of the following interface requirements, reflecting the phased upgrade strategies: system configuration, signal interface, and cabinet configuration. The suggested phased upgrade strategies include the following: non-safety I and C systems should be upgraded in phase 1, safety I and C systems should be upgraded in phase 2, and the MCR should be upgraded in phase 3. The findings presented in the paper can be reliably used to understand upgrade of I and C systems and to implement I and C systems for phased upgrades based on digital technologies.

  11. Signal interfacing between systems and cabinets for a phased I and C safety systems upgrade in nuclear power plants

    International Nuclear Information System (INIS)

    Highlights: → We build the methodology for I and C system upgrade in nuclear power plants. → We describe the interface requirements reflecting a phase upgrade. → Interface requirements we suggest are system configuration, signal interface, and cabinet configuration. - Abstract: This paper presents a standpoint of signal interface for a phased upgrade of instrumentation and control (I and C) systems in a pressurized water reactor (PWR) type nuclear power plant (NPP) in Korea. YongGwang nuclear (YGN) power plant units 3 and 4, which was constructed as a basis model for an optimized power reactor 1000 (OPR1000), is selected as a demonstration model for the presentation. A methodology for building interface requirements is suggested for a phased I and C systems upgrade, maintaining the same functions as those of existing systems, improving functions without violating the compliance requirements, and establishing a safe and economical upgrade schedule. For this, signal interfaces, from the standpoint of safety systems, between I and C cabinets in auxiliary electrical equipment rooms (EER) A and B and the main control room (MCR), the signal interface between the cabinet and the main control board (MCB), and the signal interface between the cabinet and the remote shutdown panel (RSP) are described. This paper focuses on the description of the following interface requirements, reflecting the phased upgrade strategies: system configuration, signal interface, and cabinet configuration. The suggested phased upgrade strategies include the following: non-safety I and C systems should be upgraded in phase 1, safety I and C systems should be upgraded in phase 2, and the MCR should be upgraded in phase 3. The findings presented in the paper can be reliably used to understand upgrade of I and C systems and to implement I and C systems for phased upgrades based on digital technologies.

  12. Direct interfaces for smart skins based on FPGAs

    Science.gov (United States)

    Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A.; Vidal-Verdú, Fernando

    2009-05-01

    Many artificial skins for robotics are based on piezoresistive films that cover an array of electrodes. Local preprocessing is a must in these systems to reduce errors and interferences and cope with the large amount of data provided by the sensor. This paper presents circuitry based on an FPGA to implement the interface to the artificial skin. The approach consists of a direct connection. The analog to digital conversion procedure is simple. It consists of measuring the discharging time of a capacitor through the resistance we want to read. This first proposed approach needs isolated tactels, so the raw sensor has to be fabricated in this way. If the tactile array is large, the strategy is not feasible. For instance, up to 288 pins are required to implement the interface with an array of 16x16 tactels. The proposal of this work for this case is to replace passive integrators by active ones. The result is a circuitry that allows the cancellation of interferences due to parasitic resistors and the sharing of the addressing tracks. Moreover, the FPGA allows the processing of data from the tactile sensor at a very high rate. This is because the high number of I/O pins of the device allows the conversion of many channels (in our case one per column) in parallel. The internal processing of the tactile image can also be done in parallel. This means we could be able to respond to very high demanding tasks in terms of dynamic requirements, like slippage detection. This also means we can run complex algorithms at real time, so a smart, programmable and powerful sensor is obtained.

  13. Brain-Computer Interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke

    Directory of Open Access Journals (Sweden)

    Kai Keng eAng

    2014-07-01

    Full Text Available The objective of this study was to investigate the efficacy of an Electroencephalography (EEG-based Motor Imagery (MI Brain-Computer Interface (BCI coupled with a Haptic Knob (HK robot for arm rehabilitation in stroke patients. In this three-arm, single-blind, randomized controlled trial; 21 chronic hemiplegic stroke patients (Fugl-Meyer Motor Assessment (FMMA score 10-50, recruited after pre-screening for MI BCI ability, were randomly allocated to BCI-HK, HK or Standard Arm Therapy (SAT groups. All groups received 18 sessions of intervention over 6 weeks, 3 sessions per week, 90 minutes per session. The BCI-HK group received 1 hour of BCI coupled with HK intervention, and the HK group received 1 hour of HK intervention per session. Both BCI-HK and HK groups received 120 trials of robot-assisted hand grasping and knob manipulation followed by 30 minutes of therapist-assisted arm mobilization. The SAT group received 1.5 hours of therapist-assisted arm mobilization and forearm pronation-supination movements incorporating wrist control and grasp-release functions. In all, 14 males, 7 females, mean age 54.2 years, mean stroke duration 385.1 days, with baseline FMMA score 27.0 were recruited. The primary outcome measure was upper-extremity FMMA scores measured mid-intervention at week 3, end-intervention at week 6, and follow-up at weeks 12 and 24. Seven, 8 and 7 subjects underwent BCI-HK, HK and SAT interventions respectively. FMMA score improved in all groups, but no intergroup differences were found at any time points. Significantly larger motor gains were observed in the BCI-HK group compared to the SAT group at weeks 3, 12 and 24, but motor gains in the HK group did not differ from the SAT group at any time point. In conclusion, BCI-HK is effective, safe, and may have the potential for enhancing motor recovery in chronic stroke when combined with therapist-assisted arm mobilization.

  14. Monitoring and control interface based on virtual sensors.

    Science.gov (United States)

    Escobar, Ricardo F; Adam-Medina, Manuel; García-Beltrán, Carlos D; Olivares-Peregrino, Víctor H; Juárez-Romero, David; Guerrero-Ramírez, Gerardo V

    2014-01-01

    In this article, a toolbox based on a monitoring and control interface (MCI) is presented and applied in a heat exchanger. The MCI was programed in order to realize sensor fault detection and isolation and fault tolerance using virtual sensors. The virtual sensors were designed from model-based high-gain observers. To develop the control task, different kinds of control laws were included in the monitoring and control interface. These control laws are PID, MPC and a non-linear model-based control law. The MCI helps to maintain the heat exchanger under operation, even if a temperature outlet sensor fault occurs; in the case of outlet temperature sensor failure, the MCI will display an alarm. The monitoring and control interface is used as a practical tool to support electronic engineering students with heat transfer and control concepts to be applied in a double-pipe heat exchanger pilot plant. The method aims to teach the students through the observation and manipulation of the main variables of the process and by the interaction with the monitoring and control interface (MCI) developed in LabVIEW©. The MCI provides the electronic engineering students with the knowledge of heat exchanger behavior, since the interface is provided with a thermodynamic model that approximates the temperatures and the physical properties of the fluid (density and heat capacity). An advantage of the interface is the easy manipulation of the actuator for an automatic or manual operation. Another advantage of the monitoring and control interface is that all algorithms can be manipulated and modified by the users. PMID:25365462

  15. Monitoring and Control Interface Based on Virtual Sensors

    Directory of Open Access Journals (Sweden)

    Ricardo F. Escobar

    2014-10-01

    Full Text Available In this article, a toolbox based on a monitoring and control interface (MCI is presented and applied in a heat exchanger. The MCI was programed in order to realize sensor fault detection and isolation and fault tolerance using virtual sensors. The virtual sensors were designed from model-based high-gain observers. To develop the control task, different kinds of control laws were included in the monitoring and control interface. These control laws are PID, MPC and a non-linear model-based control law. The MCI helps to maintain the heat exchanger under operation, even if a temperature outlet sensor fault occurs; in the case of outlet temperature sensor failure, the MCI will display an alarm. The monitoring and control interface is used as a practical tool to support electronic engineering students with heat transfer and control concepts to be applied in a double-pipe heat exchanger pilot plant. The method aims to teach the students through the observation and manipulation of the main variables of the process and by the interaction with the monitoring and control interface (MCI developed in LabVIEW©. The MCI provides the electronic engineering students with the knowledge of heat exchanger behavior, since the interface is provided with a thermodynamic model that approximates the temperatures and the physical properties of the fluid (density and heat capacity. An advantage of the interface is the easy manipulation of the actuator for an automatic or manual operation. Another advantage of the monitoring and control interface is that all algorithms can be manipulated and modified by the users.

  16. Multiple multichannel spectra acquisition and processing system with intelligent interface

    International Nuclear Information System (INIS)

    A Multiple multichannel spectra acquisition and processing system with intelligent interface is described. Sixteen spectra measured with various lengths, channel widths, back biases and acquisition times can be identified and collected by the intelligent interface simultaneously while the connected computer is doing data processing. The execution time for the Ge(Li) gamma-ray spectrum analysis software on IBM PC-XT is about 55 seconds

  17. Development and testing of the Automated Fluid Interface System

    Science.gov (United States)

    Milton, Martha E.; Tyler, Tony R.

    1993-05-01

    The Automated Fluid Interface System (AFIS) is an advanced development program aimed at becoming the standard interface for satellite servicing for years to come. The AFIS will be capable of transferring propellants, fluids, gasses, power, and cryogens from a tanker to an orbiting satellite. The AFIS program currently under consideration is a joint venture between the NASA/Marshall Space Flight Center and Moog, Inc. An engineering model has been built and is undergoing development testing to investigate the mechanism's abilities.

  18. Human-system interface for CAREM nuclear reactor

    International Nuclear Information System (INIS)

    Associated with activities to be developed by our working group on the construction of the reactor training simulator for the CAREM, we have planned the design of human-system interface (HSI) of the main control room. The goal of this study is to describe the planning and methodology used for the HSI interface design. The products of this process are the layout specifications of the Control Room and the screens specifications for control software. (author)

  19. An optical nanofiber-based interface for single molecules

    CERN Document Server

    Skoff, Sarah M; Schauffert, Hardy; Rauschenbeutel, Arno

    2016-01-01

    Optical interfaces for quantum emitters are a prerequisite for implementing quantum networks. Here, we couple single molecules to the guided modes of an optical nanofiber. The molecules are embedded within a crystal that provides photostability and due to its inhomogeneous environment, a means to spectrally address single molecules. Single molecules are excited and detected solely via the nanofiber interface without the requirement of additional optical access. In this way, we realize a fully fiber-integrated system that is scalable and may become a versatile constituent for quantum hybrid systems.

  20. Operation and control interfaces based upon distributed agent networks

    International Nuclear Information System (INIS)

    The majority of todays large scale compute clusters and software systems running on them are using operation and control interfaces (OCI) for monitoring and control. The majority of these OCI's are still based upon single node applications, which are limited by the physical system they are running on. In areas where hundred thousand and more statistical values have to be analyzed and taken into account for visualization and decision making this kind of OCI's are no option at all. Furthermore, this kind of OCI's do not empower whole collaborations to control and operate cluster at the same time from around the world. Distributed agent networks (DAN) tend to have the possibility to overcome this limitations. A distributed agent network is per design a multi-node approach. Together with a web based OCI, automatic data propagation and distributed locking algorithms they provide simultaneous operation and control, distributed state tracking and visualization to world wide collaborations. The first compute cluster in the scientific world using this combination of technologies is the ALICE HLT at CERN.

  1. Spectrometer modules operating with a personal computer using multilevel system interface protocol

    International Nuclear Information System (INIS)

    A module of 12-bit spectrometric amplitude-to-digital converter (conversion time <20 μs) which utilizes a multichannel system interface (MSI) protocol is described. The integration of MSI highway with an IBM-PC-AT computer is implemented through a built-in interface module. It represents an interface setting device of 16-bit cable high-way with combined address and data bases; clock frequency is 6 MHz maximum. The addition of time-amplitude converter enables the application of the system for measuring time spectra

  2. NASA Access Mechanism - Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy F.; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited by factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  3. NASA access mechanism: Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited to factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  4. Microfluidic hubs, systems, and methods for interface fluidic modules

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  5. Brain-machine interface circuits and systems

    CERN Document Server

    Zjajo, Amir

    2016-01-01

    This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

  6. Reservation system with graphical user interface

    KAUST Repository

    Mohamed, Mahmoud A. Abdelhamid

    2012-01-05

    Techniques for providing a reservation system are provided. The techniques include displaying a scalable visualization object, wherein the scalable visualization object comprises an expanded view element of the reservation system depicting information in connection with a selected interval of time and a compressed view element of the reservation system depicting information in connection with one or more additional intervals of time, maintaining a visual context between the expanded view and the compressed view within the visualization object, and enabling a user to switch between the expanded view and the compressed view to facilitate use of the reservation system.

  7. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  8. Quantitative evaluation of a low-cost noninvasive hybrid interface based on EEG and eye movement.

    Science.gov (United States)

    Kim, Minho; Kim, Byung Hyung; Jo, Sungho

    2015-03-01

    This paper describes a low-cost noninvasive brain-computer interface (BCI) hybridized with eye tracking. It also discusses its feasibility through a Fitts' law-based quantitative evaluation method. Noninvasive BCI has recently received a lot of attention. To bring the BCI applications into real life, user-friendly and easily portable devices need to be provided. In this work, as an approach to realize a real-world BCI, electroencephalograph (EEG)-based BCI combined with eye tracking is investigated. The two interfaces can be complementary to attain improved performance. Especially to consider public availability, a low-cost interface device is intentionally used for test. A low-cost commercial EEG recording device is integrated with an inexpensive custom-built eye tracker. The developed hybrid interface is evaluated through target pointing and selection experiments. Eye movement is interpreted as cursor movement and noninvasive BCI selects a cursor point with two selection confirmation schemes. Using Fitts' law, the proposed interface scheme is compared with other interface schemes such as mouse, eye tracking with dwell time, and eye tracking with keyboard. In addition, the proposed hybrid BCI system is discussed with respect to a practical interface scheme. Although further advancement is required, the proposed hybrid BCI system has the potential to be practically useful in a natural and intuitive manner. PMID:25376041

  9. Interface requirements in nuclear medicine devices and systems

    International Nuclear Information System (INIS)

    Interface designs for three nuclear medicine imaging systems, and computer networking strategies proposed for medical imaging departments are presented. Configurations for two positron-emission-tomography devices (PET III and ECAT) and a general-purpose tomography instrument (the UNICON) are analyzed in terms of specific performance parameters. Interface designs for these machines are contrasted in terms of utilization of standard versus custom modules, cost, and ease of modification, upgrade, and support. The requirements of general purpose systems for medical image analysis, display, and archiving, are considered, and a realizable state-of-the-art system is specfied, including a suggested timetable

  10. The PCI Interface for GRAPE Systems: PCI-HIB

    OpenAIRE

    Kawai, A.; Fukushige, T.; Taiji, M.; Makino, J.; Sugimoto, D.

    1997-01-01

    We developed a PCI interface for GRAPE systems. GRAPE(GRAvity piPE) is a special-purpose computer for gravitational N-body simulations. A GRAPE system consists of GRAPE processor boards and a host computer. GRAPE processors perform the calculation of gravitational forces between particles. The host computer performs the rest of calculations. The newest of GRAPE machines, the GRAPE-4, achieved the peak performance of 1.08 Tflops. The GRAPE-4 system uses TURBOChannel for the interface to the ho...

  11. Mining learners’ behavior in accessing web-based interface

    OpenAIRE

    Lee, MW; Chen, SY; Liu, X.

    2007-01-01

    Web-based technology has already been adopted as a tool to support teaching and learning in higher education. One criterion affecting the usability of such a technology is the design of web-based interface (WBI) within web-based learning programs. How different users access the WBIs has been investigated by several studies, which mainly analyze the collected data using statistical methods. In this paper, we propose to analyze users’ learning behavior using Data Mining (DM) techniques. Finding...

  12. Design of operator interfaces for hazardous waste removal systems

    International Nuclear Information System (INIS)

    The cleanup of hazardous nuclear and chemical wastes is a major environmental problem. Some of the material is so toxic that handling it will require the use of remotely/controlled robots. Operators of the robots will be situated remotely from the waste and will need a user interface for controlling the robot within its environment. The remote robot will have a variety of sensors in addition to the usual video feedback. The three dimensional data from these multiple sensors must be displayable in an integrated way on the two dimensional user interface. This project has investigated the design of a user interface for tele/robotic systems. We have developed a number of three dimensional visualization tools for use with standard user interface toolkits. (author) 6 figs., 7 refs

  13. Touch-based Brain Computer Interfaces: State of the art

    NARCIS (Netherlands)

    Erp, J.B.F. van; Brouwer, A.M.

    2014-01-01

    Brain Computer Interfaces (BCIs) rely on the user's brain activity to control equipment or computer devices. Many BCIs are based on imagined movement (called active BCIs) or the fact that brain patterns differ in reaction to relevant or attended stimuli in comparison to irrelevant or unattended stim

  14. Maintenance Effectiveness and Target Observation System and its ERP Interface

    International Nuclear Information System (INIS)

    Maintenance effectiveness and target observation system (MENTOS) is a maintenance rule (MR) implementation software for plant personnel to collect, edit, store, and analyze all information required for the MR implementation. Potential users and the developers of MENTOS have decided that MENTOS is implemented in the ERP system of KHNP. This article describes MENTOS briefly and introduces the ERP interface of MENTOS

  15. Maintenance Effectiveness and Target Observation System and its ERP Interface

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Han Seong; Kim, Gi Yong; Seo, Mi Ro [Atomic Creative Technology, Taejon (Korea, Republic of); Jeong, Hun Jong; Choi, Kwang Hee; Hong, Sung Yull [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Maintenance effectiveness and target observation system (MENTOS) is a maintenance rule (MR) implementation software for plant personnel to collect, edit, store, and analyze all information required for the MR implementation. Potential users and the developers of MENTOS have decided that MENTOS is implemented in the ERP system of KHNP. This article describes MENTOS briefly and introduces the ERP interface of MENTOS.

  16. REGULATORY FRAMEWORK AND EVALUATION OF HUMAN-MACHINE INTERFACES IMS NPP SAFETY CASE BASED METHODOLOGY

    OpenAIRE

    Харченко, В'ячеслав Сергійович; "Національний аерокосмічний університет ім.М.Є.Жуковського "ХАІ""; Орехова, Анастасія Олександрівна; "Національний аерокосмічний університет ім.М.Є.Жуковського "ХАІ""

    2012-01-01

    The problems associated with safety of human-machine interfaces, information and control systems in NPP are analyzed.. An approach to assess the safety HMI I&C system NPP, based on Safety Case methodology is proposed. The profile of standards for HMI quality requirements is presented. An example of HMI quality assessment is described.

  17. Interface-based enterprise and software architecture mapping

    Directory of Open Access Journals (Sweden)

    Aziz Ahmad Rais

    2016-04-01

    Full Text Available Information technology (IT becomes more and more complex because of various technologies, methodologies, techniques and practices. Even though the goal of all technologies, methodologies, practices and techniques is to facilitate construction, to simplify, and to increase the reusability of information systems, in practice integrating all these becomes a challenge. This challenge can be met by creating more abstract levels in the information systems in question. Higher-level abstraction simplifies different views of complex problems, but at the same time it generates a knock-on issue regarding how actually to implement such an abstract-level view, and/or how to map it back to the lower levels of abstraction. The goal of this article is to simplify the implementation of enterprise architecture and map it to software architecture using an interface-based analysis technique. In order to achieve this goal, service-oriented architecture (SOA, which is composed of multiple concepts, will be used. The concepts are flexible, so they can be applied in enterprise architecture as well as in software architecture.

  18. The research of graphics interface in nuclear plant isolation system

    International Nuclear Information System (INIS)

    The works of isolation, facility installation and testing are important operation activities between systems, structures, or components in nuclear plant. It focuses on operating facilities and preparing environment for facilities and provides the work around with credibility, felicitousness and security. The research is aiming at graphics interface in computer aided clearance system for the demands of nuclear plants. It integrates the facility virtual environment, run-time status and workflows by graphics interface. With the technology, it helps reduce maintenance periods, optimize the amount of blocked facilities, ensure the safety of work around, improve the facility reliability, and economize resource. The graphics interface technology is the first time implementation to operation system and helps improve nuclear plants operation efficiency. (authors)

  19. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    Science.gov (United States)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; Xu, Wei; Sun, Xin

    2016-05-01

    Pulse or impact welding traditionally has been referred to as "solid-state" welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.

  20. Analysis and Management of Large-Scale Activities Based on Interface

    Science.gov (United States)

    Yang, Shaofan; Ji, Jingwei; Lu, Ligang; Wang, Zhiyi

    Based on the concepts of system safety engineering, life-cycle and interface that comes from American system safety standard MIL-STD-882E, and apply them to the process of risk analysis and management of large-scale activities. Identify the involved personnel, departments, funds and other contents throughout the life cycle of large-scale activities. Recognize and classify the ultimate risk sources of people, objects and environment of large-scale activities from the perspective of interface. Put forward the accident cause analysis model according to the previous large-scale activities' accidents and combine with the analysis of the risk source interface. Analyze the risks of each interface and summary various types of risks the large-scale activities faced. Come up with the risk management consciousness, policies and regulations, risk control and supervision departments improvement ideas.

  1. Developing A Web-based User Interface for Semantic Information Retrieval

    Science.gov (United States)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  2. Guidance for human interface with artificial intelligence systems

    Science.gov (United States)

    Potter, Scott S.; Woods, David D.

    1991-01-01

    The beginning of a research effort to collect and integrate existing research findings about how to combine computer power and people is discussed, including problems and pitfalls as well as desirable features. The goal of the research is to develop guidance for the design of human interfaces with intelligent systems. Fault management tasks in NASA domains are the focus of the investigation. Research is being conducted to support the development of guidance for designers that will enable them to make human interface considerations into account during the creation of intelligent systems.

  3. MSI project is a multilevel system interface for multipurpose application

    International Nuclear Information System (INIS)

    Multilevel system interface (MSI) is suggested as a equipment designed for wide-range unification, on the basis of LIS technology, multipurpose bus-module information-measuring and control systems characterized by different levels of complication and fast-response. Technical solutions worked out at development of the following interfaces: FASTBUS, VME, MULTIBUS II, P896, BI-bus, are unified within its protocols. MSI is made according to hierarchy principle-step-by-step increase of protocol functional capabilities which provides its flexibility aand potential range of application in combination with low-redundancy in every individual case

  4. Robot Animals Based on Brain-Computer Interface

    Institute of Scientific and Technical Information of China (English)

    Yang Xia; Lei Lei; Tie-Jun Liu; De-Zhong Yao

    2009-01-01

    The study of robot animals based on brain-computer interface (BCI) technology is an important field in robots and neuroscience at present.In this paper,the development status at home and abroad of the motion control of robot based on BCI and principle of robot animals are introduced,then a new animals' behavior control method by photostimulation is presented.At last,the application prospect is provided.

  5. On an interface of the online system for a stochastic analysis of the varied information flows

    Science.gov (United States)

    Gorshenin, Andrey K.; Kuzmin, Victor Yu.

    2016-06-01

    The article describes a possible approach to the construction of an interface of an online asynchronous system that allows researchers to analyse varied information flows. The implemented stochastic methods are based on the mixture models and the method of moving separation of mixtures. The general ideas of the system functionality are demonstrated on an example for some moments of a finite normal mixture.

  6. Interface between astrophysical datasets and distributed database management systems (DAVID)

    Science.gov (United States)

    Iyengar, S. S.

    1988-01-01

    This is a status report on the progress of the DAVID (Distributed Access View Integrated Database Management System) project being carried out at Louisiana State University, Baton Rouge, Louisiana. The objective is to implement an interface between Astrophysical datasets and DAVID. Discussed are design details and implementation specifics between DAVID and astrophysical datasets.

  7. DIII-D Neutral Beam control system operator interface

    International Nuclear Information System (INIS)

    A centralized graphical user interface has been added to the DIII-D Neutral Beam (NB) control systems for status monitoring and remote control applications. This user interface provides for automatic data acquisition, alarm detection and supervisory control of the four NB programmable logic controllers (PLC) as well as the Mode Control PLC. These PLCs are used for interlocking, control and status of the NB vacuum pumping, gas delivery, and water cooling systems as well as beam mode status and control. The system allows for both a friendly user interface as well as a safe and convenient method of communicating with remote hardware that formerly required interns to access. In the future, to enable high level of control of PLC subsystems, complete procedures is written and executed at the touch of a screen control panel button. The system consists of an IBM compatible 486 computer running the FIX DMACS trademark for Windows trademark data acquisition and control interface software, a Texas Instruments/Siemens communication card and Phoenix Digital optical communications modules. Communication is achieved via the TIWAY (Texas Instruments protocol link utilizing both fiber optic communications and a copper local area network (LAN). Hardware and software capabilities will be reviewed. Data and alarm reporting, extended monitoring and control capabilities will also be discussed

  8. Speech control interface for Eurocontrol’s LINK2000+ system

    Directory of Open Access Journals (Sweden)

    Dan-Cristian ION

    2012-06-01

    Full Text Available This paper continues recent research of the authors, considering the use of speech recognition in air traffic control. It proposes the use of a voice control interface for Eurocontrol’s LINK2000+ system, offering an alternative means to improve air transport safety and efficiency.

  9. Performance evaluation of interface piping system for seismically isolated NPPs

    International Nuclear Information System (INIS)

    Recently, to design the nuclear power plants (NPPs) more efficiently and safely against the strong seismic load, many researchers focus on the seismic isolation system. For the adoption of seismic isolation system to the NPPs, the seismic performance of isolation devices, structures, and components should be guaranteed firstly. Hence, some researches were performed to determine the seismic performance of such items. In the viewpoint of the components and equipment, most of them will gain the improved seismic performance due to the installation of isolation devices. However, for the interface piping system between isolated structure and non isolated structure, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. In this study, we performed the preliminary seismic performance evaluation of interface piping system for seismically isolated NPPs. The detailed procedure and main results are summarized in next section

  10. A Digital Interface for the Part Designers and the Fixture Designers for a Reconfigurable Assembly System

    Directory of Open Access Journals (Sweden)

    Vishwa V. Kumar

    2013-01-01

    Full Text Available This paper presents a web-based framework for interfacing product designers and fixture designers to fetch the benefits of early supplier involvement (ESI to a reconfigurable assembly system (RAS. The interfacing of the two members requires four steps, namely, collaboration chain, fixture supplier selection, knowledge share, and accommodation of service facilities so as to produce multiple products on a single assembly line. The interfacing not only provokes concurrency in the activities of product and fixture designer but also enables the assembly systems to tackle the spatial and generational variety. Among the four stages of interfacing, two steps are characterized by optimization issues, one from the product customer side and the other from the fixture designer side. To impart promptness in the optimization and hence the interaction, computationally economic tools are also presented in the paper for both of the supplier selection and fixture design optimization.

  11. Electronic structure of hybrid interfaces for polymer-based electronics

    International Nuclear Information System (INIS)

    The fundamentals of the energy level alignment at anode and cathode electrodes in organic electronics are described. We focus on two different models that treat weakly interacting organic/metal (and organic/organic) interfaces: the induced density of interfacial states model and the so-called integer charge transfer model. The two models are compared and evaluated, mainly using photoelectron spectroscopy data of the energy level alignment of conjugated polymers and molecules at various organic/metal and organic/organic interfaces. We show that two different alignment regimes are generally observed: (i) vacuum level alignment, which corresponds to the lack of vacuum level offsets (Schottky-Mott limit) and hence the lack of charge transfer across the interface, and (ii) Fermi level pinning where the resulting work function of an organic/metal and organic/organic bilayer is independent of the substrate work function and an interface dipole is formed due to charge transfer across the interface. We argue that the experimental results are best described by the integer charge transfer model which predicts the vacuum level alignment when the substrate work function is above the positive charge transfer level and below the negative charge transfer level of the conjugated material. The model further predicts Fermi level pinning to the positive (negative) charge transfer level when the substrate work function is below (above) the positive (negative) charge transfer level. The nature of the integer charge transfer levels depend on the materials system: for conjugated large molecules and polymers, the integer charge transfer states are polarons or bipolarons; for small molecules' highest occupied and lowest unoccupied molecular orbitals and for crystalline systems, the relevant levels are the valence and conduction band edges. Finally, limits and further improvements to the integer charge transfer model are discussed as well as the impact on device design. (topical review)

  12. The Waveform Server: A Web-based Interactive Seismic Waveform Interface

    Science.gov (United States)

    Newman, R. L.; Clemesha, A.; Lindquist, K. G.; Reyes, J.; Steidl, J. H.; Vernon, F. L.

    2009-12-01

    Seismic waveform data has traditionally been displayed on machines that are either local area networked to, or directly host, a seismic networks waveform database(s). Typical seismic data warehouses allow online users to query and download data collected from regional networks passively, without the scientist directly visually assessing data coverage and/or quality. Using a suite of web-based protocols, we have developed an online seismic waveform interface that directly queries and displays data from a relational database through a web-browser. Using the Python interface to Datascope and the Python-based Twisted network package on the server side, and the jQuery Javascript framework on the client side to send and receive asynchronous waveform queries, we display broadband seismic data using the HTML Canvas element that is globally accessible by anyone using a modern web-browser. The system is used to display data from the USArray experiment, a US continent-wide migratory transportable seismic array. We are currently creating additional interface tools to create a rich-client interface for accessing and displaying seismic data that can be deployed to any system running Boulder Real Time Technology's (BRTT) Antelope Real Time System (ARTS). The software is freely available from the Antelope contributed code Git repository. Screenshot of the web-based waveform server interface

  13. Functional Interface Considerations within an Exploration Life Support System Architecture

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

  14. The organizational context of error tolerant interface systems

    International Nuclear Information System (INIS)

    Human error has been recognized as the main contributor to the occurrence of incidents in large technological systems such as nuclear power plants. Recent researches have concluded that human errors are unavoidable side effects of exploration of acceptable performance during adaptation to the unknown changes in the environment. To assist the operators in coping with unforeseen situations, the innovative error tolerant interface systems have been proposed to provide the operators with opportunities to make hypothetical tests without having to carry them out directly on the plant in potentially irreversible conditions. On the other hand, the degree of success of introduction of any new system into a tightly-coupled complex socio-technological system is known to be a great deal dependent upon the degree of harmony of that system with the organization s framework and attitudes. Error tolerant interface systems with features of simplicity, transparency, error detectability and recoverability provide a forgiving cognition environment where the effects of errors are observable and recoverable. The nature of these systems are likely to be more consistent with flexible and rather plain organizational structures, in which static and punitive concepts of human error are modified on the favour of dynamic and adaptive approaches. In this paper the features of error tolerant interface systems are explained and their consistent organizational structures are explored. (author)

  15. Description of waste pretreatment and interfacing systems dynamic simulation model

    International Nuclear Information System (INIS)

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage

  16. Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis

    Energy Technology Data Exchange (ETDEWEB)

    OHara, J.M.; Higgins, J.C.

    2010-01-31

    Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation. The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.

  17. Advanced liquid chromatography-mass spectrometry interface based on electron ionization.

    Science.gov (United States)

    Cappiello, A; Famiglini, G; Pierini, E; Palma, P; Trufelli, H

    2007-07-15

    Major progress in interfacing liquid chromatography and electron ionization mass spectrometry is presented. The minimalism of the first prototype, called the Direct-EI interface, has been widely refined, improved, and applied to modern instrumentation. The simple interfacing principle is based on the straight connection between a nanoHPLC system and a mass spectrometer equipped with an EI source forming a solid and reliable unicum resembling the immediacy and straightforwardness of GC/MS. The interface shows a superior performance in the analysis of small-medium molecular weight compounds, especially when compared to its predecessors, and a unique trait that excels particularly in the following aspects: (1) It delivers high-quality, fully library matchable mass spectra of most sub-1 kDa molecules amenable by HPLC. (2) It is a chemical ionization free interface (unless operated intentionally) with accurate reproduction of the expected isotope ion abundances. (3) Response is never influenced by matrix components in the sample or in the mobile phase (nonvolatile salts are also well accepted). A deep evaluation of these aspects is presented and discussed in detail. Other characteristics of the interface performance such as limits of detections, range of linear response, and intra- and interday signal stability were also considered. The usefulness of the interface has been tested in a few real-world applications where matrix components played a detrimental role with other LC/MS techniques. PMID:17569502

  18. A vocalisation-based drawing interface for disabled children

    Directory of Open Access Journals (Sweden)

    Edward Burke

    2004-01-01

    Full Text Available In our work with disabled children at Ireland's National Rehabilitation Hospital, a problem we have experienced in the facilitation of art activities is that traditional art materials and standard computer drawing programs sometimes prove inaccessible. In this paper, an original system, called "PaintMyVoice" is presented which facilitates the creation of two or three-dimensional images using a variety of novel input modalities. In particular, vocalisations can be used to create original images of a variety of objects, including trees, flowers and landscape elements. Additional input to the system can optionally be provided via mouse, keyboard, switch interface or digital camera depending on the abilities of the user. Here, the program' user interface is described, with an emphasis on accessibility features. The signal processing techniques used to measure various vocal characteristic including intensity, pitch and other spectral characteristic are outlined.

  19. Functional fusion of living systems with synthetic electrode interfaces.

    Science.gov (United States)

    Staufer, Oskar; Weber, Sebastian; Bengtson, C Peter; Bading, Hilmar; Spatz, Joachim P; Rustom, Amin

    2016-01-01

    The functional fusion of "living" biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries "perfected" during billion years of evolution. To date, hardware-wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240-1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83-94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180-184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142-147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960-2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events

  20. Switchable Thermal Interfaces Based on Discrete Liquid Droplets

    OpenAIRE

    Yongho Sungtaek Ju; Gilhwan Cha; Yanbing Jia

    2012-01-01

    We present a switchable thermal interface based on an array of discrete liquid droplets initially confined on hydrophilic islands on a substrate. The droplets undergo reversible morphological transition into a continuous liquid film when they are mechanically compressed by an opposing substrate to create low-thermal resistance heat conduction path. We investigate a criterion for reversible switching in terms of hydrophilic pattern size and liquid volume. The dependence of the liquid morpholog...

  1. A thermal logic device based on fluid-solid interfaces

    OpenAIRE

    Murad, Sohail; Puri, Ishwar K.

    2013-01-01

    Thermal rectification requires that thermal conductivity not be a separable function of position and temperature. Investigators have considered inhomogeneous solids to design thermal rectifiers but manipulations of solid lattices are energy intensive. We propose a thermal logic device based on asymmetric solid-fluid resistances that couples two fluid reservoirs separated by solid-fluid interfaces. It is the thermal analog of a three terminal transistor, the hot reservoir being the emitter, th...

  2. fNIRS-based brain-computer interfaces: a review.

    Science.gov (United States)

    Naseer, Noman; Hong, Keum-Shik

    2015-01-01

    A brain-computer interface (BCI) is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis (ICA), multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine (SVM), hidden Markov model (HMM), artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips. PMID:25674060

  3. fNIRS-based brain-computer interfaces: a review

    Directory of Open Access Journals (Sweden)

    Noman eNaseer

    2015-01-01

    Full Text Available A brain-computer interface (BCI is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis, multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine, hidden Markov model, artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  4. A System for Sketching in Hardware:Do-It-Yourself Interfaces for Sound and Music Computing

    OpenAIRE

    Overholt, Daniel

    2012-01-01

    A system for Do-It-Yourself (DIY) interface designs focused on sound and music computing has been developed. The system is based on the Create USB Interface (CUI), which is an open source microcontroller prototyping board together with the GROVE system of interchangeable transducers. Together, these provide a malleable and fluid prototyping process of ‘Sketching in Hardware’ for both music and non-music interaction design ideas. The most recent version of the board is the CUI32Stem, which is ...

  5. Robust Human Machine Interface Based on Head Movements Applied to Assistive Robotics

    OpenAIRE

    Elisa Perez; Natalia López; Eugenio Orosco; Carlos Soria; Vicente Mut; Teodiano Freire-Bastos

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user’s head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user’s head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four ind...

  6. Design Concept of Human Interface System for Risk Monitoring for Proactive Trouble Prevention

    International Nuclear Information System (INIS)

    A new concept is first proposed of distributed human interface system to integrate both operation and maintenance of nuclear power plant. Then, a method of constructing human interface system is introduced by integrating the plant knowledge database system based on Multilevel Flow Model (MFM) with the risk monitor to watch Defense-in Depth plant safety functions. The proposed concept is applied for a liquid metal fast reactor Monju and necessary R and D subjects are reviewed to realize human interface system for the maintenance work in Monju plant. Because of using high temperature liquid sodium as reactor coolant in Monju plant, the maintenance for Monju should utilize more automated equipment of remote control and robotics than that of light water reactor. It is necessary to design optimum task allocation between human and automated machine as the requisites for good communication design of human interface systems to support the collaboration work between workers at local workplace and the main control room. In this paper, the general issues are reviewed on how to configure the whole human interface system for helping proactive trouble prevention and risk evaluation on the basis of the presented target plant model before the concrete proposition of the hardware and software systems development to be used by both the staffs of operation and maintenance of NPP

  7. Design Concept of Human Interface System for Risk Monitoring for Proactive Trouble Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Yang, Ming; Zhang, Zhijian; Hashim, Muhammad [Harbin Engineering University, Harbin (China); Lind, Morten [Technical University of Denmark, Kongens Lyngby (Djibouti); Tamayama, Kiyoshi; Okusa, Kyoichi [Japan Atomic Energy Agency, Tsuruga (Japan)

    2011-08-15

    A new concept is first proposed of distributed human interface system to integrate both operation and maintenance of nuclear power plant. Then, a method of constructing human interface system is introduced by integrating the plant knowledge database system based on Multilevel Flow Model (MFM) with the risk monitor to watch Defense-in Depth plant safety functions. The proposed concept is applied for a liquid metal fast reactor Monju and necessary R and D subjects are reviewed to realize human interface system for the maintenance work in Monju plant. Because of using high temperature liquid sodium as reactor coolant in Monju plant, the maintenance for Monju should utilize more automated equipment of remote control and robotics than that of light water reactor. It is necessary to design optimum task allocation between human and automated machine as the requisites for good communication design of human interface systems to support the collaboration work between workers at local workplace and the main control room. In this paper, the general issues are reviewed on how to configure the whole human interface system for helping proactive trouble prevention and risk evaluation on the basis of the presented target plant model before the concrete proposition of the hardware and software systems development to be used by both the staffs of operation and maintenance of NPP.

  8. A shared memory based interface of MARTe with EPICS for real-time applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sangwon, E-mail: yunsw@nfri.re.kr [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Neto, André C. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Park, Mikyung; Lee, Sangil; Park, Kaprai [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of)

    2014-05-15

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS.

  9. A shared memory based interface of MARTe with EPICS for real-time applications

    International Nuclear Information System (INIS)

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS

  10. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    Science.gov (United States)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  11. Towards emotion modeling based on gaze dynamics in generic interfaces

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær;

    2005-01-01

    Gaze detection can be a useful ingredient in generic human computer interfaces if current technical barriers are overcome. We discuss the feasibility of concurrent posture and eye-tracking in the context of single (low cost) camera imagery. The ingredients in the approach are posture and eye regi...... extraction based on active appearance modeling and eye tracking using a new fast and robust heuristic. The eye tracker is shown to perform well for low resolution image segments, hence, making it feasible to estimate gaze using a single generic camera.......Gaze detection can be a useful ingredient in generic human computer interfaces if current technical barriers are overcome. We discuss the feasibility of concurrent posture and eye-tracking in the context of single (low cost) camera imagery. The ingredients in the approach are posture and eye region...

  12. Switchable Thermal Interfaces Based on Discrete Liquid Droplets

    Directory of Open Access Journals (Sweden)

    Yongho Sungtaek Ju

    2012-01-01

    Full Text Available We present a switchable thermal interface based on an array of discrete liquid droplets initially confined on hydrophilic islands on a substrate. The droplets undergo reversible morphological transition into a continuous liquid film when they are mechanically compressed by an opposing substrate to create low-thermal resistance heat conduction path. We investigate a criterion for reversible switching in terms of hydrophilic pattern size and liquid volume. The dependence of the liquid morphology and rupture distance on the diameter and areal fraction of hydrophilic islands, liquid volumes, as well as loading pressure is also characterized both theoretically and experimentally. The thermal resistance in the on-state is experimentally characterized for ionic liquids, which are promising for practical applications due to their negligible vapor pressure. A life testing setup is constructed to evaluate the reliability of the interface under continued switching conditions at relatively high switching frequencies.

  13. A web-based, dynamic metadata interface to MDSplus

    International Nuclear Information System (INIS)

    We introduce the concept of a Fusion Data Grid and discuss the management of metadata within such a Grid. We describe a prototype application which serves fusion data over the internet together with metadata information which can be flexibly created and modified over time. The application interfaces with the MDSplus data acquisition system and it has been designed to capture metadata which is generated by scientists from the post-processing of experimental data. The implementation of dynamic metadata tables using the Java programming language together with an object-relational mapping system, Hibernate, is described in the Appendix

  14. Probabilistic rainfall warning system with an interactive user interface

    Science.gov (United States)

    Koistinen, Jarmo; Hohti, Harri; Kauhanen, Janne; Kilpinen, Juha; Kurki, Vesa; Lauri, Tuomo; Nurmi, Pertti; Rossi, Pekka; Jokelainen, Miikka; Heinonen, Mari; Fred, Tommi; Moisseev, Dmitri; Mäkelä, Antti

    2013-04-01

    A real time 24/7 automatic alert system is in operational use at the Finnish Meteorological Institute (FMI). It consists of gridded forecasts of the exceedance probabilities of rainfall class thresholds in the continuous lead time range of 1 hour to 5 days. Nowcasting up to six hours applies ensemble member extrapolations of weather radar measurements. With 2.8 GHz processors using 8 threads it takes about 20 seconds to generate 51 radar based ensemble members in a grid of 760 x 1226 points. Nowcasting exploits also lightning density and satellite based pseudo rainfall estimates. The latter ones utilize convective rain rate (CRR) estimate from Meteosat Second Generation. The extrapolation technique applies atmospheric motion vectors (AMV) originally developed for upper wind estimation with satellite images. Exceedance probabilities of four rainfall accumulation categories are computed for the future 1 h and 6 h periods and they are updated every 15 minutes. For longer forecasts exceedance probabilities are calculated for future 6 and 24 h periods during the next 4 days. From approximately 1 hour to 2 days Poor man's Ensemble Prediction System (PEPS) is used applying e.g. the high resolution short range Numerical Weather Prediction models HIRLAM and AROME. The longest forecasts apply EPS data from the European Centre for Medium Range Weather Forecasts (ECMWF). The blending of the ensemble sets from the various forecast sources is performed applying mixing of accumulations with equal exceedance probabilities. The blending system contains a real time adaptive estimator of the predictability of radar based extrapolations. The uncompressed output data are written to file for each member, having total size of 10 GB. Ensemble data from other sources (satellite, lightning, NWP) are converted to the same geometry as the radar data and blended as was explained above. A verification system utilizing telemetering rain gauges has been established. Alert dissemination e.g. for

  15. Intelligent systems and advanced user interfaces for design, operation, and maintenance of command management systems

    Science.gov (United States)

    Potter, William J.; Mitchell, Christine M.

    1993-01-01

    Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard

  16. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    Science.gov (United States)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  17. Higher-order CFD and Interface Tracking Methods on Highly-Parallel MPI and GPU systems

    OpenAIRE

    Appleyard, J; Drikakis, Dimitris

    2011-01-01

    A computational investigation of the effects on parallel performance of higher-order accurate schemes was carried out on two different computational systems: a traditional CPU based MPI cluster and a system of four Graphics Processing Units (GPUs) controlled by a single quad-core CPU. The investigation was based on the solution of the level set equations for interface tracking using a High-Order Upstream Central (HOUC) scheme. Different variants of the HOUC scheme were employed together with ...

  18. An Embedded System for Tracking Human Motion and Humanoid Interfaces

    Directory of Open Access Journals (Sweden)

    Ming-June Tsai

    2012-12-01

    Full Text Available The aim of this research is using embedded CPU to develop a human motion tracking system and construct a motion replication interface for a humanoid robot. In the motion tracking system, we use a CPLD (Complex Programmable Logic Device which is built in a central control unit (CCU to generate synchronous signals for all the periphery devices and control the data flow from CCD boards to a PC via a USB chip. An embedded DSP on the CCD board is adopted to control the CCD exposure and conduct image processing. The peak position of exposure was computed by the on-board DSP within sub-pixel accuracy. In the construction of a motion replication interface, the same CCU is used to generate the PWM signals to drive the motors of the humanoid robot. All of the respective firmware coding methods are discussed in this article.

  19. Discrete Kalman Filter based Sensor Fusion for Robust Accessibility Interfaces

    Science.gov (United States)

    Ghersi, I.; Mariño, M.; Miralles, M. T.

    2016-04-01

    Human-machine interfaces have evolved, benefiting from the growing access to devices with superior, embedded signal-processing capabilities, as well as through new sensors that allow the estimation of movements and gestures, resulting in increasingly intuitive interfaces. In this context, sensor fusion for the estimation of the spatial orientation of body segments allows to achieve more robust solutions, overcoming specific disadvantages derived from the use of isolated sensors, such as the sensitivity of magnetic-field sensors to external influences, when used in uncontrolled environments. In this work, a method for the combination of image-processing data and angular-velocity registers from a 3D MEMS gyroscope, through a Discrete-time Kalman Filter, is proposed and deployed as an alternate user interface for mobile devices, in which an on-screen pointer is controlled with head movements. Results concerning general performance of the method are presented, as well as a comparative analysis, under a dedicated test application, with results from a previous version of this system, in which the relative-orientation information was acquired directly from MEMS sensors (3D magnetometer-accelerometer). These results show an improved response for this new version of the pointer, both in terms of precision and response time, while keeping many of the benefits that were highlighted for its predecessor, giving place to a complementary method for signal acquisition that can be used as an alternative-input device, as well as for accessibility solutions.

  20. Automatic Web-Based, Radio-Network System To Monitor And Control Equipment For Investigating Gas Flux At Water - Air Interfaces

    Science.gov (United States)

    Duc, N. T.; Silverstein, S.; Wik, M.; Beckman, P.; Crill, P. M.; Bastviken, D.; Varner, R. K.

    2015-12-01

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks on natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. To capture the high temporal variability of these fluxes in a well-defined footprint, we designed and built an inexpensive automatic device that includes an easily mobile diffusive flux chamber and a bubble counter, all in one. Besides a function of automatically collecting gas samples for subsequent various analyses in the laboratory, this device utilizes low cost CO2 sensor (SenseAir, Sweden) and CH4 sensor (Figaro, Japan) to measure GHG fluxes. To measure the spatial variability of emissions, each of the devices is equipped with an XBee module to enable a local radio communication DigiMesh network for time synchronization and data readout at a server-controller station on the lakeshore. Software of this server-controller is operated on a low cost Raspberry Pi computer which has a 3G connection for remote monitoring - controlling functions from anywhere in the world. From field studies in Abisko, Sweden in summer 2014 and 2015, the system has resulted in measurements of GHG fluxes comparable to manual methods. In addition, the deployments have shown the advantage of a low cost automatic network system to study GHG fluxes on lakes in remote locations.

  1. Java interface to a computer-aided diagnosis system for acute pulmonary embolism using PIOPED findings

    Science.gov (United States)

    Frederick, Erik D.; Tourassi, Georgia D.; Gauger, Matthew; Floyd, Carey E., Jr.

    1999-05-01

    An interface to a Computer Aided Diagnosis (CAD) system for diagnosis of Acute Pulmonary Embolism (PE) from PIOPED radiographic findings was developed. The interface is based on Internet technology which is user-friendly and available on a broad range of computing platforms. It was designed to be used as a research tool and as a data collection tool, allowing researchers to observe the behavior of a CAD system and to collect radiographic findings on ventilation-perfusion lung scans and chest radiographs. The interface collects findings from physicians in the PIOPED reporting format, processes those findings and presents them as inputs to an artificial neural network (ANN) previously trained on findings from 1,064 patients from the Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED) study. The likelihood of PE predicted by the ANN and by the physician using the system is then saved for later analysis.

  2. Numerical simulation of multiphase flows with material interface on an unstructured grid system

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin University, Seoul (Korea, Republic of)

    2012-05-15

    Two-dimensional multiphase flows with material interface due to density difference are numerically simulated on an unstructured grid system by a Navier-Stokes solver developed by Myong and Kim (2006), since numerical computation for these flows is still known to be difficult, especially if the interface separates fluids of large different densities. This solver employs an unstructured cell-centered method based on a conservative pressure-based finite volume method, since the unstructured grid approach makes the solver very flexible in dealing with complex boundaries, and adopts a high resolution method (CICSAM) in a volume of fluid (VOF) scheme for the accurate phase interface capturing. The test cases are the Rayleigh-Taylor instability (density ratio of 2), the oil bubble rising in a partially filled container (density ratio of 2), the air bubble rising in a fully filled container with bubble shedding (density ratio of 100) and the droplet splash (density ratio of about 1000), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present results are compared with other numerical solutions found in the literature. The present method (solver) efficiently and accurately simulates complex interface flows such as multiphase flows with material interface due to both density difference and instability.

  3. Numerical simulation of multiphase flows with material interface on an unstructured grid system

    International Nuclear Information System (INIS)

    Two-dimensional multiphase flows with material interface due to density difference are numerically simulated on an unstructured grid system by a Navier-Stokes solver developed by Myong and Kim (2006), since numerical computation for these flows is still known to be difficult, especially if the interface separates fluids of large different densities. This solver employs an unstructured cell-centered method based on a conservative pressure-based finite volume method, since the unstructured grid approach makes the solver very flexible in dealing with complex boundaries, and adopts a high resolution method (CICSAM) in a volume of fluid (VOF) scheme for the accurate phase interface capturing. The test cases are the Rayleigh-Taylor instability (density ratio of 2), the oil bubble rising in a partially filled container (density ratio of 2), the air bubble rising in a fully filled container with bubble shedding (density ratio of 100) and the droplet splash (density ratio of about 1000), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present results are compared with other numerical solutions found in the literature. The present method (solver) efficiently and accurately simulates complex interface flows such as multiphase flows with material interface due to both density difference and instability

  4. MRS [monitored retrievable storage] to transportation system interfaces

    International Nuclear Information System (INIS)

    In March 1987, the US Department of Energy presented to Congress the proposal to construct and operate a facility for the monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portions of Oak Ridge. In discussing the MRS to Transportation System Interfaces, the authors provide a blending of the technical and institutional issues, for they do not believe the solutions to success of this enterprise lie wholly in one area. The authors cover: early chronology of the MRS; comparison of total-system life cycle cost estimates of the authorized system and improved-performance system (i.e., the system that includes a facility for MRS); transportation costs resulting from shipping, security and cask; assumptions for dedicated rail transport from MRS to repository; and significant results from the Total System Life Cycle Cost (TSLCC) analysis of the improved performance system. (AT)

  5. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface

    Science.gov (United States)

    Gore, Russell K.; Choi, Yoonsu; Bellamkonda, Ravi; English, Arthur

    2015-02-01

    Objective. Neural interface technologies could provide controlling connections between the nervous system and external technologies, such as limb prosthetics. The recording of efferent, motor potentials is a critical requirement for a peripheral neural interface, as these signals represent the user-generated neural output intended to drive external devices. Our objective was to evaluate structural and functional neural regeneration through a microchannel neural interface and to characterize potentials recorded from electrodes placed within the microchannels in awake and behaving animals. Approach. Female rats were implanted with muscle EMG electrodes and, following unilateral sciatic nerve transection, the cut nerve was repaired either across a microchannel neural interface or with end-to-end surgical repair. During a 13 week recovery period, direct muscle responses to nerve stimulation proximal to the transection were monitored weekly. In two rats repaired with the neural interface, four wire electrodes were embedded in the microchannels and recordings were obtained within microchannels during proximal stimulation experiments and treadmill locomotion. Main results. In these proof-of-principle experiments, we found that axons from cut nerves were capable of functional reinnervation of distal muscle targets, whether regenerating through a microchannel device or after direct end-to-end repair. Discrete stimulation-evoked and volitional potentials were recorded within interface microchannels in a small group of awake and behaving animals and their firing patterns correlated directly with intramuscular recordings during locomotion. Of 38 potentials extracted, 19 were identified as motor axons reinnervating tibialis anterior or soleus muscles using spike triggered averaging. Significance. These results are evidence for motor axon regeneration through microchannels and are the first report of in vivo recordings from regenerated motor axons within microchannels in a small

  6. Selective Sensation Based Brain-Computer Interface via Mechanical Vibrotactile Stimulation

    OpenAIRE

    Lin Yao; Jianjun Meng; Dingguo Zhang; Xinjun Sheng; Xiangyang Zhu

    2013-01-01

    In this work, mechanical vibrotactile stimulation was applied to subjects' left and right wrist skins with equal intensity, and a selective sensation perception task was performed to achieve two types of selections similar to motor imagery Brain-Computer Interface. The proposed system was based on event-related desynchronization/synchronization (ERD/ERS), which had a correlation with processing of afferent inflow in human somatosensory system, and attentional effect which modulated the ERD/ER...

  7. Steady state visually evoked potentials based Brain computer interface test outside the lab

    OpenAIRE

    Eduardo Francisco Caicedo Bravo; Jaiber Evelio Cardona Aristizábal

    2016-01-01

    Context: Steady State Visually Evoked Potentials (SSVEP) are brain signals which are one of the most promising signals for Brain Computer Interfaces (BCIs) implementation, however, SSVEP based BCI generally are proven in a controlled environment and there are a few tests in demanding conditions.Method: We present a SSVEP based BCI system that was used outside the lab in a noisy environment with distractions, and with the presence of public. For the tests, we showed a maze in a laptop where th...

  8. Sound mosaics: a graphical user interface for sound synthesis based on audio-visual associations.

    OpenAIRE

    Giannakis, Konstantinos

    2001-01-01

    This thesis presents the design of a Graphical User Interface (GUI) for computer-based sound synthesis to support users in the externalisation of their musical ideas when interacting with the System in order to create and manipulate sound. The approach taken consisted of three research stages. The first stage was the formulation of a novel visualisation framework to display perceptual dimensions of sound in Visual terms. This framework was based on the findings of existing related studies ...

  9. A network-based Macintosh serial host interface program

    International Nuclear Information System (INIS)

    A program has been written for the Apple Macintosh to replace conventional host RS232 terminals with customizable user interfaces. Serial port NuBus cards in the Macintosh allow many simultaneous sessions to be maintained. A powerful system is attained by connecting multiple Macintoshes on a network, each running this program. Each is then able to share incoming data from any of its serial ports with any other Macintosh, as well as accept data from any other Macintosh for output to any of its serial ports. The program has been used to eliminate multiple host terminals, modernize the user interface, and to centralize operation of a complex control system. Minimal changes to host software have been required. By making extensive use of Macintosh resources, the same executable code serves in a variety of roles. An object oriented C language with a class library made the development straightforward and easy to modify. This program is used to control a 2 MW neutral beam system on the DIII-D magnetic fusion tokamak. 7 figs

  10. Surfaces and interfaces in polymer-based electronics

    Science.gov (United States)

    Fahlman, M.; Salaneck, W. R.

    2002-03-01

    Research on electronics applications such as light-emitting devices for flat-panel displays, transistors, sensors and even solid state lasers based on conducting polymers is presently under way and in some cases has reached the stage of prototype production. The mechanisms for charge injection and conduction in these materials are being studied, as are the physics of luminescence and its quenching. Lately, research into controlling film morphology through self-organizing techniques also has gained interest. Though the present interest in conducting polymers mainly concerns the pristine semiconducting state, doped conducting polymers are also studied for potential use in many applications. In this paper, we present an overview of some of the central issues in surface and interface science in the field, as well as provide our view on what may lie ahead in the future. Specifically, the importance of metal/polymer, polymer/metal and polymer/polymer interfaces is addressed. We illustrate these using polymer-based light-emitting devices, though the same type of issues appear in other polymer-based applications such as transistors and solar cells.

  11. Design of groundwater pollution expert system: forward chaining and interfacing

    International Nuclear Information System (INIS)

    The groundwater pollution expert system (GWPES was developed by C Language Integrate Production System (CLEPS). The control techniques of this system consider some conclusion and then attempts to prove it by searching for supportive information from the database. The inference process goes in forward chaining of this system such as predicting groundwater pollution vulnerability, predicting the effect of nitrogen fertiliser, agricultural impact and project development on groundwater pollution potential. In GWPES, forward chaining system begins with a matching of inputs with the existing database of groundwater environment and activities impact of the project development. While, interaction between an expert system and user is conducted in simple English language. The interaction is highly interactive. A basis design with simple Graphic User Interface (GUI) to input data and by asking simple questions. (author)

  12. An approach to design interface topologies across interdependent urban infrastructure systems

    International Nuclear Information System (INIS)

    This paper proposes an approach to design or retrofit interface topologies to minimize cascading failures across urban infrastructure systems. Four types of interface design strategies are formulated based on maximum network component degree, maximum component betweenness, minimum Euclidean distance across components and component reliability rankings. To compute and compare strategy effectiveness under multiple hazard types, this paper introduces a global annual cascading failure effect (GACFE) metric as well as a GACFE-based cost improvement (GACI) metric. The GACI metric quantifies the improvement of the strategy effectiveness per kilometer increment of interdependent link length (ILL) relative to a reference strategy with minimum ILL. Taking as examples the power and gas transmission systems in Harris County, Texas, USA, optimum interface designs under random and hurricane hazards are discussed. Findings include that the strategy based on reliability rankings minimizes the GACFE metric, and decreases the GACI value relative to a reference practical strategy by 10-15% under different power grid safety margins. Such metrics will contribute to coupled utility system design or retrofit given that current guidelines or recommended practices in the utility industry mostly rely on minimum Euclidean distances and are yet to include interdependent effects in their provisions. - Highlights: → This paper offers interface topology design methods to reduce cascading failures. → Design strategies are judged by performance and cost metrics under multiple hazards. → Reliability-based interfaces globally outperform topological and distance designs. → Only low levels of extra link density and distance are needed for desired designs. → Interface distance relaxation is more effective at yielding maximum performance.

  13. General-purpose interface bus for multiuser, multitasking computer system

    Science.gov (United States)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1990-01-01

    The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.

  14. Design of Interface Hardware and Software for DNC System

    Directory of Open Access Journals (Sweden)

    I.K. Kaul

    1994-04-01

    Full Text Available This paper describes in detail an indigenous state-of-the-art DNC system designed, developed, fabricated and installed at DRDL NC Centre. It describes the hardware and software interfaces designed and developed in-house. At present, it supports a total of 16 CNC machines, 8 in serial port and the balance in parallel port. This system has the capability of extension up to 64 machines. During last one year of its installation and working it has been found to be extremely reliable.

  15. Use of a graphical user interface approach for digital and physical simulation in power systems control education

    International Nuclear Information System (INIS)

    This paper presents the design of a laboratory with software and hardware structures for digital and physical simulation in the area of Power Systems Control Education. The hardware structure includes a special man-machine interface designed with a graphical user interface approach. This interface allows the user full control over the simulation and provides facilities for the study of the response of the simulated system. This approach is illustrated with the design of a control system for a physically based HVDC transmission system model

  16. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand‐held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion‐based robot control. The handheld controller can provide a ‘connect‐and‐play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three‐axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion‐based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion‐based interface is more efficient and flexible.

  17. Intelligent Human Machine Interface Design for Advanced Product Life Cycle Management Systems

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    Designing and implementing an intelligent and user friendly human machine interface for any kind of software or hardware oriented application is always be a challenging task for the designers and developers because it is very difficult to understand the psychology of the user, nature of the work and best suit of the environment. This research paper is basically about to propose an intelligent, flexible and user friendly machine interface for Product Life Cycle Management products or PDM Systems since studies show that usability and human computer interaction issues are a major cause of acceptance problems introducing or using such systems. Going into details of the proposition, we present prototype implementations about theme based on design requirements, designed designs and technologies involved for the development of human machine interface.

  18. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    International Nuclear Information System (INIS)

    High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV-) assembled polytetrafluoroethylene (PTFE) nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide) (PEO) based di block copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peel able and flexible processing attribute.

  19. Molecular tailoring of interfaces for thin film on substrate systems

    Science.gov (United States)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult

  20. Design of Electronic Medical Record User Interfaces: A Matrix-Based Method for Improving Usability

    Directory of Open Access Journals (Sweden)

    Kushtrim Kuqi

    2013-01-01

    Full Text Available This study examines a new approach of using the Design Structure Matrix (DSM modeling technique to improve the design of Electronic Medical Record (EMR user interfaces. The usability of an EMR medication dosage calculator used for placing orders in an academic hospital setting was investigated. The proposed method captures and analyzes the interactions between user interface elements of the EMR system and groups elements based on information exchange, spatial adjacency, and similarity to improve screen density and time-on-task. Medication dose adjustment task time was recorded for the existing and new designs using a cognitive simulation model that predicts user performance. We estimate that the design improvement could reduce time-on-task by saving an average of 21 hours of hospital physicians’ time over the course of a month. The study suggests that the application of DSM can improve the usability of an EMR user interface.

  1. An area-efficient network interface for a TDM-based Network-on-Chip

    DEFF Research Database (Denmark)

    Sparsø, Jens; Kasapaki, Evangelia; Schoeberl, Martin

    2013-01-01

    Network interfaces (NIs) are used in multi-core systems where they connect processors, memories, and other IP-cores to a packet switched Network-on-Chip (NOC). The functionality of a NI is to bridge between the read/write transaction interfaces used by the cores and the packet-streaming interface...... used by the routers and links in the NOC. The paper addresses the design of a NI for a NOC that uses time division multiplexing (TDM). By keeping the essence of TDM in mind, we have developed a new area-efficient NI micro-architecture. The new design completely eliminates the need for FIFO buffers...... and credit based flow control - resources which are reported to account for 50–85% of the area in existing NI designs. The paper discusses the design considerations, presents the new NI micro-architecture, and reports area figures for a range of implementations....

  2. Emotion Teaching Interface for Finger Braille Emotion Teaching System

    Directory of Open Access Journals (Sweden)

    Yasuhiro Matsuda

    2014-01-01

    Full Text Available Finger Braille is one of the tactual communication methods utilized by deafblind individuals. Deafblind people who are skilled in Finger Braille can catch up with speech conversation and express various emotions by changing dotting strength and speed. In this paper, we designed the emotion teaching interface in order to express joy, sadness, anger and neutral for the Finger Braille emotion teaching system. We changed the previous background color (beige of the teaching interface into 17 different colors. We also designed 8 kinds of dot patterns with different horizontal width and vertical length. The experiment to select the most suitable emotion teaching interfaces for joy, sadness, anger and neutral was conducted. The results showed that the dot patterns 6 (the wide and middle length pattern or 1 (the small circle with the lime, dark orange or yellow background colors are suitable for joy; the dot patterns 7 (the narrow and long pattern or 4 (the narrow and middle length pattern with the lavender, navy or blue background colors are suitable for sadness; the dot patterns 9 (the large circle or 8 (the middle width and long pattern with the red background color are suitable for anger; the dot pattern 5 (the middle circle with the previous, honeydew, saddle brown or white background colors are suitable for neutral.

  3. Voltage harmonic elimination with RLC based interface smoothing filter

    Science.gov (United States)

    Chandrasekaran, K.; Ramachandaramurthy, V. K.

    2015-04-01

    A method is proposed for designing a Dynamic Voltage Restorer (DVR) with RLC interface smoothing filter. The RLC filter connected between the IGBT based Voltage Source Inverter (VSI) is attempted to eliminate voltage harmonics in the busbar voltage and switching harmonics from VSI by producing a PWM controlled harmonic voltage. In this method, the DVR or series active filter produces PWM voltage that cancels the existing harmonic voltage due to any harmonic voltage source. The proposed method is valid for any distorted busbar voltage. The operating VSI handles no active power but only harmonic power. The DVR is able to suppress the lower order switching harmonics generated by the IGBT based VSI. Good dynamic and transient results obtained. The Total Harmonic Distortion (THD) is minimized to zero at the sensitive load end. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of RLC filter. Simulated results are presented.

  4. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    Science.gov (United States)

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-08-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing. PMID:26737158

  5. Research on Deep Web Query Interface Clustering Based on Hadoop

    OpenAIRE

    Baohua Qiang; Rui Zhang; Yufeng Wang; Qian He; Wei Li; Sai Wang

    2014-01-01

    How to cluster different query interfaces effectively is one of the most core issues when generating integrated query interface on Deep Web integration domain. However, with the rapid development of Internet technology, the number of Deep Web query interface shows an explosive growth trend. For this reason, the traditional stand-alone Deep Web query interface clustering approaches encounter bottlenecks in terms of time complexity and space complexity. After further study of the Hadoop distrib...

  6. Integration of a transient identification system in the Human System Interface Laboratory

    International Nuclear Information System (INIS)

    This paper presents the integration of an Transient Identification System in the Human System Interface Laboratory (HSIL). The system exploits the excellent performance of multilayer Artificial Neural Networks (ANN). To show the results was developed and included into the simulator a graphical interface. This interface was developed following the simulator standards. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 5 postulated accidents, simulated for a pressurized water reactor, was proposed in the validation process. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. (author)

  7. Performance Evaluation of Components Using a Granularity-based Interface Between Real-Time Calculus and Timed Automata

    OpenAIRE

    Karine Altisen; Yanhong Liu; Matthieu Moy

    2010-01-01

    To analyze complex and heterogeneous real-time embedded systems, recent works have proposed interface techniques between real-time calculus (RTC) and timed automata (TA), in order to take advantage of the strengths of each technique for analyzing various components. But the time to analyze a state-based component modeled by TA may be prohibitively high, due to the state space explosion problem. In this paper, we propose a framework of granularity-based interfacing to speed up the analysis of ...

  8. The Interface Circuit Design and Imitation Based on MAX+PLUSII

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper introduces the design method of control system interface using VHDL hardware description language under the MAX+PLUSII working platform, Plans resources of the LPT circuit,and works out design programming of interface circuit and result imitation.

  9. Review on Ultracapacitor- Battery Interface for Energy Management System

    OpenAIRE

    R. Saravana Kumar; S.Mallika,

    2011-01-01

    Electrical energy storage is a central element to any electric-drive train technology, whether hybrid-electric, fuel-cell, or all-electric. A particularly cost-sensitive issue with energy storage is the high replacement cost of depleted battery banks. One possibility to ease the power burden on batteries and fuel cells is to use ultra-capacitors as load-leveling devices. In this overview the technology and difficulties of ultracapacitor-Battery interface for energy management system is analyz...

  10. Review on Ultracapacitor- Battery Interface for Energy Management System

    Directory of Open Access Journals (Sweden)

    R.Saravana Kumar

    2011-02-01

    Full Text Available Electrical energy storage is a central element to any electric-drive train technology, whether hybrid-electric, fuel-cell, or all-electric. A particularly cost-sensitive issue with energy storage is the high replacement cost of depleted battery banks. One possibility to ease the power burden on batteries and fuel cells is to use ultra-capacitors as load-leveling devices. In this overview the technology and difficulties of ultracapacitor-Battery interface for energy management system is analyzed and the related research work is made.

  11. Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits

    Science.gov (United States)

    Zhao, Liya; Liang, Junrui; Tang, Lihua; Yang, Yaowen; Liu, Haili

    2015-04-01

    Galloping phenomenon has attracted extensive research attention for small-scale wind energy harvesting. In the reported literature, the dynamics and harvested power of a galloping-based energy harvesting system are usually evaluated with a resistive AC load; these characteristics might shift when a practical harvesting interface circuit is connected for extracting useful DC power. In the family of piezoelectric energy harvesting interface circuits, synchronized switching harvesting on inductor (SSHI) has demonstrated its advantage for enhancing the harvested power from existing base vibrations. This paper investigates the harvesting capability of a galloping-based wind energy harvester using SSHI interfaces, with a focus on comparing the performances of Series SSHI (S-SSHI) and Parallel SSHI (P-SSHI) with that of a standard DC interface, in terms of power at various wind speeds. The prototyped galloping-based piezoelectric energy harvester (GPEH) comprises a piezoelectric cantilever attached with a square-sectioned bluff body made of foam. Equivalent circuit model (ECM) of the GPEH is established and system-level circuit simulations with SSHI and standard interfaces are performed and validated with wind tunnel tests. The benefits of SSHI compared to standard circuit become more significant when the wind speed gets higher; while SSHI circuits lose the benefits at small wind speeds. In both experiment and simulation, the superiority of P-SSHI is confirmed while S-SSHI demands further investigation. The power output is increased by 43.75% with P-SSHI compared to the standard circuit at a wind speed of 6m/s.

  12. ACR/NEMA and other interfaces to imaging systems in a large PACS network environment

    International Nuclear Information System (INIS)

    Moving images from imaging devices to a PACS network is a first step in developing a network. This can be achieved in a variety of ways. In this paper, a series of experiments are conducted to test the acceptability of digital interfaces and digitized video interfaces. Digital interfaces were installed for an MR imaging system and film scanners, and digitized video interfaces were installed for the US system. The interfaces were tested for image and data quality and operational acceptability. The noise and artifacts induced were studied. An interface from the network to the radiology information system was implemented to improve the accuracy of the text data associated with images

  13. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography.

    Directory of Open Access Journals (Sweden)

    João Freitas

    Full Text Available Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI, collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics.

  14. Interactive Editing and Cataloging Interfaces for Modern Digital Library Systems

    CERN Document Server

    Raae, L C

    2009-01-01

    The next-generation High Energy Physics information system, INSPIRE, is being built by combining the content from the successful SPIRES database of bibliographic information with the CDS Invenio software being developed at CERN, an open-source platform for large digital library systems. The project is a collaboration between four major particle physics laboratories in Europe and the U.S. New tools are being developed to enable the global cooperation between catalogers at these labs. The BibEdit module will provide a central interface for the editing, enrichment, correction and verification of a record on its way into the system, by processing and presenting data from several supporting modules to the cataloger. The objective is to minimize the time and actions needed by the cataloger to process the record. To create a fast and powerful web application we make use of modern AJAX technology to create a dynamic and responsive user interface, where server communication happens in the background without delaying t...

  15. TGeoCad: an Interface between ROOT and CAD Systems

    International Nuclear Information System (INIS)

    In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems

  16. SCADA based systems for INDUS-2

    International Nuclear Information System (INIS)

    The user interface layer of Indus-2 control system will run a Supervisory Control And Data Acquisition (SCADA) based application. It is purely a software package, which works at the top layer and makes communication with the subordinate hardware layer on client/server principle. PVSS-II (Process Visualization and Supervising System) a SCADA package, to be used for Indus-2 control system. This tool provides the functionality to develop the Graphical User Interface (GUI), interface to hardware, data logging, alarm/event handling, data exchange features etc. This paper describes the use of PVSS-Il for the control system. (author)

  17. A microcontroller-based interface circuit for lossy capacitive sensors

    International Nuclear Information System (INIS)

    This paper introduces and analyses a low-cost microcontroller-based interface circuit for lossy capacitive sensors, i.e. sensors whose parasitic conductance (Gx) is not negligible. Such a circuit relies on a previous circuit also proposed by the authors, in which the sensor is directly connected to a microcontroller without using either a signal conditioner or an analogue-to-digital converter in the signal path. The novel circuit uses the same hardware, but it performs an additional measurement and executes a new calibration technique. As a result, the sensitivity of the circuit to Gx decreases significantly (a factor higher than ten), but not completely due to the input capacitances of the port pins of the microcontroller. Experimental results show a relative error in the capacitance measurement below 1% for Gx x) shows the effectiveness of the circuit

  18. Intelligent interfaces to expert systems illustrated by a programmable signal validation system

    International Nuclear Information System (INIS)

    This paper discusses a software tool for the development of effective interfaces to an expert system. These are interfaces to end-users, application developers, as well as interfaces to other software modules. The application of this tool is illustrated by discussing a programmable signal validation capability. The objective of this discussion is to demonstrate how easily an expert system application can be configured through the use of graphics to reflect changes in instrumentation, plant, especially nuclear power plant configuration or signal validation logic

  19. An Algorithm for Idle-State Detection in Motor-Imagery-Based Brain-Computer Interface

    OpenAIRE

    Yijun Wang; Dan Zhang; Xiaorong Gao; Bo Hong; Shangkai Gao

    2007-01-01

    For a robust brain-computer interface (BCI) system based on motor imagery (MI), it should be able to tell when the subject is not concentrating on MI tasks (the “idle state”) so that real MI tasks could be extracted accurately. Moreover, because of the diversity of idle state, detecting idle state without training samples is as important as classifying MI tasks. In this paper, we propose an algorithm for solving this ...

  20. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    OpenAIRE

    Peter Kofinas; Culver, James N.; Ayan Ghosh; Chunsheng Wang; Brown, Adam D.; Juchen Guo; Elizabeth Royston

    2012-01-01

    High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV-) assembled polytetrafluoroethylene (PTFE) nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide) (PEO) based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The ...

  1. Performance assessment in brain-computer interface-based augmentative and alternative communication

    OpenAIRE

    Thompson, David E.; Blain-Moraes, Stefanie; Huggins, Jane E.

    2013-01-01

    A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Lev...

  2. An interface of ethernet and radiation monitoring network based on CAN bus

    International Nuclear Information System (INIS)

    It introduces an interface between radiation monitoring network based on CAN bus and Ethernet. The system used GM pipe to detect γ ray, employed LPC2294 as the core processor. As the main control chip, Ethernet controller DM9000 constructs hardware circuit between Ethernet and multi-CAN gateway. It transmitted the data detected by CAN but to the main control center through Ethernet for the total display of data and diagrams. (authors)

  3. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  4. A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential

    DEFF Research Database (Denmark)

    Mohebbi, Ali; Engelsholm, Signe K.D.; Puthusserypady, Sadasivan;

    2015-01-01

    In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code, and the...

  5. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    Science.gov (United States)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  6. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Science.gov (United States)

    2010-10-01

    .... For all other TV interface devices, the wires or coaxial cables used to couple the output signals to... 47 Telecommunication 1 2010-10-01 2010-10-01 false TV interface devices, including cable system... FREQUENCY DEVICES Unintentional Radiators § 15.115 TV interface devices, including cable system...

  7. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    Science.gov (United States)

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-01-01

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype. PMID:26861347

  8. RoboCon: Operator interface for robotic applications. Final report: RoboCon electrical interfacing -- system architecture, and Interfacing NDDS and LabView

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.

    1998-04-30

    The first appendix contains detailed specifications of the electrical interfacing employed in Robocon. This includes all electrical signals and power requirement descriptions up to and including the interface entry points for external robots and systems. The reader is first presented with an overview of the overall Robocon electrical system, followed by sub-sections describing each module in detail. The appendices contain listings of power requirements and the electrical connectors and cables used, followed by an overall electrical system diagram. Custom electronics employed are also described. The Network Data Delivery Service (NDDS) is a real-time dissemination communications architecture which allows nodes on a network to publish data and subscribe to data published by other nodes while remaining anonymous. The second appendix explains how to facilitate a seamless interface between NDDS and LabView and provides sample source code used to implement an NDDS consumer which writes a string to a socket.

  9. Interfacing wind energy conversion equipment with utility systems

    Science.gov (United States)

    Meier, R. C.; Macklis, S. L.

    1982-01-01

    Methods and problems of interfacing the output of wind energy conversion systems (WECS) with the utility grid are examined. Local gusts were determined to be the main cause of loss of output stability, with the concomitant possibility of going off-line until resynchronization is effected. The problem is less common than loss-of-load due to low- or no-wind conditions, and synchronous generators were found to avoid unacceptable voltage dips from moderate disturbances. A lumped parameter study was performed for the behavior of a wind turbine cluster, and stability of the WECS output was acceptable as long as the connection reactance between the WECS and the utility was less than 0.4/unit. WECS application in a variety of networks were modeled and no unendurable power fluctuations were seen to threaten the utility lines, provided proper control mechanisms were interposed on-line with the systems using mostly already existing utility circuit protection technology.

  10. Real-time distributed simulation using the Modular Modeling System interfaced to a Bailey NETWORK 90 system

    International Nuclear Information System (INIS)

    The Modular Modeling System was adapted for real-time simulation testing of diagnostic expert systems in 1987. The early approach utilized an available general purpose mainframe computer which operated the simulation and diagnostic program in the multitasking environment of the mainframe. That research program was subsequently expanded to intelligent distributed control applications incorporating microprocessor based controllers with the aid of an equipment grant from the National Science Foundation (NSF). The Bailey NETWORK 90 microprocessor-based control system, acquired with the NSF grant, has been operational since April of 1990 and has been interfaced to both VAX mainframe and PC simulations of power plant processes in order to test and demonstrate advanced control and diagnostic concepts. This paper discusses the variety of techniques that have been used and which are under development to interface simulations and other distributed control functions to the Penn State Bailey system

  11. Risk-based systems configuration monitoring system

    International Nuclear Information System (INIS)

    The paper presents the work done in the frame of the Research Contract No. 6993/RB - ''Risk based systems configuration monitoring system'' part of the coordinated programme ''Development of safety related expert systems''. The aim of this contract was to develop the prototype of an expert system based on PSA technology to be use for controlling the plant systems configuration taking into account the risk. The software prototype implementation was done using Visual Basic language, under Windows environment. The implemented prototype has the following features: store data/knowledge about components and human factor; store data/knowledge about the plant system and systems components, providing facilities to modify/search data/knowledge, based on the general knowledge; generate the logic model of the system; provide minimal cut sets and path sets determination; provide information to be used by the user for configuration risk management; provide user friendly interface (graphical interface under windows). The prototype can be independently used as an operator support system or for other on-line or off-line applications. After the testing of the prototype, some of the conclusions are: the developed software can be one of the most useful tools to be used by designers, PSA analysts, operators and regulatory for evaluation of the safety and reliability of the plant systems; the structure of the General Knowledge Base included into the prototype offers the possibility to combine knowledge introduced by different users. This feature can be the basis for the development of a knowledge acquisition system; the developed software and methodology can offer the basis for the risk-based data collection system development. (author). 12 refs, 30 figs

  12. FY07 Summary of System Interface and Support Systems R&D and Technical Issues Map

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2007-09-01

    This document provides a summary of research and development activities in the System Interface and Support Systems area of the DOE Nuclear Hydrogen Initiative in FY 2007. Project cost and performance data obtained from the PICS system, at least up through July 2007, are presented and analyzed. Brief summaries of accomplishments and references are provided. A mapping of System Interface and Support Systems technical issues versus the work performed is updated and presented. Lastly, near-term research plans are described, and recommendatioins are provided for additional research.

  13. Toward efficient fiber-based quantum interface (Conference Presentation)

    Science.gov (United States)

    Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey

    2016-04-01

    NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports

  14. Robust Human Machine Interface Based on Head Movements Applied to Assistive Robotics

    Directory of Open Access Journals (Sweden)

    Elisa Perez

    2013-01-01

    Full Text Available This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user’s head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user’s head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.

  15. Robust human machine interface based on head movements applied to assistive robotics.

    Science.gov (United States)

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair. PMID:24453877

  16. Metallic interface in non-SrTiO{sub 3} based titanate superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoran, E-mail: xxl030@uark.edu; Cao, Yanwei; Kareev, M.; Middey, S.; Chakhalian, J. [Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Choudhury, D. [Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Physics, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-11-09

    We report on the fabrication of all perovskite Mott insulator/band insulator YTiO{sub 3}/CaTiO{sub 3} superlattices by pulsed laser deposition. The combination of in situ reflection high energy electron diffraction, X-ray diffraction, and X-ray reflectivity confirms the high quality of the films grown in a layer-by-layer mode. Electrical transport measurements reveal that a non-SrTiO{sub 3} based two-dimensional electron gas system has formed at the YTiO{sub 3}/CaTiO{sub 3} interface. These studies offer another route in the pursuit of complex oxide two-dimensional electron gas systems, which allows to obtain greater insights into the exotic many-body phenomena at such interfaces.

  17. Development of MATLAB-Based Digital Signal Processing Teaching Module with Graphical User Interface Environment for Nigerian University

    OpenAIRE

    Oyetunji Samson Ade'; Daniel Ale

    2013-01-01

    The development of a teaching aid module for digital Signal processing (DSP) in Nigeria Universities was undertaken to address the problem associated with non-availability instructional module. This paper annexes the potential of Peripheral Interface Controllers (PICs) with MATLAB resources to develop a PIC-based system with graphic user interface environment suitable for data acquisition and signal processing. The module accepts data from three different sources: real time acquisition, pre-r...

  18. Ontology Based Queries - Investigating a Natural Language Interface

    NARCIS (Netherlands)

    van der Sluis, Ielka; Hielkema, F.; Mellish, C.; Doherty, G.

    2010-01-01

    In this paper we look at what may be learned from a comparative study examining non-technical users with a background in social science browsing and querying metadata. Four query tasks were carried out with a natural language interface and with an interface that uses a web paradigm with hyperlinks.

  19. Designing and application of SAN extension interface based on CWDM

    Science.gov (United States)

    Qin, Leihua; Yu, Shengsheng; Zhou, Jingli

    2005-11-01

    As Fibre Channel (FC) becomes the protocol of choice within corporate data centers, enterprises are increasingly deploying SANs in their data central. In order to mitigate the risk of losing data and improve the availability of data, more and more enterprises are increasingly adopting storage extension technologies to replicate their business critical data to a secondary site. Transmitting this information over distance requires a carrier grade environment with zero data loss, scalable throughput, low jitter, high security and ability to travel long distance. To address this business requirements, there are three basic architectures for storage extension, they are Storage over Internet Protocol, Storage over Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Storage over Dense Wavelength Division Multiplexing (DWDM). Each approach varies in functionality, complexity, cost, scalability, security, availability , predictable behavior (bandwidth, jitter, latency) and multiple carrier limitations. Compared with these connectiviy technologies,Coarse Wavelength Division Multiplexing (CWDM) is a Simplified, Low Cost and High Performance connectivity solutions for enterprises to deploy their storage extension. In this paper, we design a storage extension connectivity over CWDM and test it's electrical characteristic and random read and write performance of disk array through the CWDM connectivity, testing result show us that the performance of the connectivity over CWDM is acceptable. Furthermore, we propose three kinds of network architecture of SAN extension based on CWDM interface. Finally the credit-Based flow control mechanism of FC, and the relationship between credits and extension distance is analyzed.

  20. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  1. Prorotyping corporate user interfaces : towards a visual specification of interactive systems

    OpenAIRE

    Memmel, Thomas; Gundelsweiler, Fredrik; Reiterer, Harald

    2007-01-01

    Corporate software development faces very demanding challenges, especially concerning the user interface of a software system. Collaborative design with stakeholders demands informal modeling methods that everybody can understand and apply. But using traditional, paper-based methods to gather and document requirements, an IT organization often experiences frustrating communication issues between the business and development teams. We present ways of agile high-fidelity prototyping for corpora...

  2. Man-machine interface systems for the Sizewell B Nuclear Power Station

    International Nuclear Information System (INIS)

    Sizewell B is the first nuclear power station to be built in the United Kingdom using the Pressurised Water Reactor or PWR system. The design is based on stations operating in the United States, but many changes and new features have been introduced to bring it up to date, and to meet United Kingdom practice and regulatory requirements. The Man-Machine Interfaces (MMIs) in the control rooms have been newly designed from first principles, with special attention paid to human factors and the role of the operators. The instrumentation and control (1 and C) systems which interface the MMIs to the process plant, and automate the operation of the station, use advanced technology to achieve high performance and availability. This paper describes the development of the control rooms and 1 and C systems, explaining the thinking that lay behind the principal decisions. (author)

  3. 基于多智体多库协同的一种虚拟现实仿真界面构建技术%Multi-Agent and Multi-Base-Cooperation based Virtual Reality Simulation Interface Generating Technology

    Institute of Scientific and Technical Information of China (English)

    彭力; 李稳; 娄国焕

    2002-01-01

    An automatic generating method about a kind of virtual reality simulation interface is deeply investigated in his paper. The problem on distributed database cooperation with multi agent system is discussed. A virtral reality system based on these intelligent bases is set up at last. Then a simulation interface by using this system above is got and good result is achieved.

  4. Improved Classification Methods for Brain Computer Interface System

    Directory of Open Access Journals (Sweden)

    YI Fang

    2012-03-01

    Full Text Available Brain computer interface (BCI aims at providing a new communication way without brain’s normal output through nerve and muscle. The electroencephalography (EEG has been widely used for BCI system because it is a non-invasive approach. For the EEG signals of left and right hand motor imagery, the event-related desynchronization (ERD and event-related synchronization(ERS are used as classification features in this paper. The raw data are transformed by nonlinear methods and classified by Fisher classifier. Compared with the linear methods, the classification accuracy can get an obvious increase to 86.25%. Two different nonlinear transform were arised and one of them is under the consideration of the relativity of two channels of EEG signals. With these nonlinear transform, the performance are also stable with the balance of two misclassifications.

  5. SSVEP and ANN based optimal speller design for Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Irshad Ahmad Ansari

    2015-07-01

    Full Text Available This work put forwards an optimal BCI (Brain Computer Interface speller design based on Steady State Visual Evoked Potentials (SSVEP and Artificial Neural Network (ANN in order to help the people with severe motor impairments. This work is carried out to enhance the accuracy and communication rate of  BCI system. To optimize the BCI system, the work has been divided into two steps: First, designing of an encoding technique to choose characters from the speller interface and the second is the development and implementation of feature extraction algorithm to acquire optimal features, which is used to train the BCI system for classification using neural network. Optimization of speller interface is focused on representation of character matrix and its designing parameters. Then again, a lot of deliberations made in order to optimize selection of features and user’s time window. Optimized system works nearly the same with the new user and gives character per minute (CPM of 13 ± 2 with an average accuracy of 94.5% by choosing first two harmonics of power spectral density as the feature vectors and using the 2 second time window for each selection. Optimized BCI performs better with experienced users with an average accuracy of 95.1%. Such a good accuracy has not been reported before in account of fair enough CPM.DOI: 10.15181/csat.v2i2.1059

  6. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  7. Human-machine interface (HMI) report for 241-SY-101 data acquisition system (DACS) upgrade study

    International Nuclear Information System (INIS)

    This report provides an independent evaluation of information for a Windows based Human Machine Interface (HMI) to replace the existing DOS based Iconics HMI currently used in the Data Acquisition and Control System (DACS) used at Tank 241-SY-101. A fundamental reason for this evaluation is because of the difficulty of maintaining the system with obsolete, unsupported software. The DACS uses a software operator interface (Genesis for DOS HMI) that is no longer supported by its manufacturer, Iconics. In addition to its obsolescence, it is complex and difficult to train additional personnel on. The FY 1997 budget allocated $40K for phase 1 of a software/hardware upgrade that would have allowed the old DOS based system to be replaced by a current Windows based system. Unfortunately, budget constraints during FY 1997 has prompted deferral of the upgrade. The upgrade needs to be performed at the earliest possible time, before other failures render the system useless. Once completed, the upgrade could alleviate other concerns: spare pump software may be able to be incorporated into the same software as the existing pump, thereby eliminating the parallel path dilemma; and the newer, less complex software should expedite training of future personnel, and in the process, require that less technical time be required to maintain the system

  8. A multi-system interface module for automating the patient treatment cycle

    International Nuclear Information System (INIS)

    using the PC-based Windows NT environment. Results: The developed multi-system interface module accesses and shares data from a commercial CT-simulator, a research-based treatment planning system, and a commercial radiation oncology information system in the departmental wide-area network (WAN). The software tool shares the CT-simulator's anatomical contours, images, and plan information with the treatment planning system which eliminates the need for the oncologist to redraw the tumor volumes or custom blocks. The plan and treatment information is updated in the treatment delivery information system. The system runs on any standard PC platform located on the WAN and supports remote data access over phone lines. The interface module directly improves the efficiency of the department by the reduction of redundant data entry. Conclusion: The introduction of a multi-system interface module for sharing common radiation therapy data has decreased the overall treatment planning times without adding complexity. The use of other emerging standards such as DICOM are also being investigated to provide additional support in the future. The concept of the interface module can be used to connect to any data system that supports open connectivity standards

  9. Transportability, distributability and rehosting experience with a kernel operating system interface set

    Science.gov (United States)

    Blumberg, F. C.; Reedy, A.; Yodis, E.

    1986-01-01

    For the past two years, PRC has been transporting and installing a software engineering environment framework, the Automated Product control Environment (APCE), at a number of PRC and government sites on a variety of different hardware. The APCE was designed using a layered architecture which is based on a standardized set of interfaces to host system services. This interface set called the APCE Interface Set (AIS), was designed to support many of the same goals as the Common Ada Programming Support Environment (APSE) Interface Set (CAIS). The APCE was developed to provide support for the full software lifecycle. Specific requirements of the APCE design included: automation of labor intensive administrative and logistical tasks: freedom for project team members to use existing tools: maximum transportability for APCE programs, interoperability of APCE database data, and distributability of both processes and data: and maximum performance on a wide variety of operating systems. A brief description is given of the APCE and AIS, a comparison of the AIS and CAIS both in terms of functionality and of philosophy and approach and a presentation of PRC's experience in rehosting AIS and transporting APCE programs and project data. Conclusions are drawn from this experience with respect to both the CAIS efforts and Space Station plans.

  10. Pyroelectric energy harvesting using liquid-based switchable thermal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cha, G; Ju, YS

    2013-01-15

    The pyroelectric effect offers an intriguing solid-state approach for harvesting ambient thermal energy to power distributed networks of sensors and actuators that are remotely located or otherwise difficult to access. There have been, however, few device-level demonstrations due to challenges in converting spatial temperature gradients into temporal temperature oscillations necessary for pyroelectric energy harvesting. We demonstrate the feasibility of a device concept that uses liquid-based thermal interfaces for rapid switching of the thermal conductance between a pyroelectric material and a heat source/sink and can thereby deliver high output power density. Using a thin film of a pyroelectric co-polymer together with a macroscale mechanical actuator, we operate pyroelectric thermal energy harvesting cycles at frequencies close to 1 Hz. Film-level power densities as high as 110 mW/cm(3) were achieved, limited by slow heat diffusion across a glass substrate. When combined with a laterally interdigitated electrode array and a MEMS actuator, the present design offers an attractive option for compact high-power density thermal energy harvesters. (C) 2012 Elsevier B.V. All rights reserved.

  11. Hand Gesture and Neural Network Based Human Computer Interface

    Directory of Open Access Journals (Sweden)

    Aekta Patel

    2014-06-01

    Full Text Available Computer is used by every people either at their work or at home. Our aim is to make computers that can understand human language and can develop a user friendly human computer interfaces (HCI. Human gestures are perceived by vision. The research is for determining human gestures to create an HCI. Coding of these gestures into machine language demands a complex programming algorithm. In this project, We have first detected, recognized and pre-processing the hand gestures by using General Method of recognition. Then We have found the recognized image’s properties and using this, mouse movement, click and VLC Media player controlling are done. After that we have done all these functions thing using neural network technique and compared with General recognition method. From this we can conclude that neural network technique is better than General Method of recognition. In this, I have shown the results based on neural network technique and comparison between neural network method & general method.

  12. User interface for a tele-operated robotic hand system

    Science.gov (United States)

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  13. A novel human-machine interface based on recognition of multi-channel facial bioelectric signals

    International Nuclear Information System (INIS)

    Full text: This paper presents a novel human-machine interface for disabled people to interact with assistive systems for a better quality of life. It is based on multichannel forehead bioelectric signals acquired by placing three pairs of electrodes (physical channels) on the Fron-tails and Temporalis facial muscles. The acquired signals are passes through a parallel filter bank to explore three different sub-bands related to facial electromyogram, electrooculogram and electroencephalogram. The root mean features of the bioelectric signals analyzed within non-overlapping 256 ms windows were extracted. The subtractive fuzzy c-means clustering method (SFCM) was applied to segment the feature space and generate initial fuzzy based Takagi-Sugeno rules. Then, an adaptive neuro-fuzzy inference system is exploited to tune up the premises and consequence parameters of the extracted SFCMs. rules. The average classifier discriminating ratio for eight different facial gestures (smiling, frowning, pulling up left/right lips corner, eye movement to left/right/up/down is between 93.04% and 96.99% according to different combinations and fusions of logical features. Experimental results show that the proposed interface has a high degree of accuracy and robustness for discrimination of 8 fundamental facial gestures. Some potential and further capabilities of our approach in human-machine interfaces are also discussed. (author)

  14. An efficient P300-based brain-computer interface for disabled subjects

    OpenAIRE

    Hoffmann, Ulrich; Vesin, Jean-Marc; Ebrahimi, Touradj; Diserens, Karin

    2008-01-01

    A brain-computer interface (BCI) is a communication system that translates brain-activity into commands for a computer or other devices. In other words, a BCI allows users to act on their environment by using only brain-activity, without using peripheral nerves and muscles. In this paper, we present a BCI that achieves high classification accuracy and high bitrates for both disabled and able-bodied subjects. The system is based on the P300 evoked potential and is tested with five severely dis...

  15. 基于结合面的立式加工中心进给系统的动态特性分析%The dynamic characteristics analysis of feeding system of a vertical machining center based on conjoint interfaces

    Institute of Scientific and Technical Information of China (English)

    翁德凯; 程寓; 夏玲玲; 李奎

    2012-01-01

    The dynamic characteristics of the finding system directly affect the positioning accuracy of the machine tod,so the analysis of dynamic characteristics of the feeding system is very meaningfut to improve the machining accuracy and processing properties of the machtne tool.By taking a ball screwing feeding system of a vertical machining center as a study example ,a FEM model containing the conjoint interfaces cahracteriticsof the feeding system is established by applying the software ansys.On this basis, through, modid analyzing and harmonic response analyzing the natural frequency and tnbraiion chnrwteris?tics of the feeding system are ohttdned.Through analyzing the impact of the conjoint interfaces'stiffness changing on the natural frequency of the feeding system .its relative weaker conjoint interfaces are found. which stiffness vtdue is optimized und dynamic churacierisucs of the feeding system are improved.%机床进给系统的动态特性的优良直接影响到机床的定位精度,因此对进给系统的动态特性进行分析对提高机床加工精度及加工性能有重要意义.以某立式加工中心的滚珠丝杠进给系统为研究对象,利用Ansys建立包含结合部特性的进给系统有限元模型.在此基础上,通过模态分析和谐响应分析,得到了进给系统的固有频率和振动特性.通过分析改变各个结合面刚度对系统固有频率影响的敏感程度,找到了系统的薄弱结合面,并对这些结合面刚度值进行优化,提高了进给系统的动态特性.

  16. Surface and interface phonon-polaritons in freestanding quantum well wire systems of polar ternary mixed crystals

    Science.gov (United States)

    Yan, C. L.; Bao, J.; Yan, Z. W.

    2016-03-01

    The surface and interface phonon-polaritons in freestanding rectangular quantum well wire systems consisting of polar ternary mixed crystals are investigated in the modified random-element-isodisplacement model and the Born-Huang approximation, based on the Maxwell's equations with the boundary conditions. The numerical results of the surface and interface phonon-polariton frequencies as functions of the wave-vector, geometric structure, and the composition of the ternary mixed crystals in GaAs/AlxGa1-xAs and ZnxCd1-xSe/ZnSe quantum well wire systems are obtained and discussed. It is shown that there are 10 and 8 branches of surface and interface phonon-polaritons in the two quantum well wire systems respectively. The effects of the "two-mode" and "one-mode" behaviors of the ternary mixed crystals on the surface and interface phonon-polariton modes are shown in the dispersion curves.

  17. A Generic Approach for Pen-Based User Interface Development

    Science.gov (United States)

    Macé, Sébastien; Anquetil, Éric

    Pen-based interaction is an intuitive way to realize hand drawn structured documents, but few applications take advantage of it. Indeed, the interpretation of the user hand drawn strokes in the context of document is a complex problem. In this paper, we propose a new generic approach to develop such systems based on three independent components. The first one is a set of graphical and editing functions adapted to pen interaction. The second one is a rule-based formalism that models structured document composition and the corresponding interpretation process. The last one is a hand drawn stroke analyzer that is able to interpret strokes progressively, directly while the user is drawing. We highlight in particular the human-computer interaction induced from this progressive interpretation process. Thanks to this generic approach, three pen-based system prototypes have already been developed, for musical score editing, for graph editing, and for UML class diagram editing

  18. Hand-gesture-based sterile interface for the operating room using contextual cues for the navigation of radiological images.

    Science.gov (United States)

    Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A

    2013-06-01

    This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces. PMID:23250787

  19. SSVEP based EEG Interface for Google Street View Navigation

    OpenAIRE

    Raza, Asim

    2012-01-01

    Brain-computer interface (BCI) or Brain Machine Interface (BMI) provides direct communication channel between user’s brain and an external device without any requirement of user’s physical movement. Primarily BCI has been employed in medical sciences to facilitate the patients with severe motor, visual and aural impairments. More recently many BCI are also being used as a part of entertainment. BCI differs from Neuroprosthetics, a study within Neuroscience, in terms of its usage; former conne...

  20. Effect of different adhesive systems on microleakage at the amalgam/composite resin interface.

    Science.gov (United States)

    Hadavi, F; Hey, J H; Ambrose, E R; Elbadrawy, H E

    1993-01-01

    The objective of this study was to evaluate the effect of different bonding systems on teh microleakage at the amalgam/composite interface. The microleakage at the amalgam/composite resin interface was evaluated with a quantitative dye penetration method. Amalgam cylinders were made and a 2 mm composite base was added after the application of five different bonding systems to the roughened interface of the amalgam cylinders. The cylinders were filled with an exact volume of 0.05% fuchsin solution, and the total weight of the sample was measured. The cylinders were placed on a filter paper with the composite base down and evaluated for leakage after 1, 3, 6, and 24 hours. Weight loss and coloring of the filter paper represented microleakage. The results indicated that the application of Prisma Universal Bond 2 adhesive, Cover Up II, or Amalgambond (groups E, F, and G) reduced the amount of microleakage significantly as compared to the groups in which no adhesive system, 3M Porcelain Repair Kit (with and without acid etching of the amalgam surface), or Prisma Universal Bond 2 primer and adhesive (groups A, B, C or D) was applied. PMID:8332537

  1. A user-friendly wearable single-channel EOG-based human-computer interface for cursor control

    OpenAIRE

    ANG, AMS; Zhang, Z.; Hung, YS; Mak, JNF

    2015-01-01

    This paper presents a novel wearable single-channel electrooculography (EOG) based human-computer interface (HCI) with a simple system design and robust performance. In the proposed system, EOG signals for control are generated from double eye blinks, collected by a commercial wearable device (the NeuroSky MindWave headset), and then converted into a sequence of commands that can control cursor navigations and actions. The EOG-based cursor control system was tested on 8 subjects in indoor or ...

  2. Interface Model Design of University Educational Administration Management system and On-line Examination System Based on SOA%基于SOA的高校教务管理系统与在线考试系统接口模型设计

    Institute of Scientific and Technical Information of China (English)

    胡君

    2012-01-01

    Application system based on the WEB is more and more popular along with the development of the university informatization.Due to the lack of overall design,systems operated independently is difficult to share data,maintain and use.Interface model design of university educational administration management system and on-line examination system based on SOA is proposed after research SOA combining with educational administration management system and on-line examination system used in a university.The scheme picked up effective function of two systems and encapsulate it to WebService in order to transform interface.Practical application results show that the new interface model can realize the integration of the system better.It improve the system extensibility and efficiency,reduce the operating personnel's working intensity,outstands the advantages of LINQ in data paging.%随着高校信息化的不断推进,基于WEB的应用系统越来越普及。然而由于众多应用系统缺乏总体设计,各自独立运行,因此很难共享数据,维护和使用也十分困难。在研究SOA设计模式的基础上,结合某高校的教务管理系统和在线考试系统实际使用情况,提出一种基于SOA的接口模型设计方案。该方案通过提取两系统中的有效功能,并封装成WebService对系统接口进行了改造。实际应用的结果表明,新的接口模型较好的实现了系统的整合,提高了系统的扩展性和使用效率,降低了操作人员的工作强度。

  3. Brain-Computer Interface Based on Motor Imagery: the Most Relevant Sources of Electrical Brain Activity

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Snášel, V.; Bobrov, P.; Mokienko, O.; Tintěra, J.; Rydlo, J.

    Cham: Springer, 2014 - (Snášel, V.; Krömer, P.; Köppen, M.; Schaefer, G.), s. 153-163. (Advances in Intelligent Systems and Computing. 223). ISBN 978-3-319-00929-2. ISSN 2194-5357. [Online World Conference on Soft Computing in Industrial Applications /17./. Anywhere on Earth, 10.12.2012-21.12.2012)] Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Institutional support: RVO:67985807 Keywords : Image and Signal Processing * Brain-Computer Interface * Independent Component Analysis * EEG Pattern Classification * fMRI * Motor Image ry * Pattern Recognition Subject RIV: IN - Informatics, Computer Science http://dap.vsb.cz/wsc17conf/brain-computer-interface-based-on-motor- image ry---the-most-relevant-sources-of-electrical-brain-activity

  4. Rule-based interface generation on mobile devices for structured documentation.

    Science.gov (United States)

    Kock, Ann-Kristin; Andersen, Björn; Handels, Heinz; Ingenerf, Josef

    2014-01-01

    In many software systems to date, interactive graphical user interfaces (GUIs) are represented implicitly in the source code, together with the application logic. Hence, the re-use, development, and modification of these interfaces is often very laborious. Flexible adjustments of GUIs for various platforms and devices as well as individual user preferences are furthermore difficult to realize. These problems motivate a software-based separation of content and GUI models on the one hand, and application logic on the other. In this project, a software solution for structured reporting on mobile devices is developed. Clinical content archetypes developed in a previous project serve as the content model while the Android SDK provides the GUI model. The necessary bindings between the models are specified using the Jess Rule Language. PMID:25160197

  5. Novel power electronic interface for grid-connected fuel cell power generation system

    International Nuclear Information System (INIS)

    Highlights: • A fuel cell power generation system was composed of a DC–DC power converter and a DC–AC inverter. • A voltage doubler based topology was adopted to configure the DC–DC power converter. • A dual buck power converter and a full-bridge power converter were applied to the DC–AC inverter. • The DC–AC inverter outputs a five-level voltage. • The DC–AC inverter performs the functions of DC–AC power conversion and active power filter. - Abstract: A novel power electronic interface for the grid-connected fuel cell power generation system is proposed in this paper. This power electronic interface is composed of a DC–DC power converter and a DC–AC inverter. A voltage doubler based topology is adopted to configure the DC–DC power converter to perform high step-up gain for boosting the output voltage of the fuel cell to a higher voltage. Moreover, the input current ripple of the fuel cell is suppressed by controlling the DC–DC power converter. The DC–AC inverter is configured by a dual buck power converter and a full-bridge power converter to generate a five-level AC output voltage. The DC–AC inverter can perform the functions of DC–AC power conversion and active power filtration. A 1.2 kW hardware prototype is developed to verify the performance of the proposed power electronic interface for the grid-connected fuel cell power generation system. The experimental results show that the proposed power electronic interface for the grid-connected fuel cell power generation system has the expected performance

  6. Evaluating a Web-Based Interface for Internet Telemedicine

    Science.gov (United States)

    Lathan, Corinna E.; Newman, Dava J.; Sebrechts, Marc M.; Doarn, Charles R.

    1997-01-01

    The objective is to introduce the usability engineering methodology, heuristic evaluation, to the design and development of a web-based telemedicine system. Using a set of usability criteria, or heuristics, one evaluator examined the Spacebridge to Russia web-site for usability problems. Thirty-four usability problems were found in this preliminary study and all were assigned a severity rating. The value of heuristic analysis in the iterative design of a system is shown because the problems can be fixed before deployment of a system and the problems are of a different nature than those found by actual users of the system. It was therefore determined that there is potential value of heuristic evaluation paired with user testing as a strategy for optimal system performance design.

  7. Hybrid systems: a real-time interface to control engineering

    DEFF Research Database (Denmark)

    Eriksen, Thomas Juul; Heilmann, Søren; Holdgaard, Michael; Ravn, Anders P.

    An important application area for real time computing is embedded systems where the computing system provides intelligent control of a mechanical, chemical etc. plant or device. The software requirements for such applications depend heavily on the properties of the plant. These properties are...... usually investigated by control engineers that base their work on the theory of dynamic systems. The mathematical tool for this work is thus mathematical analysis, in particular the theory of differential equations. The paper gives an introduction to a general hybrid systems model for definition of system...

  8. Power transfer capability assessment of transmission interfaces with SVC and load shedding systems

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovsky, V. [DMCC-Engineering, Kiev (Ukraine). Inst. of Electrodynamics; Dolzhenitsa, Y. [DMCC Engineering, Kiev (Ukraine); Ushapovskiy, K. [National Power Co. Ukrenergo, Kiev (Ukraine)

    2009-07-01

    As a result of deregulation in the power industry, energy trade and markets are pushing transmission system operators to operate their systems closer to the edge of the power transfer capability. Voltage instability and inadequate reactive power support of generators is a key factor in most major outages around the world. The ideal way to control power systems is to avoid emergencies by reliable planning and secure operation of power systems. Therefore, the accurate calculation of the power transfer capability of transmission interfaces is an important task on the planning and operation stages. This paper discussed the issue of transfer capability assessment and monitoring for interfaces with static var compensator (SVC) and load shedding schemes. It also proposed a special measure, a distance to voltage instability point, to monitor transfer capability on-line. The distance may be observed by measurement of SVC output. The paper considered the problem of optimal SVC size selection and a new approach was proposed based on P-V curves analysis. The paper discussed the problem formulation and proposed approach. A case was also presented in order to demonstrate the proposed approach on the IPS Ukraine-Crimea interface. It was concluded that the proposed approach allows the optimal rating of SVC for increasing transfers capability of transmission corridors. 12 refs., 9 figs.

  9. Prospects on Brain-Machine Interfaces for Space System Control

    OpenAIRE

    Menon, C.; de Negueruela, Christina; Millán, José Del R; Tonet, O.; Carpi, F.; Broschart, M.; Ferrez, Pierre W.; Buttfield, Anna; Dario, P.; Citi, L; Laschi, C.; Tombini, M.; Sepulveda, F.; Poli, R.; Palaniappan, R.

    2006-01-01

    The dream of controlling and guiding computer-based systems using human brain signals has slowly but steadily become a reality. The available technology allows real-time implementation of systems that measure neuronal activity, convert their signals, and translate their output for the purpose of controlling mechanical systems. This paper describes the state of the art of non-invasive BMIs and critically investigates both the current technological limits and the future potential that BMIs have...

  10. STUDY ON NATURAL LANGUAGE INTERFACE OF NETWORK FAULT DIAGNOSIS EXPERT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liu Peiqi; Li Zengzhi; Zhao Yinliang

    2006-01-01

    The expert system is an important field of the artificial intelligence. The traditional interface of the expert system is the command, menu and window at present. It limits the application of the expert system and embarrasses the enthusiasm of using expert system. Combining with the study on the expert system of network fault diagnosis, the natural language interface of the expert system has been discussed in this article. This interface can understand and generate Chinese sentences. Using this interface, the user and field experts can use the expert system to diagnose the fault of network conveniently. In the article, first, the extended production rule has been proposed. Then the methods of Chinese sentence generation from conceptual graphs and the model of expert system are introduced in detail. Using this model, the network fault diagnosis expert system and its natural language interface have been developed with Prolog.

  11. Hands-Free Manipulation Using Simple Bio-Potential Interface System

    Science.gov (United States)

    Takahashi, Kazuhiko; Nakauke, Takashi; Hashimoto, Masafumi

    This paper proposes a nonverbal interface system using bio-potential signals, such as EOG and EMG, measured by a brain-computer interface and investigates its possibility of application to control of a hands-free manipulation system. A simple gesture recognition algorithm is presented to estimate the user's thinking from the EOG and EMG signals. To evaluate the feasibility and the characteristics of the interface system for hands-free manipulation, moving control experiments in 3D virtual space are carried out and the effectiveness of the proposed interface system is confirmed.

  12. Reliability analysis for the facility data acquisition interface system upgrade at TA-55

    International Nuclear Information System (INIS)

    Because replacement parts for the existing facility data acquisition interface system at TA-55 have become scarce and are no longer being manufactured, reliability studies were conducted to assess various possible replacement systems. A new control system, based on Allen-Bradley Programmable Logic Controllers (PLCs), was found to have a likely reliability 10 times that of the present system, if the existing Continuous Air Monitors (CAMS) were used. Replacement of the old CAMs with new CAMs will result in even greater reliability as these are gradually phased in. The new PLC-based system would provide for hot standby processors, redundant communications paths, and redundant power supplies, and would be expandable and easily maintained, as well as much more reliable. TA-55 is the Plutonium Processing Facility which processes and recovers Pu-239 from scrap materials

  13. Reliability analysis for the facility data acquisition interface system upgrade at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.J.; Pope, N.G.; Brown, R.E.

    1995-05-01

    Because replacement parts for the existing facility data acquisition interface system at TA-55 have become scarce and are no longer being manufactured, reliability studies were conducted to assess various possible replacement systems. A new control system, based on Allen-Bradley Programmable Logic Controllers (PLCs), was found to have a likely reliability 10 times that of the present system, if the existing Continuous Air Monitors (CAMS) were used. Replacement of the old CAMs with new CAMs will result in even greater reliability as these are gradually phased in. The new PLC-based system would provide for hot standby processors, redundant communications paths, and redundant power supplies, and would be expandable and easily maintained, as well as much more reliable. TA-55 is the Plutonium Processing Facility which processes and recovers Pu-239 from scrap materials.

  14. A modularized operator interface framework for Tokamak based on MVC design pattern

    International Nuclear Information System (INIS)

    Highlights: • Our framework is based on MVC design pattern. • XML is used to cope with minor difference between different applications. • Functions dealing with EPICS and MDSplus have been modularized into reusable modules. • The modularized framework will shorten J-TEXT's software development cycle. - Abstract: Facing various and continually changing experimental needs, the J-TEXT Tokamak experiment requires home-made software applications developed for different sub-systems. Though dealing with different specific problems, these software applications usually share a lot of functionalities in common. With the goal of improving the productivity of research groups, J-TEXT has designed a C# desktop application framework which is mainly focused on operator interface development. Following the Model–View–Controller (MVC) design pattern, the main functionality dealing with Experimental Physics and Industrial Control System (EPICS) or MDSplus has been modularized into reusable modules. Minor difference among applications can be coped with XML configuration files. In this case, developers are able to implement various kinds of operator interface without knowing the implementation details of the bottom functions in Models, mainly focusing on Views and Controllers. This paper presents J-TEXT C# desktop application framework, introducing the technology of fast development of the modularized operator interface. Some experimental applications designed in this framework have been already deployed in J-TEXT, and will be introduced in this paper

  15. Neurological rehabilitation of stroke patients via motor imaginary-based brain-computer interface technology

    Institute of Scientific and Technical Information of China (English)

    Hongyu Sun; Yang Xiang; Mingdao Yang

    2011-01-01

    The present study utilized motor imaginary-based brain-computer interface technology combined with rehabilitation training in 20 stroke patients. Results from the Berg Balance Scale and the Holden Walking Classification were significantly greater at 4 weeks after treatment (P < 0.01), which suggested that motor imaginary-based brain-computer interface technology improved balance and walking in stroke patients.

  16. The development of a prototype intelligent user interface subsystem for NASA's scientific database systems

    Science.gov (United States)

    Campbell, William J.; Roelofs, Larry H.; Short, Nicholas M., Jr.

    1987-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has as one of its components the development of an Intelligent User Interface (IUI).The intent of the latter is to develop a friendly and intelligent user interface service that is based on expert systems and natural language processing technologies. The purpose is to support the large number of potential scientific and engineering users presently having need of space and land related research and technical data but who have little or no experience in query languages or understanding of the information content or architecture of the databases involved. This technical memorandum presents prototype Intelligent User Interface Subsystem (IUIS) using the Crustal Dynamics Project Database as a test bed for the implementation of the CRUDDES (Crustal Dynamics Expert System). The knowledge base has more than 200 rules and represents a single application view and the architectural view. Operational performance using CRUDDES has allowed nondatabase users to obtain useful information from the database previously accessible only to an expert database user or the database designer.

  17. The development and evaluation of guidelines for the review of advanced human-system interfaces

    International Nuclear Information System (INIS)

    Advanced control rooms for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes a general approach to advanced human-system interface review, development of human factors guidelines to support NRC safety reviews of advanced systems, and the results of a guideline test and evaluation program

  18. The use of DBMS and document oriented interface in the TPLAN-system

    International Nuclear Information System (INIS)

    The paper describes the user-friendly input/output interface (DOI) for the TPLAN database management system that includes high quality output in Latex format from databases and retrieves selected information from Latex document (according to a specific grammar that includes a subset of the Latex grammar) to be stored in the databases. The TPLAN system was developed to manage the annual Topical Plan of JINR. It was written in 'C' and DOS Fox Base/Fox Pro for IBM comparable personal computer. It was also proto typed in Visual Basic and Windows Access using standard V B controls. 8 refs.; 7 figs. (author)

  19. Touch interface for markless AR based on Kinect

    Science.gov (United States)

    Hsieh, Ching-Tang; Kuo, Tai-Ku; Wang, Hui-Chun; Wu, Yeh-Kuang; Chang, Liung-Chun

    2014-01-01

    We develop an augmented reality (AR) environment with hidden-marker via touch interface using Kinect device, and then also set up a touch painting game with the AR environment. This environment is similar to that of the touch screen interface which allows user to paint picture on a tabletop with his fingers, and it is designed with depth image information from Kinect device setting up above a tabletop. We incorporate support vector machine (SVM) to classify painted pictures which correspond to the inner data and call out its AR into the tabletop in color images information from Kinect device. Because users can utilize this similar touch interface to control AR, we achieve a marker-less AR and interactive environment.

  20. A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces

    Science.gov (United States)

    Glitzky, Annegret; Mielke, Alexander

    2013-02-01

    We derive gradient-flow formulations for systems describing drift-diffusion processes of a finite number of species which undergo mass-action type reversible reactions. Our investigations cover heterostructures, where material parameter may depend in a nonsmooth way on the space variable. The main results concern a gradient-flow formulation for electro-reaction-diffusion systems with active interfaces permitting drift-diffusion processes and reactions of species living on the interface and transfer mechanisms allowing bulk species to jump into an interface or to pass through interfaces. The gradient flows are formulated in terms of two functionals: the free energy and the dissipation potential. Both functionals consist of a bulk and an interface integral. The interface integrals determine the interface dynamics as well as the self-consistent coupling to the model in the bulk. The advantage of the gradient structure is that it automatically generates thermodynamically consistent models.

  1. Micromorphology of Restorative System-Dentin Interface in Primary Teeth Using Different Adhesive Systems and Burs

    Directory of Open Access Journals (Sweden)

    Tereza Cristina Favieri de MELO-SILVA

    2007-03-01

    Full Text Available Objective: This study in vitro evaluated the micromorphology of the resin-dentin interface in primary teeth, using different rotatory instruments and adhesive systems. Method: Twenty primary molars were selected and randomly divided into two groups (n=10. In group C, the occlusal surfaces of teeth were cut with a carbide bur at high-speed until the area of dentin exposure. In group D, the same procedure was conducted, but the dentin was cut with a diamond bur. The surface of each tooth was divided into two halves; one half of the occlusal surface received application of two-step total-etch adhesive system (Single-Bond – 3M, and the other half received application of one-step self-etching adhesive (One Up Bond F - Tokuyama. All teeth were restored with composite (Z-250 - 3M. The samples were thermocycled, embedded in acrylic resin, sectioned for achievement of the resin-dentin interface and the teeth were sputter- coated with gold and observed under SEM. Results: the two adhesive systems showed hybrid layer formation; the two-step adhesive system demonstrated better interface sealing than the self-etching; the dentin cut with carbide burs was not statistically different with regard to the adhesive system; and diamond bur with self-etching adhesive system showed the worst interface sealing with the highest gap values. Conclusion: the diamond bur presented negative influence only in the quality of the interface between restorative system and primary dentin when it was used the one step self-etching adhesive system.

  2. Fabrication of nanostructures and nanostructure based interfaces for biosensor application

    Science.gov (United States)

    Srivastava, Devesh

    Nanoparticles have applications from electronics, composites, drug-delivery, imaging and sensors etc. Fabricating and controlling shape and size of nanoparticles and also controlling the positioning of these particles in 1, 2 or 3-d structures is of most interest. The underlying theme of this study is to develop simple and efficient techniques to fabricate nanoparticles from polymers, and also achieve control in shape, size and functionalization of nanoparticles, while applying them in biosensor applications. First part of the dissertation studies the fabrication of nanostructures using anodized alumina membrane as template. It discusses the fabrication design for injecting polystyrene nanoparticles inside the pores of anodized alumina membranes and heating the membrane to coalesce the particles into tapered nanoparticles. Various parameters like temperature and amount of injected particles can vary the size and shape of fabricated nanoparticles. Later it focuses on the fabrication of metallic nanostructures using the alumina membranes without the aid of the injection system. It utilizes the difference in the functionality of the pore edges of cleaved alumina membrane with respect to the pore walls to first deposit charged polymers using layer-by-layer deposition followed by deposition of nickel. Second part of this study involves immobilization of enzymes for biosensor applications. It describes a biosensor interface developed by immobilization of tyrosinase using layer-by-layer (LBL) deposition process. The interface was modified with functional nanoparticles and their influence on the response of biosensor was studied. Tyrosinase sensor was further extended to develop a novel biosensor which was used to study real time inhibition of NEST, a subunit of the medically relevant membrane protein, neuropathy target esterase. The biosensor was developed to give real time monitoring of dose dependent decrease in activity of NEST. Final part of this study emphasizes on

  3. Interface stability in the Ni-Cr-AI system: Part I. morphological stability of β-γ diffusion couple interfaces at 1150°C

    Science.gov (United States)

    Merchant, Sailesh M.; Notis, Michael R.; Goldstein, Joseph I.

    1990-07-01

    Aluminide coatings on Ni-base superalloys offer resistance to oxidation and hot corrosion at elevated temperatures. Complex depositional and subsequent diffusional interactions of the coating with the substrate result in a multiphase product consisting primarily of β-NiAl and γ'-Ni3Al intermediate phases. An understanding of interfacial stability between the coating and the substrate is therefore necessary in order to explain the formation of such phases. The Ni-Cr-AI system serves to simplify the complex chemistry of most Ni-base superalloys. In this study, reaction diffusion and interfacial stability were investigated in solid-solid diffusion couples, consisting of a common β-Ni50Al end-member and a series of γ-pure Ni, binary Ni-Cr, and ternary Ni-Cr-Al alloys, isothermally annealed at 1150 °C for 49 hours. The morphological development of the interface was examined using optical metallography and quantitative information obtained using electron-probe microanalysis. A transition from a stable or planar to an unstable or nonplanar interface in the β-γ diffusion couples was observed with the systematic variation in Cr content of the γ end-member. Interface breakdown in the β-γ couples was explained by means of microstructural information gathered about interfaces, measured diffusion paths, and a knowledge of phase constitution relationships.

  4. Human-system interfaces for space cognitive awareness

    Science.gov (United States)

    Ianni, J.

    Space situational awareness is a human activity. We have advanced sensors and automation capabilities but these continue to be tools for humans to use. The reality is, however, that humans cannot take full advantage of the power of these tools due to time constraints, cognitive limitations, poor tool integration, poor human-system interfaces, and other reasons. Some excellent tools may never be used in operations and, even if they were, they may not be well suited to provide a cohesive and comprehensive picture. Recognizing this, the Air Force Research Laboratory (AFRL) is applying cognitive science principles to increase the knowledge derived from existing tools and creating new capabilities to help space analysts and decision makers. At the center of this research is Sensemaking Support Environment technology. The concept is to create cognitive-friendly computer environments that connect critical and creative thinking for holistic decision making. AFRL is also investigating new visualization technologies for multi-sensor exploitation and space weather, human-to-human collaboration technologies, and other technology that will be discussed in this paper.

  5. Local chemical potentials and pressures in heterogeneous systems: Adsorptive, absorptive, interfaces

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-07-01

    Equations self-consistently describing chemical and mechanical equilibria in heterogeneous systems are derived. The equations are based on the lattice gas model using discrete distributions of molecules in space (on a scale comparable to molecular size) and continuum distributions of molecules (at short distances inside the cells) during their translational and vibrational motions. It is shown that the theory provides a unified description of the equilibrium distributions of molecules in three aggregate states and at their interfaces. Potential functions of intermolecular interactions (such as Mie pair potentials) in several coordination spheres that determine the compressibility of the lattice structure are considered. For simplicity, it is assumed that differences between the sizes of mixture components are small. Expressions for the local components of the pressure tensor inside multicomponent solid phases and heterogeneous systems (adsorptive, absorptive, and interfaces) are obtained. It is established that they can be used to calculate the lattice parameters of deforming phases and the thermodynamic characteristics of interfaces, including surface tension. The tensor nature of the chemical potential in heterogeneous systems is discussed.

  6. Personalizable Pen-Based Interface Using Life-Long Learning

    OpenAIRE

    Almaksour, Abdullah; Anquetil, Eric; Quiniou, Solen; Cheriet, Mohamed

    2010-01-01

    In this paper, we present a new method to design customizable self-evolving fuzzy rule-based classifiers. The presented approach combines an incremental clustering algorithm with a fuzzy adaptation method in order to learn and maintain the model. We use this method to build an evolving handwritten gesture recognition system, that can be integrated into an application to provide personalization capabilities. Experiments on an on-line gesture database were performed by considering various user ...

  7. Construction of an accelerator interlock system using a low-cost, reduced-wiring interface

    International Nuclear Information System (INIS)

    In AIST, an interlock system of the accelerator was constructed using a serial bus communication system. Substantially reduced wiring was able to be performed as compared with the system before use, by using a low cost interface. (author)

  8. System and Method for Providing a Climate Data Analytic Services Application Programming Interface Distribution Package

    Science.gov (United States)

    Schnase, John L. (Inventor); Duffy, Daniel Q. (Inventor); Tamkin, Glenn S. (Inventor)

    2016-01-01

    A system, method and computer-readable storage devices for providing a climate data analytic services application programming interface distribution package. The example system can provide various components. The system provides a climate data analytic services application programming interface library that enables software applications running on a client device to invoke the capabilities of a climate data analytic service. The system provides a command-line interface that provides a means of interacting with a climate data analytic service by issuing commands directly to the system's server interface. The system provides sample programs that call on the capabilities of the application programming interface library and can be used as templates for the construction of new client applications. The system can also provide test utilities, build utilities, service integration utilities, and documentation.

  9. SPECT detector system design based on embedded system

    International Nuclear Information System (INIS)

    A single-photon emission computed tomography detector system based on embedded Linux designed. This system is composed of detector module, data acquisition module, ARM MPU module, network interface communication module and human machine interface module. Its software uses multithreading technology based on embedded Linux. It can achieve high speed data acquisition, real-time data correction and network data communication. It can accelerate the data acquisition and decrease the dead time. The accuracy and the stability of the system can be improved. (authors)

  10. Flexible DCP interface. [signal conditioning system for use with Kansas environmental sensors

    Science.gov (United States)

    Kanemasu, E. T. (Principal Investigator); Schimmelpfenning, H.

    1974-01-01

    The author has identified the following significant results. A user of an ERTS data collection system must supply the sensors and signal conditioning interface. The electronic interface must be compatible with the NASA-furnished data collection platform (DCP). A universal signal conditioning system for use with a wide range of environmental sensors is described. The interface is environmentally and electronically compatible with the DCP and has operated satisfactorily for a complete winter wheat growing season in Kansas.

  11. Taking account of human factors for interface assessment and design in monitoring automated systems

    International Nuclear Information System (INIS)

    Optimum balance between control means and the operator capacities is sought for to achieve computerization of Man-Machine interfaces. Observation of the diagnosis activity of populations of operators in situation on simulators enables design criteria to be defined which are well-suited to the characteristics of the tasks with which they are confronted. This observation provides an assessment of the interfaces from the standpoint of the graphic layer, of the Human behaviour induced by the Machine and of the nature of the interaction between these two systems. This requires an original approach dialectically involving cognitive psychology, dynamic management of the knowledge bases (artificial intelligence) in a critical industrial control and monitoring application. (author)

  12. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj; Dixon, Andrew; Østergaard, Jacob

    2012-01-01

    presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study. The......Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis is...... WT is, furthermore, equipped with a park level WPP voltage controller and comparisons are presented. The WT model for this work is a validated dynamic model of the 3.6 MW Siemens Wind Power WT. The study is based on modal analysis which is complemented with time domain simulations on the nonlinear...

  13. Phase segregation and interface dynamics in kinetic systems

    OpenAIRE

    Manzi, Guido; Marra, Rossana

    2005-01-01

    We consider a kinetic model of two species of particles interacting with a reservoir at fixed temperature, described by two coupled Vlasov-Fokker-Plank equations. We prove that in the diffusive limit the evolution is described by a macroscopic equation in the form of the gradient flux of the macroscopic free energy functional. Moreover, we study the sharp interface limit and find by formal Hilbert expansions that the interface motion is given in terms of a quasi stationary problem for the che...

  14. Glotaran: A Java-Based Graphical User Interface for the R Package TIMP

    OpenAIRE

    Katharine M. Mullen; Ralf Seger; Laptenok, Sergey P; Snellenburg, Joris J.; van Stokkum, Ivo H. M.

    2012-01-01

    In this work the software application called Glotaran is introduced as a Java-based graphical user interface to the R package TIMP, a problem solving environment for fitting superposition models to multi-dimensional data. TIMP uses a command-line user interface for the interaction with data, the specification of models and viewing of analysis results. Instead, Glotaran provides a graphical user interface which features interactive and dynamic data inspection, easier -- assisted by the user in...

  15. Interprocessor interface for data transfer between PDP-8/L and NOVA 1220 dedicated gamma energy analysis systems

    International Nuclear Information System (INIS)

    A method for data communication between PDP-8/L and NOVA 1220 computer-based multichannel analyzer systems is described. The method is implemented by modification of each system's operating program with appropriate I/O subroutines and by installation of a minor amount of hardware logic to a NOVA general purpose interface board. The method provides for high speed transfer of gamma energy analysis data between a Nuclear Data Corporation 50/50 system and a Tracor-Northern Corporation 660 system

  16. Single-crystal-silicon-based microinstrument to study friction and wear at MEMS sidewall interfaces

    International Nuclear Information System (INIS)

    Since the advent of microelectromechanical systems (MEMS) technology, friction and wear are considered as key factors that determine the lifetime and reliability of MEMS devices that contain contacting interfaces. However, to date, our knowledge of the mechanisms that govern friction and wear in MEMS is insufficient. Therefore, systematically investigating friction and wear at MEMS scale is critical for the commercial success of many potential MEMS devices. Specifically, since many emerging MEMS devices contain more sidewall interfaces, which are topographically and chemically different from in-plane interfaces, studying the friction and wear characteristics of MEMS sidewall surfaces is important. The microinstruments that have been used to date to investigate the friction and wear characteristics of MEMS sidewall surfaces possess several limitations induced either by their design or the structural film used to fabricate them. Therefore, in this paper, we report on a single-crystal-silicon-based microinstrument to study the frictional and wear behavior of MEMS sidewalls, which not only addresses some of the limitations of other microinstruments but is also easy to fabricate. The design, modeling and fabrication of the microinstrument are described in this paper. Additionally, the coefficients of static and dynamic friction of octadecyltrichlorosilane-coated sidewall surfaces as well as sidewall surfaces with only native oxide on them are also reported in this paper. (paper)

  17. An on-chip micromagnet frictionometer based on magnetically driven colloids for nano-bio interfaces.

    Science.gov (United States)

    Hu, Xinghao; Goudu, Sandhya Rani; Torati, Sri Ramulu; Lim, Byeonghwa; Kim, Kunwoo; Kim, CheolGi

    2016-09-21

    A novel method based on remotely controlled magnetic forces of bio-functionalized superparamagnetic colloids using micromagnet arrays was devised to measure frictional force at the sub-picoNewton (pN) scale for bio-nano-/micro-electromechanical system (bio-NEMS/MEMS) interfaces in liquid. The circumferential motion of the colloids with phase-locked angles around the periphery of the micromagnets under an in-plane rotating magnetic field was governed by a balance between tangential magnetic force and drag force, which consists of viscous and frictional forces. A model correlating the phase-locked angles of the steady colloid rotation was formulated and validated by measuring the angles under controlled magnetic forces. Hence, the frictional forces on the streptavidin/Teflon interface between the colloids and the micromagnet arrays were obtained using the magnetic forces at the phase-locked angles. The friction coefficient for the streptavidin/Teflon interface was estimated to be approximately 0.036 regardless of both vertical force in the range of a few hundred pN and velocity in the range of a few tenths of μm s(-1). PMID:27456049

  18. User Interface Design of E-Learning System for Functionally Illiterate People

    Directory of Open Access Journals (Sweden)

    Asifur Rahman

    2015-11-01

    Full Text Available Among different type of illiterate people, the print illiterates suffer most from getting crucial information passed around the society. Many print illiterate people are found in the developing countries and in many cases they live in the remote areas working as farmers. These people are deprived of the knowledge generated from the latest scientific researches. This research makes some recommendations related to developing user interface especially suitable for the print illiterate people. In this regard, a user interface is developed based on the recommendations from the previous researchers. The authors find the recommendations insufficient and develop another user interface based on the improvements proposed by the authors. Later both the user interfaces are tested by two different groups of print illiterate people in a remote village in Bangladesh. The test data shows that the proposed improvement contributes significantly to make the user interface more usable to the target population. 13 out of 15 users could complete the assigned task successfully using improved user interface. Whereas only 8 out of 14 users could do the same with the other user interface. Among the successful users, the improved user interface took 26% less time than that of the other user interface. Finally some recommendations to develop user interface for the functionally illiterate people are made based on the results and observations of this research.

  19. The high level programmer and user interface of the NSLS control system

    International Nuclear Information System (INIS)

    This paper presents the major components of the high level software in the NSLS upgraded control system. Both programmer and user interfaces are discussed. The use of the high-speed work stations, fast network communications, UNIX system, X-window and Motif have greatly changed and improved these interfaces

  20. Integrated vision-based robotic arm interface for operators with upper limb mobility impairments.

    Science.gov (United States)

    Jiang, Hairong; Wachs, Juan P; Duerstock, Bradley S

    2013-06-01

    An integrated, computer vision-based system was developed to operate a commercial wheelchair-mounted robotic manipulator (WMRM). In this paper, a gesture recognition interface system developed specifically for individuals with upper-level spinal cord injuries (SCIs) was combined with object tracking and face recognition systems to be an efficient, hands-free WMRM controller. In this test system, two Kinect cameras were used synergistically to perform a variety of simple object retrieval tasks. One camera was used to interpret the hand gestures to send as commands to control the WMRM and locate the operator's face for object positioning. The other sensor was used to automatically recognize different daily living objects for test subjects to select. The gesture recognition interface incorporated hand detection, tracking and recognition algorithms to obtain a high recognition accuracy of 97.5% for an eight-gesture lexicon. An object recognition module employing Speeded Up Robust Features (SURF) algorithm was performed and recognition results were sent as a command for "coarse positioning" of the robotic arm near the selected daily living object. Automatic face detection was also provided as a shortcut for the subjects to position the objects to the face by using a WMRM. Completion time tasks were conducted to compare manual (gestures only) and semi-manual (gestures, automatic face detection and object recognition) WMRM control modes. The use of automatic face and object detection significantly increased the completion times for retrieving a variety of daily living objects. PMID:24187264

  1. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  2. Human -Computer Interface using Gestures based on Neural Network

    OpenAIRE

    Aarti Malik; Shalini Dhingra

    2014-01-01

    - Gestures are powerful tools for non-verbal communication. Human computer interface (HCI) is a growing field which reduces the complexity of interaction between human and machine in which gestures are used for conveying information or controlling the machine. In the present paper, static hand gestures are utilized for this purpose. The paper presents a novel technique of recognizing hand gestures i.e. A-Z alphabets, 0-9 numbers and 6 additional control signals (for keyboard and mouse contr...

  3. Extending the POSIX I/O interface: a parallel file system perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Vilayannur, M.; Lang, S.; Ross, R.; Klundt, R.; Ward, L.; Mathematics and Computer Science; VMWare, Inc.; SNL

    2008-12-11

    The POSIX interface does not lend itself well to enabling good performance for high-end applications. Extensions are needed in the POSIX I/O interface so that high-concurrency HPC applications running on top of parallel file systems perform well. This paper presents the rationale, design, and evaluation of a reference implementation of a subset of the POSIX I/O interfaces on a widely used parallel file system (PVFS) on clusters. Experimental results on a set of micro-benchmarks confirm that the extensions to the POSIX interface greatly improve scalability and performance.

  4. Applying Task Modeling and Pattern-Based Techniques in Reengineering Processes for Mobile Learning User Interfaces: A Case Study

    Directory of Open Access Journals (Sweden)

    Ana Isabel Molina

    2007-06-01

    Full Text Available In the last years there has been a high production of groupware systems. However, most of these systems have been based on the desktop metaphor. We propose a translation process based on the use of the conceptual model (or, particularly, on the task model and the data model of the original application. From this model and by means of a pattern-based reengineering process, we obtain mobile versions of the original systems. In this paper the user interface reengineering process is described and an example of the application of patterns for the evolution of a specific system, Domosim-TPC, is shown.

  5. Design Patterns for Wrapping Similar Legacy Systems with Common Service Interfaces

    OpenAIRE

    Millard, David; Howard, Yvonne; Chennupati, Swapna; Davis, Hugh; Jam, Ehtesham-Rasheed; Gilbert, Lester; Wills, Gary

    2006-01-01

    Web Services are increasingly being used to create a wide range of distributed systems, many of which involve legacy software. Developing service interfaces for these legacy systems can be difficult, as for interoperability reasons it is advantageous to use a common service interface that is independent of the particular legacy system behind it. This enables other services to interoperate with like legacy systems regardless of their implementation. Unfortunately, similar legacy systems can of...

  6. Development of an Information Projection Interface using a Projector-Camera System

    Science.gov (United States)

    Goto, Hiroki; Takemura, Daisuke; Kawasaki, Yuzo; Nakamura, Akio

    This paper proposes an interface system that enables a user to input and obtain information position-freely within a certain area of the environment with a projector-camera system. Hand-waving detected in the image is used as a cue to start the system, to distinguish gestures based on the user's intension of operation from other daily-life motions, and to specify the position of the user's hand. Hand-waving detection is implemented based on combination of background subtraction method and skin color extraction. In addition, we focus on changes of brightness value in each pixel. The user's hand is tracked using a particle filter algorithm. The user designates the projection area freely on a plane in the environment with his/her hand. The projector mounted on a pan-tilt unit projects information according to the user's designation. Then, the user's fingertip is detected using simple template matching and he/she interacts with the projected information to input commands without any devices. As one of applications, we have developed an interface system to operate electrical appliances (TV) intuitively in a daily life scene.

  7. Optical switch based on the electrically controlled liquid crystal interface.

    Science.gov (United States)

    Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A

    2015-06-01

    The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically. PMID:26192675

  8. Interface fluctuations, bulk fluctuations, and dimensionality in the off-equilibrium response of coarsening systems

    International Nuclear Information System (INIS)

    The relationship between statics and dynamics proposed by Franz, Mezard, Parisi, and Peliti (FMPP) for slowly relaxing systems [Phys. Rev. Lett. >81, 1758 (1998)] is investigated in the framework of nondisordered coarsening systems. Separating the bulk from interface response we find that for statics to be retrievable from dynamics the interface contribution must be asymptotically negligible. How fast this happens depends on dimensionality. There exists a critical dimensionality above that the interface response vanishes like the interface density and below that it vanishes more slowly. At d=1 the interface response does not vanish leading to the violation of the FMPP scheme. This behavior is explained in terms of the competition between curvature-driven and field-driven interface motion

  9. The web-based programming interface for the Mitsubishi Movemaster robot

    Directory of Open Access Journals (Sweden)

    K. Foit

    2008-04-01

    Full Text Available Purpose: of this paper. The aim of this paper is to present a prototype of web-based programming interface for the Mitsubishi Movemaster RV-M1 robot.Design/methodology/approach: In the previous papers [11-14] the off-line, remote programming system for the mentioned robot has been presented. It has been used as a base for developing a new branch: web-based programming interface. The web techniques have been selected due to possibility of use existing code fragments for elaborating new applications and modularity of this solution.Findings: As a result, a prototype of the system has been developed.Research limitations/implications: Because the presented system is in the early development stage, there is a lack of some useful functions. Future work will include elaboration of the robot’s visualisation module and implementation of a trajectory translator intended to co-operate with CAD software.Practical implications: The elaborated system has been previously intended for educational purposes, but it may be adapted for other devices, like small PLC’s or other robots.Originality/value: Remote supervision of machines during a manufacturing process is an actual issue. Most of automation systems manufacturers produce software for their PLC’s and robots. Mitsubishi Movemaster RV-M1 is an old model and there is very few programs dedicated to this machine. On the other hand the programming and development of applications for this robot are very easy. The aim of the presented project is to develop a flexible, remote-programming environment.

  10. An information theory based approach for quantitative evaluation of man-machine interface complexity

    International Nuclear Information System (INIS)

    In complex and high-risk work conditions, especially such as in nuclear power plants, human understanding of the plant is highly cognitive and thus largely dependent on the effectiveness of the man-machine interface system. In order to provide more effective and reliable operating conditions for future nuclear power plants, developing more credible and easy to use evaluation methods will afford great help in designing interface systems in a more efficient manner. In this study, in order to analyze the human-machine interactions, I propose the Human-processor Communication(HPC) model which is based on the information flow concept. It identifies the information flow around a human-processor. Information flow has two aspects: appearance and content. Based on the HPC model, I propose two kinds of measures for evaluating a user interface from the viewpoint of these two aspects of information flow. They measure the communicative complexity of each aspect. In this study, for the evaluation of the aspect of appearance, I propose three complexity measures: Operation Complexity, Transition Complexity, and Screen Complexity. Each one of these measures has its own physical meaning. Two experiments carried out in this work support the utility of these measures. The result of the quiz game experiment shows that as the complexity of task context increases, the usage of the interface system becomes more complex. The experimental results of the three example systems(digital view, LDP style view and hierarchy view) show the utility of the proposed complexity measures. In this study, for the evaluation of the aspect of content, I propose the degree of informational coincidence, R (K, P) as a measure for the usefulness of an alarm-processing system. It is designed to perform user-oriented evaluation based on the informational entropy concept. It will be especially useful inearly design phase because designers can estimate the usefulness of an alarm system by short calculations instead

  11. Remote programming of the Mitsubishi Movemaster robot by using the web-based interface

    Directory of Open Access Journals (Sweden)

    K. Foit

    2008-12-01

    Full Text Available Purpose: The aim of this paper is to present a prototype of web-based programming interface for the MitsubishiMovemaster RV-M1 robot.Design/methodology/approach: The web techniques have been selected due to modularity of this solution andpossibility of use the existing code fragments for elaborating new applications. The previous papers [11-14] havepresented the off-line, remote programming system for the RV-M1 robot. The general idea of this system is abase for developing a web-based programming interface.Findings: The prototype of the system has been developed.Research limitations/implications: The presented system is in the early development stage and there is a lackof some functions. In the future a visualisation module will be elaborated and the trajectory translator intendedto co-operate with CAD software will be included.Practical implications: The previous version of the system has been intended for educational purposes. It isplanned that new version will be more flexible and it will have the possibility of being adapted for other devices,like small PLC’s or other robots.Originality/value: Remote supervision of machines during a manufacturing process is an actual issue. Most ofautomation systems manufacturers produce supervising software for their PLC’s and robots. The MovemasterRV-M1 robot is an old model and is lack of the high-tech software. On the other hand, the programming anddevelopment of applications for this robot are very easy. The aim of the presented project is to develop a flexible,remote-programming environment.

  12. Photoelectrochemical based direct conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Arent, D.; Peterson, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  13. Interface diagram: Design tool for supporting the development of modularity in complex product systems

    DEFF Research Database (Denmark)

    Bruun, Hans Peter Lomholt; Mortensen, Niels Henrik; Harlou, Ulf

    2014-01-01

    article presents a visual design tool –the Interface diagram– which aims to support the engineering process of developing modularity in complex product systems. The tool is a model of a product system representing the arrangement of its elements and their interfaces. The tool has similar characteristics...... the activity of decomposing a product system into modules consisting of components developed by different engineering teams. The usefulness of the Interface diagram has been tested in an industrial development project showing positive results of shortening the lead time and minimising rework. Moreover......, the Interface diagram has been used in interplay with a broader Product Lifecycle Management system. This allows the product structures from the Interface diagram to be enriched with detailed product documentation like computer-aided design, requirements, view models, design specifications and...

  14. A Developed Graphical User Interface for Power System Stability and Robustness Studies

    Directory of Open Access Journals (Sweden)

    GHOURAF Djamel Eddine

    2015-06-01

    Full Text Available This paper present the realization and development of a graphical user interface (GUI to studied the stability and robustness of power systems (analysis and synthesis, using Conventional Power System Stabilizers (CPSS - realized on PID scheme or advanced controllers (based on adaptive and robust control, and applied on automatic excitation control of powerful synchronous generators, to improve dynamic performances and robustness. The GUI is a useful average to facilitate stability study of power system with the analysis and synthesis of regulators, and resolution of the compromise: results precision / calculation speed. The obtained Simulation results exploiting our developed GUI realized under MATLAB shown considerable improvements in static and dynamic performances, a great stability and enhancing the robustness of power system, with best precision and minimum operating time. This study was performed for different types of powerful synchronous generators.

  15. Development of intergrated accident management assessment technology; development of interface modules of risk-monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. K.; Park, S. K.; Seok, H.; Kim, D. K.; Han, J. K.; Park, B. R. [KOPEC, Taejeon (Korea)

    2002-03-01

    Based on the development of interface modules with FORTE.- DynaRM can quantify risk model very fast (Very frequent risk model quantification is needed for configuration risk management).- risk monitoring system technology transfer to foreign NPPs. Contribution to component failure and maintenance control automation with the development of Tagging control System. On-Line risk monitoring system development by joint team between Korea Atomic Energy Research Institute and KOPEC is a request by KEPCO. The softwares developed in this study is easily implemented at domestic NPPs without extra study or cost. Economic benefit and Software export to foreign NPPs are expected because of the development of technology related to risk monitoring system and its management. 6 refs., 3 figs., 1 tab. (Author)

  16. Advanced design technique of human-machine interfaces for PLC control of complex systems

    Directory of Open Access Journals (Sweden)

    Árpád-István Sütő

    2008-05-01

    Full Text Available Touchscreen operator panels proved to be a convenient succesor for clasical operator panels for implementing human-machine interfaces (HMIs in programmable logic controllers (PLC systems. The paper introduces a new technique for HMIs design in such systems, based on the idea of touchscreens replication. This redundancy allow actions which are not possible within the menus and sub-menus of a single touchscreen. Its strenght is revealed especially in complex systems, where operators can easily be overwhelmed by the huge amount of process information. The technique was applied on a mill tube rolling installation. The results also proved an increase of system security and zero downtime for HMI maintenance activities.

  17. Toward an Alternative Learning Environment Interface for Learning Management Systems

    Science.gov (United States)

    Abdous, M'hammed

    2013-01-01

    An effective learning environment interface (LEI) is a means to enable students to focus on learning and to understand content, while establishing connections and relationships among course activities. Using this fundamental premise, we propose a flexible, user-centered, and seamless LEI which is intended to remediate the fragmented interface…

  18. Human -Computer Interface using Gestures based on Neural Network

    Directory of Open Access Journals (Sweden)

    Aarti Malik

    2014-10-01

    Full Text Available - Gestures are powerful tools for non-verbal communication. Human computer interface (HCI is a growing field which reduces the complexity of interaction between human and machine in which gestures are used for conveying information or controlling the machine. In the present paper, static hand gestures are utilized for this purpose. The paper presents a novel technique of recognizing hand gestures i.e. A-Z alphabets, 0-9 numbers and 6 additional control signals (for keyboard and mouse control by extracting various features of hand ,creating a feature vector table and training a neural network. The proposed work has a recognition rate of 99%. .

  19. Usability evaluation of an experimental text summarization system and three search engines: implications for the reengineering of health care interfaces.

    Science.gov (United States)

    Kushniruk, Andre W; Kan, Min-Yem; McKeown, Kathleen; Klavans, Judith; Jordan, Desmond; LaFlamme, Mark; Patel, Vimia L

    2002-01-01

    This paper describes the comparative evaluation of an experimental automated text summarization system, Centrifuser and three conventional search engines - Google, Yahoo and About.com. Centrifuser provides information to patients and families relevant to their questions about specific health conditions. It then produces a multidocument summary of articles retrieved by a standard search engine, tailored to the user's question. Subjects, consisting of friends or family of hospitalized patients, were asked to "think aloud" as they interacted with the four systems. The evaluation involved audio- and video recording of subject interactions with the interfaces in situ at a hospital. Results of the evaluation show that subjects found Centrifuser's summarization capability useful and easy to understand. In comparing Centrifuser to the three search engines, subjects' ratings varied; however, specific interface features were deemed useful across interfaces. We conclude with a discussion of the implications for engineering Web-based retrieval systems. PMID:12463858

  20. Design of digital control system human-computer interface for HTR-10

    International Nuclear Information System (INIS)

    Advanced digital distributed computer system (termed DCS) is adopted in 10 MW High Temperature Gas-cooled test Reactor (termed HTR-10). The design rules and the contents about the Human-Computer Interface of the digital control system of HTR-10 are introduced in detail. The design is done with applying HS2000 software as the configuration platform. On the screen tableau all operations are carried out. It is shown that the Human-Computer Interface of the digital control system of HTR-10 be possessed of complete control function, friendly interface and easy operation by means of the tests and embody the advantages of the digital control system

  1. Realizing a family of transition-metal-oxide memristors based on volatile resistive switching at a rectifying metal/oxide interface

    International Nuclear Information System (INIS)

    There is strong interest in creating new memristors due to their significant impact in many fields including digital information systems, analogue circuits and artificial neural networks as a new class of fundamental electronic elements. Here we report a volatile resistive switching effect at a prototypical Schottky metal/oxide interface and realize a family of transition-metal-oxide memristors showing distinct hysteresis characteristics based on the interface. The results not only provide further understanding on the electrical behaviour of metal/oxide interfaces but also indicate the key role of metal/oxide interfaces as basic building blocks in transition-metal–oxide memristors. (paper)

  2. Human-centered design of the human-system interfaces of medical equipment: thyroid uptake system

    International Nuclear Information System (INIS)

    Technology plays an important role in modern medical centers, making healthcare increasingly complex, relying on complex technical equipment. This technical complexity is particularly noticeable in the nuclear medicine. Poorly design human-system interfaces can increase the risks for human error. The human-centered approach emphasizes the development of the equipment with a deep understanding of the users activities, current work practices, needs and abilities of the users. An important concept of human-centered design is that the ease-of-use of the equipment can be ensured only if users are actively incorporated in all phases of the life cycle of design process. Representative groups of users are exposed to the equipment at various stages in development, in a variety of testing, evaluation and interviewing situations. The users feedback obtained is then used to refine the design, with the result serving as input to the next interaction of design process. The limits of the approach are that the users cannot address any particular future needs without prior experience or knowledge about the equipment operation. The aim of this paper is to present a methodological framework that contributes to the design of the human-system interfaces, through an approach related to the users and their activities. A case study is described in which the methodological framework is being applied in development of new human-system interfaces of the thyroid uptake system. (author)

  3. Human-centered design of the human-system interfaces of medical equipment: thyroid uptake system

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jonathan K.R.; Farias, Marcos S.; Santos, Isaac J.A. Luquetti, E-mail: luquetti@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Monteiro, Beany G. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Desenho Industrial

    2013-07-01

    Technology plays an important role in modern medical centers, making healthcare increasingly complex, relying on complex technical equipment. This technical complexity is particularly noticeable in the nuclear medicine. Poorly design human-system interfaces can increase the risks for human error. The human-centered approach emphasizes the development of the equipment with a deep understanding of the users activities, current work practices, needs and abilities of the users. An important concept of human-centered design is that the ease-of-use of the equipment can be ensured only if users are actively incorporated in all phases of the life cycle of design process. Representative groups of users are exposed to the equipment at various stages in development, in a variety of testing, evaluation and interviewing situations. The users feedback obtained is then used to refine the design, with the result serving as input to the next interaction of design process. The limits of the approach are that the users cannot address any particular future needs without prior experience or knowledge about the equipment operation. The aim of this paper is to present a methodological framework that contributes to the design of the human-system interfaces, through an approach related to the users and their activities. A case study is described in which the methodological framework is being applied in development of new human-system interfaces of the thyroid uptake system. (author)

  4. A convertor and user interface to import CAD files into worldtoolkit virtual reality systems

    Science.gov (United States)

    Wang, Peter Hor-Ching

    1996-01-01

    Virtual Reality (VR) is a rapidly developing human-to-computer interface technology. VR can be considered as a three-dimensional computer-generated Virtual World (VW) which can sense particular aspects of a user's behavior, allow the user to manipulate the objects interactively, and render the VW at real-time accordingly. The user is totally immersed in the virtual world and feel the sense of transforming into that VW. NASA/MSFC Computer Application Virtual Environments (CAVE) has been developing the space-related VR applications since 1990. The VR systems in CAVE lab are based on VPL RB2 system which consists of a VPL RB2 control tower, an LX eyephone, an Isotrak polhemus sensor, two Fastrak polhemus sensors, a folk of Bird sensor, and two VPL DG2 DataGloves. A dynamics animator called Body Electric from VPL is used as the control system to interface with all the input/output devices and to provide the network communications as well as VR programming environment. The RB2 Swivel 3D is used as the modelling program to construct the VW's. A severe limitation of the VPL VR system is the use of RB2 Swivel 3D, which restricts the files to a maximum of 1020 objects and doesn't have the advanced graphics texture mapping. The other limitation is that the VPL VR system is a turn-key system which does not provide the flexibility for user to add new sensors and C language interface. Recently, NASA/MSFC CAVE lab provides VR systems built on Sense8 WorldToolKit (WTK) which is a C library for creating VR development environments. WTK provides device drivers for most of the sensors and eyephones available on the VR market. WTK accepts several CAD file formats, such as Sense8 Neutral File Format, AutoCAD DXF and 3D Studio file format, Wave Front OBJ file format, VideoScape GEO file format, Intergraph EMS stereolithographics and CATIA Stereolithographics STL file formats. WTK functions are object-oriented in their naming convention, are grouped into classes, and provide easy C

  5. A cell-phone-based brain-computer interface for communication in daily life

    Science.gov (United States)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  6. PAW [Physics Analysis Workstation] at Fermilab: CORE based graphics implementation of HIGZ [High Level Interface to Graphics and Zebra

    International Nuclear Information System (INIS)

    The Physics Analysis Workstation system (PAW) is primarily intended to be the last link in the analysis chain of experimental data. The graphical part of PAW is based on HIGZ (High Level Interface to Graphics and Zebra), which is based on the OSI and ANSI standard Graphics Kernel System (GKS). HIGZ is written in the context of PAW. At Fermilab, the CORE based graphics system DI-3000 by Precision Visuals Inc., is widely used in the analysis of experimental data. The graphical part of the PAW routines has been totally rewritten and implemented in the Fermilab environment. 3 refs

  7. Solid rocket motor conceptual design - The development of a design optimization expert system with a hypertext user interface

    Science.gov (United States)

    Clegern, James B.

    1993-06-01

    Solid rocket motor (SRM) design prototypes can be rapidly formulated and evaluated by the use of advanced computer-based methodologies that apply expert system and artificial intelligence software to the SRM design optimization processes. The research program that was carried out, and is reported in this paper, was to formulate a computer-based SRM expert system for motor design and optimization, with the assistance of a hypertext software algorithm that provides a user-friendly interface. With this interface for parameter input, the design engineer can quickly obtain rocket motor designs that satisfy the performance mission of the SRM, as well as meet criteria for optimized (minimum) motor mass. The computer-based software has been designated as the Solid Rocket Motor Conceptual Design Optimization System (SRMCDOS). The main purpose of this SRM design system is to aid the SRM design engineer in making the best initial design selections and thereby reducing the overall 'design cycle time' of a project.

  8. Development of a modularized seating system to actively manage interface pressure.

    Science.gov (United States)

    Yu, Chung-Huang; Chou, Tung-Yu; Chen, Cheng-Huan; Chen, Poyin; Wang, Fu-Cheng

    2014-01-01

    Pressure ulcers can be a fatal complication. Many immobile wheelchair users face this threat. Current passive and active cushions do reduce the incidence of pressure ulcers and they have different merits. We proposed an active approach to combine their advantages which is based on the concept that the interface pressure can be changed with different supporting shapes. The purpose of this paper is to verify the proposed approach. With practical applications in mind, we have developed a modular system whose support surface is composed by height-adjustable support elements. Each four-element module was self-contained and composed of force sensors, position sensors, linear actuators, signal conditioners, driving circuits, and signal processors. The modules could be chained and assembled together easily to form different-sized support surfaces. Each support element took up a 3 cm × 3 cm supporting area. The displacement resolution was less than 0.1 mm and the force sensor error was less than 1% in the 2000 g range. Each support element of the system could provide 49 N pushing force (408 mmHg over the 3 cm × 3 cm area) at a speed of 2.36 mm/s. Several verification tests were performed to assess the whole system's feasibility. Further improvements and clinical applications were discussed. In conclusion, this modularized system is capable of actively managing interface pressure in real time. PMID:25098206

  9. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition

    Science.gov (United States)

    Mantecón, Tomás.; del Blanco, Carlos Roberto; Jaureguizar, Fernando; García, Narciso

    2014-06-01

    New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.

  10. Development of a Wearable Motor-Imagery-Based Brain-Computer Interface.

    Science.gov (United States)

    Lin, Bor-Shing; Pan, Jeng-Shyang; Chu, Tso-Yao; Lin, Bor-Shyh

    2016-03-01

    A motor-imagery-based brain-computer interface (BCI) is a translator that converts the motor intention of the brain into a control command to control external machines without muscles. Numerous motor-imagery-based BCIs have been successfully proposed in previous studies. However, several electroencephalogram (EEG) channels are typically required for providing sufficient information to maintain a specific accuracy and bit rate, and the bulk volume of these EEG machines is also inconvenient. A wearable motor imagery-based BCI system was proposed and implemented in this study. A wearable mechanical design with novel active comb-shaped dry electrodes was developed to measure EEG signals without conductive gels at hair sites, which is easy and convenient for users wearing the EEG machine. In addition, a wireless EEG acquisition module was also designed to measure EEG signals, which provides a user with more freedom of motion. The proposed wearable motor-imagery-based BCI system was validated using an electrical specifications test and a hand motor imagery experiment. Experimental results showed that the proposed wearable motor-imagery-based BCI system provides favorable signal quality for measuring EEG signals and detecting motor imagery. PMID:26748791

  11. Vapour Recoil Effect on a Vapour-Liquid System with a Deformable Interface

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Qiu-Sheng

    2006-01-01

    @@ A new two-sided model of vapour-Iiquid layer system with a deformable interface is proposed. In this model,the vapour recoil effect on the Marangoni-Bénard instability of a thin evaporating liquid layer can be examined only when the interface deflexion is considered. The instability of a liquid layer undergoing steady evaporation induced by the coupling of vapour recoil effect and the Marangoni effect is analysed using a linear stability theory.We modify and develop the Chebyshev-Tau method to solve the instability problem of a deformable interface system by introducing a new equation at interface boundary. New instability behaviour of the system has been found and the self-amplification mechanism between the evaporation flux and the interface deflexion is discussed.

  12. Heat transport through a solid-solid junction: the interface as an autonomous thermodynamic system.

    Science.gov (United States)

    Rurali, Riccardo; Colombo, Luciano; Cartoixà, Xavier; Wilhelmsen, Øivind; Trinh, Thuat T; Bedeaux, Dick; Kjelstrup, Signe

    2016-05-18

    We perform computational experiments using nonequilibrium molecular dynamics simulations, showing that the interface between two solid materials can be described as an autonomous thermodynamic system. We verify the local equilibrium and give support to the Gibbs description of the interface also away from the global equilibrium. In doing so, we reconcile the common formulation of the thermal boundary resistance as the ratio between the temperature discontinuity at the interface and the heat flux with a more rigorous derivation from nonequilibrium thermodynamics. We also show that thermal boundary resistance of a junction between two pure solid materials can be regarded as an interface property, depending solely on the interface temperature, as implicitly assumed in some widely used continuum models, such as the acoustic mismatch model. Thermal rectification can be understood on the basis of different interface temperatures for the two flow directions. PMID:27148698

  13. Two-dimensional trace-normed canonical systems of differential equations and selfadjoint interface conditions

    NARCIS (Netherlands)

    de Snoo, H; Winkler, Henrik

    2005-01-01

    The class of two-dimensional trace-normed canonical systems of differential equations on R is considered with selfadjoint interface conditions at 0. If one or both of the intervals around 0 are H-indivisible the interface conditions which give rise to selfadjoint relations (multi-valued operators) a

  14. Development of a graphical interface for a maintenance management database system

    OpenAIRE

    Mahoney, Jeffrey J.

    1991-01-01

    Winomms is a prototype graphical interface designed to support the Navy's goal of paperwork reduction. Designed to replace the existing interface of the Navy's Maintenance Data System program,"MicroOmms", Winomms provides an intuitive easy to learn and use graphical environment that greatly enhances productivity for shipboard maintenance requirements.

  15. The Input-Interface of Webcam Applied in 3D Virtual Reality Systems

    Science.gov (United States)

    Sun, Huey-Min; Cheng, Wen-Lin

    2009-01-01

    Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…

  16. Measurement System to Monitor Interface Level Between Oil and Water in a Rapidly Rotating System

    OpenAIRE

    Saeed, Mohsin

    2013-01-01

    Alfa Laval is a market leader in centrifugal separators that develops and sells separators for a wide range of uses. Clarification of beer, wine, water purification, drug production and purification of marine fuels are just a few of the hundreds of different uses for Alfa Laval separators. To further optimize their separator performance, Alfa Laval is interested in the development of a measurement system, which can find the interface position between the lighter and the heavier liquid phases ...

  17. A Feature-Weighted Instance-Based Learner for Deep Web Search Interface Identification

    OpenAIRE

    Hong Wang; Qingsong Xu; Youyang Chen; Jinsong Lan

    2013-01-01

    Determining whether a site has a search interface is a crucial priority for further research of deep web databases. This study first reviews the current approaches employed in search interface identification for deep web databases. Then, a novel identification scheme using hybrid features and a feature-weighted instance-based learner is put forward. Experiment results show that the proposed scheme is satisfactory in terms of classification accuracy and our feature-weighted instance-based lear...

  18. An Efficient ERP-Based Brain-Computer Interface Using Random Set Presentation and Face Familiarity

    OpenAIRE

    Seul-Ki Yeom; Siamac Fazli; Klaus-Robert Müller; Seong-Whan Lee

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for th...

  19. Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition

    Institute of Scientific and Technical Information of China (English)

    Hong-tao WANG; Yuan-qing LI; Tian-you YU

    2014-01-01

    An intelligent wheelchair is devised, which is controlled by a coordinated mechanism based on a brain-computer interface (BCI) and speech recognition. By performing appropriate activities, users can navigate the wheelchair with four steering behaviors (start, stop, turn left, and turn right). Five healthy subjects participated in an indoor experiment. The results demonstrate the efficiency of the coordinated control mechanism with satisfactory path and time optimality ratios, and show that speech recognition is a fast and accurate supplement for BCI-based control systems. The proposed intelligent wheelchair is especially suitable for patients suffering from paralysis (especially those with aphasia) who can learn to pronounce only a single sound (e.g.,‘ah’).

  20. U.S. Army weapon systems human-computer interface style guide. Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.; Donohoo, D.T.

    1997-12-31

    A stated goal of the US Army has been the standardization of the human computer interfaces (HCIs) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of HCI design guidance documents. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4), in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA), now termed the Joint Technical Architecture-Army (JTA-A). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide, which resulted in the US Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide Version 1. Based on feedback from the user community, DISC4 further tasked PNNL to revise Version 1 and publish Version 2. The intent was to update some of the research and incorporate some enhancements. This document provides that revision. The purpose of this document is to provide HCI design guidance for the RT/NRT Army system domain across the weapon systems subdomains of ground, aviation, missile, and soldier systems. Each subdomain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their subdomains.

  1. VisTool: A user interface and visualization development system

    DEFF Research Database (Denmark)

    Xu, Shangjin

    Although software usability has long been emphasized, there is a lot of software with poor usability. In Usability Engineering, usability professionals prescribe a classical usability approach to improving software usability. It is essential to prototype and usability test user interfaces before...... programming. However, in Software Engineering, software engineers who develop user interfaces do not follow it. In many cases, it is desirable to use graphical presentations, because a graphical presentation gives a better overview than text forms, and can improve task efficiency and user satisfaction...... cognitively simpler than the state-of-art tools. Usability test shows that VisTool is accessible to designers. Furthermore, it indicates that expert designers can do faster than with other tools. Our comparison with the traditional rapid development approach shows that VisTool reduces development time about...

  2. Operator aids and expert systems in user computer interfaces

    International Nuclear Information System (INIS)

    Recent events have demonstrated the potential for catastrophic accidents at process control facilities, resulting in severe economic damages or loss of human life. Human operators play a central role in the outcome of accidents in process control plants, because of their responsibility to make decisions regarding the appropriate corrective actions needed to control the event. In recent years, researchers have been attempting to apply Artificial Intelligence (AI) methods for developing computer-based decision aids for process control operators. Much of this research activity has taken place within the nuclear industry. In order to assess the implications of expert systems for nuclear reactor operators, the United States Nuclear Regulatory Commission (USNRC) has sponsored a research program at the Idaho National Engineering Laboratory (INEL). Included in this program have been the development of a prototype expert system for nuclear reactor operators, as well as two experiments to measure the effects of the expert system on operator performance in simulated accident conditions. This paper briefly summarizes the experience gained during this research program and assesses the potential future of expert system decision aids for process control operators

  3. A digital audio playback system with USB interface

    OpenAIRE

    Karlsen, Espen; Tørresen, Magne

    2009-01-01

    A high performance sound card is designed and implemented using a USB enabled microcontroller and an external dataconverter. Data is retrieved either via USB or S/PDIF. The sampling clock is generated by a precision clock synthesizer. This is programmable and can be adapted to different sampling rates of USB data. The system supports 24 bit, 192 kHz audio. Signal attenuation is performed through a relay based stepped voltage divider with constant output impedance. 64 dB attenuation in steps...

  4. Configuration management plan for Machine Interface Test System (MITS)

    International Nuclear Information System (INIS)

    The discipline required by this plan will apply from the establishment of a configuration baseline until completion of the final test in the MITS. The plan applies to configured items of hardware and software as well as to the specifications and drawings for these items. The plan encompasses establishment of the facility baseline, interface definition, classes of change, change control, change paper, organizational responsibilities and relationships, test configuration (as opposed to facility), and configuration data retention

  5. An experimental analysis of situation awareness for cockpit display interface evaluation based on flight simulation

    Institute of Scientific and Technical Information of China (English)

    Wei Hengyang; Zhuang Damin; Wanyan Xiaoru; Wang Qun

    2013-01-01

    Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving.During the process of aircraft design,situation awareness (SA) is frequently considered to improve the design,as the CDI must provide enough SA for the pilot to maintain the flight safety.In order to study the SA in the pilot-aircraft system,a cockpit flight simulation environment is built up,which includes a virtual instrument panel,a flight visual display and the corresponding control system.Based on the simulation environment,a human-in-the-loop experiment is designed to measure the SA by the situation awareness global assessment technique (SAGAT).Through the experiment,the SA degrees and heart rate (HR) data of the subjects are obtained,and the SA levels under different CDI designs are analyzed.The results show that analyzing the SA can serve as an objective way to evaluate the design of CDI,which could be proved from the consistent HR data.With this method,evaluations of the CDI design are performed in the experimental flight simulation environment,and optimizations could be guided through the analysis.

  6. Micromachined piezoresistive inclinometer with oscillator-based integrated interface circuit and temperature readout

    International Nuclear Information System (INIS)

    In this paper a dual-chip system for inclination measurement is presented. It consists of a MEMS (microelectromechanical system) piezoresistive accelerometer manufactured in silicon bulk micromachining and a CMOS (complementary metal oxide semiconductor) ASIC (application specific integrated circuit) interface designed for resistive-bridge sensors. The sensor is composed of a seismic mass symmetrically suspended by means of four flexure beams that integrate two piezoresistors each to detect the applied static acceleration, which is related to inclination with respect to the gravity vector. The ASIC interface is based on a relaxation oscillator where the frequency and the duty cycle of a rectangular-wave output signal are related to the fractional bridge imbalance and the overall bridge resistance of the sensor, respectively. The latter is a function of temperature; therefore the sensing element itself can be advantageously used to derive information for its own thermal compensation. DC current excitation of the sensor makes the configuration unaffected by wire resistances and parasitic capacitances. Therefore, a modular system results where the sensor can be placed remotely from the electronics without suffering accuracy degradation. The inclination measurement system has been characterized as a function of the applied inclination angle at different temperatures. At room temperature, the experimental sensitivity of the system results in about 148 Hz/g, which corresponds to an angular sensitivity around zero inclination angle of about 2.58 Hz deg−1. This is in agreement with finite element method simulations. The measured output fluctuations at constant temperature determine an equivalent resolution of about 0.1° at midrange. In the temperature range of 25–65 °C the system sensitivity decreases by about 10%, which is less than the variation due to the microsensor alone thanks to thermal compensation provided by the current excitation of the bridge and the

  7. Development of a High-Temperature Smart Transducer Interface Node and Telemetry System (HSTINTS)

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.A. et al.

    2006-11-03

    Halliburton Energy Services and Oak Ridge National Laboratory established a CRADA to conduct applied research to develop a general purpose, High-Temperature, Smart Transducer Interface Node and Telemetry System (HSTINTS) capable of temporally-coherent multiple-channel, high speed, high-resolution data transuction and acquisition while operating in a hostile thermal, chemical, and pressure environment for extended periods of time over a single coaxial cable. This ambitious, high-risk effort required development of custom dielectric isolated integrated circuits, amplified hybrid couplers for telemetry and an audio-frequency based power supply and distribution system using an engineered application of standing waves to compensate voltage drop along a 2 mile long cable. Several goals were achieved but underestimated challenges and a couple of mistakes hampered progress. When it was determined that an additional year of concerted effort would be required to complete the system demonstration, the sponsor withdrew funding and terminated the effort.

  8. The NASA Astrophysics Data System The Search Engine and its User Interface

    CERN Document Server

    Eichhorn, G; Accomazzi, A; Grant, C S; Murray, S S

    2000-01-01

    The ADS Abstract and Article Services provide access to the astronomicalliterature through the World Wide Web (WWW). The forms based user interfaceprovides access to sophisticated searching capabilities that allow our users tofind references in the fields of Astronomy, Physics/Geophysics, andastronomical Instrumentation and Engineering. The returned information includeslinks to other on-line information sources, creating an extensive astronomicaldigital library. Other interfaces to the ADS databases provide direct access tothe ADS data to allow developers of other data systems to integrate our datainto their system. The search engine is a custom-built software system that is specificallytailored to search astronomical references. It includes an extensive synonymlist that contains discipline specific knowledge about search termequivalences. Search request logs show the usage pattern of the various search systemcapabilities. Access logs show the world-wide distribution of ADS users. The ADS can be accessed at h...

  9. Ab-initio simulation of Li migration in Li{sub x}(Co,Ni)O{sub 2} (0based cathode-electrolyte interface systems

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P.C.; Jaegermann, W. [Technische Univ. Darmstadt (Germany); Christensen, M.; Freeman, C.; Mavromaras, A.; Saxe, P.; Wimmer, E.; Wolf, W. [Materials Design, Angel Fire, NM (United States); Materials Design s.a.r.l., Le Mans (France)

    2010-07-01

    By means of ab-initio density functional calculations possible minimum energy paths and energy barriers for the migration of Li in Li{sub x}(CoNi)O{sub 2} (0interface models are developed to investigate migration of Li through these interfaces. (orig.)

  10. Interface of the transport systems research vehicle monochrome display system to the digital autonomous terminal access communication data bus

    Science.gov (United States)

    Easley, W. C.; Tanguy, J. S.

    1986-01-01

    An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described.

  11. A Conceptual Architecture for Adaptive Human-Computer Interface of a PT Operation Platform Based on Context-Awareness

    Directory of Open Access Journals (Sweden)

    Qing Xue

    2014-01-01

    Full Text Available We present a conceptual architecture for adaptive human-computer interface of a PT operation platform based on context-awareness. This architecture will form the basis of design for such an interface. This paper describes components, key technologies, and working principles of the architecture. The critical contents covered context information modeling, processing, relationship establishing between contexts and interface design knowledge by use of adaptive knowledge reasoning, and visualization implementing of adaptive interface with the aid of interface tools technology.

  12. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  13. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  14. The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    J. Clark Powers

    2015-08-01

    Full Text Available Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use—i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1 alternative signal evocation methods within the oddball paradigm; (2 environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3 measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications.

  15. A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Choon Guan Lim

    Full Text Available UNLABELLED: Attention deficit hyperactivity disorder (ADHD symptoms can be difficult to treat. We previously reported that a 20-session brain-computer interface (BCI attention training programme improved ADHD symptoms. Here, we investigated a new more intensive BCI-based attention training game system on 20 unmedicated ADHD children (16 males, 4 females with significant inattentive symptoms (combined and inattentive ADHD subtypes. This new system monitored attention through a head band with dry EEG sensors, which was used to drive a feed forward game. The system was calibrated for each user by measuring the EEG parameters during a Stroop task. Treatment consisted of an 8-week training comprising 24 sessions followed by 3 once-monthly booster training sessions. Following intervention, both parent-rated inattentive and hyperactive-impulsive symptoms on the ADHD Rating Scale showed significant improvement. At week 8, the mean improvement was -4.6 (5.9 and -4.7 (5.6 respectively for inattentive symptoms and hyperactive-impulsive symptoms (both p<0.01. Cohen's d effect size for inattentive symptoms was large at 0.78 at week 8 and 0.84 at week 24 (post-boosters. Further analysis showed that the change in the EEG based BCI ADHD severity measure correlated with the change ADHD Rating Scale scores. The BCI-based attention training game system is a potential new treatment for ADHD. TRIAL REGISTRATION: ClinicalTrials.gov NCT01344044.

  16. An adaptive filter bank for motor imagery based Brain Computer Interface.

    Science.gov (United States)

    Thomas, Kavitha P; Guan, Cuntai; Tong, Lau Chiew; Prasad, Vinod A

    2008-01-01

    Brain Computer Interface (BCI) provides an alternative communication and control method for people with severe motor disabilities. Motor imagery patterns are widely used in Electroencephalogram (EEG) based BCIs. These motor imagery activities are associated with variation in alpha and beta band power of EEG signals called Event Related Desynchronization/synchronization (ERD/ERS). The dominant frequency bands are subject-specific and therefore performance of motor imagery based BCIs are sensitive to both temporal filtering and spatial filtering. As the optimum filter is strongly subject-dependent, we propose a method that selects the subject-specific discriminative frequency components using time-frequency plots of Fisher ratio of two-class motor imagery patterns. We also propose a low complexity adaptive Finite Impulse Response (FIR) filter bank system based on coefficient decimation technique which can realize the subject-specific bandpass filters adaptively depending on the information of Fisher ratio map. Features are extracted only from the selected frequency components. The proposed adaptive filter bank based system offers average classification accuracy of about 90%, which is slightly better than the existing fixed filter bank system. PMID:19162856

  17. Self-calibration algorithm in an asynchronous P300-based brain-computer interface

    Science.gov (United States)

    Schettini, F.; Aloise, F.; Aricò, P.; Salinari, S.; Mattia, D.; Cincotti, F.

    2014-06-01

    Objective. Reliability is a desirable characteristic of brain-computer interface (BCI) systems when they are intended to be used under non-experimental operating conditions. In addition, their overall usability is influenced by the complex and frequent procedures that are required for configuration and calibration. Earlier studies examined the issue of asynchronous control in P300-based BCIs, introducing dynamic stopping and automatic control suspension features. This report proposes and evaluates an algorithm for the automatic recalibration of the classifier's parameters using unsupervised data. Approach. Ten healthy subjects participated in five P300-based BCI sessions throughout a single day. First, we examined whether continuous adaptation of control parameters improved the accuracy of the asynchronous system over time. Then, we assessed the performance of the self-calibration algorithm with respect to the no-recalibration and supervised calibration conditions with regard to system accuracy and communication efficiency. Main results. Offline tests demonstrated that continuous adaptation of the control parameters significantly increased the communication efficiency of asynchronous P300-based BCIs. The self-calibration algorithm correctly assigned labels to unsupervised data with 95% accuracy, effecting communication efficiency that was comparable with that of supervised repeated calibration. Significance. Although additional online tests that involve end-users under non-experimental conditions are needed, these preliminary results are encouraging, from which we conclude that the self-calibration algorithm is a promising solution to improve P300-based BCI usability and reliability.

  18. Fission product transport in the reactor coolant system for a spectrum of interfacing system LOCA scenarios

    International Nuclear Information System (INIS)

    One of the most important potential severe accident sequences for any pressurized water reactor (PWR) is a loss of coolant accident (LOCA), or V-sequence, in one of the interfacing systems. As initially described in the reactor safety study WASH-1400, interfacing system LOCAs involved the failure of check valves in emergency core cooling systems (ECCS), but could also involve the residual heat removal (RHR) systems. The check valves protect the low-pressure portions of these systems from the high pressures of the reactor coolant system (RCS) to which they are connected to provide cold leg injection. A consequent break in the low-pressure piping outside the containment may result in core damage and a direct pathway for fission products to be transported from the core, through the RCS and ECCS or RHR to the auxiliary building, from which they can escape to the environment. This paper addresses the retention and transport of fission products (specifically, CsI) in the RCS in V-sequence scenarios. It summarizes some of the major differences between models resulting from the latest version of the industry degraded core rulemaking (IDCOR) MAAP Computer Program, MAAP 3.0B. Discussed are the differences in: fission product transport and retention in small, medium, and large ECCS pipe breaks, as well as the effect of ECCS and auxiliary feedwater (AFW) system operation and fission product retention in the various regions of the RCS as calculated by MAAP 3.0B and the STCP

  19. A new approach to the phenomena at the interfaces of finely dispersed systems.

    Science.gov (United States)

    Spasic, Aleksandar M; Lazarevic, Mihailo P

    2007-12-15

    A new idea has been applied for the elucidation of the electron and momentum transfer phenomena, at both rigid and deformable interfaces, in finely (micro-, nano-, atto-) dispersed systems. The electroviscoelastic behavior of, e.g., liquid/liquid interfaces (emulsions and double emulsions), is based on three forms of "instabilities"; these are rigid, elastic, and plastic. The events are understood as interactions between the internal (immanent) and external (incident) periodical physical fields. Since the events at the interfaces of finely dispersed systems must be considered at the molecular, atomic, and/or entities level it is inevitable to introduce the electron transfer phenomenon beside the classical heat, mass, and momentum transfer phenomena commonly used in chemical engineering. Therefore, an entity can be defined as the smallest indivisible element of matter that is related to the particular transfer phenomena. Hence, the entity can be either differential element of mass/demon, ion, phonon as quanta of acoustic energy, infon as quanta of information, photon, and electron. Three possible mathematical formalisms have been derived and discussed related to this physical formalism, i.e., to the developed theory of electroviscoelasticity. The first is the stretching tensor model, where the normal and tangential forces are considered, only in mathematical formalism, regardless of their origin (mechanical and/or electrical). The second is the classical integer-order van der Pol derivative model. Finally, the third model comprises an effort to generalize the previous van der Pol differential equations, both linear and nonlinear, where the ordinary time derivatives and integrals are replaced by corresponding fractional-order time derivatives and integrals of order p < 2 (p = n - delta, n = 1,2,delta < 1). In order to justify and corroborate a more general approach the obtained calculated results were compared to those experimentally measured using the representative

  20. A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids

    Directory of Open Access Journals (Sweden)

    Antonio Arnau

    2008-01-01

    Full Text Available From the first applications of AT-cut quartz crystals as sensors in solutionsmore than 20 years ago, the so-called quartz crystal microbalance (QCM sensor isbecoming into a good alternative analytical method in a great deal of applications such asbiosensors, analysis of biomolecular interactions, study of bacterial adhesion at specificinterfaces, pathogen and microorganism detection, study of polymer film-biomolecule orcell-substrate interactions, immunosensors and an extensive use in fluids and polymercharacterization and electrochemical applications among others. The appropriateevaluation of this analytical method requires recognizing the different steps involved andto be conscious of their importance and limitations. The first step involved in a QCMsystem is the accurate and appropriate characterization of the sensor in relation to thespecific application. The use of the piezoelectric sensor in contact with solutions stronglyaffects its behavior and appropriate electronic interfaces must be used for an adequatesensor characterization. Systems based on different principles and techniques have beenimplemented during the last 25 years. The interface selection for the specific application isimportant and its limitations must be known to be conscious of its suitability, and foravoiding the possible error propagation in the interpretation of results. This article presentsa comprehensive overview of the different techniques used for AT-cut quartz crystalmicrobalance in in-solution applications, which are based on the following principles:network or impedance analyzers, decay methods, oscillators and lock-in techniques. Theelectronic interfaces based on oscillators and phase-locked techniques are treated in detail,with the description of different configurations, since these techniques are the most used inapplications for detection of analytes in solutions, and in those where a fast sensorresponse is necessary.

  1. The human factors engineering process and human system interface - Design of the US-APWR

    International Nuclear Information System (INIS)

    The US-APWR, currently under Design Certification review by the U.S. Nuclear Regulatory Commission, is an evolutionary four loop pressurized water reactor with a four train active safety system designed by Mitsubishi Heavy Industries. The digital Instrumentation and Control (IC) System and Human Systems Interface (HSI) system are to be applied to the US-APWR. The US-APWR digital IC and HSI system (HSIS) utilize computerized systems, including computer-based procedures and alarm prioritization, relying principally on an HSIS with soft controls, console based visual display units (VDUs) and a large, heads up, overview display panel. Conventional hard-wired controls are limited to system level manual actions and a diverse actuation system (DAS). The overall design philosophy of the US-APWR is based on the concept that operator performance will be enhanced through the integration of safety and non-safety display and control systems in a robust digital environment. This philosophy is augmented, for diversity, by the application of independent safety soft displays and controls. In addition, non-digital diverse automatic and manual actuation system is introduced. As with all the advanced designs, the digital systems open a variety of questions. This paper discusses the digital HSIS of the US-APWR design, the VV program data collection and analysis, and the study results related to the ongoing discussion of the impacts of digital systems on human performance, such as workload, navigation, situation awareness, operator training and licensing. The result from the Phase 1 VV described in this paper suggests that the Japanese Standard HSI design can be readily adopted, understood and used by US nuclear power plant operators. All of the results are strong indications that the HSI design that was examined in this test is fundamentally a robust design for application in US plants

  2. An echolocation visualization and interface system for dolphin research.

    Science.gov (United States)

    Amundin, Mats; Starkhammar, Josefin; Evander, Mikael; Almqvist, Monica; Lindström, Kjell; Persson, Hans W

    2008-02-01

    The present study describes the development and testing of a tool for dolphin research. This tool was able to visualize the dolphin echolocation signals as well as function as an acoustically operated "touch screen." The system consisted of a matrix of hydrophones attached to a semitransparent screen, which was lowered in front of an underwater acrylic panel in a dolphin pool. When a dolphin aimed its sonar beam at the screen, the hydrophones measured the received sound pressure levels. These hydrophone signals were then transferred to a computer where they were translated into a video image that corresponds to the dynamic sound pressure variations in the sonar beam and the location of the beam axis. There was a continuous projection of the image back onto the hydrophone matrix screen, giving the dolphin an immediate visual feedback to its sonar output. The system offers a whole new experimental methodology in dolphin research and since it is software-based, many different kinds of scientific questions can be addressed. The results were promising and motivate further development of the system and studies of sonar and cognitive abilities of dolphins. PMID:18247918

  3. Android-based sports competition scheduling system

    OpenAIRE

    Ma, Teng

    2015-01-01

    This report is about building a mobile-based single round-robin sports scheduling system with heuristic methods. Based on the current meta-heuristic methods in sports scheduling, this work did further researches on applying the current algorithms to a mobile platform while guarantee the quality and efficiency. Besides, a new system with the ability to deal with all the possible situations in practical use is proposed. Moreover, a simple user interface is built for the application.

  4. On the optimal design of molecular sensing interfaces with lipid bilayer assemblies - A knowledge based approach

    Science.gov (United States)

    Siontorou, Christina G.

    2012-12-01

    Biosensors are analytic devices that incorporate a biochemical recognition system (biological, biologicalderived or biomimic: enzyme, antibody, DNA, receptor, etc.) in close contact with a physicochemical transducer (electrochemical, optical, piezoelectric, conductimetric, etc.) that converts the biochemical information, produced by the specific biological recognition reaction (analyte-biomolecule binding), into a chemical or physical output signal, related to the concentration of the analyte in the measuring sample. The biosensing concept is based on natural chemoreception mechanisms, which are feasible over/within/by means of a biological membrane, i.e., a structured lipid bilayer, incorporating or attached to proteinaceous moieties that regulate molecular recognition events which trigger ion flux changes (facilitated or passive) through the bilayer. The creation of functional structures that are similar to natural signal transduction systems, correlating and interrelating compatibly and successfully the physicochemical transducer with the lipid film that is self-assembled on its surface while embedding the reconstituted biological recognition system, and at the same time manage to satisfy the basic conditions for measuring device development (simplicity, easy handling, ease of fabrication) is far from trivial. The aim of the present work is to present a methodological framework for designing such molecular sensing interfaces, functioning within a knowledge-based system built on an ontological platform for supplying sub-systems options, compatibilities, and optimization parameters.

  5. Ab-initio molecular modeling of interfaces in tantalum-carbon system

    International Nuclear Information System (INIS)

    Processing of ultrahigh temperature TaC ceramic material with sintering additives of B4C and reinforcement of carbon nanotubes (CNTs) gives rise to possible formation of several interfaces (Ta2C-TaC, TaC-CNT, Ta2C-CNT, TaB2-TaC, and TaB2-CNT) that could influence the resultant properties. Current work focuses on interfaces developed during spark plasma sintering of TaC-system and performing ab initio molecular modeling of the interfaces generated during processing of TaC-B4C and TaC-CNT composites. The energy of the various interfaces has been evaluated and compared with TaC-Ta2C interface. The iso-surface electronic contours are extracted from the calculations eliciting the enhanced stability of TaC-CNT interface by 72.2%. CNTs form stable interfaces with Ta2C and TaB2 phases with a reduction in the energy by 35.8% and 40.4%, respectively. The computed Ta-C-B interfaces are also compared with experimentally observed interfaces in high resolution TEM images.

  6. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    Directory of Open Access Journals (Sweden)

    Dobbs Drena

    2011-06-01

    Full Text Available Abstract Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i NPS-HomPPI (Non partner-specific HomPPI, which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii PS-HomPPI (Partner-specific HomPPI, which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of

  7. 基于视觉诱发电位脑机接口的四自由度机械手控制系统设计%Design on 4-DOF Robotic Arm Control System Based on Visual Evoked Potential Brain-computer Interface

    Institute of Scientific and Technical Information of China (English)

    王洪涛; 李霆; 黄振锋

    2011-01-01

    Brain-computer interface (BCI) is a novel kind of human computer interface being explored since last decade. A 4-DOF robotic arm control system was designed based on visual evoked potential (VEP) brain-computer interface. In this real time system, electroencephalogram (EEG) was processed online and translated to nine control commands based on bayesian classifier to control the 4-DOF robotic arm. The experimental results demonstrate that the system is able to achieve an average information transfer rate of 20. 3 b/min with an average accuracy of 95%. The realization of the system can provide a new way to enhance the human capability to control robot.%脑机接口是近十年发展起来的一种新颖人机接口方式.设计了基于视觉诱发电位脑机接口四自由度机械手控制系统,该系统实现了脑电信号在线处理,通过贝叶斯分类器提取9个控制指令,完成对机械手4个自由度的实时控制.实验结果表明:该脑机接口控制系统平均传输速率为20.3 b/min,平均识别准确率达到95%.该系统的实现为延伸和提高人类对机器人的行为控制能力提供了一种新的方法.

  8. System Interface for an Integrated Intelligent Safety System (ISS for Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2010-01-01

    Full Text Available This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS that includes an airbag deployment decision system (ADDS and a tire pressure monitoring system (TPMS. A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  9. Observer Interface Analysis for Standardization to a Cloud Based Real-Time Space Situational Awareness (SSA)

    Science.gov (United States)

    Eilers, J.

    2013-09-01

    The interface analysis from an observer of space objects makes a standard necessary. This standardized dataset serves as input for a cloud based service, which aimed for a near real-time Space Situational Awareness (SSA) system. The system contains all advantages of a cloud based solution, like redundancy, scalability and an easy way to distribute information. For the standard based on the interface analysis of the observer, the information can be separated in three parts. One part is the information about the observer e.g. a ground station. The next part is the information about the sensors that are used by the observer. And the last part is the data from the detected object. Backbone of the SSA System is the cloud based service which includes the consistency check for the observed objects, a database for the objects, the algorithms and analysis as well as the visualization of the results. This paper also provides an approximation of the needed computational power, data storage and a financial approach to deliver this service to a broad community. In this context cloud means, neither the user nor the observer has to think about the infrastructure of the calculation environment. The decision if the IT-infrastructure will be built by a conglomerate of different nations or rented on the marked should be based on an efficiency analysis. Also combinations are possible like starting on a rented cloud and then go to a private cloud owned by the government. One of the advantages of a cloud solution is the scalability. There are about 3000 satellites in space, 900 of them are active, and in total there are about ~17.000 detected space objects orbiting earth. But for the computation it is not a N(active) to N problem it is more N(active) to N(apo peri) quantity of N(all). Instead of 15.3 million possible collisions to calculate a computation of only approx. 2.3 million possible collisions must be done. In general, this Space Situational Awareness System can be used as a

  10. Platform Independent User Interface Development for Mobile Systems

    OpenAIRE

    2004-01-01

    An important trend today is the demand for increased flexibility of where and how work is done. The physical work environments become more diverse and the border between work and leisure decrease. This demands flexibility of how, where, in which situations, and from what types of devices applications and services can be accessed. It is assumed that there will be a need for richer and more dynamic user interfaces on new information processing devices than are possible with HTML/XML. As a conse...

  11. A direct methodology to establish design requirements for human–system interface (HSI) of automatic systems in nuclear power plants

    International Nuclear Information System (INIS)

    Highlights: • A systematic method to identify the design requirements for human–system interface is proposed. • Eight combinations of control agents in each control stage (levels of automation) are defined. • The use of Itemized Sequence Diagram (ISD) is discussed for task allocation to control agents. • The design requirements of human–system interface are established based on the produced ISD. - Abstract: This paper suggests a systematic approach to establish design requirements for the human–system interface (HSI) between operators and automatic systems. The role of automation in the control of a nuclear power plant (NPP) operation is to support the human operator and act as an efficient team player to help reduce the human operator’s workload. Some of the problems related to the interaction between the human operator and automation are out-of-the-loop performance, mode errors, role change to supervisory role and final authority issues. Therefore, the design of HSI is critical to avoiding breakdowns in communication between the human operator and the system. In this paper, the design requirements for human–system interface of automatic systems are constructed with the help of a tool called Itemized Sequence Diagram (ISD). Eight levels of automation (LOA) are initially defined in the function allocation and an ISD is drawn for each of the LOA for task allocation. The ISD is a modified version of sequence diagram, which is widely used in systems engineering as well as software engineering. The ISD elements of arrows, messages, actors and alternative boxes collectively show the interactions between the control agents, which are decomposed into four different roles: information acquiring, plant diagnosing, response selecting and response implementing. Eleven design requirements to optimize the human–automation interaction are suggested by using this method. The design requirements produced from the identified interaction points in the ISD are

  12. EEG-Based Brain-Computer Interface for Tetraplegics

    Directory of Open Access Journals (Sweden)

    Laura Kauhanen

    2007-09-01

    Full Text Available Movement-disabled persons typically require a long practice time to learn how to use a brain-computer interface (BCI. Our aim was to develop a BCI which tetraplegic subjects could control only in 30 minutes. Six such subjects (level of injury C4-C5 operated a 6-channel EEG BCI. The task was to move a circle from the centre of the computer screen to its right or left side by attempting visually triggered right- or left-hand movements. During the training periods, the classifier was adapted to the user's EEG activity after each movement attempt in a supervised manner. Feedback of the performance was given immediately after starting the BCI use. Within the time limit, three subjects learned to control the BCI. We believe that fast initial learning is an important factor that increases motivation and willingness to use BCIs. We have previously tested a similar single-trial classification approach in healthy subjects. Our new results show that methods developed and tested with healthy subjects do not necessarily work as well as with motor-disabled patients. Therefore, it is important to use motor-disabled persons as subjects in BCI development.

  13. A graphical user interface-based instructor station

    International Nuclear Information System (INIS)

    Instructor Stations are an important part of CAE's full-scope Nuclear Power Plant Simulators. CAE's current generation of Instructor Station, through use of a proven Graphical User Interface (GUI) combined with an advanced hardware platform, provides the instructor with a very powerful training tool. Several features are available to provide the instructor with tools for effective operator training. For example, to track simulator status, the Graphic Recorder can record, on disk, several hours of data for up to 48 user-defined points. This data can be plotted while being recorded, and replayed after recording has completed. Another feature, provided by the Lesson Plan Editor/Executive, allows the instructor to conveniently build a set of repeatable lessons, made up of specific Instructor actions, to be used as a Lesson Plan step. This paper examines how the most advanced hardware and software tools were implemented to produce a state-of-the-art Instructor Station satisfying the required design goals set by the customers and CAE for its Instructor Facilities

  14. Determination of Number of Broken Rotor Bars in Squirrel-Cage Induction Motors Using Adaptive Neuro-Fuzzy Interface System

    Directory of Open Access Journals (Sweden)

    Mehran Amani Juneghani

    2012-09-01

    Full Text Available For determination the number of broken rotor bars in squirrel-cage induction motors when these motors are working, this study presents a new method based on an intelligent processing of the stator transient starting current. In light load condition, distinguishing between safe and faulty rotors is difficult, because the characteristic frequencies of rotor with broken bars are very close to the fundamental component and their amplitudes are small in comparison. In this study, an advanced technique based on the Wavelet Adaptive Neuro-Fuzzy Interface System is suggested for processing the starting current of induction motors. In order to increase the efficiency of the proposed method, the results of the wavelet analysis, before applying to the Adaptive Neuro-Fuzzy Interface System, are processed by Principal Component Analysis (PCA. Then the outcome results are supposed as Adaptive Neuro-Fuzzy Interface System's training and testing data set. The trained Adaptive Neuro-Fuzzy Interface Systems undertake of determining the number of broken rotor bars. The given statistical results, announce the proposed method’s high ability to determine the number of broken rotor bars. The proposed method is independent from loading conditions of machine and it is useable even when the motor is unloaded.

  15. Controlling Kondo-like Scattering at the SrTiO3-based Interfaces

    OpenAIRE

    Han, K.; Palina, N.; Zeng, S. W.; Huang, Z; Li, C.J.; Zhou, W. X.; D.-Y. Wan; Zhang, L. C.; Chi, X.; Guo, R; Chen, J. S.; Venkatesan, T.; Rusydi, A.; Ariando

    2016-01-01

    The observation of magnetic interaction at the interface between nonmagnetic oxides has attracted much attention in recent years. In this report, we show that the Kondo-like scattering at the SrTiO3-based conducting interface is enhanced by increasing the lattice mismatch and growth oxygen pressure P O2. For the 26-unit-cell LaAlO3/SrTiO3 (LAO/STO) interface with lattice mismatch being 3.0%, the Kondo-like scattering is observed when P O2 is beyond 1 mTorr. By contrast, when the lattice misma...

  16. System and method for interfacing large-area electronics with integrated circuit devices

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd

    2016-07-12

    A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.

  17. A Quadratic Spline based Interface (QUASI) reconstruction algorithm for accurate tracking of two-phase flows

    Science.gov (United States)

    Diwakar, S. V.; Das, Sarit K.; Sundararajan, T.

    2009-12-01

    A new Quadratic Spline based Interface (QUASI) reconstruction algorithm is presented which provides an accurate and continuous representation of the interface in a multiphase domain and facilitates the direct estimation of local interfacial curvature. The fluid interface in each of the mixed cells is represented by piecewise parabolic curves and an initial discontinuous PLIC approximation of the interface is progressively converted into a smooth quadratic spline made of these parabolic curves. The conversion is achieved by a sequence of predictor-corrector operations enforcing function ( C0) and derivative ( C1) continuity at the cell boundaries using simple analytical expressions for the continuity requirements. The efficacy and accuracy of the current algorithm has been demonstrated using standard test cases involving reconstruction of known static interface shapes and dynamically evolving interfaces in prescribed flow situations. These benchmark studies illustrate that the present algorithm performs excellently as compared to the other interface reconstruction methods available in literature. Quadratic rate of error reduction with respect to grid size has been observed in all the cases with curved interface shapes; only in situations where the interface geometry is primarily flat, the rate of convergence becomes linear with the mesh size. The flow algorithm implemented in the current work is designed to accurately balance the pressure gradients with the surface tension force at any location. As a consequence, it is able to minimize spurious flow currents arising from imperfect normal stress balance at the interface. This has been demonstrated through the standard test problem of an inviscid droplet placed in a quiescent medium. Finally, the direct curvature estimation ability of the current algorithm is illustrated through the coupled multiphase flow problem of a deformable air bubble rising through a column of water.

  18. A High Performance LIA-Based Interface for Battery Powered Sensing Devices

    Directory of Open Access Journals (Sweden)

    Daniel García-Romeo

    2015-09-01

    Full Text Available This paper proposes a battery-compatible electronic interface based on a general purpose lock-in amplifier (LIA capable of recovering input signals up to the MHz range. The core is a novel ASIC fabricated in 1.8 V 0.18 µm CMOS technology, which contains a dual-phase analog lock-in amplifier consisting of carefully designed building blocks to allow configurability over a wide frequency range while maintaining low power consumption. It operates using square input signals. Hence, for battery-operated microcontrolled systems, where square reference and exciting signals can be generated by the embedded microcontroller, the system benefits from intrinsic advantages such as simplicity, versatility and reduction in power and size. Experimental results confirm the signal recovery capability with signal-to-noise power ratios down to −39 dB with relative errors below 0.07% up to 1 MHz. Furthermore, the system has been successfully tested measuring the response of a microcantilever-based resonant sensor, achieving similar results with better power-bandwidth trade-off compared to other LIAs based on commercial off-the-shelf (COTS components and commercial LIA equipment.

  19. A High Performance LIA-Based Interface for Battery Powered Sensing Devices.

    Science.gov (United States)

    García-Romeo, Daniel; Valero, María R; Medrano, Nicolás; Calvo, Belén; Celma, Santiago

    2015-01-01

    This paper proposes a battery-compatible electronic interface based on a general purpose lock-in amplifier (LIA) capable of recovering input signals up to the MHz range. The core is a novel ASIC fabricated in 1.8 V 0.18 µm CMOS technology, which contains a dual-phase analog lock-in amplifier consisting of carefully designed building blocks to allow configurability over a wide frequency range while maintaining low power consumption. It operates using square input signals. Hence, for battery-operated microcontrolled systems, where square reference and exciting signals can be generated by the embedded microcontroller, the system benefits from intrinsic advantages such as simplicity, versatility and reduction in power and size. Experimental results confirm the signal recovery capability with signal-to-noise power ratios down to -39 dB with relative errors below 0.07% up to 1 MHz. Furthermore, the system has been successfully tested measuring the response of a microcantilever-based resonant sensor, achieving similar results with better power-bandwidth trade-off compared to other LIAs based on commercial off-the-shelf (COTS) components and commercial LIA equipment. PMID:26437408

  20. A Prototype SSVEP Based Real Time BCI Gaming System

    OpenAIRE

    Martišius, Ignas; Damaševičius, Robertas

    2016-01-01

    Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. A...

  1. An integrated control system and operator interface design for retubing of CANDU reactors

    International Nuclear Information System (INIS)

    Experience gained during the successful retubing of four CANDU reactors at Pickering, Ontario, has led to the development of an integrated control system and operator interface which utilizes video and real time graphical animations for feedback. The system provides a uniform interface for many different tools, while the supervisory computer is able to provide prompts of potential problems and monitor the status of subsystems. (author)

  2. Data Acquisition and Uesr Interface of Beam Instrumentation System at SRRC

    OpenAIRE

    Chen, Jenny; Wang, C J; Kuo, C. H.; Hu, K. H.; Chen, C S; Hsu, K. T.

    2001-01-01

    Data acquisition systems for the accelerator complex at SRRC composed various hardware and software components. Beam signals are processed by related processing electronics, and connect to control system by various type of interfaces in data acquisition front-end. These front-end include VME crates, personal computers and instruments bus adapters. Fast Ethernet connected all elements together with control consoles. User interface is running on control console. Real-time data capture; display ...

  3. The Engine-Scheduler Interface used in the Muse OR-parallel Prolog System

    OpenAIRE

    Ali, Khayri Mohammed; Karlsson, Roland

    1992-01-01

    Almost any sequential Prolog system is in principle easy to extend for OR-parallelism, using the Muse execution model. To reduce your programming effort we have implemented the Muse scheduler, with a clean interface to the Prolog sequential engine. This interface is implemented as a set of C macros. The sequential Prolog system to be parallelized uses some of those macros provided by the Muse scheduler and must also provide some macros for the Muse scheduler. This chapte...

  4. Impact of representational systems on color selections for graphic user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.; Brownson, L.W.

    1996-04-01

    This paper is based on a study involving representational systems and color preference on graphic user interfaces (GUI). The study is an extension of a general exploratory experiment (GEE) conducted in October of 1993, wherein individuals` favored sensory representational systems (visual, auditory and kinesthetic) (FRS) were compared to their GUI comfort parameters. The results of the study show that an individual`s FRS is a significant factor in their acceptance of a GUI design, and that further in-depth study of the various display attributes to an individual`s FRS is required. This research is the first in the series of follow-up studies to be conducted regarding specific characteristics of GUI (i.e., fonts, character density, etc.) with respect to an individual`s FRS. The study focus on the attribute of color preferences for GUI design.

  5. Chemical stability of the fiber coating/matrix interface in silicon-based ceramic matrix composites

    International Nuclear Information System (INIS)

    Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si3N4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and by microstructural examination. in the carbon/Si3N4 system, carbon reacted with Si3N4 to form gaseous N2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si3N4. Consequently, the development of high p(N2) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating

  6. Proprioceptive feedback and brain computer interface (BCI based neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Ander Ramos-Murguialday

    Full Text Available Brain computer interface (BCI technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1 motor imagery of the hand movement without any overt movement and without feedback, (2 motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3 passive (the orthosis passively opens and closes the hand without imagery and (4 active (overt movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants. Group 1 (n = 9 received contingent positive feedback (participants' sensorimotor rhythm (SMR desynchronization was directly linked to hand orthosis movements, group 2 (n = 8 contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements and group 3 (n = 7 sham feedback (no link between brain oscillations and orthosis movements. We observed that proprioceptive feedback (feeling and seeing hand movements improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and

  7. A Wearable-based and Markerless Human-manipulator Interface with Feedback Mechanism and Kalman Filters

    OpenAIRE

    Zhang, Ping; Li, Bei; Du, Guanglong; Liu, Xin

    2015-01-01

    The objective of this paper is to develop a novel human-manipulator interface which incorporates wearable-based and markerless tracking to interact with the continuous movements of a human operator’s hand. Unlike traditional approaches, which usually include contacting devices or physical markers to track the human-limb movements, this interface enables registration of natural movement through a wireless wearable watch and a leap motion sensor. Due to sensor error and tracking failure, the me...

  8. Personality Trait and Facial Expression Filter-Based Brain-Computer Interface

    OpenAIRE

    Seongah Chin; Chung-Yeon Lee

    2013-01-01

    In this paper, we present technical approaches that bridge the gap in the research related to the use of brain‐computer interfaces for entertainment and facial expressions. Such facial expressions that reflect an individual’s personal traits can be used to better realize artificial facial expressions in a gaming environment based on a brain‐computer interface. First, an emotion extraction filter is introduced in order to classify emotions on the basis of the users’ brain signals in real time....

  9. Human factors evaluation of teletherapy: Human-system interfaces and procedures. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, R.D.; Henriksen, K.; Jones, R. [Hughes Training, Inc., Falls Church, VA (United States); Morisseau, D.S.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-07-01

    A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multidisciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. In addition, a panel of radiation oncologists, medical physicists, and radiation technologists served as subject matter experts. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The present report focuses on an evaluation of the human-system interfaces in relation to the treatment machines and supporting equipment (e.g., simulators, treatment planning computers, control consoles, patient charts) found in the teletherapy environment. The report also evaluates operating, maintenance and emergency procedures and practices involved in teletherapy. The evaluations are based on the function and task analysis and established human engineering guidelines, where applicable.

  10. Human factors evaluation of teletherapy: Human-system interfaces and procedures. Volume 3

    International Nuclear Information System (INIS)

    A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multidisciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. In addition, a panel of radiation oncologists, medical physicists, and radiation technologists served as subject matter experts. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The present report focuses on an evaluation of the human-system interfaces in relation to the treatment machines and supporting equipment (e.g., simulators, treatment planning computers, control consoles, patient charts) found in the teletherapy environment. The report also evaluates operating, maintenance and emergency procedures and practices involved in teletherapy. The evaluations are based on the function and task analysis and established human engineering guidelines, where applicable

  11. Challenges in Securing the Interface Between the Cloud and Pervasive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lagesse, Brent J [ORNL

    2011-01-01

    Cloud computing presents an opportunity for pervasive systems to leverage computational and storage resources to accomplish tasks that would not normally be possible on such resource-constrained devices. Cloud computing can enable hardware designers to build lighter systems that last longer and are more mobile. Despite the advantages cloud computing offers to the designers of pervasive systems, there are some limitations of leveraging cloud computing that must be addressed. We take the position that cloud-based pervasive system must be secured holistically and discuss ways this might be accomplished. In this paper, we discuss a pervasive system utilizing cloud computing resources and issues that must be addressed in such a system. In this system, the user's mobile device cannot always have network access to leverage resources from the cloud, so it must make intelligent decisions about what data should be stored locally and what processes should be run locally. As a result of these decisions, the user becomes vulnerable to attacks while interfacing with the pervasive system.

  12. Addition of visual noise boosts evoked potential-based brain-computer interface.

    Science.gov (United States)

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-01-01

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs. PMID:24828128

  13. An interface force measurements-based substructure identification and an analysis of the uncertainty propagation

    Science.gov (United States)

    Kranjc, Tadej; Slavič, Janko; Boltežar, Miha

    2015-05-01

    Substructure-decoupling techniques are used to identify a substructure as a stand-alone system while it is coupled to a complex structure. These techniques can be used for various applications, e.g., when the substructure cannot be measured separately from the complex structure, when modal testing methods are not appropriate due to the limits of the measurement equipment and for vibration-control techniques. The complex structure consists of the unknown substructure and the remaining structure. A drawback of the available substructure-decoupling techniques is that they require a model of the remaining substructure. However, when the model cannot be calculated or (experimentally) identified, the substructure-decoupling techniques cannot be used. In this paper a new approach is presented that does not require a model of the remaining substructure, but is based on an experimental identification of the interface forces. The sensitivity of the approach to experimental errors was researched. Numerical and experimental test cases are researched.

  14. Human-machine interface based on muscular and brain signals applied to a robotic wheelchair

    International Nuclear Information System (INIS)

    This paper presents a Human-Machine Interface (HMI) based on the signals generated by eye blinks or brain activity. The system structure and the signal acquisition and processing are shown. The signals used in this work are either the signal associated to the muscular movement corresponding to an eye blink or the brain signal corresponding to visual information processing. The variance is the feature extracted from such signals in order to detect the intention of the user. The classification is performed by a variance threshold which is experimentally determined for each user during the training stage. The command options, which are going to be sent to the commanded device, are presented to the user in the screen of a PDA (Personal Digital Assistant). In the experiments here reported, a robotic wheelchair is used as the device being commanded

  15. Bipolar electrode selection for a motor imagery based brain computer interface

    Science.gov (United States)

    Lou, Bin; Hong, Bo; Gao, Xiaorong; Gao, Shangkai

    2008-09-01

    A motor imagery based brain-computer interface (BCI) provides a non-muscular communication channel that enables people with paralysis to control external devices using their motor imagination. Reducing the number of electrodes is critical to improving the portability and practicability of the BCI system. A novel method is proposed to reduce the number of electrodes to a total of four by finding the optimal positions of two bipolar electrodes. Independent component analysis (ICA) is applied to find the source components of mu and alpha rhythms, and optimal electrodes are chosen by comparing the projection weights of sources on each channel. The results of eight subjects demonstrate the better classification performance of the optimal layout compared with traditional layouts, and the stability of this optimal layout over a one week interval was further verified.

  16. Illustration interface of accident progression in PWR by quick inference based on multilevel flow models

    International Nuclear Information System (INIS)

    In this paper, a new accident inference method is proposed by using a goal and function oriented modeling method called Multilevel Flow Model focusing on explaining the causal-consequence relations and the objective of automatic action in the accident of nuclear power plant. Users can easily grasp how the various plant parameters will behave and how the various safety facilities will be activated sequentially to cope with the accident until the nuclear power plants are settled into safety state, i.e., shutdown state. The applicability of the developed method was validated by the conduction of internet-based 'view' experiment to the voluntary respondents, and in the future, further elaboration of interface design and the further introduction of instruction contents will be developed to make it become the usable CAI system. (authors)

  17. Nanomechanics based investigation into interface -thermomechanics of collagen and chitin based biomaterials

    OpenAIRE

    Qu, Tao; Tomar, Vikas

    2014-01-01

    From the biological/chemical perspective, interface concepts related to cell surface/synthetic biomaterial interface and extracellular matrix/biomolecule interface have wide applications in medical and biological technology. Some findings regarding interfaces controlling biological reactions are like surfaces provide high accessibility for reaction, high surface area geometries that can be created to enhance reaction turnover rates, unique organic microenvironments that can enhance specific a...

  18. Conducted noise analysis and protection of 45 kJ/s, ±50 kV capacitor charging power supply when interfaced with repetitive Marx based pulse power system

    Science.gov (United States)

    Naresh, P.; Patel, Ankur; Sharma, Archana

    2015-09-01

    Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage.

  19. Conducted noise analysis and protection of 45 kJ/s, ±50 kV capacitor charging power supply when interfaced with repetitive Marx based pulse power system.

    Science.gov (United States)

    Naresh, P; Patel, Ankur; Sharma, Archana

    2015-09-01

    Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage. PMID:26429461

  20. Parent-martensite interface structure in ferrous systems

    International Nuclear Information System (INIS)

    Recently, a Topological Model of martensitic transformations has been presented wherein the habit plane is a semi-coherent structure, and the transformation mechanism is shown explicitly to be diffusionless. This approach is used here to model martensitic transformations in ferrous alloys. The habit plane comprises coherent (1 1 1)γ parallel (0 1 1)α terraces where the coherency strains are accommodated by a network of dislocations, originating in the martensite phase, and disconnections (transformation dislocations). The disconnections can move conservatively across the interface, thereby effecting the transformation. Since the disconnections exhibit step character, the overall habit plane deviates from the terrace plane. A range of network geometries is predicted corresponding to orientation relationships varying from Nishiyama-Wasserman to Kurdjumov-Sachs. This range of solutions includes habit planes close to {2 9 5}, {5 7 5} and {1 2 1}, in good agreement with experimental observations in various ferrous alloys