WorldWideScience

Sample records for based human genetic

  1. Prediction of human functional genetic networks from heterogeneous data using RVM-based ensemble learning

    OpenAIRE

    Wu, Chia-Chin; Asgharzadeh, Shahab; Triche, Timothy J.; D'Argenio, David Z.

    2010-01-01

    Motivation: Three major problems confront the construction of a human genetic network from heterogeneous genomics data using kernel-based approaches: definition of a robust gold-standard negative set, large-scale learning and massive missing data values.

  2. Genetic network properties of the human cortex based on regional thickness and surface area measures

    Directory of Open Access Journals (Sweden)

    Anna R. Docherty

    2015-08-01

    Full Text Available We examined network properties of genetic covariance between average cortical thickness (CT and surface area (SA within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques—biometrical genetic modeling, cluster analysis, and graph theory—to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function.

  3. Genetic network properties of the human cortex based on regional thickness and surface area measures.

    Science.gov (United States)

    Docherty, Anna R; Sawyers, Chelsea K; Panizzon, Matthew S; Neale, Michael C; Eyler, Lisa T; Fennema-Notestine, Christine; Franz, Carol E; Chen, Chi-Hua; McEvoy, Linda K; Verhulst, Brad; Tsuang, Ming T; Kremen, William S

    2015-01-01

    We examined network properties of genetic covariance between average cortical thickness (CT) and surface area (SA) within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques-biometrical genetic modeling, cluster analysis, and graph theory-to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function. PMID:26347632

  4. OPTIMIZATION DESIGN OF HYDRAU-LIC MANIFOLD BLOCKS BASED ON HUMAN-COMPUTER COOPERATIVE GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Feng Yi; Li Li; Tian Shujun

    2003-01-01

    Optimization design of hydraulic manifold blocks (HMB) is studied as a complex solid spatial layout problem. Based on comprehensive research into structure features and design rules of HMB, an optimal mathematical model for this problem is presented. Using human-computer cooperative genetic algorithm (GA) and its hybrid optimization strategies, integrated layout and connection design schemes of HMB can be automatically optimized. An example is given to testify it.

  5. [Human genetics and ethics].

    Science.gov (United States)

    Zergollern, L

    1990-01-01

    Many new problems and dilemmas have occurred in the practice of medical geneticists with the development of human genetics and its subdisciplines--molecular genetics, ethic genetics and juridical genetics. Devoid of the possibility to get adequate education, genetic informer or better to say, counsellor, although a scientist and a professional who has already formed his ethic attitudes, often finds himself in a dilemma when he has to decide whether a procedure made possible by progress of science is ethical or not. Thus, due to different attitudes, same decision is ethical for some, while for the others it is not. Ethic committees are groups of moral and good people trying to find an objective approach to certain genetic and ethic problems. There are more and more ethically unanswered questions in modern human genetics, and particularly in medical genetics. Medical geneticist-ethicist still encounters numerous problems in his work. These are, for example, experiments with human gametes and embryos, possibilities of hybridization of human gametes with animal gametes, in vitro fertilization, detection of heterozygotes and homozygotes for monogene diseases. early detection of chromosomopathies, substitute mothers, homo and hetero insemination, transplantation of fetal and cadeveric organs, uncontrolled consumption of alcohol and drugs, environmental pollution, etc. It is almost impossible to create a single attitude which shall be shared by all those engaged in human health protection. Therefore, it is best to have a neutral eugenetic attitude which allows free ethical choice of each individual, in any case, for the well-being of man. PMID:2366624

  6. NACE: A web-based tool for prediction of intercompartmental efficiency of human molecular genetic networks.

    Science.gov (United States)

    Popik, Olga V; Ivanisenko, Timofey V; Saik, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A

    2016-06-15

    Molecular genetic processes generally involve proteins from distinct intracellular localisations. Reactions that follow the same process are distributed among various compartments within the cell. In this regard, the reaction rate and the efficiency of biological processes can depend on the subcellular localisation of proteins. Previously, the authors proposed a method of evaluating the efficiency of biological processes based on the analysis of the distribution of protein subcellular localisation (Popik et al., 2014). Here, NACE is presented, which is an open access web-oriented program that implements this method and allows the user to evaluate the intercompartmental efficiency of human molecular genetic networks. The method has been extended by a new feature that provides the evaluation of the tissue-specific efficiency of networks for more than 2800 anatomical structures. Such assessments are important in cases when molecular genetic pathways in different tissues proceed with the participation of various proteins with a number of intracellular localisations. For example, an analysis of KEGG pathways, conducted using the developed program, showed that the efficiencies of many KEGG pathways are tissue-specific. Analysis of efficiencies of regulatory pathways in the liver, linking proteins of the hepatitis C virus with human proteins involved in the KEGG apoptosis pathway, showed that intercompartmental efficiency might play an important role in host-pathogen interactions. Thus, the developed tool can be useful in the study of the effectiveness of functioning of various molecular genetic networks, including metabolic, regulatory, host-pathogen interactions and others taking into account tissue-specific gene expression. The tool is available via the following link: http://www-bionet.sscc.ru/nace/. PMID:27109913

  7. Comparing ESC and iPSC—Based Models for Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2014-10-01

    Full Text Available Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs from patients’ somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn’t be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  8. American Society of Human Genetics

    Science.gov (United States)

    ... Research Awards August 9, 2016 Media Advisory: American Society of Human Genetics 2016 Annual Meeting July 26, ... McKusick Leadership Award June 30, 2016 The American Society of Human Genetics, Incorporated 9650 Rockville Pike • Bethesda, ...

  9. Advances in human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Harris, H.; Hirschhorn, K. (eds.)

    1993-01-01

    This book has five chapters covering peroxisomal diseases, X-linked immunodeficiencies, genetic mutations affecting human lipoproteins and their receptors and enzymes, genetic aspects of cancer, and Gaucher disease. The chapter on peroxisomes covers their discovery, structure, functions, disorders, etc. The chapter on X-linked immunodeficiencies discusses such diseases as agammaglobulinemia, severe combined immunodeficiency, Wiskott-Aldrich syndrome, animal models, linkage analysis, etc. Apolipoprotein formation, synthesis, gene regulation, proteins, etc. are the main focus of chapter 3. The chapter on cancer covers such topics as oncogene mapping and the molecular characterization of some recessive oncogenes. Gaucher disease is covered from its diagnosis, classification, and prevention, to its organ system involvement and molecular biology.

  10. Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets.

    Science.gov (United States)

    Liu, Guo-Hua; Gasser, Robin B; Su, Ang; Nejsum, Peter; Peng, Lifei; Lin, Rui-Qing; Li, Ming-Wei; Xu, Min-Jun; Zhu, Xing-Quan

    2012-01-01

    The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions. PMID:22363831

  11. Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets.

    Directory of Open Access Journals (Sweden)

    Guo-Hua Liu

    Full Text Available The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis, dogs (T. vulpis and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions.

  12. Mouse Genetic and Phenotypic Resources for Human Genetics

    OpenAIRE

    Paul N. Schofield; Hoehndorf, Robert; Gkoutos, Georgios V

    2012-01-01

    The use of model organisms to provide information on gene function has proved to be a powerful approach to our understanding of both human disease and fundamental mammalian biology. Large-scale community projects using mice, based on forward and reverse genetics, and now the pan-genomic phenotyping efforts of the International Mouse Phenotyping Consortium (IMPC), are generating resources on an unprecedented scale which will be extremely valuable to human genetics and medicine. We discuss the ...

  13. Next-generation human genetics

    OpenAIRE

    Shendure, Jay

    2011-01-01

    The field of human genetics is being reshaped by exome and genome sequencing. Several lessons are evident from observing the rapid development of this area over the past 2 years, and these may be instructive with respect to what we should expect from 'next-generation human genetics' in the next few years.

  14. Report: Human cancer genetics

    Institute of Scientific and Technical Information of China (English)

    LI Marilyn; ALBERTSON Donna

    2006-01-01

    The short report will be focused on the genetic basis and possible mechanisms of tumorigenesis, common types of cancer, the importance of genetic diagnosis of cancer, and the methodology of cancer genetic diagnosis. They will also review presymptomatic testing of hereditary cancers, and the application of expression profiling to identify patients likely to benefit from particular therapeutic approaches.

  15. Human Capital and Genetic Diversity

    OpenAIRE

    Sequeira, Tiago; Santos, Marcelo,; Ferreira-Lopes, Alexandra

    2013-01-01

    The determinants of human capital have been studied sparsely in the literature. Although there is a huge literature on the determinants of schooling linked with the quality of schooling, there are not many contributions that explore the deep determinants of investment in, quantity and quality of human capital. This paper investigates the relationship between human capital and the ancestral genetic diversity of populations. It highlights a strong hump-shaped relationship between genetic divers...

  16. Understanding Tiger –Human Conflict in Corbett Tiger Reserve (CTR, India: Based on the genetic analysis

    Directory of Open Access Journals (Sweden)

    Sujeet Kumar Singh

    2015-06-01

    Full Text Available Attacks of tigers on humans are a common feature of human-wildlife conflicts in India, and the individual identification of such animals has been an issue for management purposes. We document a case study where we established the species, sex and genetic identity of a man-eater tiger reported from Corbett Tiger Reserve (CTR, India, using blood spots and other biological samples. A man-eater tiger killed 4 women within 2 months (December 2010 to January 2011 in different parts of CTR. The authorities decided to shoot the animal, and attempts were made to do so, but it escaped. After 16 days, a tiger was shot by the management, and biological samples were collected. The multi-locus genetic profile of an injured tiger based on blood from the injured tiger was compared with that from biological samples from the shot tiger. Our results indicate that the injured and shot tigers were the same individual. This study elucidates the potential of wildlife genetics in identification of tigers involved in fatal attacks and improves the wildlife management strategies employed where the greatest numbers of direct human- tiger conflicts are taking place.

  17. Neurobiological approaches in human behavior genetics.

    Science.gov (United States)

    Vogel, F

    1981-03-01

    An attempt should be made to base analysis of problems in human behavior genetics on existing knowledge of human biochemical genetics and neurobiology. Examples for this approach are studies showing HY antigen patterns of the opposite sex in transsexuality, slight psychological deviations in heterozygotes of recessive metabolic diseases such as phenylketonuria and lipid storage diseases, and psychological studies in healthy individuals with various genetic variants of the normal human electroencephalogram (EEG). Results of such studies will help gradually to replace emotional controversy by rational assessment of facts. PMID:7271684

  18. Genetic heterogeneity and phylogeny of Trichuris spp. from captive non-human primates based on ribosomal DNA sequence data.

    Science.gov (United States)

    Cavallero, Serena; De Liberato, Claudio; Friedrich, Klaus G; Di Cave, David; Masella, Valentina; D'Amelio, Stefano; Berrilli, Federica

    2015-08-01

    Nematodes of the genus Trichuris, known as whipworms, are recognized to infect numerous mammalian species including humans and non-human primates. Several Trichuris spp. have been described and species designation/identification is traditionally based on host-affiliation, although cross-infection and hybridization events may complicate species boundaries. The main aims of the present study were to genetically characterize adult Trichuris specimens from captive Japanese macaques (Macaca fuscata) and grivets (Chlorocebus aethiops), using the ribosomal DNA (ITS) as molecular marker and to investigate the phylogeny and the extent of genetic variation also by comparison with data on isolates from other humans, non-human primates and other hosts. The phylogenetic analysis of Trichuris sequences from M. fuscata and C. aethiops provided evidences of distinct clades and subclades thus advocating the existence of additional separated taxa. Neighbor Joining and Bayesian trees suggest that specimens from M. fuscata may be distinct from, but related to Trichuris trichiura, while a close relationship is suggested between the subclade formed by the specimens from C. aethiops and the subclade formed by T. suis. The tendency to associate Trichuris sp. to host species can lead to misleading taxonomic interpretations (i.e. whipworms found in primates are identified as T. trichiura). The results here obtained confirm previous evidences suggesting the existence of Trichuris spp. other than T. trichiura infecting non-human living primates. PMID:26066463

  19. GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases

    NARCIS (Netherlands)

    Driel, van M.A.; Cuelenaere, K.; Kemmeren, P.P.C.W.; Leunissen, J.A.M.; Brunner, H.G.; Vriend, G.

    2005-01-01

    The identification of genes underlying human genetic disorders requires the combination of data related to cytogenetic localization, phenotypes and expression patterns, to generate a list of candidate genes. In the field of human genetics, it is normal to perform this combination analysis by hand. W

  20. BRCA1/2 genetic background-based therapeutic tailoring of human ovarian cancer: hope or reality?

    Directory of Open Access Journals (Sweden)

    Tagliaferri Pierosandro

    2009-10-01

    Full Text Available Abstract Ovarian epithelial tumors are an hallmark of hereditary cancer syndromes which are related to the germ-line inheritance of cancer predisposing mutations in BRCA1 and BRCA2 genes. Although these genes have been associated with multiple different physiologic functions, they share an important role in DNA repair mechanisms and therefore in the whole genomic integrity control. These findings have risen a variety of issues in terms of treatment and prevention of breast and ovarian tumors arising in this context. Enhanced sensitivity to platinum-based anticancer drugs has been related to BRCA1/2 functional loss. Retrospective studies disclosed differential chemosensitivity profiles of BRCA1/2-related as compared to "sporadic" ovarian cancer and led to the identification of a "BRCA-ness" phenotype of ovarian cancer, which includes inherited BRCA1/2 germ-line mutations, a serous high grade histology highly sensitive to platinum derivatives. Molecularly-based tailored treatments of human tumors are an emerging issue in the "era" of molecular targeted drugs and molecular profiling technologies. We will critically discuss if the genetic background of ovarian cancer can indeed represent a determinant issue for decision making in the treatment selection and how the provocative preclinical findings might be translated in the therapeutic scenario. The presently available preclinical and clinical evidence clearly indicates that genetic background has an emerging role in treatment individualization for ovarian cancer patients.

  1. Segmenting the human genome based on states of neutral genetic divergence.

    Science.gov (United States)

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-01

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements. PMID:23959903

  2. Human genetics: international projects and personalized medicine.

    Science.gov (United States)

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015. PMID:26581075

  3. A new web-based data mining tool for the identification of candidate genes for human genetic disorders.

    Science.gov (United States)

    van Driel, Marc A; Cuelenaere, Koen; Kemmeren, Patrick P C W; Leunissen, Jack A M; Brunner, Han G

    2003-01-01

    To identify the gene underlying a human genetic disorder can be difficult and time-consuming. Typically, positional data delimit a chromosomal region that contains between 20 and 200 genes. The choice then lies between sequencing large numbers of genes, or setting priorities by combining positional data with available expression and phenotype data, contained in different internet databases. This process of examining positional candidates for possible functional clues may be performed in many different ways, depending on the investigator's knowledge and experience. Here, we report on a new tool called the GeneSeeker, which gathers and combines positional data and expression/phenotypic data in an automated way from nine different web-based databases. This results in a quick overview of interesting candidate genes in the region of interest. The GeneSeeker system is built in a modular fashion allowing for easy addition or removal of databases if required. Databases are searched directly through the web, which obviates the need for data warehousing. In order to evaluate the GeneSeeker tool, we analysed syndromes with known genesis. For each of 10 syndromes the GeneSeeker programme generated a shortlist that contained a significantly reduced number of candidate genes from the critical region, yet still contained the causative gene. On average, a list of 163 genes based on position alone was reduced to a more manageable list of 22 genes based on position and expression or phenotype information. We are currently expanding the tool by adding other databases. The GeneSeeker is available via the web-interface (http://www.cmbi.kun.nl/GeneSeeker/). PMID:12529706

  4. Understanding Tiger –Human Conflict in Corbett Tiger Reserve (CTR,) India: Based on the genetic analysis

    OpenAIRE

    Sujeet Kumar Singh; Vipin Sharma; Sudhanshu Mishra; Puneet Pandey; Ved Prakash Kumar; Surendra Prakash Goyal

    2015-01-01

    Attacks of tigers on humans are a common feature of human-wildlife conflicts in India, and the individual identification of such animals has been an issue for management purposes. We document a case study where we established the species, sex and genetic identity of a man-eater tiger reported from Corbett Tiger Reserve (CTR), India, using blood spots and other biological samples. A man-eater tiger killed 4 women within 2 months (December 2010 to January 2011) in different parts of CTR. The au...

  5. Human genetic databases and liberty.

    Science.gov (United States)

    Adalsteinsson, Ragnar

    2004-01-01

    This paper examines an act of the Icelandic Parliament on health-sector databases. Both the legislation itself and the manner in which it was presented by the Government to the Parliament and the general public raise various questions about democratic parliamentary procedures, community consultation, autonomy, privacy, professional confidence, control of health data in hospitals and business relationships between medical doctors and biotechnology corporations. A major question to be asked is: In whose interest is it that such sensitive data are handed over to for-profit corporations? Furthermore, is it within the authority of the legislature to authorize politically appointed boards of health institutes to transfer such data without the direct informed consent of the patient and without the relevant physicians' having a say? Does experience teach us to entrust private companies with sensitive personal data? Should the Government be involved in the research policy-making of the biotechnology companies that have been given access to the genetic data of a population, or should the profit motive be the sole deciding influence? That is, should the interest of the shareholders of the companies prevail over the interest of underprivileged groups who are most in need of new methods or medicine to alleviate their situation due to incurable diseases? Or is the invisible hand of the market the only competent decision-maker? Finally, will the proliferation of databases containing sensitive personal data, such as human genetic data, limit our personal liberty? PMID:16755701

  6. Personalized medicine and human genetic diversity.

    Science.gov (United States)

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-09-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  7. SNP array-based copy number and genotype analyses for preimplantation genetic diagnosis of human unbalanced translocations

    OpenAIRE

    van Uum, Chris MJ; Stevens, Servi JC; Dreesen, Joseph CFM; Drüsedau, Marion; Smeets, Hubert J.; Hollanders-Crombach, Bertien; Die-Smulders, Christine EM de; Geraedts, Joep PM; Engelen, John JM; Coonen, Edith

    2012-01-01

    Preimplantation genetic diagnosis (PGD) for chromosomal rearrangements (CR) is mainly based on fluorescence in situ hybridisation (FISH). Application of this technique is limited by the number of available fluorochromes, the extensive preclinical work-up and technical and interpretative artefacts. We aimed to develop a universal, off-the-shelf protocol for PGD by combining single-nucleotide polymorphism (SNP) array-derived copy number (CN) determination and genotyping for detection of unbalan...

  8. Research for genetic instability of human genome

    International Nuclear Information System (INIS)

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author)

  9. Behavior genetic modeling of human fertility

    DEFF Research Database (Denmark)

    Rodgers, J L; Kohler, H P; Kyvik, K O;

    2001-01-01

    Behavior genetic designs and analysis can be used to address issues of central importance to demography. We use this methodology to document genetic influence on human fertility. Our data come from Danish twin pairs born from 1953 to 1959, measured on age at first attempt to get pregnant (First......Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for...

  10. Genetic bases for glaucoma.

    Science.gov (United States)

    Fuse, Nobuo

    2010-05-01

    Glaucoma is the leading cause of visual impairment and blindness throughout the world. Primary open angle glaucoma (POAG; MIM 137760) is the main type of glaucoma in most populations, and more than 20 genetic loci for POAG have been reported. Only three causative genes have been identified in these loci, viz. myocilin (MYOC), optineurin (OPTN), and WD repeat domain 36 (WDR36). However, mutations in these genes account for only a small percentage of the patients with POAG. Some of these glaucoma cases have a Mendelian inheritance pattern, and a considerable fraction of the cases result from a large number of variants in several genes each contributing small effects. Glaucoma is considered to be a common disease such as diabetes mellitus, coronary disease, Crohn disease, and several( )common cancers. The main technological approaches used to identify the genes associated with glaucoma are the candidate gene approach, linkage analysis, case-control association study, and genome-wide association study. Association studies have found about 27 genes related to POAG, but the glaucoma-causing effects of these genes need to be investigated in more detail. The current trend is to use case-control association studies or genome-wide association studies to map the genes associated with glaucoma. Such studies are expected to greatly advance our understanding of the genetic basis of glaucoma, and to provide information on the effectiveness of glaucoma therapy. This review gives an overview on the genetic aspects of glaucoma. PMID:20431268

  11. Mixture distributions in human genetics research.

    Science.gov (United States)

    Schork, N J; Allison, D B; Thiel, B

    1996-06-01

    The use of mixture distributions in genetics research dates back to at least the late 1800s when Karl Pearson applied them in an analysis of crab morphometry. Pearson's use of normal mixture distributions to model the mixing of different species of crab (or 'families' of crab as he referred to them) within a defined geographic area motivated further use of mixture distributions in genetics research settings, and ultimately led to their development and recognition as intuitive modelling devices for the effects of underlying genes on quantitative phenotypic (i.e. trait) expression. In addition, mixture distributions are now used routinely to model or accommodate the genetic heterogeneity thought to underlie many human diseases. Specific applications of mixture distribution models in contemporary human genetics research are, in fact, too numerous to count. Despite this long, consistent and arguably illustrious history of use, little mention of mixture distributions in genetics research is made in many recent reviews on mixture models. This review attempts to rectify this by providing insight into the role that mixture distributions play in contemporary human genetics research. Tables providing examples from the literature that describe applications of mixture models in human genetics research are offered as a way of acquainting the interested reader with relevant studies. In addition, some of the more problematic aspects of the use of mixture models in genetics research are outlined and addressed. PMID:8817796

  12. Genetically Modified Pig Models for Human Diseases

    Institute of Scientific and Technical Information of China (English)

    Nana Fan; Liangxue Lai

    2013-01-01

    Genetically modified animal models are important for understanding the pathogenesis of human disease and developing therapeutic strategies.Although genetically modified mice have been widely used to model human diseases,some of these mouse models do not replicate important disease symptoms or pathology.Pigs are more similar to humans than mice in anatomy,physiology,and genome.Thus,pigs are considered to be better animal models to mimic some human diseases.This review describes genetically modified pigs that have been used to model various diseases including neurological,cardiovascular,and diabetic disorders.We also discuss the development in gene modification technology that can facilitate the generation of transgenic pig models for human diseases.

  13. The genetics of neuroticism and human values.

    Science.gov (United States)

    Zacharopoulos, George; Lancaster, Thomas M; Maio, Gregory R; Linden, David E J

    2016-04-01

    Human values and personality have been shown to share genetic variance in twin studies. However, there is a lack of evidence about the genetic components of this association. This study examined the interplay between genes, values and personality in the case of neuroticism, because polygenic scores were available for this personality trait. First, we replicated prior evidence of a positive association between the polygenic neuroticism score (PNS) and neuroticism. Second, we found that the PNS was significantly associated with the whole human value space in a sinusoidal waveform that was consistent with Schwartz's circular model of human values. These results suggest that it is useful to consider human values in the analyses of genetic contributions to personality traits. They also pave the way for an investigation of the biological mechanisms contributing to human value orientations. PMID:26915771

  14. Human genetics of diabetic vascular complications

    Indian Academy of Sciences (India)

    Zi-Hui Tang; Zhou Fang; Linuo Zhou

    2013-12-01

    Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the cardiovascular system constitute a major public health problem. There is evidence demonstrating that genetic factors contribute to the risk of DVC genetic variants, structural variants, and epigenetic changes play important roles in the development of DVC. Genetic linkage studies have uncovered a number of genetic loci that may shape the risk of DVC. Genetic association studies have identified many common genetic variants for susceptibility to DVC. Structural variants such as copy number variation and interactions of gene × environment have also been detected by association analysis. Apart from the nuclear genome, mitochondrial DNA plays a critical role in regulation of development of DVC. Epigenetic studies have indicated epigenetic changes in chromatin affecting gene transcription in response to environmental stimuli, which provided a large body of evidence of regulating development of diabetes mellitus. Recently, a new window has opened on identifying rare and common genetic loci through next generation sequencing technologies. This review focusses on the current knowledge of the genetic and epigenetic basis of DVC. Ultimately, identification of genes or genetic loci, structural variants and epigenetic changes contributing to risk of or protection from DVC will help uncover the complex mechanism(s) underlying DVC, with crucial implications for the development of personalized medicine for diabetes mellitus and its complications.

  15. Mouse Genetic Models of Human Brain Disorders

    OpenAIRE

    Celeste eLeung; Zhengping eJia

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectua...

  16. Human genetic variability and HIV treatment response.

    Science.gov (United States)

    Haas, David W

    2006-07-01

    Access to potent antiretroviral medications greatly reduces morbidity and mortality due to HIV/AIDS, but drug toxicity limits treatment success in many individuals. The field of pharmacogenomics strives to understand the influence of human genetic variants in response to medications. Investigators have begun to identify associations among human genetic variants, predisposition to HIV drug toxicities, and likelihood of virologic response. These include associations among abacavir hypersensitivity reactions, HLA type, and hsp70-hom genotypes, and among CYP2B6 polymorphisms, efavirenz pharmacokinetics, and central nervous system symptoms. Pharmacogenomics also holds great promise to suggest novel targets for drug development. The discovery that a naturally occurring, nonfunctional variant of the HIV receptor gene CCR5 protected against HIV infection encouraged the development of CCR5 antagonists. Through continued translational and applied research, pharmacogenomics will ultimately benefit persons living with HIV worldwide by identifying new therapeutic targets and through individualized drug prescribing that is informed by human genetic testing. PMID:16608660

  17. Human genetics of infectious diseases: a unified theory.

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2007-02-21

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931

  18. Human embryonic stem cells carrying mutations for severe genetic disorders.

    Science.gov (United States)

    Frumkin, Tsvia; Malcov, Mira; Telias, Michael; Gold, Veronica; Schwartz, Tamar; Azem, Foad; Amit, Ami; Yaron, Yuval; Ben-Yosef, Dalit

    2010-04-01

    Human embryonic stem cells (HESCs) carrying specific mutations potentially provide a valuable tool for studying genetic disorders in humans. One preferable approach for obtaining these cell lines is by deriving them from affected preimplantation genetically diagnosed embryos. These unique cells are especially important for modeling human genetic disorders for which there are no adequate research models. They can be further used to gain new insights into developmentally regulated events that occur during human embryo development and that are responsible for the manifestation of genetically inherited disorders. They also have great value for the exploration of new therapeutic protocols, including gene-therapy-based treatments and disease-oriented drug screening and discovery. Here, we report the establishment of 15 different mutant human embryonic stem cell lines derived from genetically affected embryos, all donated by couples undergoing preimplantation genetic diagnosis in our in vitro fertilization unit. For further information regarding access to HESC lines from our repository, for research purposes, please email dalitb@tasmc.health.gov.il. PMID:20186514

  19. Population genetics of malaria resistance in humans.

    Science.gov (United States)

    Hedrick, P W

    2011-10-01

    The high mortality and widespread impact of malaria have resulted in this disease being the strongest evolutionary selective force in recent human history, and genes that confer resistance to malaria provide some of the best-known case studies of strong positive selection in modern humans. I begin by reviewing JBS Haldane's initial contribution to the potential of malaria genetic resistance in humans. Further, I discuss the population genetics aspects of many of the variants, including globin, G6PD deficiency, Duffy, ovalocytosis, ABO and human leukocyte antigen variants. Many of the variants conferring resistance to malaria are 'loss-of-function' mutants and appear to be recent polymorphisms from the last 5000-10 000 years or less. I discuss estimation of selection coefficients from case-control data and make predictions about the change for S, C and G6PD-deficiency variants. In addition, I consider the predicted joint changes when the two β-globin alleles S and C are both variable in the same population and when there is a variation for α-thalassemia and S, two unlinked, but epistatic variants. As more becomes known about genes conferring genetic resistance to malaria in humans, population genetics approaches can contribute both to investigating past selection and predicting the consequences in future generations for these variants. PMID:21427751

  20. Environmental and genetic interactions in human cancer

    International Nuclear Information System (INIS)

    Humans, depending upon their genetic make-up, differ in their susceptibility to the cancer-causing effects of extrinsic agents. Clinical and laboratory studies on the hereditary disorder, ataxia telangiectasia (AT) show that persons afflicted with this are cancer-prone and unusually sensitive to conventional radiotherapy. Their skin cells, when cultured, are hypersensitive to killing by ionizing radiation, being defective in the enzymatic repair of radiation-induced damange to the genetic material, deoxyribonucleic acid (DNA). This molecular finding implicates DNA damage and its imperfect repair as an early step in the induction of human cancer by radiation and other carcinogens. The parents of AT patients are clincally normal but their cultured cells are often moderately radiosensitive. The increased radiosensitivity of cultured cells offers a means of identifying a presumed cancer-prone subpopulation that should avoid undue exposure to certain carcinogens. The radioresponse of cells from patients with other cancer-associated genetic disorders and persons suspected of being genetically predisposed to radiation-induced cancer has also been measured. Increased cell killing by γ-rays appears in the complex genetic disease, tuberous sclerosis. Cells from cancer-stricken members of a leukemia-prone family are also radiosensitive, as are cells from one patient with radiation-associated breast cancer. These radiobiological data, taken together, strongly suggest that genetic factors can interact with extrinsic agents and thereby play a greater causative role in the development of common cancers in man than previously thought. (L.L.)

  1. Development of genetically engineered human sperm immunocontraceptives

    OpenAIRE

    Naz, Rajesh K.

    2009-01-01

    Contraceptive vaccines targeting sperm are an exciting proposition. This review is focused on anti-sperm contraceptive vaccines and genetically engineered human antibodies that can be used as immunocontraceptives. Various methods of vaccinology and antibody engineering have been used to obtain multi-epitope contraceptive vaccines and human single chain variable fragment (scFv) antibodies from immunoinfertile and vasectomized men. Contraceptive vaccines comprised of various sperm antigens, pep...

  2. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David;

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals ...

  3. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord

    Directory of Open Access Journals (Sweden)

    Van Tendeloo Viggo FI

    2007-12-01

    Full Text Available Abstract Background Bone marrow-derived stromal cells (MSC are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (hMSC with enhanced green fluorescent protein (EGFP and neurotrophin (NT3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. Results First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. Conclusion In this study, we

  4. Genetic Heterogeneity in Algerian Human Populations

    Science.gov (United States)

    Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David

    2015-01-01

    The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region. PMID:26402429

  5. A current genetic and epigenetic view on human aging mechanisms.

    Science.gov (United States)

    Ostojić, Sala; Pereza, Nina; Kapović, Miljenko

    2009-06-01

    The process of aging is one of the most complex and intriguing biological phenomenons. Aging is a genetically regulated process in which the organism's maximum lifespan potential is pre-determined, while the rate of aging is influenced by environmental factors and lifestyle. Considering the complexity of mechanisms involved in the regulation of aging process, up to this date there isn't a major, unifying theory which could explain them. As genetic/epigenetic and environmental factors both inevitably influence the aging process, here we present a review on the genetic and epigenetic regulation of the most important molecular and cellular mechanisms involved in the process of aging. Based on the studies on oxidative stress, metabolism, genome stability, epigenetic modifications and cellular senescence in animal models and humans, we give an overview of key genetic and molecular pathways related to aging. As most of genetic manipulations which influence the aging process also affect reproduction, we discuss aging in humans as a post-reproductive genetically determined process. After the age of reproductive success, aging continously progresses which clinically coincides with the onset of most chronic diseases, cancers and dementions. As evolution shapes the genomes for reproductive success and not for post-reproductive survival, aging could be defined as a protective mechanism which ensures the preservation and progress of species through the modification, trasmission and improvement of genetic material. PMID:19662799

  6. Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets

    DEFF Research Database (Denmark)

    Liu, Guo-Hua; Gasser, Robin B.; Su, Ang;

    2012-01-01

    The whipworm, Trichuris trichiura, causes trichuriasis in ~600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis ...

  7. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  8. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  9. Genetic diversity between human metapneumovirus subgroups

    International Nuclear Information System (INIS)

    Complete consensus nucleotide sequences were determined for human metapneumovirus (HMPV) isolates CAN97-83 and CAN98-75, representing the two proposed genotypes or genetic subgroups of HMPV. The overall level of genome nucleotide sequence identity and aggregate proteome amino acid sequence identity between the two HMPV subgroups were 80 and 90%, respectively, similar to the respective values of 81 and 88% between the two antigenic subgroups of human respiratory syncytial virus (HRSV). The diversity between HMPV subgroups was greatest for the SH and G proteins (59 and 37% identity, respectively), which were even more divergent than their HRSV counterparts (72 and 55% cross-subgroup identity, respectively). It is reasonable to anticipate that the two genetic subgroups of HMPV represent antigenic subgroups approximately comparable to those of HRSV

  10. Genetic causes of human heart failure

    OpenAIRE

    Morita, Hiroyuki; Seidman, Jonathan; Seidman, Christine E.

    2005-01-01

    Factors that render patients with cardiovascular disease at high risk for heart failure remain incompletely defined. Recent insights into molecular genetic causes of myocardial diseases have highlighted the importance of single-gene defects in the pathogenesis of heart failure. Through analyses of the mechanisms by which a mutation selectively perturbs one component of cardiac physiology and triggers cell and molecular responses, studies of human gene mutations provide a window into the compl...

  11. Assessment of genetic risk for human exposure to radiation

    International Nuclear Information System (INIS)

    Full text: The methodology of assessing the genetic risk of radiation exposure is based on the concept of 'hitting the target' in development of which N.V. Timofeeff-Ressovsky has played and important role. To predict genetic risk posed by irradiation, the U N Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has worked out direct and indirect methods of assessment, extrapolation, integral and palpitation criteria of risk analysis that together permit calculating the risk from human exposure on the basis of data obtained for mice. Based on the reports of UNSCEAR for the period from 1958 to 2001 the paper presents a retrospective analysis of the use of direct methods and the doubling dose method for quantitative determination of the genetic risk of human exposure expressed as different hereditary diseases. As early as 1962 UNSCEAR estimated the doubling dose (a dose causing as many mutations as those occurring spontaneously during one generation) at 1 Gy for cases of exposure to ionizing radiations with low LET at a low dose rate and this value was confirmed in the next UNSCEAR reports up to now. For cases of acute irradiation the doubling dose was estimated at 0,3-0,4 Gy for the period under review. The paper considers the evolution of the concepts of human natural hereditary variability which is a basis for assessing the risk of exposure by the doubling dose method. The level of human natural genetic variability per 1 000 000 newborns is estimated at 738 000 hereditary diseases including mendelian, chromosomal and multifactorial ones. The greatest difficulties in assessing the doubling dose value were found to occur in the case of multifactorial diseases the pheno typical expression of which depends on mutational events in polygenic systems and on numerous environmental factors. The introduction in calculations of the potential recoverability correction factor (RPCF) made it possible to assess the genetic risk taking into account this class of

  12. Genetical genomic determinants of alcohol consumption in rats and humans

    Directory of Open Access Journals (Sweden)

    Mangion Jonathan

    2009-10-01

    Full Text Available Abstract Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs. Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. Results In the HXB/BXH recombinant inbred (RI rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. Conclusion Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume

  13. Genetic Testing and Its Implications: Human Genetics Researchers Grapple with Ethical Issues.

    Science.gov (United States)

    Rabino, Isaac

    2003-01-01

    Contributes systematic data on the attitudes of scientific experts who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. Finds that they are highly supportive of voluntary testing and the right to know one's genetic heritage. Calls for greater genetic literacy. (Contains 87 references.) (Author/NB)

  14. Canonical Genetic Signatures of the Adult Human Brain

    OpenAIRE

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Anil G. Jegga; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L; Menche, Jörge; Szafer, Aaron; Collman, Forrest

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological ann...

  15. GENETICS OF HUMAN AGE RELATED DISORDERS.

    Science.gov (United States)

    Srivastava, I; Thukral, N; Hasija, Y

    2015-01-01

    Aging is an inevitable biological phenomenon. The incidence of age related disorders (ARDs) such as cardiovascular diseases, cancer, arthritis, dementia, osteoporosis, diabetes, neurodegenerative diseases increase rapidly with aging. ARDs are becoming a key social and economic trouble for the world's elderly population (above 60 years), which is expected to reach 2 billion by 2050. Advancement in understanding of genetic associations, particularly through genome wide association studies (GWAS), has revealed a substantial contribution of genes to human aging and ARDs. In this review, we have focused on the recent understanding of the extent to which genetic predisposition may influence the aging process. Further analysis of the genetic association studies through pathway analysis several genes associated with multiple ARDs have been highlighted such as apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), cadherin 13 (CDH13), CDK5 regulatory subunit associated protein 1 (CDKAL-1), methylenetetrahydrofolate reductase (MTHFR), disrupted in schizophrenia 1 (DISC1), nitric oxide synthase 3 (NOS3), paraoxonase 1 (PON1), indicating that these genes could play a pivotal role in ARD causation. These genes were found to be significantly enriched in Jak-STAT signalling pathway, asthma and allograft rejection. Further, interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), estrogen receptor1 (ESR1), transforming growth factor, beta 1(TGFB1) and calmodulin 1 (CALM1) were found to be highly interconnected in network analysis. We believe that extensive research on the presence of common genetic variants among various ARDs may facilitate scientists to understand the biology behind ARDs causation. PMID:26856084

  16. Genetics of human sensitivity to ultraviolet radiation

    Science.gov (United States)

    Cleaver, James E.

    1994-07-01

    the major human health effects of solar and artificial UV light occur from the UVB and UVC wavelength ranges and involve a variety of short-term and long-term deleterious changes to the skin and eyes. the more important initial damage to cellular macromolecules involves dimerization of adjacent pyrimidines in DNA to produce cyclobutane pyrimidine dimes, (6-4) pyrimidine- pyrimidone, and (6-4) dewar photoproducts. these photoproducts can be repaired by a genetically regulated enzyme system (nucleotide excision repair) which removes oligonucleotides 29-30 nucleotides long that contain the photoproducts, and synthesizes replacement patches. At least a dozen gene products are involved in the process of recognizing photoproducts in DNA, altering local DNA helicity and cleaving the polynucleotide chain at defined positions either side of a photoproduct. Hereditary mutations in many of these genes are recognized in the human genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Several of the gene products have other functions involving the regulation of gene transcription which accounts for the complex clinical presentation of repair deficient diseases that involve sensitivity of the skin and eyes to UV light, increased solar carcinogenesis (in XP), demyelination, and ganglial calcification (in CS), hair abnormalities (in TTD), and developmental and neurological abnormalities

  17. Landscape genetics reveals focal transmission of a human macroparasite.

    Directory of Open Access Journals (Sweden)

    Charles D Criscione

    Full Text Available Macroparasite infections (e.g., helminths remain a major human health concern. However, assessing transmission dynamics is problematic because the direct observation of macroparasite dispersal among hosts is not possible. We used a novel landscape genetics approach to examine transmission of the human roundworm Ascaris lumbricoides in a small human population in Jiri, Nepal. Unexpectedly, we found significant genetic structuring of parasites, indicating the presence of multiple transmission foci within a small sampling area ( approximately 14 km(2. We analyzed several epidemiological variables, and found that transmission is spatially autocorrelated around households and that transmission foci are stable over time despite extensive human movement. These results would not have been obtainable via a traditional epidemiological study based on worm counts alone. Our data refute the assumption that a single host population corresponds to a single parasite transmission unit, an assumption implicit in many classic models of macroparasite transmission. Newer models have shown that the metapopulation-like pattern observed in our data can adversely affect targeted control strategies aimed at community-wide impacts. Furthermore, the observed metapopulation structure and local mating patterns generate an excess of homozygotes that can accelerate the spread of recessive traits such as drug resistance. Our study illustrates how molecular analyses complement traditional epidemiological information in providing a better understanding of parasite transmission. Similar landscape genetic approaches in other macroparasite systems will be warranted if an accurate depiction of the transmission process is to be used to inform effective control strategies.

  18. Development and validation of tools to assess genetic discrimination and genetically based racism.

    Science.gov (United States)

    Parrott, Roxanne L; Silk, Kami J; Dillow, Megan R; Krieger, Janice L; Harris, Tina M; Condit, Celeste M

    2005-07-01

    It is possible that communication from mass media, public health or consumer advertising sources about human genetics and health may reify stereotypes of racialized social groups, perhaps cueing or exacerbating discriminatory and racist attitudes. This research used a multifaceted approach to assess lay perceptions of genetic discrimination and genetically based racism (N = 644). Two tools for use in strategic planning efforts associated with communicating about human genetics and health, the genetic discrimination instrument (GDI) and the genetically based racism instrument (GBRI), were derived. The GDI emerged as having five dimensions associated with lay perceptions of genetic discrimination. The GBRI was found to be unidimensional. Scale validation activities supported the tools' concurrent and discriminant validity characteristics. Significant differences between blacks and whites on the criminal control rights, social reproductive rights and employer rights factors as well as the GBRI were found. We recommend application of these screening tools prior to national dissemination of messages associated with genes and disease susceptibility, including school and university-based curricula. PMID:16080668

  19. Molecular Genetics of Williams Syndrome: Windows into Human Biology

    OpenAIRE

    Julie Korenberg

    2009-01-01

    Genetics is my favorite way of thinking: Williams syndrome seen through the eyes of a geneticist. Williams syndrome (WS) is the most compelling model in which to link the basis of human emotion and behavior to their biological origins. The explanatory power of human genetics in WS rests on the recent revolution in understanding the human genome but more specifically on the ability to link genetic with behavioral variation at high resolution. WS is due to the deletion of about 25 g...

  20. Genetic variability in human immunodeficiency viruses.

    Science.gov (United States)

    Alizon, M; Montagnier, L

    1987-01-01

    The genetic polymorphism of the human immunodeficiency virus (HIV) has been established. In addition to the nucleic acid variations responsible for the restriction map polymorphism, isolates of HIV differ significantly at the protein level, especially in the envelope, in terms of amino acid substitutions and reciprocal insertions-deletions. In this investigation, molecular cloning and nucleotide sequencing of the genomes of 2 HIV isolates obtained from patients in Zaire were carried out. The 1st isolate was recovered in 1983 from a 24-year-old woman with acquired immunodeficiency syndrome (AIDS); the 2nd was isolated in 1985 from a 7-year-old boy with AIDS-related complex (ARC). The genetic organization of these isolates was identical to that found in other HIV isolates from the US and Europe, particularly in terms of the conservation of the central region located between the pol and env genes composed of a series of overlapping open reading frames. There were, however, substantial differences in the primary structure of the viral proteins, with env being more variable than the gag and pol genes. Alignment of the envelopes revealed hypervariable domains with a great number of mutations and reciprocal insertions and deletions. Overall, this analysis suggests that the African and American HIV infections have a common origin given their identical genetic organization. The sequence variability reflects a divergent evolutionary process, and the fact that the 2 Zairian isolates were more divergent than American isolates studied by others indicates a longer evolution of HIV in Africa. An essential research goal is to identify the HIV envelope domains responsible for the virus-cellular surface antigen interaction since an immune response against these epitopes could elicit neutralizing antibodies for use in a vaccine. PMID:3439717

  1. Genetic base of Brazilian irrigated rice cultivars

    Directory of Open Access Journals (Sweden)

    Hudson de Oliveira Rabelo

    2015-08-01

    Full Text Available The aim of this study was to estimate the genetic base of Brazilian irrigated rice cultivars released in the period from 1965 to 2012. The genealogies of the cultivars were obtained based on information from marketing folders, websites, crossings records, and scientific articles. The following factors were calculated: relative genetic contribution (RGC, accumulated genetic contribution (AGC, frequency (in percentage of each ancestor in the genealogy (FAG, number of ancestors that constitute each cultivar (NAC,number of ancestors responsible for 60%, 70%, 80% and 90% of the genetic base (NAGB, and average number of ancestor per cultivar (ANAC. The cultivars were also grouped based on the period of release (1965-1980, 1981-1990, 1991-2000 and 2001-2012. For each grouping, the previously described factors were also estimated. A total of 110 cultivars were studied and it was concluded that the genetic base of Brazilian irrigated rice cultivars is narrow.

  2. Genetic diversity of human RNase 8

    Directory of Open Access Journals (Sweden)

    Chan Calvin C

    2012-01-01

    Full Text Available Abstract Background Ribonuclease 8 is a member of the RNase A family of secretory ribonucleases; orthologs of this gene have been found only in primate genomes. RNase 8 is a divergent paralog of RNase 7, which is lysine-enriched, highly conserved, has prominent antimicrobial activity, and is expressed in both normal and diseased skin; in contrast, the physiologic function of RNase 8 remains uncertain. Here, we examine the genetic diversity of human RNase 8, a subject of significant interest given the existence of functional pseudogenes (coding sequences that are otherwise intact but with mutations in elements crucial for ribonucleolytic activity in non-human primate genomes. Results RNase 8 expression was detected in adult human lung, spleen and testis tissue by quantitative reverse-transcription PCR. Only two single-nucleotide polymorphisms and four unique alleles were identified within the RNase 8 coding sequence; nucleotide sequence diversity (π = 0.00122 ± 0.00009 per site was unremarkable for a human nuclear gene. We isolated transcripts encoding RNase 8 via rapid amplification of cDNA ends (RACE and RT-PCR which included a distal potential translational start site followed by sequence encoding an additional 30 amino acids that are conserved in the genomes of several higher primates. The distal translational start site is functional and promotes RNase 8 synthesis in transfected COS-7 cells. Conclusions These results suggest that RNase 8 may diverge considerably from typical RNase A family ribonucleases and may likewise exhibit unique function. This finding prompts a reconsideration of what we have previously termed functional pseudogenes, as RNase 8 may be responding to constraints that promote significant functional divergence from the canonical structure and enzymatic activity characteristic of the RNase A family.

  3. Genetic and biomarker studies of human longevity

    NARCIS (Netherlands)

    Deelen, Joris

    2014-01-01

    The aim of this thesis was to identify novel lifespan regulating loci that influence human longevity and population mortality. To this end, we performed two genome-wide association studies, one of long-lived individuals from the family-based Leiden Longevity Study (LLS) and an extended one of long-l

  4. [Influence of genetic factors on human sexual orientation. Review].

    Science.gov (United States)

    Rodríguez-Larralde, Alvaro; Paradisi, Irene

    2009-09-01

    Human sexual orientation is a complex trait, influenced by several genes, experiential and sociocultural factors. These elements interact and produce a typical pattern of sexual orientation towards the opposite sex. Some exceptions exist, like bisexuality and homosexuality, which seem to be more frequent in males than females. Traditional methods for the genetic study of behavior multifactorial characteristics consist in detecting the presence of familial aggregation. In order to identify the importance of genetic and environmental factors in this aggregation, the concordance of the trait for monozygotic and dizygotic twins and for adopted sibs, reared together and apart, is compared. These types of studies have shown that familial aggregation is stronger for male than for female homosexuality. Based on the threshold method for multifactorial traits, and varying the frequency of homosexuality in the population between 4 and 10%, heritability estimates between 0.27 and 0.76 have been obtained. In 1993, linkage between homosexuality and chromosomal region Xq28 based on molecular approaches was reported. Nevertheless, this was not confirmed in later studies. Recently, a wide search of the genome has given significant or close to significant linkage values with regions 7q36, 8p12 and 10q26, which need to be studied more closely. Deviation in the proportion of X chromosome inactivation in mothers of homosexuals seems to favor the presence of genes related with sexual orientation in this chromosome. There is still much to be known about the genetics of human homosexuality. PMID:19961060

  5. Metabolic thrift and the genetic basis of human obesity

    OpenAIRE

    O’Rourke, Robert W.

    2014-01-01

    Evolution has molded metabolic thrift within humans, a genetic heritage that, when thrust into our modern “obesogenic” environment, creates the current obesity crisis. Modern genetic analysis has identified genetic and epigenetic contributors to obesity, an understanding of which will guide the development of environmental, pharmacologic, and genetic therapeutic interventions. “The voyage was so long, food and water ran out. One hundred of the paddlers died; forty men remained. The voyager...

  6. The ADAMTS(L) family and human genetic disorders.

    Science.gov (United States)

    Le Goff, Carine; Cormier-Daire, Valérie

    2011-10-15

    ADAMTS designates a family of 19 secreted enzymes, whose the first member ADAMTS1 was described in 1997. The ADAMTS family has a role in extracellular matrix degradation and turn over and has previously been involved in various human biological processes, including connective tissue structure, cancer, coagulation, arthritis, angiogenesis and cell migration. More recently, the ADAMTS(L) family has been described, sharing the same ancillary domain but distinct by the absence of any enzyme activity. Mutations in ADAMTS13, ADAMTS2, ADAMTS10, ADAMTS17, ADAMTSL2 and ADAMTSL4 have been identified in distinct human genetic disorders ranging from thrombotic thrombocytopenic purpura to acromelic dysplasia. The aim of our review was to emphasize the role of this family in the extracellular matrix based on human phenotypes so far identified in relation with ADAMTS(L) mutations. PMID:21880666

  7. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  8. Host genetic variation impacts microbiome composition across human body sites

    OpenAIRE

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T.; Timothy D Spector; Keinan, Alon; Ley, Ruth E.; Gevers, Dirk; Clark, Andrew G.

    2015-01-01

    Background The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and mic...

  9. Human genetics in Johannesburg, South Africa: past, present and future.

    Science.gov (United States)

    Kromberg, Jennifer G R; Krause, Amanda

    2013-12-01

    Genetic services were set up in Johannesburg, South Africa, in the late 1960s, but only became widespread and formalised after the first Professor of Human Genetics, Trefor Jenkins, was installed at the University of the Witwatersrand in 1974. The first services involved chromosome studies, and these developed into genetic counselling services. Prenatal diagnosis began to be offered, particularly for older women at risk for chromosome abnormalities in the fetus, and those at risk for neural tube defects. Genetic screening was then initiated for the Jewish community because of their high carrier rate for Tay-Sachs disease. Educational courses in human genetics were offered at Wits Medical School, and medical as well as other health professionals began to be trained. Research, supported by national and international bodies, was integral in the activities of the Department (now Division) of Human Genetics and focused on genetic conditions affecting the generally understudied black community. In the late 1980s the first training programme for genetic counsellors was started at MSc level, and postgraduate scientists at MSc and PhD levels studied in and qualified through the Department. At the same time molecular genetic laboratories were set up. In the late 1990s training for medical geneticists was initiated. Extensive high-quality genetic services developed over the four decades were comparable to those of most other departments in developed countries.  PMID:24300637

  10. Key concepts in human genetics: understanding the complex phenotype.

    Science.gov (United States)

    Gibson, William T

    2009-01-01

    The recent sequencing of a reference human genome has generated a large number of DNA-based tools, which are being used to locate genes that contribute to disease. These tools have also enabled studies of the genetics of non-disease traits such as athletic fitness. Sport scientists should keep in mind three major factors when designing such studies and interpreting the literature. First of all, the methods used to assign a biological trait (be it performance related or disease related) to a specific gene are not as powerful as is commonly believed. Second, the methods used are thought to be more robust for disease-related traits than for normal physical characteristics, likely because there are many more biological factors contributing to the latter. Third, additional levels of variability continue to be uncovered in the human genome; these may ultimately contribute more to physical differences between human beings than the levels studied over the past decade. This introductory chapter will aim to equip the reader with the necessary vocabulary to understand and interpret genetic studies targeted to sport fitness and sport-related injury. PMID:19696504

  11. Alu repeats as markers for human population genetics

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Bazan, H. [Louisiana State Univ., New Orleans, LA (United States). Medical Center] [and others

    1993-09-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 97.9% nucleotide identity with each other and an average of 98.9% nucleotide identity with the HS subfamily consensus sequence. HS Alu family members are thought to be derived from a single source ``master`` gene, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 in. and 3 in. unique flanking DNA sequences from each HS Alu that allows the locus to be assayed for the presence or absence of an Alu repeat. Individual HS Alu sequences were found to be either monomorphic or dimorphic for the presence or absence of each repeat. The monomorphic HS Alu family members inserted in the human genome after the human/great ape divergence (which is thought to have occurred 4--6 million years ago), but before the radiation of modem man. The dimorphic HS Alu sequences inserted in the human genome after the radiation of modem man (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project as well. HS Alu family member insertion dimorphism differs from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) because individuals share HS Alu family member insertions based upon identity by descent from a common ancestor as a result of a single event which occurred one time within the human population. The VNTR and RFLP polymorphisms may arise multiple times within a population and are identical by state only.

  12. Human Aggression Across the Lifespan: Genetic Propensities and Environmental Moderators

    OpenAIRE

    Tuvblad, Catherine; Baker, Laura A

    2011-01-01

    This chapter reviews the recent evidence of genetic and environmental influences on human aggression. Findings from a large selection of the twin and adoption studies that have investigated the genetic and environmental architecture of aggressive behavior are summarized. These studies together show that about half (50%) of the variance in aggressive behavior is explained by genetic influences in both males and females, with the remaining 50% of the variance being explained by environmental fa...

  13. Genetical genomic determinants of alcohol consumption in rats and humans

    OpenAIRE

    Mangion Jonathan; Pravenec Michal; Hübner Norbert; Heinig Matthias; Bell Richard L; Kechris Katerina; Richardson Heather N; Koob George; Goldman David; Hodgkinson Colin; Flodman Pam; Printz Morton; Saba Laura; Tabakoff Boris; Legault Lucie

    2009-01-01

    Abstract Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping...

  14. Global human genetics of HIV-1 infection and China

    Institute of Scientific and Technical Information of China (English)

    Tuo Fu ZHU; Tie Jian FENG; Xin XIAO; Hui WANG; Bo Ping ZHOU

    2005-01-01

    Genetic polymorphisms in human genes can influence the risk for HIV-1 infection and disease progression, although the reported effects of these alleles have been inconsistent. This review highlights the recent discoveries on global and Chinese genetic polymorphisms and their association with HIV-1 transmission and disease progression.

  15. Potential International Approaches to Ownership/Control of Human Genetic Resources.

    Science.gov (United States)

    Rhodes, Catherine

    2016-09-01

    In its governance activities for genetic resources, the international community has adopted various approaches to their ownership, including: free access; common heritage of mankind; intellectual property rights; and state sovereign rights. They have also created systems which combine elements of these approaches. While governance of plant and animal genetic resources is well-established internationally, there has not yet been a clear approach selected for human genetic resources. Based on assessment of the goals which international governance of human genetic resources ought to serve, and the implications for how they will be accessed and utilised, it is argued that common heritage of mankind will be the most appropriate approach to adopt to their ownership/control. It does this with the aim of stimulating discussion in this area and providing a starting point for deeper consideration of how a common heritage of mankind, or similar, regime for human genetic resources would function and be implemented. PMID:26297608

  16. Insights into the genetic foundations of human communication

    OpenAIRE

    Graham, S.; Deriziotis, P.; Fisher, S

    2015-01-01

    The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss ...

  17. Human Genetics and the Anglo-Saxon Culture

    OpenAIRE

    Perbal, Laurence

    2012-01-01

    Human genetics has grown principally in the United States and England from the early 20th century. The causes for that are scientific, ideological and cultural. Firstly, Mendelism is well established in Anglo-Saxon geneticists’ community, reinforcing hereditarianism. In comparison, in most countries of continental Europe, biological tradition is Lamarckian, thus the belief in heredity of acquired traits still dominates. Moreover, human genetics in the early 20th is deeply related to the eugen...

  18. Metagenomic analysis of genetic variation in human gut microbial species

    OpenAIRE

    Zhu, Ana Cheng

    2015-01-01

    Microbial species (bacteria and archaea) in the gut are important for human health in various ways. Not only does the species composition vary considerably within the human population, but each individual also appears to have its own strains of a given species. While it is known from studies of bacterial pan-genomes, that genetic variation between strains can differ considerably, such as in Escherichia coli, the extent of genetic variation of strains for abundant gut species has not been surv...

  19. Teaching human genetics in biochemistry by computer literature searching.

    OpenAIRE

    Proud, V. K.; Schmidt, F J; Johnson, E D; Mitchell, J. A.

    1989-01-01

    We describe a new user-intense-learning experience that incorporates the teaching of clinical and research applications of human genetics in biochemistry while training first-year medical students to develop skills in computer access to the literature. Human genetics was incorporated into the biochemistry curriculum by providing each student with experience in on-line literature searching in MEDLINE, using Grateful Med, in order to write an abstract about a specific inherited biochemical diso...

  20. Functional evaluation of genetic variation in complex human traits

    OpenAIRE

    Peters, Derek T.; Musunuru, Kiran

    2012-01-01

    Genome-wide association studies and, more recently, next-generation sequencing studies have accelerated the investigation of complex human traits by providing a wealth of association data linking genetic variants to diseases and other phenotypic traits. These data promise to transform our understanding of the molecular pathways underlying complex human traits, but only if functional evaluation of the novel genetic variants is undertaken. Here, we review recent examples in which such functiona...

  1. Genetic signatures of exceptional longevity in humans.

    Directory of Open Access Journals (Sweden)

    Paola Sebastiani

    Full Text Available Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years. Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105. For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1 and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different "genetic signatures" of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.

  2. Genetic and environmental factors in experimental and human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, S.; Takebe, H.; Gelboin, H.V.; MaChahon, B.; Matsushima, T.; Sugimura, T.

    1980-01-01

    Recently technological advances in assaying mutagenic principles have revealed that there are many mutagens in the environment, some of which might be carcinogenic to human beings. Other advances in genetics have shown that genetic factors might play an important role in the induction of cancer in human beings, e.g., the high incidence of skin cancers in patients with xeroderma pigmentosum. These proceedings deal with the relationships between genetic and environmental factors in carcinogenesis. The contributors cover mixed-function oxidases, pharmacogenetics, twin studies, DNA repair, immunology, and epidemiology.

  3. The support of human genetic evidence for approved drug indications.

    Science.gov (United States)

    Nelson, Matthew R; Tipney, Hannah; Painter, Jeffery L; Shen, Judong; Nicoletti, Paola; Shen, Yufeng; Floratos, Aris; Sham, Pak Chung; Li, Mulin Jun; Wang, Junwen; Cardon, Lon R; Whittaker, John C; Sanseau, Philippe

    2015-08-01

    Over a quarter of drugs that enter clinical development fail because they are ineffective. Growing insight into genes that influence human disease may affect how drug targets and indications are selected. However, there is little guidance about how much weight should be given to genetic evidence in making these key decisions. To answer this question, we investigated how well the current archive of genetic evidence predicts drug mechanisms. We found that, among well-studied indications, the proportion of drug mechanisms with direct genetic support increases significantly across the drug development pipeline, from 2.0% at the preclinical stage to 8.2% among mechanisms for approved drugs, and varies dramatically among disease areas. We estimate that selecting genetically supported targets could double the success rate in clinical development. Therefore, using the growing wealth of human genetic data to select the best targets and indications should have a measurable impact on the successful development of new drugs. PMID:26121088

  4. Genetic studies in human and murine giardiasis.

    OpenAIRE

    Roberts-Thomson, I C; Mitchell, G.F.; Anders, R F; Tait, B D; Kerlin, P; Kerr-Grant, A; Cavanagh, P

    1980-01-01

    Genetic markers were analysed in 48 adults who appeared to have a prolonged infection with Giardia lamblia. The frequency of ABO blood groups, Rhesus blood groups, and Gm phenotypes was similar to that in control subjects. However, there was a higher than expected frequency of HLA antigens A1 (observed 46 . 7%, expected 32%) and B12 (observed 47 . 8%, expected 25 . 8%) and a higher than expected frequency of the phenotypes A1/A2 and B12/B27. Genetic studies were also performed with inbred str...

  5. New Iris Localization Method Based on Chaos Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jia Dongli; Muhammad Khurram Khan; Zhang Jiashu

    2005-01-01

    This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the iris. Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugmans algorithm.

  6. Genetic Characterization of Human Populations: From ABO to a Genetic Map of the British People

    Science.gov (United States)

    Bodmer, Walter

    2015-01-01

    From 1900, when Landsteiner first described the ABO blood groups, to the present, the methods used to characterize the genetics of human populations have undergone a remarkable development. Concomitantly, our understanding of the history and spread of human populations across the earth has become much more detailed. As has often been said, a better understanding of the genetic relationships among the peoples of the world is one of the best antidotes to racial prejudices. Such an understanding provides us with a fascinating, improved insight into our origins as well as with valuable information about population differences that are of medical relevance. The study of genetic polymorphisms has been essential to the analysis of the relationships between human populations. The evolution of methods used to study human polymorphisms and the resulting contributions to our understanding of human health and history is the subject of this Perspectives. PMID:25657345

  7. Next-generation sequencing technologies and applications for human genetic history and forensics

    Directory of Open Access Journals (Sweden)

    Berglund Eva C

    2011-11-01

    Full Text Available Abstract Rapid advances in the development of sequencing technologies in recent years have enabled an increasing number of applications in biology and medicine. Here, we review key technical aspects of the preparation of DNA templates for sequencing, the biochemical reaction principles and assay formats underlying next-generation sequencing systems, methods for imaging and base calling, quality control, and bioinformatic approaches for sequence alignment, variant calling and assembly. We also discuss some of the most important advances that the new sequencing technologies have brought to the fields of human population genetics, human genetic history and forensic genetics.

  8. Genetic Expeditions with Haploid Human Cells

    NARCIS (Netherlands)

    Jae, L.T.

    2015-01-01

    Random mutagenesis followed by phenotypic selection (forward genetics) is among the most powerful tools to elucidate the molecular basis of intricate biological processes and has been used in a suite of model organisms throughout the last century. However, its application to cultured mammalian cells

  9. DNA-based human karyotype

    Energy Technology Data Exchange (ETDEWEB)

    Mayall, B.H.; Carrano, A.V.; Moore, C.H. II; Ashworth, L.K.; Bennett, D.E.; Mendelsohn, M.L.

    1984-01-01

    Image cytometry and computer analysis are used to determine the relative DNA content and the DNA-based centromeric index of the 24 chromosomes of the human karyotype. A two-step procedure is used. Chromosomes of cells in metaphase first are stained with quinacrine and identified visually by their fluorescent Q-band patterns. They then are stained for DNA using gallocyanin-chrome alum. The chromosome images are scanned and recorded as digital values of optical density by an CYDAC image cytometric microscope system, CYDAC. The digital images are processed by computer to measure for each chromosome the relative DNA stain contents of the whole chromosome and of the p and q arms and the DNA-based centromeric index. About ten cells are analyzed for each of the donors, who are phenotypically normal men and women. The chromosome measurements are pooled by chromosome type for each donor and are compared among donors. The means of the chromosome measurements give the DNA-based human karyotype. Analysis of the DNA-based data shows that some chromosomes or portions of chromosomes vary significantly among donors. These variants do not correlate with detectable morphologic polymorphisms, such as Q- or C-band variants; thus they represent new and otherwise undetectable chromosome polymorphisms whose genetic basis and clinical significance are yet to be determined. 54 references, 1 figure, 3 tables.

  10. Molecular genetic analysis of human alcohol dehydrogenase

    OpenAIRE

    Duester, G; Wesley Hatfield, G.; Smith, M.

    1985-01-01

    Human alcohol dehydrogenase (ADH) consists of a complex group of isozymes encoded by at least five non-identical genes, two of which have previously been shown through enzymatic analysis to possess polymorphic variants. Using a cDNA probe the ADH2gene encoding the β subunit of human ADH was mapped to human chromosome 4. The cDNA probe for ADH2 was also used to detect a restriction fragment length polymorphism present in human populations. This polymorphism may help establish whether certain A...

  11. Human longevity: Genetics or Lifestyle? It takes two to tango.

    Science.gov (United States)

    Passarino, Giuseppe; De Rango, Francesco; Montesanto, Alberto

    2016-01-01

    Healthy aging and longevity in humans are modulated by a lucky combination of genetic and non-genetic factors. Family studies demonstrated that about 25 % of the variation in human longevity is due to genetic factors. The search for genetic and molecular basis of aging has led to the identification of genes correlated with the maintenance of the cell and of its basic metabolism as the main genetic factors affecting the individual variation of the aging phenotype. In addition, studies on calorie restriction and on the variability of genes associated with nutrient-sensing signaling, have shown that ipocaloric diet and/or a genetically efficient metabolism of nutrients, can modulate lifespan by promoting an efficient maintenance of the cell and of the organism. Recently, epigenetic studies have shown that epigenetic modifications, modulated by both genetic background and lifestyle, are very sensitive to the aging process and can either be a biomarker of the quality of aging or influence the rate and the quality of aging. On the whole, current studies are showing that interventions modulating the interaction between genetic background and environment is essential to determine the individual chance to attain longevity. PMID:27053941

  12. Human genome and genetic sequencing research and informed consent

    International Nuclear Information System (INIS)

    On March 29, 2001, the Ethical Guidelines for Human Genome and Genetic Sequencing Research were established. They have intended to serve as ethical guidelines for all human genome and genetic sequencing research practice, for the purpose of upholding respect for human dignity and rights and enforcing use of proper methods in the pursuit of human genome and genetic sequencing research, with the understanding and cooperation of the public. The RadGenomics Project has prepared a research protocol and informed consent document that follow these ethical guidelines. We have endeavored to protect the privacy of individual information, and have established a procedure for examination of research practices by an ethics committee. Here we report our procedure in order to offer this concept to the patients. (authors)

  13. A Model of Genetic Variation in Human Social Networks

    CERN Document Server

    Fowler, James H; Christakis, Nicholas A

    2008-01-01

    Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...

  14. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    Science.gov (United States)

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  15. Defining the Genetic Architecture of Human Developmental Language Impairment

    OpenAIRE

    Li, Ning; Bartlett, Christopher W.

    2012-01-01

    Language is a uniquely human trait, which poses limitations on animal models for discovering biological substrates and pathways. Despite this challenge, rapidly developing biotechnology in the field of genomics has made human genetics studies a viable alternative route for defining the molecular neuroscience of human language. This is accomplished by studying families that transmit both normal and disordered language across generations. The language disorder reviewed here is specific language...

  16. Genetic Characterization of Simian Foamy Viruses Infecting Humans

    OpenAIRE

    Rua, Réjane; Betsem, Edouard; Calattini, Sara; Saib, Ali; Gessain, Antoine

    2012-01-01

    Simian foamy viruses (SFVs) are retroviruses that are widespread among nonhuman primates (NHPs). SFVs actively replicate in their oral cavity and can be transmitted to humans after NHP bites, giving rise to a persistent infection even decades after primary infection. Very few data on the genetic structure of such SFVs found in humans are available. In the framework of ongoing studies searching for SFV-infected humans in south Cameroon rainforest villages, we studied 38 SFV-infected hunters wh...

  17. Human genetics: lessons from Quebec populations.

    Science.gov (United States)

    Scriver, C R

    2001-01-01

    The population of Quebec, Canada (7.3 million) contains approximately 6 million French Canadians; they are the descendants of approximately 8500 permanent French settlers who colonized Nouvelle France between 1608 and 1759. Their well-documented settlements, internal migrations, and natural increase over four centuries in relative isolation (geographic, linguistic, etc.) contain important evidence of social transmission of demographic behavior that contributed to effective family size and population structure. This history is reflected in at least 22 Mendelian diseases, occurring at unusually high prevalence in its subpopulations. Immigration of non-French persons during the past 250 years has given the Quebec population further inhomogeneity, which is apparent in allelic diversity at various loci. The histories of Quebec's subpopulations are, to a great extent, the histories of their alleles. Rare pathogenic alleles with high penetrance and associated haplotypes at 10 loci (CFTR, FAH, HBB, HEXA, LDLR, LPL, PAH, PABP2, PDDR, and SACS) are expressed in probands with cystic fibrosis, tyrosinemia, beta-thalassemia, Tay-Sachs, familial hypercholesterolemia, hyperchylomicronemia, PKU, oculopharyngeal muscular dystrophy, pseudo vitamin D deficiency rickets, and spastic ataxia of Charlevoix-Saguenay, respectively) reveal the interpopulation and intrapopulation genetic diversity of Quebec. Inbreeding does not explain the clustering and prevalence of these genetic diseases; genealogical reconstructions buttressed by molecular evidence point to founder effects and genetic drift in multiple instances. Genealogical estimates of historical meioses and analysis of linkage disequilibrium show that sectors of this young population are suitable for linkage disequilibrium mapping of rare alleles. How the population benefits from what is being learned about its structure and how its uniqueness could facilitate construction of a genomic map of linkage disequilibrium are discussed

  18. Primer on Molecular Genetics; DOE Human Genome Program

    Science.gov (United States)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  19. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P.; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from...

  20. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P.; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magn...

  1. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  2. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach

    Science.gov (United States)

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447–2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8–30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics. PMID:26452043

  3. Genetic Characterization and Classification of Human and Animal Sapoviruses

    Science.gov (United States)

    Oka, Tomoichiro; Lu, Zhongyan; Phan, Tung; Delwart, Eric L.; Saif, Linda J.; Wang, Qiuhong

    2016-01-01

    Sapoviruses (SaVs) are enteric caliciviruses that have been detected in multiple mammalian species, including humans, pigs, mink, dogs, sea lions, chimpanzees, and rats. They show a high level of diversity. A SaV genome commonly encodes seven nonstructural proteins (NSs), including the RNA polymerase protein NS7, and two structural proteins (VP1 and VP2). We classified human and animal SaVs into 15 genogroups (G) based on available VP1 sequences, including three newly characterized genomes from this study. We sequenced the full length genomes of one new genogroup V (GV), one GVII and one GVIII porcine SaV using long range RT-PCR including newly designed forward primers located in the conserved motifs of the putative NS3, and also 5' RACE methods. We also determined the 5’- and 3’-ends of sea lion GV SaV and canine GXIII SaV. Although the complete genomic sequences of GIX-GXII, and GXV SaVs are unavailable, common features of SaV genomes include: 1) “GTG” at the 5′-end of the genome, and a short (9~14 nt) 5′-untranslated region; and 2) the first five amino acids (M [A/V] S [K/R] P) of the putative NS1 and the five amino acids (FEMEG) surrounding the putative cleavage site between NS7 and VP1 were conserved among the chimpanzee, two of five genogroups of pig (GV and GVIII), sea lion, canine, and human SaVs. In contrast, these two amino acid motifs were clearly different in three genogroups of porcine (GIII, GVI and GVII), and bat SaVs. Our results suggest that several animal SaVs have genetic similarities to human SaVs. However, the ability of SaVs to be transmitted between humans and animals is uncertain. PMID:27228126

  4. Human aggression across the lifespan: genetic propensities and environmental moderators.

    Science.gov (United States)

    Tuvblad, Catherine; Baker, Laura A

    2011-01-01

    This chapter reviews the recent evidence of genetic and environmental influences on human aggression. Findings from a large selection of the twin and adoption studies that have investigated the genetic and environmental architecture of aggressive behavior are summarized. These studies together show that about half (50%) of the variance in aggressive behavior is explained by genetic influences in both males and females, with the remaining 50% of the variance being explained by environmental factors not shared by family members. Form of aggression (reactive, proactive, direct/physical, indirect/relational), method of assessment (laboratory observation, self-report, ratings by parents and teachers), and age of the subjects-all seem to be significant moderators of the magnitude of genetic and environmental influences on aggressive behavior. Neither study design (twin vs. sibling adoption design) nor sex (male vs. female) seems to impact the magnitude of the genetic and environmental influences on aggression. There is also some evidence of gene-environment interaction (G × E) from both twin/adoption studies and molecular genetic studies. Various measures of family adversity and social disadvantage have been found to moderate genetic influences on aggressive behavior. Findings from these G × E studies suggest that not all individuals will be affected to the same degree by experiences and exposures, and that genetic predispositions may have different effects depending on the environment. PMID:22078481

  5. A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms

    Science.gov (United States)

    Nepomuceno, Juan A.; Troncoso, Alicia; Aguilar–Ruiz, Jesús S.

    In this paper a hybrid metaheuristic for biclustering based on Scatter Search and Genetic Algorithms is presented. A general scheme of Scatter Search has been used to obtain high-quality biclusters, but a way of generating the initial population and a method of combination based on Genetic Algorithms have been chosen. Experimental results from yeast cell cycle and human B-cell lymphoma are reported. Finally, the performance of the proposed hybrid algorithm is compared with a genetic algorithm recently published.

  6. Inauguration of the Cameroonian Society of Human Genetics

    OpenAIRE

    Jude Bigoga; Marcel Azabji Kenfack; Ambroise Wonkam; Blaise Nkegoum; Wali Muna

    2009-01-01

    The conjunction of “hard genetics” research centers, with well established biomedical and bioethics research groups, and the exceptional possibility to hold the 6th annual meeting of the African Society of Human Genetics (AfSHG, 13th-15th March 2009) was an excellent opportunity to get together in synergy the entire Cameroonian “DNA/RNA scientists” . This laid to the foundation of the Cameroonian Society of Human Genetics (CSHG) that was privilege to hold its inaugural meeting in conjunction ...

  7. Inauguration of the Cameroonian Society of Human Genetics

    Directory of Open Access Journals (Sweden)

    Jude Bigoga

    2009-10-01

    Full Text Available The conjunction of “hard genetics” research centers, with well established biomedical and bioethics research groups, and the exceptional possibility to hold the 6th annual meeting of the African Society of Human Genetics (AfSHG, 13th-15th March 2009 was an excellent opportunity to get together in synergy the entire Cameroonian “DNA/RNA scientists” . This laid to the foundation of the Cameroonian Society of Human Genetics (CSHG that was privilege to hold its inaugural meeting in conjunction to the 6th annual meeting of the AfSHG. The theme was "Human Origin, Genetic Diversity and Health”. The AfSHG and CSHG invited leading African and international scientists in genomics and population genetics to review recent data and provide an understanding of the state-of-knowledge of Human Origin and Genetic Diversity. Overall one opening ceremony eight session, five keynote and guest speakers, 18 invited oral communications, 13 free oral communications, 43 posters and two social events could summarize the meeting. This year’s conference was graced by the presence of one Nobel Prize winner Dr Richard Roberts (Physiology and Medicine 1993. The meeting registered up to ten contributions of Cameroonian scientists from the Diaspora (currently in USA, Belgium, Gambia, Sudan and Zimbabwe. Such Diaspora participation is an opportunity to generate collaborations with home country scientists and ultimately turn the “brain drain” to “brain circulation” that could reduce the impact of the migration of health professional from Africa. Interestingly, the personal implication of the Cameroonian Ministry of Public Heath who opened the meeting in the presence of the Secretary General of the Ministry of Higher Education and a representative of the Ministry of Scientific Research and Innovation was a wonderful opportunity for advocacy of genetic issues at the decision-makers level. Beyond our expectation, a major promise of the Cameroonian government was

  8. Coping with genetic diversity: the contribution of pathogen and human genomics to modern vaccinology

    International Nuclear Information System (INIS)

    Vaccine development faces major difficulties partly because of genetic variation in both infectious organisms and humans. This causes antigenic variation in infectious agents and a high interindividual variability in the human response to the vaccine. The exponential growth of genome sequence information has induced a shift from conventional culture-based to genome-based vaccinology, and allows the tackling of challenges in vaccine development due to pathogen genetic variability. Additionally, recent advances in immunogenetics and genomics should help in the understanding of the influence of genetic factors on the interindividual and interpopulation variations in immune responses to vaccines, and could be useful for developing new vaccine strategies. Accumulating results provide evidence for the existence of a number of genes involved in protective immune responses that are induced either by natural infections or vaccines. Variation in immune responses could be viewed as the result of a perturbation of gene networks; this should help in understanding how a particular polymorphism or a combination thereof could affect protective immune responses. Here we will present: i) the first genome-based vaccines that served as proof of concept, and that provided new critical insights into vaccine development strategies; ii) an overview of genetic predisposition in infectious diseases and genetic control in responses to vaccines; iii) population genetic differences that are a rationale behind group-targeted vaccines; iv) an outlook for genetic control in infectious diseases, with special emphasis on the concept of molecular networks that will provide a structure to the huge amount of genomic data

  9. Unraveling the genetics of human obesity.

    Directory of Open Access Journals (Sweden)

    David M Mutch

    2006-12-01

    Full Text Available The use of modern molecular biology tools in deciphering the perturbed biochemistry and physiology underlying the obese state has proven invaluable. Identifying the hypothalamic leptin/melanocortin pathway as critical in many cases of monogenic obesity has permitted targeted, hypothesis-driven experiments to be performed, and has implicated new candidates as causative for previously uncharacterized clinical cases of obesity. Meanwhile, the effects of mutations in the melanocortin-4 receptor gene, for which the obese phenotype varies in the degree of severity among individuals, are now thought to be influenced by one's environmental surroundings. Molecular approaches have revealed that syndromes (Prader-Willi and Bardet-Biedl previously assumed to be controlled by a single gene are, conversely, regulated by multiple elements. Finally, the application of comprehensive profiling technologies coupled with creative statistical analyses has revealed that interactions between genetic and environmental factors are responsible for the common obesity currently challenging many Westernized societies. As such, an improved understanding of the different "types" of obesity not only permits the development of potential therapies, but also proposes novel and often unexpected directions in deciphering the dysfunctional state of obesity.

  10. Canonical genetic signatures of the adult human brain.

    Science.gov (United States)

    Hawrylycz, Michael; Miller, Jeremy A; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L; Jegga, Anil G; Aronow, Bruce J; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F; Dierker, Donna L; Menche, Jörg; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R; Jones, Allan; Van Essen, David C; Koch, Christof; Lein, Ed

    2015-12-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  11. Genetics of human Bardet-Biedl syndrome, an updates.

    Science.gov (United States)

    Khan, S A; Muhammad, N; Khan, M A; Kamal, A; Rehman, Z U; Khan, S

    2016-07-01

    Bardet-Biedl syndrome (BBS) is an autosomal recessive multisystemic human genetic disorder characterized by six major defects including obesity, mental retardation, renal anomalies, polydactyly, retinal degeneration and hypogenitalism. In several cases of BBS, few other features such as metabolic defects, cardiovascular anomalies, speech deficits, hearing loss, hypertension, hepatic defects and high incidence of diabetes mellitus have been reported as well. The BBS displays extensive genetic heterogeneity. To date, 19 genes have been mapped on different chromosomes causing BBS phenotypes having varied mutational load of each BBS gene. In this review, we have discussed clinical spectrum and genetics of BBS. This report presents a concise overview of the current knowledge on clinical data and its molecular genetics progress upto date. PMID:26762677

  12. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  13. Therapeutic Targets of Triglyceride Metabolism as Informed by Human Genetics.

    Science.gov (United States)

    Bauer, Robert C; Khetarpal, Sumeet A; Hand, Nicholas J; Rader, Daniel J

    2016-04-01

    Human genetics has contributed to the development of multiple drugs to treat hyperlipidemia and coronary artery disease (CAD), most recently including antibodies targeting PCSK9 to reduce LDL cholesterol. Despite these successes, a large burden of CAD remains. Genetic and epidemiological studies have suggested that circulating triglyceride (TG)-rich lipoproteins (TRLs) are a causal risk factor for CAD, presenting an opportunity for novel therapeutic strategies. We discuss recent unbiased human genetics testing, including genome-wide association studies (GWAS) and whole-genome or -exome sequencing, that have identified the lipoprotein lipase (LPL) and hepatic lipogenesis pathways as important mechanisms in the regulation of circulating TRLs. Further strengthening the causal relationship between TRLs and CAD, findings such as these may provide novel targets for much-needed potential therapeutic interventions. PMID:26988439

  14. Genetic variation and the de novo assembly of human genomes.

    Science.gov (United States)

    Chaisson, Mark J P; Wilson, Richard K; Eichler, Evan E

    2015-11-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation. PMID:26442640

  15. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C;

    2009-01-01

    contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping......It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis of the...... studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed a...

  16. Public Attitudes toward Human Genetic Manipulation: A Revitalization of Eugenics?

    Science.gov (United States)

    Veglia, Geremia; And Others

    The purpose of this investigation was to measure the attitudes of college students across the United States concerning the possible use of genetic manipulation, especially in terms of enhancing human physical and intellectual characteristics. The instrument used was divided into three general areas of inquiry: the first, designed to measure the…

  17. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigat

  18. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth requ

  19. Human life: genetic or social construction?

    Science.gov (United States)

    Yudin, Boris

    2005-01-01

    I am going to discuss some present-day tendencies in the development of the very old debate on nature vs nurture. There is a widespread position describing the history of this debate as a pendulum-like process. Some three decades ago there was a time of overwhelming prevalence of the position stressing social factors in determining human character and behavior; now the pendulum has come to the opposite side and those who stress the role of biology, of genes are in favor. Yet in my view rather acute opposition of both positions still exists. Its existence depends not so much on new scientific discoveries as on some social and cultural factors which are more conservative than the development of science. More than that, we can even talk about competition of these two positions. PMID:17048365

  20. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (UV) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either X-ray-like (i.e., they cause damage that XP cells can repair) or UV-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed

  1. Methods for the analysis of human genetic variation in the search for the genetic basis of human disease

    OpenAIRE

    Zaitlen, Noah

    2009-01-01

    Recent technological advances in the field of molecular biology have ushered in the genome wide association era of human genetics. Researchers can now simultaneously examine hundreds of thousands of single nucleotide polymorphisms (SNPs) in an individual at continually decreasing costs. In an effort to characterize distributions of SNPs in human populations a set of four million SNPs was collected in 269 individuals from four populations. This HapMap data set in combination with high throughp...

  2. Crop genetic improvement for enhanced human nutrition.

    Science.gov (United States)

    Toenniessen, Gary H

    2002-09-01

    In the past decade, micronutrient malnutrition has been identified as a major underlying cause of numerous human health problems in developing countries. The international agricultural research system has been highly successful in producing crop varieties with traits desired by farmers, such as higher yield and greater tolerance of poor growing conditions. These improved varieties have spread widely throughout developing countries and now provide the staple foods eaten daily by billions of people, including the poor in many difficult to reach rural areas. Modern plant breeding and biotechnology offer new opportunities to use this same international system to increase the micronutrient content and enhance the nutritional value of these staple foods. Over time, this could be an important complement to the progress that is being made in providing micronutrient supplements and fortified foods and in encouraging people to eat more diversified diets. Nutritionists and agriculturists will need to work together to define the deficiencies, target the right populations and deliver the right products. PMID:12221274

  3. Asian Option Pricing Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    YunzhongLiu; HuiyuXuan

    2004-01-01

    The cross-fertilization between artificial intelligence and computational finance has resulted in some of the most active research areas in financial engineering. One direction is the application of machine learning techniques to pricing financial products, which is certainly one of the most complex issues in finance. In the literature, when the interest rate,the mean rate of return and the volatility of the underlying asset follow general stochastic processes, the exact solution is usually not available. In this paper, we shall illustrate how genetic algorithms (GAs), as a numerical approach, can be potentially helpful in dealing with pricing. In particular, we test the performance of basic genetic algorithms by using it to the determination of prices of Asian options, whose exact solutions is known from Black-Scholesoption pricing theory. The solutions found by basic genetic algorithms are compared with the exact solution, and the performance of GAs is ewluated accordingly. Based on these ewluations, some limitations of GAs in option pricing are examined and possible extensions to future works are also proposed.

  4. Teaching Human Genetics with Mustard: Rapid Cycling "Brassica rapa" (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    Science.gov (United States)

    Wendell, Douglas L.; Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling "Brassica rapa", also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, "B. rapa" can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented…

  5. Conservation of Distinct Genetically-Mediated Human Cortical Pattern

    Science.gov (United States)

    Peng, Qian; Schork, Andrew; Bartsch, Hauke; Lo, Min-Tzu; Panizzon, Matthew S.; Westlye, Lars T.; Kremen, William S.; Jernigan, Terry L.; Le Hellard, Stephanie; Steen, Vidar M.; Espeseth, Thomas; Huentelman, Matt; Agartz, Ingrid; Djurovic, Srdjan; Andreassen, Ole A.; Dale, Anders M.; Schork, Nicholas J.; Chen, Chi-Hua

    2016-01-01

    The many subcomponents of the human cortex are known to follow an anatomical pattern and functional relationship that appears to be highly conserved between individuals. This suggests that this pattern and the relationship among cortical regions are important for cortical function and likely shaped by genetic factors, although the degree to which genetic factors contribute to this pattern is unknown. We assessed the genetic relationships among 12 cortical surface areas using brain images and genotype information on 2,364 unrelated individuals, brain images on 466 twin pairs, and transcriptome data on 6 postmortem brains in order to determine whether a consistent and biologically meaningful pattern could be identified from these very different data sets. We find that the patterns revealed by each data set are highly consistent (p<10−3), and are biologically meaningful on several fronts. For example, close genetic relationships are seen in cortical regions within the same lobes and, the frontal lobe, a region showing great evolutionary expansion and functional complexity, has the most distant genetic relationship with other lobes. The frontal lobe also exhibits the most distinct expression pattern relative to the other regions, implicating a number of genes with known functions mediating immune and related processes. Our analyses reflect one of the first attempts to provide an assessment of the biological consistency of a genetic phenomenon involving the brain that leverages very different types of data, and therefore is not just statistical replication which purposefully use very similar data sets. PMID:27459196

  6. A Songbird Animal Model for Dissecting the Genetic Bases of Autism Spectrum Disorder

    OpenAIRE

    S. Carmen Panaitof

    2012-01-01

    The neural and genetic bases of human language development and associated neurodevelopmental disorders, including autism spectrum disorder (ASD), in which language impairment represents a core deficit, are poorly understood. Given that no single animal model can fully capture the behavioral and genetic complexity of ASD, work in songbird, an experimentally tractable animal model of vocal learning, can complement the valuable tool of rodent genetic models and contribute important insights to o...

  7. The genetics of complex human behaviour: Cannabis use, personality, sexuality and mating

    NARCIS (Netherlands)

    Verweij, C.J.H.

    2012-01-01

    I investigated the genetic and environmental etiology of individual differences in a variety of complex human behaviours, broadly captured within three domains - 1) cannabis use, 2) personality, and 3) sexuality and mating. Research questions and hypotheses are addressed with large community-based,

  8. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D;

    2006-01-01

    .79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0.......55). Intelligence shared a common genetic origin with superior occipitofrontal, callosal, and left optical radiation WM and frontal, occipital, and parahippocampal GM (phenotypic correlations up to 0.35). These findings point to a neural network that shares a common genetic origin with human intelligence...

  9. Innovations in human genetics education. Alternative methods of instruction in medical genetics.

    OpenAIRE

    King, C R

    1989-01-01

    A course in medical genetics for first-year medical students was developed with the use of alternative methods of instruction, including audiovisual materials and computer-assisted instruction. The use of this methodology enabled students to consider many significant areas of medical genetics, without a dependency on the traditional lecture-based instructional format. Seventy-eight percent of the students identified the alternative instructional methods as an enhancement to their education. T...

  10. Genetics of multifactorial disorders: proceedings of the 6th Pan Arab Human Genetics Conference

    OpenAIRE

    Nair, Pratibha; Bizzari, Sami; Rajah, Nirmal; Assaf, Nada; Al-Ali, Mahmoud Taleb; Hamzeh, Abdul Rezzak

    2016-01-01

    The 6th Pan Arab Human Genetics Conference (PAHGC), “Genetics of Multifactorial Disorders” was organized by the Center for Arab Genomic Studies (http://www.cags.org.ae) in Dubai, United Arab Emirates from 21 to 23 January, 2016. The PAHGCs are held biennially to provide a common platform to bring together regional and international geneticists to share their knowledge and to discuss common issues. Over 800 delegates attended the first 2 days of the conference and these came from various medic...

  11. Analysis of human genetic variation in candidate genes under positive selections on the human linage

    OpenAIRE

    Moreno Estrada, Andr??s

    2009-01-01

    Natural selection has played an important role in shaping human genetic variation, thus, finding variants that have been targeted by positive selection can provide insights about which genes influence human phenotypic variability. In this work we conduct a genome-wide survey of protein-coding genes comparing humans, chimpanzees, and closely related species in order to detect the fraction of genes undergoing positive selection on the human lineage, and further investigate intraspecific variati...

  12. Bloat free genetic programming: application to human oral bioavailability prediction.

    Science.gov (United States)

    Silva, Sara; Vanneschi, Leonardo

    2012-01-01

    Being able to predict the human oral bioavailability for a potential new drug is extremely important for the drug discovery process. This problem has been addressed by several prediction tools, with Genetic Programming providing some of the best results ever achieved. In this paper we use the newest developments of Genetic Programming, in particular the latest bloat control method, Operator Equalisation, to find out how much improvement we can achieve on this problem. We show examples of some actual solutions and discuss their quality, comparing them with previously published results. We identify some unexpected behaviours related to overfitting, and discuss the way for further improving the practical usage of the Genetic Programming approach. PMID:23356009

  13. Sharing the benefits of genetic resources: from biodiversity to human genetics.

    Science.gov (United States)

    Schroeder, Doris; Lasén-Díaz, Carolina

    2006-12-01

    Benefit sharing aims to achieve an equitable exchange between the granting of access to a genetic resource and the provision of compensation. The Convention on Biological Diversity (CBD), adopted at the 1992 Earth Summit in Rio de Janeiro, is the only international legal instrument setting out obligations for sharing the benefits derived from the use of biodiversity. The CBD excludes human genetic resources from its scope, however, this article considers whether it should be expanded to include those resources, so as to enable research subjects to claim a share of the benefits to be negotiated on a case-by-case basis. Our conclusion on this question is: 'No, the CBD should not be expanded to include human genetic resources.' There are essential differences between human and non-human genetic resources, and, in the context of research on humans, an essentially fair exchange model is already available between the health care industry and research subjects. Those who contribute to research should receive benefits in the form of accessible new health care products and services, suitable for local health needs and linked to economic prosperity (e.g. jobs). When this exchange model does not apply, as is often the case in developing countries, individually negotiated benefit sharing agreements between researchers and research subjects should not be used as 'window dressing'. Instead, national governments should focus their finances on the best economic investment they could make; the investment in population health and health research as outlined by the World Health Organization's Commission on Macroeconomics and Health; whilst international barriers to such spending need to be removed. PMID:17038005

  14. Genetic Algorithm Based Self Tuning Regulator

    Directory of Open Access Journals (Sweden)

    S.KANTHALAKSHMI

    2010-12-01

    Full Text Available In this paper, Genetic Algorithm is used for two basic tasks of a Self Tuned Regulator (STR - system identification and PID tuning, providing the controller the ability to automatically tune its parameters while the physical plant dynamic characteristics changes, in an optimal way. The performance of the ball and hoop system, which is difficult to control optimally using a PID controller because of the constantly changing system parameters, is presented. Then, the proposed GA based optimal adaptive controller is designed for the same. Perturbations are applied to the system to check the robustness of the proposed system. The results reflect that proposed scheme improves the performance of the process in terms of time domain specifications, robustness to parametric changes and optimum stability. Also, a comparison with the conventional Ziegler-Nichols method proves the superiority of GA based system.

  15. Multicast Routing Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAO Yuan-da; CAI Gui

    2005-01-01

    A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.

  16. A Genetic Algorithm-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Babatunde Oluleye

    2014-07-01

    Full Text Available This article details the exploration and application of Genetic Algorithm (GA for feature selection. Particularly a binary GA was used for dimensionality reduction to enhance the performance of the concerned classifiers. In this work, hundred (100 features were extracted from set of images found in the Flavia dataset (a publicly available dataset. The extracted features are Zernike Moments (ZM, Fourier Descriptors (FD, Lengendre Moments (LM, Hu 7 Moments (Hu7M, Texture Properties (TP and Geometrical Properties (GP. The main contributions of this article are (1 detailed documentation of the GA Toolbox in MATLAB and (2 the development of a GA-based feature selector using a novel fitness function (kNN-based classification error which enabled the GA to obtain a combinatorial set of feature giving rise to optimal accuracy. The results obtained were compared with various feature selectors from WEKA software and obtained better results in many ways than WEKA feature selectors in terms of classification accuracy

  17. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  18. Role of genetic variants in ADIPOQ in human eating behavior

    OpenAIRE

    Rohde, Kerstin; Keller, Maria; Horstmann, Annette; Liu, Xuanshi; Eichelmann, Fabian; Stumvoll, Michael; Villringer, Arno; Kovacs, Peter; Tönjes, Anke; Böttcher, Yvonne

    2014-01-01

    The beneficial effects of adiponectin and its negative correlation with BMI are well described. Adiponectin serum levels are altered in eating disorders such as anorexia nervosa, bulimia nervosa or binge eating. Here, we tested the hypothesis that (1) adiponectin serum levels correlate with human eating behavior factors and (2) that genetic variants of the ADIPOQ locus influence both serum levels and eating behavior. We analyzed 11 SNPs within ADIPOQ and in the 5′ UTR and measured serum adipo...

  19. Human genetics of tuberculosis: a long and winding road

    OpenAIRE

    Abel, L.; El-Baghdadi, J.; Bousfiha, A. A.; Casanova, J.-L.; Schurr, E

    2014-01-01

    Only a small fraction of individuals exposed to Mycobacterium tuberculosis develop clinical tuberculosis (TB). Over the past century, epidemiological studies have shown that human genetic factors contribute significantly to this interindividual variability, and molecular progress has been made over the past decade for at least two of the three key TB-related phenotypes: (i) a major locus controlling resistance to infection with M. tuberculosis has been identified, and (ii) proof of principle ...

  20. Recent Genetic Discoveries Implicating Ion Channels in Human Cardiovascular Diseases

    OpenAIRE

    George, Alfred L.

    2013-01-01

    The term channelopathy refers to human genetic disorders caused by mutations in genes encoding ion channels or their interacting proteins. Recent advances in this field have been enabled by next-generation DNA sequencing strategies such as whole exome sequencing with several intriguing and unexpected discoveries. This review highlights important discoveries implicating ion channels or ion channel modulators in cardiovascular disorders including cardiac arrhythmia susceptibility, cardiac condu...

  1. Oxytocin Receptor Genetic Variation Promotes Human Trust Behavior

    OpenAIRE

    Frank Krueger; Vijeth Iyengar; Robert Lipsky

    2012-01-01

    Given that human trust behavior is heritable and intranasal administration of oxytocin enhances trust, the oxytocin receptor (OXTR) gene is an excellent candidate to investigate genetic contributions to individual variations in trust behavior. Although a single-nucleotide polymorphism involving an adenine (A)/guanine (G) transition (rs53576) has been associated with socio-emotional phenotypes, its link to trust behavior is unclear. We combined genotyping of healthy male students (n = 108) wit...

  2. Genetics of multifactorial disorders: proceedings of the 6th Pan Arab Human Genetics Conference.

    Science.gov (United States)

    Nair, Pratibha; Bizzari, Sami; Rajah, Nirmal; Assaf, Nada; Al-Ali, Mahmoud Taleb; Hamzeh, Abdul Rezzak

    2016-01-01

    The 6th Pan Arab Human Genetics Conference (PAHGC), "Genetics of Multifactorial Disorders" was organized by the Center for Arab Genomic Studies (http://www.cags.org.ae) in Dubai, United Arab Emirates from 21 to 23 January, 2016. The PAHGCs are held biennially to provide a common platform to bring together regional and international geneticists to share their knowledge and to discuss common issues. Over 800 delegates attended the first 2 days of the conference and these came from various medical and scientific backgrounds. They consisted of geneticists, molecular biologists, medical practitioners, postdoctoral researchers, technical staff (e.g., nurses and lab technicians) and medical students from 35 countries around the world. On the 3rd day, a one-day workshop on "Genetic Counseling" was delivered to 26 participants. The conference focused on four major topics, namely, diabetes, genetics of neurodevelopmental disorders, congenital anomalies and cancer genetics. Personalized medicine was a recurrent theme in most of the research presented at the conference, as was the application of novel molecular findings in clinical settings. This report discusses a summary of the presentations from the meeting. PMID:27095177

  3. A Genetic Algorithm based Service Restoration

    Directory of Open Access Journals (Sweden)

    K. Sathish Kumar

    2010-06-01

    Full Text Available A genetic algorithm (GA is a search technique used in computing to find exact or approximate solutions to optimization and search problems. Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation, selection and crossover. GA is a method for search and optimization based on the process of natural selection and evolution. In this approach, several modifications are done for effective implementation of GA to solve the Electric Power Service Restoration Problem. The GA is suitable for the supply restoration because it is very easy to change constraints or objectives, or applynew ones. The objective function includes all the objectives and constraints required for a practical supply restoration scheme. GA starts with number of solutions to a problem, encoded as a string of status of sectionalizing and tie switches. The status of the switch ‘1’ and ‘0’ has been considered as ‘close’ and ‘open’ condition of theswitch. The string that encodes each string is ‘chromosome’ and the set of solutions are termed as population.

  4. Microcomputer-Based Genetics Office Database System

    OpenAIRE

    Cutts, James H.; Mitchell, Joyce A.

    1985-01-01

    A database management system (Genetics Office Automation System, GOAS) has been developed for the Medical Genetics Unit of the University of Missouri. The system, which records patients' visits to the Unit's genetic and prenatal clinics, has been implemented on an IBM PC/XT microcomputer. A description of the system, the reasons for implementation, its databases, and uses are presented.

  5. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang

    2010-01-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.

  6. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    International Nuclear Information System (INIS)

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed

  7. Genetic Differences Between Great Apes and Humans: Implications for Human Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Varki, Ajit (University of California, San Diego)

    2004-03-17

    When considering protein sequences, humans are 99-100% identical to chimpanzees and bonobos, our closest evolutionary relatives. The evolution of humans (and the unique features of our species) from a common ancestor with these great apes involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of the differences. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly in relationship to a family of cell surface molecules called sialic acids. These differences have implications for the human condition, ranging from susceptibility or resistance to microbial pathogens; effects on endogenous receptors in the immune system; potential effects on placental signaling; the expression of oncofetal antigens in cancers; consequences of dietary intake of animal foods; and the development of the mammalian brain. This talk will provide an overview of these and other genetic differences between humans and great apes, with attention to differences potentially relevant to the evolution of humans.

  8. Genetic algorithm-based form error evaluation

    Science.gov (United States)

    Cui, Changcai; Li, Bing; Huang, Fugui; Zhang, Rencheng

    2007-07-01

    Form error evaluation of geometrical products is a nonlinear optimization problem, for which a solution has been attempted by different methods with some complexity. A genetic algorithm (GA) was developed to deal with the problem, which was proved simple to understand and realize, and its key techniques have been investigated in detail. Firstly, the fitness function of GA was discussed emphatically as a bridge between GA and the concrete problems to be solved. Secondly, the real numbers-based representation of the desired solutions in the continual space optimization problem was discussed. Thirdly, many improved evolutionary strategies of GA were described on emphasis. These evolutionary strategies were the selection operation of 'odd number selection plus roulette wheel selection', the crossover operation of 'arithmetic crossover between near relatives and far relatives' and the mutation operation of 'adaptive Gaussian' mutation. After evolutions from generation to generation with the evolutionary strategies, the initial population produced stochastically around the least-squared solutions of the problem would be updated and improved iteratively till the best chromosome or individual of GA appeared. Finally, some examples were given to verify the evolutionary method. Experimental results show that the GA-based method can find desired solutions that are superior to the least-squared solutions except for a few examples in which the GA-based method can obtain similar results to those by the least-squared method. Compared with other optimization techniques, the GA-based method can obtain almost equal results but with less complicated models and computation time.

  9. Accelerating epistasis analysis in human genetics with consumer graphics hardware

    Directory of Open Access Journals (Sweden)

    Cancare Fabio

    2009-07-01

    performance while leaving the CPU available for other tasks. The GPU workstation containing three GPUs costs $2000 while obtaining similar performance on a Beowulf cluster requires 150 CPU cores which, including the added infrastructure and support cost of the cluster system, cost approximately $82,500. Conclusion Graphics hardware based computing provides a cost effective means to perform genetic analysis of epistasis using MDR on large datasets without the infrastructure of a computing cluster.

  10. The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms.

    Science.gov (United States)

    Waltes, Regina; Chiocchetti, Andreas G; Freitag, Christine M

    2016-07-01

    Aggression is an evolutionary conserved behavior present in most species including humans. Inadequate aggression can lead to long-term detrimental personal and societal effects. Here, we differentiate between proactive and reactive forms of aggression and review the genetic determinants of it. Heritability estimates of aggression in general vary between studies due to differing assessment instruments for aggressive behavior (AB) as well as age and gender of study participants. In addition, especially non-shared environmental factors shape AB. Current hypotheses suggest that environmental effects such as early life stress or chronic psychosocial risk factors (e.g., maltreatment) and variation in genes related to neuroendocrine, dopaminergic as well as serotonergic systems increase the risk to develop AB. In this review, we summarize the current knowledge of the genetics of human aggression based on twin studies, genetic association studies, animal models, and epigenetic analyses with the aim to differentiate between mechanisms associated with proactive or reactive aggression. We hypothesize that from a genetic perspective, the aminergic systems are likely to regulate both reactive and proactive aggression, whereas the endocrine pathways seem to be more involved in regulation of reactive aggression through modulation of impulsivity. Epigenetic studies on aggression have associated non-genetic risk factors with modifications of the stress response and the immune system. Finally, we point to the urgent need for further genome-wide analyses and the integration of genetic and epigenetic information to understand individual differences in reactive and proactive AB. © 2015 Wiley Periodicals, Inc. PMID:26494515

  11. Human genetic differentiation across the Strait of Gibraltar

    Directory of Open Access Journals (Sweden)

    Sanchez-Mazas Alicia

    2010-08-01

    Full Text Available Abstract Background The Strait of Gibraltar is a crucial area in the settlement history of modern humans because it represents a possible connection between Africa and Europe. So far, genetic data were inconclusive about the fact that this strait constitutes a barrier to gene flow, as previous results were highly variable depending on the genetic locus studied. The present study evaluates the impact of the Gibraltar region in reducing gene flow between populations from North-Western Africa and South-Western Europe, by comparing formally various genetic loci. First, we compute several statistics of population differentiation. Then, we use an original simulation approach in order to infer the most probable evolutionary scenario for the settlement of the area, taking into account the effects of both demography and natural selection at some loci. Results We show that the genetic patterns observed today in the region of the Strait of Gibraltar may reflect an ancient population genetic structure which has not been completely erased by more recent events such as Neolithic migrations. Moreover, the differences observed among the loci (i.e. a strong genetic boundary revealed by the Y-chromosome polymorphism and, at the other extreme, no genetic differentiation revealed by HLA-DRB1 variation across the strait suggest specific evolutionary histories like sex-mediated migration and natural selection. By considering a model of balancing selection for HLA-DRB1, we here estimate a coefficient of selection of 2.2% for this locus (although weaker in Europe than in Africa, which is in line with what was estimated from synonymous versus non-synonymous substitution rates. Selection at this marker thus appears strong enough to leave a signature not only at the DNA level, but also at the population level where drift and migration processes were certainly relevant. Conclusions Our multi-loci approach using both descriptive analyses and Bayesian inferences lead to

  12. A problem-based learning approach to teaching medical genetics.

    OpenAIRE

    Moore, C.M.; Barnett, D R

    1992-01-01

    A newly developed problem-based medical genetics course that was integrated into the fourth-year medical school curriculum of the University of Texas Health Science Center at San Antonio is described. To provide a basic genetic background for the clinical rotations, a supplemental computer tutorial is required during the second year. These two formats prepare the medical students to recognize genetic diseases, to provide basic genetic counseling in their daily practice, and to appropriately r...

  13. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  14. [The genetics and the dignity of the human being].

    Science.gov (United States)

    Jouve de Barreda, Nicolás

    2013-01-01

    The biological elements of man are not sufficient to confront the bioethical questions around the person concept, but are necessary to accurately define the properties of the human beings and the theological, philosophical and legal aspects that are attributable to each person. The human being is a singular being. Indeed, the coexistence of two dimensions of different nature, material and spiritual, is the most important difference between the man and the rest of living beings. Moreover, in man appears a new characteristic, unique between the living beings, the ethical component. The values and guidelines of the moral and ethical behavior of the human being must be considered of natural origin since they have contributed to the success and survival of the species. The man is not only Homo sapiens but also Homo moralis. The recognition of fault, self-control, solidarity, love, generosity, altruism and honesty, among others, are innate qualities in the human beings. The unit of the human species demands the respect and the consideration of the same dignity for all its members, but only for its members. The philosophical anthropology emphasizes the singularity of each human being, each person. This agrees totally with the data of the science, which emphasize the individual and singular genetic identity of each human being. PMID:23745822

  15. Detecting genetic isolation in human populations: a study of European language minorities.

    Directory of Open Access Journals (Sweden)

    Marco Capocasa

    Full Text Available The identification of isolation signatures is fundamental to better understand the genetic structure of human populations and to test the relations between cultural factors and genetic variation. However, with current approaches, it is not possible to distinguish between the consequences of long-term isolation and the effects of reduced sample size, selection and differential gene flow. To overcome these limitations, we have integrated the analysis of classical genetic diversity measures with a bayesian method to estimate gene flow and have carried out simulations based on the coalescent. Combining these approaches, we first tested whether the relatively short history of cultural and geographical isolation of four "linguistic islands" of the Eastern Alps (Lessinia, Sauris, Sappada and Timau had left detectable signatures in their genetic structure. We then compared our findings to previous studies of European population isolates. Finally, we explored the importance of demographic and cultural factors in shaping genetic diversity among the groups under study. A combination of small initial effective size and continued genetic isolation from surrounding populations seems to provide a coherent explanation for the diversity observed among Sauris, Sappada and Timau, which was found to be substantially greater than in other groups of European isolated populations. Simulations of micro-evolutionary scenarios indicate that ethnicity might have been important in increasing genetic diversity among these culturally related and spatially close populations.

  16. [Exploration on human blood type case in teaching practice of genetics].

    Science.gov (United States)

    Pi, Yan; Li, Xiao-Ying; Huai, Cong; Wang, Shi-Ming; Qiao, Shou-Yi; Lu, Da-Ru

    2013-08-01

    Blood type, which harbors abundant genetics meaning, is one of the most common phenotypes in human life. With the development of science and technology, its significance is unceasingly updated and new finding is increasingly emerging, which constantly attracts people to decipher the heredity mechanism of blood type. In addition to four main associated contents, i.e., Mendelian inheritance, genetic linkage, gene mutations, and chromosome abnormalities, the blood type case also covers many other aspects of the genetics knowledge. Based on the genetic knowledge context, we can interest the students and improve the teaching output in genetic teaching practice by combining with explaining ABO blood type case and heredity mechanism, expanding leucocyte groups, and introducing infrequent blood type such as Bombay blood, Rh and MN. By carrying out the related experimental teaching, we could drive the student to integrate theory with practice. In genetic experimental teaching, 80% of the students chose this optional experiment, molecular identification of ABO blood type, and it greatly interested them. Using appropriate blood type case in teaching related knowledge, organizing PPT exhi-bition and the debating discussion activities, it could provide opportunities for student to propose their own opinions, guide the student to thinking deeply, and develop their abilities to analyze and solve problem. Afterwards, students will gain in-depth comprehension about the fundamental knowledge of genetics. PMID:23956093

  17. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  18. Introduction to DNA-Based Genetic Diagnostics

    OpenAIRE

    Glickman, Richard M.; Phillips, M. Ann; Glickman, Barry W.

    1988-01-01

    Molecular biology and recombinant DNA technology are beginning to have an effect on the medical health care field, particularly in the area of clinical genetics. Dramatic improvements in the prerequisite technology are in the process of being transferred from the research lab to routine clinical laboratories. The general practitioner, along with his genetic diagnostic colleagues, can soon expect to have access to accurate and reliable diagnostic assays for a wide variety of genetic disorders....

  19. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  20. Oxytocin receptor genetic variation promotes human trust behavior

    Directory of Open Access Journals (Sweden)

    Frank Krueger

    2012-02-01

    Full Text Available Given that human trust behavior is heritable and intranasal administration of oxytocin enhances trust, the oxytocin receptor (OXTR gene is an excellent candidate to investigate genetic contributions to individual variations in trust behavior. Although a single-nucleotide polymorphism involving an adenine (A/ guanine (G transition (rs53576 has been associated with socio-emotional phenotypes, its link to trust behavior is unclear. We combined genotyping of healthy male students with the administration of a trust game experiment. Our results show that a naturally occurring genetic variation (rs53576 in the OXTR gene is reliably associated with trust behavior rather than a general increase in trustworthy or risk behaviors. Individuals homozygous for the G allele (GG showed higher trust behavior than individuals with A allele carriers (AA/AG. Although the molecular functionality of this polymorphism is still unknown, future research should clarify how the OXTR gene interacts with other genes and the environment in promoting socio-emotional behaviors.

  1. A genetic basis for mechanosensory traits in humans.

    Directory of Open Access Journals (Sweden)

    Henning Frenzel

    Full Text Available In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A.

  2. Genetics and Human Agency: Comment on Dar-Nimrod and Heine (2011)

    Science.gov (United States)

    Turkheimer, Eric

    2011-01-01

    Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into…

  3. Enfermedades de base genética Genetically based diseases

    Directory of Open Access Journals (Sweden)

    D. González-Lamuño

    2008-01-01

    Full Text Available La genética constituye uno de los mayores avances científicos del siglo XX, que comienza con el redescubrimiento de las leyes de Mendel y termina con la elaboración del primer "borrador" de la secuencia completa del genoma humano. La genética utiliza diferentes estrategias de investigación, como los estudios de gemelos y de adopción, que investigan la influencia de los factores genéticos y ambientales, y las estrategias para identificar genes específicos (genética molecular. Además del importante grado de discapacidad que generan, el impacto social de las enfermedades hereditarias es enorme, por su carácter potencialmente recurrente en una misma familia y por el elevado coste socio-sanitario derivado de la enorme carga de cuidados que requiere. El diagnóstico de las enfermedades hereditarias presenta características diferenciadoras muy significativas ya que el resultado de un diagnóstico genético tiene no sólo efectos sobre el paciente sino también sobre todos los individuos emparentados. Por tanto, la unidad de estudio en el diagnóstico genético es la familia y todo proceso de diagnóstico implica una investigación familiar. También conviene tener en cuenta que los protocolos de diagnóstico se desarrollan de forma paralela a la investigación básica y generalmente están poco estandarizados. Los resultados obtenidos en los estudios genéticos y el tipo de información que se facilita al paciente y a su familia deben ser matizados dentro del proceso del "consejo genético".Genetics is one of the greatest scientific advances of the XX century, which begins with the rediscovery of Mendel’s laws and culminates in the elaboration of the first "draft" of the complete sequence of the human genome. Genetics employs different research strategies, such as the study of twins and adoption, investigating the influence of genetic and environmental factors, and strategies for identifying specific genes (molecular genetics. Besides the

  4. Indiana Health Science Teachers: Their Human Genetics/Bioethics Educational Needs.

    Science.gov (United States)

    Hendrix, Jon R.; And Others

    1982-01-01

    Results from a human genetics/bioethics needs assessment questionnaire (N = 124 out of 300) mailed to Indiana health teachers are reported. Genetic topics and human genetic diseases/defects included in health science instruction are listed in two tables. Responses to 16 science/society statements (and statements themselves) are also reported. (SK)

  5. Science, Eugenics and Utopia. Comparing scientific humanism and liberal eugenics on human genetic enhancement

    OpenAIRE

    Pavone, Vincenzo

    2006-01-01

    When we come across the word ‘eugenics’ it is impossible to avoid thinking of Hitler’s eugenics and racial project. The latter, however, is hardly representative of eugenics. According to the definition provided by the Routledge Encyclopedia of Philosophy, eugenics is ‘a scientific attempt to improve the human gene pool’, which includes not only genetic engineering technologies but also the practice of husbandry, which some scientific utopias proposed to extend to human reproduction already i...

  6. Understanding human genetic variation in the era of high-throughput sequencing

    OpenAIRE

    Knight, Julian C.

    2010-01-01

    The EMBO/EMBL symposium ‘Human Variation: Cause and Consequence' highlighted advances in understanding the molecular basis of human genetic variation and its myriad implications for biology, human origins and disease.

  7. Origins and affinities of modern humans: a comparison of mitochondrial and nuclear genetic data.

    OpenAIRE

    Jorde, L.B.; Bamshad, M.J.; Watkins, W. S.; Zenger, R.; Fraley, A E; Krakowiak, P A; Carpenter, K D; Soodyall, H.; Jenkins, T; Rogers, A. R.

    1995-01-01

    To test hypotheses about the origin of modern humans, we analyzed mtDNA sequences, 30 nuclear restriction-site polymorphisms (RSPs), and 30 tetranucleotide short tandem repeat (STR) polymorphisms in 243 Africans, Asians, and Europeans. An evolutionary tree based on mtDNA displays deep African branches, indicating greater genetic diversity for African populations. This finding, which is consistent with previous mtDNA analyses, has been interpreted as evidence for an African origin of modern hu...

  8. Genetic characterization of simian foamy viruses infecting humans.

    Science.gov (United States)

    Rua, Réjane; Betsem, Edouard; Calattini, Sara; Saib, Ali; Gessain, Antoine

    2012-12-01

    Simian foamy viruses (SFVs) are retroviruses that are widespread among nonhuman primates (NHPs). SFVs actively replicate in their oral cavity and can be transmitted to humans after NHP bites, giving rise to a persistent infection even decades after primary infection. Very few data on the genetic structure of such SFVs found in humans are available. In the framework of ongoing studies searching for SFV-infected humans in south Cameroon rainforest villages, we studied 38 SFV-infected hunters whose times of infection had presumably been determined. By long-term cocultures of peripheral blood mononuclear cells with BHK-21 cells, we isolated five new SFV strains and obtained complete genomes of SFV strains from chimpanzee (Pan troglodytes troglodytes; strains BAD327 and AG15), monkey (Cercopithecus nictitans; strain AG16), and gorilla (Gorilla gorilla; strains BAK74 and BAD468). These zoonotic strains share a very high degree of similarity with their NHP counterparts and have a high degree of conservation of the genetic elements important for viral replication. Interestingly, analysis of FV DNA sequences obtained before cultivation revealed variants with deletions in both the U3 region and tas that may correlate with in vivo chronicity in humans. Genomic changes in bet (a premature stop codon) and gag were also observed. To determine if such changes were specific to zoonotic strains, we studied local SFV-infected chimpanzees and found the same genomic changes. Our study reveals that natural polymorphism of SFV strains does exist at both the intersubspecies level (gag, bet) and the intrasubspecies (U3, tas) levels but does not seem to reflect a viral adaptation specific to zoonotic SFV strains. PMID:23015714

  9. A novel Lie algebra of the genetic code over the Galois field of four DNA bases.

    Science.gov (United States)

    Sánchez, Robersy; Grau, Ricardo; Morgado, Eberto

    2006-07-01

    Starting from the four DNA bases order in the Boolean lattice, a novel Lie Algebra of the genetic code is proposed. Here, the main partitions of the genetic code table were obtained as equivalent classes of quotient spaces of the genetic code vector space over the Galois field of the four DNA bases. The new algebraic structure shows strong connections among algebraic relationships, codon assignments and physicochemical properties of amino acids. Moreover, a distance defined between codons expresses a physicochemical meaning. It was also noticed that the distance between wild type and mutant codons tends to be small in mutational variants of four genes: human phenylalanine hydroxylase, human beta-globin, HIV-1 protease and HIV-1 reverse transcriptase. These results strongly suggest that deterministic rules in genetic code origin must be involved. PMID:16780898

  10. Biomarkers of genetic damage in human populations exposed to pesticides

    International Nuclear Information System (INIS)

    The effect of pesticides on human, animal and environmental health has been cause of concern in the scientific community for a long time. Numerous studies have reported that pesticides are not harmless and that their use can lead to harmful biological effects in the medium and long term, in exposed human and animals, and their offspring. The importance of early detection of genetic damage is that it allows us to take the necessary measures to reduce or eliminate the exposure to the deleterious agent when damage is still reversible, and thus to prevent and to diminish the risk of developing tumors or other alterations. In this paper we reviewed the main concepts in the field, the usefulness of genotoxicity studies and we compiled studies performed during the last twenty years on genetic monitoring of people occupationally exposed to pesticides. we think that genotoxicity tests, including that include chromosomal aberrations, micronucleus, sister chromatid exchanges and comet assays, should be considered as essential tools in the implementation of complete medical supervision for people exposed to potential environmental pollutants, particularly for those living in the same place as others who were others have already developed some type of malignancy. This action is particularly important at early stages to prevent the occurrence of tumors, especially from environmental origins.

  11. Retrospective analysis of main and interaction effects in genetic association studies of human complex traits

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; Brasch-Andersen, Charlotte;

    2007-01-01

    paper introduces a retrospective polytomous logistic regression model to measure both the main and interaction effects in genetic association studies of human discrete and continuous complex traits. In this model, combinations of genotypes at two interacting loci or of environmental exposure and...... logistic regression model can be used as a convenient tool for assessing both main and interaction effects in genetic association studies of human multifactorial diseases involving genetic and non-genetic factors as well as categorical or continuous traits....

  12. Building capacity for human genetics and genomics research in Trinidad and Tobago.

    Science.gov (United States)

    Roach, Allana; Warner, Wayne A; Llanos, Adana A M

    2015-11-01

    Advances in human genetics and genomic sciences and the corresponding explosion of biomedical technologies have deepened current understanding of human health and revolutionized medicine. In developed nations, this has led to marked improvements in disease risk stratification and diagnosis. These advances have also led to targeted intervention strategies aimed at promoting disease prevention, prolonging disease onset, and mitigating symptoms, as in the well-known case of breast cancer and the BRCA1 gene. In contrast, in the developing nation of Trinidad and Tobago, this scientific revolution has not translated into the development and application of effective genomics-based interventions for improving public health. While the reasons for this are multifactorial, the underlying basis may be rooted in the lack of pertinence of internationally driven genomics research to the local public health needs in the country, as well as a lack of relevance of internationally conducted genetics research to the genetic and environmental contexts of the population. Indeed, if Trinidad and Tobago is able to harness substantial public health benefit from genetics/genomics research, then there is a dire need, in the near future, to build local capacity for the conduct and translation of such research. Specifically, it is essential to establish a national human genetics/genomics research agenda in order to build sustainable human capacity through education and knowledge transfer and to generate public policies that will provide the basis for the creation of a mutually beneficial framework (including partnerships with more developed nations) that is informed by public health needs and contextual realities of the nation. PMID:26837529

  13. Automated Smiley Face Extraction Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Md Alamgir Hossain

    2012-07-01

    Full Text Available Facial expression scrutiny has attracted tremendous consciousness in the area of computer vision because it plays a prime role in the domain of human-machine communication. Smiley face expressions are generated by slimming down of facial muscles, which results in temporally buckled facial features such as eye lids, eye brows, nose, lips, and skin texture. These are evaluated by three characteristics: those portions of the face that will take part for facial action, the intensity of facial actions, and the dynamics of facial actions. In this paper we propose a real-time, accurate, and robust smile detection method based on genetic algorithm. We generated leaf-matrix to extract target expression. Finally, we have compared our methodology with the smile shutter function of Canon Camera. We have achieved better performance than Sony on slight smile.

  14. UNDERSTANDING THE HIGH MIND: HUMANS ARE STILL EVOLVING GENETICALLY

    Directory of Open Access Journals (Sweden)

    Blum K et al

    2011-01-01

    Full Text Available The total population of the United States at the turn of the 21 st century was 281,421,906. The total number of people above the age of 12 years old was estimated at 249 million. The National Institutes on Drug Abuse and the Substance Abuse and Mental Health Services Administration (SAMHSA have surveyed persons age 12 and older and found that in the year 2001, a total of 104 million people have used illegal drugs in their life (ever used, 32 million used a psychoactive drug in the past year (2000-2001 and 18 million used a psychoactive drug in the past 30 days. Interestingly this does not include Alcohol. We must ask then, who are the people that could just say NO? When almost half-of the US population have indulged in illegal drug practices, when our presidential candidates are forced to dodge the tricky question of their past history involving illegal drug use, and when almost every American has sloshed down a martini or two in their life time, there must be a reason, there must be a need, there must be a natural response for humans to imbibe at such high rates. There is even a more compelling question surrounding the millions who seek out high risk novelty. Why do millions have this innate drive in face of putting themselves in harms-way? Why are millions paying the price of their indiscretions in our jails, in hospitals, in wheel chairs and are lying dead in our cemeteries. What price must we pay for pleasure seeking or just plain getting “HIGH”? Maybe the answer lies within our brain. Maybe it is in our genome? Utilization of the candidate vs the common variant approach may be parsimonious as it relates to unraveling the addiction riddle. In this commentary we have discussed evidence, theories and conjecture about the “High Mind” and its relationship to evolutionary genetics and drug seeking behavior as impacted by genetic polymorphisms. We consider the meaning of recent findings in genetic research including an exploration of the

  15. GENETIC ALGORITM BASED HINDI WORD SENSE DISAMBIGAUTION

    OpenAIRE

    Sabnam Kumari; Prof. (Dr.) Paramjit Singh

    2013-01-01

    Word Sense Disambiguation (WSD) is a problem of computationally determining which “sense”of a word is activated by the use of the word in particular context. To figure out the appropriate meanings ofpolysemous nouns in the given context Genetic Algorithm is used. This is crucial for various applications like‘machine translation’, ‘speech processes’ and ‘information retrieval’ etc. while the work on WSD for Englishis voluminous, to our knowledge, and this is the first attempt of using Genetic ...

  16. A personification heuristic Genetic Algorithm for Digital Microfluidics-based Biochips Placement

    Directory of Open Access Journals (Sweden)

    Jingsong Yang

    2013-06-01

    Full Text Available A personification heuristic Genetic Algorithm is established for the placement of digital microfluidics-based biochips, in which, the personification heuristic algorithm is used to control the packing process, while the genetic algorithm is designed to be used in multi-objective placement results optimizing. As an example, the process of microfluidic module physical placement in multiplexed in-vitro diagnostics on human physiological fluids is simulated. The experiment results show that personification heuristic genetic algorithm can achieve better results in multi-objective optimization, compare to the parallel recombinative simulated annealing algorithm.

  17. Human somatic cell mutagenesis creates genetically tractable sarcomas.

    Science.gov (United States)

    Molyneux, Sam D; Waterhouse, Paul D; Shelton, Dawne; Shao, Yang W; Watling, Christopher M; Tang, Qing-Lian; Harris, Isaac S; Dickson, Brendan C; Tharmapalan, Pirashaanthy; Sandve, Geir K; Zhang, Xiaoyang; Bailey, Swneke D; Berman, Hal; Wunder, Jay S; Izsvák, Zsuzsanna; Iszvak, Zsuzsanna; Lupien, Mathieu; Mak, Tak W; Khokha, Rama

    2014-09-01

    Creating spontaneous yet genetically tractable human tumors from normal cells presents a fundamental challenge. Here we combined retroviral and transposon insertional mutagenesis to enable cancer gene discovery starting with human primary cells. We used lentiviruses to seed gain- and loss-of-function gene disruption elements, which were further deployed by Sleeping Beauty transposons throughout the genome of human bone explant mesenchymal cells. De novo tumors generated rapidly in this context were high-grade myxofibrosarcomas. Tumor insertion sites were enriched in recurrent somatic copy-number aberration regions from multiple cancer types and could be used to pinpoint new driver genes that sustain somatic alterations in patients. We identified HDLBP, which encodes the RNA-binding protein vigilin, as a candidate tumor suppressor deleted at 2q37.3 in greater than one out of ten tumors across multiple tissues of origin. Hybrid viral-transposon systems may accelerate the functional annotation of cancer genomes by enabling insertional mutagenesis screens in higher eukaryotes that are not amenable to germline transgenesis. PMID:25129143

  18. Optimisation of nonlinear motion cueing algorithm based on genetic algorithm

    Science.gov (United States)

    Asadi, Houshyar; Mohamed, Shady; Rahim Zadeh, Delpak; Nahavandi, Saeid

    2015-04-01

    Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching

  19. Clinical Characteristics and Genetic Variability of Human Rhinovirus in Mexico

    Directory of Open Access Journals (Sweden)

    Hilda Montero

    2012-01-01

    Full Text Available Human rhinovirus (HRV is a leading cause of acute respiratory infection (ARI in young children and infants worldwide and has a high impact on morbidity and mortality in this population. Initially, HRV was classified into two species: HRV-A and HRV-B. Recently, a species called HRV-C and possibly another species, HRV-D, were identified. In Mexico, there is little information about the role of HRV as a cause of ARI, and the presence and importance of species such as HRV-C are not known. The aim of this study was to determine the clinical characteristics and genetic variability of HRV in Mexican children. Genetic characterization was carried out by phylogenetic analysis of the 5′-nontranslated region (5′-NTR of the HRV genome. The results show that the newly identified HRV-C is circulating in Mexican children more frequently than HRV-B but not as frequently as HRV-A, which was the most frequent species. Most of the cases of the three species of HRV were in children under 2 years of age, and all species were associated with very mild and moderate ARI.

  20. MEDICAL DATA PROTECTION IN RELATION TO HUMAN GENETIC DISCRIMINATION

    OpenAIRE

    Mariela Yaneva – Deliverska

    2011-01-01

    Information about a person's genetic status can lead to discrimination by excluding the person from particular jobs (for which a particular genetic trait might indicate a risk) or from health insurance (because of foreseeable increased health care costs that might be indicated by a person’s genetic status). Genetic information has characteristics that set it apart from other types of personal information. Genetic testing produces information and data on the current or future health or (more g...

  1. Scientific rationality, uncertainty and the governance of human genetics: an interview study with researchers at deCODE genetics.

    Science.gov (United States)

    Hjörleifsson, Stefán; Schei, Edvin

    2006-07-01

    Technology development in human genetics is fraught with uncertainty, controversy and unresolved moral issues, and industry scientists are sometimes accused of neglecting the implications of their work. The present study was carried out to elicit industry scientists' reflections on the relationship between commercial, scientific and ethical dimensions of present day genetics and the resources needed for robust governance of new technologies. Interviewing scientists of the company deCODE genetics in Iceland, we found that in spite of optimism, the informants revealed ambiguity and uncertainty concerning the use of human genetic technologies for the prevention of common diseases. They concurred that uncritical marketing of scientific success might cause exaggerated public expectations of health benefits from genetics, with the risk of backfiring and causing resistance to genetics in the population. On the other hand, the scientists did not address dilemmas arising from the commercial nature of their own employer. Although the scientists tended to describe public fear as irrational, they identified issues where scepticism might be well founded and explored examples where they, despite expert knowledge, held ambiguous or tentative personal views on the use of predictive genetic technologies. The rationality of science was not seen as sufficient to ensure beneficial governance of new technologies. The reflexivity and suspension of judgement demonstrated in the interviews exemplify productive features of moral deliberation in complex situations. Scientists should take part in dialogues concerning the governance of genetic technologies, acknowledge any vested interests, and use their expertise to highlight, not conceal the technical and moral complexity involved. PMID:16622446

  2. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation

    Directory of Open Access Journals (Sweden)

    Shriver Mark D

    2005-06-01

    Full Text Available Abstract Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification 12. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification 345. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican, we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations.

  3. Pigmentation, pleiotropy, and genetic pathways in humans and mice

    Energy Technology Data Exchange (ETDEWEB)

    Barsh, G.S. [Stanford Univ., CA (United States)

    1995-10-01

    Some of the most striking polymorphisms in human populations affect the color of our eyes, hair, or skin. Despite some simple lessons from high school biology (blue eyes are recessive; brown are dominant), the genetic basis of such phenotypic variability has, for the most part, eluded Mendelian description. A logical place to search for the keys to understanding common variation in human pigmentation are genes in which defects cause uncommon conditions such as albinism or piebaldism. The area under this lamppost has recently gotten larger, with two articles, one in this issue of the Journal, that describe the map position for Hermansky-Pudlak syndrome (HPS) and with the recent cloning of a gene that causes X-linked ocular albinism (OA1). In addition, a series of three recent articles in Cell demonstrate (1) that defects in the gene encoding the endothelin B (ET{sub B}) receptor cause hypopigmentation and Hirschsprung disease in a Mennonite population and the mouse mutation piebald(s) and (2) that a defect in the edn3 gene, which encodes one of the ligands for the ET{sub B} receptor, causes the lethal spotting (ls) mouse mutation. 47 refs., 1 fig.

  4. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Directory of Open Access Journals (Sweden)

    Christian Gieger

    2008-11-01

    Full Text Available The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16 to 10(-21. We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD where the corresponding metabolic phenotype (metabotype clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

  5. Recollections of J.B.S. Haldane, with special reference to Human Genetics in India

    Directory of Open Access Journals (Sweden)

    Krishna R Dronamraju

    2012-01-01

    Full Text Available This paper is a brief account of the scientific work of J.B.S. Haldane (1892-1964, with special reference to early research in Human Genetics. Brief descriptions of Haldane′s background, his important contributions to the foundations of human genetics, his move to India from Great Britain and the research carried out in Human Genetics in India under his direction are outlined. Population genetic research on Y-linkage in man, inbreeding, color blindness and other aspects are described.

  6. Grammar Based Genetic Programming Using Linear Representations

    Institute of Scientific and Technical Information of China (English)

    ZHANGHong; LUYinan; WANGFei

    2003-01-01

    In recent years,there has been a great interest in genetic programming(GP),which is used to solve many applications such as data mining,electronic engineering and pattern recognition etc.. Genetic programming paradigm as a from of adaptive learning is a functional approach to many problems that require a nonfixed representation and GP typically operates on a population of parse which usually represent computer programs whose nodes have single data type.In this paper GP using context-free grammars(CFGs) is described.This technique separates search space from solution space through a genotype to phenotype mapping.The genotypes and phenotypes of the individuals both act on different linear representations.A phenotype is postfix expression,a new method of representing which is described by making use of the definition and related features of a context-free grammar,i.e.a genotype is a variable length,linear valid genome determined by a simplifled derivation tree(SDT) generated from a context-free grammar.A CFG is used to specify how the possible solutions are created according to experiential knowledge and to direct legal crossover(ormutation)operations without any explicit reference to the process of program generation and parsing,and automatically ensuring typing and syntax correctness.Some related definitions involving genetic operators are described.Fitness evaluation is given.This technique is applied to a symbol regression problem-the identification of nonlinear dynamic characteristics of cushioning packaging.Experimental results show this method can flnd good relations between variables and is better than basic GP without a grammar.Future research on it is outlined.

  7. A Songbird Model of Genetically Based Speech Disorders

    OpenAIRE

    Condro, Michael Christopher

    2013-01-01

    Language is a complex communicative behavior unique to humans, though its genetic basis is still poorly understood. Genes associated with human speech and language disorders have provided a basis for study, originating with the FOXP2 transcription factor, a mutation in which is the source of an inherited form of developmental verbal dyspraxia. Subsequently, targets of FOXP2 regulation have been investigated for their associations with language-related disorders. One such target, contactin ass...

  8. Mine, yours, ours? Sharing data on human genetic variation.

    Directory of Open Access Journals (Sweden)

    Nicola Milia

    Full Text Available The achievement of a robust, effective and responsible form of data sharing is currently regarded as a priority for biological and bio-medical research. Empirical evaluations of data sharing may be regarded as an indispensable first step in the identification of critical aspects and the development of strategies aimed at increasing availability of research data for the scientific community as a whole. Research concerning human genetic variation represents a potential forerunner in the establishment of widespread sharing of primary datasets. However, no specific analysis has been conducted to date in order to ascertain whether the sharing of primary datasets is common-practice in this research field. To this aim, we analyzed a total of 543 mitochondrial and Y chromosomal datasets reported in 508 papers indexed in the Pubmed database from 2008 to 2011. A substantial portion of datasets (21.9% was found to have been withheld, while neither strong editorial policies nor high impact factor proved to be effective in increasing the sharing rate beyond the current figure of 80.5%. Disaggregating datasets for research fields, we could observe a substantially lower sharing in medical than evolutionary and forensic genetics, more evident for whole mtDNA sequences (15.0% vs 99.6%. The low rate of positive responses to e-mail requests sent to corresponding authors of withheld datasets (28.6% suggests that sharing should be regarded as a prerequisite for final paper acceptance, while making authors deposit their results in open online databases which provide data quality control seems to provide the best-practice standard. Finally, we estimated that 29.8% to 32.9% of total resources are used to generate withheld datasets, implying that an important portion of research funding does not produce shared knowledge. By making the scientific community and the public aware of this important aspect, we may help popularize a more effective culture of data sharing.

  9. The New Human Genetics. How Gene Splicing Helps Researchers Fight Inherited Disease.

    Science.gov (United States)

    Pines, Maya

    The science of genetics is perceived to offer hope that a large number of the 3,000 inherited diseases which afflict human beings may be prevented or controlled. This document addresses some of the advances that have been made in this field. It includes an introduction and sections on: "The Beginning of Human Genetics"; "Unlocking the Secrets of…

  10. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders

    OpenAIRE

    Hamosh, Ada; Scott, Alan F.; Amberger, Joanna S.; Bocchini, Carol A.; McKusick, Victor A.

    2004-01-01

    Online Mendelian Inheritance in Man (OMIM™) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez s...

  11. The DNA-based human karyotype.

    Science.gov (United States)

    Mayall, B H; Carrano, A V; Moore, D H; Ashworth, L K; Bennett, D E; Mendelsohn, M L

    1984-07-01

    Image cytometry and computer analysis are used to determine the relative DNA content and the DNA-based centromeric index of the 24 chromosomes of the human karyotype. A two-step procedure is used. Chromosomes of cells in metaphase first are stained with quinacrine and identified visually by their fluorescent Q-band patterns. They then are stained for DNA using gallocyanin-chrome alum. The chromosome images are scanned and recorded as digital values of optical density by an CYDAC image cytometric microscope system, CYDAC. The digital images are processed by computer to measure for each chromosome the relative DNA stain contents of the whole chromosome and of the p and q arms and the DNA-based centromeric index. About ten cells are analyzed for each of the donors, who are phenotypically normal men and women. The chromosome measurements are pooled by chromosome type for each donor and are compared among donors. The means of the chromosome measurements give the DNA-based human karyotype. Analysis of the DNA-based data shows that some chromosomes or portions of chromosomes vary significantly among donors. These variants do not correlate with detectable morphologic polymorphisms, such as Q- or C-band variants; thus they represent new and otherwise undetectable chromosome polymorphisms whose genetic basis and clinical significance are yet to be determined. PMID:6205836

  12. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach.

    Science.gov (United States)

    Saeb, Amr T M; Al-Naqeb, Dhekra

    2016-01-01

    Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases. PMID:27313952

  13. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach

    Directory of Open Access Journals (Sweden)

    Amr T. M. Saeb

    2016-01-01

    Full Text Available Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.

  14. Analysis of protein-coding genetic variation in 60,706 humans.

    Science.gov (United States)

    Lek, Monkol; Karczewski, Konrad J; Minikel, Eric V; Samocha, Kaitlin E; Banks, Eric; Fennell, Timothy; O'Donnell-Luria, Anne H; Ware, James S; Hill, Andrew J; Cummings, Beryl B; Tukiainen, Taru; Birnbaum, Daniel P; Kosmicki, Jack A; Duncan, Laramie E; Estrada, Karol; Zhao, Fengmei; Zou, James; Pierce-Hoffman, Emma; Berghout, Joanne; Cooper, David N; Deflaux, Nicole; DePristo, Mark; Do, Ron; Flannick, Jason; Fromer, Menachem; Gauthier, Laura; Goldstein, Jackie; Gupta, Namrata; Howrigan, Daniel; Kiezun, Adam; Kurki, Mitja I; Moonshine, Ami Levy; Natarajan, Pradeep; Orozco, Lorena; Peloso, Gina M; Poplin, Ryan; Rivas, Manuel A; Ruano-Rubio, Valentin; Rose, Samuel A; Ruderfer, Douglas M; Shakir, Khalid; Stenson, Peter D; Stevens, Christine; Thomas, Brett P; Tiao, Grace; Tusie-Luna, Maria T; Weisburd, Ben; Won, Hong-Hee; Yu, Dongmei; Altshuler, David M; Ardissino, Diego; Boehnke, Michael; Danesh, John; Donnelly, Stacey; Elosua, Roberto; Florez, Jose C; Gabriel, Stacey B; Getz, Gad; Glatt, Stephen J; Hultman, Christina M; Kathiresan, Sekar; Laakso, Markku; McCarroll, Steven; McCarthy, Mark I; McGovern, Dermot; McPherson, Ruth; Neale, Benjamin M; Palotie, Aarno; Purcell, Shaun M; Saleheen, Danish; Scharf, Jeremiah M; Sklar, Pamela; Sullivan, Patrick F; Tuomilehto, Jaakko; Tsuang, Ming T; Watkins, Hugh C; Wilson, James G; Daly, Mark J; MacArthur, Daniel G

    2016-08-18

    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes. PMID:27535533

  15. Warehouse Optimization Model Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Guofeng Qin

    2013-01-01

    Full Text Available This paper takes Bao Steel logistics automated warehouse system as an example. The premise is to maintain the focus of the shelf below half of the height of the shelf. As a result, the cost time of getting or putting goods on the shelf is reduced, and the distance of the same kind of goods is also reduced. Construct a multiobjective optimization model, using genetic algorithm to optimize problem. At last, we get a local optimal solution. Before optimization, the average cost time of getting or putting goods is 4.52996 s, and the average distance of the same kinds of goods is 2.35318 m. After optimization, the average cost time is 4.28859 s, and the average distance is 1.97366 m. After analysis, we can draw the conclusion that this model can improve the efficiency of cargo storage.

  16. Topology control based on quantum genetic algorithm in sensor networks

    Institute of Scientific and Technical Information of China (English)

    SUN Lijuan; GUO Jian; LU Kai; WANG Ruchuan

    2007-01-01

    Nowadays,two trends appear in the application of sensor networks in which both multi-service and quality of service (QoS)are supported.In terms of the goal of low energy consumption and high connectivity,the control on topology is crucial.The algorithm of topology control based on quantum genetic algorithm in sensor networks is proposed.An advantage of the quantum genetic algorithm over the conventional genetic algorithm is demonstrated in simulation experiments.The goals of high connectivity and low consumption of energy are reached.

  17. Role of genetic variants in ADIPOQ in human eating behavior.

    Science.gov (United States)

    Rohde, Kerstin; Keller, Maria; Horstmann, Annette; Liu, Xuanshi; Eichelmann, Fabian; Stumvoll, Michael; Villringer, Arno; Kovacs, Peter; Tönjes, Anke; Böttcher, Yvonne

    2015-01-01

    The beneficial effects of adiponectin and its negative correlation with BMI are well described. Adiponectin serum levels are altered in eating disorders such as anorexia nervosa, bulimia nervosa or binge eating. Here, we tested the hypothesis that (1) adiponectin serum levels correlate with human eating behavior factors and (2) that genetic variants of the ADIPOQ locus influence both serum levels and eating behavior. We analyzed 11 SNPs within ADIPOQ and in the 5' UTR and measured serum adiponectin levels in 1,036 individuals from the German Sorbs population. The German version of the three-factor eating questionnaire (FEV) was completed by 548 Sorbs. For replication purposes, we included an independent replication cohort from Germany (N = 350). In the Sorbs, we observed positive correlations of restraint with adiponectin serum levels (P = 0.001; r = 0.148) which, however, did not withstand adjustment for covariates (P = 0.083; r = 0.077). In addition, four SNPs were nominally associated with serum adiponectin levels (all P  9.3 × 10(-4)). In our replication cohort, we observed similar effect directions at rs1501229 for disinhibition and hunger. A meta-analysis resulted in nominal statistical significance P = 0.036 (Z score 2.086) and P = 0.017 (Z score 2.366), respectively. Given the observed relationship of the SNPs with adiponectin levels and eating behavior, our data support a potential role of adiponectin in human eating behavior. Whether the relationship with eating behavior is mediated by the effects of circulating adiponectin warrants further investigations. PMID:25542302

  18. Genetic diversity of Sardinian goat population based on microsatellites

    Directory of Open Access Journals (Sweden)

    A. Carta

    2010-01-01

    Full Text Available During the last century, the selection for production traits of the main livestock species has led to a reduction in number of local populations with consequent loss of genetic variability. In Sardinia, the genetic improvement strategy has been based on selection for the local pure breed in sheep, whereas in the other species (cattle, swine and goat, an often unplanned crossbreeding with improved breeds has been applied.

  19. Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints.

    Directory of Open Access Journals (Sweden)

    October M Sessions

    Full Text Available Dengue viruses (DENV cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients' sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses.

  20. Human genetics teaching in U.S. medical schools.

    OpenAIRE

    Childs, B.; Huether, C A; Murphy, E.A.

    1981-01-01

    Information about instruction in genetics was obtained fron 103 of the 107 U.S. four-year medical schools. Seventy-two percent of the schools provide a compulsory course in genetics, but there was great variation in duration, content, departmental responsibility for giving the course, and in the disciplines of those doing the teaching. The variability in the number of hours devoted to teaching genetics was reflected in the competence of the students in giving correct answers to questions on g...

  1. Genetic bases of arrhythmogenic right ventricular cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Alessandra Rampazzo

    2010-05-01

    Full Text Available Arrhythmogenic right ventricular cardiomyopathy (ARVC is a heart muscle disease in which the pathological substrate is a fibro-fatty replacement of the right ventricular myocardium. The major clinical features are different types of arrhythmias with a left branch block pattern. ARVC shows autosomal dominant inheritance with incomplete penetrance. Recessive forms were also described, although in association with skin disorders. Ten genetic loci have been discovered so far and mutations were reported in five different genes. ARVD1 was associated with regulatory mutations of transforming growth factor beta-3 (TGFβ3, whereas ARVD2, characterized by effort-induced polymorphic arrhythmias, was associated with mutations in cardiac ryanodine receptor-2 (RYR2. All other mutations identified to date have been detected in genes encoding desmosomal proteins: plakoglobin (JUP which causes Naxos disease (a recessive form of ARVC associated with palmoplantar keratosis and woolly hair; desmoplakin (DSP which causes the autosomal dominant ARVD8 and plakophilin-2 (PKP2 involved in ARVD9. Desmosomes are important cell-to-cell adhesion junctions predominantly found in epidermis and heart; they are believed to couple cytoskeletal elements to plasma membrane in cell-to-cell or cell-to-substrate adhesions.

  2. A New Genetic Algorithm Methodology for Design Optimization of Truss Structures: Bipopulation-Based Genetic Algorithm with Enhanced Interval Search

    OpenAIRE

    Tugrul Talaslioglu

    2009-01-01

    A new genetic algorithm (GA) methodology, Bipopulation-Based Genetic Algorithm with Enhanced Interval Search (BGAwEIS), is introduced and used to optimize the design of truss structures with various complexities. The results of BGAwEIS are compared with those obtained by the sequential genetic algorithm (SGA) utilizing a single population, a multipopulation-based genetic algorithm (MPGA) proposed for this study and other existing approaches presented in literature. This study has two goals: o...

  3. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  4. Numeral eddy current sensor modelling based on genetic neural network

    Institute of Scientific and Technical Information of China (English)

    Yu A-Long

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness,on-line modelling and high precision.The maximum nonlinearity error can be reduced to 0.037% by using GNN.However, the maximum nonlinearity error is 0.075% using the least square method.

  5. OPTIMIZATION BASED ON LMPROVED REAL—CODED GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ShiYu; YuShenglin

    2002-01-01

    An improved real-coded genetic algorithm is pro-posed for global optimization of functionsl.The new algo-rithm is based om the judgement of the searching perfor-mance of basic real-coded genetic algorithm.The opera-tions of basic real-coded genetic algorithm are briefly dis-cussed and selected.A kind of chaos sequence is described in detail and added in the new algorithm ad a disturbance factor.The strategy of field partition is also used to im-prove the strcture of the new algorithm.Numerical ex-periment shows that the mew genetic algorithm can find the global optimum of complex funtions with satistaiting precision.

  6. Manufacturing Resource Planning Technology Based on Genetic Programming Simulation

    Institute of Scientific and Technical Information of China (English)

    GAO Shiwen; LIAO Wenhe; GUO Yu; LIU Jinshan; SU Yan

    2009-01-01

    Network-based manufacturing is a kind of distributed system, which enables manufacturers to finish production tasks as well as to grasp the opportunities in the market, even if manufacturing resources are insufficient. One of the main problems in network-based manufacturing is the allocation of resources and the assignment of tasks rationally, according to flexible resource distribution. The mapping rules and relations between production techniques and resources are proposed, followed by the definition of the resource unit. Ultimately, the genetic programming method for the optimization of the manufacturing system is put forward. A set of software for the optimization system of simulation process using genetic programming techniques has been developed, and the problems of manufacturing resource planning in network-based manufacturing are solved with the simulation of optimizing methods by genetic programming. The optimum proposal of hardware planning, selection of company and scheduling will be obtained in theory to help company managers in scientific decision-making.

  7. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    Science.gov (United States)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  8. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    Directory of Open Access Journals (Sweden)

    Zhi Xu

    Full Text Available Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7% in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  9. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    KAUST Repository

    Hoehndorf, Robert

    2015-06-08

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  10. Inter-chromosomal variation in the pattern of human population genetic structure

    Directory of Open Access Journals (Sweden)

    Baye Tesfaye M

    2011-05-01

    Full Text Available Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC, cluster, discriminant, fixation index (FST and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2, hect domain and RLD 2 (HERC2, ectodysplasin A receptor (EDAR and solute carrier family 45, member 2 (SLC45A2. These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG and death-associated protein kinase 1 (DAPK1, which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the

  11. An atlas of genetic correlations across human diseases and traits

    DEFF Research Database (Denmark)

    Bulik-Sullivan, Brendan; Finucane, Hilary K; Anttila, Verneri;

    2015-01-01

    Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods...... are the lack of availability of individual-level genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique-cross-trait LD Score regression-for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample...... overlap. We use this method to estimate 276 genetic correlations among 24 traits. The results include genetic correlations between anorexia nervosa and schizophrenia, anorexia and obesity, and educational attainment and several diseases. These results highlight the power of genome-wide analyses...

  12. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  13. Genetic regulation of immunoglobulin E level in different pathological states: integration of mouse and human genetics

    Czech Academy of Sciences Publication Activity Database

    Gusareva, Elena; Kurey, Irina; Grekov, Igor; Lipoldová, Marie

    2014-01-01

    Roč. 89, č. 2 (2014), s. 375-405. ISSN 1464-7931 R&D Projects: GA ČR GA310/08/1697; GA MŠk LH12049 Institutional support: RVO:68378050 Keywords : Genetic control of complex diseases * Immunoglobulin E * Epistasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.670, year: 2014

  14. A Songbird Animal Model for Dissecting the Genetic Bases of Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    S. Carmen Panaitof

    2012-01-01

    Full Text Available The neural and genetic bases of human language development and associated neurodevelopmental disorders, including autism spectrum disorder (ASD, in which language impairment represents a core deficit, are poorly understood. Given that no single animal model can fully capture the behavioral and genetic complexity of ASD, work in songbird, an experimentally tractable animal model of vocal learning, can complement the valuable tool of rodent genetic models and contribute important insights to our understanding of the communication deficits observed in ASD. Like humans, but unlike traditional laboratory animals such as rodents or non-human primates, songbirds exhibit the capacity of vocal learning, a key subcomponent of language. Human speech and birdsong reveal important parallels, highlighting similar developmental critical periods, a homologous cortico-basal ganglia-thalamic circuitry, and a critical role for social influences in the learning of vocalizations. Here I highlight recent advances in using the songbird model to probe the cellular and molecular mechanisms underlying the formation and function of neural circuitry for birdsong and, by analogy, human language, with the ultimate goal of identifying any shared or human unique biological pathways underscoring language development and its disruption in ASD.

  15. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    International Nuclear Information System (INIS)

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment

  16. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Holly M., E-mail: mortensen.holly@epa.gov [Office of Research and Development, US Environmental Protection Agency, National Center for Computational Toxicology, US EPA, 109 TW Alexander Dr., Mailcode B205-01, Research Triangle Park, NC 27711 (United States); Euling, Susan Y. [Office of Research and Development, US Environmental Protection Agency, National Center for Environmental Assessment, US EPA, 1200 Pennsylvania Ave., NW, Mail Code 8623P, Washington, DC 20460 (United States)

    2013-09-15

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.

  17. Human genetic studies in areas of high natural radiation

    International Nuclear Information System (INIS)

    Data have been obtained by a genetic-epidemiological survey of a population living in the State of Espirito Santo (Brazil), and subjected to mean levels of natural radiation, per locality, ranging from 7 to 133 μrad/hr. Multiple regression models have been applied to the data, and the results showed no detectable effect of natural radiation on the sex ratio at birth, on the occurrence of congenital anomalies, and on the numbers of pregnancy terminations, stillbirths, livebirths, and post-infant mortality in the children, as well as fecundity and fertility of the couples (these observations contradict some data from the literature, based on official records and without analyses of the concomitant effects of other variables). However, nonsignificant results cannot be considered as disproving harmful effects of natural radiation on mortality and morbidity. These results may simply mean that other causes of mortality and morbidity are so important, under the conditions of the study, that the contribution of low-level, chronic natural radiation is made negligible. (author)

  18. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers.

    Science.gov (United States)

    Sinkovics, Joseph G; Horvath, Joseph C

    2008-12-01

    Based on personal acquaintances and experience dating back to the early 1950s, the senior author reviews the history of viral therapy of cancer. He points out the difficulties encountered in the treatment of human cancers, as opposed by the highly successful viral therapy of experimentally maintained tumors in laboratory animals, especially that of ascites carcinomas in mice. A detailed account of viral therapy of human tumors with naturally oncolytic viruses follows, emphasizing the first clinical trials with viral oncolysates. The discrepancy between the high success rates, culminating in cures, in the treatment of tumors of laboratory animals, and the moderate results, such as stabilizations of disease, partial responses, very rare complete remissions, and frequent relapses with virally treated human tumors is recognized. The preclinical laboratory testing against established human tumor cell lines that were maintained in tissue cultures for decades, and against human tumors extricated from their natural habitat and grown in xenografts, may not yield valid results predictive of the viral therapy applied against human tumors growing in their natural environment, the human host. Since the recent discovery of the oncosuppressive efficacy of bacteriophages, the colon could be regarded as the battlefield, where incipient tumor cells and bacteriophages vie for dominance. The inner environment of the colon will be the teaching ground providing new knowledge on the value of the anti-tumor efficacy of phage-induced innate anti-tumor immune reactions. Genetically engineered oncolytic viruses are reviewed next. The molecular biology of viral oncolysis is explained in details. Elaborate efforts are presented to elucidate how gene product proteins of oncolytic viruses switch off the oncogenic cascades of cancer cells. The facts strongly support the conclusion that viral therapy of human cancers will remain in the front lines of modern cancer therapeutics. It may be a

  19. Genetic determination of chromosomal radiosensitivities in G0- and G2-phase human lymphocytes

    International Nuclear Information System (INIS)

    Background and purpose: The radiosensitivity of human lymphocytes measured using a G0- or G2-assay has been linked with an individual's risk of developing normal tissue complications following radiotherapy. This study was performed to increase basic knowledge of the genetics of the human radiation response, and chromosomal aberration induction in particular. Materials and methods: The study was carried out with blood samples taken from 15 monozygotic twin pairs. G0-assay was performed for cells irradiated with 6 Gy counting only deletions and G2-assay for cells irradiated with 0.5 Gy scoring only chromatid breaks. Results: The mean number of deletions measured at 6 Gy for all 30 samples using the G0-assay amounted to 2.96 ± 0.37 (means ± SD), which corresponds to a coefficient of variation (CV) of 13%. There is a highly significant intra-pair correlation for this number among twins (r 2 = 0.911) demonstrating that this parameter is mostly determined by genetic factors. According to the mean number of deletions, a theoretical classification based on the definition =MV + SD as sensitive was made, identifying two pairs as sensitive or resistant, respectively, while nine were normal and two pairs are intermediate. For chromatid breaks measured at 0.5 Gy with the G2-assay the mean number was 1.35 ± 0.42 (means ± SD) corresponding to a CV of 31%. There was again a strong intra-pair correlation among twins with r 2 = 0.837 showing that this sensitivity is also determined mostly by genetic factors. There was, however, no inter-assay correlation between the G0- and G2-sensitivity (r 2 = 0.006) demonstrating that these two sensitivities depend on different genetic factors. Conclusion: The chromosomal radiosensitivity of lymphocytes as defined by G0- or G2-assay is largely determined by different genetic factors, which may allow the use of genetic profiling as an indicator of the respective individual radiosensitivity

  20. Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome

    OpenAIRE

    Lohmueller, Kirk E.; Albrechtsen, Anders; Li, Yingrui; Kim, Su Yeon; Korneliussen, Thorfinn Sand; Vinckenbosch, Nicolas; Tian, Geng; Huerta-Sanchez, Emilia; Feder, Alison F.; Grarup, Niels; Jørgensen, Torben; Jiang, Tao; Witte, Daniel R.; Sandbæk, Annelli; Hellmann, Ines

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or ...

  1. Complex Genetics and the Etiology of Human Congenital Heart Disease

    Science.gov (United States)

    Gelb, Bruce D.; Chung, Wendy K.

    2014-01-01

    Congenital heart disease (CHD) is the most common birth defect. Despite considerable advances in care, CHD remains a major contributor to newborn mortality and is associated with substantial morbidities and premature death. Genetic abnormalities appear to be the primary cause of CHD but identifying precise defects has proven challenging, principally because CHD is a complex genetic trait. Due largely to recent advances in genomic technology such as next-generation DNA sequencing, scientists have begun to identify the genetic variants underlying CHD. In this chapter, the roles of modifier genes, de novo mutations, copy number variants, common variants and non-coding mutations in the pathogenesis of CHD are reviewed. PMID:24985128

  2. Digital Image Mosaic Technology Based on Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Li Yan

    2014-03-01

    Full Text Available Image mosaic technology is an important technology in the field of image processing. Based on the general adaptability and clustering of genetic algorithm, we improve it, and apply it to the mosaic algorithm in image processing. In this paper, we test the validity and reliability of the designed algorithm in the process of image mosaic algorithm. Based on the image illumination mosaic and painting texture mosaic image we achieve certain artistic effect. From the convergence results of general algorithm, the results of numerical show substantially concussion, oscillation amplitude reaches a maximum of . The calculation results of the genetic algorithm still have certain degree of concussion, oscillation amplitude reaches a maximum of , convergence results are slightly better than the general algorithm. The improved genetic algorithm results have no concussion, the stability is very good, and the results have better astringency.

  3. An Improved Robot Path Planning Algorithm Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hammin Liu

    2012-12-01

    Full Text Available Robot path planning is a NP problem; traditional optimization methods are not very effective to solve it. Traditional genetic algorithm trapped into the local minimum easily. Therefore, based on a simple genetic algorithm and combine the base ideology of orthogonal design method then applied it to the population initialization, using the intergenerational elite mechanism, as well as the introduction of adaptive local search operator to prevent trapped into the local minimum and improve the convergence speed to form a new genetic algorithm. Through the series of numerical experiments, the new algorithm has been proved to be efficiency. We also use the proposed algorithm to solve the robot path planning problem and the experiment results indicated that the new algorithm is efficiency for solving the robot path planning problems and the best path usually can be found.

  4. Knee Joint Optimization Design of Intelligent Bionic Leg Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2014-09-01

    Full Text Available Intelligent bionic leg (IBL is an advanced prosthesis which can maximum functionally simulate and approach the motion trajectory of human leg. Knee joint is the most important bone of human leg and its bionic design has great significance to prosthesis performance. The structural components of IBL are introduced and virtual prototype is given. The advantages of 4-bar knee joint are analyzed and are adopted in IBL design. The kinematics model of 4-bar knee joint is established. The objective function, constraint condition, parameters selection and setting of genetic algorithm are discussed in detail. Based on genetic algorithm, the optimization design of IBL knee joint is done. The optimization results indicate that the 4-bar mechanism can achieve better anthropomorphic characteristics of human knee joint.

  5. Can Using Human Examples Diminish the Number of Misconceptions Held Concerning Mendelian Genetics Concepts?

    Science.gov (United States)

    Moore, John M.

    2000-01-01

    Explores high school biology and the teaching of genetics. The question is asked, Can the use of relevant, meaningful human genetics concepts diminish the number of misconceptions formed between new and existing concepts? Can the application of the Ausubelian learning theory also decrease the acquisition of misconceptions? (SAH)

  6. An integrated map of genetic variation from 1.092 human genomes

    DEFF Research Database (Denmark)

    Abecasis, Goncalo R.; Auton, Adam; Brooks, Lisa D.;

    2012-01-01

    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination ...

  7. Complex Genetics and the Etiology of Human Congenital Heart Disease

    OpenAIRE

    Gelb, Bruce D.; Wendy K Chung

    2014-01-01

    Congenital heart disease (CHD) is the most common birth defect. Despite considerable advances in care, CHD remains a major contributor to newborn mortality and is associated with substantial morbidities and premature death. Genetic abnormalities appear to be the primary cause of CHD but identifying precise defects has proven challenging, principally because CHD is a complex genetic trait. Due largely to recent advances in genomic technology such as next-generation DNA sequencing, scientists h...

  8. A Current Genetic and Epigenetic View on Human Aging Mechanisms

    OpenAIRE

    Ostojić, Saša; Pereza, Nina; Kapović, Miljenko

    2009-01-01

    The process of aging is one of the most complex and intruguing biological phenomenons. Aging is a genetically regulated process in which the organism’s maximum lifespan potential is pre-determined, while the rate of aging is influenced by environmental factors and lifestyle. Considering the complexity of mechanisms involved in the regulation of aging process, up to this date there isn’t a major, unifying theory which could explain them. As genetic/epigenetic and environmental factors both ine...

  9. GAPscreener: An automatic tool for screening human genetic association literature in PubMed using the support vector machine technique

    Directory of Open Access Journals (Sweden)

    Khoury Muin J

    2008-04-01

    Full Text Available Abstract Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM, a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.

  10. Genetic Algorithm-Based Optimization Used in Rolling Schedule

    Institute of Scientific and Technical Information of China (English)

    YANG Jing-ming; CHE Hai-jun; DOU Fu-ping; ZHOU Tao

    2008-01-01

    A genetic algorithm-based optimization was used for 1 370 mm tandem cold rolling schedule, in which the press rates were coded and operated. The superiority individual is reserved in every generation. Analysis and comparison of optimized schedule with the existing schedule were offered. It is seen that the performance of the optimal rolling schedule is satisfactory and promising.

  11. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans

    NARCIS (Netherlands)

    Verloop, H.; Dekkers, O.M.; Peeters, R.P.; Schoones, J.W.; Smit, J.W.

    2014-01-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clini

  12. Human genetics, environment, and communities of color: ethical and social implications.

    OpenAIRE

    Sze, Julie; Prakash, Swati

    2004-01-01

    A conference titled "Human Genetics, Environment, and Communities of Color: Ethical and Social Implications" and a workshop symposium titled "Human Genetics and Environmental Justice" were held by West Harlem Environmental Action, Inc., with cosponsorship by the National Institute of Environmental Health Sciences (NIEHS), the Community Outreach and Education Program of the NIEHS P30 Center for Environmental Health at the Mailman School of Public Health at Columbia University, New York, and th...

  13. Deep genetic structure and ecological divergence in a widespread human commensal toad

    OpenAIRE

    Wogan, GOU; Stuart, BL; Iskandar, DT; McGuire, JA

    2016-01-01

    © 2016 The Author(s) Published by the Royal Society. All rights reserved. The Asian common toad (Duttaphrynus melanostictus) is a human commensal species that occupies a wide variety of habitats across tropical Southeast Asia. We test the hypothesis that genetic variation in D. melanostictus is weakly associated with geography owing to natural and human-mediated dispersal facilitated by its commensal nature. Phylogenetic and population genetic analyses of mitochondrial and nuclear DNA sequenc...

  14. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders

    OpenAIRE

    Hamosh, Ada; Scott, Alan F.; Amberger, Joanna; Bocchini, Carol; Valle, David; McKusick, Victor A.

    2002-01-01

    Online Mendelian Inheritance in Man (OMIM™) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support research and education in human genomics and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (www.ncbi.nlm.nih.gov/omim) is now distributed electronically by the National Center for Biotechnology Information (NCBI), where it is integrated with the Entrez...

  15. Legal Regulation of Human Trials of Genetically Modified Foods:A Constitutional Analysis Based on the Golden Rice Case%转基因食品人体试验的法律规制--基于“黄金大米”事件的宪法分析

    Institute of Scientific and Technical Information of China (English)

    吕方圆

    2015-01-01

    The exposure of Golden Rice Case caused people to think about human trials of genetically modified foods.In this human trial,human dignity,right to life,right to health,and privacy of students participating in the trial were violated.At present,there are plenty of illegal biomedical human trials in China,which invade the interests of the subjects.There are not any specified laws regulating of human trials.The subjects’rights are vulnerable.However,by the external regulation of market,it is impossible to regulate human trials effectively and protect subjects’interests.Therefore,it is necessary to enact Human Trails Act and make special provisions for human trials of genetically modified food.The law bases on the principle of human dignity,with the protection of subjects’human rights at it’s core.By reviewing of the Institutional Review Board and license system executed by health administrative departments,the law aims to protect the subjects’human rights.%“黄金大米”事件的曝光引发了人们对于转基因食品人体试验的法学思考。在该转基因食品人体试验中,参与试验学生的尊严、生命权、健康权、知情同意权都受到了一定的侵害。现阶段,我国存在着许多违法的生物医学人体试验,这严重侵害了受试者的权益。目前,我国尚未有专门的法律对人体试验进行规制,人体试验中受试者权利易受侵害,而通过市场的外在调节,难以达到有效规范人体实验、保护受试者的人权的目的,因而需要制定专门的《人体试验法》。该法律应该以保障人的尊严为原则,以受试者人权保护为核心,同时在程序上应执行伦理委员会审查和卫生行政部门许可的双审制度。

  16. [The role of genetic factors in human radioresistance].

    Science.gov (United States)

    Tel'nov, V I

    2005-01-01

    The role of genetic factors in the development of chronic radiation disease (CRD), mostly caused by occupational external gamma-exposure, was evaluated. The data of molecular genetic survey of a cohort of 985 workers at the nuclear power plant, the Mayak PA, were analyzed. Among the genetic markers tested, an association between the haptoglobin (Hp) genetic system and the development of CRD was established. It was demonstrated that the contribution of genetic factors to the CRD onset was realized not within the whole, but in a relatively narrow dose interval (70 to 400 cGy), i.e., was relative. Furthermore, at equal irradiation doses, relatively higher risk of CRD was observed among the Hp 2-2 phenotype carriers (1.96) compared to lower risk among the Hp 1-1 and Hp 2-1 phenotype carriers (0.64). It was shown that with the increase of the irradiation dose, genotypic differences in the CRD frequency decreased to the point of their complete disappearance. Comparison of the roles of the genetic factors in the onset of such deterministic irradiation effect as CRD, with their roles in the onset of lung cancer in tobacco smokers revealed similar patterns. A scheme of the relationships between the effector intensity and the differences in the genetically determined radioresistance is presented. The data obtained do not support the idea that the survivals of the atomic bombing of Hiroshima and Nagasaki were the most radioresistant individuals, who are not representative for evaluating the radiation risk. PMID:15771255

  17. Optimizing Combination of Units Commitment Based on Improved Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    LAI Yifei; ZHANG Qianhua; JIA Junping

    2007-01-01

    GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms, such as natural selection, genetic recombination and survival of the fittest. By use of coding betterment, the dynamic changes of the mutation rate and the crossover probability, the dynamic choice of subsistence, the reservation of the optimal fitness value, a modified genetic algorithm for optimizing combination of units in thermal power plants is proposed.And through taking examples, test result are analyzed and compared with results of some different algorithms. Numerical results show available value for the unit commitment problem with examples.

  18. Human Genome Epidemiology : A scientific foundation for using genetic information to improve health and prevent disease

    Directory of Open Access Journals (Sweden)

    Stefania Boccia

    2005-03-01

    Full Text Available

    Human health is determined by the interplay of genetic factors and the environment. In this context the recent advances in human genomics are expected to play a central role in medicine and public health by providing genetic information for disease prediction and prevention.

    After the completion of the human genome sequencing, a fundamental step will be represented by the translation of these discoveries into meaningful actions to improve health and prevent diseases, and the field of epidemiology plays a central role in this effort. These are some of the issues addressed by Human Genome Epidemiology –A scientific foundation for using genetic information to improve health and prevent disease, a volume edited by Prof. M. Khoury, Prof. J. Little, Prof.W. Burke and published by Oxford university Press 2004.

    This book describes the important role that epidemiological methods play in the continuum from gene discovery to the development and application of genetic tests. The Authors calls this continuum human genome epidemiology (HuGE to denote an evolving field of inquiry that uses systematic applications of epidemiological methods to assess the impact of human genetic variation on health and disease.

    The book is divided into four sections and it is structured to allow readers to proceed systematically from the fundamentals of genome technology and discovery, to the epidemiological approaches, to gene characterisation, to the evaluation of genetic tests and their use in health services and public health.

  19. A genetic programming based business process mining approach

    OpenAIRE

    Turner, Christopher James

    2009-01-01

    As business processes become ever more complex there is a need for companies to understand the processes they already have in place. To undertake this manually would be time consuming. The practice of process mining attempts to automatically construct the correct representation of a process based on a set of process execution logs. The aim of this research is to develop a genetic programming based approach for business process mining. The focus of this research is on automated/semi automat...

  20. Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos

    OpenAIRE

    Wang, Jian

    2016-01-01

    In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext) attack in the process of pixel position scrambling), we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusi...

  1. Immune and Genetic Algorithm Based Assembly Sequence Planning

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-guo; LI Bei-zhi; YU Lei; JIN Yu-song

    2004-01-01

    In this paper an assembly sequence planning model inspired by natural immune and genetic algorithm (ASPIG) based on the part degrees of freedom matrix (PDFM) is proposed, and a proto system - DSFAS based on the ASPIG is introduced to solve assembly sequence problem. The concept and generation of PDFM and DSFAS are also discussed. DSFAS can prevent premature convergence, and promote population diversity, and can accelerate the learning and convergence speed in behavior evolution problem.

  2. Field Evaluation of the gag-Based Heteroduplex Mobility Assay for Genetic Subtyping of Circulating Recombinant Forms of Human Immunodeficiency Virus Type 1 in Abidjan, Côte d'Ivoire

    OpenAIRE

    Sawadogo, Souleymane; Adjé-Touré, Christiane; Bilé, Celestin E.; Ekpini, Rene E. A.; Chorba, Terence; John N. Nkengasong

    2003-01-01

    The gag-based heteroduplex mobility assay (gag-HMA) was evaluated for its ease and reliability in subtyping circulating recombinant forms (CRFs) of human immunodeficiency virus type 1 (HIV-1) in Côte d'Ivoire. One hundred thirty-two plasma samples were analyzed blindly for HIV-1 subtypes by sequencing the pol gene and by gag-HMA. DNA sequencing was used as the “gold standard.” Of the 132 samples sequenced, 108 (82%) were CRF02_AG, 14 (11%) were pure subtype A, 5 (4%) were subtype G, 3 (2%) we...

  3. Genetics and education: the ethics of shaping human identity.

    Science.gov (United States)

    Ravitsky, Vardit

    2002-10-01

    This paper suggests an analogy between education and genetic interventions as means of shaping the identity of children and future adults. It proposes to look at issues discussed in the philosophy of education as a possible source of insight for ethical guidelines regarding future genetic interventions. The paper focuses on situations of conflict between parents and state regarding the authority to determine the child s best interests. It describes the current formulation of the conflict in the literature as lacking the crucial element of the child s right to a cultural identity. It argues that this element is a necessary component in an ethical analysis of the child s best interests in a multicultural, liberal society which respects diversity. The paper therefore proposes a better model for the moral evaluation of identity-shaping decisions and offers some implications of this model for genetics. PMID:12415325

  4. Human Genetic Variation and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sun Ju Chung

    2010-05-01

    Full Text Available Parkinson’s disease (PD is a chronic neurodegenerative disorder with multifactorial etiology. In the past decade, the genetic causes of monogenic forms of familial PD have been defined. However, the etiology and pathogenesis of the majority of sporadic PD cases that occur in outbred populations have yet to be clarified. The recent development of resources such as the International HapMap Project and technological advances in high-throughput genotyping have provided new basis for genetic association studies of common complex diseases, including PD. A new generation of genome-wide association studies will soon offer a potentially powerful approach for mapping causal genes and will likely change treatment and alter our perception of the genetic determinants of PD. However, the execution and analysis of such studies will require great care.

  5. THE MEANING OF GENOMIC IMPRINTING IN HUMAN GENETIC AND DEFECTOLOGY

    Directory of Open Access Journals (Sweden)

    Anastas LAKOSKI

    2000-12-01

    Full Text Available Several genetic phenomena do not appear to conform the Mendel's low in the sense that they are not inherited in simple way through the generations. Such exceptions to Mendel's laws include new mutations, changes in chromosomes, expanded triplet sequences, and genomic imprinting. Many genetic diseases involve spontaneous mutations that are not inherited from generation to generation. Changes in chromosomes include nondisjunction, which is the most important cause of mental retardation, the trisomy of Dowen syndrome. Expanded triplet repeats are responsible for the next important cause of mental retardation, fragile X, and for Huntington's disease. Genomic imprinting occurs when the expression of a gene depends on whether it is inherited from the mother or from the father. In this paper the phenomenon of genomic imprinting is explained on the occurrence of Angelman and Prader-Willi syndromes. It's essential for the counselor to be able during the genetic counseling to recognize this phenomenon and to make a proper decision.

  6. Review: Genetically modified plants for the promotion of human health.

    Science.gov (United States)

    Yonekura-Sakakibara, Keiko; Saito, Kazuki

    2006-12-01

    Plants are attractive biological resources because of their ability to produce a huge variety of chemical compounds, and the familiarity of production in even the most rural settings. Genetic engineering gives plants additional characteristics and value for cultivation and post-harvest. Genetically modified (GM) plants of the "first generation" were conferred with traits beneficial to producers, whereas GM plants in subsequent "generations" are intended to provide beneficial traits for consumers. Golden Rice is a promising example of a GM plant in the second generation, and has overcome a number of obstacles for practical use. Furthermore, consumer-acceptable plants with health-promoting properties that are genetically modified using native genes are being developed. The emerging technology of metabolomics will also support the commercial realization of GM plants by providing comprehensive analyzes of plant biochemical components. PMID:17080241

  7. Animal Models to Assess the Pathogenicity of Genetically Modified Microorganisms for Humans

    OpenAIRE

    Hentges, D J; Petschow, B W; Dougherty, S. H.; Marsh, W. W.

    2011-01-01

    Two animal models are proposed to assess the colonising capacities and other virulence factors of genetically modified enteric microorganisms for humans. One is the streptomycin treated mouse which is exceedingly susceptible to colonisation with enteric pathogens. The other is the human intestinal microbiota associated mouse which, in ecological studies, responded in a manner similar to human infants to variations in diet. The latter model is recommended because of differences between human a...

  8. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia.

    Science.gov (United States)

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5' and 3' non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63-81% among themselves and 63-96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901

  9. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia

    Science.gov (United States)

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5′ and 3′ non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63–81% among themselves and 63–96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901

  10. Learning to play like a human: case injected genetic algorithms for strategic computer gaming

    Science.gov (United States)

    Louis, Sushil J.; Miles, Chris

    2006-05-01

    We use case injected genetic algorithms to learn how to competently play computer strategy games that involve long range planning across complex dynamics. Imperfect knowledge presented to players requires them adapt their strategies in order to anticipate opponent moves. We focus on the problem of acquiring knowledge learned from human players, in particular we learn general routing information from a human player in the context of a strike force planning game. By incorporating case injection into a genetic algorithm, we show methods for incorporating general knowledge elicited from human players into future plans. In effect allowing the GA to take important strategic elements from human play and merging those elements into its own strategic thinking. Results show that with an appropriate representation, case injection is effective at biasing the genetic algorithm toward producing plans that contain important strategic elements used by human players.

  11. [Constant or break? On the relations between human genetics and eugenics in the Twentieth Century].

    Science.gov (United States)

    Germann, Pascal

    2015-07-01

    The history of human genetics has been a neglected topic in history of science and medicine for a long time. Only recently, have medical historians begun to pay more attention to the history of human heredity. An important research question deals with the interconnections between human genetics and eugenics. This paper addresses this question: By focusing on a Swiss case study, the investigation of the heredity of goiter, I will argue that there existed close but also ambiguous relations between heredity research and eugenics in the twentieth century. Studies on human heredity often produced evidence that challenged eugenic aims and ideas. Concurrently, however, these studies fostered visions of genetic improvement of human populations. PMID:26111842

  12. Genetic variants of the human dipeptide transporter PEPT1

    DEFF Research Database (Denmark)

    Anderle, Pascale; Nielsen, Carsten Uhd; Pinsonneault, Julia;

    2006-01-01

    formation of a splice variant (PEPT1-RF). PEPT1-RF mRNA levels ranged from 2 to 44% of total PEPT1-related mRNA, with potential consequences for drug absorption. Together with previous results, this study reveals a relatively low level of genetic variability in polymorphisms affecting both protein function......We tested whether genetic polymorphisms affect activity of the dipeptide transporter PEPT1, which mediates bioavailability of peptidomimetic drugs. All 23 exons and adjoining intronic sections of PEPT1 (SLC15A1) were sequenced in 247 individuals of various ethnic origins (Coriell collection). Of 38...

  13. Genetic Relationship between Human and Animal Isolates of Candida albicans

    OpenAIRE

    Edelmann, Anke; Krüger, Monika; SCHMID, JAN

    2005-01-01

    Analyzing Candida albicans isolates from different human and animal individuals by Ca3 fingerprinting, we obtained no evidence for host-specific genotypes and for the existence of species-specific lineages, even though a certain degree of separation between human and animal isolates was found. Therefore, animals could potentially serve as reservoirs for human Candida infection.

  14. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui;

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of...... human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...... throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has...

  15. Consortium-Based Genetic Studies of Kawasaki Disease in Korea: Korean Kawasaki Disease Genetics Consortium.

    Science.gov (United States)

    Lee, Jong-Keuk; Hong, Young Mi; Jang, Gi Young; Yun, Sin Weon; Yu, Jeong Jin; Yoon, Kyung Lim; Lee, Kyung-Yil; Kil, Hong-Rang

    2015-11-01

    In order to perform large-scale genetic studies of Kawasaki disease (KD) in Korea, the Korean Kawasaki Disease Genetics Consortium (KKDGC) was formed in 2008 with 10 hospitals. Since the establishment of KKDGC, there has been a collection of clinical data from a total of 1198 patients, and approximately 5 mL of blood samples per patient (for genomic deoxyribonucleic acid and plasma isolation), using a standard clinical data collection form and a nation-wide networking system for blood sample pick-up. In the clinical risk factor analysis using the collected clinical data of 478 KD patients, it was found that incomplete KD type, intravenous immunoglobulin (IVIG) non-responsiveness, and long febrile days are major risk factors for coronary artery lesions development, whereas low serum albumin concentration is an independent risk factor for IVIG non-responsiveness. In addition, we identified a KD susceptibility locus at 1p31, a coronary artery aneurysm locus (KCNN2 gene), and the causal variant in the C-reactive protein (CRP) promoter region, as determining the increased CRP levels in KD patients, by means of genome-wide association studies. Currently, this consortium is continually collecting more clinical data and genomic samples to identify the clinical and genetic risk factors via a single nucleotide polymorphism chip and exome sequencing, as well as collaborating with several international KD genetics teams. The consortium-based approach for genetic studies of KD in Korea will be a very effective way to understand the unknown etiology and causal mechanism of KD, which may be affected by multiple genes and environmental factors. PMID:26617644

  16. Chemokine genetic polymorphism in human health and disease.

    Science.gov (United States)

    Qidwai, Tabish

    2016-08-01

    Chemokine receptor-ligand interaction regulates transmigration of lymphocytes and monocytes from circulation to the inflammatory sites. CC chemokine receptors, chemokine receptor 2(CCR2) and 5 (CCR5) are important in recruitment of immune cells as well as non-immune cells under pathological condition. CCR2, CCR5 and their ligands (CCL2 and CCL5) are major contributor to the autoimmune and inflammatory diseases and cancer. Currently studies are being done to explore genetic variations in chemokine genes and their involvement in diseases that could make clear disease severity and deaths. Conflicting results of studies in different populations and diseases promoted to investigate chemokines genetic polymorphisms in miscellaneous diseases. This study is aimed to evaluate the influence of chemokines genetic polymorphisms in pathogenesis and outcome of prevalent non infectious diseases. Present study demonstrates the likely role played by genetic variations in drug response and evolution. Moreover this study highlights chemokine as therapeutic target and diagnostic biomarker in pathological condition. PMID:27262929

  17. Human genetic susceptibility and infection with Leishmania peruviana

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.A.; Davis, C.R.; Collins, A. [and others

    1995-11-01

    Racial differences, familial clustering, and murine studies are suggestive of host genetic control of Leishmania infections. Complex segregation analysis has been carried out by use of the programs POINTER and COMDS and data from a total population survey, comprising 636 nuclear families, from an L. perurviana endemic area. The data support genetic components controlling susceptibility to clinical leishmaniasis, influencing severity of disease and resistance to disease among healthy individuals. A multifactorial model is favored over a sporadic model. Two-locus models provided the best fit to the data, the optimal model being a recessive gene (frequency .57) plus a modifier locus. Individuals infected at an early age and with recurrent lesions are genetically more susceptible than those infected with a single episode of disease at a later age. Among people with no lesions, those with a positive skin-test response are genetically less susceptible than those with a negative response. The possibility of the involvement of more than one gene together with environmental effects has implications for the design of future linkage studies. 31 refs., 7 tabs.

  18. Human genetic studies in areas of high natural radiation VI. Genetical load and ethnic group

    International Nuclear Information System (INIS)

    The load of mutations disclosed by inbreeding, according to the ethnic group of the parents, has been analyzed in our data. Besides the total of the population, a sample with no alien ancestrals has also been analyzed. Genetic load has been studied for absortions, still births, pos-natal mortality, total mortality, anomalies, total mortality + anomalies, and abnormalities in general

  19. Economic Dispatch Using Genetic Algorithm Based Hybrid Approach

    International Nuclear Information System (INIS)

    Power Economic Dispatch (ED) is vital and essential daily optimization procedure in the system operation. Present day large power generating units with multi-valves steam turbines exhibit a large variation in the input-output characteristic functions, thus non-convexity appears in the characteristic curves. Various mathematical and optimization techniques have been developed, applied to solve economic dispatch (ED) problem. Most of these are calculus-based optimization algorithms that are based on successive linearization and use the first and second order differentiations of objective function and its constraint equations as the search direction. They usually require heat input, power output characteristics of generators to be of monotonically increasing nature or of piecewise linearity. These simplifying assumptions result in an inaccurate dispatch. Genetic algorithms have used to solve the economic dispatch problem independently and in conjunction with other AI tools and mathematical programming approaches. Genetic algorithms have inherent ability to reach the global minimum region of search space in a short time, but then take longer time to converge the solution. GA based hybrid approaches get around this problem and produce encouraging results. This paper presents brief survey on hybrid approaches for economic dispatch, an architecture of extensible computational framework as common environment for conventional, genetic algorithm and hybrid approaches based solution for power economic dispatch, the implementation of three algorithms in the developed framework. The framework tested on standard test systems for its performance evaluation. (authors)

  20. Comparison of French and Estonian Students' Conceptions in Genetic Determinism of Human Behaviours

    Science.gov (United States)

    Castera, Jeremy; Sarapuu, Tago; Clement, Pierre

    2013-01-01

    Innatism is the belief that most of the human personality can be determined by genes. This ideology is dangerous, especially when it claims to be scientific. The present study investigates conceptions of 1060 students from Estonia and France related to genetic determinism of some human behaviours. Factors taken into account included students'…

  1. Genetic Markers of Human Evolution Are Enriched in Schizophrenia

    DEFF Research Database (Denmark)

    Srinivasan, Saurabh; Bettella, Francesco; Mattingsdal, Morten;

    2015-01-01

    BACKGROUND: Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking...... between schizophrenia and NSS score, a marker of human evolution, which is in line with the hypothesis that the persistence of schizophrenia is related to the evolutionary process of becoming human......., and cognitive abilities. METHODS: We analyzed recent large genome-wide association studies of schizophrenia and a range of other human phenotypes (anthropometric measures, cardiovascular disease risk factors, immune-mediated diseases) using a statistical framework that draws on polygenic architecture...

  2. Genetic Algorithm based PID controller for Frequency Regulation Ancillary services

    Directory of Open Access Journals (Sweden)

    Sandeep Bhongade

    2010-12-01

    Full Text Available In this paper, the parameters of Proportional, Integral and Derivative (PID controller for Automatic Generation Control (AGC suitable in restructured power system is tuned according to Generic Algorithms (GAs based performance indices. The key idea of the proposed method is to use the fitness function based on Area Control Error (ACE. The functioning of the proposed Genetic Algorithm based PID (GAPID controller has been demonstrated on a 75-bus Indian power system network and the results have been compared with those obtained by using Least Square Minimization method.

  3. Modeling the genetic basis for human sleep disorders in Drosophila

    OpenAIRE

    Freeman, Amanda A.H.; Syed, Sheyum; Sanyal, Subhabrata

    2013-01-01

    Sleep research in Drosophila is not only here to stay, but is making impressive strides towards helping us understand the biological basis for and the purpose of sleep—perhaps one of the most complex and enigmatic of behaviors. Thanks to over a decade of sleep-related studies in flies, more molecular methods are being applied than ever before towards understanding the genetic basis of sleep disorders. The advent of high-throughput technologies that can rapidly interrogate whole genomes, epige...

  4. Human genetics studies in areas of high natural radiation, 7

    International Nuclear Information System (INIS)

    Two methods to estimate the inbreeding load, employed in our analysis, are reviewed. Besides the total population, a sample constituted of individuals with no alien ancestral is also analysed. The measurements by genetic load models show any clear effect of natural radioactivity (especially for abortions, pre-natal mortality, anomalies, and abnormalities in general). The results on stillbirths and post-natal and total mortalities are discussed and it is concluded that uncontrolled concomitant variables (if not chance alone) cause the differences

  5. Genetic Analysis of Chemosensory Traits in Human Twins

    OpenAIRE

    Knaapila, Antti; Hwang, Liang-Dar; Lysenko, Anna; Duke, Fujiko F.; Fesi, Brad; Khoshnevisan, Amin; James, Rebecca S.; Wysocki, Charles J.; Rhyu, MeeRa; Tordoff, Michael G.; Bachmanov, Alexander A.; Mura, Emi; Nagai, Hajime; Danielle R Reed

    2012-01-01

    We explored genetic influences on the perception of taste and smell stimuli. Adult twins rated the chemosensory aspects of water, sucrose, sodium chloride, citric acid, ethanol, quinine hydrochloride, phenylthiocarbamide (PTC), potassium chloride, calcium chloride, cinnamon, androstenone, Galaxolide™, cilantro, and basil. For most traits, individual differences were stable over time and some traits were heritable (h2 from 0.41 to 0.71). Subjects were genotyped for 44 single nucleotide polymor...

  6. Genetically Modified Foods And Their Effects On Human Health

    OpenAIRE

    ERGİN, Sema ÖZMERT; YAMAN, Hilmi

    2013-01-01

    Developments in biotechnology have made possible to transfer genes between microorganisms. Organisms with changed gene sequence or with a special characteristic which is not a part of its nature but rather inserted through gene transfer are defined as genetically modified organisms (GMO). This technology is used in a lot of different sectors from agriculture to health. It can be used in food to increase harvest and nutritional quality or shelf life of fruits and vegetables, in production of e...

  7. Genetical genomic determinants of alcohol consumption in rats and humans

    Czech Academy of Sciences Publication Activity Database

    Tabakoff, B.; Saba, L.; Printz, M.; Flodman, P.; Hodgkinson, C.; Goldman, D.; Koob, G.; Richardson, H.N.; Kechris, K.; Bell, R.L.; Hübner, N.; Heinig, M.; Pravenec, Michal; Mangion, J.; Legault, L.; Dongier, M.; Conigrave, K.M.; Whitfield, J.B.; Saunders, J.; Grant, B.; Hoffman, P.L.

    2009-01-01

    Roč. 7, - (2009), s. 70-70. ISSN 1741-7007 R&D Projects: GA MŠk(CZ) 1M0520 Grant ostatní: Howard Hughes Medical Institute(US) 55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : alcohol consumption * rat * gene expression profiles Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.636, year: 2009

  8. Genetic variability of watermelon accessions based on microsatellite markers.

    Science.gov (United States)

    de S Gama, R N C; Santos, C A F; de C S Dias, R

    2013-01-01

    We analyzed the genetic variability of 40 watermelon accessions collected from 8 regions of Northeastern Brazil using microsatellite markers, in order to suggest strategies of conservation and utilization of genetic variability in this species. These accessions are not commercial cultivars. They were sampled in areas of traditional farmers that usually keep their own seeds for future plantings year after year. An UPGMA dendrogram was generated from a distance matrix of the Jaccard coefficient, based on 41 alleles of 13 microsatellite loci. Analysis of molecular variance was made by partitioning between and within geographical regions. The similarity coefficient between accessions ranged from 37 to 96%; the dendrogram gave a co-phenetic value of 0.80. The among population genetic variability was high ( (^)ϕST = 0.319). Specific clusters of accessions sampled in 3 regions of Maranhão were observed while the other 5 regions did not presented specific clusters by regions. We conclude that watermelon genetic variability is not uniformly dispersed in the regions analyzed, indicating that geographical barriers or edaphoclimatic conditions have limited open mating. We suggest sampling a greater number of populations, so regional species diversity will be better represented and preserved in the germplasm bank. PMID:23546958

  9. Molecular genetic analysis of Dongzhou-period ancient human of Helingeer in Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mtDNA hypervariable region I (HVR-I) of 10 ancient individuals from Dongzhou-period ancient human populations in Helingeer county of Inner Mongolia were amplified and sequenced to investigate the genetic structure. The relationships between the ancient population and related extant populations, as well as its possible origin at the molecular level, were also studied. Moreover, phylogenetic analysis and multi-dimensional scaling analysis were also performed based on the mtDNA data of the ancient population in Helingeer and the related Eurasian population. The results showed that the ancient population in Helingeer were closer to the northern Asian populations than to the other compared populations in matrilineal lineage. Combining the research results of archaeology and anthropology as well as molecular biology, we inferred that they were nomads who migrated from Mongolia plateau and cis-Baikal region to Helingeer in Inner Mongolia, China.

  10. Recommendations for standardized human pedigree nomenclature. Pedigree Standardization Task Force of the National Society of Genetic Counselors.

    OpenAIRE

    Bennett, R L; Steinhaus, K A; Uhrich, S B; O'Sullivan, C. K.; Resta, R G; Lochner-Doyle, D; Markel, D S; Vincent, V; Hamanishi, J

    1995-01-01

    The construction of an accurate family pedigree is a fundamental component of a clinical genetic evaluation and of human genetic research. Previous surveys of genetic counselors and human genetic publications have demonstrated significant inconsistencies in the usage of common pedigree symbols representing situations such as pregnancy, termination of pregnancy, miscarriage, and adoption, as well as less common scenarios such as pregnancies conceived through assisted reproductive technologies....

  11. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity.

    Directory of Open Access Journals (Sweden)

    Marco Ventura

    2009-12-01

    Full Text Available Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria. However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from

  12. Employing biomarkers of healthy ageing for leveraging genetic studies into human longevity.

    Science.gov (United States)

    Deelen, Joris; van den Akker, Erik B; Trompet, Stella; van Heemst, Diana; Mooijaart, Simon P; Slagboom, P Eline; Beekman, Marian

    2016-09-01

    Genetic studies have thus far identified a limited number of loci associated with human longevity by applying age at death or survival up to advanced ages as phenotype. As an alternative approach, one could first try to identify biomarkers of healthy ageing and the genetic variants associated with these traits and subsequently determine the association of these variants with human longevity. In the present study, we used this approach by testing whether the 35 baseline serum parameters measured in the Leiden Longevity Study (LLS) meet the proposed criteria for a biomarker of healthy ageing. The LLS consists of 421 families with long-lived siblings of European descent, who were recruited together with their offspring and the spouses of the offspring (controls). To test the four criteria for a biomarker of healthy ageing in the LLS, we determined the association of the serum parameters with chronological age, familial longevity, general practitioner-reported general health, and mortality. Out of the 35 serum parameters, we identified glucose, insulin, and triglycerides as biomarkers of healthy ageing, meeting all four criteria in the LLS. We subsequently showed that the genetic variants previously associated with these parameters are significantly enriched in the largest genome-wide association study for human longevity. In conclusion, we showed that biomarkers of healthy ageing can be used to leverage genetic studies into human longevity. We identified several genetic variants influencing the variation in glucose, insulin and triglycerides that contribute to human longevity. PMID:27374409

  13. Similarity in Recombination Rate Estimates Highly Correlates with Genetic Differentiation in Humans

    OpenAIRE

    Laayouni, Hafid; Montanucci, Ludovica; Sikora, Martin, 1976-; Melé, Marta; Dall'Olio, Giovanni Marco, 1983-; Lorente-Galdós, Belén; McGee, Kate M; Graffelman, Jan; Awadalla, Philip; Bosch, Elena; Comas, David; Navarro, Arcadi; Calafell, Francesc; Casals, Ferran; Bertranpetit, Jaume

    2011-01-01

    Recombination varies greatly among species, as illustrated by the poor conservation of the recombination landscape between humans and chimpanzees. Thus, shorter evolutionary time frames are needed to understand the evolution of recombination. Here, we analyze its recent evolution in humans. We calculated the recombination rates between adjacent pairs of 636,933 common single-nucleotide polymorphism loci in 28 worldwide human populations and analyzed them in relation to genetic distances betwe...

  14. FAAH genetic variation enhances fronto-amygdala function in mouse and human.

    Science.gov (United States)

    Dincheva, Iva; Drysdale, Andrew T; Hartley, Catherine A; Johnson, David C; Jing, Deqiang; King, Elizabeth C; Ra, Stephen; Gray, J Megan; Yang, Ruirong; DeGruccio, Ann Marie; Huang, Chienchun; Cravatt, Benjamin F; Glatt, Charles E; Hill, Matthew N; Casey, B J; Lee, Francis S

    2015-01-01

    Cross-species studies enable rapid translational discovery and produce the broadest impact when both mechanism and phenotype are consistent across organisms. We developed a knock-in mouse that biologically recapitulates a common human mutation in the gene for fatty acid amide hydrolase (FAAH) (C385A; rs324420), the primary catabolic enzyme for the endocannabinoid anandamide. This common polymorphism impacts the expression and activity of FAAH, thereby increasing anandamide levels. Here, we show that the genetic knock-in mouse and human variant allele carriers exhibit parallel alterations in biochemisty, neurocircuitry and behaviour. Specifically, there is reduced FAAH expression associated with the variant allele that selectively enhances fronto-amygdala connectivity and fear extinction learning, and decreases anxiety-like behaviours. These results suggest a gain of function in fear regulation and may indicate for whom and for what anxiety symptoms FAAH inhibitors or exposure-based therapies will be most efficacious, bridging an important translational gap between the mouse and human. PMID:25731744

  15. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts.

    Science.gov (United States)

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K

    2016-01-29

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  16. Evolution of the ideas of genetic danger of ionizing radiation for human

    International Nuclear Information System (INIS)

    The evolution of the concepts of human natural hereditary variability which is basis for assessing the risk of exposure by the doubling dose method. The level of human natural genetic variability per 1000000 newborns is estimated at 738000 hereditary diseases including mendelian, chromosomal and multifactorial ones. The greatest-difficulties in assessing the doubling dose value were found to occur in the case of multifactorial diseases which depend on mutational events in polygenic systems and on numerous environmental factors. The current estimate of genetic risk is 3000-4700 genetic diseases in the first generation per 1000000 newborns after exposure of the parental generation to 1 Gy at low LET. A certain part of genetic changes after exposure of the parental generation to radiation will express themselves in the second generation, in grandchildren (1150-3200 cases) and in succeeding generations

  17. The New World of Human Genetics: A dialogue between Practitioners & the General Public on Ethical, Legal & Social Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Amy

    2014-12-08

    The history and reasons for launching the Human Genome project and the current uses of genetic human material; Identifying and discussing the major issues stemming directly from genetic research and therapy-including genetic discrimination, medical/ person privacy, allocation of government resources and individual finances, and the effect on the way in which we perceive the value of human life; Discussing the sometimes hidden ethical, social and legislative implications of genetic research and therapy such as informed consent, screening and preservation of genetic materials, efficacy of medical procedures, the role of the government, and equal access to medical coverage.

  18. Genetic mapping of high caries experience on human chromosome 13

    OpenAIRE

    Erika C Küchler; Deeley, Kathleen; Ho, Bao; Linkowski, Samantha; Meyer, Chelsea; Noel, Jacqueline; Kouzbari, M Zahir; Bezamat, Mariana; José M Granjeiro; Antunes, Leonardo S; Antunes, Livia Azeredo; de Abreu, Fernanda Volpe; Marcelo C. Costa; Tannure, Patricia N; SEYMEN, Figen

    2013-01-01

    Background Our previous genome-wide linkage scan mapped five loci for caries experience. The purpose of this study was to fine map one of these loci, the locus 13q31.1, in order to identify genetic contributors to caries. Methods Seventy-two pedigrees from the Philippines were studied. Caries experience was recorded and DNA was extracted from blood samples obtained from all subjects. Sixty-one single nucleotide polymorphisms (SNPs) in 13q31.1 were genotyped. Association between caries experie...

  19. Research on human genetics in Iceland. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-31

    Records of the Icelandic Population are being used to investigate the possible inheritance of disabilities and diseases as well as other characters and the effect of environment on man. The progress report of research covers the period 1977 to 1980. The investigation was begun in 1965 by the Genetical Committee of the University of Iceland and the materials used are demographic records from the year 1840 to present and various medical information. The records are being computerized and linked together to make them effective for use in hereditary studies.

  20. Progress report on research on human genetics in Iceland

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-31

    Records of the Icelandic population are being used to investigate the possible inheritance of disabilities and diseases as well as other characteristics and the effect of environment on man. The progress report of research covers the period from 1977 to 1980. The investigation was begun in 1965 by the Genetical Committee of the University of Iceland and the materials used are demographic records from the year 1840 to present and various medical information. The records are being computerized and linked together to make them effective for use in hereditary studies.

  1. Novel polyomaviruses of nonhuman primates: genetic and serological predictors for the existence of multiple unknown polyomaviruses within the human population.

    Directory of Open Access Journals (Sweden)

    Nelly Scuda

    Full Text Available Polyomaviruses are a family of small non-enveloped DNA viruses that encode oncogenes and have been associated, to greater or lesser extent, with human disease and cancer. Currently, twelve polyomaviruses are known to circulate within the human population. To further examine the diversity of human polyomaviruses, we have utilized a combinatorial approach comprised of initial degenerate primer-based PCR identification and phylogenetic analysis of nonhuman primate (NHP polyomavirus species, followed by polyomavirus-specific serological analysis of human sera. Using this approach we identified twenty novel NHP polyomaviruses: nine in great apes (six in chimpanzees, two in gorillas and one in orangutan, five in Old World monkeys and six in New World monkeys. Phylogenetic analysis indicated that only four of the nine chimpanzee polyomaviruses (six novel and three previously identified had known close human counterparts. To determine whether the remaining chimpanzee polyomaviruses had potential human counterparts, the major viral capsid proteins (VP1 of four chimpanzee polyomaviruses were expressed in E. coli for use as antigens in enzyme-linked immunoassay (ELISA. Human serum/plasma samples from both Côte d'Ivoire and Germany showed frequent seropositivity for the four viruses. Antibody pre-adsorption-based ELISA excluded the possibility that reactivities resulted from binding to known human polyomaviruses. Together, these results support the existence of additional polyomaviruses circulating within the human population that are genetically and serologically related to existing chimpanzee polyomaviruses.

  2. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    OpenAIRE

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and derm...

  3. Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release

    OpenAIRE

    Lin, Ruei-Zeng; Dreyzin, Alexandra; Aamodt, Kristie; Li, Dan; Jaminet, Shou-Ching S.; Dudley, Andrew C.; Melero-Martin, Juan M.

    2011-01-01

    For decades, autologous ex vivo gene therapy has been postulated as a potential alternative to parenteral administration of recombinant proteins. However, achieving effective cellular engraftment of previously retrieved patient cells is challenging. Recently, our ability to engineer vasculature in vivo has allowed for the introduction of instructions into tissues by genetically modifying the vascular cells that build these blood vessels. In the present study, we genetically engineered human b...

  4. A genetically humanized mouse model for hepatitis C virus infection

    OpenAIRE

    Dorner, Marcus; Horwitz, Joshua A.; Robbins, Justin B.; Barry, Walter T.; Feng, Qian; Mu, Kathy; Jones, Christopher T.; Schoggins, John W.; Catanese, Maria Teresa; Burton, Dennis R.; Law, Mansun; Rice, Charles M.; Ploss, Alexander

    2011-01-01

    Hepatitis C virus (HCV) remains a major medical problem. Antiviral treatment is only partially effective and a vaccine does not exist. Development of more effective therapies has been hampered by the lack of a suitable small animal model. While xenotransplantation of immunodeficient mice with human hepatocytes has shown promise, these models are subject to important challenges. Building on the previous observation that CD81 and occludin (OCLN) comprise the minimal human factors required to re...

  5. Genetic and hormonal influences on affiliative behavior in humans

    OpenAIRE

    Walum, Hasse

    2012-01-01

    Affiliative bonds between romantic partners are widespread pan-culturally and an important part of human nature and society. Still, knowledge about the biological correlates of human pair bonds is sparse. Studies in rodents, voles in particular, have shown the neural circuits involving vasopressin and oxytocin, in males and females respectively, to be very important in the formation and regulation of pair-bonding behaviour. Further, both neurobiological and evolutionary studies have shown mat...

  6. Genetic Evidence of Human Adaptation to a Cooked Diet

    OpenAIRE

    Carmody, Rachel N.; Dannemann, Michael; Briggs, Adrian W; Nickel, Birgit; Groopman, Emily E.; Wrangham, Richard W.; Kelso, Janet

    2016-01-01

    Humans have been argued to be biologically adapted to a cooked diet, but this hypothesis has not been tested at the molecular level. Here, we combine controlled feeding experiments in mice with comparative primate genomics to show that consumption of a cooked diet influences gene expression and that affected genes bear signals of positive selection in the human lineage. Liver gene expression profiles in mice fed standardized diets of meat or tuber were affected by food type and cooking, but n...

  7. Genetically Engineered Corn Rootworm Resistance: Potential for Reduction of Human Health Effects From Pesticides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective and Methods Insecticide use, grower preferences regarding genetically engineered (GE) corn resistant to corn rootworm (CRW), and the health effects of using various CRW insecticides (organophosphates, pyrethroids, fipronil and carbamates) are reviewed for current and future farm practices. Results Pest damage to corn has been reduced only one-third by insecticide applications. Health costs from insecticide use appear significant, but costs attributable to CRW control are not quantifiable from available data. Methods reducing health-related costs of insecticide-based CRW control should be evaluated. As a first step, organophosphate insecticide use has been reduced as they have high acute toxicity and risk of long-term neurological consequences. A second step is to use agents which more specifically target the CRW. Conclusion Whereas current insecticides may be poisonous to many species of insects, birds, mammals and humans, a protein derived from Bacillus thurigiensis and produced in plants via genetic modification can target the specific insect of CRW (Coleoptra), sparing other insect and non-insect species from injury.

  8. Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control

    Science.gov (United States)

    Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar

    2016-05-01

    This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.

  9. Evaluations of composition for buffer materials based on genetic algorithms

    International Nuclear Information System (INIS)

    To provide an overall functional evaluations of buffer materials, this study attempted to investigate the relationships among the engineering properties, plastic index (PI), compaction efficiency, hydraulic conductivity(k); sorption properties, distribution ratio(Rd) for some buffer materials composed of quartz sand and bentonite. According to engineering and sorption properties, the optimal composition can be found out with some optimal approaches. However, a genetic algorithm (GA) is a robust method for searching the optimum solution to a complex problem and widely is applied to many different topics. It is a search algorithm based upon mechanics of natural selection, derived from the theory of natural evolution. The study of genetic algorithms (GAS) has developed into powerful optimization approach since 1970, so this study tries to apply GAS to this problem. Under both synthetic groundwater (GW) and seawater (SW) conditions, the composition of quartz sand and bentonite was evaluated by associating engineering and sorption properties. Due to ends of experiments, this study assumes linearly proportional relationship among bentonite content of buffer materials, PI, k, and sorption properties. And GAS was carried out using a population size of 50, a crossover rate of 0,5, and a mutation rate of 0,1. The final results based on genetic algorithms are consistent with consequences of previous tests. From the viewpoints of associated engineering and sorption properties, the buffer materials nearly containing 70% bentonite are probably the most favorable choice. These results will show a determination of more effective buffer material composition. (authors)

  10. Human genetics for non-scientists: Practical workshops for policy makers and opinion leaders

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    These workshops form part of a series of workshops that the Banbury and the DNA Learning Centers of Cold Spring Harbor Laboratory have held for a number of years, introducing genetics, and the ways in which scientific research is done, to non-scientists. The purpose of the workshops as stated in the grant application was: {open_quotes}Our objective is to foster a better understanding of the societal impact of human genome research by providing basic information on genetics to non-scientists whose professions or special interests interface with genetic technology.... Participants will be chosen for their interest in human genetics and for their roles as opinion leaders in their own communities. Primary care physicians are of particular interest to us for this series of workshops.{close_quotes} Two workshops were held under this grant. The first was held in 21-24 April, 1994 and attended by 20 participants, and the second was held 16-19 November, 1995, and attended by 16 participants. In each case, there was a combination of concept lectures on the foundations of human molecular genetics; lectures by invited specialists; and laboratory experiments to introduce non-scientists to the techniques used in molecular genetics.

  11. Healing Temperature of Hybrid Structures Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    赵中伟; 陈志华; 刘红波

    2016-01-01

    The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radiation was derived by FLUENT to investigate the influence of solar radiation on the determination of the healing temperature. Moreover, a multi-scale model was established to apply the complex temperature field under solar radiation. The change in the mechanical response of these two kinds of structures with the healing temperature was discussed. It can be concluded that solar radiation has great influence on the healing temperature, and the genetic algorithm can be effectively used in the optimization of the healing temperature for hybrid structures.

  12. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography.

    Directory of Open Access Journals (Sweden)

    Ruth Hershberg

    2008-12-01

    Full Text Available Mycobacterium tuberculosis infects one third of the human world population and kills someone every 15 seconds. For more than a century, scientists and clinicians have been distinguishing between the human- and animal-adapted members of the M. tuberculosis complex (MTBC. However, all human-adapted strains of MTBC have traditionally been considered to be essentially identical. We surveyed sequence diversity within a global collection of strains belonging to MTBC using seven megabase pairs of DNA sequence data. We show that the members of MTBC affecting humans are more genetically diverse than generally assumed, and that this diversity can be linked to human demographic and migratory events. We further demonstrate that these organisms are under extremely reduced purifying selection and that, as a result of increased genetic drift, much of this genetic diversity is likely to have functional consequences. Our findings suggest that the current increases in human population, urbanization, and global travel, combined with the population genetic characteristics of M. tuberculosis described here, could contribute to the emergence and spread of drug-resistant tuberculosis.

  13. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease

    OpenAIRE

    Pinnapureddy, Ashish R.; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-01-01

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiol...

  14. Human genetics after the bomb: Archives, clinics, proving grounds and board rooms.

    Science.gov (United States)

    Lindee, Susan

    2016-02-01

    In this paper I track the history of post-1945 human genetics and genomics emphasizing the importance of ideas about risk to the scientific study and medical management of human heredity. Drawing on my own scholarship as it is refracted through important new work by other scholars both junior and senior, I explore how radiation risk and then later disease risk mattered to the development of genetics and genomics, particularly in the United States. In this context I excavate one of the central ironies of post-war human genetics: while studies of DNA as the origin and cause of diseases have been lavishly supported by public institutions and private investment around the world, the day-to-day labor of intensive clinical innovation has played a far more important role in the actual human experience of genetic disease and genetic risk for affected families. This has implications for the archival record, where clinical interactions are less readily accessible to historians. This paper then suggests that modern genomics grew out of radiation risk; that it was and remains a risk assessment science; that it is temporally embedded as a form of both prediction and historical reconstruction; and that it has become a big business focused more on risk and prediction (which can be readily marketed) than on effective clinical intervention. PMID:26456508

  15. The regulatory effect of miRNAs is a heritable genetic trait in humans

    Directory of Open Access Journals (Sweden)

    Geeleher Paul

    2012-08-01

    Full Text Available Abstract Background microRNAs (miRNAs have been shown to regulate the expression of a large number of genes and play key roles in many biological processes. Several previous studies have quantified the inhibitory effect of a miRNA indirectly by considering the expression levels of genes that are predicted to be targeted by the miRNA and this approach has been shown to be robust to the choice of prediction algorithm. Given a gene expression dataset, Cheng et al. defined the regulatory effect score (RE-score of a miRNA as the difference in the gene expression rank of targets of the miRNA compared to non-targeted genes. Results Using microarray data from parent-offspring trios from the International HapMap project, we show that the RE-score of most miRNAs is correlated between parents and offspring and, thus, inter-individual variation in RE-score has a genetic component in humans. Indeed, the mean RE-score across miRNAs is correlated between parents and offspring, suggesting genetic differences in the overall efficiency of the miRNA biogenesis pathway between individuals. To explore the genetics of this quantitative trait further, we carried out a genome-wide association study of the mean RE-score separately in two HapMap populations (CEU and YRI. No genome-wide significant associations were discovered; however, a SNP rs17409624, in an intron of DROSHA, was significantly associated with mean RE-score in the CEU population following permutation-based control for multiple testing based on all SNPs mapped to the canonical miRNA biogenesis pathway; of 244 individual miRNA RE-scores assessed in the CEU, 214 were associated (p p = 0.04 with mean RE-score in the YRI population. Interestingly, the same SNP was associated with 17 (8.5% of all expressed miRNA expression levels in the CEU. We also show here that the expression of the targets of most miRNAs is more highly correlated with global changes in miRNA regulatory effect than with the expression of

  16. Human genetic variation database, a reference database of genetic variations in the Japanese population

    Science.gov (United States)

    Higasa, Koichiro; Miyake, Noriko; Yoshimura, Jun; Okamura, Kohji; Niihori, Tetsuya; Saitsu, Hirotomo; Doi, Koichiro; Shimizu, Masakazu; Nakabayashi, Kazuhiko; Aoki, Yoko; Tsurusaki, Yoshinori; Morishita, Shinichi; Kawaguchi, Takahisa; Migita, Osuke; Nakayama, Keiko; Nakashima, Mitsuko; Mitsui, Jun; Narahara, Maiko; Hayashi, Keiko; Funayama, Ryo; Yamaguchi, Daisuke; Ishiura, Hiroyuki; Ko, Wen-Ya; Hata, Kenichiro; Nagashima, Takeshi; Yamada, Ryo; Matsubara, Yoichi; Umezawa, Akihiro; Tsuji, Shoji; Matsumoto, Naomichi; Matsuda, Fumihiko

    2016-01-01

    Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many candidates to explain the disease phenotype are still far from being established, because the population-specific frequency spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622 previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/. PMID:26911352

  17. Human Genetic Marker for Resistance to Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    DR. Howard B. Lieberman

    2001-05-11

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage.

  18. Human Genetic Marker for Resistance to Radiation and Chemicals

    International Nuclear Information System (INIS)

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage

  19. Characterization of Large Structural Genetic Mosaicism in Human Autosomes

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Sampson, Joshua N.; Dean, Michael C.; Jacobs, Kevin B.; Black, Amanda; Brinton, Louise A.; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S.; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M.; Gaudet, Mia M.; Haiman, Christopher A.; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hong, Yun-Chul; Hosgood, H. Dean; Hsiung, Chao A.; Hu, Wei; Hunter, David J.; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Matsuo, Keitaro; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A.; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C.; Albanes, Demetrius; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Berndt, Sonja I.; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C.; Cook, Michael B.; Cullen, Michael; Davis, Faith G.; Ding, Ti; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Freedman, Neal D.; Fuchs, Charles S.; Gao, Yu-Tang; Gapstur, Susan M.; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Greene, Mark H.; Hallmans, Goran; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hoover, Robert N.; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M.; Malats, Nuria; McGlynn, Katherine A.; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G.; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M.; Savage, Sharon A.; Schwartz, Ann G.; Schwartz, Kendra L.; Sesso, Howard D.; Severi, Gianluca; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J.; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wu, Xifeng; Wunder, Jay S.; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G.; de Andrade, Mariza; Barnes, Kathleen C.; Beaty, Terri H.; Bierut, Laura J.; Desch, Karl C.; Doheny, Kimberly F.; Feenstra, Bjarke; Ginsburg, David; Heit, John A.; Kang, Jae H.; Laurie, Cecilia A.; Li, Jun Z.; Lowe, William L.; Marazita, Mary L.; Melbye, Mads; Mirel, Daniel B.; Murray, Jeffrey C.; Nelson, Sarah C.; Pasquale, Louis R.; Rice, Kenneth; Wiggs, Janey L.; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A.; Laurie, Cathy C.; Caporaso, Neil E.; Yeager, Meredith; Chanock, Stephen J.

    2015-01-01

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10−31) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. PMID:25748358

  20. A Trio of Human Molecular Genetics PCR Assays

    Science.gov (United States)

    Reinking, Jeffrey L.; Waldo, Jennifer T.; Dinsmore, Jannett

    2013-01-01

    This laboratory exercise demonstrates three different analytical forms of the polymerase chain reaction (PCR) that allow students to genotype themselves at four different loci. Here, we present protocols to allow students to a) genotype a non-coding polymorphic Variable Number of Tandem Repeat (VNTR) locus on human chromosome 5 using conventional…

  1. Genetic diversity assessment in brassica germplasm based on morphological attributes

    International Nuclear Information System (INIS)

    Genetic diversity of 28 Brassica genotypes was studied using different morphological attributes. Data were recorded on days to maturity (DM), plant height (PH), primary branches plant (PBPP), pod length (PL), seed pod (SP), 1000 - seed weight (1000 - SW), yield plant (YPP) and oil (percentage). Three checks (Pakola, CM and TA), were used to check the performance of collected materials with already available brassica varieties. significant statistical differences were observed among the tested genotypes based on the studied morphological traits. Among the tested genotypes, genotype keelboat proved to be superior as compared to other studied genotypes due to maximum level of studied traits like pod length (7.03 cm), seed pod (32.33), 1000 - seed weight (5.38 g), seed yield plant (110.8 g) and oil content (52.9 percentage. The highest level of performance recorded by kalabat in terms of branches plant, pod length (cm), number of seed pod, seed yield plant (g), 1000 - seed weight (g) and oil content (percentage), indicates that this genotype is genetically different and superior than the other studied genotype. Therefore, genotype kalabat can be either used as variety after adaptability trials over a larger area or included in Brassica breeding programmes as a good source of genetic variation. (author)

  2. A novel pipeline based FPGA implementation of a genetic algorithm

    Science.gov (United States)

    Thirer, Nonel

    2014-05-01

    To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.

  3. Evolving hard problems: Generating human genetics datasets with a complex etiology

    Directory of Open Access Journals (Sweden)

    Himmelstein Daniel S

    2011-07-01

    Full Text Available Abstract Background A goal of human genetics is to discover genetic factors that influence individuals' susceptibility to common diseases. Most common diseases are thought to result from the joint failure of two or more interacting components instead of single component failures. This greatly complicates both the task of selecting informative genetic variants and the task of modeling interactions between them. We and others have previously developed algorithms to detect and model the relationships between these genetic factors and disease. Previously these methods have been evaluated with datasets simulated according to pre-defined genetic models. Results Here we develop and evaluate a model free evolution strategy to generate datasets which display a complex relationship between individual genotype and disease susceptibility. We show that this model free approach is capable of generating a diverse array of datasets with distinct gene-disease relationships for an arbitrary interaction order and sample size. We specifically generate eight-hundred Pareto fronts; one for each independent run of our algorithm. In each run the predictiveness of single genetic variation and pairs of genetic variants have been minimized, while the predictiveness of third, fourth, or fifth-order combinations is maximized. Two hundred runs of the algorithm are further dedicated to creating datasets with predictive four or five order interactions and minimized lower-level effects. Conclusions This method and the resulting datasets will allow the capabilities of novel methods to be tested without pre-specified genetic models. This allows researchers to evaluate which methods will succeed on human genetics problems where the model is not known in advance. We further make freely available to the community the entire Pareto-optimal front of datasets from each run so that novel methods may be rigorously evaluated. These 76,600 datasets are available from http://discovery.dartmouth.edu/model_free_data/.

  4. Neanderthal and Denisova genetic affinities with contemporary humans: introgression versus common ancestral polymorphisms.

    Science.gov (United States)

    Lowery, Robert K; Uribe, Gabriel; Jimenez, Eric B; Weiss, Mark A; Herrera, Kristian J; Regueiro, Maria; Herrera, Rene J

    2013-11-01

    Analyses of the genetic relationships among modern humans, Neanderthals and Denisovans have suggested that 1-4% of the non-Sub-Saharan African gene pool may be Neanderthal derived, while 6-8% of the Melanesian gene pool may be the product of admixture between the Denisovans and the direct ancestors of Melanesians. In the present study, we analyzed single nucleotide polymorphism (SNP) diversity among a worldwide collection of contemporary human populations with respect to the genetic constitution of these two archaic hominins and Pan troglodytes (chimpanzee). We partitioned SNPs into subsets, including those that are derived in both archaic lineages, those that are ancestral in both archaic lineages and those that are only derived in one archaic lineage. By doing this, we have conducted separate examinations of subsets of mutations with higher probabilities of divergent phylogenetic origins. While previous investigations have excluded SNPs from common ancestors in principal component analyses, we included common ancestral SNPs in our analyses to visualize the relative placement of the Neanderthal and Denisova among human populations. To assess the genetic similarities among the various hominin lineages, we performed genetic structure analyses to provide a comparison of genetic patterns found within contemporary human genomes that may have archaic or common ancestral roots. Our results indicate that 3.6% of the Neanderthal genome is shared with roughly 65.4% of the average European gene pool, which clinally diminishes with distance from Europe. Our results suggest that Neanderthal genetic associations with contemporary non-Sub-Saharan African populations, as well as the genetic affinities observed between Denisovans and Melanesians most likely result from the retention of ancient mutations in these populations. PMID:23872234

  5. Genetic algorithm based on qubits and quantum gates

    International Nuclear Information System (INIS)

    Full text: Genetic algorithm, a computational technique based on the evolution of the species, in which a possible solution of the problem is coded in a binary string, called chromosome, has been used successfully in several kinds of problems, where the search of a minimal or a maximal value is necessary, even when local minima are present. A natural generalization of a binary string is a qubit string. Hence, it is possible to use the structure of a genetic algorithm having a sequence of qubits as a chromosome and using quantum operations in the reproduction in order to find the best solution in some problems of quantum information. For example, given a unitary matrix U what is the pair of qubits that, when applied at the input, provides the output state with maximal entanglement? In order to solve this problem, a population of chromosomes of two qubits was created. The crossover was performed applying the quantum gates CNOT and SWAP at the pair of qubits, while the mutation was performed applying the quantum gates Hadamard, Z and Not in a single qubit. The result was compared with a classical genetic algorithm used to solve the same problem. A hundred simulations using the same U matrix was performed. Both algorithms, hereafter named by CGA (classical) and QGA (using qu bits), reached good results close to 1 however, the number of generations needed to find the best result was lower for the QGA. Another problem where the QGA can be useful is in the calculation of the relative entropy of entanglement. We have tested our algorithm using 100 pure states chosen randomly. The stop criterion used was the error lower than 0.01. The main advantages of QGA are its good precision, robustness and very easy implementation. The main disadvantage is its low velocity, as happen for all kind of genetic algorithms. (author)

  6. Genetic mechanism of human neutrophil antigen 2 deficiency and expression variations.

    Science.gov (United States)

    Li, Yunfang; Mair, David C; Schuller, Randy M; Li, Ling; Wu, Jianming

    2015-05-01

    Human neutrophil antigen 2 (HNA-2) deficiency is a common phenotype as 3-5% humans do not express HNA-2. HNA-2 is coded by CD177 gene that associates with human myeloproliferative disorders. HNA-2 deficient individuals are prone to produce HNA-2 alloantibodies that cause a number of disorders including transfusion-related acute lung injury and immune neutropenia. In addition, the percentages of HNA-2 positive neutrophils vary significantly among individuals and HNA-2 expression variations play a role in human diseases such as myelodysplastic syndrome, chronic myelogenous leukemia, and gastric cancer. The underlying genetic mechanism of HNA-2 deficiency and expression variations has remained a mystery. In this study, we identified a novel CD177 nonsense single nucleotide polymorphism (SNP 829A>T) that creates a stop codon within the CD177 coding region. We found that all 829TT homozygous individuals were HNA-2 deficient. In addition, the SNP 829A>T genotypes were significantly associated with the percentage of HNA-2 positive neutrophils. Transfection experiments confirmed that HNA-2 expression was absent on cells expressing the CD177 SNP 829T allele. Our data clearly demonstrate that the CD177 SNP 829A>T is the primary genetic determinant for HNA-2 deficiency and expression variations. The mechanistic delineation of HNA-2 genetics will enable the development of genetic tests for diagnosis and prognosis of HNA-2-related human diseases. PMID:26024230

  7. Estimating genetic correlations based on phenotypic data: a simulation-based method

    Indian Academy of Sciences (India)

    Elias Zintzaras

    2011-04-01

    Knowledge of genetic correlations is essential to understand the joint evolution of traits through correlated responses to selection, a difficult and seldom, very precise task even with easy-to-breed species. Here, a simulation-based method to estimate genetic correlations and genetic covariances that relies only on phenotypic measurements is proposed. The method does not require any degree of relatedness in the sampled individuals. Extensive numerical results suggest that the propose method may provide relatively efficient estimates regardless of sample sizes and contributions from common environmental effects.

  8. Melanocortin MC1 receptor in human genetics and model systems

    OpenAIRE

    Beaumont, Kimberley A.; Wong, Shu S.; Ainger, Stephen A.; Liu, Yan Yan; Patel, Mira P.; Millhauser, Glenn L.; Smith, Jennifer J.; Alewood, Paul F.; Leonard, J. Helen; Sturm, Richard A.

    2011-01-01

    The melanocortin MC1 receptor is a G -protein coupled receptor expressed in melanocytes of the skin and hair and is known for its key role in regulation of human pigmentation. Melanocortin MC1 receptor activation after ultraviolet radiation exposure results in a switch from the red/yellow pheomelanin to the brown/black eumelanin pigment synthesis within cutaneous melanocytes; this pigment is then transferred to the surrounding keratinocytes of the skin. The increase in melanin maturation and ...

  9. Genetic-evolution-based optimization methods for engineering design

    Science.gov (United States)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  10. New Genetic Algorithm Based Intrusion Detection System for SCADA

    Directory of Open Access Journals (Sweden)

    Aarcha Anoop

    2013-04-01

    Full Text Available Securing SCADA systems is a critical aspect of industrial systems. Industrial systems have installations which actively using the public network in order to provide new features and services which make the system unsecured .By introducing a filtering system ,we can analyse the critical state of the system which can be monitored and secure SCADA network protocols. But in this approach, there is no mathematical method for calculating filter parameters for DDOS, R2L, U2R attacks. In this paper, we present a new genetic algorithm based approach for calculating those parameters to make the system more secure.

  11. Genetic based optimization for multicast routing algorithm for MANET

    Indian Academy of Sciences (India)

    C Rajan; N Shanthi

    2015-12-01

    Mobile Ad hoc Network (MANET) is established for a limited period, for special extemporaneous services related to mobile applications. This ad hoc network is set up for a limited period, in environments that change with the application. While in Internet the TCP/IP protocol suite supports a wide range of application, in MANETs protocols are tuned to specific customer/application. Multicasting is emerging as a popular communication format where the same packet is sent to multiple nodes in a network. Routing in multicasting involves maintaining routes and finding new node locations in a group and is NP-complete due to the dynamic nature of the network. In this paper, a Hybrid Genetic Based Optimization for Multicast Routing algorithm is proposed. The proposed algorithm uses the best features of Genetic Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Simulations were conducted by varying number of mobile nodes and results compared with Multicast AODV (MAODV) protocol, PSO based and GA based solution. The proposed optimization improves jitter, end to end delay and Packet Delivery Ratio (PDR) with faster convergence.

  12. ALDH1A2 (RALDH2 genetic variation in human congenital heart disease

    Directory of Open Access Journals (Sweden)

    Mesquita Sonia MF

    2009-11-01

    Full Text Available Abstract Background Signaling by the vitamin A-derived morphogen retinoic acid (RA is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2 is critical for cardiac development, we screened patients with congenital heart disease (CHDs for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430 at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that

  13. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene

    Institute of Scientific and Technical Information of China (English)

    CAI Pei-qiang; TANG Xun; LIN Yue-qiu; Oudega Martin; SUN Guang-yun; XU Lin; YANG Yun-kang; ZHOU Tian-hua

    2006-01-01

    Objective:To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs)mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI).Methods: Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3(NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot.Results: Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot.Conclusions: Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  14. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  15. Genetic differentiation and the evolution of cooperation in chimpanzees and humans

    OpenAIRE

    Langergraber, K.; Schubert, Gary; Rowney, C.; Wrangham, Richard W.; Zommers, Z.; Vigilant, L.

    2011-01-01

    It has been proposed that human cooperation is unique among animals for its scale and complexity, its altruistic nature and its occurrence among large groups of individuals that are not closely related or are even strangers. One potential solution to this puzzle is that the unique aspects of human cooperation evolved as a result of high levels of lethal competition (i.e. warfare) between genetically differentiated groups. Although between-group migration would seem to make this scenario unl...

  16. Genetic stability of pneumococcal isolates during 35 days of human experimental carriage

    OpenAIRE

    Gladstone, R.A.; Gritzfeld, J.F.; Coupland, P.; S. B. Gordon; Bentley, S.D.

    2015-01-01

    Background Pneumococcal carriage is a reservoir for transmission and a precursor to pneumococcal disease. The experimental human pneumococcal carriage model provides a useful tool to aid vaccine licensure through the measurement of vaccine efficacy against carriage (VEcol). Documentation of the genetic stability of the experimental human pneumococcal carriage model is important to further strengthen confidence in its safety and conclusions, enabling it to further facilitate vaccine licensure ...

  17. Oral and Craniofacial Clinical Signs Associated to Genetic Conditions in Human Identification Part I: A Review

    OpenAIRE

    Ayoub, Fouad; Aoun, Nicole; el Husseini, Hassan; Jassar, Houssam; Sayah, Fida; Salameh, Ziad

    2015-01-01

    Background: Forensic dentistry is one of the most reliable methods used in human identification when other technique as fingerprint, DNA, visual identification cannot be used. Genetic disorders have several manifestations that can target the intra-oral cavity, the cranio-facial area or any location in the human body. Materials and Methods: A literature search of the scientific database (Medline and Science Direct) for the years 1990 to 2014 was carried out to find out all the available papers...

  18. Rule-based characterization of industrial flotation processes with inductive techniques and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Gouws, F.S.; Aldrich, C. [Univ. of Stellenbosch, Matieland (Saudi Arabia). Dept. of Chemical Engineering

    1996-11-01

    By making use of machine learning techniques, the features of flotation froths and other plant variables can be used as a basis for the development of knowledge-based systems for plant monitoring and control. probabilistic induction and genetic algorithms were used to classify different froth structures from industrial copper and platinum flotation plants, as well as recoveries from a phosphate flotation plant. Both algorithms were equally capable of classifying the different froths at least as well as a human expert. The genetic algorithm performed significantly better than the inductive algorithm but required more tuning before optimum results could be obtained. The classification rules produced by both algorithms can easily be incorporated into a supervisory expert system shell or decision support system for plant operators and could consequently make a significant impact on the way flotation plants are currently being controlled.

  19. Human genetic studies in areas of high natural radiation. VIII. Genetic load not related to radiation

    International Nuclear Information System (INIS)

    The genetic load disclosed by inbreeding has been analyzed in a multiple regression model for a population involving several localities in the state of Espirito Santo, Brazil. The inbreeding load has been estimated for number of pregnancies, abortions, stillbirths, children born alive, anomalies in general, sex ratio, infant mortality, post-infant mortality, and sterility and infertility of the couple. There was no evidence of either maternal or paternal inbreeding effects on the variables analyzed. The effect of inbreeding of the zygote was significant only for anomalies in general (B = 2.29 +/- 0.45) and infant mortality (B = 3.19 +/- 1.39). The latter result must be accepted with caution because of the many environmental causes affecting infant mortality. The B/A ratio suggested a predominantly mutational load for anomalies in general (B/A = 25), but with respect to infant mortality (B/A = 6), the ratio is regarded as an underestimate because of the environmental contribution to A and therefore not supportive of the segregational interpretation

  20. Genetic recapitulation of human pre-eclampsia risk during convergent evolution of reduced placental invasiveness in eutherian mammals.

    Science.gov (United States)

    Elliot, Michael G; Crespi, Bernard J

    2015-03-01

    The relationship between phenotypic variation arising through individual development and phenotypic variation arising through diversification of species has long been a central question in evolutionary biology. Among humans, reduced placental invasion into endometrial tissues is associated with diseases of pregnancy, especially pre-eclampsia, and reduced placental invasiveness has also evolved, convergently, in at least 10 lineages of eutherian mammals. We tested the hypothesis that a common genetic basis underlies both reduced placental invasion arising through a developmental process in human placental disease and reduced placental invasion found as a derived trait in the diversification of Euarchontoglires (rodents, lagomorphs, tree shrews, colugos and primates). Based on whole-genome analyses across 18 taxa, we identified 1254 genes as having evolved adaptively across all three lineages exhibiting independent evolutionary transitions towards reduced placental invasion. These genes showed strong evidence of enrichment for associations with pre-eclampsia, based on genetic-association studies, gene-expression analyses and gene ontology. We further used in silico prediction to identify a subset of 199 genes that are likely targets of natural selection during transitions in placental invasiveness and which are predicted to also underlie human placental disorders. Our results indicate that abnormal ontogenies can recapitulate major phylogenetic shifts in mammalian evolution, identify new candidate genes for involvement in pre-eclampsia, imply that study of species with less-invasive placentation will provide useful insights into the regulation of placental invasion and pre-eclampsia, and recommend a novel comparative functional-evolutionary approach to the study of genetically based human disease and mammalian diversification. PMID:25602073

  1. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  2. Toward pre-conceptual genetic analysis of human spermatozoa.

    Science.gov (United States)

    Dozortsev, Dmitri; Serafim, Rui; Cardoso, J Jakson; Abdelmassih, Soraya; Nagy, Peter; Diamond, Michael P; Abdelmassih, Roger

    2003-01-01

    Nuclei of mature mammalian spermatozoa are extraordinarily resistant to chemical and thermal injury. Additionally, decondensation of spermatozoa DNA can be accompanied by little or no visual changes of the sperm head. This study tested whether human spermatozoa could be recovered following several cycles of primer extension preamplification (PEP) and used to achieve fertilization and subsequent development of human oocytes. An attempt was also made to amplify PEP buffer after spermatozoon removal. The results demonstrate that the sperm head can be successfully recovered following treatment with KOH or proteinase K followed by one to four cycles of PEP. It is also shown that following this treatment, the spermatozoa can be injected into the oocytes and will transform into a pronucleus if the oocyte is activated by sperm cytosolic fraction. In some cases, it was also possible to obtain polymerase chain reaction signals using a buffer after sperm cells were removed following several cycles of PEP. Although sperm participation in development was confirmed by fluorescence in-situ hybridization, light microscopy revealed some degree of damage to spermatozoal chromosomes. It is concluded that pre-conceptual analysis of sperm cells may be possible, but more research is necessary to determine the optimal conditions that would preserve sperm DNA integrity while allowing accurate diagnoses. PMID:14656400

  3. Genetic radiation effects and natural radioactivity of human population in Brazil

    International Nuclear Information System (INIS)

    A study on areas of natural radioactivity is done, covering the genetic effects on human population. The study is done in depth dealing with aspecto such as radioactive area involved, discussion of materials and methods, errors and fallacies, influential factors, models, buildup and natural radioactivity, hypotheses, results and perspectives, etc. It covers 24 localites, 8.572 couples and 43.930 pregnancy cases

  4. Spatial arrangement of genetic loci in human blood cell nuclei studied by confocal cytometry

    Czech Academy of Sciences Publication Activity Database

    Cafourková, Alena; Jirsová, Pavla; Kozubek, Stanislav; Kozubek, Michal; Bártová, Eva; Lukášová, Emilie

    Würzburg : University of Würzburg , 2001, s. P181. [International Chromosome Conference /14./. Würzburg (DE), 04.09.2001-08.09.2001] Institutional research plan: CEZ:AV0Z5004920 Keywords : genetic loci * human blood cell * confocal cytometry Subject RIV: BO - Biophysics

  5. Human-competitive evolution of quantum computing artefacts by Genetic Programming.

    Science.gov (United States)

    Massey, Paul; Clark, John A; Stepney, Susan

    2006-01-01

    We show how Genetic Programming (GP) can be used to evolve useful quantum computing artefacts of increasing sophistication and usefulness: firstly specific quantum circuits, then quantum programs, and finally system-independent quantum algorithms. We conclude the paper by presenting a human-competitive Quantum Fourier Transform (QFT) algorithm evolved by GP. PMID:16536889

  6. Recombination networks as genetic markers in a human variation study of the Old World.

    NARCIS (Netherlands)

    Javed, A.; Mele, M.; Pybus, M.; Zalloua, P.; Haber, M.; Comas, D.; Netea, M.G.; Balanovsky, O.; Balanovska, E.; Jin, L.; Yang, Y.; Arunkumar, G.; Pitchappan, R.; Bertranpetit, J.; Calafell, F.; Parida, L.

    2012-01-01

    We have analyzed human genetic diversity in 33 Old World populations including 23 populations obtained through Genographic Project studies. A set of 1,536 SNPs in five X chromosome regions were genotyped in 1,288 individuals (mostly males). We use a novel analysis employing subARG network constructi

  7. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh;

    2012-01-01

    Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified...

  8. Teachers' Conceptions about the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    Science.gov (United States)

    Castéra, Jérémy; Clément, Pierre

    2014-01-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the…

  9. Teachers' Conceptions About the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    Science.gov (United States)

    Castéra, Jérémy; Clément, Pierre

    2012-07-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the interviewed teachers' conceptions. This illustrates that innatism is present in two distinct ways: in relation to individuals (e.g. genetic determinism to justify intellectual likeness between individuals such as twins) or in relation to groups of humans (e.g. genetic determinism to justify gender differences or the superiority of some human ethnic groups). A between-factor analysis discriminates between countries, showing very significant differences. There is more innatism among teachers' conceptions in African countries and Lebanon than in European countries, Brazil and Australia. Among the other controlled parameters, only two are significantly independent of the country: the level of training and the level of knowledge of biology. A co-inertia analysis shows a strong correlation between non-citizen attitudes towards and innatist conceptions of genetic determinism regarding human groups. We discuss these findings and their implications for education.

  10. Genetic fuzzy systems evolutionary tuning and learning of fuzzy knowledge bases

    CERN Document Server

    Herrera, Francisco; Magdalena, Luis

    2001-01-01

    In recent years, a great number of publications have explored the use of genetic algorithms as a tool for designing fuzzy systems. Genetic Fuzzy Systems explores and discusses this symbiosis of evolutionary computation and fuzzy logic. The book summarizes and analyzes the novel field of genetic fuzzy systems, paying special attention to genetic algorithms that adapt and learn the knowledge base of a fuzzy-rule-based system. It introduces the general concepts, foundations and design principles of genetic fuzzy systems and covers the topic of genetic tuning of fuzzy systems. It also introduces t

  11. A new automatic alignment technology for single mode fiber-waveguide based on improved genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu; CHEN Zhuang-zhuang; LI Ya-juan; DUAN Jian

    2009-01-01

    A novel automatic alignment algorithm of single mode fiber-waveguide based on improved genetic algorithm is proposed. The genetic searching is based on the dynamic crossover operator and the adaptive mutation operator to solve the premature convergence of simple genetic algorithm The improved genetic algorithm combines with hill-climbing method and pattern searching algorithm, to solve low precision of simple genetic algorithm in later searching. The simulation results indicate that the improved genetic algorithm can rise the alignment precision and reach the coupling loss of 0.01 dB when platform moves near 207 space points averagely.

  12. Genetic structure of cultivated flax (Linum usitatissimum L. based on retrotransposon-based markers

    Directory of Open Access Journals (Sweden)

    Habibollahi Hadi

    2015-01-01

    Full Text Available Flax (Linum usitatissimum L. is one of the most important fiber and oil crop plants cultivated since ancient time. The flax seeds contain high amount of omega- 3-fatty acids and biologically active lignans. In spite of economic importance of cultivated flax, no information is available on its genetic variability and population structure in Iran. Therefore, we used six inter-retrotransposon amplified polymorphism (IRAP markers and 15 combined IRAP markers to reveal within and among population genetic diversity in this crop plant. We used 30 randomly selected plants in three geographical populations for present investigation. AMOVA test produced significant genetic difference (PhiPT = 0.40, P = 0.010 among the studied populations and also revealed that, 40% of total genetic variability was due to within population diversity while, 60% was due to among population genetic differentiation. Gst (0.78, P = 0.001, Hedrick, standardised fixation index (G'st = 0.83, P = 0.001, revealed that the studied populations are genetically differentiated. STRUCTURE plot based on admixture model revealed that the studied populations differed extensively in their genetic content, but some degree of shared alleles occurred between them. Some adaptive IRAP loci were identified by LFMM analysis. These loci were private alleles restricted to geographical populations. Data obtained may be used in breeding and hybridization program of flax in the country.

  13. 76 FR 14034 - Proposed Collection; Comment Request; NCI Cancer Genetics Services Directory Web-Based...

    Science.gov (United States)

    2011-03-15

    ... professionals including nurses, physicians, genetic counselors, and other professionals who provide services... application form and the Web-based update mailer is to collect information about genetics professionals to be... collected includes name, practice locations, professional qualifications, and areas of...

  14. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    Science.gov (United States)

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. PMID:26126931

  15. Genetics and human rights: Two histories: restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil

    Directory of Open Access Journals (Sweden)

    Victor B. Penchaszadeh

    2014-01-01

    Full Text Available Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976-1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program "Reencontro", which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind.

  16. Assessment of Genetic Markers for Tracking the Sources of Human Wastewater Associated Escherichia coli in Environmental Waters.

    Science.gov (United States)

    Warish, Ahmed; Triplett, Cheryl; Gomi, Ryota; Gyawali, Pradip; Hodgers, Leonie; Toze, Simon

    2015-08-01

    In this study, we have evaluated the performance characteristics (host-specificity and -sensitivity) of four human wastewater-associated Escherichia coli (E. coli) genetic markers (H8, H12, H14, and H24) in 10 target (human) and nontarget (cat, cattle, deer, dog, emu, goat, horse, kangaroo, and possum) host groups in Southeast Queensland, Australia. The overall host-sensitivity values of the tested markers in human wastewater samples were 1.0 (all human wastewater samples contained the E. coli genetic markers). The overall host-specificity values of these markers to differentiate between human and animal host groups were 0.94, 0.85, 0.72, and 0.57 for H8, H12, H24, and H14, respectively. Based on the higher host-specificity values, H8 and H12 markers were chosen for a validation environmental study. The prevalence of the H8 and H12 markers was determined among human wastewater E. coli isolates collected from a wastewater treatment plant (WWTP). Among the 97 isolates tested, 44 (45%) and 14 (14%) were positive for the H8 and H12 markers, respectively. A total of 307 E. coli isolates were tested from environmental water samples collected in Brisbane, of which 7% and 20% were also positive for the H8 and H12 markers, respectively. Based on our results, we recommend that these markers could be useful when it is important to identify the source(s) of E. coli (whether they originated from human wastewater or not) in environmental waters. PMID:26151092

  17. National population-based biobanks for genetic research.

    Science.gov (United States)

    Swede, Helen; Stone, Carol L; Norwood, Alyssa R

    2007-03-01

    Clinical practice guidelines derived from genetic research using population-based biobanks could dramatically change the nature of personal and public health medicine. Centralized population-based biobanks have been established or proposed in at least nine countries to date, and many lessons have been learned from these landmark developments. Scientific and governmental leaders in the United States are currently contemplating pending federal legislation regarding the establishment of centralized and networked biobanks. Public health practitioners and clinical care providers may be called on to serve pronounced planning roles at the state level. Possible responsibilities include: formulating legislation, gathering public comment, reviewing research proposals, and developing procedures for informed consent, participant withdrawal, and confidentiality protection. State health agencies may also need to create and/or administer banking facilities. Proper planning may ensure that individual rights are protected while research benefits are maximized. PMID:17413418

  18. [MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data].

    Science.gov (United States)

    Liu, Ren-Hu; Meng, Jin-Ling

    2003-05-01

    MAPMAKER is one of the most widely used computer software package for constructing genetic linkage maps.However, the PC version, MAPMAKER 3.0 for PC, could not draw the genetic linkage maps that its Macintosh version, MAPMAKER 3.0 for Macintosh,was able to do. Especially in recent years, Macintosh computer is much less popular than PC. Most of the geneticists use PC to analyze their genetic linkage data. So a new computer software to draw the same genetic linkage maps on PC as the MAPMAKER for Macintosh to do on Macintosh has been crying for. Microsoft Excel,one component of Microsoft Office package, is one of the most popular software in laboratory data processing. Microsoft Visual Basic for Applications (VBA) is one of the most powerful functions of Microsoft Excel. Using this program language, we can take creative control of Excel, including genetic linkage map construction, automatic data processing and more. In this paper, a Microsoft Excel macro called MapDraw is constructed to draw genetic linkage maps on PC computer based on given genetic linkage data. Use this software,you can freely construct beautiful genetic linkage map in Excel and freely edit and copy it to Word or other application. This software is just an Excel format file. You can freely copy it from ftp://211.69.140.177 or ftp://brassica.hzau.edu.cn and the source code can be found in Excel's Visual Basic Editor. PMID:15639879

  19. Small Sample Kernel Association Tests for Human Genetic and Microbiome Association Studies.

    Science.gov (United States)

    Chen, Jun; Chen, Wenan; Zhao, Ni; Wu, Michael C; Schaid, Daniel J

    2016-01-01

    Kernel machine based association tests (KAT) have been increasingly used in testing the association between an outcome and a set of biological measurements due to its power to combine multiple weak signals of complex relationship with the outcome through the specification of a relevant kernel. Human genetic and microbiome association studies are two important applications of KAT. However, the classic KAT framework relies on large sample theory, and conservativeness has been observed for small sample studies, especially for microbiome association studies. The common approach for addressing the small sample problem relies on computationally intensive resampling methods. Here, we derive an exact test for KAT with continuous traits, which resolve the small sample conservatism of KAT without the need for resampling. The exact test has significantly improved power to detect association for microbiome studies. For binary traits, we propose a similar approximate test, and we show that the approximate test is very powerful for a wide range of kernels including common variant- and microbiome-based kernels, and the approximate test controls the type I error well for these kernels. In contrast, the sequence kernel association tests have slightly inflated genomic inflation factors after small sample adjustment. Extensive simulations and application to a real microbiome association study are used to demonstrate the utility of our method. PMID:26643881

  20. Bringing Genetics into the Classroom: A Practice-based Approach.

    Science.gov (United States)

    Lea, Dale Halsey; Thomas-Lawson, Marjorie

    2001-01-01

    Case studies illustrating baccalaureate and advanced practice nursing roles in genetic health care form the basis of an integrated approach to genetics education in nursing curricula. Use of such case studies involves nurses in obtaining informed consent from clients. (SK)

  1. Genetic Risk for Recurrent Urinary Tract Infections in Humans: A Systematic Review

    Directory of Open Access Journals (Sweden)

    M. Zaffanello

    2010-01-01

    Full Text Available Urinary tract infections (UTIs are a frequent cause of morbidity in children and adults and affect up to 10% of children; its recurrence rate is estimated at 30–40%. UTI may occur in up to 50% of all women in their lifetimes and frequently require medication. Recent advances have suggested that a deregulation of candidate genes in humans may predispose patients to recurrent UTI. The identification of a genetic component of UTI recurrences will make it possible to diagnose at-risk adults and to predict genetic recurrences in their offspring. Six out of 14 genes investigated in humans may be associated with susceptibility to recurrent UTI in humans. In particular, the HSPA1B, CXCR1 & 2, TLR2, TLR4, TGF-1 genes seem to be associated with an alteration of the host response to UTIs at various levels.

  2. Insects feeding on cadavers as an alternative source of human genetic material

    Directory of Open Access Journals (Sweden)

    Rafał Skowronek

    2015-03-01

    Full Text Available In some criminal cases, the use of classical sources of human genetic material is difficult or even impossible. One solution may be the use of insects, especially blowfly larvae which feed on corpses. A recent review of case reports and experimental studies available in biomedical databases has shown that insects can be a valuable source of human mitochondrial and genomic deoxyribonucleic acid (DNA, allowing for an effective analysis of hypervariable region (HVR sequences and short tandem repeat (STR profiles, respectively. The optimal source of human DNA is the crop (a part of the gut of active third-instar blowfly larvae. Pupae and insect faeces can be also used in forensic genetic practice instead of the contents of the alimentary tract.

  3. The Nazi symbiosis: politics and human genetics at the Kaiser Wilhelm Institute.

    Science.gov (United States)

    Berez, Thomas M; Weiss, Sheila Faith

    2004-12-01

    The case of the Kaiser Wilhelm Institute for Anthropology, Human Heredity and Eugenics (KWIA), from its inception in Weimar Republic Germany to its apogee under the rule of the Third Reich, is an example of how politics and human heredity can function as mutually beneficial resources. Whether it was a result of the Nazi bureaucrats' desire to legitimize their racial policy through science, or the KWIA personnel's desire to secure more funding for their research, the symbiotic relationship that developed between human genetics and Nazi politics could help explain why many scientists in the Third Reich undertook research projects that wholly transgressed the boundaries of morally acceptable science. PMID:15571767

  4. Identification of Hammerstein Model Based on Quantum Genetic Algorithm

    OpenAIRE

    Zhang Hai Li

    2013-01-01

    Nonlinear system identification is a main topic of modern identification. A new method for nonlinear system identification is presented by using Quantum Genetic Algorithm(QGA).The problems of nonlinear system identification are cast as function optimization overprameter space,and the Quantum Genetic Algorithm is adopted to solve the optimization problem. Simulation experiments show that: compared with the genetic algorithm, quantum genetic algorithm is an effective swarm intelligence algorith...

  5. Glacial Refugia of Ginkgo biloba and Human Impact on Its Genetic Diversity: Evidence from Chloroplast DNA

    Institute of Scientific and Technical Information of China (English)

    Wei Gong; Zhen Zeng; Ye-Ye Chen; Chuan Chen; Ying-Xiong Qiu; Cheng-Xin Fu

    2008-01-01

    Variations in the trnK region of chloroplast DNA were investigated in the present study using polymerase chain reaction-restriction fragment length polymorphism to detect the genetic structure and to infer the possible glacial refugia of Ginkgo biloba L. in China. In total, 220 individuals from 12 populations in China and three populations outside China were analyzed, representing the largest number of populations studied by molecular markers to date. Nineteen haplotypes were produced and haplotype A was found in all populations. Populations in south-western China, including WC, JF, PX, and SP, contained 14 of the 19 haplotypes and their genetic diversity ranged from 0.771 4 to 0.867 6. The TM population from China also showed a high genetic diversity (H=0.848 5). Most of the genetic variation existed within populations and the differentiation among populations was low (GST>=0.2). According to haplotype distribution and the historical record, we suggest that populations of G. biloba have been subjected to extensive human impact, which has compounded our attempt to infer glacial refugia for Ginkgo. Nevertheless, the present results suggest that the center of genetic diversity of Ginkgo is mainly in south-western China and in situ conservation is needed to protect and preserve the genetic resources.

  6. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Gang Li

    2013-05-01

    Full Text Available Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA, there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(-9. Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(-9, a finding corroborated by expression quantitative trait loci (eQTL analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2 and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65, a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel

  7. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  8. The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia.

    Science.gov (United States)

    Deng, Lian; Hoh, Boon Peng; Lu, Dongsheng; Fu, Ruiqing; Phipps, Maude E; Li, Shilin; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Ismail, Endom; Mokhtar, Siti Shuhada; Jin, Li; Zilfalil, Bin Alwi; Marshall, Christian R; Scherer, Stephen W; Al-Mulla, Fahd; Xu, Shuhua

    2014-09-01

    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration

  9. Optimization of unit commitment based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    蔡兴国; 初壮

    2002-01-01

    How to solve unit commitment and load dispatch of power system by genetic algorithms is discussed in this paper. A combination encoding scheme of binary encoding and floating number encoding and corresponding genetic operators are developed. Meanwhile a contract mapping genetic algorithm is used to enhance traditional GA' s convergence. The result of a practical example shows that this algorithm is effective.

  10. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter

    Science.gov (United States)

    Jathoul, Amit P.; Laufer, Jan; Ogunlade, Olumide; Treeby, Bradley; Cox, Ben; Zhang, Edward; Johnson, Peter; Pizzey, Arnold R.; Philip, Brian; Marafioti, Teresa; Lythgoe, Mark F.; Pedley, R. Barbara; Pule, Martin A.; Beard, Paul

    2015-04-01

    Photoacoustic imaging allows absorption-based high-resolution spectroscopic in vivo imaging at a depth beyond that of optical microscopy. Until recently, photoacoustic imaging has largely been restricted to visualizing the vasculature through endogenous haemoglobin contrast, with most non-vascularized tissues remaining invisible unless exogenous contrast agents are administered. Genetically encodable photoacoustic contrast is attractive as it allows selective labelling of cells, permitting studies of, for example, specific genetic expression, cell growth or more complex biological behaviours in vivo. In this study we report a novel photoacoustic imaging scanner and a tyrosinase-based reporter system that causes human cell lines to synthesize the absorbing pigment eumelanin, thus providing strong photoacoustic contrast. Detailed three-dimensional images of xenografts formed of tyrosinase-expressing cells implanted in mice are obtained in vivo to depths approaching 10 mm with a spatial resolution below 100 μm. This scheme is a powerful tool for studying cellular and genetic processes in deep mammalian tissues.

  11. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  12. Genetic polymorphisms in monoamine neurotransmitter systems show only weak association with acute post-surgical pain in humans

    Directory of Open Access Journals (Sweden)

    Lee Hyewon

    2006-07-01

    Full Text Available Abstract Background Candidate gene studies on the basis of biological hypotheses have been a practical approach to identify relevant genetic variation in complex traits. Based on previous reports and the roles in pain pathways, we have examined the effects of variations of loci in the genes of monoamine neurotransmitter systems including metabolizing enzymes, receptors and transporters on acute clinical pain responses in humans. Results Variations in the catecholamine metabolizing enzyme genes (MAOA and COMT showed significant associations with the maximum post-operative pain rating while the serotonin transporter gene (SLC6A4 showed association with the onset time of post-operative pain. Analgesic onset time after medication was significantly associated with the norepinephrine transporter gene (SLC6A2. However, the association between COMT genetic variation and pain sensitivity in our study differ from previous studies with small sample sizes, population stratification and pain phenotype derived from combining different types of pain stimuli. Correcting for multiple comparisons did not sustain these genetic associations between monoamine neurotransmitter systems and pain sensitivity even in this large and homogeneous sample. Conclusion These results suggest that the previously reported associations between genetic polymorphisms in the monoamine neurotransmitter systems and the interindividual variability in pain responses cannot be replicated in a clinically relevant pain phenotype.

  13. Genetic and epigenetic characteristics of human multiple hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Sasaki Yo

    2010-10-01

    Full Text Available Abstract Background Multiple carcinogenesis is one of the major characteristics of human hepatocellular carcinoma (HCC. The history of multiple tumors, that is, whether they derive from a common precancerous or cancerous ancestor or individually from hepatocytes, is a major clinical issue. Multiple HCC is clinically classified as either intratumor metastasis (IM or multicentric carcinogenesis (MC. Molecular markers that differentiate IM and MC are of interest to clinical practitioners because the clinical diagnoses of IM and MC often lead to different therapies. Methods We analyzed 30 multiple tumors from 15 patients for somatic mutations of cancer-related genes, chromosomal aberrations, and promoter methylation of tumor suppressor genes using techniques such as high-resolution melting, array-comparative genomic hybridization (CGH, and quantitative methylation-specific PCR. Results Somatic mutations were found in TP53 and CTNNB1 but not in CDKN2A or KRAS. Tumors from the same patient did not share the same mutations. Array-CGH analysis revealed variations in the number of chromosomal aberrations, and the detection of common aberrations in tumors from the same patient was found to depend on the total number of chromosomal aberrations. A promoter methylation analysis of genes revealed dense methylation in HCC but not in the adjacent non-tumor tissue. The correlation coefficients (r of methylation patterns between tumors from the same patient were more similar than those between tumors from different patients. In total, 47% of tumor samples from the same patients had an r ≥ 0.8, whereas, in contrast, only 18% of tumor samples from different patients had an r ≥ 0.8 (p = 0.01. All IM cases were highly similar; that is, r ≥ 0.8 (p = 0.025. Conclusions The overall scarcity of common somatic mutations and chromosomal aberrations suggests that biological IM is likely to be rare. Tumors from the same patient had a methylation pattern that was more

  14. Genetic and epigenetic characteristics of human multiple hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Multiple carcinogenesis is one of the major characteristics of human hepatocellular carcinoma (HCC). The history of multiple tumors, that is, whether they derive from a common precancerous or cancerous ancestor or individually from hepatocytes, is a major clinical issue. Multiple HCC is clinically classified as either intratumor metastasis (IM) or multicentric carcinogenesis (MC). Molecular markers that differentiate IM and MC are of interest to clinical practitioners because the clinical diagnoses of IM and MC often lead to different therapies. We analyzed 30 multiple tumors from 15 patients for somatic mutations of cancer-related genes, chromosomal aberrations, and promoter methylation of tumor suppressor genes using techniques such as high-resolution melting, array-comparative genomic hybridization (CGH), and quantitative methylation-specific PCR. Somatic mutations were found in TP53 and CTNNB1 but not in CDKN2A or KRAS. Tumors from the same patient did not share the same mutations. Array-CGH analysis revealed variations in the number of chromosomal aberrations, and the detection of common aberrations in tumors from the same patient was found to depend on the total number of chromosomal aberrations. A promoter methylation analysis of genes revealed dense methylation in HCC but not in the adjacent non-tumor tissue. The correlation coefficients (r) of methylation patterns between tumors from the same patient were more similar than those between tumors from different patients. In total, 47% of tumor samples from the same patients had an r ≥ 0.8, whereas, in contrast, only 18% of tumor samples from different patients had an r ≥ 0.8 (p = 0.01). All IM cases were highly similar; that is, r ≥ 0.8 (p = 0.025). The overall scarcity of common somatic mutations and chromosomal aberrations suggests that biological IM is likely to be rare. Tumors from the same patient had a methylation pattern that was more similar than those from different patients. As all clinical IM

  15. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  16. Brief Communication: Quantitative- and molecular-genetic differentiation in humans and chimpanzees: implications for the evolutionary processes underlying cranial diversification.

    Science.gov (United States)

    Weaver, Timothy D

    2014-08-01

    Estimates of the amount of genetic differentiation in humans among major geographic regions (e.g., Eastern Asia vs. Europe) from quantitative-genetic analyses of cranial measurements closely match those from classical- and molecular-genetic markers. Typically, among-region differences account for ∼10% of the total variation. This correspondence is generally interpreted as evidence for the importance of neutral evolutionary processes (e.g., genetic drift) in generating among-region differences in human cranial form, but it was initially surprising because human cranial diversity was frequently assumed to show a strong signature of natural selection. Is the human degree of similarity of cranial and DNA-sequence estimates of among-region genetic differentiation unusual? How do comparisons with other taxa illuminate the evolutionary processes underlying cranial diversification? Chimpanzees provide a useful starting point for placing the human results in a broader comparative context, because common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are the extant species most closely related to humans. To address these questions, I used 27 cranial measurements collected on a sample of 861 humans and 263 chimpanzees to estimate the amount of genetic differentiation between pairs of groups (between regions for humans and between species or subspecies for chimpanzees). Consistent with previous results, the human cranial estimates are quite similar to published DNA-sequence estimates. In contrast, the chimpanzee cranial estimates are much smaller than published DNA-sequence estimates. It appears that cranial differentiation has been limited in chimpanzees relative to humans. PMID:24827671

  17. Deep genetic structure and ecological divergence in a widespread human commensal toad.

    Science.gov (United States)

    Wogan, Guinevere O U; Stuart, Bryan L; Iskandar, Djoko T; McGuire, Jimmy A

    2016-01-01

    The Asian common toad (Duttaphrynus melanostictus) is a human commensal species that occupies a wide variety of habitats across tropical Southeast Asia. We test the hypothesis that genetic variation in D. melanostictus is weakly associated with geography owing to natural and human-mediated dispersal facilitated by its commensal nature. Phylogenetic and population genetic analyses of mitochondrial and nuclear DNA sequence variation, and predictive species distribution modelling, unexpectedly recovered three distinct evolutionary lineages that differ genetically and ecologically, corresponding to the Asian mainland, coastal Myanmar and the Sundaic islands. The persistence of these three divergent lineages, despite ample opportunities for recent human-mediated and geological dispersal, suggests that D. melanostictus actually consists of multiple species, each having narrower geographical ranges and ecological niches, and higher conservation value, than is currently recognized. These findings also have implications for the invasion potential of this human commensal elsewhere, such as in its recently introduced ranges on the islands of Borneo, Sulawesi, Seram and Madagascar. PMID:26763213

  18. The Genetic Influences on Oxycodone Response Characteristics in Human Experimental Pain

    DEFF Research Database (Denmark)

    Olesen, Anne Estrup; Sato, Hiroe; Nielsen, Lecia Møller;

    2015-01-01

    Human experimental pain studies are of value to study basic pain mechanisms under controlled conditions. The aim of this study was to investigate whether genetic variation across selected mu-, kappa- and delta-opioid receptor genes (OPRM1, OPRK1and OPRD1, respectively) influenced analgesic response...... visceral PTT (n = 41) were included. Genetic associations with pain outcomes were explored. Nineteen opioid receptor genetic polymorphisms were included in this study. Variability in oxycodone response to skin heat was associated with OPRM1 single-nucleotide polymorphisms (SNPs) rs589046 (P < 0.0001) and...... to oxycodone in healthy volunteers. Experimental multimodal, multitissue pain data from previously published studies carried out in Caucasian volunteers were used. Data on thermal skin pain tolerance threshold (PTT) (n = 37), muscle pressure PTT (n = 31), mechanical visceral PTT (n = 43) and thermal...

  19. A Pattern Discovery-Based Method for Detecting Multi-Locus Genetic Association

    OpenAIRE

    Li, Zhong; Floratos, Aris; Wang, David; Califano, Andrea

    2007-01-01

    Methods to effectively detect multi-locus genetic association are becoming increasingly relevant in the genetic dissection of complex trait in humans. Current approaches typically consider a limited number of hypotheses, most of which are related to the effect of a single locus or of a relatively small number of neighboring loci on a chromosomal region. We have developed a novel method that is specifically designed to detect genetic association involving multiple disease-susceptibility loci, ...

  20. Research on fault diagnosis of nuclear power plants based on genetic algorithms and fuzzy logic

    International Nuclear Information System (INIS)

    Based on genetic algorithms and fuzzy logic and using expert knowledge, mini-knowledge tree model and standard signals from simulator, a new fuzzy-genetic method is developed to fault diagnosis in nuclear power plants. A new replacement method of genetic algorithms is adopted. Fuzzy logic is used to calculate the fitness of the strings in genetic algorithms. Experiments on the simulator show it can deal with the uncertainty and the fuzzy factor

  1. Chaotic Genetic Algorithm based on Lorenz Chaotic System for Optimization Problems

    OpenAIRE

    Reza Ebrahimzadeh; Mahdi Jampour

    2013-01-01

    Very recently evolutionary optimization algorithms use the Genetic Algorithm to improve the result of Optimization problems. Several processes of the Genetic Algorithm are based on 'Random', that is fundamental to evolutionary algorithms, but important defections in the Genetic Algorithm are local convergence and high tolerances in the results, they have happened for randomness reason. In this paper we have prepared pseudo random numbers by Lorenz chaotic system for operators of Genetic Algor...

  2. Genetic Algorithm-based Affine Parameter Estimation for Shape Recognition

    Directory of Open Access Journals (Sweden)

    Yuxing Mao

    2014-06-01

    Full Text Available Shape recognition is a classically difficult problem because of the affine transformation between two shapes. The current study proposes an affine parameter estimation method for shape recognition based on a genetic algorithm (GA. The contributions of this study are focused on the extraction of affine- invariant features, the individual encoding scheme, and the fitness function construction policy for a GA. First, the affine-invariant characteristics of the centroid distance ratios (CDRs of any two opposite contour points to the barycentre are analysed. Using different intervals along the azimuth angle, the different numbers of CDRs of two candidate shapes are computed as representations of the shapes, respectively. Then, the CDRs are selected based on predesigned affine parameters to construct the fitness function. After that, a GA is used to search for the affine parameters with optimal matching between candidate shapes, which serve as actual descriptions of the affine transformation between the shapes. Finally, the CDRs are resampled based on the estimated parameters to evaluate the similarity of the shapes for classification. The experimental results demonstrate the robust performance of the proposed method in shape recognition with translation, scaling, rotation and distortion.

  3. Microchip-based Devices for Molecular Diagnosis of Genetic Diseases.

    Science.gov (United States)

    Cheng; Fortina; Surrey; Kricka; Wilding

    1996-09-01

    Microchips, constructed with a variety of microfabrication technologies (photolithography, micropatterning, microjet printing, light-directed chemical synthesis, laser stereochemical etching, and microcontact printing) are being applied to molecular biology. The new microchip-based analytical devices promise to solve the analytical problems faced by many molecular biologists (eg, contamination, low throughput, and high cost). They may revolutionize molecular biology and its application in clinical medicine, forensic science, and environmental monitoring. A typical biochemical analysis involves three main steps: (1) sample preparation, (2) biochemical reaction, and (3) detection (either separation or hybridization may be involved) accompanied by data acquisition and interpretation. The construction of a miniturized analyzer will therefore necessarily entail the miniaturization and integration of all three of these processes. The literature related to the miniaturization of these three processes indicates that the greatest emphasis so far is on the investigation and development of methods for the detection of nucleic acid, followed by the optimization of a biochemical reaction, such as the polymerase chain reaction. The first step involving sample preparation has received little attention. In this review the state of the art of, microchip-based, miniaturized analytical processes (eg, sample preparation, biochemical reaction, and detection of products) are outlined and the applications of microchip-based devices in the molecular diagnosis of genetic diseases are discussed. PMID:10462559

  4. A unified model for the speed of sound in cranial bone based on genetic algorithm optimization

    International Nuclear Information System (INIS)

    The density and structure of bone is highly heterogeneous, causing wide variations in the reported speed of sound for ultrasound propagation. Current research on the propagation of high intensity focused ultrasound through an intact human skull for non-invasive therapeutic action on brain tissue requires a detailed model for the acoustic velocity in cranial bone. Such models have been difficult to derive empirically due to the aforementioned heterogeneity of bone itself. We propose a single unified model for the speed of sound in cranial bone based upon the apparent density of bone by CT scan. This model is based upon the coupling of empirical measurement, theoretical acoustic simulation and genetic algorithm optimization. The phase distortion caused by the presence of skull in an acoustic path is empirically measured. The ability of a theoretical acoustic simulation coupled with a particular speed-of-sound model to predict this phase distortion is compared against the empirical data, thus providing the fitness function needed to perform genetic algorithm optimization. By performing genetic algorithm optimization over an initial population of candidate speed-of-sound models, an ultimate single unified model for the speed of sound in both the cortical and trabecular regions of cranial bone is produced. The final model produced by genetic algorithm optimization has a nonlinear dependency of speed of sound upon local bone density. This model is shown by statistical significance to be a suitable model of the speed of sound in bone. Furthermore, using a skull that was not part of the optimization process, this model is also tested against a published homogeneous speed-of-sound model and shown to return an improved prediction of transcranial ultrasound propagation

  5. Human Genome Project discoveries: Dialectics and rhetoric in the science of genetics

    Science.gov (United States)

    Robidoux, Charlotte A.

    The Human Genome Project (HGP), a $437 million effort that began in 1990 to chart the chemical sequence of our three billion base pairs of DNA, was completed in 2003, marking the 50th anniversary that proved the definitive structure of the molecule. This study considered how dialectical and rhetorical arguments functioned in the science, political, and public forums over a 20-year period, from 1980 to 2000, to advance human genome research and to establish the official project. I argue that Aristotle's continuum of knowledge--which ranges from the probable on one end to certified or demonstrated knowledge on the other--provides useful distinctions for analyzing scientific reasoning. While contemporary scientific research seeks to discover certified knowledge, investigators generally employ the hypothetico-deductive or scientific method, which often yields probable rather than certain findings, making these dialectical in nature. Analysis of the discourse describing human genome research revealed the use of numerous rhetorical figures and topics. Persuasive and probable reasoning were necessary for scientists to characterize unknown genetic phenomena, to secure interest in and funding for large-scale human genome research, to solve scientific problems, to issue probable findings, to convince colleagues and government officials that the findings were sound and to disseminate information to the public. Both government and private venture scientists drew on these tools of reasoning to promote their methods of mapping and sequencing the genome. The debate over how to carry out sequencing was rooted in conflicting values. Scientists representing the academic tradition valued a more conservative method that would establish high quality results, and those supporting private industry valued an unconventional approach that would yield products and profits more quickly. Values in turn influenced political and public forum arguments. Agency representatives and investors sided

  6. Genetic analysis of human rotavirus C: The appearance of Indian-Bangladeshi strain in Far East Asian countries.

    Science.gov (United States)

    Doan, Yen Hai; Haga, Kei; Fujimoto, Akira; Fujii, Yoshiki; Takai-Todaka, Reiko; Oka, Tomoichiro; Kimura, Hirokazu; Yoshizumi, Shima; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Shirabe, Komei; Shinomiya, Hiroto; Sakon, Naomi; Katayama, Kazuhiko

    2016-07-01

    Rotaviruses C (RVCs) circulate worldwide as an enteric pathogen in both humans and animals. Most studies of their genetic diversity focus on the VP7 and VP4 genes, but the complete genomes of 18 human RVCs have been described in independent studies. The genetic background of the Far East Asian RVCs is different than other human RVCs that were found in India and Bangladesh. Recently, a RVC detected in 2010 in South Korea had genetic background similar to the Indian-Bangladeshi RVCs. This study was undertaken to determine the whole genome of eight Japanese RVCs detected in 2005-2012, and to compare them with other human and animal global RVCs to better understand the genetic background of contemporary Far East Asian RVC. By phylogenetic analysis, the human RVCs appeared to be distinct from animal RVCs. Among human RVCs, three lineage constellations had prolonged circulation. The genetic background of the Far East Asian RVC was distinguished from Indian-Bangladeshi RVC as reported earlier. However, we found one Japanese RVC in 2012 that carried the genetic background of Indian-Bangladeshi RVC, whereas the remaining seven Japanese RVCs carried the typical genetic background of Far East Asian RVC. This is the first report of the Indian-Bangladeshi RVC in Japan. With that observation and the reassortment event of human RVCs in Hungary, our study indicates that the RVCs are spreading from one region to another. PMID:27071530

  7. Genetic association mapping via evolution-based clustering of haplotypes.

    Directory of Open Access Journals (Sweden)

    Ioanna Tachmazidou

    2007-07-01

    Full Text Available Multilocus analysis of single nucleotide polymorphism haplotypes is a promising approach to dissecting the genetic basis of complex diseases. We propose a coalescent-based model for association mapping that potentially increases the power to detect disease-susceptibility variants in genetic association studies. The approach uses Bayesian partition modelling to cluster haplotypes with similar disease risks by exploiting evolutionary information. We focus on candidate gene regions with densely spaced markers and model chromosomal segments in high linkage disequilibrium therein assuming a perfect phylogeny. To make this assumption more realistic, we split the chromosomal region of interest into sub-regions or windows of high linkage disequilibrium. The haplotype space is then partitioned into disjoint clusters, within which the phenotype-haplotype association is assumed to be the same. For example, in case-control studies, we expect chromosomal segments bearing the causal variant on a common ancestral background to be more frequent among cases than controls, giving rise to two separate haplotype clusters. The novelty of our approach arises from the fact that the distance used for clustering haplotypes has an evolutionary interpretation, as haplotypes are clustered according to the time to their most recent common ancestor. Our approach is fully Bayesian and we develop a Markov Chain Monte Carlo algorithm to sample efficiently over the space of possible partitions. We compare the proposed approach to both single-marker analyses and recently proposed multi-marker methods and show that the Bayesian partition modelling performs similarly in localizing the causal allele while yielding lower false-positive rates. Also, the method is computationally quicker than other multi-marker approaches. We present an application to real genotype data from the CYP2D6 gene region, which has a confirmed role in drug metabolism, where we succeed in mapping the location

  8. A genetic-based algorithm for personalized resistance training

    Science.gov (United States)

    Kiely, J; Suraci, B; Collins, DJ; de Lorenzo, D; Pickering, C; Grimaldi, KA

    2016-01-01

    Association studies have identified dozens of genetic variants linked to training responses and sport-related traits. However, no intervention studies utilizing the idea of personalised training based on athlete's genetic profile have been conducted. Here we propose an algorithm that allows achieving greater results in response to high- or low-intensity resistance training programs by predicting athlete's potential for the development of power and endurance qualities with the panel of 15 performance-associated gene polymorphisms. To develop and validate such an algorithm we performed two studies in independent cohorts of male athletes (study 1: athletes from different sports (n = 28); study 2: soccer players (n = 39)). In both studies athletes completed an eight-week high- or low-intensity resistance training program, which either matched or mismatched their individual genotype. Two variables of explosive power and aerobic fitness, as measured by the countermovement jump (CMJ) and aerobic 3-min cycle test (Aero3) were assessed pre and post 8 weeks of resistance training. In study 1, the athletes from the matched groups (i.e. high-intensity trained with power genotype or low-intensity trained with endurance genotype) significantly increased results in CMJ (P = 0.0005) and Aero3 (P = 0.0004). Whereas, athletes from the mismatched group (i.e. high-intensity trained with endurance genotype or low-intensity trained with power genotype) demonstrated non-significant improvements in CMJ (P = 0.175) and less prominent results in Aero3 (P = 0.0134). In study 2, soccer players from the matched group also demonstrated significantly greater (P effective resistance training. The developed algorithm may be used to guide individualised resistance-training interventions.

  9. Problems of genetic diagnosis: serological markers in the prognosis of the development of human speed abilities

    Directory of Open Access Journals (Sweden)

    Serhiyenko Leonid Prokopovich

    2011-10-01

    Full Text Available The article deals with the study of correlation between blood groups system AB0 and Rh with the peculiarities of the development of human speed abilities. Complex of genetic markers is defined. It is possible to use this complex in the individual prognosis of the development of human motor abilities. With 0(I and A(II blood groups and Rh+ have a high inclination to the physical development. Better identify trends in the phenotypic expression of high-speed abilities in people with 0(I and A(II blood groups in comparison with people with the AB(IV and B(III blood group. The pattern of decreasing susceptibility to the development of high-speed abilities as follows: 0(I>A(II>B(III>AB (IV. It is established that a complex system of genetic markers AB0 and Rh blood has no gender differences.

  10. Genetic Algorithm Based Performance Analysis of Self Excited Induction Generator

    OpenAIRE

    Hassan Ibrahim; Mostafa Metwaly

    2011-01-01

    This paper investigates the effects of various parameters on the terminal voltage and frequency of self excited induction generator using genetic algorithm. The parameters considered are speed, capacitance, leakage reactance, stator and rotor resistances. Simulated results obtained using genetic algorithm facilitates in exploring the performance of self-excited induction generator. The paper henceforth establishes the application of user friendly genetic algorithm for studying the behaviour o...

  11. Key Frames Extraction Based on the Improved Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-sheng; JIANG Wei; YI Peng-fei; LIURui

    2014-01-01

    In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved.

  12. Human Capital in the Knowledge Based Management

    OpenAIRE

    Ion PETRESCU

    2010-01-01

    All over the world, the problem of human capital acknowledge, it’s ways and means of shaping in order to improve it’s creative potential, tends to occupy a suitable place in the ensemble of all the organization’s management science and practice concerns. This study aims that, according to the theoretical ang pragmatical aquisitions, to present conceptual boundries about the human capital involvement in the knowledge based management. It starts with presenting the relations ballance and philos...

  13. NOVEL QUANTUM-INSPIRED GENETIC ALGORITHM BASED ON IMMUNITY

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhao Rongchun; Zhang Yanning; Jiao Licheng

    2005-01-01

    A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA.

  14. Safety paradigm: genetic evaluation of therapeutic grade human embryonic stem cells

    OpenAIRE

    Stephenson, Emma; Ogilvie, Caroline Mackie; Patel, Heema; Cornwell, Glenda; Jacquet, Laureen; Kadeva, Neli; Braude, Peter; Ilic, Dusko

    2010-01-01

    The use of stem cells for regenerative medicine has captured the imagination of the public, with media attention contributing to rising expectations of clinical benefits. Human embryonic stem cells (hESCs) are the best model for capital investment in stem cell therapy and there is a clear need for their robust genetic characterization before scaling-up cell expansion for that purpose. We have to be certain that the genome of the starting material is stable and normal, but the limited resoluti...

  15. The "Out of Africa" Hypothesis, Human Genetic Diversity, and Comparative Economic Development

    OpenAIRE

    Ashraf, Quamrul; Galor, Oded

    2012-01-01

    This research argues that deep-rooted factors, determined tens of thousands of years ago, had a significant effect on the course of economic development from the dawn of human civilization to the contemporary era. It advances and empirically establishes the hypothesis that in the course of the exodus of Homo sapiens out of Africa, variation in migratory distance from the cradle of humankind to various settlements across the globe affected genetic diversity and has had a direct long-lasting ef...

  16. The "Out of Africa" Hypothesis, Human Genetic Diversity, and Comparative Economic Development

    OpenAIRE

    Quamrul Ashraf; Oded Galor

    2011-01-01

    This research argues that deep-rooted factors, determined tens of thousands of years ago, had a significant effect on the course of economic development from the dawn of human civilization to the contemporary era. It advances and empirically establishes the hypothesis that, in the course of the exodus of Homo sapiens out of Africa, variation in migratory distance from the cradle of humankind to various settlements across the globe affected genetic diversity and has had a long-lasting effect o...

  17. The 'Out of Africa' Hypothesis, Human Genetic Diversity, and Comparative Economic Development

    OpenAIRE

    Ashraf, Quamrul; Galor, Oded

    2011-01-01

    This research argues that deep-rooted factors, determined tens of thousands of years ago, had a significant effect on the course of economic development from the dawn of human civilization to the contemporary era. It advances and empirically establishes the hypothesis that, in the course of the exodus of Homo sapiens out of Africa, variation in migratory distance from the cradle of humankind to various settlements across the globe affected genetic diversity and has had a long-lasting effect o...

  18. The "Out of Africa" hypothesis, human genetic diversity, and comparative economic development

    OpenAIRE

    Ashraf, Quamrul; Galor, Oded

    2012-01-01

    This research argues that deep-rooted factors, determined tens of thousands of years ago, had a significant effect on the course of economic development from the dawn of human civilization to the contemporary era. It advances and empirically establishes the hypothesis that in the course of the exodus of Homo sapiens out of Africa, variation in migratory distance from the cradle of humankind to various settlements across the globe affected genetic diversity and has had a direct long-lasting ef...

  19. The "Out of Africa" hypothesis, human genetic diversity, and comparative economic development

    OpenAIRE

    Ashraf, Quamrul; Galor, Oded

    2010-01-01

    This research argues that deep-rooted factors, determined tens of thousands of years ago, had a signifcant effect on the course of economic development from the dawn of human civilization to the contemporary era. It advances and empirically establishes the hypothesis that, in the course of the exodus of Homo sapiens out of Africa, variation in migratory distance from the cradle of humankind to various settlements across the globe affected genetic diversity and has had a long-lasting effect on...

  20. The 'Out of Africa' Hypothesis, Human Genetic Diversity, and Comparative Economic Development

    OpenAIRE

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    This research argues that deep-rooted factors, determined tens of thousands of years ago, had a significant effect on the course of economic development from the dawn of human civilization to the contemporary era. It advances and empirically establishes the hypothesis that, in the course of the exodus of Homo sapiens out of Africa, variation in migratory distance from the cradle of humankind to various settlements across the globe affected genetic diversity and has had a lon...

  1. Genetic Variation of the Serotonin 2a Receptor Affects Hippocampal Novelty Processing in Humans

    OpenAIRE

    Schott, B. H.; Seidenbecher, C. I.; Richter, S.; Wustenberg, T.; Debska-Vielhaber, G.; Schubert, H.; Heinze, H J; Richardson-Klavehn, A; Duzel, E.

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neuromodulator in learning and memory processes. A functional genetic polymorphism of the 5-HT 2a receptor (5-HTR2a His452Tyr), which leads to blunted intracellular signaling, has previously been associated with explicit memory performance in several independent cohorts, but the underlying neural mechanisms are thus far unclear. The human hippocampus plays a critical role in memory, particularly in the detection and encoding of novel infor...

  2. Constitutional genetic variation at the human aromatase gene (Cyp19) and breast cancer risk

    OpenAIRE

    Siegelmann-Danieli, N; Buetow, K H

    1999-01-01

    The activity of the aromatase enzyme, which converts androgens into oestrogens and has a major role in regulating oestrogen levels in the breast, is thought to be a contributing factor in the development of breast cancer. We undertook this study to assess the role of constitutional genetic variation in the human aromatase gene (Cyp19) in the development of this disease. Our genotyping of 348 cases with breast cancer and 145 controls (all Caucasian women) for a published tetranucleotide repeat...

  3. Combining Human Disease Genetics and Mouse Model Phenotypes towards Drug Repositioning for Parkinson’s disease

    OpenAIRE

    Chen, Yang; Cai, Xiaoshu; Xu, Rong

    2015-01-01

    Parkinson’s disease (PD) is a severe neurodegenerative disorder without effective treatments. Here, we present a novel drug repositioning approach to predict new drugs for PD leveraging both disease genetics and large amounts of mouse model phenotypes. First, we identified PD-specific mouse phenotypes using well-studied human disease genes. Then we searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles with PD. We demonstrated the validity of our approach u...

  4. The CRF system, stress, depression and anxiety – insights from human genetic studies

    OpenAIRE

    Binder, Elisabeth B.; Nemeroff, Charles B.

    2009-01-01

    A concatenation of findings from preclinical and clinical studies support a preeminent role for the corticotropin-releasing factor (CRF) system in mediating the physiological response to external stressors and in the pathophysiology of anxiety and depression. Recently, human genetic studies have provided considerable support to several long-standing hypotheses of mood and anxiety disorders, including the CRF hypothesis. These data, reviewed in this report, are congruent with the hypothesis th...

  5. Genetic Variation of Pre-mRNA Alternative Splicing in Human Populations

    OpenAIRE

    Lu, Zhi-xiang; Jiang, Peng; Xing, Yi

    2011-01-01

    The precise splicing outcome of a transcribed gene is controlled by complex interactions between cis regulatory splicing signals and trans-acting regulators. In higher eukaryotes, alternative splicing is a prevalent mechanism for generating transcriptome and proteome diversity. Alternative splicing can modulate gene function, affect organismal phenotype and cause disease. Common genetic variation that affects splicing regulation can lead to differences in alternative splicing between human in...

  6. Genetic and metabolic components in the regulation of serum urate levels in humans

    OpenAIRE

    Albrecht, Eva

    2014-01-01

    Uric acid is the final breakdown product of purine metabolism in humans and present in the blood as urate. Elevated serum urate levels can cause gout, a painful inflammatory arthritis, and are implicated in a number of common diseases such as cardiovascular disease, metabolic syndrome, and type 2 diabetes. The regulation of serum urate levels is assumed to result from a complex interplay between genetic, environmental, and lifestyle factors. The underlying functional biological processes are...

  7. The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity

    OpenAIRE

    Ventura, Marco; Turroni, Francesca; Zomer, Aldert; Foroni, Elena; Giubellini, Vanessa; Bottacini, Francesca; Canchaya, Carlos; Claesson, Marcus J.; He, Fei; Mantzourani, Maria; Mulas, Laura; Ferrarini, Alberto; Gao, Beile; Delledonne, Massimo; Henrissat, Bernard

    2009-01-01

    Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria). However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium B...

  8. Genetics

    Science.gov (United States)

    ... Likelihood of getting certain diseases Mental abilities Natural talents An abnormal trait (anomaly) that is passed down ... Human beings have cells with 46 chromosomes -- 2 chromosomes that determine what sex they are (X and ...

  9. Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext attack in the process of pixel position scrambling, we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusion of encryption algorithm. By introduction in the process of diffusion to encrypt plaintext feedback mechanism, it improves sensitivity of plaintext, algorithm selection plaintext, and ciphertext attack resistance. At the same time, it also makes full use of the characteristics of image information. Finally, experimental simulation and theoretical analysis show that our proposed algorithm can not only effectively resist plaintext (ciphertext attack, statistical attack, and information entropy attack but also effectively improve the efficiency of image encryption, which is a relatively secure and effective way of image communication.

  10. Nanotechnology Based Treatments for Neurological Disorders from Genetics Perspective

    Directory of Open Access Journals (Sweden)

    Nicholas S. Kurek

    2013-02-01

    Full Text Available Nanotechology involves the application, analysis and manipulation of nanomaterials. These materials have unique and medically useful properties due to their nanoscale parameters. Nanotechnology based treatments and diagnostics might eventually bring great relief to people suffering from neurological disorders including autism spectrum disorders, Alzheimer’s disease and Parkinson’s disorders. A large variety of nonmaterials such as viruses, carbon nanotubes, gold and silica nanoparticles, nanoshells, quantum dots, genetic material and proteins as well as hordes of other forms of nanotechnology have been researched in order to determine their potential in enhancing disease treatments and diagnostics. Nanotechnology has shown countless applications and might eventually be used in every biotech/health industry. Nevertheless, many nanomaterials may pose some safety risks and whether their benefits overweigh the risk is still being debated. Once the proper ethical and safety protocols are established and enough research is completed, nanotechnology is expected to benefit the mankind enormously. In this article, we will discuss and analyze many ways in which, nanotechnology based treatments and diagnostics will be used to help people with neurological disorders through the methods that we currently have at our disposal. [Archives Medical Review Journal 2013; 22(1.000: 12-32

  11. A Score Point based Email Spam Filtering Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Preeti Trivedi

    2015-12-01

    Full Text Available E-mail is one of the most essential parts of communications over internet today. However, each day we spent several minutes in deleting spam related to advertisement of products, offering loans at low interest rates, drugs etc. Though spam filters are capable to identify spam mails but spammers are constantly evolving newer methods to send spam messages to more and more people. With the advent of technology mobile devices and other portable electronic devices are now Wi-Fi enabled and internet telephony VoIP (voice over internet protocol has made communicating across the world easier and inexpensive. Social networks like Twitter, Facebook, MySpace, orkut are very general means of connecting with friends across universally. However this has opened a newer audience for spammers to exploit. Spam is not just limited to e-mail anymore, it is on VoIP in the form of unsolicited marketing or advertising phone calls, or marketing, advertising and pornography links on social network. Spam is everywhere. This paper presents a genetic algorithms based spam filtering technique whose fitness function is based on the score point. We have shown that the considered algorithm provide a good recognition rate of 84% at FPR of 0.001.

  12. Efficient Satellite Scheduling Based on Improved Vector Evaluated Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tengyue Mao

    2012-03-01

    Full Text Available Satellite scheduling is a typical multi-peak, many-valley, nonlinear multi-objective optimization problem. How to effectively implement the satellite scheduling is a crucial research in space areas.This paper mainly discusses the performance of VEGA (Vector Evaluated Genetic Algorithm based on the study of basic principles of VEGA algorithm, algorithm realization and test function, and then improves VEGA algorithm through introducing vector coding, new crossover and mutation operators, new methods to assign fitness and hold good individuals. As a result, the diversity and convergence of improved VEGA algorithm of improved VEGA algorithm have been significantly enhanced and will be applied to Earth-Mars orbit optimization. At the same time, this paper analyzes the results of the improved VEGA, whose results of performance analysis and evaluation show that although VEGA has a profound impact upon multi-objective evolutionary research,  multi-objective evolutionary algorithm on the basis of Pareto seems to be a more effective method to get the non-dominated solutions from the perspective of diversity and convergence of experimental result. Finally, based on Visual C + + integrated development environment, we have implemented improved vector evaluation algorithm in the satellite scheduling.

  13. Human genetic deficiencies reveal the roles of complement in the inflammatory network: lessons from nature

    DEFF Research Database (Denmark)

    Lappegård, Knut Tore; Christiansen, Dorte; Pharo, Anne;

    2009-01-01

    does not interfere with the complement system. Expression of tissue factor, cell adhesion molecules, and oxidative burst depended highly on C5, mediated through the activation product C5a, whereas granulocyte enzyme release relied mainly on C3 and was C5a-independent. Release of cytokines and......Complement component C5 is crucial for experimental animal inflammatory tissue damage; however, its involvement in human inflammation is incompletely understood. The responses to gram-negative bacteria were here studied taking advantage of human genetic complement-deficiencies--nature's own...

  14. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza) in Pigs

    OpenAIRE

    Dyah Ayu Hewajuli; Ni Luh Putu Indi Dharmiayanti

    2012-01-01

    Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries ...

  15. The glycinergic system in human startle disease: a genetic screening approach

    Directory of Open Access Journals (Sweden)

    Mark I Rees

    2010-03-01

    Full Text Available Human startle disease, also known as hyperekplexia (OMIM 149400, is a paroxysmal neurological disorder caused by defects in glycinergic neurotransmission. Hyperekplexia is characterised by an exaggerated startle reflex in response to tactile or acoustic stimuli which first presents as neonatal hypertonia, followed in some with episodes of life-threatening infantile apnoea. Genetic screening studies have demonstrated that hyperekplexia is genetically heterogeneous with several missense and nonsense mutations in the postsynaptic glycine receptor (GlyR a1 subunit gene (GLRA1 as the primary cause. More recently, missense, nonsense and frameshift mutations have also been identified in the glycine transporter GlyT2 gene, SLC6A5, demonstrating a presynaptic component to this disease. Further mutations, albeit rare, have been identified in the genes encoding the GlyR b subunit (GLRB, collybistin (ARHGEF9 and gephyrin (GPHN – all of which are postsynaptic proteins involved in orchestrating glycinergic neurotransmission. In this review, we describe the clinical ascertainment aspects, phenotypic considerations and the downstream molecular genetic tools utilised to analyse both presynaptic and postsynaptic components of this heterogeneous human neurological disorder. Moreover, we will describe how the ancient startle response is the preserve of glycinergic neurotransmission and how animal models and human hyperekplexia patients have provided synergistic evidence that implicates this inhibitory system in the control of startle reflexes.

  16. Structural and functional characterization of pathogenic non- synonymous genetic mutations of human insulin-degrading enzyme by in silico methods.

    Science.gov (United States)

    Shaik, Noor A; Kaleemuddin, Mohammed; Banaganapalli, Babajan; Khan, Fazal; Shaik, Nazia S; Ajabnoor, Ghada; Al-Harthi, Sameer E; Bondagji, Nabeel; Al-Aama, Jumana Y; Elango, Ramu

    2014-04-01

    Insulin-degrading enzyme (IDE) is a key protease involved in degrading insulin and amyloid peptides in human body. Several non-synonymous genetic mutations of IDE gene have been recently associated with susceptibility to both diabetes and Alzheimer's diseases. However, the consequence of these mutations on the structure of IDE protein and its substrate binding characteristics is not well elucidated. The computational investigation of genetic mutation consequences on structural level of protein is recently found to be an effective alternate to traditional in vivo and in vitro approaches. Hence, by using a combination of empirical rule and support vector machine based in silico algorithms, this study was able to identify that the pathogenic nonsynonymous genetic mutations corresponding to p.I54F, p.P122T, p.T533R, p.P581A and p.Y609A have more potential role in structural and functional deviations of IDE activity. Moreover, molecular modeling and secondary structure analysis have also confirmed their impact on the stability and secondary properties of IDE protein. The molecular docking analysis of IDE with combinational substrates has revealed that peptide inhibitors compared to small non-peptide inhibitor molecules possess good inhibitory activity towards mutant IDE. This finding may pave a way to design novel potential small peptide inhibitors for mutant IDE. Additionally by un-translated region (UTR) scanning analysis, two regulatory pathogenic genetic mutations i.e., rs5786997 (3' UTR) and rs4646954 (5' UTR), which can influence the translation pattern of IDE gene through sequence alteration of upstream-Open Reading Frame and Internal Ribosome Entry Site elements were identified. Our findings are expected to help in narrowing down the number of IDE genetic variants to be screened for disease association studies and also to select better competitive inhibitors for IDE related diseases. PMID:24059301

  17. Manteia, a predictive data mining system for vertebrate genes and its applications to human genetic diseases.

    Science.gov (United States)

    Tassy, Olivier; Pourquié, Olivier

    2014-01-01

    The function of genes is often evolutionarily conserved, and comparing the annotation of ortholog genes in different model organisms has proved to be a powerful predictive tool to identify the function of human genes. Here, we describe Manteia, a resource available online at http://manteia.igbmc.fr. Manteia allows the comparison of embryological, expression, molecular and etiological data from human, mouse, chicken and zebrafish simultaneously to identify new functional and structural correlations and gene-disease associations. Manteia is particularly useful for the analysis of gene lists produced by high-throughput techniques such as microarrays or proteomics. Data can be easily analyzed statistically to characterize the function of groups of genes and to correlate the different aspects of their annotation. Sophisticated querying tools provide unlimited ways to merge the information contained in Manteia along with the possibility of introducing custom user-designed biological questions into the system. This allows for example to connect all the animal experimental results and annotations to the human genome, and take advantage of data not available for human to look for candidate genes responsible for genetic disorders. Here, we demonstrate the predictive and analytical power of the system to predict candidate genes responsible for human genetic diseases. PMID:24038354

  18. Genetic Relationship of Wickham and IRRDB 1981 Rubber Population Based on RAPD Markers Analysis

    Directory of Open Access Journals (Sweden)

    FETRINA OKTAVIA

    2011-03-01

    Full Text Available Rubber hand pollination in Indonesian Rubber Research Institute program currently uses Wickham population which genetic analysis showed that genetic diversity of this population is narrow. The development of breeding activity has made the genetic base narrower by inbreeding. In order to solve this problem can use a new genetic resource that is the rubber germplasm IRRDB 1981 population. The genetic relationship between these populations is important to choose parents to avoid closely related genotypes in hand pollination. Therefore RAPD analysis was carried out using four selected primers i.e. OPH-03, OPH-05, OPH-18 and OPN-06. The result showed that Wickham and IRRDB 1981 population were separated into two different big groups with genetic similarity value of 0.64, and those big groups were separated further into many small sub groups with some genetic similarity level. The genetic similarity matrix showed that Wickham and IRRDB 1981 population has a range of genetic similarity 0.37– 0.98. The highest genetic similarity was found between RRIM 600 and PN 621, while the lowest was between BPM 1 and RRIC 100. Value in this matrix showed the genetic diversity between each clone. Based on this result, rubber genotypes of Wickham population could be crossed with genotypes of IRRDB 1981 population by choosing genotypes that have low genetic similarity.

  19. Femtosecond optical transfection as a tool for genetic manipulation of human embryonic stem cells

    Science.gov (United States)

    Torres-Mapa, M. L.; Gardner, J.; Bradburn, H.; King, J.; Dholakia, K.; Gunn-Moore, F.

    2013-03-01

    We demonstrate the use of femtosecond optical transfection for the genetic manipulation of human embryonic stem cells. Using a system with an SLM combined with a scanning mirror allows poration of both single-cell and colony-formed human embryonic stem cells in a rapid and targeted manner. In this work, we show successful transfection of plasmid DNA tagged with fluorescent reporters into human embryonic stem cells using three doses of focused femtosecond laser. A significant number of transfected cells retained their undifferentiated morphological feature of large nucleus with high nucleus to cytoplasmic ratio, 48h after photoporation. Furthermore, DNA constructs driven by different types of promoters were also successfully transfected into human embryonic stem cells using this technique.

  20. Psychiatrists' views of the genetic bases of mental disorders and behavioral traits and their use of genetic tests.

    Science.gov (United States)

    Klitzman, Robert; Abbate, Kristopher J; Chung, Wendy K; Marder, Karen; Ottman, Ruth; Taber, Katherine Johansen; Leu, Cheng-Shiun; Appelbaum, Paul S

    2014-07-01

    We examined how 372 psychiatrists view genetic aspects of mental disorders and behaviors and use genetic tests (GTs). Most thought that the genetic contribution was moderate/high for bipolar disorder, schizophrenia, depression, Alzheimer's, intelligence, creativity, anxiety, and suicidality. In the past 6 months, 14.1% ordered GTs, 18.3% discussed prenatal testing with patients, 36.0% initiated discussions about other GTs, 41.6% had patients ask about GTs, and 5.3% excluded GT results from patient records. Many thought that GTs; were available for schizophrenia (24.3%) and major depression (19.6%). Women were more likely to report that patients asked about GTs; and were less certain about the degree of genetic contribution to several disorders. Psychiatrists perceive strong genetic bases for numerous disorders and traits, and many have discussed and ordered tests for GTs, but have relatively limited knowledge about available tests. These data suggest possible sex differences in psychiatrists' beliefs about genetic contributions to disorders and have implications for future research, education, policy, and care. PMID:24933415

  1. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.

    Science.gov (United States)

    González, Federico

    2016-07-01

    Because of their extraordinary differentiation potential, human pluripotent stem cells (hPSCs) can differentiate into virtually any cell type of the human body, providing a powerful platform not only for generating relevant cell types useful for cell replacement therapies, but also for modeling human development and disease. Expanding this potential, structures resembling human organs, termed organoids, have been recently obtained from hPSCs through tissue engineering. Organoids exhibit multiple cell types self-organizing into structures recapitulating in part the physiology and the cellular interactions observed in the organ in vivo, offering unprecedented opportunities for human disease modeling. To fulfill this promise, tissue engineering in hPSCs needs to be supported by robust and scalable genome editing technologies. With the advent of the CRISPR/Cas9 technology, manipulating the genome of hPSCs has now become an easy task, allowing modifying their genome with superior precision, speed, and throughput. Here we review current and potential applications of the CRISPR/Cas9 technology in hPSCs and how they contribute to establish hPSCs as a model of choice for studying human genetics. Developmental Dynamics 245:788-806, 2016. © 2016 Wiley Periodicals, Inc. PMID:27145095

  2. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    Science.gov (United States)

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  3. Research on the fully fuzzy time-cost trade-off based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.

  4. Genetic Algorithm Based Proportional Integral Controller Design for Induction Motor

    Directory of Open Access Journals (Sweden)

    Mohanasundaram Kuppusamy

    2011-01-01

    Full Text Available Problem statement: This study has expounded the application of evolutionary computation method namely Genetic Algorithm (GA for estimation of feedback controller parameters for induction motor. GA offers certain advantages such as simple computational steps, derivative free optimization, reduced number of iterations and assured near global optima. The development of the method is well documented and computed and measured results are presented. Approach: The design of PI controller parameter for three phase induction motor drives was done using Genetic Algorithm. The objective function of motor current reduction, using PI controller, at starting is formulated as an optimization problem and solved with Genetic Algorithm. Results: The results showed the selected values of PI controller parameter using genetic algorithm approach, with objective of induction motor starting current reduction. Conclusions/Recommendation: The results proved the robustness and easy implementation of genetic algorithm selection of PI parameters for induction motor starting.

  5. The Australian joint inquiry into the Protection of Human Genetic Information.

    Science.gov (United States)

    Weisbrot, David

    2003-04-01

    The Australian Law Reform Commission (ALRC) and the Australian Health Ethics Committee are currently engaged in an inquiry into the Protection of Human Genetic Information. In particular, the Attorney-General and the Minister for Health and Ageing have asked us to focus, in relation to human genetic information and tissue samples, on how best to ensure world's best practice in relation to: privacy protection; protection against unlawful discrimination; and the maintenance of high ethical standards in medical research and clinical practice. While initial concerns and controversies have related mainly to aspects of medical research (e.g. consent; re-use of samples) and access to private insurance coverage, relevant issues arise in a wide variety of contexts, including: employment; medical practice; tissue banks and genetic databases; health administration; superannuation; access to government services (e.g. schools, nursing homes); law enforcement; and use by government authorities (e.g. for immigration purposes) or other bodies (e.g. by sports associations). Under the Australian federal system, it is also the case that laws and practices may vary across states and territories. For example, neonatal genetic testing is standard, but storage and retention policies for the resulting 'Guthrie cards' differ markedly. Similarly, some states have developed highly linked health information systems (e.g. incorporating hospitals, doctors' offices and public records), while others discourage such linkages owing to concerns about privacy. The challenge for Australia is to develop policies, standards and practices that promote the intelligent use of genetic information, while providing a level of security with which the community feels comfortable. The inquiry is presently reviewing the adequacy of existing laws and regulatory mechanisms, but recognizes that it will be even more important to develop a broad mix of strategies, such as community and professional education, and the

  6. Temporal differentiation across a West-European Y-chromosomal cline: genealogy as a tool in human population genetics

    OpenAIRE

    Larmuseau, Maarten HD; Ottoni, Claudio; Raeymaekers, Joost AM; Vanderheyden, Nancy; Larmuseau, Hendrik FM; Decorte, Ronny

    2011-01-01

    The pattern of population genetic variation and allele frequencies within a species are unstable and are changing over time according to different evolutionary factors. For humans, it is possible to combine detailed patrilineal genealogical records with deep Y-chromosome (Y-chr) genotyping to disentangle signals of historical population genetic structures because of the exponential increase in genetic genealogical data. To test this approach, we studied the temporal pattern of the ‘autochthon...

  7. Multi-stage genetic fuzzy systems based on the iterative rule learning approach

    OpenAIRE

    González Muñoz, Antonio; Herrera Triguero, Francisco

    1997-01-01

    Genetic algorithms (GAs) represent a class of adaptive search techniques inspired by natural evolution mechanisms. The search properties of GAs make them suitable to be used in machine learning processes and for developing fuzzy systems, the so-called genetic fuzzy systems (GFSs). In this contribution, we discuss genetics-based machine learning processes presenting the iterative rule learning approach, and a special kind of GFS, a multi-stage GFS based on the iterative rule...

  8. A Phoenix++ Based New Genetic Algorithm Involving Mechanism of Simulated Annealing

    OpenAIRE

    Luokai Hu; Jin Liu; Chao Liang; Fuchuan Ni; Hang Chen

    2015-01-01

    Genetic algorithm is easy to fall into local optimal solution. Simulated annealing algorithm may accept nonoptimal solution at a certain probability to jump out of local optimal solution. On the other hand, lack of communication among genes in MapReduce platform based genetic algorithm, the high-performance distributed computing technologies or platforms can further increase the execution efficiency of these traditional genetic algorithms. To this end, we propose a novel Phoenix++ based new g...

  9. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed,and a fitness function is provided.Simulations are conducted using the adaptive niche immune genetic algorithm,the simulated annealing algorithm,the quantum genetic algorithm and the simple genetic algorithm,respectively.The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation,and has quick convergence speed and strong global searching capability,which effectively reduces the system power consumption and bit error rate.

  10. A New Genetic Algorithm Based on Niche Technique and Local Search Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new genetic algorithm based on niche technique and local search method is presented under the consideration of inadequacies of the simple genetic algorithm. In order to prove the adaptability and validity of the improved genetic algorithm, optimization problems of multimodal functions with equal peaks, unequal peaks and complicated peak distribution are discussed. The simulation results show that compared to other niching methods, this improved genetic algorithm has obvious potential on many respects, such as convergence speed, solution accuracy, ability of global optimization, etc.

  11. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    International Nuclear Information System (INIS)

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  12. Current issues in medically assisted reproduction and genetics in Europe: research clinical practice ethics legal issues and policyEuropean Society of Human Genetics and European Society of Human Reproduction and Embryology

    OpenAIRE

    Harper, Joyce C; Geraedts, Joep; Borry, Pascal; Cornel, Martina C.; Dondorp, Wybo; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather

    2013-01-01

    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogent...

  13. Robotics-based synthesis of human motion

    KAUST Repository

    Khatib, O.

    2009-05-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  14. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  15. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder.

    Science.gov (United States)

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  16. The possibility of aromorphosis in further development of closed human life support systems using genetically modified organisms

    Science.gov (United States)

    Gitelson, Josef

    evolution of the CES, the use of the advantages offered by genetically modified organisms produced by modern biotechnology can be regarded as aromorphosis. If the genetic program of biosyntheses performed by plants in-cludes the new genes that will program the synthesis of all molecules necessary for humans, the plants, both unicellular and higher, will produce the whole range of food substances perfectly corresponding to the requirements of the human body. This is a long way, but the investment of resources and time will be justified not only by the creation of an LSS for long-distance space missions and colonization of planets that will contain as many closed loops as possible and be energy efficient. This will also be a convenient and safest instrument to study and justify the wide use of products of genetically modified plants on Earth. Today, humanity is extremely wary of this idea because of its novelty. As experimental human life support ecosystems are closed systems, they provide the most reliable and safest instrument for studying issues related to GMO and preparing scientifically based suggestions for their practical use. The report will contain data on the spectra of mismatches between vegetable foods produced in BIOS-3 and human requirements, and the objectives of correcting the biosynthesis programs in the CES.

  17. Genetic relationships among Heliconia (Heliconiaceae) species based on RAPD markers.

    Science.gov (United States)

    Marouelli, L P; Inglis, P W; Ferreira, M A; Buso, G S C

    2010-01-01

    The family Heliconiaceae contains a single genus, Heliconia, with approximately 180 species of Neotropical origin. This genus was formerly allocated to the family Musaceae, but today forms its own family, in the order Zingiberales. The combination of inverted flowers, a single staminode and drupe fruits is an exclusive characteristic of Heliconia. Heliconias are cultivated as ornamental garden plants, and are of increasing importance as cut flowers. However, there are taxonomic confusions and uncertainties about the number of species and the relationships among them. Molecular studies are therefore necessary for better understanding of the species boundaries of these plants. We examined the genetic variability and the phylogenetic relationships of 124 accessions of the genus Heliconia based on RAPD markers. Phenetic and cladistic analyses, using 231 polymorphic RAPD markers, demonstrated that the genus Heliconia is monophyletic. Groupings corresponding to currently recognized species and some subgenera were found, and cultivars and hybrids were found to cluster with their parents. RAPD analysis generally agreed with morphological species classification, except for the position of the subgenus Stenochlamys, which was found to be polyphyletic. PMID:20645261

  18. Genetic Algorithm-Based Identification of Fractional-Order Systems

    Directory of Open Access Journals (Sweden)

    Shengxi Zhou

    2013-05-01

    Full Text Available Fractional calculus has become an increasingly popular tool for modeling the complex behaviors of physical systems from diverse domains. One of the key issues to apply fractional calculus to engineering problems is to achieve the parameter identification of fractional-order systems. A time-domain identification algorithm based on a genetic algorithm (GA is proposed in this paper. The multi-variable parameter identification is converted into a parameter optimization by applying GA to the identification of fractional-order systems. To evaluate the identification accuracy and stability, the time-domain output error considering the condition variation is designed as the fitness function for parameter optimization. The identification process is established under various noise levels and excitation levels. The effects of external excitation and the noise level on the identification accuracy are analyzed in detail. The simulation results show that the proposed method could identify the parameters of both commensurate rate and non-commensurate rate fractional-order systems from the data with noise. It is also observed that excitation signal is an important factor influencing the identification accuracy of fractional-order systems.

  19. Genetics of Adiposity in Large Animal Models for Human Obesity-Studies on Pigs and Dogs.

    Science.gov (United States)

    Stachowiak, M; Szczerbal, I; Switonski, M

    2016-01-01

    The role of domestic mammals in the development of human biomedical sciences has been widely documented. Among these model species the pig and dog are of special importance. Both are useful for studies on the etiology of human obesity. Genome sequences of both species are known and advanced genetic tools [eg, microarray SNP for genome wide association studies (GWAS), next generation sequencing (NGS), etc.] are commonly used in such studies. In the domestic pig the accumulation of adipose tissue is an important trait, which influences meat quality and fattening efficiency. Numerous quantitative trait loci (QTLs) for pig fatness traits were identified, while gene polymorphisms associated with these traits were also described. The situation is different in dog population. Generally, excessive accumulation of adipose tissue is considered, similar to humans, as a complex disease. However, research on the genetic background of canine obesity is still in its infancy. Between-breed differences in terms of adipose tissue accumulation are well known in both animal species. In this review we show recent advances of studies on adipose tissue accumulation in pigs and dogs, and their potential importance for studies on human obesity. PMID:27288831

  20. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-10-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of such a situated learning approach. What content knowledge do biology teachers need for teaching genetics in the personal health context of genetic testing? This study describes the required content knowledge by exploring the educational practice and clinical genetic practices. Nine experienced teachers and 12 respondents representing the clinical genetic practices (clients, medical professionals, and medical ethicists) were interviewed about the biological concepts and ethical, legal, and social aspects (ELSA) of testing they considered relevant to empowering students as future health care clients. The ELSA suggested by the respondents were complemented by suggestions found in the literature on genetic counselling. The findings revealed that the required teacher knowledge consists of multiple layers that are embedded in specific genetic test situations: on the one hand, the knowledge of concepts represented by the curricular framework and some additional concepts (e.g. multifactorial and polygenic disorder) and, on the other hand, more knowledge of ELSA and generic characteristics of genetic test practice (uncertainty, complexity, probability, and morality). Suggestions regarding how to translate these characteristics, concepts, and ELSA into context-based genetics education are discussed.

  1. Genetic Algorithm Based Economic Dispatch with Valve Point Effect

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Nam; Park, Kyung Won; Kim, Ji Hong; Kim, Jin O [Hanyang University (Korea, Republic of)

    1999-03-01

    This paper presents a new approach on genetic algorithm to economic dispatch problem for valve point discontinuities. Proposed approach in this paper on genetic algorithms improves the performance to solve economic dispatch problem for valve point discontinuities through improved death penalty method, generation-apart elitism, atavism and sexual selection with sexual distinction. Numerical results on a test system consisting of 13 thermal units show that the proposed approach is faster, more robust and powerful than conventional genetic algorithms. (author). 8 refs., 10 figs.

  2. Genetic variants influencing effectiveness of exercise training programmes in obesity - an overview of human studies.

    Science.gov (United States)

    Leońska-Duniec, A; Ahmetov, I I; Zmijewski, P

    2016-09-01

    Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary. PMID:27601774

  3. Genetic variants influencing effectiveness of exercise training programmes in obesity – an overview of human studies

    Science.gov (United States)

    Ahmetov, II; Zmijewski, P

    2016-01-01

    Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary. PMID:27601774

  4. Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation.

    Directory of Open Access Journals (Sweden)

    Vaibhav Mundra

    Full Text Available The objective of this study was to determine the potential of human bone marrow derived mesenchymal stem cells (hBMSCs as gene carriers for improving the outcome of human islet transplantation. hBMSCs were characterized for the expression of phenotypic markers and transduced with Adv-hVEGF-hIL-1Ra to overexpress human vascular endothelial growth factor (hVEGF and human interleukin-1 receptor antagonist (hIL-1Ra. Human islets were co-cultured with hBMSCs overexpressing hVEGF and hIL-1Ra. Islet viability was determined by membrane fluorescent method and glucose stimulation test. Transduced hBMSCs and human islets were co-transplanted under the kidney capsule of NOD.Cg-Prkdc(scid Il2rg(tm1Wjl /SzJ (NSG diabetic mice and blood glucose levels were measured over time to demonstrate the efficacy of genetically modified hBMSCs. At the end of study, immunofluorescent staining of kidney section bearing islets was performed for insulin and von Willebrand Factor (vWF. hBMSCs were positive for the expression of CD73, CD90, CD105, CD146 and Stro-1 surface markers as determined by flow cytometry. Transduction of hBMSCs with adenovirus did not affect their stemness and differentiation potential as confirmed by mRNA levels of stem cell markers and adipogenic differentiation of transduced hBMSCs. hBMSCs were efficiently transduced with Adv-hVEGF-hIL-1Ra to overexpress hVEGF and hIL-1Ra. Live dead cell staining and glucose stimulation test have shown that transduced hBMSCs improved the viability of islets against cytokine cocktail. Co-transplantation of human islets with genetically modified hBMSCs improved the glycemic control of diabetic NSG mice as determined by mean blood glucose levels and intraperitoneal glucose tolerance test. Immunofluorescent staining of kidney sections was positive for human insulin and vWF. In conclusion, our results have demonstrated that hBMSCs may be used as gene carriers and nursing cells to improve the outcome of islet

  5. An integrated BAC/BIBAC-based physical and genetic map of the cotton genome

    Science.gov (United States)

    Integrated genome-wide genetic and physical maps are crucial to many aspects of cotton genome research. We report a genome-wide BAC/BIBAC-based physical and genetic map of the upland cotton genome using a high-resolution and high-throughput capillary-based fingerprinting method. The map was constr...

  6. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk.

    Science.gov (United States)

    Hu, Dong Gui; Mackenzie, Peter I; McKinnon, Ross A; Meech, Robyn

    2016-01-01

    Identification of genetic polymorphisms that contribute to the risk of developing cancers is important for cancer prevention. The most recent human genome GRCh38/hg38 assembly (2013) reveals thousands of genetic polymorphisms in human uridine diphosphoglucuronosyltransferase (UGT) genes. Among these, a large number of polymorphisms at the UGT1A and UGT2B genes have been shown to modulate UGT gene promoter activity or enzymatic activity. Glucuronidation plays an important role in the metabolism and clearance of endogenous and exogenous carcinogenic compounds, and this reaction is primarily catalyzed by the UGT1A and UGT2B enzymes. Therefore, it has long been hypothesized that UGT polymorphisms that reduce the capacity to glucuronidate carcinogens and other types of cancer-promoting molecules (e.g. sex hormones) are associated with an increased risk of developing cancers. A large number of case-control studies have investigated this hypothesis and these studies identified numerous UGT polymorphisms in UGT1A and UGT2B genes as genetic risk factors for a wide variety of cancers, including bladder, breast, colorectal, endometrial, esophageal, head and neck, liver, lung, prostate, and thyroid. These UGT polymorphisms may be cancer causative polymorphisms, or be linked to as yet undefined causative polymorphisms, either in UGT genes or neighboring genes. This article presents a comprehensive review of these case-control studies, discusses current areas of uncertainty, and highlights future research directions in this field. PMID:26828111

  7. Genetic and molecular basis of individual differences in human umami taste perception.

    Directory of Open Access Journals (Sweden)

    Noriatsu Shigemura

    Full Text Available Umami taste (corresponds to savory in English is elicited by L-glutamate, typically as its Na salt (monosodium glutamate: MSG, and is one of five basic taste qualities that plays a key role in intake of amino acids. A particular property of umami is the synergistic potentiation of glutamate by purine nucleotide monophosphates (IMP, GMP. A heterodimer of a G protein coupled receptor, TAS1R1 and TAS1R3, is proposed to function as its receptor. However, little is known about genetic variation of TAS1R1 and TAS1R3 and its potential links with individual differences in umami sensitivity. Here we investigated the association between recognition thresholds for umami substances and genetic variations in human TAS1R1 and TAS1R3, and the functions of TAS1R1/TAS1R3 variants using a heterologous expression system. Our study demonstrated that the TAS1R1-372T creates a more sensitive umami receptor than -372A, while TAS1R3-757C creates a less sensitive one than -757R for MSG and MSG plus IMP, and showed a strong correlation between the recognition thresholds and in vitro dose-response relationships. These results in human studies support the propositions that a TAS1R1/TAS1R3 heterodimer acts as an umami receptor, and that genetic variation in this heterodimer directly affects umami taste sensitivity.

  8. Nuclear Genetic Diversity in Human Lice (Pediculus humanus) Reveals Continental Differences and High Inbreeding among Worldwide Populations

    OpenAIRE

    Ascunce, Marina S.; Toups, Melissa A.; Gebreyes Kassu; Jackie Fane; Katlyn Scholl; Reed, David L

    2013-01-01

    Understanding the evolution of parasites is important to both basic and applied evolutionary biology. Knowledge of the genetic structure of parasite populations is critical for our ability to predict how an infection can spread through a host population and for the design of effective control methods. However, very little is known about the genetic structure of most human parasites, including the human louse (Pediculus humanus). This species is composed of two ecotypes: the head louse (Pedicu...

  9. Exploring the gene: Interactive exhibits on genetics and the human genome. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    Under funding by the United States Department of Energy, the Exploratorium has substantially completed the prototype development of four exhibits on the nature of DNA and genetics, and substantially completed the production of ed exhibits based on these prototypes. Individually these genetic exhibits have been designed to elucidate specific themes, such as, the molecular properties of DNA, the encoding of genetic information, the expression of genetic information, and technological manipulation. The exhibits are titled Dancing DNA, Marching Bands, Protein Production Line, and Genetic Playbook. Specific exhibit projects are detailed below. In all the exhibits we have sought to draw a relationship between the nature of DNA and its expression in organisms. For most visitors, DNA exists as an invisible abstract molecule with marginal connections to their lives, while organisms exist as a familiar tangible entities. Inclusion of this broad thematic connection provides the crucial bridge between the abstract principles and the real world, and serves to underpin scientific, medical, and public interest in the topic.

  10. NOTE - Genetic variability among cassava accessions based on SSR markers

    Directory of Open Access Journals (Sweden)

    Márcia de Nazaré Oliveira Ribeiro

    2011-01-01

    Full Text Available The aim of this study was to characterize and estimate the genetic similarity among 93 cassava accessions. The DNAamplification was performed with 14 microsatellite primers. The amplification products were separated by a polyacrylamide gelelectrophoresis, showing a polymorphism formation, through which the accessions were discriminated against. The genetic similarityamong accessions of cassava was estimated by the Dice coefficient. Cluster analysis was carried out using the UPGMA method. Thepolymorphic primers amplified a total of 26 alleles with 2-4 alleles per loci. The genetic similarity ranged from 0.16 to 0.96. Theaverage values for observed and expected heterozygosity were 0.18 and 0.46, respectively. Twenty genetic similarity clusters weredetermined, demonstrating diversity among accessions, suggesting the possibility of heterotic hybrid generation.

  11. Genetic diversity studies of Kherigarh cattle based on microsatellite markers

    Indian Academy of Sciences (India)

    A. K. Pandey; Rekha Sharma; Yatender Singh; B. B. Prakash; S. P. S. Ahlawat

    2006-08-01

    We report a genetic diversity study of Kherigarh cattle, a utility draught-purpose breed of India, currently declining at a startling rate, by use of microsatellite markers recommended by the Food and Agriculture Organization. Microsatellite genotypes were derived, and allelic and genotypic frequencies, heterozygosities and gene diversity were estimated. A total of 131 alleles were distinguished by the 21 microsatellite markers used. All the microsatellites were highly polymorphic, with mean (± s.e.) allelic number of 6.24 ± 1.7, ranging 4–10 per locus. The observed heterozygosity in the population ranged between 0.261 and 0.809, with mean (± s.e.) of 0.574 ± 0.131, indicating considerable genetic variation in this population. Genetic bottleneck hypotheses were also explored. Our data suggest that the Kherigarh breed has not experienced a genetic bottleneck in the recent past.

  12. Grocery Store Genetics: A PCR-Based Genetics Lab that Links Genotype to Phenotype

    Science.gov (United States)

    Briju, Betsy J.; Wyatt, Sarah E.

    2015-01-01

    Instructors often present Mendelian genetics and molecular biology separately. As a result, students often fail to connect the two topics in a tangible manner. We have adopted a simple experiment to help link these two important topics in a basic biology course, using red and white onions bought from a local grocery store. A lack of red coloration…

  13. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  14. Genetic characterization of Lithuanian honeybee lines based on ISSR polymorphism

    OpenAIRE

    Ceksteryte, Violeta; Paplauskiene, Vanda; Tamasauskiene, Diana; Pasakinskiene, Izolda; Mazeikiene, Ingrida

    2012-01-01

    International audience This study presents the first results from the selection and evaluation of inter-simple sequence repeat markers for the genetic assessment of honeybee lines developed in Lithuania and introduced subspecies. Two Lithuania-bred lines of Apis mellifera carnica were compared to those introduced from Czech Republic and Slovenia and also to a subspecies introduced from the Caucasus (Apis mellifera caucasica) and local Buckfast hybrids. The genetic constitution was assayed ...

  15. Controlling bloat : individual and population based approaches in genetic programming

    OpenAIRE

    Silva, Sara Guilherme Oliveira da

    2008-01-01

    Genetic Programming (GP) is the automated learning of computer programs. Basically a search process, it is capable of solving complex problems by evolving populations of computer programs, using Darwinian evolution and Mendelian genetics as inspiration. Theoretically, GP can solve any problem whose candidate solutions can be measured and compared, making it a widely applicable technique. Furthermore, the solutions found by GP are usually provided in a format that users can understand and modi...

  16. SNMP Based Network Optimization Technique Using Genetic Algorithms

    OpenAIRE

    M. Mohamed Surputheen; G Ravi; Srinivasan, R.

    2012-01-01

    Genetic Algorithms (GAs) has innumerable applications through the optimization techniques and network optimization is one of them. SNMP (Simple Network Management Protocol) is used as the basic network protocol for monitoring the network activities health of the systems. This paper deals with adding Intelligence to the various aspects of SNMP by adding optimization techniques derived out of genetic algorithms, which enhances the performance of SNMP processes like routing.

  17. SNMP Based Network Optimization Technique Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    M. Mohamed Surputheen

    2012-03-01

    Full Text Available Genetic Algorithms (GAs has innumerable applications through the optimization techniques and network optimization is one of them. SNMP (Simple Network Management Protocol is used as the basic network protocol for monitoring the network activities health of the systems. This paper deals with adding Intelligence to the various aspects of SNMP by adding optimization techniques derived out of genetic algorithms, which enhances the performance of SNMP processes like routing.

  18. Optimal Design of Materials for DJMP Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FENG Zhong-ren; WANG Xiong-jiang

    2004-01-01

    The genetic algorithm was used in optimal design of deep jet method pile. The cost of deep jetmethod pile in one unit area of foundation was taken as the objective function. All the restrains were listed followingthe corresponding specification. Suggestions were proposed and the modified. The real-coded Genetic Algorithm wasgiven to deal with the problems of excessive computational cost and premature convergence. Software system of opti-mal design of deep jet method pile was developed.

  19. Pass-ball trainning based on genetic reinforcement learning

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Introduces a mixture genetic algorithm and reinforcement learning computation model used for inde pendent agent learning in continuous, distributive, open environment, which takes full advantage of the reactive and robust of reinforcement learning algorithm and the property that genetic algorithm is suitable to the problem with high dimension, large collectivity, complex environment, and concludes that through proper training, the result verifies that this method is available in the complex multi-agent environment.

  20. Consequences of a human TRPA1 genetic variant on the perception of nociceptive and olfactory stimuli.

    Directory of Open Access Journals (Sweden)

    Michael Schütz

    Full Text Available BACKGROUND: TRPA1 ion channels are involved in nociception and are also excited by pungent odorous substances. Based on reported associations of TRPA1 genetics with increased sensitivity to thermal pain stimuli, we therefore hypothesized that this association also exists for increased olfactory sensitivity. METHODS: Olfactory function and nociception was compared between carriers (n = 38 and non-carriers (n = 43 of TRPA1 variant rs11988795 G>A, a variant known to enhance cold pain perception. Olfactory function was quantified by assessing the odor threshold, odor discrimination and odor identification, and by applying 200-ms pulses of H2S intranasal. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (blunt pressure, electrical stimuli, cold and heat stimuli, and 200-ms intranasal pulses of CO2. RESULTS: Among the 11 subjects with moderate hyposmia, carriers of the minor A allele (n = 2 were underrepresented (34 carriers among the 70 normosmic subjects; p = 0.049. Moreover, carriers of the A allele discriminated odors significantly better than non-carriers (13.1±1.5 versus 12.3±1.6 correct discriminations and indicated a higher intensity of the H2S stimuli (29.2±13.2 versus 21±12.8 mm VAS, p = 0.006, which, however, could not be excluded to have involved a trigeminal component during stimulation. Finally, the increased sensitivity to thermal pain could be reproduced. CONCLUSIONS: The findings are in line with a previous association of a human TRPA1 variant with nociceptive parameters and extend the association to the perception of odorants. However, this addresses mainly those stimulants that involve a trigeminal component whereas a pure olfactory effect may remain disputable. Nevertheless, findings suggest that future TRPA1 modulating drugs may modify the perception of odorants.

  1. Genetic Relationships Among Chinese Maize OPVs Based on SSR Markers

    Institute of Scientific and Technical Information of China (English)

    SONG Li-ya; LIU Xue; CHEN Wei-guo; HAO Zhuan-fang; BAI Li; ZHANG De-gui

    2013-01-01

    Bulk-SSR method was used to analyze the genetic diversity of 44 open-pollinated varieties collected from Henan, Shandong, Shanxi, and Jilin provinces and Guangxi Zhuang Autonomous Region, China using 70 pairs of SSR primers. The purposes of this study were to (1) compare the genetic diversity among 44 Chinese maize open-pollinated varieties;(2) estimate the minimum number of alleles for construction of a stable dendrogram;and (3) trace the genetic relationships among local germplasm from different regions of China. In total, these 70 SSR primers yielded 292 alleles in 176 samples (4×44) analyzed. The number of alleles per locus was 4.17 on average and ranged from 2 to 8. The highest number of alleles per open-pollinated variety (55.25) was detected in Shanxi germplasm, which indicated that open-pollinated varieties from Shanxi possessed the largest genetic diversity among those from the five locations. The correlation coefficients between different genetic similarity matrices suggested that 200 alleles were sufficient for analysis of the genetic diversity of these 44 open-pollinated varieties. The cluster analysis showed that 44 open-pollinated varieties collected from three growing regions in China were accurately classified into three groups that were highly consistent with their geographic origins, and there is no correlation between GS and geographic distance in this study.

  2. An extended set of yeast-based functional assays accurately identifies human disease mutations

    OpenAIRE

    Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L.; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E.; Vidal, Marc

    2016-01-01

    We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (...

  3. The autosomal genetic control of sexually dimorphic traits in humans is largely the same across the sexes.

    Science.gov (United States)

    Kassam, Irfahan; McRae, Allan F

    2016-01-01

    There are substantial phenotypic differences between the male and female human. Several complex traits have recently been tested to see whether these phenotypic differences are explained by differences in genetic control between males and females. While some differences in genetic control between males and females are detected, overall the results demonstrate that the genetic control of complex traits in humans is largely the same across the sexes.Please see related Research article: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1025-x. PMID:27496044

  4. Puzzling role of genetic risk factors in human longevity: "risk alleles" as pro-longevity variants.

    Science.gov (United States)

    Ukraintseva, Svetlana; Yashin, Anatoliy; Arbeev, Konstantin; Kulminski, Alexander; Akushevich, Igor; Wu, Deqing; Joshi, Gaurang; Land, Kenneth C; Stallard, Eric

    2016-02-01

    Complex diseases are major contributors to human mortality in old age. Paradoxically, many genetic variants that have been associated with increased risks of such diseases are found in genomes of long-lived people, and do not seem to compromise longevity. Here we argue that trade-off-like and conditional effects of genes can play central role in this phenomenon and in determining longevity. Such effects may occur as result of: (i) antagonistic influence of gene on the development of different health disorders; (ii) change in the effect of gene on vulnerability to death with age (especially, from "bad" to "good"); (iii) gene-gene interaction; and (iv) gene-environment interaction, among other factors. A review of current knowledge provides many examples of genetic factors that may increase the risk of one disease but reduce chances of developing another serious health condition, or improve survival from it. Factors that may increase risk of a major disease but attenuate manifestation of physical senescence are also discussed. Overall, available evidence suggests that the influence of a genetic variant on longevity may be negative, neutral or positive, depending on a delicate balance of the detrimental and beneficial effects of such variant on multiple health and aging related traits. This balance may change with age, internal and external environments, and depend on genetic surrounding. We conclude that trade-off-like and conditional genetic effects are very common and may result in situations when a disease "risk allele" can also be a pro-longevity variant, depending on context. We emphasize importance of considering such effects in both aging research and disease prevention. PMID:26306600

  5. Genetic adaptation to levels of dietary selenium in recent human history.

    Science.gov (United States)

    White, Louise; Romagné, Frédéric; Müller, Elias; Erlebach, Eva; Weihmann, Antje; Parra, Genís; Andrés, Aida M; Castellano, Sergi

    2015-06-01

    As humans migrated around the world, they came to inhabit environments that differ widely in the soil levels of certain micronutrients, including selenium (Se). Coupled with cultural variation in dietary practices, these migrations have led to a wide range of Se intake levels in populations around the world. Both excess and deficiency of Se in the diet can have adverse health consequences in humans, with severe Se deficiency resulting in diseases of the bone and heart. Se is required by humans mainly due to its function in selenoproteins, which contain the amino acid selenocysteine as one of their constituent residues. To understand the evolution of the use of this micronutrient in humans, we surveyed the patterns of polymorphism in all selenoprotein genes and genes involved in their regulation in 50 human populations. We find that single nucleotide polymorphisms from populations in Asia, particularly in populations living in the extreme Se-deficient regions of China, have experienced concerted shifts in their allele frequencies. Such differentiation in allele frequencies across genes is not observed in other regions of the world and is not expected under neutral evolution, being better explained by the action of recent positive selection. Thus, recent changes in the use and regulation of Se may harbor the genetic adaptations that helped humans inhabit environments that do not provide adequate levels of Se in the diet. PMID:25739735

  6. Grating-based tomography of human tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  7. A novel landscape genetic approach demonstrates the effects of human disturbance on the Udzungwa red colobus monkey (Procolobus gordonorum).

    Science.gov (United States)

    Ruiz-Lopez, M J; Barelli, C; Rovero, F; Hodges, K; Roos, C; Peterman, W E; Ting, N

    2016-02-01

    A comprehensive understanding of how human disturbance affects tropical forest ecosystems is critical for the mitigation of future losses in global biodiversity. Although many genetic studies of tropical forest fragmentation have been conducted to provide insight into this issue, relatively few have incorporated landscape data to explicitly test the effects of human disturbance on genetic differentiation among populations. In this study, we use a newly developed landscape genetic approach that relies on a genetic algorithm to simultaneously optimize resistance surfaces to investigate the effects of human disturbance in the Udzungwa Mountains of Tanzania, which is an important part of a universally recognized biodiversity hotspot. Our study species is the endangered Udzungwa red colobus monkey (Procolobus gordonorum), which is endemic to the Udzungwa Mountains and a known indicator species that thrives in large and well-protected blocks of old growth forest. Population genetic analyses identified significant population structure among Udzungwa red colobus inhabiting different forest blocks, and Bayesian cluster analyses identified hierarchical structure. Our new method for creating composite landscape resistance models found that the combination of fire density on the landscape and distance to the nearest village best explains the genetic structure observed. These results demonstrate the effects that human activities are having in an area of high global conservation priority and suggest that this ecosystem is in a precarious state. Our study also illustrates the ability of our novel landscape genetic method to detect the impacts of relatively recent landscape features on a long-lived species. PMID:26374237

  8. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert

    2012-12-24

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  9. Understanding the Basis of Auriculocondylar Syndrome: Insights From Human and Mouse Genetic Studies

    Science.gov (United States)

    Clouthier, David E.; Passos Bueno, Maria Rita; Tavares, Andre L.P.; Lyonnet, Stanislas; Amiel, Jeanne; Gordon, Christopher T.

    2014-01-01

    Among human birth defect syndromes, malformations affecting the face are perhaps the most striking due to cultural and psychological expectations of facial shape. One such syndrome is auriculocondylar syndrome (ACS), in which patients present with defects in ear and mandible development. Affected structures arise from cranial neural crest cells, a population of cells in the embryo that reside in the pharyngeal arches and give rise to most of the bone, cartilage and connective tissue of the face. Recent studies have found that most cases of ACS arise from defects in signaling molecules associated with the endothelin signaling pathway. Disruption of this signaling pathway in both mouse and zebrafish results in loss of identity of neural crest cells of the mandibular portion of the first pharyngeal arch and the subsequent repatterning of these cells, leading to homeosis of lower jaw structures into more maxillary-like structures. These findings illustrate the importance of endothelin signaling in normal human craniofacial development and illustrate how clinical and basic science approaches can coalesce to improve our understanding of the genetic basis of human birth syndromes. Further, understanding the genetic basis for ACS that lies outside of known endothelin signaling components may help elucidate unknown aspects critical to the establishment of neural crest cell patterning during facial morphogenesis. PMID:24123988

  10. A Genetic Algorithms Based Approach for Identification of Escherichia coli Fed-batch Fermentation

    OpenAIRE

    Olympia Roeva; Stoyan Tzonkov; Bernd Hitzmann; Tania Pencheva

    2004-01-01

    This paper presents the use of genetic algorithms for identification of Escherichia coli fed-batch fermentation process. Genetic algorithms are a directed random search technique, based on the mechanics of natural selection and natural genetics, which can find the global optimal solution in complex multidimensional search space. The dynamic behavior of considered process has known nonlinear structure, described with a system of deterministic nonlinear differential equations according to the m...

  11. Study of Clustering Algorithm based on Fuzzy C-Means and Immunological Partheno Genetic

    OpenAIRE

    Hongfen Jiang; Junfeng Gu; Yijun Liu; Feiyue Ye; Haixu Xi; Mingfang Zhu

    2013-01-01

    Clustering algorithm is very important for data mining. Fuzzy c-means clustering algorithm is one of the earliest goal-function clustering algorithms, which has achieved much attention. This paper analyzes the lack of fuzzy C-means (FCM) algorithm and genetic clustering algorithm. Propose a hybrid clustering algorithm based on immune single genetic and fuzzy C-means. This algorithm uses the fuzzy clustering of Immune Partheno-Genetic to guide the number and the choice of the clustering center...

  12. SELECTIVE BREEDING, HERITABLE CHARACTERISTICS AND GENETIC-BASED TECHNOLOGICAL CHANGE IN THE CANADIAN BEEF CATTLE INDUSTRY

    OpenAIRE

    Kerr, William A.

    1984-01-01

    The paper presents an examination of genetic-based technological change in the Canadian beef cattle industry. A model of technological change is explicitly developed in characteristics space. Production functions with genetic characteristics as arguments are estimated and two forms of technological change identified. Shadow values for characteristics are then calculated and actual genetic improvements are compared to the improvements suggested by the shadow prices. It is concluded that market...

  13. Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects

    Directory of Open Access Journals (Sweden)

    van Eijk Kristel R

    2012-11-01

    Full Text Available Abstract Background The predominant model for regulation of gene expression through DNA methylation is an inverse association in which increased methylation results in decreased gene expression levels. However, recent studies suggest that the relationship between genetic variation, DNA methylation and expression is more complex. Results Systems genetic approaches for examining relationships between gene expression and methylation array data were used to find both negative and positive associations between these levels. A weighted correlation network analysis revealed that i both transcriptome and methylome are organized in modules, ii co-expression modules are generally not preserved in the methylation data and vice-versa, and iii highly significant correlations exist between co-expression and co-methylation modules, suggesting the existence of factors that affect expression and methylation of different modules (i.e., trans effects at the level of modules. We observed that methylation probes associated with expression in cis were more likely to be located outside CpG islands, whereas specificity for CpG island shores was present when methylation, associated with expression, was under local genetic control. A structural equation model based analysis found strong support in particular for a traditional causal model in which gene expression is regulated by genetic variation via DNA methylation instead of gene expression affecting DNA methylation levels. Conclusions Our results provide new insights into the complex mechanisms between genetic markers, epigenetic mechanisms and gene expression. We find strong support for the classical model of genetic variants regulating methylation, which in turn regulates gene expression. Moreover we show that, although the methylation and expression modules differ, they are highly correlated.

  14. Evidence for genetic regulation of the human parieto-occipital 10-Hz rhythmic activity.

    Science.gov (United States)

    Salmela, Elina; Renvall, Hanna; Kujala, Jan; Hakosalo, Osmo; Illman, Mia; Vihla, Minna; Leinonen, Eira; Salmelin, Riitta; Kere, Juha

    2016-08-01

    Several functional and morphological brain measures are partly under genetic control. The identification of direct links between neuroimaging signals and corresponding genetic factors can reveal cellular-level mechanisms behind the measured macroscopic signals and contribute to the use of imaging signals as probes of genetic function. To uncover possible genetic determinants of the most prominent brain signal oscillation, the parieto-occipital 10-Hz alpha rhythm, we measured spontaneous brain activity with magnetoencephalography in 210 healthy siblings while the subjects were resting, with eyes closed and open. The reactivity of the alpha rhythm was quantified from the difference spectra between the two conditions. We focused on three measures: peak frequency, peak amplitude and the width of the main spectral peak. In accordance with earlier electroencephalography studies, spectral peak amplitude was highly heritable (h(2)  > 0.75). Variance component-based analysis of 28 000 single-nucleotide polymorphism markers revealed linkage for both the width and the amplitude of the spectral peak. The strongest linkage was detected for the width of the spectral peak over the left parieto-occipital cortex on chromosome 10 (LOD = 2.814, nominal P < 0.03). This genomic region contains several functionally plausible genes, including GRID1 and ATAD1 that regulate glutamate receptor channels mediating synaptic transmission, NRG3 with functions in brain development and HRT7 involved in the serotonergic system and circadian rhythm. Our data suggest that the alpha oscillation is in part genetically regulated, and that it may be possible to identify its regulators by genetic analyses on a realistically modest number of samples. PMID:27306141

  15. Microarray-based method for detection of unknown genetic modifications

    Directory of Open Access Journals (Sweden)

    Butenko Melinka A

    2007-12-01

    Full Text Available Abstract Background Due to the increased use of genetic modifications in crop improvement, there is a need to develop effective methods for the detection of both known and unknown transgene constructs in plants. We have developed a strategy for detection and characterization of unknown genetic modifications and we present a proof of concept for this method using Arabidopsis thaliana and Oryza sativa (rice. The approach relies on direct hybridization of total genomic DNA to high density microarrays designed to have probes tiled throughout a set of reference sequences. Results We show that by using arrays with 25 basepair probes covering both strands of a set of 235 vectors (2 million basepairs we can detect transgene sequences in transformed lines of A. thaliana and rice without prior knowledge about the transformation vectors or the T-DNA constructs used to generate the studied plants. Conclusion The approach should allow the user to detect the presence of transgene sequences and get sufficient information for further characterization of unknown genetic constructs in plants. The only requirements are access to a small amount of pure transgene plant material, that the genetic construct in question is above a certain size (here ≥ 140 basepairs and that parts of the construct shows some degree of sequence similarity with published genetic elements.

  16. Evolutionary Schema of Modeling Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Stacewicz Paweł

    2015-03-01

    Full Text Available In this paper, I propose a populational schema of modeling that consists of: (a a linear AFSV schema (with four basic stages of abstraction, formalization, simplification, and verification, and (b a higher-level schema employing the genetic algorithm (with partially random procedures of mutation, crossover, and selection. The basic ideas of the proposed solution are as follows: (1 whole populations of models are considered at subsequent stages of the modeling process, (2 successive populations are subjected to the activity of genetic operators and undergo selection procedures, (3 the basis for selection is the evaluation function of the genetic algorithm (this function corresponds to the model verification criterion and reflects the goal of the model. The schema can be applied to automate the modeling of the mind/brain by means of artificial neural networks: the structure of each network is modified by genetic operators, modified networks undergo a learning cycle, and successive populations of networks are verified during the selection procedure. The whole process can be automated only partially, because it is the researcher who defines the evaluation function of the genetic algorithm.

  17. Effect of anthropogenic landscape features on population genetic differentiation of Przewalski's gazelle: main role of human settlement.

    Directory of Open Access Journals (Sweden)

    Ji Yang

    Full Text Available Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii, which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [F(ST/(1-F(ST and F'(ST/(1-F'(ST] in Mantel tests. IBD (isolation by distance was also inferred as a significant factor in Mantel tests when genetic distance was measured as F(ST/(1-F(ST. However, using partial Mantel tests, AIC(c calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species.

  18. A worldwide population study of the Ag-system haplotypes, a genetic polymorphism of human low-density lipoprotein.

    Science.gov (United States)

    Breguet, G; Bütler, R; Bütler-Brunner, E; Sanchez-Mazas, A

    1990-03-01

    The aim of this investigation is to examine the distribution of the Ag immunological polymorphism in human populations on a worldwide scale and to look for possible explanations of this distribution in the field of modern human peopling history and Ag-system evolution. Extensive Ag-antigene typings were carried out on 13 human population samples, including sub-Saharan African, European, west and east Asiatic, Melanesian, Australian aborigine, and Amerindian groups. Complete Ag-haplotype frequencies were estimated by maximum-likelihood-score procedures, and the data were analyzed by genetic distance computations and principal coordinate projections. With the exception of the Amerindian sample, the Ag polymorphism is shown to be highly polymorphic in all the populations tested. Their genetic relationships appear to be closely correlated to their geographical distribution. This suggests that the Ag system has evolved as a neutral or nearly neutral polymorphism and that it is highly informative for modern human peopling history studies. From the worldwide Ag haplotypic distributions, a model for the Ag molecular structure is derived. According to this model and to the most recent results obtained from molecular data, the establishment of the Ag polymorphism could be explained by several mutations and recombination events between the haplotypes most frequently found in human populations today. As a conclusion, genetic and paleontological data suggest that the genetic structure of caucasoid populations (located from North Africa to India) may be the least differentiated from an ancestral genetic stock. Worldwide genetic differentiations are properly explained as the results of westward and eastward human migrations from a Near East-centered but undefined geographical area where modern humans may have originated. The importance of Ag polymorphism analyses for the reconstruction of human settlement history and origins is discussed in the light of the main conclusions of

  19. Identification of the UBP1 locus as a critical blood pressure determinant using a combination of mouse and human genetics

    DEFF Research Database (Denmark)

    Koutnikova, Hana; Laakso, Markku; Lu, Lu;

    2009-01-01

    recombinant BXD strains of mice we identified a quantitative trait locus (QTL) for blood pressure (BP) on distal chromosome 9. The association analysis of markers encompassing the syntenic region on human chromosome 3 gave in an additive genetic model the strongest association for rs17030583 C/T and rs2291897...... complementarities of mouse and human genetic approaches, identifies the UBP1 locus as a critical blood pressure determinant. UBP1 plays a role in cholesterol and steroid metabolism via the transcriptional activation of CYP11A, the rate-limiting enzyme in pregnenolone and aldosterone biosynthesis. We suggest that......Hypertension is a major health problem of largely unknown genetic origins. To identify new genes responsible for hypertension, genetic analysis of recombinant inbred strains of mice followed by human association studies might prove powerful and was exploited in our current study. Using a set of 27...

  20. An effort to use human-based exome capture methods to analyze chimpanzee and macaque exomes.

    Directory of Open Access Journals (Sweden)

    Xin Jin

    Full Text Available Non-human primates have emerged as an important resource for the study of human disease and evolution. The characterization of genomic variation between and within non-human primate species could advance the development of genetically defined non-human primate disease models. However, non-human primate specific reagents that would expedite such research, such as exon-capture tools, are lacking. We evaluated the efficiency of using a human exome capture design for the selective enrichment of exonic regions of non-human primates. We compared the exon sequence recovery in nine chimpanzees, two crab-eating macaques and eight Japanese macaques. Over 91% of the target regions were captured in the non-human primate samples, although the specificity of the capture decreased as evolutionary divergence from humans increased. Both intra-specific and inter-specific DNA variants were identified; Sanger-based resequencing validated 85.4% of 41 randomly selected SNPs. Among the short indels identified, a majority (54.6%-77.3% of the variants resulted in a change of 3 base pairs, consistent with expectations for a selection against frame shift mutations. Taken together, these findings indicate that use of a human design exon-capture array can provide efficient enrichment of non-human primate gene regions. Accordingly, use of the human exon-capture methods provides an attractive, cost-effective approach for the comparative analysis of non-human primate genomes, including gene-based DNA variant discovery.

  1. Human Nail Clippings as a Source of DNA for Genetic Studies.

    OpenAIRE

    Truong, L.; Park, HL; Chang, SS; Ziogas, A.; Neuhausen, SL; Wang, SS; Bernstein, L.; Anton-Culver, H.

    2014-01-01

    Blood samples have traditionally been used as the main source of DNA for genetic analysis. However, this source can be difficult in terms of collection, transportation, and long-term storage. In this study, we investigated whether human nail clippings could be used as a source of DNA for SNP genotyping, null-allele detection, and whole-genome amplification. From extracted nail DNA, we achieved amplicons up to a length of ~400 bp and >96% concordance for SNP genotyping and 100% concordance for...

  2. Detection and genetic characterization of a novel parvovirus distantly related to human bufavirus in domestic pigs.

    Science.gov (United States)

    Hargitai, Renáta; Pankovics, Péter; Kertész, Attila Mihály; Bíró, Hunor; Boros, Ákos; Phan, Tung Gia; Delwart, Eric; Reuter, Gábor

    2016-04-01

    In this study, a novel parvovirus (strain swine/Zsana3/2013/HUN, KT965075) was detected in domestic pigs and genetically characterized by viral metagenomics and PCR methods. The novel parvovirus was distantly related to the human bufaviruses and was detected in 19 (90.5 %) of the 21 and five (33.3 %) of the 15 faecal samples collected from animals with and without cases of posterior paraplegia of unknown etiology from five affected farms and one control farm in Hungary, respectively. Swine/Zsana3/2013/HUN is highly prevalent in domestic pigs and potentially represents a novel parvovirus species in the subfamily Parvovirinae. PMID:26733298

  3. Report: Human biochemical genetics: an insight into inborn errors of metabolism

    Institute of Scientific and Technical Information of China (English)

    YU Chunli; SCOTT C. Ronald

    2006-01-01

    Inborn errors of metabolism (IEM) include a broad spectrum of defects of various gene products that affect intermediary metabolism in the body. Studying the molecular and biochemical mechanisms of those inherited disorder, systematically summarizing the disease phenotype and natural history, providing diagnostic rationale and methodology and treatment strategy comprise the context of human biochemical genetics. This session focused on: (1) manifestations of representative metabolic disorders; (2) the emergent technology and application of newborn screening of metabolic disorders using tandem mass spectrometry; (3) principles of managing IEM; (4) the concept of carrier testing aiming prevention. Early detection of patients with IEM allows early intervention and more options for treatment.

  4. Development of a protoplast based transformation system for genetic engineering of oil palm

    OpenAIRE

    Mat Yunus, Abdul Masani

    2013-01-01

    The major aim of the thesis was to develop the prerequisites for efficient genetic engineering of oil palm by DNA microinjection with the long-term objective to generate transgenic oil palm producing recombinant proteins, PIPP (a chimeric antibody against human chorionic gonadotropin; hCG), D12 (a human antibody against dental carries) and HSA (human serum albumin). The products will be synthesized in the leaf, mesocarp and kernel tissues of oil palm with the respects of plants must be stable...

  5. Ant Colony versus Genetic Algorithm based on Travelling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Mohammed Alhanjouri

    2011-05-01

    Full Text Available The travelling salesman problem (TSP is a nondeterministic Polynomial hard problem in combinatorial optimization studied in operations research and theoretical computer science. And to solve this problem we used two popular meta-heuristics techniques that used for optimization tasks; the first one is Ant Colony Optimization (ACO, and the second is Genetic Algorithm (GA. In this work, we try to apply both techniques to solve TSP by using the same dataset and compare between them to determine the best one for travelling salesman problem. for Ant Colony Optimization, we studied the effect of some parameters on the produced results, these parameters as: number of used Ants, evaporation, and number of iterations. On the other hand, we studied the chromosome population, crossover probability, and mutation probability parameters that effect on the Genetic Algorithm results.The comparison between Genetic Algorithm and Ant Colony Optimization is accomplished to state the better one for travelling salesman problem.

  6. Optimization of Pressurizer Based on Genetic-Simplex Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun [Harbin Engineering University, Harbin (China)

    2014-08-15

    Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design.

  7. Optimization of Pressurizer Based on Genetic-Simplex Algorithm

    International Nuclear Information System (INIS)

    Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design

  8. Chocolate Bars Based on Human Nutritional Requirements

    OpenAIRE

    Robson, Anthony

    2013-01-01

    International audience Key Points * The nutritional value of chocolate bars should be based on the nutritional value of the low energy dense late Paleolithic human diet to help reduce mental ill health, obesity, and other postprandial insults. * Current chocolate bars have a high energy density (>2 kcal/g). * Cocoa can be sweetened by the addition of calorie-free Purefruit™ (Tate & Lyle) monk fruit ( Siraitia grosvenorii ) extract. PUREFRUIT™ is approximately 200 times sweeter than sugar a...

  9. Method for a human based design process

    OpenAIRE

    Van Herck, Tine

    2013-01-01

    We are developing a method for a human based design process. This means a design method that enables to improve the social relevance of projects. It can be applied to projects of different scale : from interior architecture to landscape strategies. What should be the attitude of a designer in today's society where all certainties threaten to disappear? How to contribute something small to society in order to create a stronger tissue, a safety net, a solid found...

  10. Robotics-based Synthesis of Human Motion

    OpenAIRE

    Khatib, O.; Demircan, E.; De Sapio, V.; Sentis, L.; Besier, T.; Delp, S.

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we...

  11. Genetic Diversity Based on Allozyme Alleles of Chinese Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    TANG Sheng-xiang; WEI Xing-hua; JIANG Yun-zhu; D S Brar; G S Khush

    2007-01-01

    Genetic diversity was analyzed with 6 632 core rice cultivars selected from 60 282 Chinese rice accessions on the basis of 12 allozyme loci, Pgil, Pgi2, Ampl, Amp2, Amp3, Amp4, Sdh1, Adh1, Est1, Est2, Est5 and Est9, by starch gel electrophoresis. Among the materials examined, 52 alleles at 12 polymorphic loci were identified, which occupied 96.3% of 54 alleles found in cultivated germplasm of O.sativa L. The number of alleles per locus ranged from 2 to 7 with an average of 4.33. The gene diversity (He) each locus varied considerably from 0.017 for Amp4 to 0.583 for Est2 with an average gene diversity (Ht) 0.271, and Shannon-Wiener index from 0.055 to 0.946 with an average of 0.468. The degree of polymorphism (DP) was in a range from 0.9 to 46.9% with an average of 21.4%. It was found that the genetic diversity in japonica (Keng) subspecies was lower in terms of allele's number, Ht and S-W index, being 91.8, 66.2 and 75.7% of indica (Hsien) one, respectively. Significant genetic differentiation between indica and japonica rice has been appeared in the loci Pgil, Amp2, Pgi2, and Est2, with higher average coefficient of genetic differentiation (Gst) 0.635, 0.626, 0.322 and 0.282, respectively. Except less allele number per locus (3.33) for modern cultivars, being 76.9% of landraces, the Ht and S-W index showed in similar between the modern cultivars and the landraces detected. In terms of allozyme, the rice cultivars in the Southwest Plateau and Central China have richer genetic diversity. The present study reveals again that Chinese cultivated rice germplasm has rich genetic diversity, showed by the allozyme allele variation.

  12. Gait correlation analysis based human identification.

    Science.gov (United States)

    Chen, Jinyan

    2014-01-01

    Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x), vertical axis (y), and temporal axis (t). By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features' dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance. PMID:24592144

  13. Gait Correlation Analysis Based Human Identification

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x, vertical axis (y, and temporal axis (t. By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features’ dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance.

  14. Genetic differences based on a beef terminal index are reflected in future phenotypic performance differences in commercial beef cattle.

    Science.gov (United States)

    Connolly, S M; Cromie, A R; Berry, D P

    2016-05-01

    The increased demand for animal-derived protein and energy for human consumption will have to be achieved through a combination of improved animal genetic merit and better management strategies. The objective of the present study was to quantify whether differences in genetic merit among animals materialised into phenotypic differences in commercial herds. Carcass phenotypes on 156 864 animals from 7301 finishing herds were used, which included carcass weight (kg), carcass conformation score (scale 1 to 15), carcass fat score (scale 1 to 15) at slaughter as well as carcass price. The price per kilogram and the total carcass value that the producer received for the animal at slaughter was also used. A terminal index, calculated in the national genetic evaluations, was obtained for each animal. The index was based on pedigree index for calving performance, feed intake and carcass traits from the national genetic evaluations. Animals were categorised into four terminal index groups on the basis of genetic merit estimates that were derived before the expression of the phenotypic information by the validation animals. The association between terminal index and phenotypic performance at slaughter was undertaken using mixed models; whether the association differed by gender (i.e. young bulls, steers and heifers) or by early life experiences (animals born in a dairy herd or beef herd) was also investigated. The regression coefficient of phenotypic carcass weight, carcass conformation and carcass fat on their respective estimated breeding values (EBVs) was 0.92 kg, 1.08 units and 0.79 units, respectively, which is close to the expectation of one. Relative to animals in the lowest genetic merit group, animals in the highest genetic merit group had, on average, a 38.7 kg heavier carcass, with 2.21 units greater carcass conformation, and 0.82 units less fat. The superior genetic merit animals were, on average, slaughtered 6 days younger than their inferior genetic merit

  15. Modelling and genetic algorithm based optimisation of inverse supply chain

    Science.gov (United States)

    Bányai, T.

    2009-04-01

    (Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a

  16. A Constraint programming-based genetic algorithm for capacity output optimization

    Directory of Open Access Journals (Sweden)

    Kate Ean Nee Goh

    2014-10-01

    Full Text Available Purpose: The manuscript presents an investigation into a constraint programming-based genetic algorithm for capacity output optimization in a back-end semiconductor manufacturing company.Design/methodology/approach: In the first stage, constraint programming defining the relationships between variables was formulated into the objective function. A genetic algorithm model was created in the second stage to optimize capacity output. Three demand scenarios were applied to test the robustness of the proposed algorithm.Findings: CPGA improved both the machine utilization and capacity output once the minimum requirements of a demand scenario were fulfilled. Capacity outputs of the three scenarios were improved by 157%, 7%, and 69%, respectively.Research limitations/implications: The work relates to aggregate planning of machine capacity in a single case study. The constraints and constructed scenarios were therefore industry-specific.Practical implications: Capacity planning in a semiconductor manufacturing facility need to consider multiple mutually influenced constraints in resource availability, process flow and product demand. The findings prove that CPGA is a practical and an efficient alternative to optimize the capacity output and to allow the company to review its capacity with quick feedback.Originality/value: The work integrates two contemporary computational methods for a real industry application conventionally reliant on human judgement.

  17. Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes

    Science.gov (United States)

    Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.

    1996-01-01

    The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.

  18. Prediction and Research on Vegetable Price Based on Genetic Algorithm and Neural Network Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.

  19. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis.

    Science.gov (United States)

    Jawaheer, Damini; Li, Wentian; Graham, Robert R; Chen, Wei; Damle, Aarti; Xiao, Xiangli; Monteiro, Joanita; Khalili, Houman; Lee, Annette; Lundsten, Robert; Begovich, Ann; Bugawan, Teodorica; Erlich, Henry; Elder, James T; Criswell, Lindsey A; Seldin, Michael F; Amos, Christopher I; Behrens, Timothy W; Gregersen, Peter K

    2002-09-01

    Rheumatoid arthritis (RA) is an inflammatory disease with a complex genetic component. An association between RA and the human leukocyte antigen (HLA) complex has long been observed in many different populations, and most studies have focused on a direct role for the HLA-DRB1 "shared epitope" in disease susceptibility. We have performed an extensive haplotype analysis, using 54 markers distributed across the entire HLA complex, in a set of 469 multicase families with RA. The results show that, in addition to associations with the DRB1 alleles, at least two additional genetic effects are present within the major histocompatibility complex. One of these lies within a 497-kb region in the central portion of the HLA complex, an interval that excludes DRB1. This genetic risk factor is present on a segment of a highly conserved ancestral A1-B8-DRB1*03 (8.1) haplotype. Additional risk genes may also be present in the HLA class I region in a subset of DRB1*0404 haplotypes. These data emphasize the importance of defining haplotypes when trying to understand the HLA associations with disease, and they clearly demonstrate that such associations with RA are complex and cannot be completely explained by the DRB1 locus. PMID:12181776

  20. Genetic characteristics of the human hepatic stellate cell line LX-2.

    Directory of Open Access Journals (Sweden)

    Ralf Weiskirchen

    Full Text Available The human hepatic cell line LX-2 has been described as tool to study mechanisms of hepatic fibrogenesis and the testing of antifibrotic compounds. It was originally generated by immortalisation with the Simian Vacuolating Virus 40 (SV40 transforming (T antigen and subsequent propagation in low serum conditions. Although this immortalized line is used in an increasing number of studies, detailed genetic characterisation has been lacking. We here have performed genetic characterisation of the LX-2 cell line and established a single-locus short tandem repeat (STR profile for the cell line and characterized the LX-2 karyotype by several cytogenetic and molecular cytogenetic techniques. Spectral karyotyping (SKY revealed a complex karyotype with a set of aberrations consistently present in the metaphases analyses which might serve as cytogenetic markers. In addition, various subclonal and single cell aberrations were detected. Our study provides criteria for genetic authentication of LX-2 and offers insights into the genotype changes which might underlie part of its phenotypic features.

  1. Community leaders’ perspectives on engaging African Americans in biobanks and other human genetics initiatives

    OpenAIRE

    Buseh, Aaron G.; Stevens, Patricia E.; Millon-Underwood, Sandra; Townsend, Leolia; Sheryl T. Kelber

    2013-01-01

    There is limited information about what African Americans think about biobanks and the ethical questions surrounding them. Likewise, there is a gap in capacity to successfully enroll African Americans as biobank donors. The purposes of this community-based participatory study were to: (a) explore African Americans’ perspectives on genetics/genomic research, (b) understand facilitators and barriers to participation in such studies, and (c) enlist their ideas about how to attract and sustain en...

  2. Genetic Optimization of Neural Networks for Person Recognition based on the Iris

    Directory of Open Access Journals (Sweden)

    Oscar Castillo

    2012-06-01

    Full Text Available This paper describes the application of modular neural network architectures for person recognition using the human iris images as a biometric measure. The iris database was obtained from the Institute of Automation of the Academy of Sciences China (CASIA. We show simulation results with the modular neural network approach, its optimization using genetic algorithms, and the integration with different methods, such as: the gating network method, type-1 fuzzy integration and optimized fuzzy integration using genetic algorithms. Simulation results show a good identification rate using fuzzy integrators and the best structure found by the genetic algorithm.

  3. Genetic diversity in yellow passion fruit (Passiflora edulis Sims based on RAPD

    Directory of Open Access Journals (Sweden)

    Carlos Bernard Moreno Cerqueira-Silva

    2010-01-01

    Full Text Available This study aimed to evaluate the genetic diversity by RAPD markers in 20 genotypes of ‘yellow’ passion fruit (Passiflora edulis Sims. The 16 primers generated 92 markers, 57 (62% of which were polymorphic. The genetic distance (gdij estimated by the complement of the Dice index (gdij = 0.19 and genotype grouping based on UPGMA algorithm showed low variability among genotypes. These results show a narrower genetic basis than reported for other Passiflora populations and the need to increase this variability by germplasm introduction. Divergent genotypes were also identified for the choice of parents for crosses for genetic gains in traits previously selected within the population studied.

  4. Optimization Route of Food Logistics Distribution Based on Genetic and Graph Cluster Scheme Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2015-06-01

    Full Text Available This study takes the concept of food logistics distribution as the breakthrough point, by means of the aim of optimization of food logistics distribution routes and analysis of the optimization model of food logistics route, as well as the interpretation of the genetic algorithm, it discusses the optimization of food logistics distribution route based on genetic and cluster scheme algorithm.

  5. Glycogen Storage Disease Type Ia in Canines: A Model for Human Metabolic and Genetic Liver Disease

    Directory of Open Access Journals (Sweden)

    Andrew Specht

    2011-01-01

    Full Text Available A canine model of Glycogen storage disease type Ia (GSDIa is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including “lactic acidosis”, larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.

  6. Seasonal Time Series Analysis Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pattern discovery from the seasonal time-series is of importance. Traditionally, most of the algorithms of pattern discovery in time series are similar. A novel mode of time series is proposed which integrates the Genetic Algorithm (GA) for the actual problem. The experiments on the electric power yield sequence models show that this algorithm is practicable and effective.

  7. Genetically modified dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 47, č. 5 (2001), s. 153-155. ISSN 0015-5500 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * cancer vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.519, year: 2001

  8. Genetically engineered dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 18, č. 3 (2001), s. 475-478. ISSN 1019-6439 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.330, year: 2001

  9. Optimization of Catalysts Using Specific, Description-Based Genetic Algorithms

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin; Čukić, T.; Rodemerck, U.; Linke, D.

    2008-01-01

    Roč. 48, č. 2 (2008), s. 274-282. ISSN 1549-9596 R&D Projects: GA ČR GA201/08/1744 Institutional research plan: CEZ:AV0Z10300504 Keywords : optimization of catalytic materials * genetic algorithm s * mixed optimization * constrained optimization Subject RIV: IN - Informatics, Computer Science Impact factor: 3.643, year: 2008

  10. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Moritz Robin FA

    2003-05-01

    Full Text Available Abstract The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca and Pitiusas (Ibiza and Formentera, which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.

  11. AN EXPERT BASED INITIAL GENERATION OF GENETIC ALGORITHM WITH ADAPTIVE PROBABILITY APPROACH FOR QUADRATIC OPF

    OpenAIRE

    BHASKAR, Mithun; BENARJI, Mohan; MAHESWARAPU, Sydulu

    2012-01-01

    This paper presents a novel and superior Genetic Algorithm (GA) based resolver for Optimal Power flow (OPF) problem. Here, the main contrast to other Genetic Algorithm based approaches is that a novel expert based initial generation of population and adaptive probability approach (variable Cross over probability and mutation probability) is adopted in selection of offspring together with roulette wheel technique which reduces the computation time and increases the quality considerably. Select...

  12. Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia.

    OpenAIRE

    Li, W W; Dammerman, M M; Smith, J. D.; Metzger, S.; Breslow, J L; Leff, T

    1995-01-01

    Overexpression of plasma apolipoprotein CIII (apo CIII) causes hypertriglyceridemia in transgenic mice. A genetically variant form of the human apo CIII promoter, containing five single base pair changes, has been shown to be associated with severe hypertriglyceridemia in a patient population. In animals and in cultured cells the apo CIII gene is transcriptionally downregulated by insulin. In this study we demonstrate that, unlike the wild-type promoter, the variant promoter was defective in ...

  13. Solving Job-Shop Scheduling Problems by Genetic Algorithms Based on Building Block Hypothesis

    Institute of Scientific and Technical Information of China (English)

    CHENG Rong; CHEN You-ping; LI Zhi-gang

    2006-01-01

    In this paper, we propose a new genetic algorithm for job-shop scheduling problems(JSP). The proposed method uses the operation-based representation, based on schema theorem and building block hypothesis, a new crossover is proposed: By selecting short, low order highly fit schemas to genetic operator, the crossover can exchange meaningful ordering information of parents effectively and can search the global optimization. Simulation results on MT benchmark problem coded by C + + show that our genetic operators are very powerful and suitable to job-shop scheduling problems and our method outperforms the previous GA-based approaches.

  14. Genetic variation of human papillomavirus type 16 in individual clinical specimens revealed by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Iwao Kukimoto

    Full Text Available Viral genetic diversity within infected cells or tissues, called viral quasispecies, has been mostly studied for RNA viruses, but has also been described among DNA viruses, including human papillomavirus type 16 (HPV16 present in cervical precancerous lesions. However, the extent of HPV genetic variation in cervical specimens, and its involvement in HPV-induced carcinogenesis, remains unclear. Here, we employ deep sequencing to comprehensively analyze genetic variation in the HPV16 genome isolated from individual clinical specimens. Through overlapping full-circle PCR, approximately 8-kb DNA fragments covering the whole HPV16 genome were amplified from HPV16-positive cervical exfoliated cells collected from patients with either low-grade squamous intraepithelial lesion (LSIL or invasive cervical cancer (ICC. Deep sequencing of the amplified HPV16 DNA enabled de novo assembly of the full-length HPV16 genome sequence for each of 7 specimens (5 LSIL and 2 ICC samples. Subsequent alignment of read sequences to the assembled HPV16 sequence revealed that 2 LSILs and 1 ICC contained nucleotide variations within E6, E1 and the non-coding region between E5 and L2 with mutation frequencies of 0.60% to 5.42%. In transient replication assays, a novel E1 mutant found in ICC, E1 Q381E, showed reduced ability to support HPV16 origin-dependent replication. In addition, partially deleted E2 genes were detected in 1 LSIL sample in a mixed state with the intact E2 gene. Thus, the methods used in this study provide a fundamental framework for investigating the influence of HPV somatic genetic variation on cervical carcinogenesis.

  15. A learning-based autonomous driver: emulate human driver's intelligence in low-speed car following

    Science.gov (United States)

    Wei, Junqing; Dolan, John M.; Litkouhi, Bakhtiar

    2010-04-01

    In this paper, an offline learning mechanism based on the genetic algorithm is proposed for autonomous vehicles to emulate human driver behaviors. The autonomous driving ability is implemented based on a Prediction- and Cost function-Based algorithm (PCB). PCB is designed to emulate a human driver's decision process, which is modeled as traffic scenario prediction and evaluation. This paper focuses on using a learning algorithm to optimize PCB with very limited training data, so that PCB can have the ability to predict and evaluate traffic scenarios similarly to human drivers. 80 seconds of human driving data was collected in low-speed (car-following scenarios. In the low-speed car-following tests, PCB was able to perform more human-like carfollowing after learning. A more general 120 kilometer-long simulation showed that PCB performs robustly even in scenarios that are not part of the training set.

  16. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters

    Indian Academy of Sciences (India)

    Malcolm Von Schantz

    2008-12-01

    Circadian rhythms and sleep are two separate but intimately related processes. Circadian rhythms are generated through the precisely controlled, cyclic expression of a number of genes designated clock genes. Genetic variability in these genes has been associated with a number of phenotypic differences in circadian as well as sleep parameters, both in mouse models and in humans. Diurnal preferences as determined by the selfreported Horne–Östberg (HÖ) questionnaire, has been associated with polymorphisms in the human genes CLOCK, PER1, PER2 and PER3. Circadian rhythm-related sleep disorders have also been associated with mutations and polymorphisms in clock genes, with the advanced type cosegrating in an autosomal dominant inheritance pattern with mutations in the genes PER2 and CSNK1D, and the delayed type associating without discernible Mendelian inheritance with polymorphisms in CLOCK and PER3. Several mouse models of clock gene null alleles have been demonstrated to have affected sleep homeostasis. Recent findings have shown that the variable number tandem polymorphism in PER3, previously linked to diurnal preference, has profound effects on sleep homeostasis and cognitive performance following sleep loss, confirming the close association between the processes of circadian rhythms and sleep at the genetic level.

  17. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications

    Directory of Open Access Journals (Sweden)

    Zetterberg Henrik

    2004-02-01

    Full Text Available Abstract The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy.

  18. Genetic contributions to avoidance-based decisions: striatal D2 receptor polymorphisms.

    Science.gov (United States)

    Frank, M J; Hutchison, K

    2009-11-24

    Individuals differ in their tendencies to seek positive decision outcomes or to avoid negative ones. At the neurobiological level, our model suggests that phasic changes in dopamine support learning to reinforce good decisions via striatal D1 receptors, and to avoid maladaptive choices via striatal D2 receptors. Accordingly, in a previous study individual differences in positive and negative learning were strongly modulated by two genetic polymorphisms factors related to striatal D1 and D2 function, respectively. Nevertheless, whereas the role for dopamine in positive learning is relatively well accepted, that in learning to avoid negative outcomes is more controversial. Here we further explore D2-receptor-related genetic contributions to probabilistic avoidance in humans, in light of recent data showing that particular DRD2 polymorphisms are associated with functional modulation of receptor expression [Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R, Lee M-LT, Xiao T, Papp A, Wang D, Sadée W (2007) Polymorphisms in human dopamine d2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci U S A 104(51):20552-20557]. We find that a promoter polymorphism rs12364283 associated with transcription and D2 receptor density was strongly and selectively predictive of avoidance-based decisions. Two further polymorphisms (rs2283265 and rs1076560) associated with relatively reduced presynaptic relative to postsynaptic D2 receptor expression were predictive of relative impairments in negative compared to positive decisions. These previously undocumented effects of DRD2 polymorphisms were largely independent of those we reported previously for the C957T polymorphism (rs6277) associated with striatal D2 density. In contrast, effects of the commonly studied Taq1A polymorphism on reinforcement-based decisions were due to indirect association with C957T. Taken together these findings suggest multiple D2-dependent

  19. An investigation of the statistical power of neutrality tests based on comparative and population genetic data

    DEFF Research Database (Denmark)

    Zhai, Weiwei; Nielsen, Rasmus; Slatkin, Montgomery

    2009-01-01

    In this report, we investigate the statistical power of several tests of selective neutrality based on patterns of genetic diversity within and between species. The goal is to compare tests based solely on population genetic data with tests using comparative data or a combination of comparative...... and population genetic data. We show that in the presence of repeated selective sweeps on relatively neutral background, tests based on the d(N)/d(S) ratios in comparative data almost always have more power to detect selection than tests based on population genetic data, even if the overall level of divergence...... is low. Tests based solely on the distribution of allele frequencies or the site frequency spectrum, such as the Ewens-Watterson test or Tajima's D, have less power in detecting both positive and negative selection because of the transient nature of positive selection and the weak signal left by negative...

  20. Use of Recombination-Mediated Genetic Engineering for Construction of Rescue Human Cytomegalovirus Bacterial Artificial Chromosome Clones

    Directory of Open Access Journals (Sweden)

    Kalpana Dulal

    2012-01-01

    Full Text Available Bacterial artificial chromosome (BAC technology has contributed immensely to manipulation of larger genomes in many organisms including large DNA viruses like human cytomegalovirus (HCMV. The HCMV BAC clone propagated and maintained inside E. coli allows for accurate recombinant virus generation. Using this system, we have generated a panel of HCMV deletion mutants and their rescue clones. In this paper, we describe the construction of HCMV BAC mutants using a homologous recombination system. A gene capture method, or gap repair cloning, to seize large fragments of DNA from the virus BAC in order to generate rescue viruses, is described in detail. Construction of rescue clones using gap repair cloning is highly efficient and provides a novel use of the homologous recombination-based method in E. coli for molecular cloning, known colloquially as recombineering, when rescuing large BAC deletions. This method of excising large fragments of DNA provides important prospects for in vitro homologous recombination for genetic cloning.