Sample records for based heat works

1. The distinction between heat and work: an approach based on a classical mechanical model

CERN Document Server

Besson, U

2003-01-01

The distinction between work and heat is obvious in most typical situations, but becomes difficult in certain critical cases. The subject is discussed in texts on thermodynamics and has long given rise to debate. This paper presents an approach based on a mesoscopic analysis, using a simple mechanical model, in which bodies are made up of particles (representing atoms and/or molecules) treated as material points interacting with forces that obey Newton's laws. The sum of the work done by these microscopic forces is split into two terms representing the macroscopic quantities work and heat.

2. Cementing the foundations of thermodynamics: Comparison of system-based and surroundings-based definitions of work and heat

International Nuclear Information System (INIS)

Gislason, Eric A.; Craig, Norman C.

2005-01-01

The distinction between system-based and surroundings-based definitions of thermodynamic heat (q) and work (w), particularly pressure-volume work, in irreversible processes is introduced and cleanly drawn. A systematic presentation of system-based q and w is given for the first time. This development complements the authors' earlier presentation of surroundings-based work and heat. Either set of definitions can and has been used to develop the laws of thermodynamics. Both sets of definitions are used to analyze examples presented by Kivelson and Oppenheim (KO). It is seen for two KO processes that w(sys-based) and w(surr-based) are not equal. This not uncommon result does not violate the first law because the two q values are also different. One of the KO examples corresponds to a 'quasistatic' process, which is reversible from the point of view of the system but not from the point of view of the system plus surroundings taken together, and, therefore, not reversible overall. A number of reasons are given for preferring surroundings-based definitions of w and q to system-based definitions. Perhaps the most important is the fact that w(sys-based) does not always satisfy the theorem of maximum work in a constant temperature process. Finally, an explanation is presented for why the common use of two different sets of definitions for w and q has not led to greater confusion in the past

3. A frame work for heat generation/absorption and modified homogeneous–heterogeneous reaction in flow based on non-Darcy–Forchheimer medium

Directory of Open Access Journals (Sweden)

Tasawar Hayat

2018-04-01

Full Text Available The present work aims to report the consequences of Darcy–Forchheimer medium in flow of Cross fluid model toward a stretched surface. Flow in porous space is categorized by Darcy–Forchheimer medium. Further heat transfer characteristics are examined via thermal radiation and heat generation/absorption. Transformation procedure is used. The arising system of nonlinear ordinary differential equations is solved numerically by means of shooting method. The effects of different flow variables on velocity, temperature, concentration, skin friction, and heat transfer rate are discussed. The obtained outcomes show that velocity was enhanced with the increase in the Weissenberg number but decays with increase in the porosity parameter and Hartman number. Temperature field is boosted by thermal radiation and heat generation; however, it decays with the increase in the Prandtl number. Keywords: Cross Fluid, Heat Generation/Absorption, Homogeneous–Heterogeneous Reactions, Non-Darcy–Forchheimer Medium, Thermal Radiation

4. Dust as a Working Fluid for Heat Transfer Project

Science.gov (United States)

Mantovani, James G.

2015-01-01

The project known as "Dust as a Working Fluid" demonstrates the feasibility of a dust-based system for transferring heat radiatively into space for those space applications requiring higher efficiency, lower mass, and the need to operate in extreme vacuum and thermal environments - including operating in low or zero gravity conditions in which the dust can be conveyed much more easily than on Earth.

5. Integrated multiscale simulation of combined heat and power based district heating system

International Nuclear Information System (INIS)

Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

2015-01-01

Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

6. [Work schedule of electric welders in heating microclimate].

Science.gov (United States)

Sorokin, G A; Frolova, N M

2010-01-01

The authors present results of specified hygienically justified timing regulations for setting the variants of work and rest modes within electric welders shift, who work in various postures with variable visual strain while welding in heating microclimate.

7. Carbon dioxide makes heat therapy work

Energy Technology Data Exchange (ETDEWEB)

Sherman, H.

1987-01-01

Scientists can now propagate healthy blueberry and raspberry plants from virus-infected stock by treating it with heat and carbon dioxide. Plants are grown at 100/sup 0/F, which makes them develop faster than the virus can spread. Then cuttings are taken of the new growth - less than an inch long - and grown into full-sized, virus-free plants. But in this race to outdistance the virus, some plant species are not able to take the heat. Some even die. Chemical reactions double for every 14/sup 0/F rise in temperature. So, if you try to grow a plant at 100/sup 0/F that was originally growing at 86/sup 0/F, it will double its respiration rate. Adding carbon dioxide increases the rate of photosynthesis in plants, which increases the plant's food reserves. What carbon dioxide does to allow some plants to grow at temperatures at which they would otherwise not survive and it allows other plants to grow for longer periods at 100/sup 0/F. One problem with the process, says Converse, is that the longer plants are exposed to heat the greater the mutation rate. So, resulting clones should be closely examined for trueness to horticultural type.

8. Review of liquid metal heat pipe work at Los Alamos

International Nuclear Information System (INIS)

Reid, R.S.; Merrigan, M.A.; Sena, J.T.

1990-01-01

A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

9. Accumulated Effects of Work under Heat Stress

Science.gov (United States)

1980-04-01

since air velocity is difficult to assess in industrial situations (32). Subsequent studies (58, 66) re. lted in a current American recommendation (26) of...Forward, T.J. and Giec, L.A. Stimulation of adrenal glucocorticoid secretion in man by raising the body temperature. J. of Physiology, 202: 645-660, 1969...Strydon, N.G. and Kotze , H. Orthosttism and heat acclimation. J. Appli. Physiol. 39: 590-595t 1975. 94. Sive, P.H., Medalie, J.H., Kahn, H.A

10. Evaluation of heat stress and heat strain among employees working outdoors in an extremely hot environment.

Science.gov (United States)

Methner, Mark; Eisenberg, Judith

2018-03-26

A heat stress evaluation was conducted among employees engaged in strenuous work in an extremely hot outdoor environment. Environmental conditions that contribute to heat stress along with various physiological indicators of heat strain were monitored on a task-basis for nine employees daily across 4 workdays. Employees performed moderate to heavy tasks in elevated environmental conditions for longer periods of time than recommended by various heat stress exposure limits. Seven of nine employees showed evidence of excessive heat strain according to criteria yet all employees were able to self-regulate task duration and intensity to avoid heat-related illness.

11. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

International Nuclear Information System (INIS)

Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

2012-01-01

A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

12. Catalysis of heat-to-work conversion in quantum machines

Science.gov (United States)

Ghosh, A.; Latune, C. L.; Davidovich, L.; Kurizki, G.

2017-11-01

We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine.

13. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

Directory of Open Access Journals (Sweden)

Matveev Andrey

2017-01-01

Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

14. Evaluating work/recovery schedules in terms of whole body heat storage

Energy Technology Data Exchange (ETDEWEB)

Hardcastle, S.G. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories; Stapleton, J.M.; Kenny, G.P. [Ottawa Univ., Ottawa, ON (Canada). School of Human Kinetics, Human and Environmental Physiology Research Unit; Allen, C. [Vale Inco, Copper Cliff, ON (Canada)

2010-07-01

This paper reported on heat stress related research aimed at better managing the heat exposure of underground miners. The potential for underground miners to experience heat stress or strain is increasing due to greater mining depth; mechanization, and a trend towards larger diesel equipment; an aging workforce; an increasing amount of personal protective equipment worn to prevent injuries (that has led to most of the miner's body being covered) and increases in the surface climate that are superimposed through the underground workplace. This paper focused on research involving metabolic heat storage and the possibility of heat strain from elevated core temperatures. It targeted work/recovery cycles and the recovery strategies between work bouts. The first study examined the cumulative change in body heat content for a moderate metabolic rate and increasing the recovery allocation as per the TLV screening criteria to offset an increase in the wet bulb globe temperature (WBGT). The second study examined strategies that could be used between work bouts and how they affect the thermoregulatory system, heat generation or losses and net cumulative heat storage. The calorimeter based work suggested that a miner's clothing may be improved to promote evaporative cooling, and that work recovery regimes could be modified to maximize recovery. 10 refs., 1 tab., 6 figs.

15. The study of the heat-engineering characteristics of a solar heat collector based on aluminum heat pipes

International Nuclear Information System (INIS)

Khairnasov, S.M.; Zaripov, V.K.; Passamakin, B.M. et al.

2013-01-01

This paper presents the results of studies into the heat-engineering characteristics of a flat heat solar collector based on aluminum heat pipes that is designed to be used in building facades. The principle of work and the structure of the solar collector are considered; the results of its comparison with a traditional flat solar collector are presented. The studies were performed at a heat carrier temperature range of +10 - +30 degree C and at a solar heat flow density of 400 - 1000 W/m 2 . The obtained experimental heat-engineering characteristics of the collector based on heat pipes show that they are at a level of traditional flow solar collectors; for example, its efficiency is 0.65 - 0.73. Meanwhile, the hydraulic resistance of the structure with heat pipes is by a factor of 2 - 2.4 smaller and ensures a high level of scalability, reliability, and maintainability, which is important when using it as an element of facade constructions of solar heat systems. (author)

16. High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities

DEFF Research Database (Denmark)

Zühlsdorf, Benjamin; Bühler, Fabian; Mancini, Roberta

2017-01-01

and show a large potential to reuse the excess heat from exhaust gases. This study analyses a heat pump application with an improved integration by choosing the working fluid as a mixture in such a way, that the temperature glide during evaporation and condensation matches the temperature glide of the heat...... source and sink best possibly. Therefore, a set of six common working fluids is defined and the possible binary mixtures of these fluids are analyzed. The performance of the fluids is evaluated based on the energetic performance (COP) and the economic potential (NPV). The results show...

17. Heat and work distributions for mixed Gauss–Cauchy process

International Nuclear Information System (INIS)

Kuśmierz, Łukasz; Gudowska-Nowak, Ewa; Rubi, J Miguel

2014-01-01

We analyze energetics of a non-Gaussian process described by a stochastic differential equation of the Langevin type. The process represents a paradigmatic model of a nonequilibrium system subject to thermal fluctuations and additional external noise, with both sources of perturbations considered as additive and statistically independent forcings. We define thermodynamic quantities for trajectories of the process and analyze contributions to mechanical work and heat. As a working example we consider a particle subjected to a drag force and two statistically independent Lévy white noises with stability indices α = 2 and α = 1. The fluctuations of dissipated energy (heat) and distribution of work performed by the force acting on the system are addressed by examining contributions of Cauchy fluctuations (α = 1) to either bath or external force acting on the system. (paper)

18. NUMERICAL AND EXPERIMENTAL ANALYSIS OF UNSTEADY WORK OF U-SHAPE BOREHOLE HEAT EXCHANGER

Directory of Open Access Journals (Sweden)

S. A. Filatau

2014-01-01

Full Text Available Unsteady numerical model of borehole heat exchanger heat regime was developed. General numerical modeling results are borehole heat flux, heat carrier inlet temperature and average soil temperature distribution. Proposed model is based on solution of heat conduction equation in transient plane axially symmetric formulation with boundary conditions for borehole heat exchanger and undisturbed soil domain. Solution method is finite difference method. Numerical model is verified with comparisons numerical results and experimental data from developed laboratory installation for simulation unsteady heat regime of horizontal positioned U-shape ground heat exchanger in sand medium.Cooling of water is organized in ground exchanger in experiment. Experiment includes two steps. Thermal properties of sand is determined at the first stage. Thermal conductivity of sand is determined by stationary plate method, thermal diffusivity is determined by regular regime method using cylindrical calorimeter. Determined properties are used further in processing of experimental results at second step for analysis of transient work of ground heat exchanger. Results of four experiments are analyzed with different duration and time behavior of mass flow and heat carrier temperature. Divergences of experimental and simulated results for temperature of heat carrier changes in the range 0,5–1,8 %, for sand temperature in the range 1,0–2,3 %, for heat flux in the range 3,6–5,4 %. Experimental results can be used for validation of other simulation methods of ground heat exchangers. Presented numerical model can be used for analyzing of heat supply systems with heat pumps.

19. Analysis of heat recovery of diesel engine using intermediate working fluid

Science.gov (United States)

Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming

2017-07-01

The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.

20. Modeling of the transient behavior of heat pipes with room-temperature working fluids

Science.gov (United States)

Brocheny, Pascal O.

2006-07-01

The heat pipe is a capillary-driven and two-phase flow device, capable of transporting and converting large amounts of energy with minimal losses. As a means of thermal management, uses of heat pipe technology not only include thermal control of satellites and spacecrafts in aerospace applications, but also the cooling of electronic components for ground applications. Recently, there has been a flourishing interest in exploring the use of heat pipe technology in the automotive field. However, in many thermal control applications, heat pipes using room-temperature working fluids, such as water or ammonia, with operating temperatures between 200 K (-73ºC) and 550 K (277ºC), can hardly operate at steady state conditions. The study of transient heat pipe phenomena becomes a significant area of research interests including not only startup and shutdown phases, but also heat redistribution, changes of thermal loading and heat removal. The transient performance is affected by thermal capacity and conductance of the heat pipe, capillary pumping forces, heating and cooling conditions. In the present study, the transient operations of different conventional room-temperature heat pipes were investigated analytically, including the capillary dryout and rewetting behaviors occurring at the evaporator section during startups. The physical model is based on the displacement of a leading-edge front of a thin liquid layer flowing on finite groove uniformly heated with a constant heat flux. A one-dimensional transient heat conduction model along the evaporator wall is coupled with the movement of the fluid layer during startup. Numerical solutions were obtained by a fully implicit Finite Difference Method, accounting for the movement of the liquid and a known time-variable temperature boundary condition at the liquid front. The velocity and position of the liquid front were found to vary with the applied heat flux, the initial conditions, and the thermophysical properties of the

1. Integrated Temperature Sensors based on Heat Diffusion

NARCIS (Netherlands)

Van Vroonhoven, C.P.L.

2015-01-01

This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and

2. Estimating population heat exposure and impacts on working people in conjunction with climate change.

Science.gov (United States)

Kjellstrom, Tord; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Briggs, David

2017-08-01

Increased environmental heat levels as a result of climate change present a major challenge to the health, wellbeing and sustainability of human communities in already hot parts of this planet. This challenge has many facets from direct clinical health effects of daily heat exposure to indirect effects related to poor air quality, poor access to safe drinking water, poor access to nutritious and safe food and inadequate protection from disease vectors and environmental toxic chemicals. The increasing environmental heat is a threat to environmental sustainability. In addition, social conditions can be undermined by the negative effects of increased heat on daily work and life activities and on local cultural practices. The methodology we describe can be used to produce quantitative estimates of the impacts of climate change on work activities in countries and local communities. We show in maps the increasing heat exposures in the shade expressed as the occupational heat stress index Wet Bulb Globe Temperature. Some tropical and sub-tropical areas already experience serious heat stress, and the continuing heating will substantially reduce work capacity and labour productivity in widening parts of the world. Southern parts of Europe and the USA will also be affected. Even the lowest target for climate change (average global temperature change = 1.5 °C at representative concentration pathway (RCP2.6) will increase the loss of daylight work hour output due to heat in many tropical areas from less than 2% now up to more than 6% at the end of the century. A global temperature change of 2.7 °C (at RCP6.0) will double this annual heat impact on work in such areas. Calculations of this type of heat impact at country level show that in the USA, the loss of work capacity in moderate level work in the shade will increase from 0.17% now to more than 1.3% at the end of the century based on the 2.7 °C temperature change. The impact is naturally mainly occurring in the

3. Estimating population heat exposure and impacts on working people in conjunction with climate change

Science.gov (United States)

Kjellstrom, Tord; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Briggs, David

2018-03-01

Increased environmental heat levels as a result of climate change present a major challenge to the health, wellbeing and sustainability of human communities in already hot parts of this planet. This challenge has many facets from direct clinical health effects of daily heat exposure to indirect effects related to poor air quality, poor access to safe drinking water, poor access to nutritious and safe food and inadequate protection from disease vectors and environmental toxic chemicals. The increasing environmental heat is a threat to environmental sustainability. In addition, social conditions can be undermined by the negative effects of increased heat on daily work and life activities and on local cultural practices. The methodology we describe can be used to produce quantitative estimates of the impacts of climate change on work activities in countries and local communities. We show in maps the increasing heat exposures in the shade expressed as the occupational heat stress index Wet Bulb Globe Temperature. Some tropical and sub-tropical areas already experience serious heat stress, and the continuing heating will substantially reduce work capacity and labour productivity in widening parts of the world. Southern parts of Europe and the USA will also be affected. Even the lowest target for climate change (average global temperature change = 1.5 °C at representative concentration pathway (RCP2.6) will increase the loss of daylight work hour output due to heat in many tropical areas from less than 2% now up to more than 6% at the end of the century. A global temperature change of 2.7 °C (at RCP6.0) will double this annual heat impact on work in such areas. Calculations of this type of heat impact at country level show that in the USA, the loss of work capacity in moderate level work in the shade will increase from 0.17% now to more than 1.3% at the end of the century based on the 2.7 °C temperature change. The impact is naturally mainly occurring in the southern

4. Estimating population heat exposure and impacts on working people in conjunction with climate change

Science.gov (United States)

Kjellstrom, Tord; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Briggs, David

2017-08-01

Increased environmental heat levels as a result of climate change present a major challenge to the health, wellbeing and sustainability of human communities in already hot parts of this planet. This challenge has many facets from direct clinical health effects of daily heat exposure to indirect effects related to poor air quality, poor access to safe drinking water, poor access to nutritious and safe food and inadequate protection from disease vectors and environmental toxic chemicals. The increasing environmental heat is a threat to environmental sustainability. In addition, social conditions can be undermined by the negative effects of increased heat on daily work and life activities and on local cultural practices. The methodology we describe can be used to produce quantitative estimates of the impacts of climate change on work activities in countries and local communities. We show in maps the increasing heat exposures in the shade expressed as the occupational heat stress index Wet Bulb Globe Temperature. Some tropical and sub-tropical areas already experience serious heat stress, and the continuing heating will substantially reduce work capacity and labour productivity in widening parts of the world. Southern parts of Europe and the USA will also be affected. Even the lowest target for climate change (average global temperature change = 1.5 °C at representative concentration pathway (RCP2.6) will increase the loss of daylight work hour output due to heat in many tropical areas from less than 2% now up to more than 6% at the end of the century. A global temperature change of 2.7 °C (at RCP6.0) will double this annual heat impact on work in such areas. Calculations of this type of heat impact at country level show that in the USA, the loss of work capacity in moderate level work in the shade will increase from 0.17% now to more than 1.3% at the end of the century based on the 2.7 °C temperature change. The impact is naturally mainly occurring in the southern

5. Agent-based modelling of heating system adoption in Norway

Energy Technology Data Exchange (ETDEWEB)

Sopha, Bertha Maya; Kloeckner, Christian A.; Hertwich, Edgar G.

2010-07-01

Full text: This paper introduces agent-based modelling as a methodological approach to understand the effect of decision making mechanism on the adoption of heating systems in Norway. The model is used as an experimental/learning tool to design possible interventions, not for prediction. The intended users of the model are therefore policy designers. Primary heating system adoptions of electric heating, heat pump and wood pellet heating were selected. Random topology was chosen to represent social network among households. Agents were households with certain location, number of peers, current adopted heating system, employed decision strategy, and degree of social influence in decision making. The overall framework of decision-making integrated theories from different disciplines; customer behavior theory, behavioral economics, theory of planned behavior, and diffusion of innovation, in order to capture possible decision making processes in households. A mail survey of 270 Norwegian households conducted in 2008 was designed specifically for acquiring data for the simulation. The model represents real geographic area of households and simulates the overall fraction of adopted heating system under study. The model was calibrated with historical data from Statistics Norway (SSB). Interventions with respects to total cost, norms, indoor air quality, reliability, supply security, required work, could be explored using the model. For instance, the model demonstrates that a considerable total cost (investment and operating cost) increase of electric heating and heat pump, rather than a reduction of wood pellet heating's total cost, are required to initiate and speed up wood pellet adoption. (Author)

6. Observer-based monitoring of heat exchangers.

Science.gov (United States)

Astorga-Zaragoza, Carlos-Manuel; Alvarado-Martínez, Víctor-Manuel; Zavala-Río, Arturo; Méndez-Ocaña, Rafael-Maxim; Guerrero-Ramírez, Gerardo-Vicente

2008-01-01

The goal of this work is to provide a method for monitoring performance degradation in counter-flow double-pipe heat exchangers. The overall heat transfer coefficient is estimated by an adaptive observer and monitored in order to infer when the heat exchanger needs preventive or corrective maintenance. A simplified mathematical model is used to synthesize the adaptive observer and a more complex model is used for simulation. The reliability of the proposed method was demonstrated via numerical simulations and laboratory experiments with a bench-scale pilot plant.

7. Does a Prolonged Work Day in the Heat Impair Heat Loss on the Next Day in Young Men?

Science.gov (United States)

Notley, Sean R; Meade, Robert D; Friesen, Brian J; D'Souza, Andrew W; Kenny, Glen P

2018-02-01

Heat strain is known to be exacerbated on the second of consecutive work days. We therefore evaluated whether prolonged work in the heat would impair whole-body heat loss capacity on the next day. To evaluate this possibility, we assessed changes in whole-body heat exchange and heat storage in eight young (26 ± 4 yr) men during heat stress tests performed on the same day before (day 1) and on the day after (day 2) a prolonged work simulation. Each heat stress test involved three, 30-min bouts of semirecumbent cycling at fixed rates of metabolic heat production (200 W·m (Ex1), 250 W·m (Ex2), and 300 W·m (Ex3)), each separated by 15-min recovery, under hot, dry conditions (40°C, 20% relative humidity). The work simulation (7.5 h) involved three moderate-intensity intermittent work bouts (2 h), each separated by 30-min rest breaks, under similarly hot, dry conditions (38°C, 34% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was quantified as the temporal summation of heat production and loss. Total heat loss did not differ between days 1 and 2 (P = 0.66) and averaged (mean ± 95% confidence interval) 185 ± 7 W (Ex1), 233 ± 7 W (Ex2), and 261 ± 5 W (Ex3) across test days. Consequently, the change in body heat storage was also similar between days 1 and 2 (P = 0.32), averaging 133 ± 15 kJ (Ex1), 99 ± 16 kJ (Ex2), and 184 ± 15 kJ (Ex3) across test days. When assessed under controlled laboratory conditions in young men, prolonged work in the heat does not seem to impair whole-body heat loss or exacerbate heat storage on the following day.

8. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

Energy Technology Data Exchange (ETDEWEB)

Allan Jones

2003-09-01

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

9. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

Science.gov (United States)

Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

2017-06-01

Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

10. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

Directory of Open Access Journals (Sweden)

Smitka Martin

2014-03-01

Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

11. Market survey of forest work tools and heating devices

International Nuclear Information System (INIS)

Mutikainen, A.

2002-01-01

The TTS Institute has published internet pages where information has been 'gathered on the work tools, equipment, devices and machines needed by forest owners and people who use wood heating. The contact information of manufacturers and merchants for such tools and devices has also been provided. A link to the pages can be found at http://www.tts.fi. The pages are meant to be an aid for product buyers and also for advisory and research use. So far the pages are in trial use and are free of charge. They will be developed on the basis of feedback received. The TTS Institute internet pages operate primarily as a contact list where different product groups and contact information for product manufacturers and merchants can be found. The pages present limited information on the product since updating detailed product information would require intensive market monitoring and great work input. Furthermore, the objective is not to compete in the advertising market, but to publish independent information where the beneficiary is primarily the buyer. The contents of the pages are mainly limited to the products concerned with private forest owners and people who heat detached houses with wood, and information on those products. Information is collected and updated from public sources and also partly direct from the manufacturers and merchants. For clarity, the source of information will be mentioned. (orig.)

12. Space Launch System Base Heating Test: Experimental Operations & Results

Science.gov (United States)

Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

2016-01-01

NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

13. A Comparison of the Plastic-Flow Response of a Powder-Metallurgy Nickel-Base Superalloy Under Nominally-Isothermal and Transient-Heating Hot-Working Conditions

Science.gov (United States)

Semiatin, S. L.; Mahaffey, D. W.; Tung, D. J.; Zhang, W.; Senkov, O. N.

2017-04-01

The flow-stress behavior at hot-working temperatures and strain rates of the powder-metallurgy superalloy LSHR was determined under nominally-isothermal and transient-heating conditions. Two conventional methods, compression of right-circular cylinders and torsion of thin-walled tubes, were used for isothermal tests. A direct-resistance-heating technique utilizing torsion of round-bar specimens in a Gleeble® machine was applied for both isothermal and transient-heating conditions. When expressed in terms of effective stress and strain, baseline data determined by the two conventional methods showed good agreement. With the aid of a flow-localization analysis to assess the confounding influence of axial (and radial) temperature gradients on deformation uniformity, the flow stresses determined from nominally-isothermal Gleeble® torsion tests were shown to be broadly similar to those from the conventional tests. With regard to transient phenomena, Gleeble® tests were also useful in quantifying the effect of rapid heating and short soak time on the observed higher flow stress associated with a metastable microstructure. The present work also introduces two new test techniques using direct-resistance-heated torsion specimens. One involves continuous heating under constant-torque conditions, and the other comprises testing an individual specimen at a series of temperatures and strain rates. Using a single specimen, the former method enabled the determination of the apparent activation energy for plastic flow, which was similar to that determined from the series of isothermal tests; the latter provided a low-cost, high-throughput approach to quantify the flow behavior.

14. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

Science.gov (United States)

Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

2011-11-01

Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of "self-rewetting fluids", i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59-61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20-100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

15. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

International Nuclear Information System (INIS)

Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

2011-01-01

Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of “self-rewetting fluids”, i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59–61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20–100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

16. Dynamic Allocation of a Domestic Heating Task to Gas-Based and Heatpump-Based Heating Agents

NARCIS (Netherlands)

Treur, J.

2013-01-01

In this paper a multi-agent model for a domestic heating task is introduced and analysed. The model includes two alternative heating agents (for gas-based heating and for heatpump-based heating), and a third allocation agent which determines the most economic allocation of the heating task to these

17. Visual observation of a heat pipe working characteristics

International Nuclear Information System (INIS)

Tsuyuzaki, Noriyoshi; Saito, Takashi; Ishigami, Shinya; Kawada, Michitaka; Konno, Masanobu; Kaminaga, Fumito; Okamoto, Yoshizo.

1988-10-01

When the heat pipe is used in a nuclear engineering field, it is indispensable to understand transient characteristics of an accident condition as well as in a steady state at a normal operation. However there have been few informations about the transient characteristics of a heat pipe in case of rapid temperature or heat load change in an evaporator section. The purpose of this study is to examine transient and steady state characteristics of a gravity assisted heat pipe and variable conductance heat pipe(VCHP) which will be used in a neutron irradiation capsule. This report presents results of visual observation of boiling and condensation patterns on steady state or transient condition in a visible heat pipe made of a glass. The response time of the heat pipe is on the order of a few seconds when the temperature of the evaporator part is kept above the operating temperature. (author)

18. Thermoelectric properties of an interacting quantum dot based heat engine

Science.gov (United States)

Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio

2017-06-01

We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.

19. West Chester Work Center: solar space heating demonstration project

Energy Technology Data Exchange (ETDEWEB)

1979-05-01

This document reports on the construction stage of a solar space heating demonstration project. It describes an integrated system providing solar energy space heating for a 9982 sq. ft., newly built, one-story building. The building is located at 966 Matlack Street, West Goshen Township, Chester County, Pennsylvania. Functionally, the building consists of two sections: An Office and a Storeroom. The Office section is heated by solar-assisted water-to-air heat pump units. The Storeroom section is heated by an air-handling unit, containing a water-to-air coil. Solar energy is expected to provide 62% of the heating load, with the balance provided by a back-up electric boiler. The system includes 1900 active (2112 gross) square feet of flat-plate solar collectors, and a 6000 gallon above-ground indoor storage tank. Freeze protection is provided by a gravity drain-down scheme combined with nitrogen pressurization in a closed circuit.

20. Ventilation Heat Recovery from Wood-Burning Domestic Flues. A Theoretical Analysis Based on a Triple Concentric Tube Heat Exchanger

Directory of Open Access Journals (Sweden)

Lionel Druette

2013-01-01

Full Text Available This paper presents a new air-heating system concept for energy-efficient dwellings. It is a system designed to heat a low-energy building by coupling a heat-recovery ventilation system with a three-fluid heat exchanger located on the chimney of a wood-pellet stove. The proposed work focuses on the heat transfer that occurs between flue gases, the ventilation air and the combustion air within a triple concentric tube heat exchanger with no insulation at its outer surface. The main objective is to predict outlet temperature for the specific geometry of the heat exchanger studied here. Thus, the governing differential equations are derived for a counter-co-current flow arrangement of the three fluids. Then analytical solutions for the steady-state temperature distribution are obtained as well as the amount of heat transferred to the outside. An expression for the effectiveness of the heat exchanger is also proposed. Based on these results, calculations are performed on a case study to predict the fluid temperature distribution along the heat exchanger. Finally, a parametric study is carried out on this case study to assess the influence of the relevant parameters on the effectiveness of the heat exchanger. In addition, computation of heat losses to the outside justifies whether insulation is needed.

1. Adiabatic, Shock, and Plastic Work Heating of Solids and the Cylinder Test

National Research Council Canada - National Science Library

Ruden, E

2000-01-01

Solids subjected to high pressures, shocks, and/or deformation experience an increase in internal energy density and temperature due to adiabatic compression, shock heating, and plastic work heating, respectively...

2. Upscaling a district heating system based on biogas cogeneration and heat pumps

NARCIS (Netherlands)

van Leeuwen, Richard Pieter; Fink, J.; Smit, Gerardus Johannes Maria; de Wit, Jan B.

2015-01-01

The energy supply of the Meppel district Nieuwveense landen is based on biogas cogeneration, district heating, and ground source heat pumps. A centrally located combined heat and power engine (CHP) converts biogas from the municipal wastewater treatment facility into electricity for heat pumps and

3. Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle

International Nuclear Information System (INIS)

Eller, Tim; Heberle, Florian; Brüggemann, Dieter

2017-01-01

The organic Rankine cycle (ORC) and the Kalina cycle (KC) are potential thermodynamic concepts for decentralized power generation from industrial waste heat at a temperature level below 500 °C. The aim of this work is to investigate in detail novel zeotropic mixtures as working fluid for the KC and compare to sub- and supercritical ORC based on second law efficiency. Heat source temperature is varied between 200 °C and 400 °C. The results show that second law efficiency of KC can be increased by applying alcohol/alcohol mixtures as working fluid instead of ammonia/water mixtures; especially for heat source temperatures above 250 °C. Efficiency increase is in the range of 16% and 75%. Despite this efficiency improvements, ORC with zeotropic mixtures in sub- and supercritical operation mode proves to be superior to KC in the examined temperature range. Second law efficiency is up to 13% higher than for KC. A maximum second law efficiency of 59.2% is obtained for supercritical ORC with benzene/toluene 36/64 at 400 °C heat source temperature. The higher level of efficiency and the lower complexity of ORC in comparison to KC indicate that ORC with zeotropic mixtures offers the greater potential for waste heat recovery. - Highlights: • Kalina Cycle with novel alcohol mixtures as working fluid is investigated. • Results are compared to ammonia/water-Kalina Cycle and ORC. • Second law efficiency of Kalina Cycle can be increased by novel alcohol mixtures. • Efficiency increase is in the range of 16% and 75%. • ORC with zeotropic mixtures proves to be superior to Kalina Cycle.

4. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

Energy Technology Data Exchange (ETDEWEB)

Sresty, G.C.

1994-07-07

A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

5. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric

Science.gov (United States)

Bröde, Peter; Fiala, Dusan; Lemke, Bruno; Kjellstrom, Tord

2017-04-01

With a view to occupational effects of climate change, we performed a simulation study on the influence of different heat stress assessment metrics on estimated workability (WA) of labour in warm outdoor environments. Whole-day shifts with varying workloads were simulated using as input meteorological records for the hottest month from four cities with prevailing hot (Dallas, New Delhi) or warm-humid conditions (Managua, Osaka), respectively. In addition, we considered the effects of adaptive strategies like shielding against solar radiation and different work-rest schedules assuming an acclimated person wearing light work clothes (0.6 clo). We assessed WA according to Wet Bulb Globe Temperature (WBGT) by means of an empirical relation of worker performance from field studies (Hothaps), and as allowed work hours using safety threshold limits proposed by the corresponding standards. Using the physiological models Predicted Heat Strain (PHS) and Universal Thermal Climate Index (UTCI)-Fiala, we calculated WA as the percentage of working hours with body core temperature and cumulated sweat loss below standard limits (38 °C and 7.5% of body weight, respectively) recommended by ISO 7933 and below conservative (38 °C; 3%) and liberal (38.2 °C; 7.5%) limits in comparison. ANOVA results showed that the different metrics, workload, time of day and climate type determined the largest part of WA variance. WBGT-based metrics were highly correlated and indicated slightly more constrained WA for moderate workload, but were less restrictive with high workload and for afternoon work hours compared to PHS and UTCI-Fiala. Though PHS showed unrealistic dynamic responses to rest from work compared to UTCI-Fiala, differences in WA assessed by the physiological models largely depended on the applied limit criteria. In conclusion, our study showed that the choice of the heat stress assessment metric impacts notably on the estimated WA. Whereas PHS and UTCI-Fiala can account for

6. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric

Science.gov (United States)

Bröde, Peter; Fiala, Dusan; Lemke, Bruno; Kjellstrom, Tord

2018-03-01

With a view to occupational effects of climate change, we performed a simulation study on the influence of different heat stress assessment metrics on estimated workability (WA) of labour in warm outdoor environments. Whole-day shifts with varying workloads were simulated using as input meteorological records for the hottest month from four cities with prevailing hot (Dallas, New Delhi) or warm-humid conditions (Managua, Osaka), respectively. In addition, we considered the effects of adaptive strategies like shielding against solar radiation and different work-rest schedules assuming an acclimated person wearing light work clothes (0.6 clo). We assessed WA according to Wet Bulb Globe Temperature (WBGT) by means of an empirical relation of worker performance from field studies (Hothaps), and as allowed work hours using safety threshold limits proposed by the corresponding standards. Using the physiological models Predicted Heat Strain (PHS) and Universal Thermal Climate Index (UTCI)-Fiala, we calculated WA as the percentage of working hours with body core temperature and cumulated sweat loss below standard limits (38 °C and 7.5% of body weight, respectively) recommended by ISO 7933 and below conservative (38 °C; 3%) and liberal (38.2 °C; 7.5%) limits in comparison. ANOVA results showed that the different metrics, workload, time of day and climate type determined the largest part of WA variance. WBGT-based metrics were highly correlated and indicated slightly more constrained WA for moderate workload, but were less restrictive with high workload and for afternoon work hours compared to PHS and UTCI-Fiala. Though PHS showed unrealistic dynamic responses to rest from work compared to UTCI-Fiala, differences in WA assessed by the physiological models largely depended on the applied limit criteria. In conclusion, our study showed that the choice of the heat stress assessment metric impacts notably on the estimated WA. Whereas PHS and UTCI-Fiala can account for

7. Heat expanded starch-based compositions.

Science.gov (United States)

Glenn, Gregory M; Klamczynski, Artur K; Holtman, Kevin M; Shey, Justin; Chiou, Bor-Sen; Berrios, Jose; Wood, Delilah; Orts, William J; Imam, Syed H

2007-05-16

A heat expansion process similar to that used for expanded bead polystyrene was used to expand starch-based compositions. Foam beads made by solvent extraction had the appearance of polystyrene beads but did not expand when heated due to an open-cell structure. Nonporous beads, pellets, or particles were made by extrusion or by drying and milling cooked starch slurries. The samples expanded into a low-density foam by heating 190-210 degrees C for more than 20 s at ambient pressures. Formulations containing starch (50-85%), sorbitol (5-15%), glycerol (4-12%), ethylene vinyl alcohol (EVAL, 5-15%), and water (10-20%) were studied. The bulk density was negatively correlated to sorbitol, glycerol, and water content. Increasing the EVAL content increased the bulk density, especially at concentrations higher than 15%. Poly(vinyl alcohol) (PVAL) increased the bulk density more than EVAL. The bulk density was lowest in samples made of wheat and potato starch as compared to corn starch. The expansion temperature for the starch pellets decreased more than 20 degrees C as the moisture content was increased from 10 to 25%. The addition of EVAL in the formulations decreased the equilibrium moisture content of the foam and reduced the water absorption during a 1 h soaking period.

8. Tolerence for work-induced heat stress in men wearing liquidcooled garments

Science.gov (United States)

Blockley, W. V.; Roth, H. P.

1971-01-01

An investigation of the heat tolerance in men unable to dispose of metabolic heat as fast as it is produced within the body is discussed. Examinations were made of (a) the effect of work rate (metabolic rate) on tolerance time when body heat storage rate is a fixed quantity, and (b) tolerance time as a function of metabolic rate when heat loss is terminated after a thermal quasi-equilibrium was attained under comfortable conditions of heat transfer. The nature of the physiological mechanisms involved in such heat stress situations, and the possibility of using prediction techniques to establish standard procedures in emergencies involving cooling system failures are also discussed.

9. A study of Ground Source Heat Pump based on a heat infiltrates coupling model established with FEFLOW

Science.gov (United States)

Chen, H.; Hu, C.; Chen, G.; Zhang, Q.

2017-12-01

Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.

10. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working

Directory of Open Access Journals (Sweden)

Pablo Pancardo

2015-07-01

Full Text Available Ambient Assisted Working (AAW is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers’ comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS.

11. Technical and Economic Working Domains of Industrial Heat Pumps: Part 1 - Vapour Compression Heat Pumps

DEFF Research Database (Denmark)

Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix

2014-01-01

the constraints of available refrigeration equipment and a requirement of a positive Net Present Value of the investment. The considered sink outlet temperature range is from 40 °C to 140 °C, but for the heat pumps considered in this paper, the upper limit is 100 °C. Five heat pumps are studied. For each set...

12. On the development of an innovative gas-fired heating appliance based on a zeolite-water adsorption heat pump; system description and seasonal gas utilization efficiency

International Nuclear Information System (INIS)

Dawoud, Belal

2014-01-01

The main objective of this work is to introduce an innovative hybrid heating appliance incorporating a gas condensing boiler and a zeolite-water adsorption heat pump. The condensing boiler is applied to drive the zeolite-water heat pump for the heating base-load and to assist the heat pump in the so called “mixed operation” mode, in which both the heat pump and the condensing boiler are working in series to cover medium heating demands. Peak heating demands are covered by the condensing boiler in the so called “direct heating” mode. The three operation modes of the hybrid heating appliance have been technically described. In addition, the laboratory test conditions for estimating the seasonal heating performance according to the German Guideline VDI 4650-2 have been introduced. For both heating systems 35/28 °C and 55/45 °C, which represent the typical operating conditions of floor and high temperature radiating heating systems in Europe, seasonal heating gas utilization efficiencies of 1.34 and 1.26 have been measured, respectively with a ground heat source. In two field test installations in one-family houses in Germany, the introduced heating appliance showed 27% more seasonal gas utilization efficiency for heating and domestic hot water production, which is equivalent to a CO 2 -emission reduction of 20% compared to the gas condensing boiler technology

13. An Integrated Chemical Reactor-Heat Exchanger Based on Ammonium Carbamate (POSTPRINT)

Science.gov (United States)

2012-10-01

AFRL-RQ-WP-TP-2013-0237 AN INTEGRATED CHEMICAL REACTOR-HEAT EXCHANGER BASED ON AMMONIUM CARBAMATE (POSTPRINT) Douglas Johnson and Jamie...4. TITLE AND SUBTITLE AN INTEGRATED CHEMICAL REACTOR-HEAT EXCHANGER BASED ON AMMONIUM CARBAMATE (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...Ammonium carbamate (AC) which has a decomposition enthalpy of 1.8 MJ/kg is suspended in propylene glycol and used as the heat exchanger working fluid

14. Working in Australia's heat: health promotion concerns for health and productivity.

Science.gov (United States)

Singh, Sudhvir; Hanna, Elizabeth G; Kjellstrom, Tord

2015-06-01

This exploratory study describes the experiences arising from exposure to extreme summer heat, and the related health protection and promotion issues for working people in Australia. Twenty key informants representing different industry types and occupational groups or activities in Australia provided semi-structured interviews concerning: (i) perceptions of workplace heat exposure in the industry they represented, (ii) reported impacts on health and productivity, as well as (iii) actions taken to reduce exposure or effects of environmental heat exposure. All interviewees reported that excessive heat exposure presents a significant challenge for their industry or activity. People working in physically demanding jobs in temperatures>35°C frequently develop symptoms, and working beyond heat tolerance is common. To avoid potentially dangerous health impacts they must either slow down or change their work habits. Such health-preserving actions result in lost work capacity. Approximately one-third of baseline work productivity can be lost in physically demanding jobs when working at 40°C. Employers and workers consider that heat exposure is a 'natural hazard' in Australia that cannot easily be avoided and so must be accommodated or managed. Among participants in this study, the locus of responsibility for coping with heat lay with the individual, rather than the employer. Heat exposure during Australian summers commonly results in adverse health effects and productivity losses, although quantification studies are lacking. Lack of understanding of the hazardous nature of heat exposure exacerbates the serious risk of heat stress, as entrenched attitudinal barriers hamper amelioration or effective management of this increasing occupational health threat. Educational programmes and workplace heat guidelines are required. Without intervention, climate change in hot countries, such as Australia, can be expected to further exacerbate heat-related burden of disease and loss

15. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

Energy Technology Data Exchange (ETDEWEB)

Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

1998-04-01

The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

16. In-situ thermoelectrochemistry working with heated electrodes

CERN Document Server

Gründler, Peter

2015-01-01

This book represents the first rigorous treatment of thermoelectrochemistry, providing an overview that will stimulate electrochemists to develop and apply modern thermoelectrochemical methods. While classical static approaches are also covered, the emphasis lies on methods that make it possible to independently vary temperature such as in-situ heating of electrodes by means of electric current, microwaves or lasers. For the first time, "hot-wire electrochemistry" is examined in detail. The theoretical background presented addresses all aspects of temperature impacts in the context of electroc

17. Personalized recommendation based on heat bidirectional transfer

Science.gov (United States)

Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

2016-02-01

Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

18. Conceptual design of an active magnetic regenerative heat circulator based on self-heat recuperation technology

International Nuclear Information System (INIS)

Kotani, Yui; Kansha, Yasuki; Tsutsumi, Atsushi

2013-01-01

A conceptual design of an active magnetic regenerative (AMR) heat circulator for self-heat recuperation to realize energy savings in thermal processes is proposed. The process fluid heat is recuperated by the magnetocaloric effect of ferromagnetic material through the AMR heat circulation cycle. In an AMR heat circulator, all the process fluid heat is circulated and no make-up heat is added to raise the process fluid to its set temperature. A one-dimensional mathematical model of the AMR heat circulator was constructed to understand its behavior and verify its energy-saving potential. From the constructed one-dimensional mathematical model, it is seen that AMR heat circulator has potential to drastically reduce the total energy consumption in a thermal process. The temperature–entropy diagram shows that in order to gain the maximum energy saving, optimization of the parameters such as the flow rate and geometry of the ferromagnetic working material beds is needed. - Highlights: • Self-heat recuperative active magnetic regenerative heat circulator is introduced. • One-dimensional model is constructed to verify its energy-saving potential. • Total energy consumption in thermal process is drastically reduced. • Further energy can be saved by reducing the overlapping of thermodynamic cycles

19. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

Science.gov (United States)

Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

2018-03-01

We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

20. Multiphase numerical analysis of heat pipe with different working fluids for solar applications

Science.gov (United States)

Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.

2017-11-01

Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.

1. Experimental investigation and numerical simulation of a copper micro-channel heat exchanger with HFE-7200 working fluid

Science.gov (United States)

Borquist, Eric

Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to

2. Climate change and rising heat: population health implications for working people in Australia.

Science.gov (United States)

Hanna, Elizabeth G; Kjellstrom, Tord; Bennett, Charmian; Dear, Keith

2011-03-01

The rapid rise in extreme heat events in Australia recently is already taking a health toll. Climate change scenarios predict increases in the frequency and intensity of extreme heat events in the future, and population health may be significantly compromised for people who cannot reduce their heat exposure. Exposure to extreme heat presents a health hazard to all who are physically active, particularly outdoor workers and indoor workers with minimal access to cooling systems while working. At air temperatures close to (or beyond) the core body temperature of 37°C, body cooling via sweating is essential, and this mechanism is hampered by high air humidity. Heat exposure among elite athletes and the military has been investigated, whereas the impacts on workers remain largely unexplored, particularly in relation to future climate change. Workers span all age groups and diverse levels of fitness and health status, including people with higher than "normal" sensitivity to heat. In a hotter world, workers are likely to experience more heat stress and find it increasingly difficult to maintain productivity. Modeling of future climate change in Australia shows a substantial increase in the number of very hot days (>35°C) across the country. In this article, the authors characterize the health risks associated with heat exposure on working people and discuss future exposure risks as temperatures rise. Progress toward developing occupational health and safety guidelines for heat in Australia are summarized.

3. Cavity assisted measurements of heat and work in optical lattices

Directory of Open Access Journals (Sweden)

Louis Villa

2018-01-01

Full Text Available We propose a method to experimentally measure the internal energy of a system of ultracold atoms trapped in optical lattices by coupling them to the fields of two optical cavities. We show that the tunnelling and self-interaction terms of the one-dimensional Bose-Hubbard Hamiltonian can be mapped to the field and photon number of each cavity, respectively. We compare the energy estimated using this method with numerical results obtained using the density matrix renormalisation group algorithm. Our method can be employed for the assessment of power and efficiency of thermal machines whose working substance is a strongly correlated many-body system.

4. Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO2 as Working Fluid

International Nuclear Information System (INIS)

Jeon, Sang Woo; Ngo, Ich-long; Byon, Chan

2016-01-01

The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical CO 2 power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical CO 2 as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

5. Atmospheric dynamics. Constrained work output of the moist atmospheric heat engine in a warming climate.

Science.gov (United States)

Laliberté, F; Zika, J; Mudryk, L; Kushner, P J; Kjellsson, J; Döös, K

2015-01-30

Incoming and outgoing solar radiation couple with heat exchange at Earth's surface to drive weather patterns that redistribute heat and moisture around the globe, creating an atmospheric heat engine. Here, we investigate the engine's work output using thermodynamic diagrams computed from reanalyzed observations and from a climate model simulation with anthropogenic forcing. We show that the work output is always less than that of an equivalent Carnot cycle and that it is constrained by the power necessary to maintain the hydrological cycle. In the climate simulation, the hydrological cycle increases more rapidly than the equivalent Carnot cycle. We conclude that the intensification of the hydrological cycle in warmer climates might limit the heat engine's ability to generate work. Copyright © 2015, American Association for the Advancement of Science.

6. Evaluation of nickel-based materials for VHTR heat exchanger

International Nuclear Information System (INIS)

Burlet, H.; Gentzbittel, J.M.; Cabet, C.; Lamagnere, P.; Blat, M.; Renaud, D.; Dubiez-Le Goff, S.; Pierron, D.

2008-01-01

Two available conventional nickel-based alloys (617 and 230) have been selected as structural materials for the advanced gas-cooled reactors, especially for the heat exchanger. An extensive research programme has been launched in France within the framework of the ANTARES programme to evaluate the performances of these materials in VHTR service environment. The experimental work is focused on mechanical properties, thermal stability and corrosion resistance in the temperature range (700-1 000 deg C) over long time. Thus the experimental work includes creep and fatigue tests on as-received materials, short- and medium-term thermal exposure tests followed by tensile and impact toughness tests, short- and medium-term corrosion exposure tests under impure He environment. The status of the results obtained up to now is given in this paper. Additional tests such as long-term thermal ageing and long-term corrosion tests are required to conclude on the selection of the material. (author)

7. Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis

DEFF Research Database (Denmark)

Cai, Hanmin; You, Shi; Wang, Jiawei

2018-01-01

This paper provides a technical assessment of electric heat boosters (EHBs) in low-energy districts. The analysis is based on a hypothetical district with 23 terraced single-family houses supplied by both a lowtemperature district heating (LTDH) network and a low-voltage network (LVN). Two case...... studies are provided to show the active role of EHBs in a smart energy system (SES). The first case compares annual heat and power flow analyses for LTDH at five supply temperature levels, focusing on their impacts. The results show that district heating network (DHN) losses can be reduced by 35......% if the supply temperature is reduced from 70 C to 50 C, but the LVN peak power will have to be increased by up to 2% using heat boosting. The second case further aggregates EHBs to provide a fuel shift (FS) service for the DHN. The results show that while LVN peak power was increased by up to 4.3%, the basic...

8. Climate change-induced heat risks for migrant populations working at brick kilns in India: a transdisciplinary approach

Science.gov (United States)

Lundgren-Kownacki, Karin; Kjellberg, Siri M.; Gooch, Pernille; Dabaieh, Marwa; Anandh, Latha; Venugopal, Vidhya

2018-03-01

During the summer of 2015, India was hit by a scorching heat wave that melted pavements in Delhi and caused thousands of deaths, mainly among the most marginalized populations. One such group facing growing heat risks from both occupational and meteorological causes are migrant brick kiln workers. This study evaluates both current heat risks and the potential future impacts of heat caused by climate change, for the people working at brick kilns in India. A case study of heat stress faced by people working at brick kilns near Chennai, India, is the anchor point around which a transdisciplinary approach was applied. Around Chennai, the situation is alarming since occupational heat exposure in the hot season from March to July is already at the upper limits of what humans can tolerate before risking serious impairment. The aim of the study was to identify new pathways for change and soft solutions by both reframing the problem and expanding the solution space being considered in order to improve the quality of life for the migrant populations at the brick kilns. Technical solutions evaluated include the use of sun-dried mud bricks and other locally "appropriate technologies" that could mitigate the worsening of climate change-induced heat. Socio-cultural solutions discussed for empowering the people who work at the brick kilns include participatory approaches such as open re-localization, and rights-based approaches including the environmental sustainability and the human rights-based approach framework. Our analysis suggests that an integrative, transdisciplinary approach could incorporate a more holistic range of technical and socio-culturally informed solutions in order to protect the health of people threatened by India's brick kiln industry.

9. Climate change-induced heat risks for migrant populations working at brick kilns in India: a transdisciplinary approach

Science.gov (United States)

Lundgren-Kownacki, Karin; Kjellberg, Siri M.; Gooch, Pernille; Dabaieh, Marwa; Anandh, Latha; Venugopal, Vidhya

2017-11-01

During the summer of 2015, India was hit by a scorching heat wave that melted pavements in Delhi and caused thousands of deaths, mainly among the most marginalized populations. One such group facing growing heat risks from both occupational and meteorological causes are migrant brick kiln workers. This study evaluates both current heat risks and the potential future impacts of heat caused by climate change, for the people working at brick kilns in India. A case study of heat stress faced by people working at brick kilns near Chennai, India, is the anchor point around which a transdisciplinary approach was applied. Around Chennai, the situation is alarming since occupational heat exposure in the hot season from March to July is already at the upper limits of what humans can tolerate before risking serious impairment. The aim of the study was to identify new pathways for change and soft solutions by both reframing the problem and expanding the solution space being considered in order to improve the quality of life for the migrant populations at the brick kilns. Technical solutions evaluated include the use of sun-dried mud bricks and other locally "appropriate technologies" that could mitigate the worsening of climate change-induced heat. Socio-cultural solutions discussed for empowering the people who work at the brick kilns include participatory approaches such as open re-localization, and rights-based approaches including the environmental sustainability and the human rights-based approach framework. Our analysis suggests that an integrative, transdisciplinary approach could incorporate a more holistic range of technical and socio-culturally informed solutions in order to protect the health of people threatened by India's brick kiln industry.

10. Nuclear heating measurements by in-pile calorimetry: prospective works for a microsensor design

Energy Technology Data Exchange (ETDEWEB)

Reynard-Carette, C.; Carette, M.; Aguir, K.; Bendahan, M.; Fiorido, T. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 (France); Barthes, M.; Lanzetta, F.; Layes, G.; Vives, S. [FEMTO-ST, UMR 6174, Departement ENERGIE, Universite de Franche-Comte, 90000, Belfort (France)

2015-07-01

Since 2009 works have been performed in the framework of joint research programs between CEA and Aix-Marseille University. The main aim of these programs is to design and develop in-pile instrumentations, advanced calibration procedure and accurate measurement methods in particular for the new Material Testing Reactor (MTR) under construction in the South of France: Jules Horowitz Reactor (JHR). One major sensor is a specific radiometric calorimeter, which was studied out-of-pile from a thermal point of view and in-pile during irradiation campaigns. This sensor type is dedicated to measurements of nuclear heating (energy deposition rate per mass unit induced by interactions between nuclear rays and matter) inside experimental channels of MTRs. This kind of in-pile calorimeter corresponds to heat flux calorimeter exchanging with the external cooling fluid. This thermal running mode allows the establishment of steady thermal conditions inside the sensor to carry out online continuous measurements inside the reactor (core or reflector). Two main types of calorimeters exist. The first type consists of a single cell calorimeter. It is divided into a sample of material to be tested and a jacket instrumented with two thermocouples or a single thermocouple (Gamma Thermometer). The second, called a differential calorimeter, is composed of two superposed twin cells (a measurement cell containing a sample of material, and a reference cell to remove the heating of the cell body) instrumented with four thermocouples and two electrical heaters. Contrary to a single-cell calorimeter, a differential calorimeter allows the compensation of the parasite nuclear heating of the sensor body or jacket. Moreover, it possesses interesting advantages: thanks to the heaters embedded in the cells, three different measurement methods can be applied during irradiations to quantify nuclear heating. The first one is based on the use of out-of-pile calibration curves obtained by generating a heat

11. Using of Multiwall Carbon Nanotube Based Nanofluid in the Heat Pipe to Get Better Thermal Performance

Directory of Open Access Journals (Sweden)

Y. Bakhshan

2014-09-01

Full Text Available Thermal performance of a cylindrical heat pipe is investigated numerically. Three different types of water based nanofluids, namely, Al2O3 + Water, Diamond + Water, and Multi-Wall Carbon Nano tube (MWCNT + Water, have been used. The influence of using the simple nanofluids and MWCNT nanofluid on the heat pipe characteristics such as liquid velocity, pressure profile, temperature profile, thermal resistance, and heat transfer coefficient of heat pipe has been studied. A new correlation developed by Bakhshan and Saljooghi (2014 for viscosity of nanofluids has been implemented. The results show, a good agreement with the available analytical and experimental data. Also the results show, that the MWCNT based nanofluid has lower thermal resistance, higher heat transfer coefficient, and lower temperature difference between evaporator and condenser sections, so it has good thermal specifications as a working fluid for use in heat pipes. The prepared code has capability for parametric studies also.

12. Performance Study of Solar Heat Pipe with Different Working Fluids and Fill Ratios

Science.gov (United States)

Harikrishnan, S. S.; Kotebavi, Vinod

2016-09-01

This paper elaborates on the testing of solar heat pipes using different working fluids, fill ratios and tilt angles. Methanol, Acetone and water are used as working fluids, with fill ratios 25%, 50%, 75% and 100%. Experiments were carried out at 600 and 350 inclinations. Heat pipe condenser section is placed inside a water basin containing 200ml of water. The evaporator section is exposed to sunlight where the working fluid gets heated and it becomes vapour and moves towards the condenser section. In the condenser section the heat is given to the water in the basin and the vapour becomes liquid and comes back to the evaporator section due to gravitational force. Two modes of experiments are carried out: 1) using a parabolic collector and 2) using heat pipe with evacuated tubes. On comparative study, optimum fill ratio is been found to be 25% in every case and acetone exhibited slightly more efficiency than methanol and water. As far as the heat pipe orientation is concerned, 600 inclination of the heat pipe showed better performance than 350

13. Nosehouse: heat-conserving ventilators based on nasal counterflow exchangers.

Science.gov (United States)

Vogel, Steven

2009-12-01

Small birds and mammals commonly minimize respiratory heat loss with reciprocating counterflow exchangers in their nasal passageways. These animals extract heat from the air in an exhalation to warm those passageways and then use that heat to warm the subsequent inhalation. Although the near-constant volume of buildings precludes direct application of the device, a pair of such exchangers located remotely from each other circumvents that problem. A very simple and crudely constructed small-scale physical model of the device worked well enough as a heat conserver to suggest utility as a ventilator for buildings.

14. Optimization-based design of waste heat recovery systems

DEFF Research Database (Denmark)

Cignitti, Stefano

of performance and sustainability. The fluid was novel and generated through the framework. In the second case study, waste heat recovery from a milk powder production spray dryer was addressed. A heat pump was designed with a mixed working fluid for the optimal heat recovery and transfer for the low-grade waste...... heat from effluent spray dryer air. 25% isobutene and 75% 1,3-difluoropropane and a process with a coefficient of performance of 3.22 was designed. The design provided new binary mixture and optimized cycle process that was an improvement compared to conventional systems. Furthermore, the fluids were...

15. Experimental characterization of mass, work and heat flows in an air cooled, single cylinder engine

International Nuclear Information System (INIS)

Perez-Blanco, H.

2004-01-01

Small air cooled engines, although large in numbers, receive scant attention in the literature. Experimental data for a four stroke, air cooled, single cylinder engine are presented in this report. Air to fuel ratios, indicated and output power, exhaust composition and heat loss are determined to result in suitable thermal and mechanical efficiencies. The data obtained are discussed with the perspective obtained from other literature references. Exhaust composition figures appear reasonable, but the measurement of the transient exhaust flows is still a concern. Based on the measurements, a graph illustrating the different energy transformations in the engine is produced. Undergraduate students in the curriculum routinely use the engine and the present work allows one to conclude that the measurement approach produces reasonable results. These results could be used by engine modelers and others interested in this wide field of technology

16. Comparing Two Definitions of Work for a Biological Quantum Heat Engine

International Nuclear Information System (INIS)

Xu You-Yang; Zhao Shun-Cai; Liu Juan

2015-01-01

Systems of photosynthetic reaction centres have been modelled as heat engines, while it has also been reported that the efficiency and power of such heat engines can be enhanced by quantum interference — a trait that has attracted much interest. We compare two definitions of the work of such a photosynthetic heat engine, i.e. definition A used by Weimer et al. and B by Dorfman et al. We also introduce a coherent interaction between donor and acceptor (CIDA) to demonstrate a reversible energy transport. We show that these two definitions of work can impart contradictory results, that is, CIDA enhances the power and efficiency of the photosynthetic heat engine with definition B but not with A. Additionally, we find that both reversible and irreversible excitation-energy transport can be described with definition A, but definition B can only model irreversible transport. As a result, we conclude that definition A is more suitable for photosynthetic systems than definition B. (paper)

17. Work-related heat stress concerns in automotive industries: a case study from Chennai, India.

Science.gov (United States)

Ayyappan, Ramalingam; Sankar, Sambandam; Rajkumar, Paramasivan; Balakrishnan, Kalpana

2009-11-11

Work-related heat stress assessments, the quantification of thermal loads and their physiological consequences have mostly been performed in non-tropical developed country settings. In many developing countries (many of which are also tropical), limited attempts have been made to create detailed job-exposure profiles for various sectors. We present here a case study from Chennai in southern India that illustrates the prevalence of work-related heat stress in multiple processes of automotive industries and the efficacy of relatively simple controls in reducing prevalence of the risk through longitudinal assessments. We conducted workplace heat stress assessments in automotive and automotive parts manufacturing units according to the protocols recommended by NIOSH, USA. Sites for measurements included indoor locations with process-generated heat exposure, indoor locations without direct process-generated heat exposure and outdoor locations. Nearly 400 measurements of heat stress were made over a four-year period at more than 100 locations within eight units involved with automotive or automotive parts manufacturing in greater Chennai metropolitan area. In addition, cross-sectional measurements were made in select processes of glass manufacturing and textiles to estimate relative prevalence of heat stress. Results indicate that many processes even in organised large-scale industries have yet to control heat stress-related hazards adequately. Upwards of 28% of workers employed in multiple processes were at risk of heat stress-related health impairment in the sectors assessed. Implications of longitudinal baseline data for assessing efficacy of interventions as well as modelling potential future impacts from climate change (through contributions from worker health and productivity impairments consequent to increases in ambient temperature) are described. The study re-emphasises the need for recognising heat stress as an important occupational health risk in both formal

18. Work Rate during Self-paced Exercise is not Mediated by the Rate of Heat Storage.

Science.gov (United States)

Friesen, Brian J; Périard, Julien D; Poirier, Martin P; Lauzon, Martin; Blondin, Denis P; Haman, Francois; Kenny, Glen P

2018-01-01

To date, there have been mixed findings on whether greater anticipatory reductions in self-paced exercise intensity in the heat are mediated by early differences in rate of body heat storage. The disparity may be due to an inability to accurately measure minute-to-minute changes in whole-body heat loss. Thus, we evaluated whether early differences in rate of heat storage can mediate exercise intensity during self-paced cycling at a fixed rate of perceived exertion (RPE of 16; hard-to-very-hard work effort) in COOL (15°C), NORMAL (25°C), and HOT (35°C) ambient conditions. On separate days, nine endurance-trained cyclists exercised in COOL, NORMAL, and HOT conditions at a fixed RPE until work rate (measured after first 5 min of exercise) decreased to 70% of starting values. Whole-body heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Total exercise time was shorter in HOT (57 ± 20 min) relative to both NORMAL (72 ± 23 min, P = 0.004) and COOL (70 ± 26 min, P = 0.045). Starting work rate was lower in HOT (153 ± 31 W) compared with NORMAL (166 ± 27 W, P = 0.024) and COOL (170 ± 33 W, P = 0.037). Rate of heat storage was similar between conditions during the first 4 min of exercise (all P > 0.05). Thereafter, rate of heat storage was lower in HOT relative to NORMAL and COOL until 30 min of exercise (last common time-point between conditions; all P exercise. No differences were measured at end exercise. We show that rate of heat storage does not mediate exercise intensity during self-paced exercise at a fixed RPE in cool to hot ambient conditions.

19. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid

Directory of Open Access Journals (Sweden)

Thoranis Deethayat

2015-09-01

Full Text Available In this study, performance of a 50 kW organic Rankine cycle (ORC with internal heat exchanger (IHE having R245fa/R152a zeotropic refrigerant with various compositions was investigated. The IHE could reduce heat rate at the ORC evaporator and better cycle efficiency could be obtained. The zeotropic mixture could reduce the irreversibilities during the heat exchanges at the ORC evaporator and the ORC condenser due to its gliding temperature; thus the cycle working temperatures came closer to the temperatures of the heat source and the heat sink. In this paper, effects of evaporating temperature, mass fraction of R152a and effectiveness of internal heat exchanger on the ORC performances for the first law and the second law of thermodynamics were considered. The simulated results showed that reduction of R245fa composition could reduce the irreversibilities at the evaporator and the condenser. The suitable composition of R245fa was around 80% mass fraction and below this the irreversibilities were nearly steady. Higher evaporating temperature and higher internal heat exchanger effectiveness also increased the first law and second law efficiencies. A set of correlations to estimate the first and the second law efficiencies with the mass fraction of R245fa, the internal heat exchanger effectiveness and the evaporating temperature were also developed.

20. Optimal piston motion for maximum net output work of Daniel cam engines with low heat rejection

International Nuclear Information System (INIS)

2015-01-01

Highlights: • The piston motion of low heat rejection compression ignition engines is optimized. • A realistic model taking into account the cooling system is developed. • The optimized cam is smaller for cylinders without thermal insulation. • The optimized cam size depends on ignition moment and cooling process intensity. - Abstract: Compression ignition engines based on classical tapper-crank systems cannot provide optimal piston motion. Cam engines are more appropriate for this purpose. In this paper the piston motion of a Daniel cam engine is optimized. Piston acceleration is taken as a control. The objective is to maximize the net output work during the compression and power strokes. A major research effort has been allocated in the last two decades for the development of low heat rejection engines. A thermally insulated cylinder is considered and a realistic model taking into account the cooling system is developed. The sinusoidal approximation of piston motion in the classical tapper-crank system overestimates the engine efficiency. The exact description of the piston motion in tapper-crank system is used here as a reference. The radiation process has negligible effects during the optimization. The approach with no constraint on piston acceleration is a reasonable approximation. The net output work is much larger (by 12–13%) for the optimized system than for the classical tapper-crank system, for similar thickness of cylinder walls and thermal insulation. Low heat rejection measures are not of significant importance for optimized cam engines. The optimized cam is smaller for a cylinder without thermal insulation than for an insulated cylinder (by up to 8%, depending on the local polar radius). The auto-ignition moment is not a parameter of significant importance for optimized cam engines. However, for given cylinder wall and insulation materials there is an optimum auto-ignition moment which maximizes the net output work. The optimum auto

1. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

Science.gov (United States)

Arya, A.; Sarafraz, M. M.; Shahmiri, S.; Madani, S. A. H.; Nikkhah, V.; Nakhjavani, S. M.

2018-04-01

Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

2. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

Science.gov (United States)

Arya, A.; Sarafraz, M. M.; Shahmiri, S.; Madani, S. A. H.; Nikkhah, V.; Nakhjavani, S. M.

2017-10-01

Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

3. Worked problems in heat, thermodynamics and kinetic theory for physics students

CERN Document Server

Pincherle, L; Green, L L

2013-01-01

Worked Problems in Heat, Thermodynamics and Kinetic Theory for Physics Students is a complementary to textbooks in physics. This book is a collection of exercise problems that have been part of tutorial classes in heat and thermodynamics at the University of London. This collection of exercise problems, with answers that are fully worked out, deals with various topics. This book poses problems covering the definition of temperature such as calculating the assigned value of the temperature of boiling water under specific conditions. This text also gives example of problems dealing with the fir

4. Fluid intake, hydration, work physiology of wildfire fighters working in the heat over consecutive days.

Science.gov (United States)

Raines, Jenni; Snow, Rodney; Nichols, David; Aisbett, Brad

2015-06-01

(i) To evaluate firefighters' pre- and post-shift hydration status across two shifts of wildfire suppression work in hot weather conditions. (ii) To document firefighters' fluid intake during and between two shifts of wildfire suppression work. (iii) To compare firefighters' heart rate, activity, rating of perceived exertion (RPE), and core temperature across the two consecutive shifts of wildfire suppression work. Across two consecutive days, 12 salaried firefighters' hydration status was measured immediately pre- and post-shift. Hydration status was also measured 2h post-shift. RPE was also measured immediately post-shift on each day. Work activity, heart rate, and core temperature were logged continuously during each shift. Ten firefighters also manually recorded their food and fluid intake before, during, and after both fireground shifts. Firefighters were not euhydrated at all measurement points on Day one (292±1 mOsm l(-1)) and euhydrated across these same time points on Day two (289±0.5 mOsm l(-1)). Fluid consumption following firefighters' shift on Day one (1792±1134ml) trended (P = 0.08) higher than Day two (1108±1142ml). Daily total fluid intake was not different (P = 0.27), averaging 6443±1941ml across both days. Core temperature and the time spent ≥ 70%HRmax were both elevated on Day one (when firefighters were not euhydrated). Firefighters' work activity profile was not different between both days of work. There was no difference in firefighters' pre- to post-shift hydration within each shift, suggesting ad libitum drinking was at least sufficient to maintain pre-shift hydration status, even in hot conditions. Firefighters' relative hypohydration on Day one (despite a slightly lower ambient temperature) may have been associated with elevations in core temperature, more time in the higher heart rate zones, and 'post-shift' RPE. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

5. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

Science.gov (United States)

2016-01-01

Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (Pstress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

6. Effects of heat stress on working populations when facing climate change.

Science.gov (United States)

Lundgren, Karin; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

2013-01-01

It is accepted that the earth's climate is changing in an accelerating pace, with already documented implications for human health and the environment. This literature review provides an overview of existing research findings about the effects of heat stress on the working population in relation to climate change. In the light of climate change adaptation, the purpose of the literature review was to explore recent and previous research into the impacts of heat stress on humans in an occupational setting. Heat stress in the workplace has been researched extensively in the past however, in the contemporary context of climate change, information is lacking on its extent and implications. The main factors found to exacerbate heat stress in the current and future workplace are the urban 'heat island effect', physical work, individual differences, and the developing country context where technological fixes are often not applicable. There is also a lack of information on the effects on vulnerable groups such as elderly people and pregnant women. As increasing temperatures reduce work productivity, world economic productivity could be condensed, affecting developing countries in the tropical climate zone disproportionately. Future research is needed taking an interdisciplinary approach, including social, economic, environmental and technical aspects.

7. Physiological characteristics under the influence of heat stress working in the hot environment, (4)

International Nuclear Information System (INIS)

Nagasaka, Akihiko; Yoshino, Kenji; Takano, Ken-ichi

1987-01-01

There is a possibility that physical and mental stress appears under hot environmental condition for the cause of wearing protection suits on reactor maintenance work. It is important to reduce heat stress rapidly and effectively. This paper mentioned following about the results of static state and simulation work done by testees with or without protection suits under 25 kinds of temperatures and wind velocities in a artificial climate chamber. (1) the correlation between ambient temperatures or wind velocities and subjective symptoms without protection suits. (2) the correlation between ambient temperatures or wind velocities and skin temperatures without protection suits. (3) investigation of the parts of body affecting subjective symptoms. (4) the correlation between ambient temperatures or wind velocities and skin temperatures at working with protection suits. (5) working out countermeasures of recovery from heat stress with the index of skin temperatures and subjective symptoms. (author)

8. Study of heating performance of radiant ceiling heating system and its impact on workers thermal comfort level of workers in typical industrial work shops

Directory of Open Access Journals (Sweden)

2013-08-01

.Conclusion: Due to large space of these industrial units, producing appropriate heating by convection mechanism is too difficult and expensive. The results confirmed that if radiant heating system applied based on scientific design principles they could be effective in promotion of thermal comfort due to heating surrounding surface by radiant and also reducing fuel consumption.

9. Conversion to biofuel based heating systems - local environmental effects

International Nuclear Information System (INIS)

Jonsson, Anna

2003-01-01

One of the most serious environmental problems today is the global warming, i.e.climate changes caused by emissions of greenhouse gases. The greenhouse gases originate from combustion of fossil fuels and changes the atmospheric composition. As a result of the climate change, the Swedish government has decided to make a changeover of the Swedish energy system. This involves an increase of the supply of electricity and heating from renewable energy sources and a decrease in the amount electricity used for heating, as well as a more efficient use of the existing electricity system. Today, a rather large amount electricity is used for heating in Sweden. Furthermore, nuclear power will be phased out by the year 2010 in Sweden. Bio fuels are a renewable energy source and a conceivable alternative to the use of fossil fuels. Therefore, an increase of bio fuels will be seen the coming years. Bio fuels have a lot of environmental advantages, mainly for the global environment, but might also cause negative impacts such as depletion of the soils where the biomass is grown and local deterioration of the air quality where the bio fuels are combusted. These negative impacts are a result of the use of wrong techniques and a lack of knowledge and these factors have to be improved if the increase of the use of bio fuels is to be made effectively. The aim of this master thesis is to evaluate the possibilities for heating with bio fuel based systems in housing areas in the municipalities of Trollhaettan, Ulricehamn and Goetene in Vaestra Goetalands County in the South West of Sweden and to investigate which environmental and health effects are caused by the conversion of heating systems. The objective is to use the case studies as examples on preferable bio fuel based heating systems in different areas, and to what environmental impact this conversion of heating systems might cause. The housing areas for this study have been chosen on the basis of present heating system, one area

10. Radiation control report on intermediate heat exchanger replacement and related works

International Nuclear Information System (INIS)

Kanou, Y.; Yamanaka, T.; Sasajima, T.; Hoshiba, H.; Emori, S.; Shindou, K.

2002-03-01

11. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

Energy Technology Data Exchange (ETDEWEB)

Wong, Bunsen [General Atomics, San Diego, CA (United States)

2014-11-01

This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

12. Enhancement of convective heat transfer coefficient of ethylene glycol base cuprous oxide (Cu2O) nanofluids

Science.gov (United States)

Hassan, Ali; Ramzan, Naveed; Umer, Asim; Ahmad, Ayyaz; Muryam, Hina

2018-02-01

The enhancement in the convective heat transfer coefficient of the ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids were investigated. The nanofluids of different volume concentrations i-e 1%, 2.5% and 4.5% were prepared by the two step method. Cuprous oxide (Cu2O) nanoparticles were ultrasonically stirred for four hours in the ethylene glycol (EG). The experimental study has been performed through circular tube geometry in laminar flow regime at average Reynolds numbers 36, 71 and 116. The constant heat flux Q = 4000 (W/m2) was maintained during this work. Substantial enhancement was observed in the convective heat transfer coefficient of ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids than the base fluid. The maximum 74% enhancement was observed in convective heat transfer coefficient at 4.5 vol% concentration and Re = 116.

13. Tuning of Heat Transfer Rate of Cobalt Manganese Ferrite Based Magnetic Fluids in Varying Magnetic Field

Directory of Open Access Journals (Sweden)

Margabandhu MARIMUTHU

2017-08-01

Full Text Available Magnetic fluids are the colloidal solutions containing suspended magnetic nanoparticles in carrier fluids. The present work analyzed the heat transfer characteristics of de-ionized water and transformer oil (base fluids based cobalt manganese ferrite (Co1-xMnxFe2O4 coated with oleic acid synthesized via co-precipitation technique magnetic fluids in  varying magnetic field. Experimental investigations were carried out to analyze the heat transfer property of synthesized magnetic fluids (MNF in varying magnetic field applied in perpendicular direction to the thermal gradient of magnetic fluids. The experimental results indicate that the magnetic fluids show enhancement in heat transfer rate than carrier fluids in absence of magnetic field and it shows decrement in heat transfer rate in presence of varying magnetic field. Thus, the results reveal that the heat transfer characteristics of cobalt manganese ferrite based magnetic fluids was tunable by controlling the direction and influence of magnetic field strength. This tunable heat transfer property of cobalt manganese ferrite based magnetic fluids could be applicable in heat transport phenomena of transformers and in microelectronic devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16662

14. Model-based analysis and simulation of regenerative heat wheel

DEFF Research Database (Denmark)

Wu, Zhuang; Melnik, Roderick V. N.; Borup, F.

2006-01-01

of mathematical models for the thermal analysis of the fluid and wheel matrix. The effect of heat conduction in the direction of the fluid flow is taken into account and the influence of variations in rotating speed of the wheel as well as other characteristics (ambient temperature, airflow and geometric size......The rotary regenerator (also called the heat wheel) is an important component of energy intensive sectors, which is used in many heat recovery systems. In this paper, a model-based analysis of a rotary regenerator is carried out with a major emphasis given to the development and implementation...

15. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

Energy Technology Data Exchange (ETDEWEB)

Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

2012-10-11

The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

16. Heat unit-based crop coefficient for grapefruit trees

International Nuclear Information System (INIS)

Martin, E.C.; Hla, A.K.; Waller, P.M.; Slack, D.C.

1997-01-01

The onset and rate of sap moving up the branches of grapefruit (Citrus paradisi Macfadyen) trees were monitored hourly using portable sap flow sensors at Waddell, Arizona. Hourly reference evapotranspiration (ETo) estimates were calculated using data from a nearby weather station. Crop water use was estimated from soil moisture measurements using a neutron probe. These data were used to first delineate the upper and lower temperature threshold values for the determination of heat units. A heat unit-based crop coefficient was then derived from a correlation of the crop coefficient with heat units over a crop year. The heat unit-based crop coefficient was found to be similar to crop coefficients derived by other reseachers

17. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

Science.gov (United States)

Yang, H. Q.; West, Jeff

2015-01-01

Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

18. Characterization of zeolite-based coatings for adsorption heat pumps

CERN Document Server

Freni, Angelo; Bonaccorsi, Lucio; Chmielewski, Stefanie; Frazzica, Andrea; Calabrese, Luigi; Restuccia, Giovanni

2015-01-01

This book proposes a radically new approach for characterizing thermophysical and mechanical properties of zeolite-based adsorbent coatings for Adsorptive Heat Transformers (AHT). It presents a developed standard protocol for the complete characterization of advanced coated adsorbers. Providing an in-depth analysis of the different procedures necessary for evaluating the performance of adsorbers, it also presents an analysis of their stability under the hydrothermal and mechanical stresses during their entire life cycle. Adsorptive Heat Transformers (AHT), especially adsorption chillers and

19. Heat Retreat Locations in Cities - The Survey-Based Location Analysis of Heat Relief

Science.gov (United States)

Neht, Alice; Maximini, Claudia; Prenger-Berninghoff, Kathrin

2017-12-01

The adaptation of cities to climate change effects is one of the major strategies in urban planning to encounter the challenges of climate change (IPCC 2014). One of the fields of climate change adaption is dealing with heat events that occur more frequently and with greater intensity. Cities in particular are vulnerable to these events due to high population and infrastructure density. Proceeding urbanization calls for the existence of sufficient heat retreat locations (HRL) to enable relief for the population from heat in summer. This is why an extensive analysis of HRL is needed. This paper aims at the development of a survey-based location analysis of heat relief by identifying user groups, locations and characteristics of HRL based on a home survey that was conducted in three German cities. Key results of the study show that the majority of the participants of the survey are users of existing HRL, are affected by heat, and perceive heat as a burden in summer. Moreover, HRL that are located in close proximity are preferred by most users while their effect depends on the regional context that has to be considered in the analysis. Hence, this research presents an approach to heat relief that underlines the importance of HRL in cities by referring to selected examples of HRL types in densely populated areas of cities. HRL should especially be established and secured in densely built-up areas of cities. According to results of the survey, most HRL are located in public spaces, and the overall accessibility of HRL turned out to be an issue.

20. Effect of thermal radiation on free convection flow and heat transfer over a truncated cone in the presence of pressure work and heat generation/absorption

Directory of Open Access Journals (Sweden)

Elbashbeshy E.M.A.

2016-01-01

Full Text Available Effect of heat generation or absorption and thermal radiation on free convection flow and heat transfer over a truncated cone in the presence of pressure work is considered. The governing boundary layer equations are reduced to non-similarity boundary layer equations and solved numerically by using Mathematica technique. Comparisons with previously published work on special cases of the problem are performed and the results are found to be in excellent agreement. The solutions are presented in terms of local skin friction, local Nusselt number, velocity and temperature profiles for values of Prandtl number, pressure work parameter, radiation parameter and heat generation or absorption parameter.

1. Collaborative Communication in Work Based Learning Programs

Science.gov (United States)

Wagner, Stephen Allen

2017-01-01

This basic qualitative study, using interviews and document analysis, examined reflections from a Work Based Learning (WBL) program to understand how utilizing digital collaborative communication tools influence the educational experience. The Community of Inquiry (CoI) framework was used as a theoretical frame promoting the examination of the…

2. Heat, work, and energy currents in the boundary-driven X X Z spin chain

Science.gov (United States)

Pereira, Emmanuel

2018-02-01

We address the detailed study of the energy current and its components, heat and work, in the boundary-driven one-dimensional X X Z quantum model. We carry out the investigation by considering two different approaches present in the literature. First, we take the repeated interaction scheme and derive the expressions for the currents of heat and work, exchanged between system and baths. Then we perform the derivation of the energy current by means of a Lindblad master equation together with a continuity equation, another approach which is recurrently used. A comparison between the obtained expressions allows us to show the consistency of both approaches, and, in the latter expression derived from the Lindblad equation, it allows us to split the energy, which comes from the baths to the system, into heat and work. The recognition of work in the process, which is recurrently ignored in studies of transport, enables us to understand thermodynamical aspects and to solve some imbroglios in the physics behind the energy current in the X X Z spin chain.

3. Water Based Phase Change Material Heat Exchanger Development

Science.gov (United States)

Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

2014-01-01

In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

4. Subscale Water Based Phase Change Material Heat Exchanger Development

Science.gov (United States)

Sheth, Rubik; Hansen, Scott

2016-01-01

Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

5. Method of Heating a Foam-Based Catalyst Bed

Science.gov (United States)

Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

2009-01-01

A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

6. A quantum heat engine based on Tavis-Cummings model

Science.gov (United States)

Sun, Kai-Wei; Li, Ran; Zhang, Guo-Feng

2017-09-01

This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.

7. To capabilities of heat engines with gas working medium in closed cycle

International Nuclear Information System (INIS)

Kotov, V.M.; Tikhomirov, L.N.; Rajkhanov, N.A.; Kotov, S.V.

2003-01-01

The effort gives analysis of performance of engines and heat pumps with closed cycles based on use of well practiced adiabatic and isobaric processes. Advantages of theses cycles are demonstrated as compared to Stirling engines, and capabilities of their application in piston machines. (author)

8. INDUSTRIAL CARBON DIOXIDE HEAT PUMP STATION WITH EVAPORATORS WORKING AT VARIOUS TEMPERATURE LEVELS AND AT VARIABLE LOAD

Directory of Open Access Journals (Sweden)

Sit M.L.

2010-08-01

Full Text Available The block diagram of an industrial carbon dioxide heat pump working in a supercritical cycle, with two evaporators included in parallel working at different temperature levels (mainly for wine-making factories is developed. Heat pump is intended for simultaneous production of heat and cold and works at variable thermal loading. It is shown, how an ejector inclusion in the heat pump scheme provides growth of its thermal efficiency. The way of construction of the hydraulic scheme and a control system provides full controllability of the thermal pump.

9. Fundamental aspects of steady-state conversion of heat to work at the nanoscale

Science.gov (United States)

Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.

2017-06-01

In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the

10. Solar water heating system for a lunar base

Science.gov (United States)

Somers, Richard E.; Haynes, R. Daniel

1992-01-01

An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

11. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources

International Nuclear Information System (INIS)

Vivian, Jacopo; Manente, Giovanni; Lazzaretto, Andrea

2015-01-01

Highlights: • General guidelines are proposed to select ORC working fluid and cycle layout. • Distance between critical and heat source temperature for optimal fluid selection. • Separate contributions of cycle efficiency and heat recovery factor. - Abstract: The selection of the most suitable working fluid and cycle configuration for a given heat source is a fundamental step in the search for the optimum design of Organic Rankine Cycles. In this phase cycle efficiency and heat source recovery factor lead to opposite design choices in the achievement of maximum system efficiency and, in turn, maximum power output. In this work, both separate and combined effects of these two performance factors are considered to supply a thorough understanding of the compromise resulting in maximum performance. This goal is pursued by carrying out design optimizations of four different ORC configurations operating with twenty-seven working fluids and recovering heat from sensible heat sources in the temperature range 120–180 °C. Optimum working fluids and thermodynamic parameters are those which simultaneously allow high cycle efficiency and high heat recovery from the heat source to be obtained. General guidelines are suggested to reach this target for any system configuration. The distance between fluid critical temperature and inlet temperature of the heat source is found to play a key role in predicting the optimum performance of all system configurations regardless of the inlet temperature of the heat source

12. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

Science.gov (United States)

Weinstein, Leonard M. (Inventor)

2015-01-01

An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

13. Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: implications for a climate change future.

Science.gov (United States)

Sahu, Subhashis; Sett, Moumita; Kjellstrom, Tord

2013-01-01

Excessive workplace heat exposures create well-known risks of heat stroke, and it limits the workers' capacity to sustain physical activity. There is very limited evidence available on how these effects reduce work productivity, while the quantitative relationship between heat and work productivity is an essential basis for climate change impact assessments. We measured hourly heat exposure in rice fields in West Bengal and recorded perceived health problems via interviews of 124 rice harvesters. In a sub-group (n = 48) heart rate was recorded every minute in a standard work situation. Work productivity was recorded as hourly rice bundle collection output. The hourly heat levels (WBGT = Wet Bulb Globe Temperature) were 26-32°C (at air temperatures of 30-38°C), exceeding international standards. Most workers reported exhaustion and pain during work on hot days. Heart rate recovered quickly at low heat, but more slowly at high heat, indicating cardiovascular strain. The hourly number of rice bundles collected was significantly reduced at WBGT>26°C (approximately 5% per°C of increased WBGT). We conclude that high heat exposure in agriculture caused heat strain and reduced work productivity. This reduction will be exacerbated by climate change and may undermine the local economy.

14. A model of heat transfer in STM-based magnetic recording on CoNi/Pt multilayers

NARCIS (Netherlands)

Zhang, Li; Bain, James A.; Zhu, Jian-Gang; Abelmann, Leon; Onoue, T.

2006-01-01

A method of heat-assisted magnetic recording (HAMR) potentially suitable for probe-based storage systems is characterized. In this work, field emission current from a scanning tunneling microscope (STM) tip is used as the heating source. Pulse voltages of 3-7 V with a duration of 500 ns were applied

15. CTOD-based acceptance criteria for heat exchanger head staybolts

International Nuclear Information System (INIS)

Lam, P.S.; Sindelar, R.L.; Barnes, D.M.; Awadalla, N.G.

1992-01-01

The primary coolant piping system of the Savannah River Site (SRS) reactors contains twelve heat exchangers to remove the waste heat from the nuclear materials production. A large break at the inlet or outlet heads of the heat exchangers would occur if the restraint members of the heads become inactive. The heat exchanger head is attached to the tubesheet by 84 staybolts. The structural integrity of the heads is demonstrated by showing the redundant capacity of the staybolts to restrain the head at design conditions and under seismic loadings. The beat exchanger head is analyzed with a three- dimensional finite element model. The restraint provided by the staybolts is evaluated for several postulated cases of inactive or missing staybolts, that is, bolts that have a flaw exceeding the ultrasonic testing (UT) threshold depth of 25% of the bolt diameter. A limit of 6 inactive staybolts is reached with a fracture criterion based on the maximum allowable local displacement at the active staybolts which corresponds to the crack tip opening displacement (CTOD) of 0.032 inches. An acceptance criteria methodology has been developed to disposition flaws reported in the staybolt inspections while ensuring adequate restraint capacity of the staybolts to maintain integrity of the heat exchanger heads against collapse. The methodology includes an approach for the baseline and periodic inspections of the staybolts. A total of up to 6 staybolts, reported as containing flaws with depths at or exceeding 25% would be acceptable in the heat exchanger

16. A concept of heat dissipation coefficient for thermal cloak based on entropy generation approach

Directory of Open Access Journals (Sweden)

Guoqiang Xu

2016-09-01

Full Text Available In this paper, we design a 3D spherical thermal cloak with eight material layers based on transformation thermodynamics and it worked at steady state before approaching ‘static limit’. Different from the present research, we introduce local entropy generation to present the randomness in the cloaking system and propose the concept of a heat dissipation coefficient which is used to describe the capacity of heat diffusion in the ‘cloaking’ and ‘protected’ region to characterize the cloaking performance on the basis of non-equilibrium thermodynamics. We indicate the ability of heat dissipation for the thermal cloak responds to changes in anisotropy (caused by the change in the number of layers and differential temperatures. In addition, we obtain a comparison of results of different cloaks and believe that the concept of a heat dissipation coefficient can be an evaluation criterion for the thermal cloak.

17. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

Science.gov (United States)

Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.

2018-02-01

The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

18. An ecofriendly graphene-based nanofluid for heat transfer applications

DEFF Research Database (Denmark)

2016-01-01

Herein, a new ecofriendly approach to generate a graphene-based nanofluid was established. Specifically, a novel mode of graphene oxide reduction through functionalization with polyphenol extracted from red wine was introduced. Comprehensive characterization methods were employed to confirm and u...... that the generated nanofluid will open a new avenue in the pursuit of ecofriendly thermal conductors for heat transfer applications....

19. Nanosize boride particles in heat-treated nickel base superalloys

International Nuclear Information System (INIS)

Zhang, H.R.; Ojo, O.A.; Chaturvedi, M.C.

2008-01-01

Grain boundary microconstituents in aged nickel-based superalloys were studied by transmission electron microscopy techniques. A nanosized M 5 B 3 boride phase, possibly formed by intergranular solute desegregation-induced precipitation, was positively identified. The presence of these intergranular nanoborides provides reasonable clarification of a previously reported reduction of grain boundary liquation temperature during the weld heat affected zone thermal cycle

20. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

DEFF Research Database (Denmark)

Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

2014-01-01

The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change of the ze......The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change...

1. Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work

Science.gov (United States)

Muniz, German; Alum, Jorge

1996-02-01

In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.

2. Optimization of Roller Velocity for Quenching Machine Based on Heat Transfer Mathematical Model

Directory of Open Access Journals (Sweden)

Yunfeng He

2017-01-01

Full Text Available During quenching process of steel plate, control parameters are important to product quality. In this work, heat transfer mathematical model has been developed for roller-type quenching machine to predict the temperature field of plate at first, and then an optimization schedule considering quenching technology and equipment limitations is developed firstly based on the heat transfer mathematical model with considering the shortest quenching time. A numerical simulation is performed during optimization process to investigate the effects of roller velocity on the temperature of representative plate. Based on the optimization method, study is also performed for different thickness of plate to obtain the corresponding roller velocity. The results show that the optimized roller velocity can be achieved for the roller-type continuous quenching machine based on the heat transfer mathematical model. With the increasing of plate’s thickness, the optimized roller velocity decreases exponentially.

3. Volume Averaging Theory (VAT) based modeling and closure evaluation for fin-and-tube heat exchangers

Science.gov (United States)

Zhou, Feng; Catton, Ivan

2012-10-01

A fin-and-tube heat exchanger was modeled based on Volume Averaging Theory (VAT) in such a way that the details of the original structure was replaced by their averaged counterparts, so that the VAT based governing equations can be efficiently solved for a wide range of parameters. To complete the VAT based model, proper closure is needed, which is related to a local friction factor and a heat transfer coefficient of a Representative Elementary Volume (REV). The terms in the closure expressions are complex and sometimes relating experimental data to the closure terms is difficult. In this work we use CFD to evaluate the rigorously derived closure terms over one of the selected REVs. The objective is to show how heat exchangers can be modeled as a porous media and how CFD can be used in place of a detailed, often formidable, experimental effort to obtain closure for the model.

4. Consistency between Sweat Rate and Wet Bulb Globe Temperature for the Assessment of Heat Stress of People Working Outdoor in Arid and Semi-arid Regions

Directory of Open Access Journals (Sweden)

Hamidreza Heidari

2018-01-01

Full Text Available Background: Heat stress is common among workers in arid and semi-arid areas. In order to take every preventive measure to protect exposed workers against heat-related disorders, it is crucial to choose an appropriate index that accurately relates environmental parameters to physiological responses. Objective: To investigate the consistency between 2 heat stress and strain indices, ie, sweat rate and wet bulb globe temperature (WBGT, for the assessment of heat stress of people working outdoor in arid and semi-arid regions in Iran. Methods: During spring and summer, 136 randomly selected outdoor workers were enrolled in this study. Using a defined protocol, the sweat rate of these workers was measured 3 times a day. Simultaneously, the environmental parameters including WBGT index were recorded for each working station. Results: The level of agreement between sweat rate and WBGT was poor (κ<0.2. Based on sweat rate, no case exceeding the reference value was observed during the study. WBGT overestimated the heat stress in outdoor workers compared to sweat rate. Conclusion: It seems that the sweat rate standards may need some modifications related to real condition of work in arid and semi-arid regions in Iran. Moreover, it seems that judging workers solely based on monitoring their sweat rate in such regions, can probably result in underestimation of heat stress.

5. Embedded water-based surface heating part 2: experimental validation

DEFF Research Database (Denmark)

Karlsson, Henrik

2010-01-01

: hybrid 3D numerical model. Journal of Building Physics 33: 357-391). The thermal response of the system is tested in both long (16 h) and short (30 min) cycle experiments where the water flow alters between on and off. Temperature distribution, within the floor construction, and the heat exchange process...... are studied throughout the test cycles. The model underestimates the steady-state heat exchange from the pipe loop by 16% when boundary conditions and thermal properties according to the reference case are applied. Temperatures at the floor surface are assessed with good precision while temperatures......The transient operation of an embedded water-based floor heating system has been studied by means of a numerical simulation tool. Prior to this study, Caccavelli and Richard (Caccavelli D, Richard P (1994) Etude portant sur le dimensionnement d'un plancher chauffant a eau chaude en CIC. Rapport n...

6. Continued Water-Based Phase Change Material Heat Exchanger Development

Science.gov (United States)

Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

2015-01-01

In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

7. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

DEFF Research Database (Denmark)

Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

2015-01-01

The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...

8. Alloying principles for magnesium base heat resisting alloys

International Nuclear Information System (INIS)

Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

1982-01-01

Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

9. Technoeconomic analysis of a biomass based district heating system

International Nuclear Information System (INIS)

Zhang, H.; Ugursal, V.I.; Fung, A.

2005-01-01

This paper discussed a proposed biomass-based district heating system to be built for the Pictou Landing First Nation Community in Nova Scotia. The community centre consists of 6 buildings and a connecting arcade. The methodology used to size and design heating, ventilating and air conditioning (HVAC) systems, as well as biomass district energy systems (DES) were discussed. Annual energy requirements and biomass fuel consumption predictions were presented, along with cost estimates. A comparative assessment of the system with that of a conventional oil fired system was also conducted. It was suggested that the design and analysis methodology could be used for any similar application. The buildings were modelled and simulated using the Hourly Analysis Program (HAP), a detailed 2-in-1 software program which can be used both for HVAC system sizing and building energy consumption estimation. A techno-economics analysis was conducted to justify the viability of the biomass combustion system. Heating load calculations were performed assuming that the thermostat was set constantly at 22 degrees C. Community centre space heating loads due to individual envelope components for 3 different scenarios were summarized, as the design architecture for the buildings was not yet finalized. It was suggested that efforts should be made to ensure air-tightness and insulation levels of the interior arcade glass wall. A hydronic distribution system with baseboard space heating units was selected, comprising of a woodchip boiler, hot water distribution system, convective heating units and control systems. The community has its own logging operation which will provide the wood fuel required by the proposed system. An outline of the annual allowable harvest covered by the Pictou Landing Forestry Management Plan was presented, with details of proposed wood-chippers for the creation of biomass. It was concluded that the woodchip combustion system is economically preferable to the

10. Research on Heat Dissipation of Electric Vehicle Based on Safety Architecture Optimization

Science.gov (United States)

Zhou, Chao; Guo, Yajuan; Huang, Wei; Jiang, Haitao; Wu, Liwei

2017-10-01

In order to solve the problem of excessive temperature in the discharge process of lithium-ion battery and the temperature difference between batteries, a heat dissipation of electric vehicle based on safety architecture optimization is designed. The simulation is used to optimize the temperature field of the heat dissipation of the battery. A reasonable heat dissipation control scheme is formulated to achieve heat dissipation requirements. The results show that the ideal working temperature range of the lithium ion battery is 20?∼45?, and the temperature difference between the batteries should be controlled within 5?. A cooling fan is arranged at the original air outlet of the battery model, and the two cooling fans work in turn to realize the reciprocating flow. The temperature difference is controlled within 5? to ensure the good temperature uniformity between the batteries of the electric vehicle. Based on the above finding, it is concluded that the heat dissipation design for electric vehicle batteries is safe and effective, which is the most effective methods to ensure battery life and vehicle safety.

11. Generation of cross section data of heat pipe working fluids for compact nuclear reactors

Energy Technology Data Exchange (ETDEWEB)

Slewinski, Anderson; Ribeiro, Guilherme B. [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Caldeira, Alexandre D., E-mail: anderson_sle@live.com, E-mail: alexdc@ieav.cta.br, E-mail: gbribeiro@ieav.cta.br [Instituto de Estudos Avançados (IEAv), São José dos Campos, SP (Brazil). Divisão de Energia Nuclear

2017-07-01

For compact nuclear power plants, such as the nuclear space propulsion proposed by the TERRA project, aspects like mass, size and efficiency are essential drivers that must be managed during the project development. Moreover, for high temperature reactors, the use of liquid metal heat pipes as the heat removal mechanism provides some important advantages as simplicity and reliability. Considering these aforementioned aspects, this paper aims the development of the procedure necessary to calculate the microscopic absorption cross section data of several liquid metal to be used as working fluids with heat pipes; which will be later compared with the given data from JEF Report ⧣14. The information necessary to calculate the cross section data will be obtained from the latest ENDF library version. The NJOY system will be employed with the following modules: RECONR, BROADR, UNRESR and GROUPR, using the same specifications used to calculate the cross section data encountered in the JEF Report ⧣14. This methodology allows a comparison with published values, verifying the procedure developed to calculate the microscopic absorption cross section for selected isotopes using the TERRA reactor spectrum. Liquid metals isotopes of Sodium (Na), Lithium (Li), Thallium (TI) and Mercury (Hg) are part of this study. (author)

12. Technical and economic working domains of industrial heat pumps: Part 1 - single stage vapour compression heat pumps

DEFF Research Database (Denmark)

Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix

2015-01-01

the constraints of available refrigeration equipment and a requirement of a positive net present value of the investment. Six heat pump systems were considered, corresponding to an upper limit of the sink temperature of 120 °C. For each set of heat sink and source temperatures the best available technology...... was determined. The results showed that four different heat pump systems propose the best available technology at different parts of the complete domain. Ammonia systems presented the best available technology at low sink outlet temperature. At high temperature difference between sink in- and outlet...

13. Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water

International Nuclear Information System (INIS)

Zhang Xiaodong; Hu Dapeng

2012-01-01

The performance simulation of a single-stage absorption heat transformer using a new working pair composed of ionic liquids, 1-ethyl-3-methylimidazolium dimethylphosphate, and water (H 2 O + [EMIM][DMP]), was performed based on the thermodynamic properties of the new working pair and on the mass and energy balance for each component of the system. In order to evaluate the new working pair, the simulation results were compared with those of aqueous solution of lithium bromide (H 2 O + LiBr), Trifluoroethanol (TFE) + tetraethylenglycol dimethylether (E181). The results indicate that when generation, evaporation, condensing and absorption temperatures are 90 °C, 90 °C, 35 °C and 130 °C, the coefficients of performance of the single-stage absorption heat transformer using H 2 O + LiBr, H 2 O + [EMIM][DMP] and TFE + E181 as working pairs will reach 0.494, 0.481 and 0.458 respectively. And the corresponding exergy efficiency will reach 0.64, 0.62 and 0.59, respectively. Meanwhile the available heat outputs for per unit mass of refrigerant are 2466 kJ/kg, 2344 kJ/kg and 311 kJ/kg, respectively. The above excellent cycle performance together with the advantages of negligible vapor pressure, no crystallization and more weak corrosion tendency to iron-steel materials may make the new working pair better suited for the industrial absorption heat transformer. - Highlights: ► The cycle performance of the single-stage absorption heat transformer was simulated. ► Water and 1-ethyl-3-methylimidazolium dimethylphosphate was used as new working pair. ► Water and 1-ethyl-3-methylimidazolium dimethylphosphate are entirely miscible. ► The COP and exergy efficiency for this new working pairs were 0.481 and 0.62. ► The new working pairs has potential application to absorption heat transformer.

14. Ultrasonic test application in geothermal heat exchangers and civil works to monitor the grout integrity (TUC)

Science.gov (United States)

Mandrone, Giuseppe; Comina, Cesare; Giuliani, Andrea

2013-04-01

The working of a vertical geothermal probe, realized with a pipe U-tubes of high-density-polyethylene (HDPE) inserted in a grouted boreholes, is linked to the possibility to exchange heat with the surrounding soil. The concrete material useful for the borehole heat exchangers allows to satisfy a double purpose: sealing the polyethylene pipes from groundwater in the event of loss and increasing the thermal properties of the whole probe to provide a greater interaction with the underground. If this operation is not performed properly, the complete system may not satisfy the required heat demand, even with a well dimensioned installation, wasting the value of the entire carried out work. This paper offers to a wide group of professional actors a possible ultrasonic method of a draft and economically sustainable investigation for the identification of defects that could be present in the cementation realized inside a geothermal probe, but also in the realization of sonic piles. The instrument used for this type of test (TUC - Test Ultrasonic Cementation) has been designed and tested by the technicians of AG3, a Spin Off Company of Torino University, in collaboration with 3DM Electric and PASI companies, then subjected to patenting procedure (Patent Pending TO2011A000036). The main innovative feature of this approach has been the miniaturization of the equipment, able to investigate the geothermal probes with U-tubes with standard dimension (the maximum overall dimensions of the instruments detectors is 26 mm), maintaining a sampling rate appropriate to investigate the cementation and the early centimetres of the surrounding soil. The processing of the recorded data was performed by a dedicated Matlab software. In the first part of the article is presented the calibration process, that it was carried out through ad hoc creation of two situations likely to be investigated, while in the second part the paper reports the results obtained by the application of the TUC

15. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

Energy Technology Data Exchange (ETDEWEB)

James A Menart, Professor

2013-02-22

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

16. Finite Volume Based Computer Program for Ground Source Heat Pump System

Energy Technology Data Exchange (ETDEWEB)

Menart, James A. [Wright State University

2013-02-22

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

17. Mesoporous Metal-Organic Frameworks with Exceptionally High Working Capacities for Adsorption Heat Transformation.

Science.gov (United States)

Mo, Zong-Wen; Zhou, Hao-Long; Zhou, Dong-Dong; Lin, Rui-Biao; Liao, Pei-Qin; He, Chun-Ting; Zhang, Wei-Xiong; Chen, Xiao-Ming; Zhang, Jie-Peng

2018-01-01

Pore size is one of the most important parameters of adsorbents, and mesoporous materials have received intense attention for large guests. Here, a series of mesoporous coordination polymers underlying a new framework prototype for fast expansion of pore size is reported and the profound effect of pore size on adsorption heat transformation is demonstrated. Three isostructural honeycomb-like frameworks are designed and synthesized by combining ditopic linear metal oxalate chains and triangular tris-pyridine ligands. Changing the ligand bridging length from 5.5 to 8.6 and 9.9 Å gives rise to effective pore diameter from 20 to 33 and 37 Å, surface area from 2096 to 2630 and 2749 m 2 g -1 , and pore volume from 1.19 to 1.93 and 2.36 cm 3 g -1 , respectively. By virtue of the unique and tunable isotherm shape of mesopores, exceptionally large working capacity up to 1.19 g g -1 or 0.38 g cm -3 for adsorption heat transformation can be achieved using R-134a (1,1,1,2-tetrafluroethane) as a working fluid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

18. Multiple Days of Heat Exposure on Firefighters' Work Performance and Physiology.

Directory of Open Access Journals (Sweden)

Brianna Larsen

Full Text Available This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36 were matched and allocated to either the CON (19°C or HOT (33°C condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc, and skin temperature (Tsk were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants' doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants' work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of

19. Heat

CERN Document Server

Lawrence, Ellen

2016-01-01

Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

20. The Heat Is on: An Inquiry-Based Investigation for Specific Heat

Science.gov (United States)

Herrington, Deborah G.

2011-01-01

A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…

1. Thermal performance of different working fluids in a dual diameter circular heat pipe

Directory of Open Access Journals (Sweden)

2013-12-01

Full Text Available In this paper, heat transfer performance of a 40 cm-length circular heat pipe with screen mesh wick is experimentally investigated. This heat pipe is made of copper with two diameters; larger in the evaporator and smaller in the adiabatic and condenser. Three different liquids including water, methanol, and ethanol are separately filled within the heat pipe. Low heat fluxes are applied (up to 2500 W/m2 in the evaporator and constant temperature water bath is used at three levels including 15, 25, and 35 °C in the condenser. Results demonstrate that higher heat transfer coefficients are obtained for water and ethanol in comparison with methanol. Furthermore, increasing heat flux increases the evaporator heat transfer coefficient. For the case of methanol, some degradation in heat transfer coefficient is occurred at high heat fluxes which can be due to the surface dryout effect. Increasing the inclination angle decreases the heat pipe thermal resistance.

2. Complex fluid flow and heat transfer analysis inside a calandria based reactor using CFD technique

Science.gov (United States)

Kulkarni, P. S.

2017-04-01

Series of numerical experiments have been carried out on a calandria based reactor for optimizing the design to increase the overall heat transfer efficiency by using Computational Fluid Dynamic (CFD) technique. Fluid flow and heat transfer inside the calandria is governed by many geometric and flow parameters like orientation of inlet, inlet mass flow rate, fuel channel configuration (in-line, staggered, etc.,), location of inlet and outlet, etc.,. It was well established that heat transfer is more wherever forced convection dominates but for geometries like calandria it is very difficult to achieve forced convection flow everywhere, intern it strongly depends on the direction of inlet jet. In the present paper the initial design was optimized with respect to inlet jet angle, the optimized design has been numerically tested for different heat load mass flow conditions. To further increase the heat removal capacity of a calandria, further numerical studies has been carried out for different inlet geometry. In all the analysis same overall geometry size and same number of tubes has been considered. The work gives good insight into the fluid flow and heat transfer inside the calandria and offer a guideline for optimizing the design and/or capacity enhancement of a present design.

3. Hardness survey of cold-worked and heat-treated JBK-75 stainless steel alloy

International Nuclear Information System (INIS)

Jackson, R.J.; Lucas, R.L.

1977-01-01

The alloy JBK-75, an age-hardenable austenitic stainless steel, is similar to commercial A-286, but has certain chemistry modifications to improve weldability and hydrogen compatibility. The principal changes are an increase in nickel and a decrease in manganese with lower limits on carbon, phosphorus, sulfur, silicon, and boron. In this study, the effects of solutionizing time and temperature, quench rate, cold working, and the effects of cold working on precipitation kinetics were examined. Findings show that the solutionizing temperature has a moderate effect on the as-quenched hardness, while times greater than that required for solutionizing do not significantly affect hardness. Quench rate was found to have a small effect on as-quenched hardness, however, hardness gradients did not develop in small bars. It was found that JBK-75 can be significantly strengthened by cold working. Cold working alone produced hardness increases from Rockwell-A 49 to R/sub A/ 68. A recovery-related hardness change was noted on heat treating at 300 and 400 0 C for both as-quenched and as-worked JBK-75. Significant age-hardening was observed at temperatures as low as 500 0 C for as-worked metal. Aging at 600 0 C resulted in maximum hardness in the 75 percent worked sample at about 6 hours (R/sub A/ 73.5) while the 50 percent worked sample was near maximum hardness (R/sub A 72.5) after seven days. THE 25 and 0 percent worked samples were considerably underaged after seven days. Similar type kinetic data were obtained for worked and nonworked metal at 650, 700, 800, 850, 900, 1000, and 1100 0 C for times from 10 minutes to 10,000 minutes (6.7 days). The overall purpose of the hardness survey was to better define the effects of cold work on the stress-relieving range, coherent precipitation range, incoherent precipitation range, recrystallization range, solutionizing range, and grain-growth range

4. Performance Evaluation of a Helical Coil Heat Exchanger Working under Supercritical Conditions in a Solar Organic Rankine Cycle Installation

Directory of Open Access Journals (Sweden)

Marija Lazova

2016-06-01

Full Text Available Worldwide interest in low grade heat valorization using organic Rankine cycle (ORC technologies has increased significantly. A new small-scale ORC with a net capacity of 3 kW was efficiently integrated with a concentrated solar power technology for electricity generation. The excess heat source from Photovoltaic (PV collectors with a maximum temperature of 100 °C was utilized through a supercritical heat exchanger that uses R-404A as working medium. By ensuring supercritical heat transfer leads to a better thermal match in the heat exchanger and improved overall cycle efficiency. A helical coil heat exchanger was designed by using heat transfer correlations from the literature. These heat transfer correlations were derived for different conditions than ORCs and their estimated uncertainty is ~20%. In order to account for the heat transfer correlation uncertainties this component was oversized by 20%. Next, a prototype was built and installed in an integrated concentrated photovoltaic/thermal (CPV/T/Rankine system. The results from the measurements show that for better estimation of the sizing of the heat exchanger a more accurate correlation is required in order to design an optimal configuration and thus employ cheaper components.

5. Analogy between gambling and measurement-based work extraction

Science.gov (United States)

Vinkler, Dror A.; Permuter, Haim H.; Merhav, Neri

2016-04-01

In information theory, one area of interest is gambling, where mutual information characterizes the maximal gain in wealth growth rate due to knowledge of side information; the betting strategy that achieves this maximum is named the Kelly strategy. In the field of physics, it was recently shown that mutual information can characterize the maximal amount of work that can be extracted from a single heat bath using measurement-based control protocols, i.e. using ‘information engines’. However, to the best of our knowledge, no relation between gambling and information engines has been presented before. In this paper, we briefly review the two concepts and then demonstrate an analogy between gambling, where bits are converted into wealth, and information engines, where bits representing measurements are converted into energy. From this analogy follows an extension of gambling to the continuous-valued case, which is shown to be useful for investments in currency exchange rates or in the stock market using options. Moreover, the analogy enables us to use well-known methods and results from one field to solve problems in the other. We present three such cases: maximum work extraction when the probability distributions governing the system and measurements are unknown, work extraction when some energy is lost in each cycle, e.g. due to friction, and an analysis of systems with memory. In all three cases, the analogy enables us to use known results in order to obtain new ones.

6. Titanium based flat heat pipes for computer chip cooling

Science.gov (United States)

Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

2008-11-01

We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

7. Porous Foam Based Wick Structures for Loop Heat Pipes

Science.gov (United States)

Silk, Eric A.

2012-01-01

As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

8. Performance of ammonia–water based cycles for power generation from low enthalpy heat sources

International Nuclear Information System (INIS)

Mergner, Hanna; Weimer, Thomas

2015-01-01

Cost efficient power generation from low temperature heat sources requires an optimal usage of the available heat. In addition to the ORC (Organic Rankine Cycles), cycles with ammonia and water as working fluid show promising results regarding efficiency. Due to their non-isothermal phase change, mixtures can adapt well to a liquid heat source temperature profile and reduce the exergetic losses. In this analysis thermodynamic calculations on the layouts of two existing ammonia–water cycles are compared: a geothermal power plant based on a Siemens’ patent and a modified lab plant based on a patent invented by Kalina (KCS-34). The difference between the two cycles is the position of the internal heat recovery. Cycle simulations were carried out at defined boundary conditions in order to identify optimal operation parameters. For the selected heat source of 393.15 K (hot water) the ammonia mass fraction between 80% and 90% results in the best performance in both configurations. In general, the layout of Siemens achieves a slightly better efficiency compared to the KCS-34. Compared to an ORC using R245fa as working fluid, the exergetic efficiency can be increased by the ammonia/water based cycles by approximately 25%. - Highlights: • Two NH 3 /H 2 O based cycles based on existing plants are analyzed and compared. • A simple KCS-34 focuses on a high enthalpy difference at the turbine. • The Kalina cycle of a Siemens patent KC SG1 runs on a high vapor mass flow. • The layout of the KC SG1 shows slightly better results compared to the KCS-34. • NH 3 /H 2 O cycles show an efficiency increase compared to a regular ORC with R245fa

9. Clustering-based analysis for residential district heating data

DEFF Research Database (Denmark)

Gianniou, Panagiota; Liu, Xiufeng; Heller, Alfred

2018-01-01

residential heating consumption data and evaluate information included in national building databases. The proposed method uses the K-means algorithm to segment consumption groups based on consumption intensity and representative patterns and ranks the groups according to daily consumption. This paper also......The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze...

10. Thermodynamic and kinetic investigation of a chemical reaction-based miniature heat pump

International Nuclear Information System (INIS)

Flueckiger, Scott M.; Volle, Fabien; Garimella, Suresh V.; Mongia, Rajiv K.

2012-01-01

Highlights: ► Thermodynamic equilibrium inhibits sustainability of reaction-based cooling loop. ► Closed-loop pervaporation process proposed to exceed thermodynamic equilibrium. ► Low second-law efficiencies associated with system volume minimization. - Abstract: Representative reversible endothermic chemical reactions (paraldehyde depolymerization and 2-proponal dehydrogenation) are theoretically assessed for their use in a chemical heat pump design for compact thermal management applications. Equilibrium and dynamic simulations are undertaken to explore the operation of the heat pump which upgrades waste heat from near room temperature by approximately 20° in a minimized system volume. A model is developed based on system mass and energy balances coupled with kinetic equations to ascertain mixture conditions at each state point in the loop, as well as mass flow rate, minimum work input, and minimum endothermic reactor volume according to defined reservoir temperatures and desired heat load. Assuming that a pervaporation process is employed in both reaction systems to achieve the requisite mixture compositions for sustained operation, the simulations show that the chemical heat pump can pump 5 W of power with endothermic reactor volumes of as little as 60–93 cm 3 , depending on the selected chemical reaction. Low exergy efficiencies remain a significant design consequence, but the system performance in terms of environmental impact and COP are comparable with, and in some cases better than, the performance of alternative technologies under the same conditions.

11. Conceptual fusion reactor designs based on the laser heat solenoid

International Nuclear Information System (INIS)

Steinhauer, L.C.

1976-01-01

The feasibility of the laser heated solenoid (LHS) as an approach to fusion and fusion-fission commercial power generation has been examined. The LHS concept is based on magnetic confinement of a long slender plasma column which is partly heated by the axially directed beam from a powerful long wavelength laser. As a pure fusion concept, the LHS configurations studied so far are characterized by fairly difficult engineering constraints, particularly on the magnet, a large laser, and a marginally acceptable system energy balance. As a fusion-fission system, however, the LHS is capable of a very attractive energy balance, has much more relaxed engineering constraints, requires a relatively modest laser, and as such holds great potential as a power generator and fissile fuel breeding scheme

12. Experimental and computational investigation of a MEMS-based boiler for waste heat recovery

International Nuclear Information System (INIS)

Thapa, Suvhashis; Borquist, Eric; Baniya, Ashok; Weiss, Leland

2015-01-01

Highlights: • A microboiler with capillary channels for low temperature energy harvesting. • Complete thermodynamic analysis is completed. • The boiler is designed for minimum thermal losses. • Capability of capillary channels to pump at various pressure is investigated. - Abstract: Thermodynamically limited processes make waste heat abundant in availability. An Organic Rankine Cycle (ORC) steam powered micro system designed to scavenge waste heat from various sources (transportation, industries or solar) is presented. The key boiler component is fabricated and characterized in this work. The system design has been inspired by the various efforts implemented in development of micro heat recovery devices and engines. The complete system consists of three individual micro components (1) boiler, (2) free piston expander and (3) superheater. Specifically, design, fabrication techniques, test setup and results of the miniaturized boiler are presented in this paper. A key design feature of the boiler is the inclusion of capillary channels for fluid flow from the surrounding reservoirs to the heated area. The pressurized steam is created by the boiler as a result of phase transformation of the working fluid. This pressurized steam can be utilized to drive another MEMS device (PZT membranes, turbines, thermoelectric, etc.) to generate power. In this upgraded boiler design, radial capillary channels and a thin film glass steamdome were considered to improve the operating efficiency. These inclusions enhanced capillary flow, energy absorption via phase change, mass flow rate and operating pressure. The power inputs of 1.8 W and 2.7 W were selected to simulate and characterize the boiler performance based on real-world waste heat source temperatures. For these power inputs, the maximum power absorption efficiency demonstrated by the boiler via phase change of the working fluid was approximately 88%. The peak operating pressure demonstrated by the boiler was 8.5 k

13. Determination of Work-Rest Schedules Based on Physical Workload Among Bakers in Ahvaz, Iran

Directory of Open Access Journals (Sweden)

Davood Afshari

2016-09-01

Full Text Available Background Bakery workers due to exposure to radiant heat and doing manual labor are at risk of heat-related illnesses and musculoskeletal disorders Objectives The current study aimed to determine the appropriate work-rest time interval using two indexes of wet bulb globe temperature (WBGT and relative heart rate (RHR. Methods It was an analytical and descriptive research. Heart rate of workers was continuously recorded to achieve the physiological monitoring and the obtained information was used to determine the work difficulty and physical workload. The ratio of heat stress and RHR was measured using the WBGT and polar team pro device, respectively. Work-rest schedules were detected through the heart rate reserve and heat stress indexes. The level of significance was α = 0.05. Results Physical workload based on heart rate was estimated light to moderate in bakery workers. Suitable work-rest schedule for all bakery workers according to WBGT index was 25% work-75% rest and based on heart rate reserve index in half of the workers was 50% work-50% rest, and in the other half of the bakery workers was continuous work without rest. According to Kappa test, there was no agreement between the two methods of heat stress index and heart rate reserve to determine the work-rest schedules of workers (P < 0.001. Conclusions Physical workloads on the basis of heart rate were light for all workers except the workers of Tanoury who had moderate workload. Meanwhile, determining the work-rest schedule was different using the two indexes. The heart rate reserve index represents the physiological status of individual during the work and states the ratio of physical workload more precisely.

14. Exploring policy options for a transition to sustainable heating system diffusion using an agent-based simulation

International Nuclear Information System (INIS)

Maya Sopha, Bertha; Kloeckner, Christian A.; Hertwich, Edgar G.

2011-01-01

Change in home heating to more efficient and renewable systems is important for a sound climate policy. The present paper aims to identify potential interventions for the uptake of wood-pellet heating in Norway using an agent-based model (ABM). The theoretically based, empirically founded, agent-based simulation demonstrates that financial support, i.e., a stable wood-pellet price, and technical development, i.e., functional reliability improvement, have to be established all at the same time for a successful wood-pellet market to start. Furthermore, a soft intervention through persuading households to use environmentally beneficial heating system is not a promising driver for wood-pellet diffusion. Limitations and suggestions for future work are also discussed. - Research highlights: → The theoretically based, empirically founded, agent-based simulation is applied to investigate potential policy options toward diffusion of wood-pellet heating in Norway. → Relative advantages are necessary for wood-pellet heating to be adopted, consistent with Diffusion of Innovation theory (). → Simultaneous development is also required for further uptake of wood-pellet heating, supporting the existing empirical hypothesis by . → Persuading households to use environmentally friendly heating system is not a promising driver, in line with empirical finding of , who investigated psychological factors underlying the adoption of wood-pellet heating.

15. Inter-conversion of Work and Heat With Plasma Electric Fields

International Nuclear Information System (INIS)

Avinash, K.

2010-01-01

Thermodynamics of a model system where a group of cold charged particles locally confined in a volume V P within a warm plasma of temperature T and fixed volume V (V P << V) is presented. Various thermodynamic functions of the model e.g., Helmhotz free energy, internal energy, entropy, electrostatic pressure of charged particles are calculated from first principles. In the homogeneous limit, an equation of state for the ES pressure of charged particles is derived and the internal energy is shown to consist solely of the thermal energy of the back ground plasma. Finally, the direct conversion of plasma heat into mechanical work is demonstrated via a Striling like engine cycle involving ES isothermal compression of plasma electric fields.

16. Pipeline heating method based on optimal control and state estimation

Energy Technology Data Exchange (ETDEWEB)

Vianna, F.L.V. [Dept. of Subsea Technology. Petrobras Research and Development Center - CENPES, Rio de Janeiro, RJ (Brazil)], e-mail: fvianna@petrobras.com.br; Orlande, H.R.B. [Dept. of Mechanical Engineering. POLI/COPPE, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ (Brazil)], e-mail: helcio@mecanica.ufrj.br; Dulikravich, G.S. [Dept. of Mechanical and Materials Engineering. Florida International University - FIU, Miami, FL (United States)], e-mail: dulikrav@fiu.edu

2010-07-01

In production of oil and gas wells in deep waters the flowing of hydrocarbon through pipeline is a challenging problem. This environment presents high hydrostatic pressures and low sea bed temperatures, which can favor the formation of solid deposits that in critical operating conditions, as unplanned shutdown conditions, may result in a pipeline blockage and consequently incur in large financial losses. There are different methods to protect the system, but nowadays thermal insulation and chemical injection are the standard solutions normally used. An alternative method of flow assurance is to heat the pipeline. This concept, which is known as active heating system, aims at heating the produced fluid temperature above a safe reference level in order to avoid the formation of solid deposits. The objective of this paper is to introduce a Bayesian statistical approach for the state estimation problem, in which the state variables are considered as the transient temperatures within a pipeline cross-section, and to use the optimal control theory as a design tool for a typical heating system during a simulated shutdown condition. An application example is presented to illustrate how Bayesian filters can be used to reconstruct the temperature field from temperature measurements supposedly available on the external surface of the pipeline. The temperatures predicted with the Bayesian filter are then utilized in a control approach for a heating system used to maintain the temperature within the pipeline above the critical temperature of formation of solid deposits. The physical problem consists of a pipeline cross section represented by a circular domain with four points over the pipe wall representing heating cables. The fluid is considered stagnant, homogeneous, isotropic and with constant thermo-physical properties. The mathematical formulation governing the direct problem was solved with the finite volume method and for the solution of the state estimation problem

17. Electricity eliminates rust from district heat pipes. The new deoxidation method works on radiators

Energy Technology Data Exchange (ETDEWEB)

Sonninen, R.; Leisio, C.

1996-11-01

Oxygen dissolving in district heating water through district heat pipes and pipe joints made of plastic corrodes many small and medium-size district heating systems, resulting in heat cuts in the buildings connected to these systems. IN some cases, corrosion products have even circulated back to district heating power plants, thus hampering heat generation in the worst of cases. People residing in blocks of flats where some radiator components are made of plastic also face a similar problem, though on a smaller scale. A small and efficient electrochemical deoxidation cell has now been invented to eliminate this nuisance, which occurs particularly in cold winter weather. (orig.)

18. Risk Based Inspection of Gas-Cooling Heat Exchanger

Directory of Open Access Journals (Sweden)

Dwi Priyanta

2017-09-01

Full Text Available On October 2013, Pertamina Hulu Energi Offshore North West Java (PHE – ONWJ platform personnel found 93 leaking tubes locations in the finfan coolers/ gas-cooling heat exchanger. After analysis had been performed, the crack in the tube strongly indicate that stress corrosion cracking was occurred by chloride. Chloride stress corrosion cracking (CLSCC is the cracking occurred by the combined influence of tensile stress and a corrosive environment. CLSCC is the one of the most common reasons why austenitic stainless steel pipework or tube and vessels deteriorate in the chemical processing, petrochemical industries and maritime industries. In this thesis purpose to determine the appropriate inspection planning for two main items (tubes and header box in the gas-cooling heat exchanger using risk based inspection (RBI method. The result, inspection of the tubes must be performed on July 6, 2024 and for the header box inspection must be performed on July 6, 2025. In the end, RBI method can be applicated to gas-cooling heat exchanger. Because, risk on the tubes can be reduced from 4.537 m2/year to 0.453 m2/year. And inspection planning for header box can be reduced from 4.528 m2/year to 0.563 m2/year.

19. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

DEFF Research Database (Denmark)

Furbo, Simon; Fan, Jianhua; Andersen, Elsa

2012-01-01

A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat...

20. Estimation of surface heat flux and temperature distributions in a multilayer tissue based on the hyperbolic model of heat conduction.

Science.gov (United States)

Lee, Haw-Long; Chen, Wen-Lih; Chang, Win-Jin; Yang, Yu-Ching

2015-01-01

In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent surface heat flux in a skin tissue, which is stratified into epidermis, dermis, and subcutaneous layers, from the temperature measurements taken within the medium. Subsequently, the temperature distributions in the tissue can be calculated as well. The concept of finite heat propagation velocity is applied to the modeling of the bioheat transfer problem. The inverse solutions will be justified based on the numerical experiments in which two different heat flux distributions are to be determined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors on the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent surface heat flux can be obtained for the test cases considered in this study.

1. Cycle work from a MEMS heat engine and characterization of the liquid-vapor phase change actuation mechanism

Science.gov (United States)

Whalen, Scott Allan

This dissertation presents a MEMS-based thermopneumatic actuator that produces electrical power by flexing a piezoelectric membrane. Operating the device at the resonant frequency of the piezoelectric generator results in the first documented production of cycle work from a dynamic micro fabricated heat engine. At resonance the pressure-volume diagram is an open loop curve indicating the production of cycle work and allowing for classification as an engine. The engine generates a mechanical power of 26.6muW and an electrical power of .05muW while operating at 240Hz and consuming 1.31W. This corresponds to a thermal to mechanical efficiency of .002%, mechanical to electrical efficiency of .19%, and thermal to electrical efficiency of 3.8mu%. Improvement of thermal to mechanical efficiency is accomplished by implementing a novel capillary wicking structure consisting of an array of open groove rectangular micro channels fabricated from SU-8. The wicking structure provides a method for delivering a controlled liquid layer to the heat addition region of the device. A slow filling annular wick is used to investigate performance for single pulse operation. Implementing a 7.1mum thick wick increases efficiency by a factor of 60 from .0015% to .088% for an energy input of 7.8mJ. A numerical model of the device containing the annular wick is developed to determine the energy budget and parameters controlling efficiency for operation on the millisecond time scale. Simulations indicate that liquid thickness, thermal mass, and membrane compliance have a significant impact on efficiency. Predictions are verified experimentally by testing silicon nitride and SU-8 membranes. An 8mum thick SU-8 membrane reduces efficiency due primarily to the increase in thermal mass. A 200nm thick silicon nitride membrane increases efficiency due to a decrease in thermal mass and increase in compliance. Incorporation of a fast filling 10.3mum thick radial wicking structure dramatically increases

2. Revision of global carbon fluxes based on ocean heat constraints

Science.gov (United States)

Resplandy, L.; Keeling, R. F.; Rödenbeck, C.; Stephens, B. B.; Khatiwala, S.; Rodgers, K. B.; Long, M. C.; Bopp, L.; Tans, P. P.

2017-12-01

Uncertainties in land anthropogenic carbon sinks are tied to uncertainties in the magnitude and pattern of ocean and river carbon fluxes. Here we introduce a heat-based constraint on the ocean and river carbon fluxes and show that this constraint requires a 20% to 100% stronger ocean carbon transport from the Northern Hemisphere to the Southern Hemisphere than existing estimates. We show that this systematic bias in existing ocean and river carbon fluxes impacts the land sink attribution and redistributes up to 40% of the carbon sink between northern, tropical and southern land ecosystems.

3. A heat transfer correlation based on a surface renewal model for molten core concrete interaction study

International Nuclear Information System (INIS)

Tourniaire, B. . E-mail bruno.tourniaire@cea.fr

2006-01-01

The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The comparisons of the results of these correlations with the measurements and their extrapolation to reactor materials show that strong discrepancies between the results of these models are obtained which probably means that some phenomena are not well taken into account. The main purpose of this paper is to present an alternative heat transfer model which was originally developed for chemical engineering applications (bubble columns) by Deckwer. A part of this work is devoted to the presentation of this model, which is based on a surface renewal assumption. Comparison of the results of this model with available experimental data in different systems are presented and discussed. These comparisons clearly show that this model can be used to deal with the particular problem of MCCI. The analyses also lead to enrich the original model by taking into account the thermal resistance of the wall: a new formulation of the Deckwer's correlation is finally proposed

4. High Temperature Gas-to-Gas Heat Exchanger Based on a Solid Intermediate Medium

Directory of Open Access Journals (Sweden)

R. Amirante

2014-04-01

Full Text Available This paper proposes the design of an innovative high temperature gas-to-gas heat exchanger based on solid particles as intermediate medium, with application in medium and large scale externally fired combined power plants fed by alternative and dirty fuels, such as biomass and coal. An optimization procedure, performed by means of a genetic algorithm combined with computational fluid dynamics (CFD analysis, is employed for the design of the heat exchanger: the goal is the minimization of its size for an assigned heat exchanger efficiency. Two cases, corresponding to efficiencies equal to 80% and 90%, are considered. The scientific and technical difficulties for the realization of the heat exchanger are also faced up; in particular, this work focuses on the development both of a pressurization device, which is needed to move the solid particles within the heat exchanger, and of a pneumatic conveyor, which is required to deliver back the particles from the bottom to the top of the plant in order to realize a continuous operation mode. An analytical approach and a thorough experimental campaign are proposed to analyze the proposed systems and to evaluate the associated energy losses.

5. Atucha I nuclear power plant: repair works in QK02W01 moderator system heat exchanger

International Nuclear Information System (INIS)

Olivieri, Luis E.; Zanni, Pablo A.

2000-01-01

Atucha I nuclear power plant moderator system operates with highly radioactive heavy water, a pressure of 115 Bar and temperatures of about 200 C degrees. In March 2000, an increasing leakage of heavy water to the conventional thermal circuit was detected, conducting the plant to a shut down. The development of a number of actions and measures were taken, in order to plug this leakage. The leakage was found in a heat exchanger, which is located in a place of difficult access, with a high radiological yield and which, according to design, it was not considered to be mechanically repaired. It is a U bend tubes heat exchanger, weighting about 20 tons, and with a heavy water flow of 800 tons/h on the primary circuit, and 950 tons/h of ordinary water on the secondary side. Foreseeing this event, it had been designed and constructed special equipment and procedures, by means of a contract, with the Company INVAP SA. Repair works were carried out within a period of eighty-six (86) days, from which, forty five days were used to repair the component itself. A considerable amount of time was used to prepare simulators and the training of personnel. Due to the high radiological yield and the strict care of radiological standards, it was necessary the participation of 300 persons, integrating a collective dose of 4,86 Sv-m. It was necessary the construction of platforms and auxiliary stairs so as to make the work place accessible, as well as lifting and movement devices for heavy components, since this area does not have such kind of facilities. Welding and cutting machines remote controlled as well as manipulators which operated in front of the exchanger tube sheet were used. The aim was the reduction of dose values as much as possible. Special shielding were developed and in some cases it was necessary the adoption of drastic measures such as the cutting of bolts or pipes. The failure was detected and the tube was plugged. Also were plugged those tubes with wall thickness

6. Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components

International Nuclear Information System (INIS)

2015-01-01

The thermal control of electronic components is aimed at ensuring their use in a temperature range compatible with their performances. This paper presents an experimental study of the behavior of phase change materials (PCMs) as the cooling system for electronic devices. Four configurations are used to control the increase in the system temperature: pure PCM, PCM in a silicone matrix, PCM in a graphite matrix and pure PCM in a system of fins. Thermo-physical properties of different PCMs are determined and found to be desirable for application in this study. Solid liquid interface visualization and temperature evolution are employed to understand the mechanism of heat transfer during the different stages. Results indicated that the inclusion of PCM can lower component increase temperature and extends twice the critical time of the heat sink. The use of Graphite matrix filled by PCM showed more improvement on system thermal performance than silicon matrix. Also, for the same fraction of copper, it was found that incorporating long copper fins with suitable spacing into PCM, can enhance heat distribution into PCM leading to longer remain component temperature below the critical limit. This work therefore shows that the combination of PCM and long, well-spaced fins presents an effective means for thermal control of electronic devices. - Highlights: • Study on thermal performance of different PCM based heat sink in electronic cooling. • Examination of heat transfer mechanism into heat sink for different conditions. • Graphite matrix shows more efficiency than silicon. • Inclusion PCM can reduce temperature increasing. • Heat sink with longer well spaced fins can extend longer the critical time

7. An investigation into the effects of conventional heat treatments on mechanical characteristics of new hot working tool steel

International Nuclear Information System (INIS)

Fares, M L; Athmani, M; Khettache, A; Khelfaoui, Y

2012-01-01

The effects of conventional heat treatments, i.e. quenching and tempering, on the mechanical characteristics of non standard hot work tool steel, close to either AISI-H11/H13 are investigated. The major elemental composition differences are in carbon, silicon and vanadium. The objective of the carried heat treatments is to obtain an efficient tool performance in terms of hardness, wear resistance and mechanical strength. Experimental results allow an explanation of the surface properties depending mainly on both chemical composition and optimised preheating parameters. After austenitizing at 1050 °C for 15 min, the as-quenched steel in oil bath exhibited the fully martensitic structure (without bainite) connected to a small fraction of retained austenite and complex carbides mainly of M 23 C 6 type. Twice tempering at 500 °C and 600 °C resulted in initiating the precipitation processes and the secondary hardness effect. As a result, carbide content amounted to 3% while the retained austenite content decreased to 0%. Accordingly, the required mechanical properties in terms of hardness and wear are fulfilled and are adequately favourable in handling both shocks and pressures for the expected tool life. Induced microstructures are revealed using optical and scanning electron microscopes. Phase compositions are assessed by means of X-ray diffraction technique while mechanical characteristics are investigated based on hardness and abrasive wear standard tests.

8. Self-Sustained Flameless Heat Generator Based on Catalytic Oxidation of Methane or Propane-Butane Mixture for Various Object Heating Including Field Heating

Directory of Open Access Journals (Sweden)

Strizhak, P.Ye.

2016-09-01

Full Text Available An effective catalyst based on ceramic block support with honeycomb structure made of synthetic cordierite with low coefficient of temperature linear expansion has been developed. Flameless heat generator based on oxidation of methane or propane-butane mixture has been designed. Laboratory and bench testing revealed that the effectiveness of the generators is identical to foreign analogues. The production of self-sustained flameless heat catalytic generators and the catalysts have been adjusted.

9. Large heat storage tank for load management nd implementation of ambient heat. District heating networks based on combined heat and power; Grosswaermespeicher zum Lastmanagement und zur Einbindung von Umweltenergie. Auf KWK basierende Fernwaermenetze

Energy Technology Data Exchange (ETDEWEB)

Gross, Sebastian; Rhein, Martin; Ruehling, Karin [Technische Universitaet Dresden (Germany). Inst. fuer Energietechnik

2013-06-15

The district heating based on combined heat and power is a transitional technology on the way to the supply of Germany with renewable energy. In the next years, this transitional technology can only be maintained and expanded when marketability is given. Therefore an appropriate combination has to be found from investment measures. Together with new aspects in the management strategy, these investment measures should significantly improve the marketability. The investment measures also aims to enable a primary energetic, appropriate combination of natural gas-based combined heat and power, renewable energy sources (solar thermal energy, ambient heat) and heat pump technology.

10. Thermal performance of different working fluids in a dual diameter circular heat pipe

OpenAIRE

2013-01-01

In this paper, heat transfer performance of a 40 cm-length circular heat pipe with screen mesh wick is experimentally investigated. This heat pipe is made of copper with two diameters; larger in the evaporator and smaller in the adiabatic and condenser. Three different liquids including water, methanol, and ethanol are separately filled within the heat pipe. Low heat fluxes are applied (up to 2500 W/m2) in the evaporator and constant temperature water bath is used at three levels including 15...

11. Variability in Heat Strain in Fully Encapsulated Impermeable Suits in Different Climates and at Different Work Loads.

Science.gov (United States)

DenHartog, Emiel A; Rubenstein, Candace D; Deaton, A Shawn; Bogerd, Cornelis Peter

2017-03-01

maximum at 80% of predicted individual maximum (age based) would have prevented 95% of the cases with excessive heat strain. Monitoring of heart rate under operational conditions would further allow individually optimize working times and help in preventing exertional heat stroke. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

12. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

OpenAIRE

Limberger, J.; Boxem, T.; Pluymaekers, Maarten; Bruhn, David; Manzella, Adelle; Calcagno, Philippe; Beekman, F.; Cloetingh, S.; van Wees, J.-D.

2018-01-01

In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a volumetric heat-in-place method to improve current global geothermal resource base estimates for direct heat applications. The amount of thermal energy stored within aquifers depends on the Earth's he...

13. Design of plate directional heat transmission structure based on layered thermal metamaterials

Directory of Open Access Journals (Sweden)

L. K. Sun

2016-02-01

Full Text Available Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an “open cloak”, called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO2 aerogel thermal insulation material. Our results are expected to markedly enhance capabilities in thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.

14. Design of plate directional heat transmission structure based on layered thermal metamaterials

Energy Technology Data Exchange (ETDEWEB)

Sun, L. K.; Yu, Z. F.; Huang, J., E-mail: slk-0-1999@163.com [China Aerodynamics Research and Development Center, Mianyang 621000 (China)

2016-02-15

Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an “open cloak”, called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO{sub 2} aerogel thermal insulation material. Our results are expected to markedly enhance capabilities in thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.

15. Research on central heating system control strategy based on genetic algorithm

Science.gov (United States)

Ding, Sa; Yang, Jianhua; Lu, Wei; Duan, Zhipeng

2017-03-01

The central heating is a major way of warming in northeast China in winter, however, the traditional heating method is inefficient, intensifying the energy consumption. How to improve the heating efficiency and reduce energy waste attracts more and more attentions in our country. In this paper, the mathematical model of heat transfer station temperature control system was established based on the structure of central heating system. The feedforward-feedback control strategy was used to overcome temperature fluctuations caused by the pressurized heating exchange system. The genetic algorithm was used to optimize the parameters of PID controller and simulation results demonstrated that central heating temperature achieved well control effect and meet stabilization requirements.

16. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

Science.gov (United States)

Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem

2018-01-01

In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

17. GIS based analysis of future district heating potential in Denmark

DEFF Research Database (Denmark)

Nielsen, Steffen; Möller, Bernd

2013-01-01

The physical placement of buildings is important when determining the potential for DH (district heating). Good locations for DH are mainly determined by having both a large heat demand within a certain area and having access to local heat resources. In recent years, the locations of buildings...

18. An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery

International Nuclear Information System (INIS)

Shu, Gequn; Shi, Lingfeng; Tian, Hua; Li, Xiaoya; Huang, Guangdai; Chang, Liwen

2016-01-01

Highlights: • Propose an improved CTRC system (PR-CTRC) for engine waste heat recovery. • The PR-CTRC achieves a significant increase in thermodynamic performance. • The PR-CTRC possesses a strong coupling capability for high and low grade waste heat. • The PR-CTRC uses smaller turbine design parameters than ORC systems. • Total cooling load analysis of combined engine and recovery system was conducted. - Abstract: CO 2 -based transcritical Rankine cycle (CTRC) is a promising technology for the waste heat recovery of an engine considering its safety and environment friendly characteristics, which also matchs the high temperature of the exhaust gas and satisfies the miniaturization demand of recovery systems. But the traditional CTRC system with a basic configuration (B-CTRC) has a poor thermodynamic performance. This paper introduces an improved CTRC system containing both a preheater and regenerator (PR-CTRC), for recovering waste heat in exhaust gas and engine coolant of an engine, and compares its performance with that of the B-CTRC system and also with that of the traditional excellent Organic Rankine Cycle (ORC) systems using R123 as a working fluid. The utilization rate of waste heat, total cooling load, net power output, thermal efficiency, exergy loss, exergy efficiency and component size have been investigated. Results show that, the net power output of the PR-CTRC could reach up to 9.0 kW for a 43.8 kW engine, which increases by 150% compared with that of the B-CTRC (3.6 kW). The PR-CTRC also improves the thermal efficiency and exergy efficiency of the B-CTRC, with increases of 184% and 227%, respectively. Compared with the ORC system, the PR-CTRC shows the significant advantage of highly recycling the exhaust gas and engine coolant simultaneously due to the special property of supercritical CO 2 ’s specific heat capacity. The supercritical property of CO 2 also generates a better heat transfer and flowing performances. Meanwhile, the PR

19. Performance-Based Rewards and Work Stress

Science.gov (United States)

Ganster, Daniel C.; Kiersch, Christa E.; Marsh, Rachel E.; Bowen, Angela

2011-01-01

Even though reward systems play a central role in the management of organizations, their impact on stress and the well-being of workers is not well understood. We review the literature linking performance-based reward systems to various indicators of employee stress and well-being. Well-controlled experiments in field settings suggest that certain…

20. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

Energy Technology Data Exchange (ETDEWEB)

Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

2002-12-13

Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

1. Synchrotron-based FTIR spectromicroscopy Cytotoxicity and heating considerations

CERN Document Server

Holman, H Y N; McKinney, W R

2002-01-01

Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

2. SPECTRAL data-based estimation of soil heat flux

Science.gov (United States)

Singh, Ramesh K.; Irmak, A.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

2011-01-01

Numerous existing spectral-based soil heat flux (G) models have shown wide variation in performance for maize and soybean cropping systems in Nebraska, indicating the need for localized calibration and model development. The objectives of this article are to develop a semi-empirical model to estimate G from a normalized difference vegetation index (NDVI) and net radiation (Rn) for maize (Zea mays L.) and soybean (Glycine max L.) fields in the Great Plains, and present the suitability of the developed model to estimate G under similar and different soil and management conditions. Soil heat fluxes measured in both irrigated and rainfed fields in eastern and south-central Nebraska were used for model development and validation. An exponential model that uses NDVI and Rn was found to be the best to estimate G based on r2 values. The effect of geographic location, crop, and water management practices were used to develop semi-empirical models under four case studies. Each case study has the same exponential model structure but a different set of coefficients and exponents to represent the crop, soil, and management practices. Results showed that the semi-empirical models can be used effectively for G estimation for nearby fields with similar soil properties for independent years, regardless of differences in crop type, crop rotation, and irrigation practices, provided that the crop residue from the previous year is more than 4000 kg ha-1. The coefficients calibrated from particular fields can be used at nearby fields in order to capture temporal variation in G. However, there is a need for further investigation of the models to account for the interaction effects of crop rotation and irrigation. Validation at an independent site having different soil and crop management practices showed the limitation of the semi-empirical model in estimating G under different soil and environment conditions.

3. Work-Based Learning: A New Higher Education?

Science.gov (United States)

Boud, David, Ed.; Solomon, Nicky, Ed.

This three-part book contains 16 chapters exploring work-based learning from a theoretical and case-study perspective in the United Kingdom. Part 1, Framing Work-based Learning, contains the following four chapters: "New Practices for New Times" (David Boud, Nicky Solomon, and Colin Symes); "Repositioning Universities and Work"…

4. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

International Nuclear Information System (INIS)

Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

2017-01-01

Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

5. Thermal control systems for low-temperature heat rejection on a lunar base

Science.gov (United States)

Sridhar, K. R.; Gottmann, Matthias; Nanjundan, Ashok

1993-01-01

One of the important issues in the design of a lunar base is the thermal control system (TCS) used to reject low-temperature heat from the base. The TCS ensures that the base and the components inside are maintained within an acceptable temperature range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar day. Under these circumstances, direct dissipation of waste heat from the lunar base using passive radiators would be impractical. Thermal control systems based on thermal storage, shaded radiators, and heat pumps have been proposed. Based on proven technology, innovation, realistic complexity, reliability, and near-term applicability, a heat pump-based TCS was selected as a candidate for early missions. In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW.

6. SOLAR ABSORBING COOLING SYSTEMS BASED ON MULTISTAGE HEAT-MASS-TRANSFER DEVICES

Directory of Open Access Journals (Sweden)

Doroshenko A.V.

2014-08-01

Full Text Available The article presents the worked out schematics for the alternative refrigeration systems and of air-conditioning systems, based on the use of absorbing cycle and of the sunny energy for the regeneration (renewals of absorbent solution. We use here the cascade principle of construction of all heat-mass-transfer apparatus with variation of both the temperature level and the growth of absorbent concentration on the cascade stages. The heat-mass-transfer equipment as a part of the drying and cooling units is standardized and is executed by means of multistage monoblock compositions from poly-meric materials. The preliminary analysis of possibilities of the sunny systems in application to the tasks of cooling of environment and air-conditioning systems is carried out.

7. Exploring how a traditional diluted yoghurt drink may mitigate heat strain during medium-intensity intermittent work. - A multidisciplinary study of occupational heat strain.

Science.gov (United States)

Lundgren-Kownacki, Karin; Dahl, Mats; Gao, Chuansi; Jakobsson, Kristina; Linninge, Caroline; Song, Danping; Kuklane, Kalev

2017-10-20

It is common practice in India to consume the dairy drink buttermilk as a way of mitigating occupational heat strain. This paper explores the thermoregulatory and hydration benefits of drinking buttermilk but also the impacts of work in a hot environment on the gut microbiota, renal and cognitive function. Twelve healthy participants were subjected to a 3-hour period of medium load physical intermittent work in a climatic chamber (34°C, 60 % RH). The subjects were given water, buttermilk (700 ml) or no rehydration at random. Mean body temperatures when no rehydration was given were significantly higher (P≤0.001). When subjects drank water or buttermilk they had a lower sweat rate than with no rehydration (P≤0.05) and the perception of feeling hot, uncomfortable, thirsty and physically exerted was significantly reduced (P≤0.05). A hormonal stress response at the end of the exposure was seen when not drinking (P≤0.05). No differences in cognitive abilities and gut microbiota were found. The exposure lowered the renal blood flow suggesting an acute impact of short term heat exposure. It was also found that buttermilk has a protective effect on this impact. Our results demonstrated that keeping hydrated by water/buttermilk consumption mitigates heat strain in well-nourished subjects.

8. Analytical solution of nucleate pool boiling heat transfer model based on macrolayer

Science.gov (United States)

Danish, Mohd; Al Mesfer, Mohammed K.

2018-02-01

In the present work, a transient heat conduction model has been developed for heat transfer through macrolayer in nucleate regime of pool boiling. The developed heat transfer model was solved analytically (Laplace Transform) using appropriate initial and boundary conditions. The influence of macrolayer thickness, wall superheat, and time on conduction heat flux has been predicted. The average conduction heat flux as a function of wall superheat and macrolayer thickness has also been predicted. The findings of the study have been compared with experimental results, and they are in reasonable agreement. For higher values of wall superheat, which correspond to nucleate pool boiling, predicted results agree with experimental data. Findings also substantiate the assertion that heat conduction across the macrolayer constitutes the major mode of heat transfer from the heated wall to the boiling liquid in the macrolayer regime of pool boiling.

9. Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO{sub 2} as Working Fluid

Energy Technology Data Exchange (ETDEWEB)

Jeon, Sang Woo; Ngo, Ich-long; Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of)

2016-11-15

The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical CO{sub 2} power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical CO{sub 2} as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

10. Work-Based Learning and Work-Integrated Learning: Fostering Engagement with Employers

Science.gov (United States)

Atkinson, Georgina

2016-01-01

Work-based learning and the inclusion of the world of work into tertiary students' learning lie at the heart of the Australian vocational education and training (VET) system. Traditionally this has been through apprenticeships and traineeships, which have a strong focus on "on-the-job" training, but also through "work-oriented"…

11. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery

International Nuclear Information System (INIS)

Chen, Y.; Lundqvist, P.; Johansson, A.; Platell, P.

2006-01-01

The organic rankine cycle (ORC) as a bottoming cycle to convert low-grade waste heat into useful work has been widely investigated for many years. The CO 2 transcritical power cycle, on the other hand, is scarcely treated in the open literature. A CO 2 transcritical power cycle (CO 2 TPC) shows a higher potential than an ORC when taking the behavior of the heat source and the heat transfer between heat source and working fluid in the main heat exchanger into account. This is mainly due to better temperature glide matching between heat source and working fluid. The CO 2 cycle also shows no pinch limitation in the heat exchanger. This study treats the performance of the CO 2 transcritical power cycle utilizing energy from low-grade waste heat to produce useful work in comparison to an ORC using R123 as working fluid. Due to the temperature gradients for the heat source and heat sink the thermodynamic mean temperature has been used as a reference temperature when comparing both cycles. The thermodynamic models have been developed in EES The relative efficiencies have been calculated for both cycles. The results obtained show that when utilizing the low-grade waste heat with the same thermodynamic mean heat rejection temperature, a transcritical carbon dioxide power system gives a slightly higher power output than the organic rankine cycle

12. Economic Model Predictive Control for Hot Water Based Heating Systems in Smart Buildings

DEFF Research Database (Denmark)

Awadelrahman, M. A. Ahmed; Zong, Yi; Li, Hongwei

2017-01-01

This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank...

13. Mathematical Simulation of Temperature Profiles within Microwave Heated Wood Made for Wood-Based Nano composites

International Nuclear Information System (INIS)

Li, X.; He, X.; Lv, J.; Wu, Y.; Luo, Y.; Chen, H.

2013-01-01

High intensive microwave pretreatment is a new method to modify wood for the fabrication of wood-based nano composites. Based on the physical law on heat transfer, a mathematical model to describe the temperature profiles within wood heated by high intensive microwave was established and simulated in this research. The results showed that the temperature profiles within wood were related to microwave heating methods; The temperature inside wood firstly increased and then gradually decreased along the direction of microwave transmission when the unilateral microwave heating was applied, and the temperature difference along the thickness direction of wood was very significant; The temperature with wood firstly increased and then gradually decreased from the wood surface to interior when the bilateral microwave heating was applied. Compared with the unilateral microwave heating, bilateral microwave heating is a better microwave heating method for the more uniform wood microwave pretreatment.

14. The Netherlands. Complex ground source heat drilling for horticultural works; Niederlande. Komplexe Erdwaermebohrung fuer Gartenbaubetriebe

Energy Technology Data Exchange (ETDEWEB)

Kilian, Dieter [DrillTec GUT GmbH, Deggendorf (Germany)

2012-11-01

For the past six months, the Dutch gardening industry looked to Honselersdijk near Rotterdam with great expectations. There, five market gardening businesses planned to heat their greenhouses with geothermal heat instead of natural gas. After technically complex drilling operations, hot water is now flowing at a rate of up to 50 litres per second; the drilling project remained fascinating to the last for everybody involved.

15. Local-stability analysis of a low-dissipation heat engine working at maximum power output.

Science.gov (United States)

Reyes-Ramírez, I; Gonzalez-Ayala, J; Calvo Hernández, A; Santillán, M

2017-10-01

In this paper we address the stability of a low-dissipation (LD) heat engine (HE) under maximum power conditions. The LD system dynamics are analyzed in terms of the contact times between the engine and the external heat reservoirs, which determine the amount of heat exchanged by the system. We study two different scenarios that secure the existence of a single stable steady state. In these scenarios, contact times dynamics are governed by restitutive forces that are linear functions of either the heat amounts exchanged per cycle, or the corresponding heat fluxes. In the first case, according to our results, preferably locating the system irreversibility sources at the hot-reservoir coupling improves the system stability and increases its efficiency. On the other hand, reducing the thermal gradient increases the system efficiency but deteriorates its stability properties, because the restitutive forces are smaller. Additionally, it is possible to compare the relaxation times with the total cycle time and obtain some constraints upon the system dynamics. In the second case, where the restitutive forces are assumed to be linear functions of the heat fluxes, we find that although the partial contact time presents a locally stable stationary value, the total cycle time does not; instead, there exists an infinite collection of steady values located in the neighborhood of the fixed point, along a one-dimensional manifold. Finally, the role of dissipation asymmetries on the efficiency, the stability, and the ratio of the total cycle time to the relaxation time is emphasized.

16. Influence of Hot-Working Conditions on High-Temperature Properties of a Heat-Resistant Alloy

Science.gov (United States)

Ewing, John F; Freeman, J W

1957-01-01

The relationships between conditions of hot-working and properties at high temperatures and the influence of the hot-working on response to heat treatment were investigated for an alloy containing nominally 20 percent molybdenum, 2 percent tungsten, and 1 percent columbium. Commercially produced bar stock was solution-treated at 2,200 degrees F. to minimize prior-history effects and then rolled at temperatures of 2,200 degrees, 2,100 degrees, 2,000 degrees, 1,800 degrees, and 1,600 degrees F. Working was carried out at constant temperature and with incremental decreases in temperature simulating a falling temperature during hot-working. In addition, a few special repeated cyclic conditions involving a small reduction at high temperature followed by a small reduction at a low temperature were used to study the possibility of inducing very low strengths by the extensive precipitation accompanying such properties. Most of the rolling was done in open passes with a few check tests being made with closed passes. Heat treatments at both 2,050 degrees and 2,200 degrees F. subsequent to working were used to study the influence on response to heat treatment.

17. Evaluation of absorbents for an absorption heat pump using natural organic working fluids (eco-energy city project)

Energy Technology Data Exchange (ETDEWEB)

Hisajima, Daisuke; Sakiyama, Ryoko; Nishiguchi, Akira [Hitachi Ltd., Tsuchiura (Japan). Mechanical Engineering Research Lab.

1999-07-01

The present situation of electric power supply and energy consumption in Japan has made it necessary to develop a new absorption air conditioning system which has low electric energy consumption, uses natural organic refrigerants, and can work as a heat pump in winter. Estimating vapor and liquid equilibrium of new pairs of working fluids is prerequisite to developing the new absorption heat pump system. In this phase of the work, methods for estimating vapor and liquid equilibrium that take into account intermolecular force were investigated. Experimental and calculated data on natural organic materials mixtures were considered to find optimum candidates, and then a procedure for evaluation was chosen. Several candidate absorbents were selected that used isobutane and dimethyl ether as refrigerants. (orig.)

18. An improved model for sensible heat flux estimation based on landcover classification

Science.gov (United States)

Zhou, Ti; Xin, Xiaozhou; Jiao, Jingjun; Peng, Zhiqing

2014-10-01

Remote sensing (RS) has been recognized as the most feasible means to provide spatially distributed regional evapotranspiration (ET). However, classical RS flux algorithms (SEBS, S-SEBI, SEBAL, etc.) can hardly be used with coarser resolution RS data from sensors like MODIS or AVHRR for no consideration of surface heterogeneity in mixed pixels even they are suitable for assessing the surface fluxes with high resolution RS data.A new model named FAFH is developed in this study to enhance the accuracy of flux estimation in mixed pixels based on high resolution landcover classification data. The area fraction and relative sensible heat fraction of each heterogeneous land use type calculated within coarse resolution pixels are calculated firstly, and then used for the weighted average of modified sensible heat. The study is carried out in the core agricultural land of Zhangye, the middle reaches of Heihe river based on the flux and landcover classification product of HJ-1B in our earlier work. The result indicates that FAFH increases the accuracy of sensible heat by 5% absolutely, 10.64% relatively in the whole research area.

19. GIS Based Analysis of future district heating potential in Denmark

DEFF Research Database (Denmark)

Nielsen, Steffen; Möller, Bernd

2012-01-01

The physical placement of buildings is important when determining the future potential for district heating (DH). Good locations for DH are mainly determined by having a large heat demand within a certain area combined with an access to local resources. In Denmark, the placement of buildings...

20. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

DEFF Research Database (Denmark)

Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

2017-01-01

recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...... sensitivity between the fluid and cycle design variables was overcome by using the simultaneousapproach. Correlation between net power output and the product of the overall heat transfer coefficientand the heat transfer area could further be addressed by employing a new solution strategy includingmaximum...

1. Work of breathing during CPAP and heated humidified high-flow nasal cannula.

Science.gov (United States)

Shetty, Sandeep; Hickey, Ann; Rafferty, Gerrard F; Peacock, Janet L; Greenough, Anne

2016-09-01

To determine whether continuous positive airway pressure (CPAP) compared with heated humidified, high-flow nasal cannula (HHFNC) in infants with evolving or established bronchopulmonary dysplasia (BPD) reduced the work of breathing (WOB) and thoracoabdominal asynchrony (TAA) and improved oxygen saturation (SaO2). Randomised crossover study. Tertiary neonatal unit. 20 infants (median gestational age of 27.6 weeks (range 24.6-31.9 weeks)) were studied at a median postnatal age of 30.9 weeks (range 28.1-39.1 weeks). Infants were studied on 2 consecutive days. On the first study day, they were randomised to either CPAP or HHFNC each for 2 h, the order being reversed on the second day. The WOB was assessed by measuring the pressure time product of the diaphragm (PTPdi). PTPdi, TAA and SaO2 were assessed during the final 5 min of each 2 h period and the results on the two study days were meaned. There were no significant differences in the results on CPAP versus HHFNC: mean PTPdi 226 (range 126-294) versus 224 cm H2O/s/min (95% CI for difference: -27 to 22; p=0.85) (range 170-318) (p=0.82), mean TAA 13.4° (range 4.51°-23.32°) versus 14.01° (range 4.25°-23.86°) (95% CI for difference: -3.9 to 2.8: p=0.73) (p=0.63) and mean SaO2 95% (range 93%-100%) versus 95% (94%-99%), (95% CI for difference -1.8 to 0.5; p=0.25) (p=0.45). In infants with evolving or established BPD, CPAP compared with HHFNC offered no significant advantage with regard to the WOB, degree of asynchrony or oxygen saturation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

2. A review and development of correlations for base pressure and base heating in supersonic flow

Energy Technology Data Exchange (ETDEWEB)

Lamb, J.P. [Texas Univ., Austin, TX (United States). Dept. of Mechanical Engineering; Oberkampf, W.L. [Sandia National Labs., Albuquerque, NM (United States)

1993-11-01

A comprehensive review of experimental base pressure and base heating data related to supersonic and hypersonic flight vehicles has been completed. Particular attention was paid to free-flight data as well as wind tunnel data for models without rear sting support. Using theoretically based correlation parameters, a series of internally consistent, empirical prediction equations has been developed for planar and axisymmetric geometries (wedges, cones, and cylinders). These equations encompass the speed range from low supersonic to hypersonic flow and laminar and turbulent forebody boundary layers. A wide range of cone and wedge angles and cone bluntness ratios was included in the data base used to develop the correlations. The present investigation also included preliminary studies of the effect of angle of attack and specific-heat ratio of the gas.

3. Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage

Directory of Open Access Journals (Sweden)

Huaiyu Shao

2017-11-01

Full Text Available Mg-based materials have been investigated as hydrogen storage materials, especially for possible onboard storage in fuel cell vehicles for decades. Recently, with the development of large-scale fuel cell technologies, the development of Mg-based materials as stationary storage to supply hydrogen to fuel-cell components and provide electricity and heat is becoming increasingly promising. In this work, numerical analysis of heat balance management for stationary solid oxide fuel cell (SOFC systems combined with MgH2 materials based on a carbon-neutral design concept was performed. Waste heat from the SOFC is supplied to hydrogen desorption as endothermic heat for the MgH2 materials. The net efficiency of this model achieves 82% lower heating value (LHV, and the efficiency of electrical power output becomes 68.6% in minimizing heat output per total energy output when all available heat of waste gas and system is supplied to warm up the storage. For the development of Mg-based hydrogen storage materials, various nano-processing techniques have been widely applied to synthesize Mg-based materials with small particle and crystallite sizes, resulting in good hydrogen storage kinetics, but poor thermal conductivity. Here, three kinds of Mg-based materials were investigated and compared: 325 mesh Mg powers, 300 nm Mg nanoparticles synthesized by hydrogen plasma metal reaction, and Mg50Co50 metastable alloy with body-centered cubic structure. Based on the overall performances of hydrogen capacity, absorption kinetics and thermal conductivity of the materials, the Mg nanoparticle sample by plasma synthesis is the most promising material for this potential application. The findings in this paper may shed light on a new energy conversion and utilization technology on MgH2-SOFC combined concept.

4. Problem-Based Learning in Social Work Education

DEFF Research Database (Denmark)

2017-01-01

Problem-based learning (PBL) constitutes a promising way of integrating academia and social work practice because PBL fosters engagement with real-life problems and enhances important skills needed in social work practice. However, little attention has been given to social work students......’ experiences of PBL. In this article we address this gap by exploring experiences of learning and learning preferences among master’s-level students in a Danish social work education setting where extensive problem-based project work is used. We find a discrepancy between students’ preferred learning and when...

5. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome

DEFF Research Database (Denmark)

Fabrizi, Roberto; Bonafoni, Stefania; Biondi, Riccardo

2010-01-01

In this work, the trend of the Urban Heat Island (UHI) of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging...... and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI) during summer months reveals a mean growth in magnitude of 3-4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations. © 2010...... by the authors; licensee MDPI, Basel, Switzerland. Keyword: Thermal pollution,Summer months,Advanced-along track scanning radiometers,Urban heat island,Remote sensing,Canopy layer,Atmospheric temperature,Ground based sensors,Weather information services,Satellite remote sensing,Infra-red sensor,Weather stations...

6. Satellite Based Analysis of Surface Urban Heat Island Intensity

Directory of Open Access Journals (Sweden)

Gémes Orsolya

2016-06-01

Full Text Available The most obvious characteristics of urban climate are higher air and surface temperatures compared to rural areas and large spatial variation of meteorological parameters within the city. This research examines the long term and seasonal development of urban surface temperature using satellite data during a period of 30 years and within a year. The medium resolution Landsat data were (preprocessed using open source tools. Besides the analysis of the long term and seasonal changes in land surface temperature within a city, also its relationship with changes in the vegetation cover was investigated. Different urban districts and local climate zones showed varying strength of correlation. The temperature difference between urban surfaces and surroundings is defined as surface urban heat island (SUHI. Its development shows remarkable seasonal and spatial anomalies. The satellite images can be applied to visualize and analyze the SUHI, although they were not collected at midday and early afternoon, when the phenomenon is normally at its maximum. The applied methodology is based on free data and software and requires minimal user interaction. Using the results new urban developments (new built up and green areas can be planned, that help mitigate the negative effects of urban climate.

7. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

Directory of Open Access Journals (Sweden)

Yourong Li

2012-08-01

Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

8. Conduction and convection heat transfer characteristics of water-based au nanofluids in a square cavity with differentially heated side walls subjected to constant temperatures

Directory of Open Access Journals (Sweden)

Ternik Primož

2014-01-01

Full Text Available The present work deals with the natural convection in a square cavity filled with the water-based Au nanofluid. The cavity is heated on the vertical and cooled from the adjacent wall, while the other two horizontal walls are adiabatic. The governing differential equations have been solved by the standard finite volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticles’ volume fraction on the heat transfer characteristics of Au nanofluids at the given base fluid’s (i.e. water Rayleigh number. Accurate results are presented over a wide range of the base fluid Rayleigh number and the volume fraction of Au nanoparticles. It is shown that adding nanoparticles in a base fluid delays the onset of convection. Contrary to what is argued by many authors, we show by numerical simulations that the use of nanofluids can reduce the heat transfer rate instead of increasing it.

9. Work-Based Courses: Bringing College to the Production Line

Science.gov (United States)

Kobes, Deborah; Girardi, Amy

2016-01-01

Work-based courses are an innovative way to bring college to the production line by using the job as a learning lab. This toolkit provides guidance to community college administrators and faculty who are interested in bringing a work-based course model to their college. It contains video content and teaching tips that introduce the six steps of…

10. Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space

Science.gov (United States)

Patra, Puneet Kumar; Bhattacharya, Baidurya

2016-03-01

We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and configurational temperatures of the same particle differently. We keep the two ends of a conductor, which in the present study is a single dimensional ϕ4 chain, at the same kinetic temperature T0, but at different configurational temperatures—one end hotter and the other end colder than T0. While external energy is needed within the thermostatted regions to achieve this differential thermostatting, no external work is performed on the system itself. We show that the mechanism satisfies the statistical form of the second law of thermodynamics (the fluctuation theorem). The proposed mechanism reveals two interesting findings: (i) contrary to traditional thermodynamics where only the kinetic temperature is thought to govern heat conduction, configurational temperature can also play an important role, and (ii) the relative temperature difference between the kinetic and configurational variables governs the direction of heat flow. The challenge, however, is in developing experimental techniques to thermostat the kinetic and configurational variables of the same particle at different values.

11. Characteristic and biocompatibility of the TiO2-based coatings containing amorphous calcium phosphate before and after heat treatment

International Nuclear Information System (INIS)

Wei Daqing; Zhou Yu

2009-01-01

TiO 2 -based coating containing amorphous calcium phosphate (CaP) was prepared on titanium alloy by microarc oxidation (MAO). The increase in the EDTA-2Na concentration was unfavorable for the crystallization of TiO 2 . After heat treatment, the amorphous CaP was crystallized. The thickness of the MAO coatings did not change when heat-treated at 400, 600 and 700 deg. C; while it increased slightly after heat treatment at 800 deg. C due to the crystallization of amorphous CaP and growth of TiO 2 . No apparent discontinuity between the coatings and substrates was observed at various heat-treatment temperatures, indicating the MAO coatings with good interfacial bonding to the substrate. The heat treatment did not alter the chemical composition of the MAO coating and the chemical states of Ti, Ca and P elements. However, it increased the roughness (Ra) of the MAO coating and improved the wetting ability of the MAO coating. In this work, preliminary investigation of the MG63 cell proliferation on the surface of the MAO and heat-treated MAO coatings was conducted. The MAO coating surface with about Ra = 220 nm may be suitable for the MG63 cell adhesion and proliferation. The increased roughness of the heat-treated MAO coatings may result in a decrease in the ability for cell adhesion and proliferation.

12. Preparation of lunar regolith based geopolymer cement under heat and vacuum

Science.gov (United States)

Davis, Gabrielle; Montes, Carlos; Eklund, Sven

2017-04-01

Ever since the beginning of the space program, lunar habitation has always been on peoples' minds. Prior researchers have explored habitat building materials - some based on earth-based construction materials, some based on in-situ lunar resources. Geopolymer cement is a cementitious binder made of aluminosilicate materials such as lunar regolith. A cementitious binder made of lunar regolith as the main geopolymer precursor, instead of as an added aggregate, is a solution that has not been deeply explored in prior works. This research explores the curing process of lunar regolith based geopolymer cement in an environment that loosely approximates the lunar environment, using the lunar average daytime temperature and a vacuum. The results did not show much promise for the samples cured under both heat and vacuum as the longest-cured data point did not meet compressive strength standards, but another pathway to lunar habitation may be found in a separate set of samples that cured under heat and ambient atmospheric pressure.

13. Heating of polymer-based filters in sub-mm space optics

Science.gov (United States)

Baccichet, Nicola; Savini, Giorgio

2014-08-01

The heating of polymer-based filters for experiment working in mm and FIR bands will be described in this paper. This effect was assessed by doing a comparison between a computer model and data available in literature. Firstly, a theoretical study of the physical quantities relevant to the filters materials such as Polypropylene and Polytetrafluoroethylene was performed. These were then used to create a multi-physics computer model that takes into account thermal and radiative heating of large optical elements such as filters and lenses, the geometry of which was suggested by the large format array instruments designed for future post-Planck CMB space missions. Overall, it was found that all the filters reached a different equilibrium temperature depending on the model considered, with time constant values between 1000 and 1300 s. The maximum deviation from the initial condition was measured between 0.09 K and 1.3 K in the worst cases and the amplitude and phase caused by the period of the heat source were also measured.

14. Modeling of a Membrane-Based Absorption Heat Pump

Energy Technology Data Exchange (ETDEWEB)

Woods, J.; Pellegrino, J.; Kozubal, E.; Slayzak, S.; Burch, J.

2009-01-01

In this paper, a membrane heat pump is proposed and analyzed. Fundamentally, the proposed heat pump consists of an aqueous CaCl{sub 2} solution flow separated from a water flow by a vapor-permeable membrane. The low activity of the solution results in a net flux of water vapor across the membrane, which heats the solution stream and cools the water stream. This mechanism upgrades water-side low-temperature heat to solution-side high-temperature heat, creating a 'temperature lift.' The modeling results show that using two membranes and an air gap instead of a single membrane increases the temperature lift by 185%. The model predicts temperature lifts for the air-gap design of 24, 16, and 6 C for inlet temperatures of 55, 35, and 15 C, respectively. Membranes with lower thermal conductivities and higher porosities improve the performance of single-membrane designs while thinner membranes improve the performance of air-gap designs. This device can be used with a solar heating system which already uses concentrated salt solutions for liquid-desiccant cooling.

15. Towards needs-based work environments : Psychological needs affecting the use and appreciation of activity-based work environments

NARCIS (Netherlands)

Jan Gerard Hoendervanger

2015-01-01

Activity-Based Working (ABW) is supported by work environments that combine hot-desking with a variety of workplaces, designed to support different types of activities. While the advantages of these work environments in terms of efficiency are undisputed, their effectiveness with respect to job

16. Female anthropometric variability and their effects on predicted thermoregulatory responses to work in the heat

Science.gov (United States)

Yokota, Miyo; Berglund, Larry G.; Bathalon, Gaston P.

2012-03-01

The use of thermoregulatory models for assessing physiological responses of workers in thermally stressful situations has been increasing because of the risks and costs related to human studies. In a previous study (Yokota et al. Eur J Appl Physiol 104:297-302, 2008), the effects of anthropometric variability on predicted physiological responses to heat stress in U.S. Army male soldiers were evaluated. Five somatotypes were identified in U.S. Army male multivariate anthropometric distribution. The simulated heat responses, using a thermoregulatory model, were different between somatotypes. The present study further extends this line of research to female soldiers. Anthropometric somatotypes were identified using multivariate analysis [height, weight, percent body fat (%BF)] and the predicted physiological responses to simulated exercise and heat stress using a thermoregulatory model were evaluated. The simulated conditions included walking at ~3 mph (4.8 km/h) for 300 min and wearing battle dress uniform and body armor in a 30°C, 25% relative humidity (RH) environment without solar radiation. Five major somatotypes (tall-fat, tall-lean, average, short-lean, and short-fat), identified through multivariate analysis of anthropometric distributions, showed different tolerance levels to simulated heat stress: lean women were predicted to maintain their core temperatures (Tc) lower than short-fat or tall-fat women. The measured Tc of female subjects obtained from two heat studies (data1: 30°C, 32% RH, protective garments, ~225 w·m-2 walk for 90 min; data2: 32°C, 75% RH, hot weather battle dress uniform, ~378 ± 32 w·m-2 for 30 min walk/30 min rest cycles for 120 min) were utilized for validation. Validation results agreed with the findings in this study: fat subjects tended to have higher core temperatures than medium individuals (data2) and lean subjects maintained lower core temperatures than medium subjects (data1).

17. Optimum load distribution between heat sources based on the Cournot model

Science.gov (United States)

Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.

2015-08-01

One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.

18. Postponement of incipient collapse due to work-induced heat stress by limited cooling

Science.gov (United States)

Blockley, W. V.

1973-01-01

Four subjects completed five treadmill training sessions under comfortable to cool conditions and were calibrated to find an optimum combination of speed and grade on the treadmill which would produce a metabolic rate of 2000 Btu-hr. Dressed in an Apollo liquid cooling garment, each man underwent a total of four experiments in which the rate of heat extraction from the liquid cooling garment was adjusted to an amount which would cause a storage within the body of 1000 Btu/hr. Physiological measurements included skin temperature at 9 locations, rectal and ear canal probes, and heart rate. The increases in tolerance time for the various subjects and the various methods of emergency cooling, ranged from a low of six minutes to a high of 48 minutes, or from 8 to 102% of the baseline tolerance times. The largest gains were achieved in a subject whose tolerance endpoint was atypical, and whose baseline heat tolerance was unsually low.

19. Research on Comprehensive Evaluation Method for Heating Project Based on Analytic Hierarchy Processing

Science.gov (United States)

Han, Shenchao; Yang, Yanchun; Liu, Yude; Zhang, Peng; Li, Siwei

2018-01-01

It is effective to reduce haze in winter by changing the distributed heat supply system. Thus, the studies on comprehensive index system and scientific evaluation method of distributed heat supply project are essential. Firstly, research the influence factors of heating modes, and an index system with multiple dimension including economic, environmental, risk and flexibility was built and all indexes were quantified. Secondly, a comprehensive evaluation method based on AHP was put forward to analyze the proposed multiple and comprehensive index system. Lastly, the case study suggested that supplying heat with electricity has great advantage and promotional value. The comprehensive index system of distributed heating supply project and evaluation method in this paper can evaluate distributed heat supply project effectively and provide scientific support for choosing the distributed heating project.

20. Model Based Controller Design for a Shell and Tube Heat Exchanger

Directory of Open Access Journals (Sweden)

S. Nithya

2007-10-01

Full Text Available In all the process industries the process variables like flow, pressure, level and temperature are the main parameters that need to be controlled in both set point and load changes. The transfer of heat is one of the main important operation in the heat exchanger .The transfer of heat may be fluid to fluid, gas to gas i.e. in the same phase or the phase change can occur on either side of the heat exchanger. The control of heat exchanger is complex due to its nonlinear dynamics. For this nonlinear process of a heat exchanger the model is identified to be First Order plus Dead Time (FOPDT.The Internal Model Control (IMC is one of the model predictive control methods based on the predictive output of the process model. The conventional controller tuning is compared with IMC techniques and it found to be suitable for heat exchanger than the conventional PI tuning.

1. Design of functionally graded wood-based board for floor heating system with higher energy efficiency

Energy Technology Data Exchange (ETDEWEB)

Obata, Y.; Kanayama, K. [Advanced Wood-based Material Technology Group, Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan); Takeuchi, K.; Kawazoe, M. [NEDO Industrial Technology Researchers, Nagoya (Japan)

2003-07-01

Recycling of wood building waste has been required and wood boards are prospective recycled materials. The concept of FGM was introduced to the wood board as a base material of a floor heating system to develop an FGM board with higher energy efficiency. Two-dimensional unsteady heat transfer problem in an FGM plate with material properties of wood was analyzed, which modeled the state that the base material was heated partially. The Laplace transform and the perturbation method were applied for the analysis. The tactile warmth of a facing plate in the floor heating system, which touches to human sole directly, was discussed to avoid losing the goodness of wood. (orig.)

2. Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles

Science.gov (United States)

Zuhra, Samina; Khan, Noor Saeed; Khan, Muhammad Altaf; Islam, Saeed; Khan, Waris; Bonyah, Ebenezer

2018-03-01

The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson) nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method). The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work.

3. Night work, long work weeks, and risk of accidental injuries. A register-based study.

Science.gov (United States)

Larsen, Ann D; Hannerz, Harald; Møller, Simone V; Dyreborg, Johnny; Bonde, Jens Peter; Hansen, Johnni; Kolstad, Henrik A; Hansen, Åse Marie; Garde, Anne Helene

2017-11-01

Objectives The aims of this study were to (i) investigate the association between night work or long work weeks and the risk of accidental injuries and (ii) test if the association is affected by age, sex or socioeconomic status. Methods The study population was drawn from the Danish version of the European Labour Force Survey from 1999-2013. The current study was based on 150 438 participants (53% men and 47% women). Data on accidental injuries were obtained at individual level from national health registers. We included all 20-59-year-old employees working ≥32 hours a week at the time of the interview. We used Poisson regression to estimate the relative rates (RR) of accidental injuries as a function of night work or long work weeks (>40 hours per week) adjusted for year of interview, sex, age, socioeconomic status (SES), industry, and weekly working hours or night work. Age, sex and SES were included as two-way interactions. Results We observed 23 495 cases of accidental injuries based on 273 700 person years at risk. Exposure to night work was statistically significantly associated with accidental injuries (RR 1.11, 99% CI 1.06-1.17) compared to participants with no recent night work. No associations were found between long work weeks (>40 hours) and accidental injuries. Conclusion We found a modest increased risk of accidental injuries when reporting night work. No associations between long work weeks and risk of accidental injuries were observed. Age, sex and SES showed no trends when included as two-way interactions.

4. Analytical approaches and experimental verification to describe the influence of cold work and heat treatment on the mechanical properties of zircaloy cladding tubes

International Nuclear Information System (INIS)

Steinberg, E.; Schaa, A.; Weidinger, H.G.

1984-01-01

Well-controlled laboratory heat treatments were performed in the range from 460 to 610 0 C(733 to 883 K) and from 1 to 8 h at temperature on Zircaloy-4 cladding tubes with three different degrees of initial cold work (40%, 64%, and 76%). Within this range the influence of annealing temperature T and time t and of cold work on the yield strength R /SUB pO.2/ at 400 0 C(673 K) and on the degree R of recrystallization was experimentally determined. This data base was used to verify a semi-empirical approach to describe analytically the dependence of yield strength and recrystallization on the aforementioned technological parameters T and t for the annealing and /phi/ = ln l/l /SUB o/ as a measure for the applied cold work

5. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.

Science.gov (United States)

Li, Chunhong; Ruan, Hui; Chen, Dengming; Li, Kejian; Guo, Donglin; Shao, Bin

2018-04-20

A Ni-based alloy was heat treated by changing the temperature and ambient atmosphere of the heat treatment. Morphology, crystal structure, and physical performance of the Ni-based alloy were characterized via SEM, XRD, TEM, and PPMS. Results show that due to the heat treatment process, the grain growth of the Ni-based alloy and the removal of impurities and defects are promoted. Both the orientation and stress caused by rolling are reduced. The permeability and saturation magnetization of the alloy are improved. The hysteresis loss and coercivity are decreased. Higher heat treatment temperature leads to increased improvement of permeability and saturation magnetization. Heat treatment in hydrogen is more conducive to the removal of impurities. At the same temperature, the magnetic performance of the heat-treated alloy in hydrogen is better than that of an alloy with heat treatment in vacuum. The Ni-based alloy shows an excellent magnetic performance on 1,373 K heat treatment in hydrogen atmosphere. In this process, the µ m , B s , P u , and H c of the obtained alloy are 427 mHm -1 , 509 mT, 0.866 Jm -3 , and 0.514 Am -1 , respectively. At the same time, the resistivity of alloy decreases and its thermal conductivity increases in response to heat treatment. © 2018 Wiley Periodicals, Inc.

6. Mapping Urban Heat Demand with the Use of GIS-Based Tools

Directory of Open Access Journals (Sweden)

Artur Wyrwa

2017-05-01

Full Text Available This article presents a bottom-up approach for calculation of the useful heat demand for space heating and hot water preparation using geo-referenced datasets for buildings at the city level. This geographic information system (GIS based approach was applied in the case study for the city of Krakow, where on the one hand the district heat network is well developed, while on the other hand there are still substantial number of buildings burning solid fuels in individual boilers and stoves, causing air pollution. The calculated heat demand was aggregated in the grid with 100 m × 100 m spatial resolution to deliver the heat map depicting the current situation for 21 buildings types. The results show that the residential buildings, in particular one- and multi-family buildings, have the highest share in overall demand for heat. By combining the results with location of the district heat (DH network, the potential areas in its close vicinity that have sufficient heat demand density for developing the net were pointed out. Future evolution in heat demand for space heating in one-family houses was evaluated with the use of deterministic method employing building stock model. The study lays a foundation for planning the development of the heating system at the city level.

7. Alternative Therapies for Gender-based Work Wellness: Perceptions ...

African Journals Online (AJOL)

Due to the performance-based demands and competitive work-environment, employees experience high levels of stress. Organizations, world-wide, have established Employee Wellness Programmes (EWPs) to ease the work-pressure syndromes and offer medical/therapeutic services to employees. The article aims to ...

International Nuclear Information System (INIS)

Huang, F.H.; Li, C.Y.

1977-01-01

An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes

9. Thermal resistance of rotating closed-loop pulsating heat pipes: Effects of working fluids and internal diameters

Directory of Open Access Journals (Sweden)

Kammuang-Lue Niti

2017-01-01

Full Text Available The objective of this study was to experimentally investigate the effects of working fluids and internal diameters on the thermal resistance of rotating closed-loop pul¬sating heat pipes (RCLPHP. The RCLPHP were made of a copper tube with internal diameters of 1.50 mm and 1.78 mm, bent into the shape of a flower petal, and arranged into a circle with 11 turns. The evaporator section was located at the outer end of the tube bundle. R123, ethanol, and water were filled as the working fluids. The RCLPHP was rotated at centrifugal accelerations 0.5, 1, 3, 5, 10, and 20 times of the gravitational acceleration considered at the connection between the evaporator and the condenser sections. The heat input was varied from 30 W to 50 W, and then to 100 W, 150 W, and 200 W. It can be concluded that when the latent heat of evaporation increases, the pressure difference between the evaporator and the condenser sections decreases, and the thermal resistance increases. Moreover, when the internal diameter increases, the driving force increases and the frictional force proportionally decreases, or the Karman number increases, and the thermal resistance decreases.

10. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

Energy Technology Data Exchange (ETDEWEB)

Rahman, Md. Lutfor; Nourin, Farah Nazifa, E-mail: farahnazifanourin@gmail.com; Salsabil, Zaimaa; Yasmin, Nusrat, E-mail: nusratyasmin015@gmail.com [Military Institute of Science and Technology, Mirpur Cantonment, Dhaka -1216 (Bangladesh); Ali, Mohammad [Bangladesh University of Engineering and Technology, Dhaka -1000 (Bangladesh)

2016-07-12

Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2 mm,outer diameter is 2.5 mm and 250 mm long. The CLPHP has 8 loops where the evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

11. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

Energy Technology Data Exchange (ETDEWEB)

Akbi, Mohamed, E-mail: akbi_mohamed@umbb.dz [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France); Department of Physics, Faculty of Sciences, University of Boumerdes (UMBB), Independence Avenue, 35000 Boumerdes (Algeria); Bouchou, Aïssa [Faculty of Physics, University of Algiers (USTHB), B.P. 32, El-Alia, Bab-Ezzouar, 16111 Algiers (Algeria); Zouache, Noureddine [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France)

2014-06-01

Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10{sup −7} mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

12. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

Science.gov (United States)

Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad

2016-07-01

Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2mm,outer diameter is 2.5mm and 250mm long. The CLPHP has 8 loops where the evaporation section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

13. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

International Nuclear Information System (INIS)

Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad

2016-01-01

Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2 mm,outer diameter is 2.5 mm and 250 mm long. The CLPHP has 8 loops where the evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

14. Experimental determination of nanofluid specific heat with SiO2 nanoparticles in different base fluids

Science.gov (United States)

Akilu, S.; Baheta, A. T.; Sharma, K. V.; Said, M. A.

2017-09-01

Nanostructured ceramic materials have recently attracted attention as promising heat transfer fluid additives owing to their outstanding heat storage capacities. In this paper, experimental measurements of the specific heats of SiO2-Glycerol, SiO2-Ethylene Glycol, and SiO2-Glycerol/Ethylene Glycol mixture 60:40 ratio (by mass) nanofluids with different volume concentrations of 1.0-4.0% have been carried out using differential scanning calorimeter at temperatures of 25 °C and 50 °C. Experimental results indicate lower specific heat capacities are found with SiO2 nanofluids compared to their respective base fluids. The specific heat was decreasing with the increase of concentration, and this decrement depends on upon the type of the base fluid. It is observed that temperature has a positive impact on the specific heat capacity. Furthermore, the experimental values were compared with the theoretical model predictions, and a satisfactory agreement was established.

15. Individual differences in satisfaction with activity-based work environments

NARCIS (Netherlands)

Hoendervanger, Jan; Ernst, Anja F.; Albers, Casper; Mobach, Mark; Van Yperen, Nico W.

2018-01-01

Satisfaction with activity-based work environments (ABW environments) often falls short of expectations, with striking differences among individual workers. A better understanding of these differences may provide clues for optimising satisfaction with ABW environments and associated organisational

16. WORK BASED HIGHER LEARNING FOR THE DANISH TOURISM SECTOR

DEFF Research Database (Denmark)

Lindegaard, Klaus; Voergård-Olesen, Rikke Karen

2012-01-01

The paper reports on an investigation of the business needs for work based higher learning in the Danish tourism sector and the match with the supply of higher education, emphasizing opportunities and barriers for work based learning (WBL) in the Danish University System. The Danish tourism secto...... to be suitable for the tourism industry and needs to be developed within the higher education institutions in Denmark....... need for development through further and higher education of employees is widely recognized, while Danish higher education is challenged to develop a more demand-led approach. The research done consists of completed empirical studies and literature review on Danish tourism and Danish higher education......The paper reports on an investigation of the business needs for work based higher learning in the Danish tourism sector and the match with the supply of higher education, emphasizing opportunities and barriers for work based learning (WBL) in the Danish University System. The Danish tourism sector...

17. WORK BASED LEARNING FOR INCREASING STUDENTS‘ PARTICIPATION IN KEWIRAUSAHAAN CLASS

Directory of Open Access Journals (Sweden)

Agung Nugroho

2017-12-01

Full Text Available This study is aimed to investigate the use of Work Based Learning method to increase students‘ participation in Kewirausahaan class. The study was conducted in the English Department of Faculty of Languages and Arts, Universitas Negeri Semarang. This study used quasi-experimental design involving 65 students of the 2nd semester in Kewirausahaan Classes. The researchers divided the subjects into experimental group comprising 29 students and control group comprising 36 students respectively. The experimental group was given some treatments of Work Based Learning in 5 meetings while the control group was given some treatments using teachers‘ presentation in the same number of meetings. The data in this study were taken from questionnaires and observations. The result shows that there is a higher frequency of students‘ participation during the teaching and learning process implementing the Work Based Learning method. Hence, this gives us good grounds for implementing Work-Based Learning in Kewirausahaan class.

18. Large Eddy/Reynolds-Averaged Navier-Stokes Simulations of CUBRC Base Heating Experiments

Science.gov (United States)

Salazar, Giovanni; Edwards, Jack R.; Amar, Adam J.

2012-01-01

ven with great advances in computational techniques and computing power during recent decades, the modeling of unsteady separated flows, such as those encountered in the wake of a re-entry vehicle, continues to be one of the most challenging problems in CFD. Of most interest to the aerothermodynamics community is accurately predicting transient heating loads on the base of a blunt body, which would result in reduced uncertainties and safety margins when designing a re-entry vehicle. However, the prediction of heat transfer can vary widely depending on the turbulence model employed. Therefore, selecting a turbulence model which realistically captures as much of the flow physics as possible will result in improved results. Reynolds Averaged Navier Stokes (RANS) models have become increasingly popular due to their good performance with attached flows, and the relatively quick turnaround time to obtain results. However, RANS methods cannot accurately simulate unsteady separated wake flows, and running direct numerical simulation (DNS) on such complex flows is currently too computationally expensive. Large Eddy Simulation (LES) techniques allow for the computation of the large eddies, which contain most of the Reynolds stress, while modeling the smaller (subgrid) eddies. This results in models which are more computationally expensive than RANS methods, but not as prohibitive as DNS. By complimenting an LES approach with a RANS model, a hybrid LES/RANS method resolves the larger turbulent scales away from surfaces with LES, and switches to a RANS model inside boundary layers. As pointed out by Bertin et al., this type of hybrid approach has shown a lot of promise for predicting turbulent flows, but work is needed to verify that these models work well in hypersonic flows. The very limited amounts of flight and experimental data available presents an additional challenge for researchers. Recently, a joint study by NASA and CUBRC has focused on collecting heat transfer data

19. Waste Contaminants at Military Bases Working Group report

International Nuclear Information System (INIS)

1993-01-01

The Waste Contaminants at Military Bases Working Group has screened six prospective demonstration projects for consideration by the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT). These projects include the Kirtland Air Force Base Demonstration Project, the March Air Force Base Demonstration Project, the McClellan Air Force Base Demonstration Project, the Williams Air Force Base Demonstration Project, and two demonstration projects under the Air Force Center for Environmental Excellence. A seventh project (Port Hueneme Naval Construction Battalion Center) was added to list of prospective demonstrations after the September 1993 Working Group Meeting. This demonstration project has not been screened by the working group. Two additional Air Force remediation programs are also under consideration and are described in Section 6 of this document. The following information on prospective demonstrations was collected by the Waste Contaminants at Military Bases Working Group to assist the DOIT Committee in making Phase 1 Demonstration Project recommendations. The remainder of this report is organized into seven sections: Work Group Charter's mission and vision; contamination problems, current technology limitations, and institutional and regulatory barriers to technology development and commercialization, and work force issues; screening process for initial Phase 1 demonstration technologies and sites; demonstration descriptions -- good matches;demonstration descriptions -- close matches; additional candidate demonstration projects; and next steps

20. No-contact method of determining average working-surface temperature of plate-type radiation-absorbing thermal exchange panels of flat solar collectors for heating heat-transfer fluid

International Nuclear Information System (INIS)

Avezova, N.R.; Avezov, R.R.

2015-01-01

A brand new no-contact method of determining the average working-surface temperature of plate-type radiation-absorbing thermal exchange panels (RATEPs) of flat solar collectors (FSCs) for heating a heat-transfer fluid (HTF) is suggested on the basis of the results of thermal tests in full-scale quasistationary conditions. (authors)

1. Performance analysis of quantum Diesel heat engines with a two-level atom as working substance

Science.gov (United States)

Huang, X. L.; Shang, Y. F.; Guo, D. Y.; Yu, Qian; Sun, Qi

2017-07-01

A quantum Diesel cycle, which consists of one quantum isobaric process, one quantum isochoric process and two quantum adiabatic processes, is established with a two-level atom as working substance. The parameter R in this model is defined as the ratio of the time in quantum isochoric process to the timescale for the potential width movement. The positive work condition, power output and efficiency are obtained, and the optimal performance is analyzed with different R. The effects of dissipation, the mixed state in the cycle and the results of other working substances are also discussed at the end of this analysis.

2. Heat transfer and pressure drop characteristics of a plate heat exchanger using water based Al2O3 nanofluid for 30° and 60° chevron angles

Science.gov (United States)

Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.

2018-04-01

Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.

3. CFD simulation of direct contact condensation with ANSYS CFX using surface renewal theory based heat transfer coefficients

Energy Technology Data Exchange (ETDEWEB)

Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

2013-07-01

Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)

4. Opportunities for Waste Heat Recovery at Contingency Bases

Science.gov (United States)

2016-04-01

engines, micro gas turbines, Rankine cycle engines, Stirling engines, and fuel cells. The level of development or “maturity” of these technologies varies...provide cooling or heating while simultaneously generating external electrical power for lights, computer equipment, and their internal motors ; they...IntelliChoice Energy 2013). Micro-CHP systems can use different technologies including internal com- bustion engines, Stirling engines, and

5. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

Directory of Open Access Journals (Sweden)

Florian Heberle

2016-03-01

Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

6. Feasibility of computed tomography based thermometry during interstitial laser heating in bovine liver

NARCIS (Netherlands)

Pandeya, G. D.; Klaessens, J. H. G. M.; Greuter, M. J. W.; Schmidt, B.; Flohr, T.; van Hillegersberg, R.; Oudkerk, M.

To assess the feasibility of computed tomography (CT) based thermometry during interstitial laser heating in the bovine liver. Four freshly exercised cylindrical blocks of bovine tissue were heated using a continuous laser of Nd:YAG (wavelength: 1064 nm, active length: 30 mm, power: 10-30 W). All

7. Crystals for sustainability – structuring Al-based MOFs for the allocation of heat and cold

NARCIS (Netherlands)

De Lange, M.F.; Ottevanger, C.P.; Wiegman, M.; Vlugt, T.J.H.; Gascon, J.; Kapteijn, F.

2014-01-01

Several Al-based MOFs of the CAU family have been investigated for application in the adsorption driven allocation of heat and cold. The special water adsorption behaviour of CAU-10-H makes it ideal for application in adsorption driven heat pumps and chillers. For increased performance, CAU-10-H

8. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

International Nuclear Information System (INIS)

Yonezawa, Toshio; Iwamura, Toshihiko; Fujimoto, Koji; Ajiki, Kazuhide

2000-01-01

The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M 23 C 6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M 23 C 6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

9. Method for calculating thermal properties of lightweight floor heating panels based on an experimental setup

DEFF Research Database (Denmark)

Weitzmann, Peter; Svendsen, Svend

2005-01-01

Lightweight floor heating systems consist of a plastic tube connected to a heat distribution aluminium plate and are used in wooden floor constructions. The thermal properties of lightweight floor heating systems cannot be described accurately. The reason is a very complex interaction of convection......, radiation and conduction of the heat transfer between pipe and surrounding materials. The European Standard for floor heating, EN1264, does not cover lightweight systems, while the supplemental Nordtest Method VVS127 is aimed at lightweight systems. The thermal properties can be found using tabulated values...... or experiments. Neither includes dynamic properties. This article describes a method to find steady-state and dynamical thermal properties in an experimental setup based on finding a characteristic thermal resistance between pipe and heat transfer plate, which can be directly implemented in a numerical...

10. Comparison of district heating expansion potential based on consumer-economy or socio-economy

DEFF Research Database (Denmark)

Grundahl, Lars; Nielsen, Steffen; Lund, Henrik

2016-01-01

Recent studies show that a high share of district heating is an important part of a future sustainable energy system or smart energy system with a high renewable energy penetration. These studies also show socio-economic benefits of expanding the district heating coverage. However, in order...... to implement such an expansion, district heating needs to be economically feasible for the heat consumers. This aspect is often not investigated and hence it is unknown if calculations based on consumer-economy, where tax payment is included, will yield the same potential of expansion. This study identifies...... the differences in the expansion potential of district heating calculated with a socio-economic and a consumer-economic approach, respectively, in a case study of Denmark. By also investigating the consumer-economy of expanding district heating, a deeper insight is obtained of possible locations for expanding...

11. What is the future of work based learning in VET?

DEFF Research Database (Denmark)

Jørgensen, Christian Helms

Dual systems of vocational education and training that build on the tradition of apprenticeship have many attractive qualities, seen from a political perspective. VET systems that comprise a significant amount of work-based training, provide a valuable alternative for young people who chose...... not to pursue an academic career. Countries with strong apprenticeship systems tend to have less youth unemployment and a smoother transition to the labour market than others. Furthermore, from a learning perspective, the outcomes of work-based training and informal learning are enhanced when they are combined...... with formal education in a dual system. But historically in many countries, apprenticeship has given way to school-based forms of VET and dual systems are only dominant in a limited number of countries. Furthermore, the integration of work-based training in an educational programme involves many challenges...

12. Transient cooling of electronics using phase change material (PCM)-based heat sinks

International Nuclear Information System (INIS)

Kandasamy, Ravi; Wang Xiangqi; Mujumdar, Arun S.

2008-01-01

Use of a phase change material (PCM)-based heat sink in transient thermal management of plastic quad flat package (QFP) electronic devices was investigated experimentally and numerically. Results show that increased power inputs enhance the melting rate as well as the thermal performance of the PCM-based heat sinks until the PCM is fully melted. A three-dimensional computational fluid dynamics model was proposed to simulate the problem and demonstrated good agreement with experimental data. Results indicate the potential for PCM-based heat sinks for use in intermittent-use devices

13. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume I

International Nuclear Information System (INIS)

Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

1987-07-01

A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for the tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperatures and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtl number for saturated liquid, saturated vapour, subcooled liquid for superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its

14. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume II

International Nuclear Information System (INIS)

Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

1987-07-01

A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperature and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters are required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtle number for saturated liquid, saturated vapour, subcooled liquid of superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its structure

15. Experimental investigation of an active magnetic regenerative heat circulator applied to self-heat recuperation technology

International Nuclear Information System (INIS)

Kotani, Yui; Kansha, Yasuki; Ishizuka, Masanori; Tsutsumi, Atsushi

2014-01-01

An experimental investigation into an active magnetic regenerative (AMR) heat circulator based on self-heat recuperation technology, was conducted to evaluate its energy saving potential in heat circulation. In an AMR heat circulator, magnetocaloric effect is applied to recuperate the heat exergy of the process fluid. The recuperated heat can be reused to heat the feed process fluid and realize self-heat recuperation. In this paper, AMR heat circulator has newly been constructed to determine the amount of heat circulated when applied to self-heat recuperation and the energy consumption of the heat circulator. Gadolinium and water was used as the magnetocaloric working material and the process fluid, respectively. The heat circulated amount was determined by measuring the temperature of the process fluid and gadolinium. The net work input for heat circulation was obtained from the magnetizing and demagnetizing forces and the distance travelled by the magnetocaloric bed. The results were compared with the minimum work input needed for heat circulation derived from exergy loss during heat exchange. It was seen that the experimentally obtained value was close to the minimum work input needed for heat circulation. - Highlights: • AMR heat circulator has newly been constructed for experimental evaluation. • Heat circulation in the vicinity of Curie temperature was observed. • Energy consumption of an AMR heat circulator has been measured. • Energy saving for processes near Curie temperature of working material was seen

16. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

International Nuclear Information System (INIS)

Truong, B.; Hu, L. W.; Buongiorno, J.

2008-01-01

Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

17. Characterization and Thermal Properties of Nitrate Based Molten Salt for Heat Recovery System

Science.gov (United States)

Faizal Tukimon, Mohd; Muhammad, Wan Nur Azrina Wan; Nor Annuar Mohamad, Md; Yusof, Farazila

2017-10-01

Molten salt can acts like a storage medium or heat transfer fluid in heat recovery system. Heat transfer fluid is a fluid that has the capability to deliver heat this one side to another while heat recovery system is a system that transfers heat to produce energy. This studies shows about determining the new formulation of different molten nitrate/nitrite salts consisting of LiNO3, KNO2, KNO3 and NaNO2 that give a low temperature of melting point and high average specific heat capacity. Mixed alkaline molten nitrate/nitrite salt can act as a heat transfer fluid due to their advantageous in terms of its properties that feasible in heat recovery system such as high specific heat capacity, low vapour pressure, low cost and wide range of temperature in its application. The mixing of these primary substances will form a new line of quaternary nitrate salt (LiNO3 - KNO2 - KNO3 - NaNO2). The quaternary mixture was heated inside the box furnace at 150°C for four hours and rose up the temperature to 400°C for eight hours to homogenize the mixture. Through heating process, the elements of nitrate/nitrite base were mixed completely. The temperature was then reduced to 115°C for several hours before removing the mixture from the furnace. The melting point of each sample were testified by using thermal gravimetric analysis, TGA/DTA and experiment of determining the specific heat capacity were conducted by using Differential Scanning Calorimeter, DSC. From the result, it is found that the melting point Sample 1 with percentage of weightage (25.4wt% of LiNO3, 33.8wt% of KNO2, 20.7wt% of KNO3 and 20.1wt% of NaNO2) is 94.4°C whereas the average specific heat capacity was 1.0484/g°C while for Sample 3 with percentages of weightage (30.0wt% of LiNO3, 50.2wt% of KNO2, 3.1wt% of KNO3 and 16.7wt% of NaNO2), the melting point is 86.1°C with average specific heat capacity of 0.7274 J/g°C. In the nut shell, the quaternary mixture salts had been a good mixture with good thermal

18. A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: A case study

International Nuclear Information System (INIS)

Zarrella, Angelo; Emmi, Giuseppe; De Carli, Michele

2017-01-01

Highlights: • The work focuses on the variable flow in ground source heat pump systems. • The constant and variable speed circulation pumps in the ground loop are compared. • The constant temperature difference control across the heat pump is studied. • The variable flow affects the energy performance of the heat pump. • The constant temperature difference control offers an attractive energy saving. - Abstract: A simulation model of ground source heat pump systems has been used to investigate to what extent a variable flow of the heat-carrier fluid of the ground loop affects the energy efficiency of the entire system. The model contemporaneously considers the borehole heat exchangers, the heat pump, the building load, and the control strategies for the circulation pumps of the ground loop. A constant speed of the circulation pumps of the ground loop was compared with a variable flow controlled by means of a constant temperature difference across the heat pump on the ground side considering the load profile of an office building located in North Italy. The analysis was carried out for a single U-tube, double U-tube and coaxial pipe heat exchangers. The control strategies adopted to manage the flow rate of the heat-carrier fluid of the ground loop affect both the heat exchange rate of the borehole field and the heat pump’s long-term energy efficiency. The simulations show considerable differences in the system’s seasonal energy efficiency. The constant speed of the circulation pumps leads to the best results as far as the heat pump’s energy performance was concerned, but this advantage was lost because of the greater amount of electrical energy used by the circulation pumps; this, of course, affects the energy efficiency of the entire system. The optimal solution appears then to be a constant temperature difference in the heat-carrier fluid across the heat pump.

19. Work-Based Learning and Academic Skills. IEE Working Paper No. 15.

Science.gov (United States)

Hughes, Katherine L.; Moore, David Thornton; Bailey, Thomas R.

The claim that work-based experience improves students' academic performance was examined through a study of the academic progress of 25 high school and community college student interns employed in various health care workplaces. Data were collected from the following activities: (1) review of the literature on academic reinforcement and academic…

20. Teaching about Faith-Based Organizations in the Social Work Curriculum: Perspectives of Social Work Educators

Science.gov (United States)

Pandya, Samta P.

2016-01-01

Faith-based organizations (FBOs) have an important presence in contemporary civil society and have gained further prominence through their repertoire of social welfare and services. This study engaged social work educators (n = 316) across nine countries to examine their perceptions of including discourses on faith and FBOs in the social work…

1. At-Risk Youth Find Work Hope in Work-Based Education

Science.gov (United States)

Taylor, Connie E.; Hutchinson, Nancy L.; Ingersoll, Marcea; Dalton, C. J.; Dods, Jennifer; Godden, Lorraine; Chin, Peter; de Lugt, Jennifer

2015-01-01

The transition from school to the workplace has been identified as challenging for at-risk youth who have already disengaged from learning and feel disenfranchised in the context of school. Work-based education (WBE), including co-operative education, has been recognized in recent years as an effective strategy for enabling at-risk youth to…

2. Environmental safety providing during heat insulation works and using thermal insulation materials

Directory of Open Access Journals (Sweden)

Velichko Evgeny

2017-01-01

Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

3. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

Science.gov (United States)

Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

2016-03-01

In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

4. Gas-heating alternatives to the residential electric heat pump. Gas Appliance Technology Center 1987 program. Topical report for Work Area 1.1, October 1989-March 1990

International Nuclear Information System (INIS)

Haas, C.

1990-05-01

The characteristics of electric heat pumps are described. Options are defined and assessed for utilizing gas heating in conjunction with existing residential electric heat pumps. These options include gas heat introduced into the refrigeration circuit, a flue gas-heated tube bank in the air supply duct, and a hot-water-to-air coil in the supply duct. Economics are presented for conversion of a residence's total space and water heating from electric to gas in New York City and Atlanta. Potential marketing strategies are discussed, and potential gas sales volumes from conversions are estimated. The study concludes that the use of gas water heating coupled with a hydronic coil in the supply ductwork from the air handler is the most advantageous option for the gas industry

5. Investigation on Solar Heating System with Building-Integrated Heat Storage

DEFF Research Database (Denmark)

Heller, Alfred

1996-01-01

by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can......Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... be self-made to keep the price down. The system is working, but heat exchange from plastic piping to sand is rather poor. The dimensioning of the volume is rather difficult based on common knowledge. Passive heating, hence reduction of heat demand, due to the storage and especially due to the oversized...

6. “TERPI” AS A QUANTITY OF THERMODYNAMIC POTENTIAL ENERGY SUPPLEMENTARY TO THE CONCEPT OF WORK AND HEAT

Directory of Open Access Journals (Sweden)

RHA Sahirul Alim

2010-06-01

Full Text Available Isothermal reversible thermodynamic processes were studied, where there will not occur flow of heat (q in the system in accord with the second law of thermodynamic. It appear that the energy flow in the system cannot be explained adequately by considering the flow of P,V - work, usually indicated by w, in accordance with the first law, that is,  ΔU = q + w with q = 0.  Therefore, it is necessary to have another kind of work energy (potential which is not electrical to explain such as the experiment of Boyle that results in the formula PV = C for a close ideal gas system undergoing an isothermal and reversible process. In this paper, a new work potential which is called ";;terpi";; is introduced, and is abbreviated as  τ (tau and defined as: dτ ≡  - T dSrev = - dqrev.             Therefore, dt is also not an exact differential as dw and dq. For any isothermal reversible process, it can be written:   τ = -TΔSrev, and for redox reaction, such as an electrochemical cell, it is noteworthy to distinguish between τ system (τsyst and τ reaction (τr which combine together to become an electrical work flow, (wel done by the system on the surrounding, so that: ΔGr = τsyst + τr = v F E             Furthermore, the studies of phase transitions, which occur isothermally, were also considered, e.g. the evaporation of a liquid into vapour at a certain T.  The heat given to this process cannot freely flow isothermally, but first it must be  changed into terpy and then added to the enthalpy of the vapour following the equation:     τvap = -TΔSvap = -ΔHvap.   Keywords: thermodynamics, heat, work, isothermal, reversible

7. Numerical prediction of micro-channel LD heat sink operated with antifreeze based on CFD method

Science.gov (United States)

Liu, Gang; Liu, Yang; Wang, Chao; Wang, Wentao; Wang, Gang; Tang, Xiaojun

2014-12-01

To theoretically study the feasibility of antifreeze coolants applied as cooling fluids for high power LD heat sink, detailed Computational Fluid Dynamics (CFD) analysis of liquid cooled micro-channels heat sinks is presented. The performance operated with antifreeze coolant (ethylene glycol aqueous solution) compared with pure water are numerical calculated for the heat sinks with the same micro-channels structures. The maximum thermal resistance, total pressure loss (flow resistance), thermal resistance vs. flow-rate, and pressure loss vs. flow-rate etc. characteristics are numerical calculated. The results indicate that the type and temperature of coolants plays an important role on the performance of heat sinks. The whole thermal resistance and pressure loss of heat sinks increase significantly with antifreeze coolants compared with pure water mainly due to its relatively lower thermal conductivity and higher fluid viscosity. The thermal resistance and pressure loss are functions of the flow rate and operation temperature. Increasing of the coolant flow rate can reduce the thermal resistance of heat sinks; meanwhile increase the pressure loss significantly. The thermal resistance tends to a limit with increasing flow rate, while the pressure loss tends to increase exponentially with increasing flow rate. Low operation temperature chiefly increases the pressure loss rather than thermal resistance due to the remarkable increasing of fluid viscosity. The actual working point of the cooling circulation system can be determined on the basis of the pressure drop vs. flow rate curve for the micro-channel heat sink and that for the circulation system. In the same system, if the type or/and temperature of the coolant is changed, the working point is accordingly influenced, that is, working flow rate and pressure is changed simultaneously, due to which the heat sink performance is influenced. According to the numerical simulation results, if ethylene glycol aqueous

8. A review of solar energy based heat and power generation systems

DEFF Research Database (Denmark)

Modi, Anish; Bühler, Fabian; Andreasen, Jesper Graa

2017-01-01

The utilization of solar energy based technologies has attracted increased interest in recent times in order to satisfy the various energy demands of our society. This paper presents a thorough review of the open literature on solar energy based heat and power plants. In order to limit the scope...... of the review, only fully renewable plants with at least the production of electricity and heat/hot water for end use are considered. These include solar photovoltaic and solar thermal based plants with both concentrating and non-concentrating collectors in both solar-only and solar-hybrid configurations....... The paper also presents a selection of case studies for the evaluation of solar energy based combined heat and power generation possibility in Denmark. The considered technologies for the case studies are (1) solar photovoltaic modules, (2) solar flat plate collectors, (3) a ground source heat pump, (4...

9. The effects of moderate heat stress and open-plan office noise distraction on office work

DEFF Research Database (Denmark)

Witterseh, Thomas; Wyon, David; Clausen, Geo

2002-01-01

Thirty subjects clothed for comfort at 22 deg.C performed simulated office work for 3 hours at 22/26/30 deg.C (7.4 g/kg dry air, i.e. 45/35/28 %RH) in quiet and recorded open-plan office noise (55 dBA) conditions. Warmth decreased perceived air quality (P......Thirty subjects clothed for comfort at 22 deg.C performed simulated office work for 3 hours at 22/26/30 deg.C (7.4 g/kg dry air, i.e. 45/35/28 %RH) in quiet and recorded open-plan office noise (55 dBA) conditions. Warmth decreased perceived air quality (P...

10. Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery

International Nuclear Information System (INIS)

Shu, Gequn; Gao, Yuanyuan; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

2014-01-01

For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%∼9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW. - Highlights: • A theoretical analysis of Organic Rankine Cycle for engine exhaust heat recovery is proposed. • Mixtures based on hydrocarbons as working fluids have been suggested. • Effects of the IHE (internal heat exchanger) on ORC system are investigated. • OMR (Optimal mixture ratio) changes with the evaporation temperature. • Using the system, maximum thermal efficiency can achieve 16.7%

11. A Heated Debate: Theoretical Perspectives of Sexual Exploitation and Sex Work.

Science.gov (United States)

Gerassi, Lara

2015-12-01

The theoretical and often political framework of sexual exploitation and sex work among women is widely and enthusiastically debated among academic and legal scholars alike. The majority of theoretical literature in this area focuses on the macro perspective, while the micro-level perspective as to theory and causation remains sparse. This article provides a comprehensive overview of the philosophical, legal, and political perspectives pertaining to sexual exploitation of women and girls while addressing the subsequent controversies in the field.

12. A Heated Debate: Theoretical Perspectives of Sexual Exploitation and Sex Work

OpenAIRE

Gerassi, Lara

2015-01-01

The theoretical and often political framework of sexual exploitation and sex work among women is widely and enthusiastically debated among academic and legal scholars alike. The majority of theoretical literature in this area focuses on the macro perspective, while the micro-level perspective as to theory and causation remains sparse. This article provides a comprehensive overview of the philosophical, legal, and political perspectives pertaining to sexual exploitation of women and girls whil...

13. Numerical analysis of pulsating heat pipe based on separated flow model

International Nuclear Information System (INIS)

Kim, Jong Soo; Im, Yong Bin; Bui, Ngoc Hung

2005-01-01

The examination on the operating mechanism of a Pulsating Heat Pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3 mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased

14. Thermal management of electronics using phase change material based pin fin heat sinks

International Nuclear Information System (INIS)

Baby, R; Balaji, C

2012-01-01

This paper reports the results of an experimental study carried out to explore the thermal characteristics of phase change material based heat sinks for electronic equipment cooling. The phase change material (PCM) used in this study is n – eicosane. All heat sinks used in the present study are made of aluminium with dimensions of 80 × 62 mm 2 base with a height of 25 mm. Pin fins acts as the thermal conductivity enhancer (TCE) to improve the distribution of heat more uniformly as the thermal conductivity of the PCM is very low. A total of three different pin fin heat sink geometries with 33, 72 and 120 pin fins filled with phase change materials giving rise to 4%, 9% and 15% volume fractions of the TCE respectively were experimentally investigated. Baseline comparisons are done with a heat sink filled with PCM, without any fin. Studies are conducted for heat sinks on which a uniform heat load is applied at the bottom for the finned and unfinned cases. The effect of pin fins of different volume fractions with power levels ranging from 4 to 8 W corresponding to a heat flux range of 1. 59 to 3.17 kW/m 2 , was explored in this paper. The volume fraction of the PCM (PCM volume / (Total volume – fin volume)) is also varied as 0. 3, 0.6 and 1 to determine the effect of PCM volume on the overall performance of the electronic equipment.

15. Changes in mechanical properties and microstructure following heat treatment of a nickel-chromium base alloy.

Science.gov (United States)

Winkler, S; Morris, H F; Monteiro, J M

1984-12-01

Heat treatment of a nickel-chromium base metal alloy produced changes (percent elongation, ultimate tensile strength, modulus of elasticity, yield strength, and hardness) that simulated properties of various types of noble metal alloys. Further research is indicated to determine if the properties of a base metal alloy can be altered by heat treatment or other means to enable its use for a wide variety of fixed dental restorations.

16. Optimization-based design of waste heat recovery systems

DEFF Research Database (Denmark)

Cignitti, Stefano

than working fluids, the thesis presents other product types and applications of relevance, including solvent design. In this thesis, a holistic framework is presented for the design of novel chemical products as a means of process systems design. The framework ensures optimal design of the chemical...... product and process system in terms of efficiency and sustainability. Today, some of the most important chemical product design problems are solvents and working fluids. Solvents are a vital part in the recovery of valuable resources in separation processes or waste water treatment. Working fluids...

17. Space Launch System Base Heating Test: Environments and Base Flow Physics

Science.gov (United States)

Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

2016-01-01

The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

18. A Working Memory Test Battery: Java-Based Collection of Seven Working Memory Tasks

Directory of Open Access Journals (Sweden)

James M Stone

2015-06-01

Full Text Available Working memory is a key construct within cognitive science. It is an important theory in its own right, but the influence of working memory is enriched due to the widespread evidence that measures of its capacity are linked to a variety of functions in wider cognition. To facilitate the active research environment into this topic, we describe seven computer-based tasks that provide estimates of short-term and working memory incorporating both visuospatial and verbal material. The memory span tasks provided are; digit span, matrix span, arrow span, reading span, operation span, rotation span, and symmetry span. These tasks are built to be simple to use, flexible to adapt to the specific needs of the research design, and are open source. All files can be downloaded from the project website http://www.cognitivetools.uk and the source code is available via Github.

19. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC System Based on High Utilization of Engine’s Waste Heats

Directory of Open Access Journals (Sweden)

Lingfeng Shi

2017-10-01

Full Text Available This research conducted a study specially to systematically analyze combined recovery of exhaust gas and engine coolant and related influence mechanism, including a detailed theoretical study and an assistant experimental study. In this research, CO2-based transcritical Rankine cycle (CTRC was used for fully combining the wastes heats. The main objective of theoretical research was to search an ‘ideal point’ of the recovery system and related influence mechanism, which was defined as operating condition of complete recovery of two waste heats. The theoretical methodology of this study could also provide a design reference for effective combined recovery of two or multiple waste heats in other fields. Based on a kW-class preheated CTRC prototype that was designed by the ‘ideal point’ method, an experimental study was conducted to verify combined utilization degree of two engine waste heats by the CTRC system. The operating results showed that the prototype can gain 44.4–49.8 kW and 22.7–26.7 kW heat absorption from exhaust gas and engine coolant, respectively. To direct practical operation, an experimental optimization work on the operating process was conducted for complete recovery of engine coolant exactly, which avoided deficient or excessive recovery.

20. HEAT PUMP STATION WITH CARBON DIOXIDE AS A WORKING FLUID ENERGY EFFICIENCY GROWTH IN COMBINED DISTRICT HEATING SYSTEM DUE TO ITS CONTROL SYSTEM OPTIMIZATION

Directory of Open Access Journals (Sweden)

Sit B.M.

2008-04-01

Full Text Available A diagram of the heat pump station (HPS for the central heat supply station of the district heating system, which gets the power from the CHP plant is examined. A block diagram of the control of the system and compressor pressure control system are examined. The description of the control laws of evaporator at the variable heat load of the HPS and control laws of the gas cooler taking into account the goal of achieving the maximum of COP of HPS is shown as well.

1. Hegemonic Power Process in Team-based Work

NARCIS (Netherlands)

Doorewaard, J.A.C.M.; Brouns, B.B.G.

2003-01-01

The purpose of this paper is to portray how implicit “hegemonic power processes” channel the way in which self-managing teams deal with organisational dilemmas. Hegemonic power processes in team-based work are, to a great extent concealed, processes of meaning and identity formation. These processes

2. Citizen-based Strategies to Improve Community Security: Working ...

International Development Research Centre (IDRC) Digital Library (Canada)

Citizen-based Strategies to Improve Community Security: Working with Vulnerable Populations to Address Urban Violence in Medellin ... Water Resources Association, in close collaboration with IDRC, is holding a webinar titled “Climate change and adaptive water management: Innovative solutions from the Global South”.

3. Comparing international and South African work-based assessment ...

African Journals Online (AJOL)

Comparing international and South African work-based assessment of medical interns' practice. ... in the finding that most studies in SA have dealt with the assessment of core procedural skills related to acute clinical care, while the assessment of non-clinical competencies and non-procedural skills was poorly addressed.

4. Building a Competency-Based Curriculum in Social Work Education

Science.gov (United States)

Bracy, Wanda

2018-01-01

The focus on competency in social work education makes the development of a competency-based curriculum critical. This article describes an approach to curriculum building taking into account the integration, coherency, and integrity of such a curriculum. A presentation of how performance outcomes are fundamental to the relationship between the…

5. WWW-based environments for collaborative group work

NARCIS (Netherlands)

Collis, Betty

1998-01-01

Since 1994, we have been involved in the design and use of a series of WWW-based environments to support collaborative group work for students in a technical university in The Netherlands. These environments, and the course re-design that accompanies each new environment, began in April 1994 and

6. What is the future of work based learning in VET?

DEFF Research Database (Denmark)

Jørgensen, Christian Helms

not to pursue an academic career. Countries with strong apprenticeship systems tend to have less youth unemployment and a smoother transition to the labour market than others. Furthermore, from a learning perspective, the outcomes of work-based training and informal learning are enhanced when they are combined...

7. Social Work Students' Perceptions of Team-Based Learning

Science.gov (United States)

Macke, Caroline; Taylor, Jessica Averitt; Taylor, James E.; Tapp, Karen; Canfield, James

2015-01-01

This study sought to examine social work students' perceptions of Team-Based Learning (N = 154). Aside from looking at overall student perceptions, comparative analyses examined differences in perceptions between BSW and MSW students, and between Caucasian students and students of color. Findings for the overall sample revealed favorable…

8. Time-Based Work Interference with Family and Emotional ...

African Journals Online (AJOL)

This study investigated the relationship between time-based work interference with family and emotional exhaustion among female teachers. 304 female secondary school teachers between the ages of 26 to 54 years (M= 40.37 and SD =4.09) with educational qualifications ranging from National Certification of Education to ...

9. Enhancing Social Work Education through Team-Based Learning

Science.gov (United States)

Gillespie, Judy

2012-01-01

Group learning strategies are used extensively in social work education, despite the challenges and negative outcomes regularly experienced by students and faculty. Building on principles of cooperative learning, team-based learning offers a more structured approach that maximizes the benefits of cooperative learning while also offering…

10. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

Directory of Open Access Journals (Sweden)

2016-01-01

Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

11. Satellite data based approach for the estimation of anthropogenic heat flux over urban areas

Science.gov (United States)

Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios

2017-09-01

Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.

12. The Impact of Heat Exposure and Sleep Restriction on Firefighters’ Work Performance and Physiology during Simulated Wildfire Suppression

Directory of Open Access Journals (Sweden)

Grace E. Vincent

2017-02-01

Full Text Available This study was designed to examine the effects of ambient heat on firefighters’ physical task performance, and physiological and perceptual responses when sleep restricted during simulated wildfire conditions. Thirty firefighters were randomly allocated to the sleep restricted (n = 17, SR; 19 °C, 4-h sleep opportunity or hot and sleep restricted (n = 13, HOT + SR; 33 °C, 4-h sleep opportunity condition. Firefighters performed two days of simulated, intermittent, self-paced work circuits comprising six firefighting tasks. Heart rate, and core temperature were measured continuously. After each task, firefighters reported their rating of perceived exertion and thermal sensation. Effort sensation was also reported after each work circuit. Fluids were consumed ad libitum. Urine volume and urine specific gravity were analysed. Sleep was monitored using polysomnography. There were no differences between the SR and HOT + SR groups in firefighters’ physiological responses, hydration status, ratings of perceived exertion, motivation, and four of the six firefighting tasks (charged hose advance, rake, hose rolling, static hose hold. Black out hose and lateral repositioning were adversely affected in the HOT + SR group. Working in hot conditions did not appear to consistently impair firefighters work performance, physiology, and perceptual responses. Future research should determine whether such findings remain true when individual tasks are performed over longer durations.

13. Effect of Nanoclay on Mechanical Properties and Ablation Behavior of a Nitrile-Based Heat Insulator

Directory of Open Access Journals (Sweden)

Fatemeh Arabgol

2013-02-01

Full Text Available Thermal insulation of rocket motor chamber is one of the most important functions of elastomeric ablative material. Combustion of solid rocket motor propellant produces turbulent media containing gases with a velocity more than 1000 m/s, temperature and pressure more than 3000°C and 10 MPa, respectively,which destroys all metallic alloys. Elastomeric nanocomposite heat insulators are more attractive subjects in comparison to their non-elastomeric counterparts, due to their excellent thermal stresses and larger deformation bearing capacity. Nitrile rubber with high thermal properties is a proper candidate in such applications. Development in ablation performance of these heat shields is considered as an important challenge nowadays. A few works have been recently carried out using organoclay to enhancethe ablation and mechanical properties of heat insulators. In this work, an elastomeric heat insulator with superior ablative and mechanical properties was presented using nanotechnology. The results showed that an elastomeric nanocomposite heat insulator containing 15 wt% organoclay exhibits superior characteristics compared to its composite counterpart such as: 46% more tensile strength, 60% more elongationat-break, 1.7 times higher modulus (at 100% strain, 62% higher “insulating index number” and 36% lower mass ablation and erosion rates under a standard test with a heat flux of 2500 kW/m2 for 15 s.

14. Activity-based computing for medical work in hospitals

DEFF Research Database (Denmark)

Bardram, Jakob Eyvind

2009-01-01

Studies have revealed that people organize and think of their work in terms of activities that are carried out in pursuit of some overall objective, often in collaboration with others. Nevertheless, modern computer systems are typically single-user oriented, that is, designed to support individual...... tasks such as word processing while sitting at a desk. This article presents the concept of Activity-Based Computing (ABC), which seeks to create computational support for human activities. The ABC approach has been designed to address activity-based computing support for clinical work in hospitals....... In a hospital, the challenges arising from the management of parallel activities and interruptions are amplified because multitasking is now combined with a high degree of mobility, collaboration, and urgency. The article presents the empirical and theoretical background for activity-based computing, its...

15. Satellite and Ground-Based Sensors for the Urban Heat Island Analysis in the City of Rome

Directory of Open Access Journals (Sweden)

Roberto Fabrizi

2010-05-01

Full Text Available In this work, the trend of the Urban Heat Island (UHI of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging to the layer of air closest to the surface. UHI spatial characteristics have been assessed using air temperatures measured by both weather stations and brightness temperature maps from the Advanced Along Track Scanning Radiometer (AATSR on board ENVISAT polar-orbiting satellite. In total, 634 daytime and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI during summer months reveals a mean growth in magnitude of 3–4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations.

16. Economical Efficiency of Combined Cooling Heating and Power Systems Based on an Enthalpy Method

Directory of Open Access Journals (Sweden)

Yan Xu

2017-11-01

Full Text Available As the living standards of Chinese people have been improving, the energy demand for cooling and heating, mainly in the form of electricity, has also expanded. Since an integrated cooling, heating and power supply system (CCHP will serve this demand better, the government is now attaching more importance to the application of CCHP energy systems. Based on the characteristics of the combined cooling heating and power supply system, and the method of levelized cost of energy, two calculation methods for the evaluation of the economical efficiency of the system are employed when the energy production in the system is dealt with from the perspective of exergy. According to the first method, fuel costs account for about 75% of the total cost. In the second method, the profits from heating and cooling are converted to fuel costs, resulting in a significant reduction of fuel costs, accounting for 60% of the total cost. Then the heating and cooling parameters of gas turbine exhaust, heat recovery boiler, lithium-bromide heat-cooler and commercial tariff of provincial capitals were set as benchmark based on geographic differences among provinces, and the economical efficiency of combined cooling heating and power systems in each province were evaluated. The results shows that the combined cooling heating and power system is economical in the developed areas of central and eastern China, especially in Hubei and Zhejiang provinces, while in other regions it is not. The sensitivity analysis was also made on related influencing factors of fuel cost, demand intensity in heating and cooling energy, and bank loans ratio. The analysis shows that the levelized cost of energy of combined cooling heating and power systems is very sensitive to exergy consumption and fuel costs. When the consumption of heating and cooling energy increases, the unit cost decreases by 0.1 yuan/kWh, and when the on-grid power ratio decreases by 20%, the cost may increase by 0.1 yuan

17. Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn

Directory of Open Access Journals (Sweden)

Anura Fernando

2013-03-01

Full Text Available This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced.

18. Segmented heat exchanger

Science.gov (United States)

Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

2010-12-14

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

19. Multi-objective synthesis of work and heat exchange networks: Optimal balance between economic and environmental performance

International Nuclear Information System (INIS)

Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Jiménez, Laureano; Caballero, José A.

2017-01-01

Highlights: • New multi-objective optimization model for the simultaneous WHEN synthesis. • A multistage superstructure allows power and thermal integration of process streams. • Simultaneous minimization of environmental impacts and total annualized cost. • Alternative set of Pareto solutions is presented to support decision-makers. - Abstract: Sustainable and efficient energy use is crucial for lessening carbon dioxide emissions in industrial plants. This paper introduces a new multi-objective optimization model for the synthesis of work and heat exchange networks (WHENs), aiming to obtain the optimal balance between economic and environmental performance. The proposed multistage superstructure allows power and thermal integration of process gaseous streams, through the simultaneous minimization of total annualized cost (TAC) and environmental impacts (EI). The latter objective is determined by environmental indicators that follow the life cycle assessment (LCA) principles. The WHEN superstructure is optimized as a multi-objective mixed-integer nonlinear programming (moMINLP) model and solved with the GAMS software. Results show a decrease of ∼79% in the heat transfer area and ∼32% in the capital cost between the solutions found for single problem optimizations. These results represent a diminution of ∼23.5% in the TAC, while EI is increased in ∼99.2%. As these solutions can be impractical for economic or environmental reasons, we present a set of alternative Pareto-optimal solutions to support decision-makers towards the implementation of more environment-friendly and cost-effective WHENs.

20. A comparative analysis of loop heat pipe based thermal architectures for spacecraft thermal control

Science.gov (United States)

Pauken, Mike; Birur, Gaj

2004-01-01

Loop Heat Pipes (LHP) have gained acceptance as a viable means of heat transport in many spacecraft in recent years. However, applications using LHP technology tend to only remove waste heat from a single component to an external radiator. Removing heat from multiple components has been done by using multiple LHPs. This paper discusses the development and implementation of a Loop Heat Pipe based thermal architecture for spacecraft. In this architecture, a Loop Heat Pipe with multiple evaporators and condensers is described in which heat load sharing and thermal control of multiple components can be achieved. A key element in using a LHP thermal architecture is defining the need for such an architecture early in the spacecraft design process. This paper describes an example in which a LHP based thermal architecture can be used and how such a system can have advantages in weight, cost and reliability over other kinds of distributed thermal control systems. The example used in this paper focuses on a Mars Rover Thermal Architecture. However, the principles described here are applicable to Earth orbiting spacecraft as well.

1. Strengthening health workforce capacity through work-based training

Directory of Open Access Journals (Sweden)

Matovu Joseph KB

2013-01-01

Full Text Available Abstract Background Although much attention has been given to increasing the number of health workers, less focus has been directed at developing models of training that address real-life workplace needs. Makerere University School of Public Health (MakSPH with funding support from the Centers for Disease Control and Prevention (CDC developed an eight-month modular, in-service work-based training program aimed at strengthening the capacity for monitoring and evaluation (M&E and continuous quality improvement (CQI in health service delivery. Methods This capacity building program, initiated in 2008, is offered to in-service health professionals working in Uganda. The purpose of the training is to strengthen the capacity to provide quality health services through hands-on training that allows for skills building with minimum work disruptions while encouraging greater involvement of other institutional staff to enhance continuity and sustainability. The hands-on training uses practical gaps and challenges at the workplace through a highly participatory process. Trainees work with other staff to design and implement ‘projects’ meant to address work-related priority problems, working closely with mentors. Trainees’ knowledge and skills are enhanced through short courses offered at specific intervals throughout the course. Results Overall, 143 trainees were admitted between 2008 and 2011. Of these, 120 (84% from 66 institutions completed the training successfully. Of the trainees, 37% were Social Scientists, 34% were Medical/Nursing/Clinical Officers, 5.8% were Statisticians, while 23% belonged to other professions. Majority of the trainees (80% were employed by Non-Government Organizations while 20% worked with the public health sector. Trainees implemented 66 projects which addressed issues such as improving access to health care services; reducing waiting time for patients; strengthening M&E systems; and improving data collection and

2. Strengthening health workforce capacity through work-based training.

Science.gov (United States)

Matovu, Joseph K B; Wanyenze, Rhoda K; Mawemuko, Susan; Okui, Olico; Bazeyo, William; Serwadda, David

2013-01-24

Although much attention has been given to increasing the number of health workers, less focus has been directed at developing models of training that address real-life workplace needs. Makerere University School of Public Health (MakSPH) with funding support from the Centers for Disease Control and Prevention (CDC) developed an eight-month modular, in-service work-based training program aimed at strengthening the capacity for monitoring and evaluation (M&E) and continuous quality improvement (CQI) in health service delivery. This capacity building program, initiated in 2008, is offered to in-service health professionals working in Uganda. The purpose of the training is to strengthen the capacity to provide quality health services through hands-on training that allows for skills building with minimum work disruptions while encouraging greater involvement of other institutional staff to enhance continuity and sustainability. The hands-on training uses practical gaps and challenges at the workplace through a highly participatory process. Trainees work with other staff to design and implement 'projects' meant to address work-related priority problems, working closely with mentors. Trainees' knowledge and skills are enhanced through short courses offered at specific intervals throughout the course. Overall, 143 trainees were admitted between 2008 and 2011. Of these, 120 (84%) from 66 institutions completed the training successfully. Of the trainees, 37% were Social Scientists, 34% were Medical/Nursing/Clinical Officers, 5.8% were Statisticians, while 23% belonged to other professions. Majority of the trainees (80%) were employed by Non-Government Organizations while 20% worked with the public health sector. Trainees implemented 66 projects which addressed issues such as improving access to health care services; reducing waiting time for patients; strengthening M&E systems; and improving data collection and reporting. The projects implemented aimed to improve trainees

3. Why "What Works" Still Won't Work: From Evidence-Based Education to Value-Based Education

Science.gov (United States)

Biesta, Gert J. J.

2010-01-01

The idea that professional practices such as education should be based upon or at least be informed by evidence continues to capture the imagination of many politicians, policy makers, practitioners and researchers. There is growing evidence of the influence of this line of thought. At the same time there is a growing body of work that has raised…

4. The management of heat stress for the firefighter: a review of work conducted on behalf of the Toronto Fire Service.

Science.gov (United States)

McLellan, Tom M; Selkirk, Glen A

2006-07-01

This report provides a summary of research conducted through a grant provided by the Workplace Safety Insurance Board of Ontario. The research was divided into two phases; first, to define safe work limits for firefighters wearing their protective clothing and working in warm environments; and, the second, to examine strategies to reduce the thermal burden and extend the operational effectiveness of the firefighter. For the first phase, subjects wore their protective ensemble and carried their self-contained breathing apparatus (SCBA) and performed very light, light, moderate or heavy work at 25 degrees C, 30 degrees C or 35 degrees C. Thermal and evaporative resistance coefficients were obtained from thermal manikin testing that allowed the human physiological responses to be compared with modeled data. Predicted continuous work times were then generated using a heat strain model that established limits for increases in body temperature to 38.0 degrees C, 38.5 degrees C and 39.0 degrees C. Three experiments were conducted for the second phase of the project. The first study revealed that replacing the duty uniform pants that are worn under the bunker pants with shorts reduced the thermal strain for activities that lasted longer than 60 min. The second study examined the importance of fluid replacement. The data revealed that fluid replacement equivalent to at least 65% of the sweat lost increased exposure time by 15% compared with no fluid replacement. The last experiment compared active and passive cooling. Both the use of a mister or forearm and hand submersion in cool water significantly increased exposure time compared with passive cooling that involved only removing most of the protective clothing. Forearm and hand submersion proved to be most effective and produced dramatic increases in exposure time that approximated 65% compared with the passive cooling procedure. When the condition of no fluid replacement and passive cooling was compared with fluid

5. Targeting the maximum heat recovery for systems with heat losses and heat gains

International Nuclear Information System (INIS)

Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

2014-01-01

Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

6. Lithuanian heat sector: Today based on imported fossil fuel, tomorrow - On local biofuel and wastes

Energy Technology Data Exchange (ETDEWEB)

Janukonis, Andrius

2010-09-15

District heating sector is one of the most important energy sectors in Lithuania, operation of which is closely related to other energy sectors such as electricity, natural gas, oil products, renewable energy sources. Main priorities of Lithuanian energy policy based on the experience of the neighboring countries and directives of the European Union's environmental protection, security and reliability of energy supply and availability of district heating services to all users. It is necessary to use widely the biofuel in the DHS sector for the heat production, unused amounts of which are very big.

7. Performance Analysis of Water Based Copper Oxide Nano Fluids in Heat Exchanger with Twisted Insert

Science.gov (United States)

Ashok Reddy, K.; Hanmanthu, Bhukya

2018-03-01

A new experimental setup has been designed for conducting experiments in a copper round pipe heat exchanger with inner diameter di=14.5mm and outer diameter do=16mm and length L = 1720 mm . By using two copper oxide nano concentrations of 0.1% and 0.3% with water as based fluid, the heat transfer rates have been obtained with helical twisted insert H/D=5 in turbulent flow condition. Reynolds number and friction factor with pressure gradient have been evaluated. The heat transfer rates of 0.1% conc. Nano-fluid with insert was found to be 13.77% more when compared to water.

8. Heat transfer optimization of SCO2 porous flow based on Brinkman model

Directory of Open Access Journals (Sweden)

Lin David T.W.

2016-01-01

Full Text Available The purpose of this study is to obtain the optimal operating condition in order to find the maximum supercritical CO2 heat extraction in the enhanced geothermal system (EGS. In this study, the heat transfer model conjugated with the Brinkman model is used to evaluate the thermal behavior in the reservoir of the EGS. This numerical model is validated by experiment. Optimization is processed based on the Nelder-Mead approach. The optimal operating conditions are proposed with different pressure, porosity. This study will build the optimal platform of heat source of geothermal power plant.

9. Heating Analysis in Constant-pressure Hydraulic System based on Energy Analysis

Science.gov (United States)

Wu, Chao; Xu, Cong; Mao, Xuyao; Li, Bin; Hu, Junhua; Liu, Yiou

2017-12-01

Hydraulic systems are widely used in industrial applications, but the problem of heating has become an important reason to restrict the promotion of hydraulic technology. The high temperature, will seriously affect the operation of the hydraulic system, even cause stuck and other serious failure. Based on the analysis of the heat damage of the hydraulic system, this paper gives the reasons for this problem, and it is showed by the application that the energy analysis can accurately locate the main reasons for the heating of the hydraulic system, which can give strong practical guidance.

10. [Women working at university restaurants: life and work conditions and gender-based violence].

Science.gov (United States)

Venâncio, Kelly Cristina Máxima Pereira; da Fonseca, Rosa Maria Godoy Serpa

2013-10-01

This is an exploratory and descriptive study with a quantitative approach that aimed to understand the social production and reproduction processes of women working at university restaurants and the occurrence and the magnitude of gender-based violence committed against them by their intimate partners. The data were collected through semi-structured interviews. The analysis categories used were social production and reproduction, gender and gender-based violence. The interviewees held a subordinate social position during the productive and reproductive periods of their lives. Approximately 70% reported having experienced gender-based violence from an intimate partner (66% psychological violence, 36.3% physical violence and 28.6% sexual violence). Most of the health problems resulting from violence were related to mental health. The results indicate that the situation requires immediate interventions, mostly guided by the instrumentalization of these women and the support by the state and the university as appropriate to address violence.

11. Women working at university restaurants: life and work conditions and gender-based violence

Directory of Open Access Journals (Sweden)

Kelly Cristina Maxima Pereira Venancio

2013-10-01

Full Text Available This is an exploratory and descriptive study with a quantitative approach that aimed to understand the social production and reproduction processes of women working at university restaurants and the occurrence and the magnitude of gender-based violence committed against them by their intimate partners. The data were collected through semi-structured interviews. The analysis categories used were social production and reproduction, gender and gender-based violence. The interviewees held a subordinate social position during the productive and reproductive periods of their lives. Approximately 70% reported having experienced gender-based violence from an intimate partner (66% psychological violence, 36.3% physical violence and 28.6% sexual violence. Most of the health problems resulting from violence were related to mental health. The results indicate that the situation requires immediate interventions, mostly guided by the instrumentalization of these women and the support by the state and the university as appropriate to address violence.

12. Champagne Heat Pump

Science.gov (United States)

Jones, Jack A.

2004-01-01

The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

13. On the preliminary design of hyperthermia treatments based on infusion and heating of magnetic nanofluids.

Science.gov (United States)

Di Michele, F; Pizzichelli, G; Mazzolai, B; Sinibaldi, E

2015-04-01

We study a magnetic-nanoparticle-mediated hyperthermia treatment by considering both the nanofluid infusion and the subsequent thermal activation of the infused nanoparticles. Our study aims at providing a quantitative framework, which is currently missing, for the design of hyperthermia treatments. In more detail, we consider a heterogeneous spherical tumor, and we obtain a simplified analytical expression for the nanoparticles concentration profile during the infusion. We then exploit such an expression in order to compute the steady-state temperature profile achieved through the heating step. Despite the simplifications introduced to enable the analytical derivations, we account for many physically relevant aspects including tissue heterogeneity, poroelasticity, blood perfusion, and nanoparticles absorption onto tissue. Moreover, our approach permits to elucidate the effects on the final temperature profile of the following control parameters: infusion duration and flow rate, nanoparticles concentration in the nanofluid, magnetic field intensity and frequency. We present illustrative numerical results, based on parameters values taken from experimental studies, which are consistent with previous numerical investigations and current hyperthermia approaches. In particular, we obtain optimal working curves which could be effectively used for planning real procedures. While not laying any claims of generality, this work takes a preliminary yet quantitative step toward the design of hyperthermia treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

14. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

Science.gov (United States)

Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

2015-01-01

Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

15. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

Science.gov (United States)

Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

2015-01-01

Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

16. Students’ Self-Assessment in Project-Based Work

Directory of Open Access Journals (Sweden)

Alvyda Liuolienė

2014-12-01

Full Text Available The article aims at exploring the benefits of self-assessment as it is an important skill for lifelong learning and for critical reflection on one’s own performance. The authors of the article focus on students’ self-assessment of their language proficiency skills and achievements in working on projects. Students’ reflection on their learning has numerous benefits, such as motivation, self-direction, greater responsibility, decreased intimidation and fear of the audience, development of critical thinking, etc. The paper presents the analysis of a questionnaire based on the research of respondents’ self-evaluation of working on the project. The study has aimed at finding out the students’ attitude towards project-based learning and their assessment of their personal progress in respect of the development of their language proficiency skills.

17. Negative ion based neutral beams for plasma heating

International Nuclear Information System (INIS)

Prelec, K.

1978-01-01

Neutral beam systems based on negative ions have been considered because of a high expected power efficiency. Methods for the production, acceleration and neutralization of negative ions will be reviewed and possibilities for an application in neutral beam lines explored

18. Optimization of the Working Cycle for an Underwater Propulsion System Based on Aluminium-Water Combustion

Science.gov (United States)

Chen, Xianhe; Xia, Zhixun; Huang, Liya; Hu, Jianxin

2017-05-01

The working cycle of a novel underwater propulsion system based on aluminium combustion with water is researched in order to evaluate the best performance. The system exploits the exothermic reaction between aluminium and water which will produce high temperature, pressure steam and hydrogen mixture that can be used to drive turbine to generate power. Several new system configurations corresponding to different working cycles are investigated, and their performance parameters in terms of net power, energy density and global efficiency are discussed. The results of the system simulation show that using the recirculation steam rather than hydrogen as the carrier gas, the system net power, energy density and efficiency of the system are greatly increased compared, however the system performance is close either using adiabatic compression or isothermal compression. And if an evaporator component is added into system in order to take full use of the solid product heat, the system performance will be improved.

19. An Optical-Based Aggregate Approach to Measuring Condensation Heat Transfer

Science.gov (United States)

Stevens, Kimberly A.; Crockett, Julie; Maynes, Daniel R.; Iverson, Brian D.

2017-11-01

Condensation heat transfer is significant in a variety of industries including desalination, energy conversion, atmospheric water harvesting, and electronics cooling. Recently, superhydrophobic surfaces have gained attention as a possible condensing surface due to their potential for high droplet mobility and coalescence-induced, out-of-plane jumping of the condensate droplets, both of which contribute to higher rates of condensate removal and thus higher thermal transport rates. Several studies involving condensation on superhydrophobic surfaces have quantified metrics which indirectly indicate the relative rate of heat transfer on a surface, such as maximum droplet diameter, drop size distribution, and individual droplet growth rates. In this study, an optical-based method is used to monitor growth and departure of individual condensate drops for the entire viewing area to obtain full-field, aggregate heat transfer measurements. This approach offers several advantages relative to traditional heat transfer measurement methods such as heat flux sensors and thermocouples, including the ability to provide a link between macroscopic heat transfer rates and the more indirect measures of heat transfer traditionally reported in the literature.

20. Assessing the heat stress of brick-manufacturing units’ workers based on WBGT index in Qom city

Directory of Open Access Journals (Sweden)

2015-01-01

Full Text Available Introduction: Heat stress is considered as a serious risk factor to the health and safety of workers in most working environments, especially in outdoor works and jobs that workers are exposed to heat due to the working process. This study aimed to evaluate heat stress among workers of brick-manufacturing units in Qom city based on WBGT index as well as the relationship between WBGT and physiological indicators. .Material and Method: The present study was conducted in 40 brick-manufacturing units in Qom city. WBGT measurements were performed according to ISO7243 standard. Physiological responses of 184 workers (up to 5 people per unit and also atmospheric parameters were measured. The physiological responses included oral temperature, skin temperature, and temperature for the carotid artery of the ear, heart rate, systolic and diastolic blood pressure. Statistical analysis was done using SPSS software version 16. .Result: Mean WBGT index for various brick-manufacturing jobs including firing, manual material handling, working with conveyors, molding, and tempering were 30.8 °C, 26.74 °C 26.58 °C and 24.25 °C, respectively and the average WBGT was estimated 27.98 °C. WBGT levels measured in all units exceeded the level provided in ISO7243 standard. The highest mean WBGT was belonged to kiln section (30.8 °C. The mean WBGT at three heights of head, abdomen and legs were not statistically different (using t-test. The correlation coefficients between mean WBGT and mean oral, skin and ears temperatures were 0.203, 0.319, and 0.490, respectively, with the highest correlation belonged to the carotid arteries of ears. Moreover, WBGT showed no significant association with the mean heart rate, systolic, and diastolic blood pressure (P-value>0.05. Indoor and outdoor WBGT index was significantly different (P-value<0.05. .Conclusion: The level of heat stress in all brick-manufacturing units was higher than the recommended limits, and the workers in kiln

1. Geometric optimization of cross-flow heat exchanger based on dynamic controllability

Directory of Open Access Journals (Sweden)

Alotaibi Sorour

2008-01-01

Full Text Available The operation of heat exchangers and other thermal equipments in the face of variable loads is usually controlled by manipulating inlet fluid temperatures or mass flow rates, where the controlled variable is usually one of the output temperatures. The aim of this work is to optimize the geometry of a tube with internal flow of water and an external cross-flow of air, based on its controllability characteristics. Controllability is a useful concept both from theoretical and practical perspective since it tells us if a particular output can be controlled by a particular input. This concept can also provide us with information about the easiest operating condition to control a particular output. A transient model of a tube in cross-flow is developed, where an implicit formulation is used for transient numerical solutions. The aspect ratio of the tube is optimized, subject to volume constraints, based on the optimum operation in terms of controllability. The reported optimized aspect ratio, water mass flow rate and controllability are studied for deferent external properties of the tube.

2. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power

International Nuclear Information System (INIS)

2013-01-01

Highlights: • Thermodynamic model of a solar-dish Stirling engine was presented. • Thermal efficiency and output power of the engine were simultaneously maximized. • A final optimal solution was selected using several decision-making methods. • An optimal solution with least deviation from the ideal design was obtained. • Optimal solutions showed high sensitivity against variation of system parameters. - Abstract: A solar-powered high temperature differential Stirling engine was considered for optimization using multiple criteria. A thermal model was developed so that the output power and thermal efficiency of the solar Stirling system with finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, finite regeneration process time and imperfect performance of the dish collector could be obtained. The output power and overall thermal efficiency were considered for simultaneous maximization. Multi-objective evolutionary algorithms (MOEAs) based on the NSGA-II algorithm were employed while the solar absorber temperature and the highest and lowest temperatures of the working fluid were considered the decision variables. The Pareto optimal frontier was obtained and a final optimal solution was also selected using various decision-making methods including the fuzzy Bellman–Zadeh, LINMAP and TOPSIS. It was found that multi-objective optimization could yield results with a relatively low deviation from the ideal solution in comparison to the conventional single objective approach. Furthermore, it was shown that, if the weight of thermal efficiency as one of the objective functions is considered to be greater than weight of the power objective, lower absorber temperature and low temperature ratio should be considered in the design of the Stirling engine

3. Implementation of Fuzzy Logic Based Temperature-Controlled Heat ...

African Journals Online (AJOL)

This research then compares the control performance of PID (Proportional Integral and Derivative) and Fuzzy logic controllers. Conclusions are made based on these control performances. The results show that the control performance for a Fuzzy controller is quite similar to PID controller but comparatively gives a better ...

4. Heat transfer nanofluid based on curly ultra-long multi-wall carbon nanotubes

Science.gov (United States)

Boncel, Sławomir; Zniszczoł, Aurelia; Pawlyta, Mirosława; Labisz, Krzysztof; Dzido, Grzegorz

2018-02-01

The main challenge in the use of multi-wall carbon nanotube (MWCNT) as key components of nanofluids is to transfer excellent thermal properties from individual nanotubes into the bulk systems. We present studies on the performance of heat transfer nanofluids based on ultra-long ( 2 mm), curly MWCNTs - in the background of various other nanoC-sp2, i.e. oxidized MWCNTs, commercially available Nanocyl™ MWCNTs and spherical carbon nanoparticles (SCNs). The nanofluids prepared via ultrasonication from water and propylene glycol were studied in terms of heat conductivity and heat transfer in a scaled up thermal circuit containing a copper helical heat exchanger. Ultra-long curly MWCNT (1 wt.%) nanofluids (stabilized with Gum Arabic in water) emerged as the most thermally conducting ones with a 23-30%- and 39%-enhancement as compared to the base-fluids for water and propylene glycol, respectively. For turbulent flows ( Re = 8000-11,000), the increase of heat transfer coefficient for the over-months stable 1 wt.% ultra-long MWCNT nanofluid was found as high as >100%. The findings allow to confirm that longer MWCNTs are promising solid components in nanofluids and hence to predict their broader application in heat transfer media.

5. Experimental studies on seasonal heat storage based on stable supercooling of a sodium acetate water mixture

DEFF Research Database (Denmark)

Furbo, Simon; Dragsted, Janne; Fan, Jianhua

2011-01-01

Laboratory tests of a 230 l seasonal heat storage module with a sodium acetate water mixture have been carried out. The aim of the tests is to elucidate how best to design a seasonal heat storage based on the salt water mixture, which supercools in a stable way. The module can be a part...... of a seasonal heat storage, that will be suitable for solar heating systems which can fully cover the yearly heat demand of Danish low energy buildings. The tested module has approximately the dimensions 2020 mm x 1285 mm x 80 mm. The module material is steel and the wall thickness is 2 mm. Different methods...... to transfer heat to and from the module have been tested. Further, a solidification start method, based on a strong cooling of a small part of the salt water mixture in the module by boiling CO2 in a small brass tank in good thermal contact to the outer side of the module wall, has been tested. Tests...

6. Soil heating during wildfires and prescribed burns: a global evaluation based on existing and new data

Science.gov (United States)

Doerr, Stefan; Santin, Cristina; Reardon, James; Mataix-Solera, Jorge; Stoof, Cathelijne; Bryant, Rob; Miesel, Jessica; Badia, David

2017-04-01

Heat transfer from the combustion of ground fuels and soil organic matter during vegetation fires can cause substantial changes to the physical, chemical and biological characteristics of soils. Numerous studies have investigated the effects of wildfires and prescribed burns on soil properties based either on field samples or using laboratory experiments. Critical thresholds for changes in soil properties, however, have been determined largely based on laboratory heating experimentation. These experimental approaches have been criticized for being inadequate for reflecting the actual heating patterns soil experienced in vegetation fires, which remain poorly understood. To address this research gap, this study reviews existing and evaluates new field data on key soil heating parameters determined during wildfires and prescribed burns from a wide range of environments. The results highlight the high spatial and temporal variability in soil heating patters not only between, but also within fires. Most wildfires and prescribed burns are associated with heat pulses that are much shorter than those typically applied in laboratory studies, which can lead to erroneous conclusions when results from laboratory studies are used to predict fire impacts on soils in the field.

7. THERMODYNAMIC ANALYSIS OF DIFFERENT WORKING FLUIDS USED IN ORGANIC RANKINE CYCLE FOR RECOVERING WASTE HEAT FROM GT-MHR

Directory of Open Access Journals (Sweden)

2016-01-01

Full Text Available In this paper, the performance of 13 working fluids in two Organic Rankine Cycles, which operate as the bottoming cycles for recovering waste heat from gas turbine modular helium reactor (GT-MHR, is investigated. Working fluids are classified in three dry, isentropic and wet fluids. The effect of varying pump temperature and evaporator pressure on the thermal efficiency, total exergy loss of the combined cycle is studied for each category, and the results are compared. The results are calculated for an optimum pressure ratio in which thermal efficiency is maximum. According to the results, dry fluids show a higher thermal efficiency while wet fluids have the lowest values. However, the highest value for thermal efficiency is for R141b, which is an isentropic fluid. Furthermore, the results indicate that pump temperature increase, reduces the total thermal efficiency and increases the total exergy loss of the combined cycle. Increasing evaporator pressure leads to an optimum pressure that maximizes total thermal efficiency. According to the optimized pressure ratio and evaporator pressure, R141b in isentropic fluids, R123 in dry fluids and R717 in wet fluids have the highest thermal efficiency values.

8. Development of a plastic rotary heat exchanger for room-based ventilation in existing apartments

DEFF Research Database (Denmark)

Smith, Kevin Michael; Svendsen, Svend

2015-01-01

The existing building stock will likely undergo widespread energy renovations to meet future emissions targets. Single-room ventilation may enable the process due to its simple installation, low fan power, and potential for local heat recovery. A short plastic rotary heat exchanger is developed...... for single-room ventilation based on thermal design theory. Performance is predicted from correlations of dimensionless groups for regenerative heat exchangers, and this guides the selection of a polycarbonate honeycomb with small circular channels. Experiments quantify flows and determine temperature...... efficiencies at several ventilation rates while accounting for heat gains from motors and air leakage. The measured and modelled temperature efficiencies show adequate agreement and exceed 80% for a balanced nominal ventilation rate of 28m3/h. This result meets the development criteria but cannot validate...

9. Human responses in heat - comparison of the Predicted Heat Strain and the Fiala multi-node model for a case of intermittent work.

Science.gov (United States)

Lundgren-Kownacki, Karin; Martínez, Natividad; Johansson, Bo; Psikuta, Agnes; Annaheim, Simon; Kuklane, Kalev

2017-12-01

Two mathematical models of human thermal regulation include the rational Predicted Heat Strain (PHS) and the thermophysiological model by Fiala. The approaches of the models are different, however, they both aim at providing predictions of the thermophysiological responses to thermal environments of an average person. The aim of this study was to compare and analyze predictions of the two models against experimental data. The analysis also includes a gender comparison. The experimental data comprised of ten participants (5 males, 5 females, average anthropometric values were used as input) conducting an intermittent protocol of rotating tasks (cycling, stacking, stepping and arm crank) of moderate metabolic activities (134-291W/m 2 ) with breaks in-between in a controlled environmental condition (34°C, 60% RH). The validation consisted of the predictions' comparison against experimental data from 2.5h of data of rectal temperature and mean skin temperature based on contact thermometry from four body locations. The PHS model over-predicted rectal temperatures during the first activity for males and the cooling effectiveness of sweat in the recovery periods, for both males and females. As a result, the PHS simulation underestimated the thermal strain in this context. The Fiala model accurately predicted the rectal temperature throughout the exposure. The fluctuation of the experimental mean skin temperature was not reflected in any of the models. However, the PHS simulation model showed better agreement than the Fiala model. As both models predicted responses more accurately for males than females, we suggest that in future development of the models it is important to take this result into account. The paper further discusses possible sources of the observed discrepancies and concludes with some suggestions for modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.

10. Thermal characterization of submicron polyacrylonitrile fibers based on optical heating and electrical thermal sensing

International Nuclear Information System (INIS)

Hou Jinbo; Wang Xinwei; Zhang Lijun

2006-01-01

In this work, the thermal diffusivity of single submicron (∼800 nm) polyacrylonitrile (PAN) fibers is characterized using the recently developed optical heating and electrical thermal sensing technique. In the experiment, a thin Au film (approximately in the nanometer range) is coated on the surface of nonconductive PAN fibers. A periodically modulated laser beam is used to irradiate suspended individual fibers to achieve noncontact periodical heating. The periodical temperature response of the sample is monitored by measuring the electrical resistance variation of the thin Au coating. The experimental results for three different synthesized PAN fibers with varying Au coating thickness are presented and discussed

11. District heating in greater Stockholm

International Nuclear Information System (INIS)

In Greater Stockholm more than ten municipalities operate more or less extensive district heating networks, whereas a couple of municipalities have still not decided in principle what form of heating will be employed in the future. About 1,2 million people live and work in these municipalities, which together occupy an area of about 1500 km 2 . In this general survey the planning of the extensive work in the municipalities and the alternatives of heat systems in Greater Stockholm, including large integrated district heating systems based on nuclear dual-purpose plants as well as systems based on fossil fuels and several combined plants are discussed. (M.S.)

12. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

Directory of Open Access Journals (Sweden)

Xiaoxiao Xu

2012-03-01

Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

13. Summary report: working group 2 on 'Plasma Based Acceleration Concepts'

International Nuclear Information System (INIS)

Esarey, E.; Leemans, W.P.

1998-01-01

A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beat wave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module

14. Achieving an even thickness in heat-polymerized permanent acrylic resin denture bases for complete dentures.

Science.gov (United States)

Reeson, M G; Jepson, N J

1999-09-01

Permanent denture bases form the fitting surface of a denture and are constructed on a master cast, in heat-polymerized acrylic resin. These bases are strong and rigid and demonstrate both the fit and retention of the final prosthesis. General recommendations suggests a thickness of between 1.5 to 3 mm for these bases. The normal procedure for producing such a denture base is to manually adapt materials to the cast, in their plastic state, before processing. Such procedures are liable to distortion and variation in the thickness of the resultant denture base and may be unreliable. This article describes a method for achieving a consistent thickness in a heat-polymerized, permanent, acrylic resin denture base through the use of a vacuum-formed, thermoplastic blank as a template. The method is simple, and results in a denture base with a consistent even thickness.

15. A finite element method based microwave heat transfer modeling of frozen multi-component foods

Science.gov (United States)

Pitchai, Krishnamoorthy

Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a

16. Repository-Based Software Engineering Program: Working Program Management Plan

Science.gov (United States)

1993-01-01

Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

17. Experimental Investigation on the Specific Heat of Carbonized Phenolic Resin-Based Ablative Materials

Science.gov (United States)

Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin

2017-10-01

As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by

18. Heat pumps

CERN Document Server

Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

2013-01-01

Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

19. Study of Heat Flux Threshold and Perturbation Effect on Transport Barrier Formation Based on Bifurcation Model

International Nuclear Information System (INIS)

Chatthong, B.; Onjun, T.; Imbeaux, F.; Sarazin, Y.; Strugarek, A.; Picha, R.; Poolyarat, N.

2011-06-01

Full text: Formation of transport barrier in fusion plasma is studied using a simple one-field bistable S-curve bifurcation model. This model is characterized by an S-line with two stable branches corresponding to the low (L) and high (H) confinement modes, connected by an unstable branch. Assumptions used in this model are such that the reduction in anomalous transport is caused by v E velocity shear effect and also this velocity shear is proportional to pressure gradient. In this study, analytical and numerical approaches are used to obtain necessary conditions for transport barrier formation, i.e. the ratio of anomalous over neoclassical coefficients and heat flux thresholds which must be exceeded. Several profiles of heat sources are considered in this work including constant, Gaussian, and hyperbolic tangent forms. Moreover, the effect of perturbation in heat flux is investigated with respect to transport barrier formation

20. Relationship of heat treatment-mechanical properties of nickel base superalloys

International Nuclear Information System (INIS)

Zamora R, L.

1997-01-01

The nickel-base superalloys have high strength, excellent corrosion resistant, and good creep and fatigue resistance. These alloy improved properties at high temperature derive their mechanical and creep behavior on γ precipitate morphology, and the evolution of such morphology during different heat treatment conditions. The main microstructural variable of Nickel-based superalloys, responsible for the mechanical properties are: a) amount and morphology of precipitates; b) size and shape of grains; and c) carbide distribution. In this work, a Nickel-base superalloy Nimonic 80A, modified little with Zr prepared by melting and casting practices of materials electrolytic in vacuum-induction melting (VIM) type Balzers, to obtain five alloys different and ingots of 2 Kg and 1 Kg, with composition in weight % of Nimonic 80-A is: Ni = bal (76.66), C = 0.01, Cr = 19.83, Fe = 2.4, Mn = 0.17, Si 0.47, Al = 0.19, Zr = 0.4. The solidification process is made in a steel mold. After having realized four thermal treatments, the most representative microstructures there were obtained. The results from tensile tests performed on Instron Servohydraulic testing systems at uniaxial dynamic testing, at constant speeds to ,0.2 cm/min, were: the yield strength, the ultimate strength value, percentage elongation and area reduction. Creep tests were performed at in stress of 90 and 129 MPa, at a temperature of 600 and 680 Centigrades at different times and width of specimen of 1 mm. The alloys were analyzed by MEB(JEOL 35CF) at different magnifications. The nucleation and growth of intergranular cavities during creep of alloy Nimonic M3, were investigated. One sample was deformed in creep at 129 MPa and 680 Centigrades during 110 hs. Creep samples were annealing heat treated at 800 Centigrades, during 7 days. After a careful sample preparation procedure, 3100 of cavities were measured in the sample . The cavity size distributions in the sample were obtained. The cavity growth rate, was

1. Metamorphoses of cogeneration-based district heating in Romania: A case study

International Nuclear Information System (INIS)

2011-01-01

The paper presents the birth and evolution of the cogeneration-based district heating (DH) system in a medium size city in Romania (Targoviste). The evolution of the industrialization degree was the main factor which controlled the population growth and led to a continuous reconfiguration of the DH system. The DH system assisted by cogeneration emerged as a solution in a certain phase of the demographic development of the city. The political and social changes occurring in Romania after 1990 have had important negative consequences on the DH systems in small towns. In Targoviste the DH system survived but in 2001 the solution based on cogeneration became economically inefficient, due to the low technical quality of the existing equipment and the low gas prices, to the procedure of setting the DH tariffs and the service cost at consumer's level and to some bureaucratic problems. Energy policy measures taken at national and local levels in 2003 and 2005 led to the re-establishment of the cogeneration-based district heating in 2005. However, a different technical solution has been adopted. Details about the present (2009) cogeneration-based DH system in Targoviste are presented together with several technical and economical indicators. The main conclusion is that by a proper amendment of the technical solutions, cogeneration could be a viable solution for DH even in case of abrupt social and demographic changes, such as those occurring in Romania after 1990. - Research Highlights: →Birth and evolution of the cogeneration-based district heating system in a medium size city. →The industrialization degree is the main factor which controlled the reconfiguration of the district heating system. →Each stage of the evolution of district heating system has been a technological leap. →Cogeneration is a solution for district heating even in case of abrupt social changes.

2. Thermodynamic investigation of waste heat driven desalination unit based on humidification dehumidification (HDH) processes

International Nuclear Information System (INIS)

He, W.F.; Xu, L.N.; Han, D.; Gao, L.; Yue, C.; Pu, W.H.

2016-01-01

Highlights: • HDH desalination system powered by waste heat is proposed. • Performance of the desalination unit and the relevant heat recovery effect is calculated. • Sensitive analysis of the performance for the HDH desalination system is investigated. • Mathematical model based on the first and second laws of thermodynamics is established. - Abstract: Humidification dehumidification (HDH) technology is an effective pattern to separate freshwater from seawater or brackish water. In this paper, a closed-air open-water (CAOW) desalination unit coupled with plate heat exchangers (PHEs) is applied to recover the waste heat from the gas exhaust. Sensitivity analysis for the HDH desalination unit as well as the PHEs from the key parameters including the top and initial temperature of the seawater, operation pressure, and the terminal temperature difference (TTD) of the PHEs are accomplished, and the corresponding performance of the whole HDH desalination system is calculated and presented. The simulation results show that the balance condition of the dehumidifier is allowed by the basic thermodynamic laws, followed by a peak value of gained-output-ratio (GOR) and a bottom value of total specific entropy generation. It is concluded that excellent results including the system performance, heat recovery effect and investment of the PHEs can be simultaneously obtained with a low top temperature, while the obtained desalination performance and the heat recovery effect from other measures are always conflicting. Different from other parameters of the desalination unit, the terminal temperature difference of the PHEs has little influences on the final value of GOR.

3. Classification of Edible Oils Based on ATR-FTIR Spectral Information During a Long Heating Treatment.

Science.gov (United States)

2017-03-01

Identification of oil type and its QC are important concerns in food control laboratories. Classifying edible oils that have not been used (i.e., unheated) with the aid of vibrational spectroscopy has previously been reported. However, the classification of used (i.e., heat-treated) oils needs special attention. The effect of long heating times on the classification of four kinds of edible oils (canola, corn, frying, and sunflower) based on attenuated total reflectance (ATR)-FTIR spectra was surveyed. The sampling was done on the oils during a 36 h heating process (at 170°C). The ATR-FTIR spectra of the samples were collected in the range of 4000-550 cm-1. Interval extended canonical variates analysis (ECVA), as a variable selection and classification tool, was used to determine the best intervals during the heating procedure for classification. Principal component analysis discriminate analysis, partial least-squares discriminate analysis, and ECVA were performed on the selected intervals and on the total heating time. The effect of autoscaling and mean-centering, as data preprocessing methods, was also investigated. The ECVA method resulted in the best performances for classification, with a 94% cross-validated nonerror rate (one misclassification) for the heating process times of 24-27 and 33-36 h.

4. Research of water-base nano-PU paint for heat insulation

Science.gov (United States)

Jwo, Ching-Song; Jeng, Lung-Yue; Cheng, Ho; Chen, Sih-Li

2008-12-01

The purpose of this study is to research and produce water-base nano-PU paint with energy conservation, environmental consciousness and high efficiency of heat insulation, which can be enhance the traditional PU paint for performance improvement of heat insulation and range of application. In this study, research will be held on the two-stage synthesis method. The SiO2 nanoparticles are added into the water-base PU paint to improve the properties of traditional PU paint. Next, the fundamental properties of this paint, including water resistance, weather rsistance, weak acid solvent resistance, and heat insulation rate, will be measured and analyzed, and the performance of heat insulation will be evaluated in order to confirm the performance and practicability of the heat insulation of water-base nano-PU paint in this study. The experimental results show that for the SiO2/W-PU composite nanopaint prepared by two-stage synthesis method, the dispersion of SiO2 powder in the water-base PU (W-PU) paint is even. For the SiO2/W-PU nanocomposite paint prepared by adding SiO2 powder at 8% wt. to the marketed water-base PU, the water absorption of its experimental sample is enhanced by around 10.1 times, whereas its weak acid dissolve erosion rate is increased by 3.3 times. However, the average heat insulation rate in the thermal properties is also increased, increasing around 24.22% for the W-PU paint without SiO2 powder. Through the multilayered coating construction, the water-base nano-PU paint added with SiO2 powder can be used on any facility of heat insulation, including vehicle, safety helmet, umbrella, drapes, and outer wall of building. The newly developed water-base nano-PU paint with high thermal resistance is especially suitable for application to the shell coating of air conditioner and cooling tower,. Due to the better thermal resistance of this nanopaint, the problems of poor heat transfer and temperature rise of cooling water caused by direct sunlight can be

5. Work-based identity and work engagement as potential antecedents of task performance and turnover intention: Unravelling a complex relationship

Directory of Open Access Journals (Sweden)

F. Chris Bothma

2012-09-01

Research purpose: The main purpose of the study was to investigate whether work-based identity and work engagement differed (in combination with personal alienation, helping behaviour and burnout as potential antecedents (amongst numerous others of task performance and turnover intention. Research design: A census-based sampling approach amongst 23 134 employees in the employment of an ICT company yielded a sample of 2429 usable questionnaires. Scales used in the study were the Maslach Burnout Inventory (MBI-HSS-20, Utrecht Work Engagement Scale (UWES, Work-based Identity, Personal Alienation, Helping Behaviour, Turnover Intention and Task Performance Scales. Main findings: The findings indicate that work-based identity and work engagement give similar appearing results as potential predictors of turnover intention and task performance. Practical/managerial implications: Reducing withdrawal behaviours and enhancing work performance are everyday challenges for organisations. Interventions focused on enhancing work-based identity and work engagement in the work environment should have a meaningful impact when these behaviours need to be addressed. Contribution/value-add: Work-based identity as a multidimensional construct has the potential, with further refinement, to become a valuable construct that can play a leading role in future work engagement research.

6. Thermal dispersivity based calibration of a numerical borehole heat exchanger model

Science.gov (United States)

Wagner, Valentin; Bayer, Peter; Bisch, Gerhard; Klaas, Norbert; Braun, Jürgen; Blum, Philipp

2013-04-01

Shallow geothermal energy is used worldwide as a heat and/or cooling source for buildings. The most often used technique to exploit energy from the subsurface is ground source heat pump systems in combination with a borehole heat exchanger (BHE). The BHE consists either of one U-pipe, two U-pipes or a coaxial pipe, which are inserted in a borehole. The remaining void space is filled with a grouting material to improve the thermal connection between the pipes and the subsurface and to protect the subsurface if there is a leakage in the pipes. In the pipes, a heat carrier fluid is circulated to establish a thermal gradient around the BHE and thus promote conductive heat transfer. This causes a temperature anomaly in the subsurface. Extension and magnitude of such temperature anomalies do not only depend on the amount of exchanged energy, but also on the characteristics of the ground and the installed ground source heat pump system itself. In this study, we developed a high-resolution finite element BHE model to simulate the heat propagation from a BHE to the subsurface or vice versa. First, the resulting heat propagation predicted by the numerical model is compared to the analogous analytical solutions. Then the numerical model is calibrated based on a large-scale geothermal tank experiment. The tank has a size of 9m × 6m × 4.5m (length × width × depth), and it hosts a layered artificial aquifer with four BHEs, which are surrounded by a dense temperature sensor network (> 150 PT-100 temperature sensors). In the tank, a hydraulic gradient can be established and thus groundwater flow can be imitated. By calibrating the numerical model, the sensitivity of longitudinal and transversal dispersivity values is evaluated. Our analysis cannot prove that the commonly assumed ratio of 1:10 between transversal and longitudinal dispersivity is correct. Rather, it is shown that there exists a wide range of possible parameter value combinations.

7. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

Science.gov (United States)

Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

2017-01-01

To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

8. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase.

Science.gov (United States)

Lin, Zhenyu; Sun, Jianjun; Chen, Jinhua; Guo, Liang; Chen, Yiting; Chen, Guonan

2008-04-15

A new electrochemiluminescent (ECL) biosensor based on an electrically heated carbon paste electrode (HCPE) that was surface modified by xanthine oxidase (XOD) was designed and constructed in this work. It was found that the ECL intensity of luminol could be enhanced at the surface of XOD/HCPE by adding hypoxanthine (HX) to the solution, and there was a linear relationship between the ECL intensity and the concentration of HX. On the basis of this, an ECL enzyme biosensor can thus be developed to detect HX. However, because the activity of XOD is highly dependent on temperature, the biosensor is very sensitive to the temperature of the electrode. Also, because the temperature of the electrode may also affect the diffusion and convection of the luminescent compounds near the electrode surface, a suitable temperature for XOD/HCPE has to be controlled to achieve the best ECL signal. The key feature of the designed biosensor is that the temperature of the electrode is controllable so the most suitable temperature for the enzyme reaction can be obtained. The obtained results showed that the ECL enzyme biosensor exhibited the best sensitivity at an electrode temperature of 35 degrees C for the detection of HX. The detection limit was 30-fold lower than that at room temperature (25 degrees C).

9. Simulation of Heat Transfer in Husk Furnace with Cone Geometry Based on Conical Coordinate System

Science.gov (United States)

Noor, Iman; Ahmad, Faozan; Irzaman; alatas, Husin

2017-07-01

Simulation of Heat Transfer in Husk Furnace with Cone Geometry Based on Conical Coordinates has been performed. This simulation aimed to study the heat distribution of temperature based on conduction and convection mechanism on conical coordinate system. Fluid dynamics inside the cone of husk furnace was obtained by solving the Navier - Stokes equations with laminar flow approach. The initial temperature in all parts of the cone is room temperature, except at the bottom of the cone is 700 °C. Through numerical calculation of heat conduction and convection equation by FDM method, we got that the velocity of fluid flow at the center cone is 13.69 m/s for 45 s, 11.90 m/s for 60 s, and 7.25 m/s for 120 s, with unfixed temperature condition in the cone.

10. A new global anthropogenic heat estimation based on high-resolution nighttime light data

Science.gov (United States)

Yang, Wangming; Luan, Yibo; Liu, Xiaolei; Yu, Xiaoyong; Miao, Lijuan; Cui, Xuefeng

2017-08-01

Consumption of fossil fuel resources leads to global warming and climate change. Apart from the negative impact of greenhouse gases on the climate, the increasing emission of anthropogenic heat from energy consumption also brings significant impacts on urban ecosystems and the surface energy balance. The objective of this work is to develop a new method of estimating the global anthropogenic heat budget and validate it on the global scale with a high precision and resolution dataset. A statistical algorithm was applied to estimate the annual mean anthropogenic heat (AH-DMSP) from 1992 to 2010 at 1×1 km2 spatial resolution for the entire planet. AH-DMSP was validated for both provincial and city scales, and results indicate that our dataset performs well at both scales. Compared with other global anthropogenic heat datasets, the AH-DMSP has a higher precision and finer spatial distribution. Although there are some limitations, the AH-DMSP could provide reliable, multi-scale anthropogenic heat information, which could be used for further research on regional or global climate change and urban ecosystems.

11. Work-based identity and work engagement as potential antecedents of task performance and turnover intention: Unravelling a complex relationship

Directory of Open Access Journals (Sweden)

F. Chris Bothma

2012-01-01

Full Text Available Orientation: Work-based identity, used as a reference to the self, is the answer to the question ’Who am I at work?’ Work-related identities, derived from different social foci through identity formation processes, have as behavioural guides a significant influence on employee behaviour, which, in turn has an impact on work outcomes. Engagement, presented in different conceptualisations, is viewed by practitioners and academic researchers as an important antecedent of employee behaviour.Research purpose: The main purpose of the study was to investigate whether work-based identity and work engagement differed (in combination with personal alienation, helping behaviour and burnout as potential antecedents (amongst numerous others of task performance and turnover intention.Research design: A census-based sampling approach amongst 23 134 employees in the employment of an ICT company yielded a sample of 2429 usable questionnaires. Scales used in the study were the Maslach Burnout Inventory (MBI-HSS-20, Utrecht Work Engagement Scale (UWES, Work-based Identity, Personal Alienation, Helping Behaviour, Turnover Intention and Task Performance Scales.Main findings: The findings indicate that work-based identity and work engagement give similar appearing results as potential predictors of turnover intention and task performance. Practical/managerial implications: Reducing withdrawal behaviours and enhancing work performance are everyday challenges for organisations. Interventions focused on enhancing work-based identity and work engagement in the work environment should have a meaningful impact when these behaviours need to be addressed.Contribution/value-add: Work-based identity as a multidimensional construct has the potential, with further refinement, to become a valuable construct that can play a leading role in future work engagement research.

12. Comparative Evaluation of Sorption, Solubility and Microhardness of Heat Cure Polymethylmethacrylate Denture Base Resin & Flexible Denture Base Resin

Science.gov (United States)

Bulbule, Nilesh; Kulkarni, Shilpa; Shah, Riddhi; Kakade, Dilip

2014-01-01

Aim: The aim of the study was to evaluate and compare sorption, solubility and microhardness of heat cure polymethylmethacrylate (PMMA) denture base resin and flexible (thermoplastic polyamide nylon) denture base resin. Materials and Methods: Sorption, solubility and microhardness were assessed to determine compliance with ADA Specification no. 12. Results were assessed using statistical and observational analyses. Result: All materials satisfied ADA requirements for sorption, solubility and microhardness. Heat cure PMMA showed more sorption, solubility and microhardness than flexible (thermoplastic polyamide nylon). Conclusion: Flexible (thermoplastic polyamide nylon) resin absorbs less water, is less soluble and is more flexible than PMMA. PMID:25302291

13. New market based price regulation on combined heat and power in Denmark

International Nuclear Information System (INIS)

Koch, Jesper; Nielsen, Marianne; Hansen, Anders B.; Lawaetz, Henrik

2003-01-01

Major economic risks can become reality when local co-generation plants (L-CHP ) meet the full market penetration with new market based price regulation. Co-generation produces more than 50% of the national electricity consumption and half of the production is generated from L-CHP. The new price regulation is assumed to take action in 2004. The paper will present an analysis of a market based price regulation on the L-CHP-sector. The paper will spotlight on L-CHP in district heating systems supplying heat for domestic purposes. When smaller and medium sized CHP sell electricity they are paid an average price of 46 Euro per MWh. The return of selling electricity shall primarily cover the expenditure of buying gas for electricity production and writing off investments cost of a CHP-plant. With the framework of today it is a fact that the plants (in average) are only slightly competitive compared to individual heat production plants. When CHP meet market conditions there is a high risk that electricity prices will be reduced significantly (prices of 20 - 30 Euro per MWh) for a longer period. Significantly reduced electricity prices will result in dramatically increased heat prices. If no action is taken there will be a potential risk that heat consumers in the smaller and medium sized cities together must pay an extra bill of 200 million Euro each year. It corresponds to an average increase of the heating bill of 300 - 500 Euro per year for an average house. This is far from acceptable. There will also be a high risk that companies with industrial CHP will permanently convert to heat only boiler and only use their CHP occasionally because CHP plants might not be cost-effective when electricity prices are low. These effects can cause a significant increase of the national CO 2 emission

14. Stability of Continental Lithosphere based on Analogue Experiments with Microwave Induced Internal Heating

Science.gov (United States)

Fourel, Loic; Limare, Angela; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia; Vilella, Kenny; Farnetani, Cinzia; Kaminski, Edouard; Jaupart, Claude

2015-04-01

Continental lithosphere is usually depicted as the upper conductive layer of the Earth. Its formation is achieved through melt depletion that generates a residue that is less dense and more viscous than the underlying convecting mantle. As it is cooled from above, continental lithosphere can develop its own convective currents and may become unstable depending on its thickness and density contrast with the mantle. But chemical differentiation due to mantle magmatism also enriches continental lithosphere in heat producing elements. According to present estimates, the Earth's mantle may have lost as much as half of its radioactive elements in favour of continental crust and this stratified redistribution of heat sources has two main effects. First, mantle convection vigor decreases and becomes increasingly sensitive to heat supply from the core. Second, localized heat production at the top surface increases the continental insulating effects and competes against lithospheric instabilities. In the present study, we focus on the later and we determine which amount of internal heating is required to keep the lithosphere stable for a given rate of cooling from the top. The physics underlying instability triggering corresponds to the problem of a two differentially heated layered system cooled from above, where the top layer is less dense and more viscous than the bottom one, representative of the lithosphere-mantle system. Few studies have been devoted to the intrinsic characteristics of this layered type of convection. Here, we present a state of the art laboratory setup to generate internal heating in controlled conditions based on microwave (MW) absorption. The volumetric heat source can be localized in space and its intensity can be varied in time. Our tank prototype has horizontal dimensions of 30 cm x 30 cm and 5 cm height. A uniform and constant temperature is maintained at the upper boundary by an aluminium heat exchanger and adiabatic conditions are imposed at

15. A numerical method for PCM-based pin fin heat sinks optimization

International Nuclear Information System (INIS)

Pakrouh, R.; Hosseini, M.J.; Ranjbar, A.A.; Bahrampoury, R.

2015-01-01

Highlights: • Optimization of PCM-based heat sink by using the Taguchi method. • Derivation of optimal PCM percentage to reach the maximum critical time. • Optimization is performed for four different critical temperatures. • Effective design factors are fins’ height and fins’ number. • The optimum configuration depends on geometric properties and the critical temperature. - Abstract: This paper presents a numerical investigation on geometric optimization of PCM-based pin fin heat sinks. Paraffin RT44HC is used as PCM while the fins and heat sink base is made of aluminum. The fins act as thermal conductivity enhancers (TCEs). The main goal of the study is to obtain the configurations that maximize the heat sink operational time. An approach witch couples Taguchi method with numerical simulations is utilized for this purpose. Number of fins, fins height, fins thickness and the base thickness are parameters which are studied for optimization. In this study natural convection and PCM volume variation during melting process are considered in the simulations. Optimization is performed for different critical temperatures of 50 °C, 60 °C, 70 °C and 80 °C. Results show that a complex relation exists between PCM and TCE volume percentages. The optimal case strongly depends on the fins’ number, fins’ height and thickness and also the critical temperature. The optimum PCM percentages are found to be 60.61% (corresponds to 100 pin fin heat sink with 4 mm thick fins) for critical temperature of 50 °C and 82.65% (corresponds to 100 pin fin heat sink with 2 mm thick fins) for other critical temperatures

16. A study on the heat transfer characteristics of a self-oscillating heat pipe

International Nuclear Information System (INIS)

Yoon, Seok Hun; Oh, Cheol; Choi, Jae Hyuk

2002-01-01

In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe

17. Optimization study of distillation column based on Type I absorption heat pump

International Nuclear Information System (INIS)

Li, Yan; Wang, Lu; Zhu, Meng; Wang, Weiqin

2017-01-01

Highlights: • Propose a new distillation system based on Type I absorption heat pump. • The optimum condition of the system is obtained. • The energy consumption of the system is reduced by 23.3% significantly. • The benefits of economy and energy-saving for the new distillation system are distinct. - Abstract: Due to the thermodynamic deficiencies in general pressurized distillation process, a new distillation system based on Type I AHP (absorption heat pump) is proposed in this paper. The proposed system uses AHP to recover the waste heat from column condenser and reheat the feed materials of column; meanwhile, the cooling capacity of column condenser can be increased, which leads to the decrease of the pressure in distillation column. With general distillation system of depropanizing column (C-101) as an example, using numerical simulation software Aspen Plus, the effect of inner parameters on the energy consumption has been conducted to approach the general rules of energy saving in distillation. Then the new distillation system is adopted and the optimization of its energy consumption is conducted to determine the optimum operating condition. The numerical simulation results show that the steam consumption can be decreased by 23.3% compared with general C-101 system, reaching the minimum. Moreover, the extra heat output of AHP is treated as the heat source for the reboilers of deethanization column (C-102) and refined propylene column (C-103), which reduces the total steam consumption of three-column processes by 22.1%.

18. Research on the Specific Heat Capacity of PBX Formulations Based on RDX

Directory of Open Access Journals (Sweden)

Flávio Rodrigues Chaves

2016-07-01

Full Text Available The experimental results of specific heat capacity of 2 plastic bonded explosives formulations based on 1,3,5-trinitroperhydro-1,3,5-triazine, using differential scanning calorimetry thermal analysis, and the theoretical ones calculated with the specific heat capacity and mass fraction of individual compounds are compared for a temperature range between 340 and 410 K. Apart the filler, the plastic bonded explosives composition includes the binder based on hydroxyl-terminated polybutadiene, the plasticizer bis (2-ethylhexyl sebacate and the curing agent isophorone diisocyanate. The experimental and theoretical results showed a better approach when no curing agent is added. Without curing agent, the specific heat capacity of plastic bonded explosives increases linearly with temperature. When plastic bonded explosive is cured, the specific heat capacity is nearly constant until 380 K and decreases linearly for higher temperature values. These results suggest that phase change requires adjusting parameters to different heating rates in order to describe adequately the experimental data.

19. Design of an additional heat sink based on natural circulation in pressurized water reactors

International Nuclear Information System (INIS)

Frischengruber, Kurt; Solanilla, Roberto; Fernandez, Ricardo; Blumenkrantz, Arnaldo; Castano, Jorge

1989-01-01

Residual heat removal through the steam generators in Nuclear Power Plant with pressurized water reactors (PWR) or pressurized heavy water reactors (PHWR in pressured vessel or pressured tube types) requires the maintenance of the steam generator inventory and the availability of and appropriate heat sink, which are based on the operability of the steam generators feedwater system. This paper describes the conceptual design of an assured heat removal system which includes only passive elements and is based on natural circulation. The system can supplement the original systems of the plant. The new system includes a condenser/boiler heat exchanger to condense the steam produced in the steam generator, transferring the heat to the water of an open pool at atmospheric pressure. The condensed steam flows back to the steam generators by natural circulation effects. The performance of an Atucha type PHWR nuclear power station with and without the proposed system is calculated in an emergency power case for the first 5000 seconds after the incident. The analysis shows that the proposed system offers the possibility to cool-down the plant to a low energy state during several hours and avoids the repeated actuation of the primary and secondary system safety valves. (Author) [es

20. Thermal treatment system of hazardous residuals in three heating zones based on a microprocessor

International Nuclear Information System (INIS)

Luna H, C.L.

1997-01-01

Thermal treatment system consists of a high power electric oven of three heating zones where each zone works up to 1200 Centigrades; it has the capacity of rising the central zone temperature up to 1000 Centigrades in 58 minutes approximately. This configuration of three zones could be programmed to different temperatures and they will be digitally controlled by a control microprocessor, which has been controlled by its own assembler language, in function of the PID control. There are also other important controls based on this microprocessor, as a signal amplification, starting and shutdown of high power step relays, activation and deactivation of both analogic/digital and digital/analogic convertors, port activation and basic data storage of the system. Two main characteristics were looked for this oven design; the first was the possibility of controlling the three zone temperature and the second was to reduce the rising and stabilization operation time and its digitized control. The principal function of the three zone oven is to accelerate the degradation of hazardous residuals by an oxidation instead combustion, through relatively high temperatures (minimum 800 Centigrades and maximum 1200 Centigrades); this process reduces the ash and volatile particulate production. The hazardous residuals will be pumped into the degradation system and after atomized through a packaged column; this step will avoid the direct contact of the residuals with the oven cores. These features make this system as closed process, which means that the residuals can not leak to the working area, reducing the exposure risk to the personnel. This three step oven system is the first stage of the complete hazardous residuals degradation system; after this, the flow will go into a cold plasma region where the process is completed, making a closed system. (Author)

1. A chemical heat pump based on the reaction of calcium chloride and methanol for solar heating, cooling and storage

Science.gov (United States)

Offenhartz, P. O.

1981-03-01

An engineering development test prototype of the CaCl2-CheOH chemical heat pump was tested. The unit, which has storage capacity in excess of 100,000 BTU, completed over 100 full charge-discharge cycles. Cycling data show that the rate of heat pumping depends strongly on the absorber-evaporator temperature difference. These rates are more than adequate for solar heating or for solar cooling using dry ambient air heat rejection. Performance degradation after 100 cycles, expressed as a contact resistance, was less than 2 C. The heat exchangers showed some warpage due to plastic flow of the salt, producing the contact resistance. The experimental COP for cooling was 0.52, close to the theoretically predicted value.

2. A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem

Science.gov (United States)

Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.

2010-01-01

To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…

3. Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber

NARCIS (Netherlands)

Liu, Z.; Htein, L.; Cheng, L.K.; Martina, Q.; Jansen, R.; Tam, H.Y.

2017-01-01

In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and

4. Support schemes and ownership structures - The policy context for fuel cell based micro-combined heat and power

Energy Technology Data Exchange (ETDEWEB)

Ropenus, S.; Thorsten Schroeder, S.; Costa, A.; Obe, E.

2010-05-15

In recent years, fuel cell based micro-combined heat and power has received increasing attention due to its potential contribution to energy savings, efficiency gains, customer proximity and flexibility in operation and capacity size. The FC4Home project assesses technical and economic aspects of the ongoing fuel cell based micro-combined heat and power (mCHP) demonstration projects by addressing the socio-economic and systems analyses perspectives of a large-scale promotion scheme of fuel cells. This document constitutes the deliverable of Work Package 1 of the FC4Home project and provides an introduction to the policy context for mCHP. Section 1 describes the rationale for the promotion of mCHP by explaining its potential contribution to European energy policy goals. Section 2 addresses the policy context at the supranational European level by outlining relevant EU Directives on support schemes for promoting combined heat and power and energy from renewable sources. These Directives are to be implemented at the national level by the Member States. Section 3 conceptually presents the spectrum of national support schemes, ranging from investment support to market-based operational support. The choice of support scheme simultaneously affects risk and technological development, which is the focus of Section 4. Subsequent to this conceptual overview, Section 5 takes a glance at the national application of support schemes for mCHP in practice, notably in the three country cases of the FC4Home project, Denmark, France and Portugal. Another crucial aspect for the diffusion of the mCHP technology is possible ownership structures. These may range from full consumer ownership to ownership by utilities and energy service companies, which is discussed in Section 6. Finally, a conclusion (Section 7) wraps up previous findings and provides a short 'preview' of the quantitative analyses in subsequent Work Packages by giving some food for thought on the way. (author)

5. Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction.

Science.gov (United States)

López Molina, Juan A; Rivera, María J; Trujillo, Macarena; Berjano, Enrique J

2009-04-01

The objectives of this study were to model the temperature progress of a pulsed radiofrequency (RF) power during RF heating of biological tissue, and to employ the hyperbolic heat transfer equation (HHTE), which takes the thermal wave behavior into account, and compare the results to those obtained using the heat transfer equation based on Fourier theory (FHTE). A theoretical model was built based on an active spherical electrode completely embedded in the biological tissue, after which HHTE and FHTE were analytically solved. We found three typical waveforms for the temperature progress depending on the relations between the dimensionless duration of the RF pulse delta(a) and the expression square root of lambda(rho-1), with lambda as the dimensionless thermal relaxation time of the tissue and rho as the dimensionless position. In the case of a unique RF pulse, the temperature at any location was the result of the overlapping of two different heat sources delayed for a duration delta(a) (each heat source being produced by a RF pulse of limitless duration). The most remarkable feature in the HHTE analytical solution was the presence of temperature peaks traveling through the medium at a finite speed. These peaks not only occurred during the RF power switch-on period but also during switch off. Finally, a physical explanation for these temperature peaks is proposed based on the interaction of forward and reverse thermal waves. All-purpose analytical solutions for FHTE and HHTE were obtained during pulsed RF heating of biological tissues, which could be used for any value of pulsing frequency and duty cycle.

6. Experimental evaluation of a Pt based heat exchanger methanol reformer for a HTPEM fuel cell

DEFF Research Database (Denmark)

Andreasen, Søren Juhl; Nielsen, Mads Pagh; Kær, Søren Knudsen

2007-01-01

The storage of hydrogen in hydrogen consuming applications is often inconvenient because of the very low density of hydrogen even at high pressures (0.014 kg/L @ 300 bar) or cryogenically (0.043 kg/L). Much higher volumetric energy densities can be achieved using liquid hydrocarbons as e.g. metha...... (up to 1-2%). This work examines the possibility of using a catalyst coated plate heat exchanger for the reforming process of methanol....

7. Optimizing the Costs of Solid Sorbent-Based CO2 Capture Process Through Heat Integration

Energy Technology Data Exchange (ETDEWEB)

Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

2016-03-18

8. Assessing Heat-to-Heat Variations Affecting Mechanism Based Modeling of Hydrogen Environment Cracking (HEAC) in High Strength Alloys for Marine Applications: Monel K-500

Science.gov (United States)

2016-01-28

commonly used in marine applications due to its excellent combination of corrosion resistance, strength, and fracture toughness. For such applications...34Assessing Heat-to-Heat Variations Affecting Mechanism Based Modeling of Hydrogen Environment Cracking (HEAC) in High Strength Alloys for Marine ...Environment Cracking (HEAC) in High Strength Alloys for Marine Applications: Monel K-500 5a. CONTRACT NUMBER N00014-12-1-0506 5b. GRANT NUMBER N/A 5c

9. Reliability analysis on passive residual heat removal of AP1000 based on Grey model

Energy Technology Data Exchange (ETDEWEB)

Qi, Shi; Zhou, Tao; Shahzad, Muhammad Ali; Li, Yu [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Jiang, Guangming [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Laboratory

2017-06-15

It is common to base the design of passive systems on the natural laws of physics, such as gravity, heat conduction, inertia. For AP1000, a generation-III reactor, such systems have an inherent safety associated with them due to the simplicity of their structures. However, there is a fairly large amount of uncertainty in the operating conditions of these passive safety systems. In some cases, a small deviation in the design or operating conditions can affect the function of the system. The reliability of the passive residual heat removal is analysed.

10. Study on optimum temperature value setting for the heat-setting process based on PSO

Science.gov (United States)

Gu, Minming

2017-06-01

Based on a mechanism model of the temperature of fabric, this paper discussed the optimum temperature value setting in a heat-setting process using Particle Swarm Optimization (PSO) algorithm. First, a mathematical modeling method was developed from energy balances, Then, a PSO algorithm was employed to optimize the temperature setting value of each chamber. The experimental results have shown a good agreement with the proposed model. The obtained load parameters lead to a lower energy consumption strategy of the heat-setting according to the technological requirements.

11. A global analysis of the urban heat island effect based on multisensor satellite data

Science.gov (United States)

Xiao, J.; Frolking, S. E.; Milliman, T. E.; Schneider, A.; Friedl, M. A.

2017-12-01

Human population is rapidly urbanizing. In much of the world, cities are prone to hotter weather than surrounding rural areas - so-called `urban heat islands' - and this effect can have mortal consequences during heat waves. During the daytime, when the surface energy balance is driven by incoming solar radiation, the magnitude of urban warming is strongly influenced by surface albedo and the capacity to evaporate water (i.e., there is a strong relationship between vegetated land fraction and the ratio of sensible to latent heat loss or Bowen ratio). At nighttime, urban cooling is often inhibited by the thermal inertia of the built environment and anthropogenic heat exhaust from building and transportation energy use. We evaluated a suite of global remote sensing data sets representing a range of urban characteristics against MODIS-derived land-surface temperature differences between urban and surrounding rural areas. We included two new urban datasets in this analysis - MODIS-derived change in global urban extent and global urban microwave backscatter - along with several MODIS standard products and DMSP/OLS nighttime lights time series data. The global analysis spanned a range of urban characteristics that likely influence the magnitude of daytime and/or nighttime urban heat islands - urban size, population density, building density, state of development, impervious fraction, eco-climatic setting. Specifically, we developed new satellite datasets and synthesizing these with existing satellite data into a global database of urban land surface parameters, used two MODIS land surface temperature products to generate time series of daytime and nighttime urban heat island effects for 30 large cities across the globe, and empirically analyzed these data to determine specifically which remote sensing-based characterizations of global urban areas have explanatory power with regard to both daytime and nighttime urban heat islands.

12. Facilitated Work Based Learning - analyseret i et pragmatisk perspektiv

DEFF Research Database (Denmark)

Thomassen, Anja Overgaard

Ph.d.-afhandlingen behandler, med afsæt i John Deweys (1859-1952) pragmatisme, Facilitated Work Based Learning (FWBL) der er en tilgang til efter/videreuddannelse. På baggrund af konkrete uddannelsesforløb gennemført ud fra FWBL analyseres de udfordringer der opstår omkring gennemførelse af...... mødes for at samarbejde. Afhandlingen bidrager med et nyt begreb kaldet "den tredje kontekst" der tydeliggør, hvordan uddannelse, der gennemføres i en virksomhed, kan forstås. Ligeledes udvikles der, med afsæt i Deweys pragmatisme, en model der tydeliggør, hvorledes kompetenceudvikling kan understøttes...

13. Mixed Convective Peristaltic Flow of Water Based Nanofluids with Joule Heating and Convective Boundary Conditions.

Directory of Open Access Journals (Sweden)

Tasawar Hayat

Full Text Available Main objective of present study is to analyze the mixed convective peristaltic transport of water based nanofluids using five different nanoparticles i.e. (Al2O3, CuO, Cu, Ag and TiO2. Two thermal conductivity models namely the Maxwell's and Hamilton-Crosser's are used in this study. Hall and Joule heating effects are also given consideration. Convection boundary conditions are employed. Furthermore, viscous dissipation and heat generation/absorption are used to model the energy equation. Problem is simplified by employing lubrication approach. System of equations are solved numerically. Influence of pertinent parameters on the velocity and temperature are discussed. Also the heat transfer rate at the wall is observed for considered five nanofluids using the two phase models via graphs.

14. Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle

Science.gov (United States)

Henline, William D.; Tauber, Michael E.

1994-01-01

A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.

15. The Modularisation Approach of Work-Based VET in Scotland

Science.gov (United States)

Pilz, Matthias; Canning, Roy

2017-01-01

The issue of modularising vocational education and training (VET) systems has been the subject of heated debate in many European countries. In particular, in Scotland the use of modules within the curriculum has been seen as either restrictive or liberating depending upon the theoretical stance taken. At a more pragmatic level modularisation of…

16. Capabilities of VOS-based fluxes for estimating ocean heat budget and its variability

Science.gov (United States)

Gulev, S.; Belyaev, K.

2016-12-01

17. Potential Energy Flexibility for a Hot-Water Based Heating System in Smart Buildings Via Economic Model Predictive Control

DEFF Research Database (Denmark)

Ahmed, Awadelrahman M. A.; Zong, Yi; Mihet-Popa, Lucian

2017-01-01

water tank as active thermal energy storage, where two optimization problems are integrated together to optimize both the heat pump electricity consumption and the building heating consumption. A sensitivity analysis for the system flexibility is examined. The results revealed that the proposed......This paper studies the potential of shifting the heating energy consumption in a residential building to low price periods based on varying electricity price signals suing Economic Model Predictive Control strategy. The investigated heating system consists of a heat pump incorporated with a hot...

18. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes.

Science.gov (United States)

Mele, Luigi; Konings, Stan; Dona, Pleun; Evertz, Francis; Mitterbauer, Christoph; Faber, Pybe; Schampers, Ruud; Jinschek, Joerg R

2016-04-01

The introduction of scanning/transmission electron microscopes (S/TEM) with sub-Angstrom resolution as well as fast and sensitive detection solutions support direct observation of dynamic phenomena in-situ at the atomic scale. Thereby, in-situ specimen holders play a crucial role: accurate control of the applied in-situ stimulus on the nanostructure combined with the overall system stability to assure atomic resolution are paramount for a successful in-situ S/TEM experiment. For those reasons, MEMS-based TEM sample holders are becoming one of the preferred choices, also enabling a high precision in measurements of the in-situ parameter for more reproducible data. A newly developed MEMS-based microheater is presented in combination with the new NanoEx™-i/v TEM sample holder. The concept is built on a four-point probe temperature measurement approach allowing active, accurate local temperature control as well as calorimetry. In this paper, it is shown that it provides high temperature stability up to 1,300°C with a peak temperature of 1,500°C (also working accurately in gaseous environments), high temperature measurement accuracy (in-situ S/TEM imaging experiments, but also elemental mapping at elevated temperatures using energy-dispersive X-ray spectroscopy (EDS). Moreover, it has the unique capability to enable simultaneous heating and biasing experiments. © 2016 Wiley Periodicals, Inc.

19. Influence of Heat Treatment on the Morphologies of Copper Nanoparticles Based Films by a Spin Coating Method

Directory of Open Access Journals (Sweden)

Wei Liu

2017-01-01

Full Text Available We have investigated the influence of heat treatment on the morphologies of copper nanoparticles based films on glass slides by a spin coating method. The experiments show that heat treatment can modify the sizes and morphologies of copper nanoparticles based films on glass slides. We suggest that through changing the parameters of heat treatment process may be helpful to vary the scattering and absorbing intensity of copper nanoparticles when used in energy harvesting/conversion and optical devices.

20. Quality of Work and Team- and Project Based Work Practices in Engineering

DEFF Research Database (Denmark)

Buch, Anders; Andersen, Vibeke

2015-01-01

It is the aim of this paper to investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals and eventually their quality of work. The paper investigates how professional engineering...... ractices are enacted in two engineering consultancy companies in Denmark where ‘teamwork’ has been or is an ideal for organizing work....

1. Heat loss during carbon dioxide insufflation: comparison of a nebulization based humidification device with a humidification and heating system.

Science.gov (United States)

Noll, Eric; Schaeffer, Roland; Joshi, Girish; Diemunsch, Sophie; Koessler, Stefanie; Diemunsch, Pierre

2012-12-01

This study compared the heat loss observed with the use of MR860 AEA Humidifier™ system (Fisher & Paykel Healthcare, New Zealand), which humidifies and heats the insufflated CO(2), and the use of the AeronebPro™ device (Aerogen, Ireland), which humidifies but does not heat the insufflated CO(2). With institutional approval, 16 experiments were conducted in 4 pigs. Each animal, acting as its own control, was studied at 8-day intervals in randomized sequence with the following four conditions: (1) control (C) no pneumoperitoneum; (2) standard (S) insufflation with nonhumidified, nonheated CO(2); (3) Aeroneb™ (A): insufflation with humidified, nonheated CO(2); and (4) MR860 AEA humidifier™ (MR): insufflation with humidified and heated CO(2). The measured heat loss after 720L CO(2) insufflation during the 4 h was 1.03 ± 0.75 °C (mean ± SEM) in group C; 3.63 ± 0.31 °C in group S; 3.03 ± 0.39 °C in group A; and 1.98 ± 0.09 °C in group MR. The ANOVA showed a significant difference with time (p = 0.0001) and with the insufflation technique (p = 0.024). Heat loss in group C was less than in group S after 60 min (p = 0.03), less than in group A after 70 min (p = 0.03), and less than in group MR after 150 min (p = 0.03). The heat loss in group MR was less than in group S after 50 min (p = 0.04) and less than in group A after 70 min (p = 0.02). After 160 min, the heat loss in group S was greater than in group A (p = 0.03). As far as heat loss is concerned, for laparoscopic procedures of less than 60 min, there is no benefit of using any humidification with or without heating. However, for procedures greater than 60 min, use of heating along with humidification, is superior.

2. Performance analysis of absorption heat transformer cycles using ionic liquids based on imidazolium cation as absorbents with 2,2,2-trifluoroethanol as refrigerant

International Nuclear Information System (INIS)

Ayou, Dereje S.; Currás, Moisés R.; Salavera, Daniel; García, Josefa; Bruno, Joan C.; Coronas, Alberto

2014-01-01

Highlights: • TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) absorption heat transformer cycles are studied. • Influence of various operating conditions on cycle’s performance is investigated. • Performance comparisons with H 2 O + LiBr and TFE + TEGDME cycles are done. • Enthalpy data for TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) liquid mixtures are calculated. • TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) cycles have higher gross temperature lift (GTL). - Abstract: A detailed thermodynamic performance analysis of a single-stage absorption heat transformer and double absorption heat transformer cycles using new working pairs composed of ionic liquids (1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF 4 ]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ])) as absorbent and 2,2,2-trifluoroethanol (TFE) as refrigerant has been studied. Several performance indicators were used to evaluate and compare the performance of the cycles using the TFE + [emim][BF 4 ] and TFE + [bmim][BF 4 ] working pairs with the conventional H 2 O + LiBr and organic TFE + TEGDME working pairs. The obtained results show that the ionic liquid based working pairs are suitable candidates to replace the conventional H 2 O + LiBr working pairs in order to avoid the disadvantages associated with it mainly crystallization and corrosion and also they perform better (higher gross temperature lift) than TFE + TEGDME working pair at several operating conditions considered in this work

3. Mapping Heat-related Risks for Community-based Adaptation Planning under Uncertainty

Science.gov (United States)

Bai, Yingjiu; Kaneko, Ikuyo; Kobayashi, Hikaru; Kurihara, Kazuo; Sasaki, Hidetaka; Murata, Akihiko; Takayabu, Izuru

2016-04-01

Climate change is leading to more frequent and intense heat waves. Recently, epidemiologic findings on heat-related health impacts have reinforced our understanding of the mortality impacts of extreme heat. This research has several aims: 1) to promote climate prediction services with spatial and temporal information on heat-related risks, using GIS (Geographical Information System), and digital mapping techniques; 2) to propose a visualization approach to articulating the evolution of local heat-health responses over time and the evaluation of new interventions for the implementation of valid community-based adaptation strategies and reliable actionable planning; and 3) to provide an appropriate and simple method of adjusting bias and quantifying the uncertainty in future outcomes, so that regional climate projections may be transcribed into useful forms for a wide variety of different users. Following the 2003 European heat wave, climatologists, medical specialists, and social scientists expedited efforts to revise and integrate risk governance frameworks for communities to take appropriate and effective actions themselves. Recently, the Coupled Model Intercomparison Project (CMIP) methodology has made projections possible for anyone wanting to openly access state-of-the-art climate model outputs and climate data to provide the backbone for decisions. Furthermore, the latest high-solution regional climate model (RCM) has been a huge increase in the volumes of data available. In this study, we used high-quality hourly projections (5-km resolution) from the Non-Hydrostatic Regional Climate Model (NHRCM-5km), following the SRES-A1B scenario developed by the Meteorological Research Institute (MRI) and observational data from the Automated Meteorological Data Acquisition System, Japan Meteorological Agency (JMA). The NHRCM-5km is a dynamic downscaling of results from the MRI-AGCM3.2S (20-km resolution), an atmospheric general circulation model (AGCM) driven by the

4. Prediction of cold and heat patterns using anthropometric measures based on machine learning.

Science.gov (United States)

Lee, Bum Ju; Lee, Jae Chul; Nam, Jiho; Kim, Jong Yeol

2018-01-01

To examine the association of body shape with cold and heat patterns, to determine which anthropometric measure is the best indicator for discriminating between the two patterns, and to investigate whether using a combination of measures can improve the predictive power to diagnose these patterns. Based on a total of 4,859 subjects (3,000 women and 1,859 men), statistical analyses using binary logistic regression were performed to assess the significance of the difference and the predictive power of each anthropometric measure, and binary logistic regression and Naive Bayes with the variable selection technique were used to assess the improvement in the predictive power of the patterns using the combined measures. In women, the strongest indicators for determining the cold and heat patterns among anthropometric measures were body mass index (BMI) and rib circumference; in men, the best indicator was BMI. In experiments using a combination of measures, the values of the area under the receiver operating characteristic curve in women were 0.776 by Naive Bayes and 0.772 by logistic regression, and the values in men were 0.788 by Naive Bayes and 0.779 by logistic regression. Individuals with a higher BMI have a tendency toward a heat pattern in both women and men. The use of a combination of anthropometric measures can slightly improve the diagnostic accuracy. Our findings can provide fundamental information for the diagnosis of cold and heat patterns based on body shape for personalized medicine.

5. Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery

Directory of Open Access Journals (Sweden)

Abdolsaeid Ganjehkaviri

2014-10-01

Full Text Available A comprehensive thermodynamic study is conducted of a diesel based Combined Heat and Power (CHP system, based on a diesel engine and an Organic Rankine Cycle (ORC. Present research covers both energy and exergy analyses along with a multi-objective optimization. In order to determine the irreversibilities in each component of the CHP system and assess the system performance, a complete parametric study is performed to investigate the effects of major design parameters and operating conditions on the system’s performance. The main contribution of the current research study is to conduct both exergy and multi-objective optimization of a system using different working fluid for low-grade heat recovery. In order to conduct the evolutionary based optimization, two objective functions are considered in the optimization; namely the system exergy efficiency, and the total cost rate of the system, which is a combination of the cost associated with environmental impact and the purchase cost of each component. Therefore, in the optimization approach, the overall cycle exergy efficiency is maximized satisfying several constraints while the total cost rate of the system is minimized. To provide a better understanding of the system under study, the Pareto frontier is shown for multi-objective optimization and also an equation is derived to fit the optimized point. In addition, a closed form relationship between exergy efficiency and total cost rate is derived.

6. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

Science.gov (United States)

Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

2015-12-01

BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

7. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

Energy Technology Data Exchange (ETDEWEB)

Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

2017-05-01

The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

8. Problem based Learning versus Design Thinking in Team based Project work

DEFF Research Database (Denmark)

Denise J. Stokholm, Marianne

2014-01-01

the PBL to update the educations to meet today’s competitive global society. In order to create an informed basis for discussing and updating the historic approach to project work at Aalborg University, this paper will try to unfold and compare PBL and DBL and the competences they create through team...... project based learning issues, which has caused a need to describe and compare the two models; in specific the understandings, approaches and organization of learning in project work. The PBL model viewing the process as 3 separate project stages including; problem analysis, problem solving and project...... based project work. The paper will exemplify how projects work is organized, supervised, staged and reported. It will investigate the practical organization of the teamwork and process as well as the dominating mindsets and methods used during the process. Comparing the two models concerning...

9. Will domestic consumers take up the renewable heat incentive? An analysis of the barriers to heat pump adoption using agent-based modelling

International Nuclear Information System (INIS)

Snape, J.R.; Boait, P.J.; Rylatt, R.M.

2015-01-01

The UK Government introduced the tariff-based domestic Renewable Heat Incentive (RHI) in April 2014 to encourage installation of renewable heat technologies as a key component of its carbon reduction policy. Of these, heat pumps are considered to be the most promising for widespread adoption and as such are the subject of this paper. Pilot studies prior to introduction of the policy identified non-financial barriers to uptake, such as the “hassle factor” involved, and initial figures indeed indicate that uptake is lower than expected. We analyse these non-financial barriers using an agent-based model and conclude that there is a tipping point beyond which adoption is likely to fall very sharply. We suggest that the RHI’s complex and stringent compliance requirements for home inspections and heat emitter performance may well have driven adoption past this point and that further intervention may be required if the key aims of the RHI are to be achieved. -- Highlights: •We examine the uptake of the UK Renewable Heat Incentive (RHI). •We use Agent-based modelling to simulate uptake in a heterogeneous population. •Simulation modelling suggests that uptake is sensitive to non-financial barriers. •Non-financial barriers were introduced after RHI policy impact assessment. •New barriers combined with sensitivity could explain observed lower than expected uptake

10. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

DEFF Research Database (Denmark)

Olesen, Bjarne W.; de Carli, Michele

2011-01-01

According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting syst......–20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler. Keywords: Heating systems; CEN standards; Energy performance; Calculation methods......According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...

11. Hierarchical modeling of heat transfer in silicon-based electronic devices

Science.gov (United States)

Goicochea Pineda, Javier V.

In this work a methodology for the hierarchical modeling of heat transfer in silicon-based electronic devices is presented. The methodology includes three steps to integrate the different scales involved in the thermal analysis of these devices. The steps correspond to: (i) the estimation of input parameters and thermal properties required to solve the Boltzmann transport equation (BTE) for phonons by means of molecular dynamics (MD) simulations, (ii) the quantum correction of some of the properties estimated with MD to make them suitable for BTE and (iii) the numerical solution of the BTE using the lattice Boltzmann method (LBM) under the single mode relaxation time approximation subject to different initial and boundary conditions, including non-linear dispersion relations and different polarizations in the [100] direction. Each step of the methodology is validated with numerical, analytical or experimental reported data. In the first step of the methodology, properties such as, phonon relaxation times, dispersion relations, group and phase velocities and specific heat are obtained with MD at of 300 and 1000 K (i.e. molecular temperatures). The estimation of the properties considers the anhamonic nature of the potential energy function, including the thermal expansion of the crystal. Both effects are found to modify the dispersion relations with temperature. The behavior of the phonon relaxation times for each mode (i.e. longitudinal and transverse, acoustic and optical phonons) is identified using power functions. The exponents of the acoustic modes are agree with those predicted theoretically perturbation theory at high temperatures, while those for the optical modes are higher. All properties estimated with MD are validated with values for the thermal conductivity obtained from the Green-Kubo method. It is found that the relative contribution of acoustic modes to the overall thermal conductivity is approximately 90% at both temperatures. In the second step

12. Remain in work--what work-related factors are associated with sustainable work attendance: a general population-based study of women and men.

Science.gov (United States)

Holmgren, Kristina; Löve, Jesper; Mårdby, Ann-Charlotte; Hensing, Gunnel

2014-03-01

To analyze if organizational climate and work commitment, demand and control, job strain, social support, and physical demands at work are associated with remain in work (RIW), that is, work attendance without sick leave over 15 days per year. This Swedish cross-sectional study was based on 4013 workers (aged 19 to 64 years), randomly selected from a general population. Data were collected (2008) through postal questionnaire and registers. Fair organizational climate, the combination of fair organizational climate and fair work commitment, high control, and low physical demands were associated with RIW for women and men. This study adds to the rather scarce research findings on factors that promote RIW by identifying work organizational factors and physical prerequisites as being important. Preventive work to create a healthy work environment could be directed at improving organizational climate and reducing physical demands.

13. Effect of heat treatment of polymethyl methacrylate powder on mechanical properties of denture base resin.

Science.gov (United States)

Kawaguchi, Tomohiro; Lassila, Lippo V J; Sasaki, Hirono; Takahashi, Yutaka; Vallittu, Pekka K

2014-11-01

14. The Self-Heating Effect of Quantum Cascade Lasers Based on a Spectroscopic Method

International Nuclear Information System (INIS)

Lin, Wei; Ai-Zhen, Li; Yong-Gang, Zhang; Yao-Yao, Li

2009-01-01

We investigate the self-heating effect of mid-infrared quantum cascade lasers by using a direct-based pulse injecting current and spectroscopy method. Based on the characterization system, the thermal characteristics of gas source MBE grown 8.4 μm InP-based GaInAs/AlInAs DFB-QCLs are evaluated. The method and characterization system are also useful in evaluating the thermal characteristics of other types of mid-infrared diode lasers. (fundamental areas of phenomenology (including applications))

15. Research of real-time performance based on VxWorks embedded system

International Nuclear Information System (INIS)

Liu Daming; Li Haiming

2011-01-01

In the research of mechanism and heating efficiency of Ion Cyclotron Range of Frequency (ICRF) heating, data acquisition system with high real-time performance needed. By the means of system logic analyzer, SPY and other relevant software on VxWorks embedded operating system for real-time testing gives real-time data of the system. Real-time level to achieve balances used time and processor idle time, real-time data acquisition, and minimize the interference of external to the system, ensure the system work in its own set of scheduling trajectory. Interrupt switching time and task context switching time meet the system requirements. (authors)

16. Heat integration options based on pinch and exergy analyses of a thermosolar and heat pump in a fish tinning industrial process

International Nuclear Information System (INIS)

Quijera, José Antonio; García, Araceli; Alriols, María González; Labidi, Jalel

2013-01-01

Thermosolar technology is being inserted gradually in industrial activities. In order to reach high energy efficiency, thermosolar can be linked to heat pump technology, combining more efficient conventional and renewable energy support for processes. Their integration in complex processes can be improved systematically through well established analytical tools, like pinch and exergy analyses. This work presents a methodological procedure for the analysis of different options of heat integration of a solar thermal and heat pump technologies in a tuna fish tinning process. The plant is located in a climatic zone where diffuse irradiation contributes more energy to the process than beam irradiation does. Pinch and exergy analyses are applied in the context of a low and middle temperatures, where the process demands big amounts of hot water and middle pressure steam. In order to recover internal heat, pinch analysis allows to understand the complexity of the heat exchange network of the process and to define thermal tendency objectives for energy optimization. Exergy analysis quantifies the variation that the quality of energy undergoes while it is used in the process according to the different way of integration. Both analytical tools, in combination with economical variables, provide a powerful methodological procedure finding the most favourable heat integration and, by this, they help in the technological decision making and in the design phase. - Highlights: ► Integration of solar thermal energy in batch canning process was assessed. ► Pinch and exergy analyses were used to determine the optimal energy supply configuration. ► Combination of heat pump and solar thermal energy improves the energy efficiency and reduces fossil fuel consumption

17. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

Energy Technology Data Exchange (ETDEWEB)

Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

2015-05-05

We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

18. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

Science.gov (United States)

Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

2015-05-05

We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.

19. Wettability and interface considerations in advanced heat-resistant Ni-base composites

International Nuclear Information System (INIS)

Asthana, R.; Mileiko, S.T.; Sobczak, N.

2006-01-01

Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990's due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al 2 O 3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Ni/alumina composites, and present the current state-of the

20. Excessive Heat Events and National Security: Building Resilience based on Early Warning Systems

Science.gov (United States)

Vintzileos, A.

2017-12-01

Excessive heat events (EHE) affect security of Nations in multiple direct and indirect ways. EHE are the top cause for morbidity/mortality associated to any atmospheric extremes. Higher energy consumption used for cooling can lead to black-outs and social disorder. EHE affect the food supply chain reducing crop yield and increasing the probability of food contamination during delivery and storage. Distribution of goods during EHE can be severely disrupted due to mechanical failure of transportation equipment. EHE during athletic events e.g., marathons, may result to a high number of casualties. Finally, EHE may also affect military planning by e.g. reducing hours of exercise and by altering combat gear. Early warning systems for EHE allow for building resilience. In this paper we first define EHE as at least two consecutive heat days; a heat day is defined as a day with a maximum heat index with probability of occurrence that exceeds a certain threshold. We then use retrospective forecasts performed with a multitude of operational models and show that it is feasible to forecast EHE at forecast lead of week-2 and week-3 over the contiguous United States. We finally introduce an improved definition of EHE based on an intensity index and investigate forecast skill of the predictive system in the tropics and subtropics.

1. The Bermuda Triangle mysteries: an explanation based on the diffraction of heat waves

Energy Technology Data Exchange (ETDEWEB)

Njau, E.C. [Dar es Salaam Univ. (Tanzania, United Republic of). Dept. of Physics

1995-12-31

Studies based on actual meteorological records [E.C. Njau, Nuovo Cimento 15C, 17-23 (1992)] as well as analytical methods [E.C. Njau, Proc. Ind. Natn. Sci. Acad., 61A (4) (1995); Renewable Energy 4, 261-263 (1994)] have established the continuous existence of a series of large-scale, Eastward-moving heat waves along the Earth`s surface, whose individual crests and troughs are stretched approximately along the geographical North-South direction. In moving across the American continent, these waves encounter a line of physical barriers formed by the lofty Rocky and Andes ranges of mountains, which is continuous except for a significant gap or opening between Colombia and Mexico. This line of physical barriers consistently maintains a maximum height of 3000-4000 m between latitudes 40{sup o}S and 55{sup o}N except for a significant opening or slit located between Mexico and Colombia where the maximum height hardly exceeds 600 m. The Eastward-moving heat waves are thus incident obliquely on an approximately single-slit barrier when crossing the American continent and those parts of the waves which filter through this single slit essentially form some kind of single-slit diffraction (heat) patterns in, around and past the Bermuda Triangle. These diffraction heat patterns give rise to corresponding weather and ocean patterns which, to a large extent, account for the mysteries already noted in the Bermuda region. (Author)

2. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

International Nuclear Information System (INIS)

Chiang Yuchun; Lee, C.-Y.; Lee, H.-C.

2007-01-01

Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance

3. Irreversible three-heat-source refrigerator with heat transfer law of Q{alpha}{delta}(T{sup -1}) and its performance optimization based on ECOP criterion

Energy Technology Data Exchange (ETDEWEB)

Ngouateu Wouagfack, Paiguy Armand [University of Dschang, L2MSP, Department of Physics, PO Box 67, Dschang (Cameroon); Tchinda, Rene [University of Dschang, LISIE, University Institute of Technology Fotso Victor, PO Box 134, Bandjoun (Cameroon)

2011-11-15

The new thermo-ecological optimization of an absorption system for cooling applications operating between three temperature levels with the linear phenomenological heat transfer law of Q{alpha}{delta}(T{sup -} {sup 1}) has been performed by taking account the losses of heat resistance, internal irreversibility and leakage. The considered objective function is the ecological coefficient of performance (ECOP) and is defined as the cooling load per unit loss rate of availability. The comparative analysis with the ecological optimization criterion (E) defined in the literature and also with the cooling load optimization criterion (R) has been carried out to prove the utility of the new thermo-ecological optimization criterion (ECOP) for three-heat-source refrigerators with linear phenomenological heat transfer law. The results show that the three-heat-source refrigeration cycle working at maximum ECOP conditions has a significant advantage in terms of entropy production rate and coefficient of performance over the maximum E and maximum R conditions. The obtained results may provide a general theoretical tool for the thermo-ecological design of absorption refrigerator. (orig.)

4. Implementing CDIO project-based learning in training of Heat and Power engineers

Science.gov (United States)

Boiko, E. A.; Shishmarev, P. V.; Karabarin, D. I.; Yanov, S. R.; Pikalova, A. A.

2017-11-01

This paper presents the experience and current results of CDIO standards implementation in training of bachelors in Heat and Power Engineering at Thermal Power Stations academic department in Siberian Federal University. It provides information on methodology of modernization of educational programs, curricula and programs of disciplines in transition to CDIO project-based learning technology. Preliminary assessment and analysis of lessons learned and scaling perspectives are given.

5. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

Directory of Open Access Journals (Sweden)

Denysova Alla

2015-08-01

Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

6. Energy and Exergy Performances of Air-Based vs. Water-Based Heating and Cooling Systems: A Case Study of a Single-Family House

DEFF Research Database (Denmark)

Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

2016-01-01

Different indoor terminal units can be used to heat and cool indoor spaces. These terminal units mostly rely on convection and radiation heat transfer mechanisms but their relative ratios can vary significantly for air-based and water-based systems with implications on whole system performance......, in terms of energy and exergy. In addition to the energy and exergy input required at the heating and cooling plants, the energy use of auxiliary components (fans and pumps) also vary depending on the chosen terminal unit. In order to study the energy and exergy performances of air-based and water......-based systems, an air heating and cooling system, and a radiant floor heating and cooling system were chosen, respectively. A single-family house was used as a case study assuming that different space heating and cooling systems were used to condition the indoor space of this house. In addition to the thermal...

7. Out of the Comfort Zone: Enhancing Work-Based Learning about Employability through Student Reflection on Work Placements

Science.gov (United States)

Eden, Sally

2014-01-01

This paper examines the work-based learning about employability reported by 26 undergraduate Geography and Environmental Management students on part-time, unpaid work placements. The students' "reflective essays" emphasized their learning more in terms of emotional challenges than in terms of skills, as being pushed out of their…

8. Liquid metal cooled nuclear power plant with direct heat transfer from the primary coolant to the working medium

International Nuclear Information System (INIS)

Hahn, G.

1974-01-01

The cooling systems of the sodium-cooled reactor are entirely inside a containment. The heat transfer from the primary to the secondary coolant - i.e. water - is done in heat exchangers with three-layer tubes. As there is no component cooling heat exchanger, it is advantageous that the layers that are in touch with the primary coolant form part of the wall of the containment. An emergency cooling system inside the containment is also made of three-layer tubes. The tubes of the primary loops have the shape of loops, helices, and spirals surrounding the reactor tank or a biological shield. Between the tubes and the safety wall there are maintenance areas which are accessible from the outside. The three-layer construction prevents a reaction of leaked-out or evaporated sodium with the secondary coolant. (DG) [de

9. Ergonomic measures in construction work: enhancing evidence-based implementation

NARCIS (Netherlands)

Visser, S.

2015-01-01

Despite the development and availability of ergonomic measures in the construction industry, the number of construction workers reporting high physical work demands remains high. A reduction of the high physical work demands can be achieved by using ergonomic measures. However, these ergonomic

10. Anticipating Challenges: School-Based Social Work Intervention Research

Science.gov (United States)

Mishna, Faye; Muskat, Barbara; Cook, Charlene

2012-01-01

Intervention research is vital for social work, as it aims to develop practice/program approaches and provide evidence to understand which interventions are effective and for whom. Despite growing attention, little social work research exists that evaluates interventions. Among the reasons for the dearth of intervention research within social work…

11. Work Based Learning in Intercultural Settings: A Model in Practice

Science.gov (United States)

Leeming, David Elvis; Mora, Maria Dolores Iglesias

2016-01-01

The Intercultural Business Communication at the University of Central Lancashire offers a taught module with a work placement that exists within a multicultural context as part of an MA in Intercultural Business Communication. As part of this process, students must work towards completing two practical assessments, a project presented in a report…

12. Cultivating Work-Based Ethics with Massively Multiplayer Games

Science.gov (United States)

Smith, Andy

2010-01-01

Currently the news is awash with reports of high-profile corporate and political scandals and revelations around unethical work and corrupt practices. Unfortunately this shows little sign of abating with a very high proportion of young people displaying cynical and possibly corrosive attitudes around ethics in the work-place. It is clearly…

13. Capacity of 50Ti-47Ni-3Cu composite to convert heat energy to mechanical work under cyclic measurement of temperature

International Nuclear Information System (INIS)

Belyaev, S.P.; Kuz'min, S.L.; Likhachev, V.A.

1984-01-01

The TiNiCu alloy with a shape memory which may be used as a working medium for the martensite engine converting heat energy to mechanical one is studied for its energy characteristics. Mechanical characteristics of the material are studied under torsion of cylindrical specimens of stressed thermocycling through temperature intervals of martensite transformations. It is established that the shape memory and transformation ductility effects determining serviceability and power of the martensite enginem vary gradually with the number of heat changes reaching saturation after 10-15 thermocycles, The heating-and-cooling stress dependence of deformations due to the shape memory and transformation ductility effects also varied with the number of heat changes, Cooling conditions under stress of 50 MPa and heating conditions under 200 MPa and above proved to be most optimal. Serviceability of the engine made of the TiNiCu alloy exceeds 10 MJ/m 3 and its power reaches 10 5 MW m -3 under operation frequency of 10 3 Hz

14. Power handling of a liquid-metal based CPS structure under high steady-state heat and particle fluxes

Directory of Open Access Journals (Sweden)

T.W. Morgan

2017-08-01

Full Text Available Liquid metal infused capillary porous structures (CPSs are considered as a potential divertor solution for DEMO due to their potential power handling capability and resilience to long term damage. In this work the power handling and performance of such Sn-based CPS systems is assessed both experimentally and via modelling. A Sn-CPS target was exposed to heat fluxes of up to 18.1 MW m−2 in He plasma in the Pilot-PSI linear device. Post-mortem the target showed no damage to nor any surface exposure of the underlying W-CPS felt. The small pore size (∼40µm employed resulted in no droplet formation from the target in agreement with calculated Rayleigh-Taylor and Kelvin-Helmoholtz instability thresholds. The temperature response of the Sn-target was used to determine the thermal conductivity of the mixed Sn-CPS material using COMSOL modelling. These values were then used via further finite element analysis to extrapolate to DEMO relevant monoblock designs and estimate the maximum power handling achievable based on estimated temperature windows for all component elements of the design. For an optimized design a heat-load of up to 20 MW m−2 may be received while the use of CPS also offers other potential design advantages such as the removal of interlayer requirements.

15. Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink

Science.gov (United States)

Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan

2017-07-01

As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes ( RANS) based turbulence models which are the Standard k {{-}} ɛ, the Renormalized Group k- ɛ, the Realizable k- ɛ, the Reynolds Stress Model, the k- ω and the Shear Stress Transport k- ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS- based turbulence models provided that a suitable turbulence model and wall function combination is selected.

16. Including solar energy in the local heat supply of the Goettingen city works; Einbindung von Sonnenenergie in die Nahwaermeversorgung der Stadtwerke Goettingen AG

Energy Technology Data Exchange (ETDEWEB)

Tepe, R. [ISFH - Institut fuer Solarenergieforschung Hameln-Emmerthal GmbH, Emmerthal (Germany); Schreitmueller, K.R. [ISFH - Institut fuer Solarenergieforschung Hameln-Emmerthal GmbH, Emmerthal (Germany); Vanoli, K. [ISFH - Institut fuer Solarenergieforschung Hameln-Emmerthal GmbH, Emmerthal (Germany)

1996-11-01

The research project `Solar local heat Goettingen` was started in 1992 in which, by including a 785 m{sup 2} flat collector plant in the return of the local heat supply of the Goettingen City Works; the potential of the combined system of solar plant and conventional heat supply system is to be proved. The size of the collector plant and inclusion in an existing local heat network promised an advantageous combination due to appreciably lower investment costs (lower collector installation costs) and savings in system technique, reduced operating costs, and higher income due to favourable operating conditions with even low collector operating temperatures and reduced piping losses. In parallel with this system, the Goettingen City Works installed an air collector plant which is used to preheat the combustion air taken to the conventional burners. (orig./HW) [Deutsch] Es entstand im Jahr 1992 das Forschungsvorhaben `Solare Nahwaerme Goettingen`, in dem durch die Einbindung einer 785 m{sup 2} grossen Flachkollektoranlage in den Ruecklauf der Nahwaermeversorgung der Stadtwerke Goettingen AG das Potential der Systemkombination Solaranlage und konventionelle Waermeversorgungssystem nachgewiesen werden sollte. Die Groesse der Kollektoranlage sowie die Einbindung in ein bestehendes Nahwaermenetz versprachen eine vorteilhafte Kombination aufgrund - deutlich geringerer Investionskosten (geringe Kollektorinstallationskosten sowie Einsparungen bei der Systemtechnik); - reduzierter Betriebskosten; - hoher Ertraege durch guenstige Betriebsbedingungen wie gleichbleibend niedriger Kollektorbetriebstemperaturen und reduzierter Leitungsverluste. Parallel zu diesem System installierten die Stadtwerke Goettingen AG eine Luftkollektoranlage, die der Vorwaermung der den konventionellen Brennern zugefuehrten Verbrennungsluft dient. (orig./HW)

17. Economic analysis of exergy efficiency based control strategy for geothermal district heating system

International Nuclear Information System (INIS)

Keçebaş, Ali; Yabanova, İsmail

2013-01-01

Highlights: • The ExEBCS for exergy efficiency maximization in real GDHS is economically evaluated. • The initial cost for ExEBCS is more expensive than that for old one by 6.33 kUS\$/year. • The cost saving makes the ExEBCS profitable by up to 7% of annual energy saving. • This results in a short payback period of 3.8 years. • The use of newly ExEBCS in GDHSs is quite suitable. - Abstract: In this study, the exergy efficiency based control strategy (ExEBCS) for exergy efficiency maximization in geothermal district heating systems (GDHSs) is economically evaluated. As a real case study, the Afyon GDHS in the city of Afyonkarahisar/Turkey is considered. Its actual thermal data as of average weekly data are collected in heating seasons during the period 2006–2010 for artificial neural network (ANN) modeling. The ANN modeling of the Afyon GDHS is used as a test system to demonstrate the effectiveness and economic impact of the ExEBCS under various operating conditions. Then, the ExEBCS is evaluated economically in case of application to real Afyon GDHS of the ExEBCS. The results show that the initial cost for the ExEBCS is more expensive than that for the old one by 6.33 kUS\$/year as a result of replacing automatic controller. The saving in heat production makes the ExEBCS profitable by up to 7% of annual energy saving as a result of the increase in the heat production by 88% when the control system is operated. This results in a short payback period of 3.8 years. This study confirms that the use of ExEBCS in district heating systems (especially GDHS) is quite suitable

18. Effect of heat sinks on visco-elastic and mechanical properties of EPDM based ablative composites

International Nuclear Information System (INIS)

Bashir, M.A.; Khan, M.B.

2009-01-01

Ablative composites are heat shielding, protective materials that are being used in aerospace industry to protect inner hardware and sensitive devices. The aero dynamic vehicles have to face high stresses, ultra high temperature and adverse conditions of air friction. It is required to develop the materials with light weight and high modulus. EPDM, being heat and ozone attack resistant is the best candidate for the preparation of ablative composites by introducing different heat sinks such as silica, glass fiber, carbon fiber, asbestos, carbon and their combinations have been studied in this work. The prepared materials were tested and it was found that visco elastic behavior of the composites affected by the addition of reinforcing filler (carbon, silica), semi-reinforcing filler (carbon fiber, glass fiber) and non-reinforcing filler (asbestos powder). Mechanical properties tested at different rates, revealed the improvement in tensile strength and % elongation in case of reinforcing and semi-reinforcing fillers but showed adverse effect in case of non-reinforcing fillers. Rheological investigations of these novel composites shows that moony viscosity of the materials containing glass fiber, carbon fiber, silica decreases in the order glass fiber > carbon fiber > silica. (author)

19. Experimental investigations on nucleate boiling heat transfer of aqua based reduced graphene oxide nanofluids

Science.gov (United States)

Kamatchi, R.

2018-02-01

In this work, reduced graphene oxide (rGO) is synthesized from graphite powder and various characterization techniques have been used to study the in-plane crystallite size, number of layers, presence of functional groups and surface morphology. The rGO flakes are dispersed in Millipore water to obtain 0.0005, 0.001, and 0.002 wt.% of rGO-water nanofluids. It is then used in the experimental facility to study the nucleate boiling heat transfer with different heating surfaces viz. smooth and sandblasted surface (SBS). Results of this study indicate (i) an enhancement in heat transfer coefficient (HTC) for concentration upto 0.001 wt.% and deterioration beyond this in the case of smooth surface, and (ii) an increase in HTC with concentrations is observed for SBS and shows a maximum enhancement of about 60% in comparison with smooth surface at 0.002 wt.%. It is found that the presence of secondary cavities (acts as nucleation sites) formed by the rGO flakes during boiling is responsible for the observed phenomena in addition to the possible effect of rGO in the fluid flow.

20. Optimization-based design of heat flux manipulation devices with emphasis on fabricability.

Science.gov (United States)

Peralta, Ignacio; Fachinotti, Víctor D

2017-07-24

In this work, we present a new method for the design of heat flux manipulating devices, with emphasis on their fabricability. The design is obtained as solution of a nonlinear optimization problem where the objective function represents the given heat flux manipulation task, and the design variables define the material distribution in the device. In order to facilitate the fabrication of the device, the material at a given point is chosen from a set of predefined metamaterials. Each candidate material is assumed to be a laminate of materials with high conductivity contrast, so it is a metamaterial with a highly anisotropic effective conductivity. Following the discrete material optimization (DMO) approach, the fraction of each material at a given finite element of the mesh is defined as a function of continuous variables, which are ultimately the design variables. This DMO definition forces the fraction of each candidate to tend to either zero or one at the optimal solution. As an application example, we designed an easy-to-make device for heat flux concentration and cloaking.

1. Heat production in granitic rocks: Global analysis based on a new data compilation

Science.gov (United States)

Artemieva, I. M.; Thybo, H.; Jakobsen, K.; Sørensen, N. K.; Nielsen, L. S. K.

2017-12-01

Granitic rocks play special role in the evolution of the Earth and its thermal regime. Their compositional variability provides constraints on global differentiation processes and large scale planetary evolution, while heat production by radioactive decay is among the main heat sources in the Earth. We analyze a new global database GRANITE2017 on the abundances of Th, U, K and heat production in granitic rocks based on all available published data. Statistical analysis of the data shows a huge scatter in all parameters, but the following conclusions can be made. (i) Bulk heat production in granitic rocks of all ages is ca. 2.0 microW/m3 . It is very low in Archean-Early Proterozoic granitic rocks and there is a remarkable peak in Middle Proterozoic granites followed by a gradual decrease towards Cenozoic granites. (ii) There is no systematic correlation between the tectonically controlled granite-type and bulk heat production, although A-type (anorogenic) granites are the most radioactive, and many of them were emplaced in Middle Proterozoic. (iii) There is no systematic correlation between heat flow and concentrations of radiogenic elements. (iv) The present-day global average Th/U value is 4.75 with a maximum in Archean-Early Proterozoic granites (5.75) and a minimum in Middle-Late Proterozoic granites (3.78). The Th/U ratio at the time of granite emplacement has a minimum in Archean (2.78). (v) The present-day K/U ratio is close to a global estimate for the continental crust only for the entire dataset (1460), but differs from the global ratio for each geological time. (vi) We recognize a sharp change in radiogenic concentrations and ratios from the Early Proterozoic to Middle Proterozoic granites. The Proterozoic anomaly may be caused by major plate reorganizations possibly related to the supercontinent cycle when changes in the granite forming processes may be expected, or it may even indicate a change in global thermal regime, mantle dynamics and plate

2. Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector

International Nuclear Information System (INIS)

Jradi, M.; Veje, C.; Jørgensen, B.N.

2017-01-01

Highlights: • PV-driven ASHP system with seasonal underground energy storage is presented. • A soil-based seasonal thermal energy storage unit is analyzed and evaluated. • The system provides heating and electricity for a residential project in Denmark. • The transient behaviour and thermal losses of the thermal storage medium are reported. • The overall heating COP of the PV-driven ASHP combined with seasonal storage is 4.76. - Abstract: Denmark has set an ambitious long-term future energy goal to become independent of fossil fuel by 2050, depending completely on renewable and alternative resources in the energy and transport sectors. Solar energy is one of the most favourable alternative resources in terms of cleanness, safety and the economic and environmental aspects. However, the intermittent nature of solar energy and the lack of high solar radiation intensities in various climates favour the use of various energy storage techniques to eliminate the discrepancy between energy supply and demand. The current work presents an analysis and evaluation of the performance of an underground soil-based thermal energy storage system for solar energy storage, coupled with a combined heat and power generation system. A combined PV-Air Source Heat Pump (ASHP) system is utilized to fulfil heating and electricity needs of a housing project in Odense, Denmark, in addition to charging the soil storage medium in summer months when excess electric power is generated. The stored heat is discharged in December and January to provide the space heating and domestic hot water demands of the residential project without the utilization of an external heating source. Employing a PV system of 30 kW capacity, it was found that a storage medium of 900 m 3 of soil is capable of providing the heating needs for a housing project of 1000 m 2 internal floor area. The year round transient behaviour of the thermal energy storage medium is reported in addition to the heat losses and the

3. Experimental analysis of the performance of an air-water heat pump designed for R22 working with propane

International Nuclear Information System (INIS)

Mura, P.G.; Carlini, U.; Innamorati, R.

2001-01-01

After describing the technical characteristics of a heat pump designed for R22, the changes necessary to fit the use of propane and the experimental set-up, in this article the research program on propane as refrigerant is presented, together with the experimental results of the chiller performance with R22 and R290 in cooling mode [it

4. Technoeconomic analysis of a biomass based district heating system. Paper no. IGEC-1-ID01

International Nuclear Information System (INIS)

Zhang, H.; Ugursal, V.I.; Fung, A.

2005-01-01

District energy systems (DES) that produce steam, hot water or chilled water at a central plant and then distribute that energy to buildings in the district for space heating, domestic hot water heating and air conditioning provide opportunities for increasing energy efficiency and reducing greenhouse gas (GHG) emissions. Use of biomass, such as wood, wood byproducts and wastes, fast-growing trees, agricultural crops and waste, in place of conventional fossil fuels to produce the thermal energy needed by a DES, presents further opportunities for reducing green house gas emissions as well as providing rural employment, and local solutions to rural and remote energy needs. In this paper, a technoeconomic analysis of a biomass based DES for a community center in Nova Scotia, Canada is presented. The methodology used to size and design the heating and ventilating system, as well as the biomass based DES is discussed. Annual energy requirement and biomass fuel consumption predictions are presented along with cost estimates. A comparative assessment of the economic feasibility of the system vis-a-vis a conventional oil fired system is conducted. While the results are specific to the particular application, the design and analysis methodology that is presented in the paper can be used for any similar application. (author)

5. Regularized Fractional Power Parameters for Image Denoising Based on Convex Solution of Fractional Heat Equation

Directory of Open Access Journals (Sweden)

Hamid A. Jalab

2014-01-01

Full Text Available The interest in using fractional mask operators based on fractional calculus operators has grown for image denoising. Denoising is one of the most fundamental image restoration problems in computer vision and image processing. This paper proposes an image denoising algorithm based on convex solution of fractional heat equation with regularized fractional power parameters. The performances of the proposed algorithms were evaluated by computing the PSNR, using different types of images. Experiments according to visual perception and the peak signal to noise ratio values show that the improvements in the denoising process are competent with the standard Gaussian filter and Wiener filter.

6. Community-based rehabilitation: working in partnership with eye care

Directory of Open Access Journals (Sweden)

Joerg Weber

2013-05-01

Full Text Available Any response to the needs of people with visual impairment and their families will be more effective if eye care workers and CBR programme staff can work together at the community level.

7. Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector

DEFF Research Database (Denmark)

Jradi, M.; Veje, C.; Jørgensen, B. N.

2017-01-01

and evaluation of the performance of an underground soil-based thermal energy storage system for solar energy storage, coupled with a combined heat and power generation system. A combined PV-Air Source Heat Pump (ASHP) system is utilized to fulfil heating and electricity needs of a housing project in Odense......Denmark has set an ambitious long-term future energy goal to become independent of fossil fuel by 2050, depending completely on renewable and alternative resources in the energy and transport sectors. Solar energy is one of the most favourable alternative resources in terms of cleanness, safety...... and the economic and environmental aspects. However, the intermittent nature of solar energy and the lack of high solar radiation intensities in various climates favour the use of various energy storage techniques to eliminate the discrepancy between energy supply and demand. The current work presents an analysis...

8. Modeling of Artificial Neural Network for Predicting Specific Heat capacity of working fluid LiBr-H2O used in Vapor Absorption Refrigeration System

Directory of Open Access Journals (Sweden)

Dheerendra Vikram Singh

2011-05-01

Full Text Available The objective of this work is to model an artificial neural network (ANN to predict the value of specific heat capacity of working fluid LiBr-H2O used in vapour absorption refrigeration systems. A feed forward back propagation algorithm is used for the network, which is most popular for ANN. The consistence between experimental and ANN’s approach result was achieved by a mean relative error -0.00573, sum of the squares due to error0.00321, coefficient of multiple determination R-square 0.99961and root mean square error 0.01573 for test data. These results had been achieved in Matlab environment and the use of derived equations in any programmable language for deriving the specific heat capacity of LiBr-H2O solution.

9. Proposition of updating the method used in calculating the heat demand based on a new concept of design outdoor temperature and of building – soil boundary heat transfer

Directory of Open Access Journals (Sweden)

Dan CONSTANTINESCU

2010-01-01

Full Text Available The dimensioning of the heating systems equipping new and existing buildings, in the case of their energy-related upgrading is an extremely important activity in the context of reaching the targets of the European Directive 31 /2010 / UE concerning the Buildings Energy Performance (PEC. The accurate determination, phenomenological based, of the buildings thermal response leads to determining the climatic parameters representative for the climatic zones and for the buildings structure.Unlike the EN 12831: 2003 European Regulation, the design outdoor temperature in the conditions of Romania’s various zones was determined by the identification of the thermal response specific to the transient conditions of the heat transfer through the composite structures of the opaque and glazing closing components with the thermal response in idealized, steadystate conditions; thus, the design outdoor temperature was determined, which is conditioned by an acceptable discomfort during the coldest pentads of a 48 years climatic statistics (1961-2008. The climatic parameter which generates the modeling similitude is the virtual outdoor temperature which allows the use of the steady-state conditions mathematical formalism in issues of heat transfer in transient conditions. A dependency relation between the design indoor temperature, identical to the resulting indoor temperature (different from the operational temperature and the air volume average temperature is emphasized.Special attention is given to the heat transfer at the building-soil boundary, in the form of various practical solutions (buildings the basement of which is not directly heated, equipped or not with heating systems, directly heated and occupied, as well as buildings on plinths; in all the cases, the solutions approached are specific to the envelope which is or not thermally insulated.

10. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

International Nuclear Information System (INIS)

Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

2014-01-01

Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

11. Validation of a PC based program for single stage absorption heat pump

Science.gov (United States)

Zaltash, A.; Ally, M. R.

1991-09-01

An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO3 water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3 percent. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design.

12. A Personal Computer-Based Simulator for Nuclear-Heating Reactors

International Nuclear Information System (INIS)

Liu Jie; Zhang Zuoyi; Lu Dongsen; Shi Zhengang; Chen Xiaoming; Dong Yujie

2000-01-01

A personal computer (PC)-based simulator for nuclear-heating reactors (NHRs), PC-NHR, has been developed to provide an educational tool for understanding the design and operational characteristics of an NHR system. A general description of the reactor system as well as the technical basis for the design and operation of the heating reactor is provided. The basic models and equations for the NHR simulation are then given, which include models of the reactor core, the reactor coolant system, the containment, and the control system. The graphical user interface is described in detail to provide a manual for the user to operate the simulator properly. Steady state and several transients have been simulated. The results of PC-NHR are in good agreement with design data and the results of RETRAN-02. The real-time capability is also confirmed

13. Effect of recent popularity on heat-conduction based recommendation models

Science.gov (United States)

Li, Wen-Jun; Dong, Qiang; Shi, Yang-Bo; Fu, Yan; He, Jia-Lin

2017-05-01

Accuracy and diversity are two important measures in evaluating the performance of recommender systems. It has been demonstrated that the recommendation model inspired by the heat conduction process has high diversity yet low accuracy. Many variants have been introduced to improve the accuracy while keeping high diversity, most of which regard the current node-degree of an item as its popularity. However in this way, a few outdated items of large degree may be recommended to an enormous number of users. In this paper, we take the recent popularity (recently increased item degrees) into account in the heat-conduction based methods, and propose accordingly the improved recommendation models. Experimental results on two benchmark data sets show that the accuracy can be largely improved while keeping the high diversity compared with the original models.

14. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

Science.gov (United States)

Gayda, John

2001-01-01

Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

15. Assessment of NJOY generated neutron heating factors based on JEF/EFF-1

International Nuclear Information System (INIS)

Vontobel, P.

1990-01-01

Using the NJOY nuclear data processing system, a coupled neutron-photon multigroup MATXS-formatted nuclear data library was generated based on the files JEF/EFF-1. The neutron heating factors contained in this VITAMIN-J structured library are compared with those of MACLIB-IV. The main differences are due to the included decay heat of shortlived reaction products in MACKLIB-IV and/or due to too high/low photon production data of some JEF/EFF-1 isotopes. It is recommended to check carefully the energy balance of new evaluations containing photon production data. How this can be done with the help of the NJOY HEATR module is shown in an example. (author) 35 figs., 9 refs

16. The heat storage material based on paraffin-modified multilayer carbon nanotubes with Nickel-zinc ferrite

Science.gov (United States)

Shchegolkov, A.; Shchegolkov, A.; Dyachkova, T.; Semenov, A.

2018-02-01

The paper presents an investigation of magnetically controlled heat-storage material based on paraffin, modified with multilayer carbon nanotubes with nickel-zinc ferrite. The technology of obtaining nanomodified material capable of interacting with magnetic field is presented. The study of the heat-exchange processes of charge/discharge with the help of magnetic field are carried out.

17. Development of a thermal storage system based on the heat of adsorption of water in hygroscopic materials

NARCIS (Netherlands)

Wijsman, A.J.T.M.; Oosterhaven, R.; Ouden, C. den

1979-01-01

A thermal storage system based on the heat of adsorption of water in hygroscopic materials has been studied as a component of a solar space heating system. The aim of this project is to decrease the storage volume in comparison with a rock-bed storage system by increasing the stored energy density.

18. Position paper on establishing a data base covering current use of wood energy for space heating in Canada

Energy Technology Data Exchange (ETDEWEB)

1979-01-01

A wide range of interlocking components of the wood energy space heating scene in Canada were surveyed in an effort to identify those which would warrant inclusion in a nation wide data base useful to energy decision makers. The study was not intended to conduct an inventory of any of the data pertaining to wood-fired space heating in Canada at this time.

19. Investigation of Martensite Formation in Fe Based Alloys During Heating From Boiling Nitrogen Temperature

DEFF Research Database (Denmark)

Villa, Matteo; Christiansen, Thomas L.; Hansen, Mikkel F.

2015-01-01

heating was convincingly demonstrated for all investigated materials by showing heating rate dependent transformation kinetics. Moreover, magnetometry showed that the heating rate influences the fraction of martensite formed during the thermal treatment. The activation energy for thermally activated...

20. Effect of heat treatment, with and without mechanical work, on the tensile and creep behaviour at 6000C of austenitic stainless steel stabilised with titanium

International Nuclear Information System (INIS)

1983-01-01

The effect of various heat treatments, with and without mechanical work, on the microstructure and the tensile and creep behaviour at 600 0 C of the titanium stabilised austenitic stainless steel DIN 1.4970, as well as the effects of aging temperature, pre-strain and small boron additions on the creep behaviour of these steels are discussed. The most probable mechanism is suggested. (Author) [pt

1. Modeling of Rocket Fuel Heating and Cooling Processes in the Interior Receptacle Space of Ground-Based Systems

Directory of Open Access Journals (Sweden)

K. I. Denisova

2016-01-01

Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as

2. Influence of heat treatment on the microstructure and mechanical properties of Alloy 718 base metal and weldments

International Nuclear Information System (INIS)

Mills, W.J.

1979-06-01

Effect of heat treatment on the metallurgical structure and tensile properties of three heats of Alloy 718 base metal and an Alloy 718 GTA weldment were characterized. Heat treatments employed were the conventional (ASTM A637) precipitation treatment and a modified precipitation treatment designed to improve the toughness of the weldments. The GTA weldments were characterized in the as-welded condition. Light microscopy, thin foil, and surface replica electron microscopy revealed that the microstructure of this superalloy was sensitive to heat treatment and heat-to-heat variations. The modified aging treatment resulted in a larger grain size and a more homogeneous microstructure than the conventional treatments. The morphology of the primary strengthening γ phase was found to be finer and more closely spaced in the conventionally treated condition. Room and elevated temperature tensile testing revealed that the strength of the conventionally treated alloy was generally superior to that of the modified material. The conventional aging treatment resulted in greater heat-to-heat variations in tensile properties. This behavior was correlated with variations in the microstructure resulting from the precipitation heat treatments. The precipitate morphology of the GTA weldments was sensitive to heat treatment. The Laves phase was present in the interdendritic regions of both heat-treated welds. The modified aging treatment reduced the amount of Laves phase present in the weld zone. Room and elevated temperature tensile properties of the precipitation hardened weldments were relatively insensitive to heat treatment, suggesting that reduction in Laves phase from the weld zone had essentially no effect on tensile properties. As-welded GTA weldments exhibited lower strength levels and higher ductility values than heat-treated welds

3. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis.

Science.gov (United States)

Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim

2017-06-01

As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.

4. A gender-based analysis of work patterns, fatigue, and work/life balance among physicians in postgraduate training.

Science.gov (United States)

Gander, Philippa; Briar, Celia; Garden, Alexander; Purnell, Heather; Woodward, Alistair

2010-09-01

To document fatigue in New Zealand junior doctors in hospital-based clinical training positions and identify work patterns associated with work/life balance difficulties. This workforce has had a duty limitation of 72 hours/week since 1985. The authors chose a gender-based analytical approach because of the increasing proportion of female medical graduates. The authors mailed a confidential questionnaire to all 2,154 eligible junior doctors in 2003. The 1,412 respondents were working > or = 40 hours/week (complete questionnaires from 1,366: response rate: 63%; 49% women). For each participant, the authors calculated a multidimensional fatigue risk score based on sleep and work patterns. Women were more likely to report never/rarely getting enough sleep (P life (odds ratio: 3.83; 95% CI: 2.79-5.28), home life (3.37; 2.43-4.67), personal relationships (2.12; 1.57-2.86), and other commitments (3.06; 2.23-4.19).Qualitative analyses indicated a common desire among men and women for better work/life balance and for part-time work, particularly in relation to parenthood. Limitation of duty hours alone is insufficient to manage fatigue risk and difficulties in maintaining work/life balance. These findings have implications for schedule design, professional training, and workforce planning.

5. Choosing where to work at work - towards a theoretical model of benefits and risks of activity-based flexible offices.

Science.gov (United States)

Wohlers, Christina; Hertel, Guido

2017-04-01

Although there is a trend in today's organisations to implement activity-based flexible offices (A-FOs), only a few studies examine consequences of this new office type. Moreover, the underlying mechanisms why A-FOs might lead to different consequences as compared to cellular and open-plan offices are still unclear. This paper introduces a theoretical framework explaining benefits and risks of A-FOs based on theories from work and organisational psychology. After deriving working conditions specific for A-FOs (territoriality, autonomy, privacy, proximity and visibility), differences in working conditions between A-FOs and alternative office types are proposed. Further, we suggest how these differences in working conditions might affect work-related consequences such as well-being, satisfaction, motivation and performance on the individual, the team and the organisational level. Finally, we consider task-related (e.g. task variety), person-related (e.g. personality) and organisational (e.g. leadership) moderators. Based on this model, future research directions as well as practical implications are discussed. Practitioner Summary: Activity-based flexible offices (A-FOs) are popular in today's organisations. This article presents a theoretical model explaining why and when working in an A-FO evokes benefits and risks for individuals, teams and organisations. According to the model, A-FOs are beneficial when management encourages employees to use the environment appropriately and supports teams.

6. Is regular work at fixed places fading away? The development of ICT-based and travel-based modes of work in Sweden

OpenAIRE

Bertil Vilhelmson; Eva Thulin

2001-01-01

Information and communication technologies (ICT) may increase people's freedom to decide when, where, and how they wish to work and travel. With the aid of data from national surveys on the use of ICT by the Swedish population, our objective is to investigate the overall spread of ICT-based modes of work such as telework, mobile work, and teleconferences in an emerging informational society. The concepts of home-based, commuting-based, and mobile work form a starting point. The numbers and pr...

7. Work-life balance of German gynecologists: a web-based survey on satisfaction with work and private life.

Science.gov (United States)

Hancke, Katharina; Igl, Wilmar; Toth, Bettina; Bühren, Astrid; Ditsch, Nina; Kreienberg, Rolf

2014-01-01

Work-life balance is an upcoming issue for physicians. The working group "Family and Career" of the German Society for Gynecology and Obstetrics (DGGG) designed a survey to reflect the present work-life balance of female and male gynecologists in Germany. The 74-item, web-based survey "Profession-Family-Career" was sent to all members of the DGGG (n = 4,564). In total, there were 1,036 replies (23%) from 75% female gynecologists (n = 775) aged 38 ± 7 (mean ± standard deviation [SD]) years and 25% male (n = 261) gynecologists aged 48 ± 11 years. Statistical analyses were performed using the mean and SD for descriptive analysis. Regression models were performed considering an effect of p ≤ 0.05 as statistically significant. 47% women and 46% men reported satisfaction with their current work-life balance independent of gender (p(gender) = 0.15). 70% women and 75 % men answered that work life and private life were equally important to them (p(gender) = 0.12). While 39% women versus 11% men worked part-time (p gender work than women (p(gender) Work life affected private life of men and women in a similar way (all p(gender) > 0.05). At least 37% women and men neglected both their partner and their children very often due to their work. Female physicians often described their work situation similar to male physicians, although important differences regarding total work time, overtime work and appreciation by supervisors were reported. Work life affected private life of women and men in a similar way.

8. Micro-cogeneration units based on Stirling engine for heating and their real operation

Science.gov (United States)

Čierny, Jaroslav; Patsch, Marek

2014-08-01

This article was deal with micro-cogeneration units based on Stirling engine. We watched problematic of real working Stirling engine. The article also contain hookup of unit constructed at University of Zilina.

9. Dry Laboratories in Science Education : Computer-based Practical Work

NARCIS (Netherlands)

Kirschner, P.A.; Huisman, W.

1998-01-01

Practical (laboratory) work in science education has traditionally been used to allow students to rediscover already known concepts and ideas, to demonstrate concepts taught in the classroom or, in the case of inquirybased science curricula, to teach concepts. Often, these laboratory practicals do

10. Spatial and social connectedness in web-based work collaboration

NARCIS (Netherlands)

Handberg, L.; Gullström, C.; Kort, J.; Nyström, J.

2016-01-01

The work presented here seeks an integration of spatial and social features supporting shared activities, and engages users in multiple locations to manipulate realtime video-streams. Standard and easily available equipment is used together with the communication standard WebRTC. It adds a spatial

11. Real time PCI display driver based on VxWorks

International Nuclear Information System (INIS)

Liu Weiyue; Wang Yanfang; Liu Songqiang

2002-01-01

A kind of real time display driver is introduced. The driver is designed for S3 ViRGE/DX on VxWorks. What described mainly are registers of S3 ViRGE/DX, structure of the software, PCI, hardware graphics acceleration and the chip clocks. The design is compatible with UGL

12. Heat pipes

CERN Document Server

Dunn, Peter D

1994-01-01

It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

13. Module-based analysis of robustness tradeoffs in the heat shock response system.

Directory of Open Access Journals (Sweden)

Hiroyuki Kurata

2006-07-01

Full Text Available Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the design principles of such modular architectures. In the heat shock response system, the sigma-factor sigma32 is a central regulator that integrates multiple feedforward and feedback modules. Each of these modules provides a different type of robustness with its inherent tradeoffs in terms of transient response and efficiency. We demonstrate how the overall architecture of the system balances such tradeoffs. An extensive mathematical exploration nevertheless points to the existence of an array of alternative strategies for the existing heat shock response that could exhibit similar behavior. We therefore deduce that the evolutionary constraints facing the system might have steered its architecture toward one of many robustly functional solutions.

14. Effect of doping on the specific heat jump in iron-based superconductors

Science.gov (United States)

Kuzmanovski, Dushko; Maiti, Saurabh; Vavilov, Maxim; Chubukov, Andrey; Hardy, Frederic

2013-03-01

In this talk we present a theoretical description of the jump of the specific heat at the transition to a superconducting phase of iron-based pnictides. We discuss both the overdoped regime, when the transition occurs between non-magnetic and superconducting phases, and the underdoped regime, when superconductivity emerges from a pre-emptive SDW phase. Both effects lead to a qualitatively similar phase diagram as a function of doping, but details differ. We presume that doping simultaneously modifies the Fermi surface of pnictides and introduces disorder. By fitting the transition temperatures for the SDW and SC phases, we establish the relative strengths of the the rigid band shift caused by doping and doping-induced disorder. We then evaluate the specific heat jump as a function of doping. Our theory is consistent with measurements made by Karlsruhe group of the specific heat jump in BaFe2As2 compounds with K- and Co-doping. NSF-DMR 0955500

15. Experimental screening of carbon-base materials for impact members in isotopic heat sources

Energy Technology Data Exchange (ETDEWEB)

Bansal, G.K.; Duckworth, W.H.

1976-11-01

Fourteen C/C composites and three reentry-grade bulk graphites were evaluated experimentally to determine their applicability for impact member use in radioisotope heat sources. The composites included the following generic types: (1) 2-D cloth lay-ups; (2) 2-D and 3-D felts; (3) 3-D weaves; (4) 3-D pierced fabrics; (5) 7-D weave; and (6) coarse polar weave. Also included was the 2-D randomly wound, resin-impregnated C/C material presently used as the impact member in the MHW RTG and commonly designated ''GIS'' (an acronym for graphite impact shell). The various materials were evaluated as energy absorbing materials. None of the materials in these tests performed appreciably better than the GIS impact member material now used in the MHW heat source, HITCO Pyro Carb 814. Two cloth lay-up composites, HITCO's Pyro Carb 903 and Carborundum's Carbitex 700, were somewhat superior in performance, while the bulk graphites and felt-base composites ranked least effective as energy absorbers. All experimental data and other factors considered to date suggest that Pyro Carb 903 is the best prospect for a bifunctional heat shield and impact member. Its high density (1.80 g/cm/sup 3/) indicates potentially good ablation resistance to accompany its indicated good performance as an energy absorber.

16. An assessment of CFD-based wall heat transfer models in piston engines

Energy Technology Data Exchange (ETDEWEB)

Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States)

2017-04-26

The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictive submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.

17. The magnetic fluid for heat transfer applications

International Nuclear Information System (INIS)

Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.

2002-01-01

Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case

18. A new algorithm of global tightly-coupled transient heat transfer based on quasi-steady flow to the conjugate heat transfer problem

Directory of Open Access Journals (Sweden)

Fanchao Meng

2016-09-01

Full Text Available Concerning the specific demand on solving the long-term conjugate heat transfer (CHT problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22.8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.

19. Enhanced performance of wet compression-resorption heat pumps by using NH3-CO2-H2O as working fluid

International Nuclear Information System (INIS)

Gudjonsdottir, V.; Infante Ferreira, C.A.; Rexwinkel, Glenn; Kiss, Anton A.

2017-01-01

20. Several cases of work-related allergic contact dermatitis caused by isocyanates at a company manufacturing heat exchangers.

Science.gov (United States)

Engfeldt, Malin; Isaksson, Marléne; Zimerson, Erik; Bruze, Magnus

2013-03-01

A 43-year-old woman was referred by her occupational health service with suspected occupational contact dermatitis. In connection with the investigation, a workplace visit was undertaken at her company, which used an adhesive based on pre-polymeric diphenylmethane diisocyanate in one of its units. During the visit, we became aware of six other employees with skin problems who were then referred to our department for investigation. To investigate the seven employees complaining about skin problems. Seven employees were patch tested with a baseline series, an isocyanate series, and a series with work material. Five of seven patients had occupational contact allergy. Four reacted to isocyanate-related test preparations, and one to a cleanser used at the workplace. Workplace visits constitute an important part of an occupational investigation, as they might give a broader picture of the problems at a company. In this case, it was found that 5 of 100 employees currently had or had previously had occupation-related skin problems. Owing to 'healthy worker selection', some of these patients might have been missed if we had not performed a full-scale workplace visit. © 2012 John Wiley & Sons A/S.

1. Carbon-supported base metal nanoparticles : Cellulose at work

NARCIS (Netherlands)

Hoekstra, Jacco; Versluijs-Helder, Marjan; Vlietstra, Edward J.; Geus, John W.; Jenneskens, Leonardus W.

2015-01-01

Pyrolysis of base metal salt loaded microcrystalline cellulose spheres gives a facile access to carbon-supported base metal nanoparticles, which have been characterized with temperature-dependent XRD, SEM, TEM, ICP-MS and elemental analysis. The role of cellulose is multifaceted: 1) it facilitates a

2. Thermodynamic analysis of a novel multigeneration energy system based on heat recovery from a biomass CHP cycle

International Nuclear Information System (INIS)

Soltani, Reza; Dincer, Ibrahim; Rosen, Marc A.

2015-01-01

A multigeneration energy system with one fuel intake (sawdust biomass fuel) and five useful outputs is proposed and energy and exergy analyses are carried out to assess its performance. Instead of using a simple heat exchanger to satisfy district heating needs, applying a deaerator is found to result in 10% more hot water mass flow rate for the same conditions. The energy and exergy efficiencies of the multigeneration system are found to be around 60% and 25%, respectively, while the corresponding energy and exergy efficiencies of a biomass system with only electricity generation are 11% and 13%, respectively. When investigating the effect of adding various product outputs to biomass power generation, steam generation and then domestic hot water production are found to have the greatest enhancing effects on the system efficiencies. Heat recovery from exhaust gases for district heating and wood drying is found to enhance the energy efficiency more than the exergy efficiency. Also, due to the size of the heat recovery system, which is smaller than the biomass CHP cycle, district heating and drying cannot increase the energy and exergy efficiencies of the primary system like steam generation. A parametric study shows that the biomass fuel input rate affects significantly the district heating heat load and the electricity generation rate, in a linear manner. However, increasing the biomass input rate has no effect on the CHP system energy and exergy efficiencies, while increasing the exergy efficiency of the entire system and decreasing its corresponding energy efficiency slightly. Of the several heat recovery options from exhaust gases, electricity generation and wood drying result in the highest exergy efficiency while district heating and drying lead to highest energy efficiency. - Highlights: • Novel heat recovery based energy system is proposed. • There is one energy input while system has 5 useful outputs. • Combustion excess air increases district heating

3. HIDE working groups: induction linac based system: summary

International Nuclear Information System (INIS)

Richter, B.; Faltens, A.; Herrmannsfeldt, W.B.

1978-01-01

The induction linac does seem capable of delivering the required 1 megajoule of energy at peak powers of about 100 terawatts. The required components for the main accelerator exist in the laboratory. The ion source and preaccelerator technologies are not so well developed. The best injector for an induction linac is the high current gun which could deliver currents of tens of amperes into an induction accelerator at an energy of around 100 MeV. Such sources are under study. The alternative of a conventional low current ion source and rf accelerator (also used in other acceleration schemes such as synchrotrons or full energy accumulators) also seems usable for the induction linac, but as indicated in reports of other working groups is by no means easy. Considerable work needs to be done on component technology before any reliable cost estimates and economic optimizations can be made

4. Faith-Based International Development Work: A Review

Directory of Open Access Journals (Sweden)

Dan Heist

2016-02-01

Full Text Available In the wake of the Faith-Based Initiative in the USA, substantial research has resulted in an increased awareness of religious congregations and faith-based organizations as welfare service providers. The next frontier appears to be the role of religious organizations in international social and economic development, a topic that only recently started to attract academic interest. In this paper, we review available literature on the role that religious, or faith-based, organizations play in international social and economic development. We also provide results from our own study of USA international NGOs1 that are faith-based. We divide the paper into the positive contributions of faith-based international NGOs and the drawbacks of these NGOs. We find that faith-based nonprofits constitute almost 60 percent of USA-based international development organizations, and their contribution to international social development is quite considerable. We conclude with a call for further research and nuanced understanding of the role religion plays in international development.

5. Production of Heat Resistant Composite based on Siloxane Elastomer and Multiwall Carbon Nanotubes

Science.gov (United States)

Bessonov, I. V.; Karelina, N. V.; Kopitsyna, M. N.; Morozov, A. S.; Reznik, S. V.; Skidchenko, V. Yu.

2016-02-01

Development of a new generation of composite with unique thermal properties is an important task in the fields of science and technology where material is operated at high temperatures and exposure to a short-wave radiation. Recent studies show that carbon nanomaterials (fullerenes and carbon nanotubes) could improve the thermal, radiation and thermal-oxidative stability of the polymer matrix. In this article the development of a new heat resistant composite based on elastomer and carbon nanotubes (CNT) was performed and physicochemical properties of final product were evaluated.

6. Model based control for waste heat recovery rankine cycle system in heavy duty trucks

OpenAIRE

2015-01-01

Driven by future emissions legislations and increase in fuel prices engine, gas heat recovering has recently attracted a lot of interest. In the past few years, a high number of studies have shown the interest of energy recovery Rankine based systems for heavy duty trucks engine compounding. Recent studies have brought a significant potential for such a system in a Heavy Duty (HD) vehicle, which can lead to a decrease in fuel consumption of about 5% [Wang et al. (2011)] and reduce engine emis...

7. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

International Nuclear Information System (INIS)

Watanabe, Katsutoshi

1987-09-01

The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

8. Magneto-inductive heating of water-based iron oxide ferrofluids

Science.gov (United States)

Novoselova, Iu. P.; Safronov, A. P.; Samatov, O. M.; Kurlyandskaya, G. V.

2016-09-01

Spherical magnetic nanoparticles (MNPs) of iron oxide were fabricated by laser target evaporation technique. Water-based ferrofluids were prepared on the basis of obtained MNPs. Their structure and magnetic properties were studied by a number of methods including transmission electron microscopy, X-ray diffraction, SQUID-magnetometry and magnetic relaxation losses measurements. Magneto-inductive heating experiment showed the specific power loss value of 2 W/g for 1.8 kA/m alternating magnetic field of 214 kHz frequency. These parameters indicate that LTE MNPs are perspective materials for biomedical applications such as hyperthermia.

9. Preliminary experimental validation of a landmine detection system based on localized heating and sensing

Science.gov (United States)

Balsi, M.; Corcione, M.; Dell'Omo, P.; Esposito, S.; Magliocchetti, L.

2008-04-01

In this paper we present results of experimental validation of a new methodology for anti-personnel mine (APM) detection for humanitarian demining, proposed by the authors and previously validated only by simulation. The technique is based on local heating and sensing by contactless thermometers (pyrometers). A large sand box (2.6m 3) has been realized and fitted with a cart moving on rails and holding instrumentation. Accurate mine surrogates have been hidden in the sand together with confounders. Preliminary measurements are consistent with simulations and prove validity of the approach.

10. Fault Diagnosis for the Heat Exchanger of the Aircraft Environmental Control System Based on the Strong Tracking Filter

Science.gov (United States)

Ma, Jian; Lu, Chen; Liu, Hongmei

2015-01-01

The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

11. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

Science.gov (United States)

Ma, Jian; Lu, Chen; Liu, Hongmei

2015-01-01

The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.

12. Remote sensing image-based analysis for heat waves assessment hazard in urban areas

Science.gov (United States)

Zoran, M.

2009-04-01

surface types, to extensive UHI. Our analysis showed that higher temperature in the UHI was located with a scattered pattern, which was related to certain land-cover types. In order to analyze the relationship between UHI and land-cover changes, this study attempted to employ a quantitative approach in exploring the relationship between temperature and several indices, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Bareness Index (NDBaI) and Normalized Difference Build-up Index (NDBI). It was found that correlations between NDVI, NDWI, NDBaI and temperature are negative when NDVI is limited in range, but positive correlation is shown between NDBI and temperature.Spectral/climatic modelling of extreme high temperature events in urban areas are providing a scientific base for heat wave hazard assessment.Heat waves events of 2003 and 2007 summers have been correlated with UHI effect for Bucharest metropolitan area.

13. Heat Waves Assessment in Urban Areas Through Remote Sensing Image-Based Analysis

Science.gov (United States)

Zoran, Maria

other surface types, to extensive UHI. Our analysis showed that higher temperature in the UHI was located with a scattered pattern, which was related to certain land-cover types. In order to analyze the relationship between UHI and land-cover changes, this study attempted to employ a quantitative approach in exploring the relationship between temperature and several indices, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Bareness Index (NDBaI) and Normalized Difference Build-up Index (NDBI). It was found that correlations between NDVI, NDWI, NDBaI and temperature are negative when NDVI is limited in range, but positive correlation is shown between NDBI and temperature.Spectral/climatic modelling of extreme high temperature events in urban areas are providing a scientific base for heat wave hazard assessment.Heat waves events of 2003 and 2007 summers have been correlated with UHI effect for Bucharest metropolitan area.

14. [Structural Equation Modeling of Quality of Work Life in Clinical Nurses based on the Culture-Work-Health Model].

Science.gov (United States)

Kim, Miji; Ryu, Eunjung

2015-12-01

The purpose of this study was to construct and test a structural equation model of quality of work life for clinical nurses based on Peterson and Wilson's Culture-Work-Health model (CWHM). A structured questionnaire was completed by 523 clinical nurses to analyze the relationships between concepts of CWHM-organizational culture, social support, employee health, organizational health, and quality of work life. Among these conceptual variables of CWHM, employee health was measured by perceived health status, and organizational health was measured by presenteeism. SPSS21.0 and AMOS 21.0 programs were used to analyze the efficiency of the hypothesized model and calculate the direct and indirect effects of factors affecting quality of work life among clinical nurses. The goodness-of-fit statistics of the final modified hypothetical model are as follows: χ²=586.03, χ²/df=4.19, GFI=.89, AGFI=.85, CFI=.91, TLI=.90, NFI=.89, and RMSEA=.08. The results revealed that organizational culture, social support, organizational health, and employee health accounted for 69% of clinical nurses' quality of work life. The major findings of this study indicate that it is essential to create a positive organizational culture and provide adequate organizational support to maintain a balance between the health of clinical nurses and the organization. Further repeated and expanded studies are needed to explore the multidimensional aspects of clinical nurses' quality of work life in Korea, including various factors, such as work environment, work stress, and burnout.

15. A New IMS Based Inter-working Solution

Science.gov (United States)

Zhu, Zhongwen; Brunner, Richard

With the evolution of third generation network, more and more multimedia services are developed and deployed. Any new service to be deployed in IMS network is required to inter-work with existing Internet communities or legacy terminal users in order to appreciate the end users, who are the main drivers for the service to succeed. The challenge for Inter-working between IMS (IP Multimedia Subsystem) and non-IMS network is “how to handle recipient’s address”. This is because each network has its own routable address schema. For instance, the address for Google Talk user is xmpp:xyz@google.com, which is un-routable in IMS network. Hereafter a new Inter-working (IW) solution between IMS and non-IMS network is proposed for multimedia services that include Instant Messaging, Chat, and File transfer, etc. It is an end-to-end solution built on IMS infrastructure. The Public Service Identity (PSI) defined in 3GPP standard (3rd Generation Partnership Project) is used to allow terminal clients to allocate this IW service. When sending the SIP (Session Initial Protocol) request out for multimedia services, the terminal includes the recipient’s address in the payload instead of the “Request-URI” header. In the network, the proposed solution provides the mapping rules between different networks in MM-IW (Multimedia IW). The detailed technical description and the corresponding use cases are present. The comparison with other alternatives is made. The benefits of the proposed solution are highlighted.

16. Discrimination of Neutral Postures in Computer Based Work

Science.gov (United States)

2013-03-01

station for the study. 18 The work area was furnished with a table and an adjustable chair and set similar to a cubicle but without the walls. The...25.0.1364.152, and Firefox Version 15.0.1, and word processing applications in Microsoft Office 2010 Version 14.0.6129.5000. 5.3 Experiment Tasks This...is capacity. Engineering rules of thumb predict that in an office environment, 25 L of hot water are required per day per occupant. With

17. Piezotransistive GaN microcantilevers based surface work function measurements

Science.gov (United States)

Bayram, Ferhat; Khan, Digangana; Li, Hongmei; Maksudul Hossain, Md.; Koley, Goutam

2018-04-01

Surface work function (SWF) measurements using a piezotransistive III–nitride cantilever has been demonstrated on multiple surfaces. The minimum detectable surface potential change of 10 mV was achieved with a signal to noise ratio of 3. This method was applied to determine the surface potential changes due to exposure of 5 ppm NO2 in graphene and In2O3 thin film, simultaneously with conductivity changes. The potentiometric measurements yielded 100 and 80 mV potential changes in SWFs of graphene and In2O3 respectively, which matches very well with experimental data published earlier indicating the efficacy of this readily miniaturizable measurement technique.

CERN Document Server

Modest, Michael F

2013-01-01

The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

19. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

Science.gov (United States)

Ellerby, Donald; Venkatapathy, Ethiraj; Stackpoole, Margaret; Chinnapongse, Ronald; Munk, Michelle; Dillman, Robert; Feldman, Jay; Prabhu, Dinesh; Beerman, Adam

2013-01-01

NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.

20. Heat-transfer-based detection of SNPs in the PAH gene of PKU patients

Directory of Open Access Journals (Sweden)

Vanden Bon N

2014-03-01

Full Text Available Natalie Vanden Bon,1 Bart van Grinsven,2 Mohammed Sharif Murib,2 Weng Siang Yeap,2 Ken Haenen,2,3 Ward De Ceuninck,2,3 Patrick Wagner,2,3 Marcel Ameloot,1 Veronique Vermeeren,1 Luc Michiels11Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; 2Institute for Materials Research, Hasselt University, Diepenbeek, Belgium; 3IMOMEC, Diepenbeek, BelgiumAbstract: Conventional neonatal diagnosis of phenylketonuria is based on the presence of abnormal levels of phenylalanine in the blood. However, for carrier detection and prenatal diagnosis, direct detection of disease-correlated mutations is needed. To speed up and simplify mutation screening in genes, new technologies are developed. In this study, a heat-transfer method is evaluated as a mutation-detection technology in entire exons of the phenylalanine hydroxylase (PAH gene. This method is based on the change in heat-transfer resistance (Rth upon thermal denaturation of dsDNA (double-stranded DNA on nanocrystalline diamond. First, ssDNA (single-stranded DNA fragments that span the size range of the PAH exons were successfully immobilized on nanocrystalline diamond. Next, it was studied whether an Rth change could be observed during the thermal denaturation of these DNA fragments after hybridization to their complementary counterpart. A clear Rth shift during the denaturation of exon 5, exon 9, and exon 12 dsDNA was observed, corresponding to lengths of up to 123 bp. Finally, Rth was shown to detect prevalent single-nucleotide polymorphisms, c.473G>A (R158Q, c.932T>C (p.L311P, and c.1222C>T (R408W, correlated with phenylketonuria, displaying an effect related to the different melting temperatures of homoduplexes and heteroduplexes.Keywords: mutation detection, heat-transfer resistance, melting temperature, nanocrystalline diamond, persistence length

1. TOPAZ2D heat transfer code users manual and thermal property data base

Energy Technology Data Exchange (ETDEWEB)

Shapiro, A.B.; Edwards, A.L.

1990-05-01

TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

2. Effect of bench cooling on the dimensional accuracy of heat-cured acrylic denture base material.

Science.gov (United States)

Kimoto, Suguru; Kobayashi, Norihiko; Kobayashi, Kihei; Kawara, Misao

2005-01-01

In order to obtain an insight on the internal stress caused by both polymerization and thermal shrinkage during the fabrication process of heat-cured denture resin, the effect of bench cooling on the dimensional accuracy of a heat-cured denture base resin was examined. A dimensional change of a dumbbell-shaped specimen during the fabrication process was measured directly by using the strain gauge method. After polymerization, the specimens were treated in one of the following two processing methods: (1) rapid cooling: the specimen was removed from a stone mold within a container of boiling water at 100 degrees C and then left to cool in a thermo-stabilized room of 20+/-1 degrees C; (2) bench cooling: the flask was left to cool in a thermo-stabilized room of 20+/-1 degrees C for 140min, after which, the specimen was removed from the stone mold. The strain from deflasking was derived from the difference in the strain, before and after the removal of the specimen from the stone mold. The strain differential, before and after cooling, was determined as the total strain. The bench cooling for the heat-cured denture base resin reduced the strain caused by thermal shrinkage during the fabrication process. The observed reduction in the strain was 26% for the C(L) (direction of center's length), 11% for the E(L) (direction of left-edge's length), and 12% for the E(W) (direction of left-edge's width), when compared with the results obtained from the rapid-cooling method. The flask should be slowly cooled to room temperature, since the internal stress developed by thermal shrinkage will be relaxed during the cooling process.

3. A web based semi automatic frame work for astrobiological researches

Directory of Open Access Journals (Sweden)

P.V. Arun

2013-12-01

Full Text Available Astrobiology addresses the possibility of extraterrestrial life and explores measures towards its recognition. Researches in this context are founded upon the premise that indicators of life encountered in space will be recognizable. However, effective recognition can be accomplished through a universal adaptation of life signatures without restricting solely to those attributes that represent local solutions to the challenges of survival. The life indicators should be modelled with reference to temporal and environmental variations specific to each planet and time. In this paper, we investigate a semi-automatic open source frame work for the accurate detection and interpretation of life signatures by facilitating public participation, in a similar way as adopted by SETI@home project. The involvement of public in identifying patterns can bring a thrust to the mission and is implemented using semi-automatic framework. Different advanced intelligent methodologies may augment the integration of this human machine analysis. Automatic and manual evaluations along with dynamic learning strategy have been adopted to provide accurate results. The system also helps to provide a deep public understanding about space agency’s works and facilitate a mass involvement in the astrobiological studies. It will surely help to motivate young eager minds to pursue a career in this field.

4. What Works? Evidence-Based Practice in Education Is Complex

Science.gov (United States)

Hempenstall, Kerry

2014-01-01

There is a nascent movement towards evidence-based practice in education in Australia, evident in Federal and State education documents, if not in classrooms. Such a classroom-level outcome would require a number of conditions to be met. One of the critical requirements is that teachers be provided with knowledge and training in practices that…

5. Brain-Based Learning and Educational Neuroscience: Boundary Work

Science.gov (United States)

Edelenbosch, Rosanne; Kupper, Frank; Krabbendam, Lydia; Broerse, Jacqueline E. W.

2015-01-01

Much attention has been given to "bridging the gap" between neuroscience and educational practice. In order to gain better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning approach, focusing on…

6. Global Trends and School-Based Social Work

Science.gov (United States)

Allen-Meares, Paula; Montgomery, Katherine L.

2014-01-01

In the 21st century, substantial advancements have been made across the globe that positively affect the ability for school-based social workers in the fields of practice, policy, and research to meet the needs of the world's youths. Nonetheless, children continue to suffer from poverty-stricken environments, absence of basic needs, poor or…

7. Why Problem-Based Learning Works: Theoretical Foundations

Science.gov (United States)

Marra, Rose M.; Jonassen, David H.; Palmer, Betsy; Luft, Steve

2014-01-01

Problem-based learning (PBL) is an instructional method where student learning occurs in the context of solving an authentic problem. PBL was initially developed out of an instructional need to help medical school students learn their basic sciences knowledge in a way that would be more lasting while helping to develop clinical skills…

8. Activity-based computing for medical work in hospitals

DEFF Research Database (Denmark)

Bardram, Jakob Eyvind

2009-01-01

. In a hospital, the challenges arising from the management of parallel activities and interruptions are amplified because multitasking is now combined with a high degree of mobility, collaboration, and urgency. The article presents the empirical and theoretical background for activity-based computing, its...

9. Brain-Based Learning and Educational Neuroscience: Boundary Work

NARCIS (Netherlands)

Edelenbosch, R.M.; Kupper, J.F.H.; Krabbendam, A.C.; Broerse, J.E.W.

2015-01-01

Much attention has been given to "bridging the gap" between neuroscience and educational practice. In order to gain better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning

10. The Effect of Heating Time and Temperature on Epoxy Resin and Calcium Silicate-based Endodontic Sealers.

Science.gov (United States)

2017-12-01

With the growing use of warm obturation techniques during endodontic treatment, more interest is directed toward sealers' compatibility with heat. This study aimed to evaluate the effect of heat application duration and temperature on epoxy resin- and calcium silicate-based sealers using chemical and thermogravimetric analyses. Freshly mixed samples (n = 5/group) of each sealer were heated at 200°C or 250°C for 30 or 60 seconds. Additional 2 sets of samples were examined directly after mixing or after setting without heat exposure. Raman spectroscopy was used to identify changes in the chemical structure, and a 2-way analysis of variance was performed to compare values of measurable peaks that exhibited changes. Additionally, Thermogravimetric Analysis (TGA) was used to evaluate the effect of heat on mass change where sealers were heated to 250°C at a rate of 20°C/min (11-minute duration) or maintained at 37°C for 8 hours. No differences were detected among all the spectra of calcium silicate samples of different groups, while TGA revealed 15% and 18% weight loss upon heating at 250°C and 37°C, respectively. For the resin sealer, significant differences were detected when samples were heated for 60 seconds, involving bonds of benzene rings and aromatic amines in the uncured resin. TGA revealed minimal changes in the sealer mass (1.2% and 1.8%) on heating at 250°C and 37°C, respectively. Heat application duration and temperature can affect the chemical structure of epoxy resin sealers. The consideration of endodontic sealer compatibility as well as the duration of heat application is essential when warm vertical obturation is used. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

11. Assessment of Residual Strength Based on Estimated Temperature of Post-Heated RC Columns

Directory of Open Access Journals (Sweden)

2013-01-01

Full Text Available The experience shows that fire-damaged concrete structures both technically and economically can be reinstated after fire due to high fire resistance and high residual strength. The residual strength of fire-damaged concrete structural member depends on the peak temperature reached during fire, fire duration and the distribution of temperature within the structural member. The assessment of the residual strength of post-heated concrete structural members in a professional way is a prime factor to take a decision about the reinstatement or demolition of fire-damaged structure. This paper provides an easy and efficient approach to predict the residual strength of reinforced concrete columns based on the estimated temperature which may have occurred within the concrete cross-section during a fire. A finite element model was developed to evaluate the distribution of temperature within the cross-section of the reinforced concrete columns. Twelve reinforced concrete square columns were heated experimentally up to 500°C at 150°C/hour. A comparison of the experimental temperature values of the tested columns was made with the model results. A good agreement was found between the experimental and the finite model results. Based on the temperature distribution obtained from the finite element model, the residual strength of concrete and reinforcement could be evaluated by using the relationships for concrete, steel and temperature proposed by various researchers.

12. Designing thermal diode and heat pump based on DNA nanowire: Multifractal approach

Energy Technology Data Exchange (ETDEWEB)

Behnia, S., E-mail: s.behnia@iaurmia.ac.ir; Panahinia, R.

2017-07-12

The management of heat flow in DNA nano wire was considered. Thermal diode effect in DNA and the domain of its appearance dependent to system parameters have been detected. The appearance of directed thermal flow in thermodynamic sizes proposes the possibility of designing the macroscopic thermal rectifier. By applying driven force, pumping effect has been also observed. The resonance frequency of DNA and threshold amplitudes of driving force for attaining permanent pumping effect have been detected. Forasmuch as detecting negative differential thermal resistance (NDTR) phenomenon, DNA can act as a thermal transistor. By using an analytical parallel investigation based on Rényi spectrum analysis, threshold values to transition to NDTR and pumping regimes have been detected. - Highlights: • The control and management of heat current in DNA have been investigated. • Directed thermal flow and NDTR in DNA have been identified. • By increasing the system size, the reversed thermal rectification appeared. So, it is proposed the possibility of designing the macroscopic thermal rectifier. • Pumping effect accompanied with detection of resonance frequency of DNA has been observed. • To verify the results, we did a parallel analysis based on multifractal concept to detect threshold values for transition to pumping state and NDTR regime.

13. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators

Directory of Open Access Journals (Sweden)

C.Q. Su

2014-11-01

Full Text Available Thermoelectric technology has revealed the potential for automotive exhaust-based thermoelectric generator (TEG, which contributes to the improvement of the fuel economy of the engine-powered vehicle. As a major factor, thermal capacity and heat transfer of the heat exchanger affect the performance of TEG effectively. With the thermal energy of exhaust gas harvested by thermoelectric modules, a temperature gradient appears on the heat exchanger surface, so as the interior flow distribution of the heat exchanger. In order to achieve uniform temperature distribution and higher interface temperature, the thermal characteristics of heat exchangers with various heat transfer enhancement features are studied, such as internal structure, material and surface area. Combining the computational fluid dynamics simulations and infrared test on a high-performance engine with a dynamometer, the thermal performance of the heat exchanger is evaluated. Simulation and experiment results show that a plate-shaped heat exchanger made of brass with accordion-shaped internal structure achieves a relatively ideal performance, which can practically improve overall thermal performance of the TEG.

14. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

Science.gov (United States)

Gayda, John

2002-01-01

Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

15. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases

Science.gov (United States)

Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi

2015-06-01

Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest

16. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

Science.gov (United States)

Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

2014-06-01

This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

17. Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars

International Nuclear Information System (INIS)

Ballester, P.; Hidalgo, A.; Marmol, I.; Morales, J.; Sanchez, L.

2009-01-01

The effect of temperature on fresh mortar and cement paste was evaluated by simulating the curing conditions of external buildings plastering applied under extremely hot weather. The specimens were heated at controlled temperatures in the 40-80 o C range by exposure to IR radiation over short periods. The effect of soaking for a short time was also examined. The results of compressive strength tests, scanning electron microscopy, infrared spectroscopy and mercury porosimetry helped to characterize the mechanical and physico-chemical properties of the studied sample. Early age behaviour (28 days) in neat cement was barely affected by the temperature. By contrast, exposure to high temperatures caused significant microstructural changes in the mortar. However, successive soaking over short periods was found to reactivate the mechanism of curing and restore the expected mechanical properties. Based on the results, application of cement based mortar at high temperatures is effective when followed by a short, specific soaking process.

18. Consistent phase-change modeling for CO2-based heat mining operation

DEFF Research Database (Denmark)

Singh, Ashok Kumar; Veje, Christian

2017-01-01

–gas phase transition with more accuracy and consistency. Calculation of fluid properties and saturation state were based on the volume translated Peng–Robinson equation of state and results verified. The present model has been applied to a scenario to simulate a CO2-based heat mining process. In this paper......The accuracy of mathematical modeling of phase-change phenomena is limited if a simple, less accurate equation of state completes the governing partial differential equation. However, fluid properties (such as density, dynamic viscosity and compressibility) and saturation state are calculated using...... a highly accurate, complex equation of state. This leads to unstable and inaccurate simulation as the equation of state and governing partial differential equations are mutually inconsistent. In this study, the volume-translated Peng–Robinson equation of state was used with emphasis to model the liquid...

19. Work-Based Learning: Good News, Bad News and Hope. Research Brief.

Science.gov (United States)

Bottoms, Gene; Presson, Alice

The effects of work-based learning on student achievement were examined by analyzing data from the 1996 High Schools That Work (HSTW) assessment. The comparison focused on the experiences of 12th-graders in structured work-based learning programs and 12th-graders with after-school jobs. A larger percentage of students earning school credit for…

20. Thermal design, rating and second law analysis of shell and tube condensers based on Taguchi optimization for waste heat recovery based thermal desalination plants

Science.gov (United States)

Chandrakanth, Balaji; Venkatesan, G; Prakash Kumar, L. S. S; Jalihal, Purnima; Iniyan, S

2018-03-01

The present work discusses the design and selection of a shell and tube condenser used in Low Temperature Thermal Desalination (LTTD). To optimize the key geometrical and process parameters of the condenser with multiple parameters and levels, a design of an experiment approach using Taguchi method was chosen. An orthogonal array (OA) of 25 designs was selected for this study. The condenser was designed, analysed using HTRI software and the heat transfer area with respective tube side pressure drop were computed using the same, as these two objective functions determine the capital and running cost of the condenser. There was a complex trade off between the heat transfer area and pressure drop in the analysis, however second law analysis was worked out for determining the optimal heat transfer area vs pressure drop for condensing the required heat load.