WorldWideScience

Sample records for based diagnostic model

  1. DIAGNOSTIC TEST FOR GARCH MODELS BASED ON ABSOLUTE RESIDUAL AUTOCORRELATIONS

    Directory of Open Access Journals (Sweden)

    Farhat Iqbal

    2013-10-01

    Full Text Available In this paper the asymptotic distribution of the absolute residual autocorrelations from generalized autoregressive conditional heteroscedastic (GARCH models is derived. The correct asymptotic standard errors for the absolute residual autocorrelations are also obtained and based on these results, a diagnostic test for checking the adequacy of GARCH-type models are developed. Our results do not depend on the existence of higher moments and is therefore robust under heavy-tailed distributions.

  2. Stage Separation Failure: Model Based Diagnostics and Prognostics

    Science.gov (United States)

    Luchinsky, Dmitry; Hafiychuk, Vasyl; Kulikov, Igor; Smelyanskiy, Vadim; Patterson-Hine, Ann; Hanson, John; Hill, Ashley

    2010-01-01

    Safety of the next-generation space flight vehicles requires development of an in-flight Failure Detection and Prognostic (FD&P) system. Development of such system is challenging task that involves analysis of many hard hitting engineering problems across the board. In this paper we report progress in the development of FD&P for the re-contact fault between upper stage nozzle and the inter-stage caused by the first stage and upper stage separation failure. A high-fidelity models and analytical estimations are applied to analyze the following sequence of events: (i) structural dynamics of the nozzle extension during the impact; (ii) structural stability of the deformed nozzle in the presence of the pressure and temperature loads induced by the hot gas flow during engine start up; and (iii) the fault induced thrust changes in the steady burning regime. The diagnostic is based on the measurements of the impact torque. The prognostic is based on the analysis of the correlation between the actuator signal and fault-induced changes in the nozzle structural stability and thrust.

  3. Diagnostic markers based on a computational model of lipoprotein metabolism

    NARCIS (Netherlands)

    Schalkwijk, D.B. van; Ommen, B. van; Freidig, A.P.; Greef, J. van der; Graaf, A.A. de

    2011-01-01

    Abstract Background: Dyslipidemia is an important risk factor for cardiovascular disease and type II diabetes. Lipoprotein diagnostics, such as LDL cholesterol and HDL cholesterol, help to diagnose these diseases. Lipoprotein profile measurements could improve lipoprotein diagnostics, but interpreta

  4. Developing computational model-based diagnostics to analyse clinical chemistry data

    NARCIS (Netherlands)

    Schalkwijk, D.B. van; Bochove, K. van; Ommen, B. van; Freidig, A.P.; Someren, E.P. van; Greef, J. van der; Graaf, A.A. de

    2010-01-01

    This article provides methodological and technical considerations to researchers starting to develop computational model-based diagnostics using clinical chemistry data.These models are of increasing importance, since novel metabolomics and proteomics measuring technologies are able to produce large

  5. Model-based Diagnostics for Propellant Loading Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are neces- sary to quickly identify when a fault occurs, so...

  6. Artificial Neural Network based Diagnostic Model For Causes of Success and Failures

    OpenAIRE

    Kaur, Bikrampal; Aggarwal, Himanshu

    2010-01-01

    In this paper an attempt has been made to identify most important human resource factors and propose a diagnostic model based on the back-propagation and connectionist model approaches of artificial neural network (ANN). The focus of the study is on the mobile -communication industry of India. The ANN based approach is particularly important because conventional approaches (such as algorithmic) to the problem solving have their inherent disadvantages. The algorithmic approach is well-suited t...

  7. The control structure of team-based organizations : A diagnostic model for empowerment

    NARCIS (Netherlands)

    Kuipers, Benjamin; de Witte, M.C.

    2005-01-01

    This article describes a diagnostic model for empowerment in team-based organizations that portrays four dimensions of the organization's control structure: the level of routine, the nature of expertise, the level of dependence and the line of command. The combined positions of the set of job regula

  8. Calibration diagnostic and updating strategy based on quantitative modeling of near-infrared spectral residuals.

    Science.gov (United States)

    Yu, Hua; Small, Gary W

    2015-02-01

    A diagnostic and updating strategy is explored for multivariate calibrations based on near-infrared spectroscopy. For use with calibration models derived from spectral fitting or decomposition techniques, the proposed method constructs models that relate the residual concentrations remaining after a prediction to the residual spectra remaining after the information associated with the calibration model has been extracted. This residual modeling approach is evaluated for use with partial least-squares (PLS) models for predicting physiological levels of glucose in a simulated biological matrix. Residual models are constructed with both PLS and a hybrid technique based on the use of PLS scores as inputs to support vector regression. Calibration and residual models are built with both absorbance and single-beam data collected over 416 days. Effective models for the spectral residuals are built with both types of data and demonstrate the ability to diagnose and correct deviations in performance of the calibration model with time. PMID:25473807

  9. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology

    Science.gov (United States)

    Dong, Ming; He, David

    2007-07-01

    Diagnostics and prognostics are two important aspects in a condition-based maintenance (CBM) program. However, these two tasks are often separately performed. For example, data might be collected and analysed separately for diagnosis and prognosis. This practice increases the cost and reduces the efficiency of CBM and may affect the accuracy of the diagnostic and prognostic results. In this paper, a statistical modelling methodology for performing both diagnosis and prognosis in a unified framework is presented. The methodology is developed based on segmental hidden semi-Markov models (HSMMs). An HSMM is a hidden Markov model (HMM) with temporal structures. Unlike HMM, an HSMM does not follow the unrealistic Markov chain assumption and therefore provides more powerful modelling and analysis capability for real problems. In addition, an HSMM allows modelling the time duration of the hidden states and therefore is capable of prognosis. To facilitate the computation in the proposed HSMM-based diagnostics and prognostics, new forward-backward variables are defined and a modified forward-backward algorithm is developed. The existing state duration estimation methods are inefficient because they require a huge storage and computational load. Therefore, a new approach is proposed for training HSMMs in which state duration probabilities are estimated on the lattice (or trellis) of observations and states. The model parameters are estimated through the modified forward-backward training algorithm. The estimated state duration probability distributions combined with state-changing point detection can be used to predict the useful remaining life of a system. The evaluation of the proposed methodology was carried out through a real world application: health monitoring of hydraulic pumps. In the tests, the recognition rates for all states are greater than 96%. For each individual pump, the recognition rate is increased by 29.3% in comparison with HMMs. Because of the temporal

  10. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  11. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645

  12. Artificial Neural Network based Diagnostic Model For Causes of Success and Failures

    CERN Document Server

    Kaur, Bikrampal

    2010-01-01

    In this paper an attempt has been made to identify most important human resource factors and propose a diagnostic model based on the back-propagation and connectionist model approaches of artificial neural network (ANN). The focus of the study is on the mobile -communication industry of India. The ANN based approach is particularly important because conventional approaches (such as algorithmic) to the problem solving have their inherent disadvantages. The algorithmic approach is well-suited to the problems that are well-understood and known solution(s). On the other hand the ANNs have learning by example and processing capabilities similar to that of a human brain. ANN has been followed due to its inherent advantage over conversion algorithmic like approaches and having capabilities, training and human like intuitive decision making capabilities. Therefore, this ANN based approach is likely to help researchers and organizations to reach a better solution to the problem of managing the human resource. The stud...

  13. A Model-based Health Monitoring and Diagnostic System for the UH-60 Helicopter. Appendix D

    Science.gov (United States)

    Patterson-Hine, Ann; Hindson, William; Sanderfer, Dwight; Deb, Somnath; Domagala, Chuck

    2001-01-01

    Model-based reasoning techniques hold much promise in providing comprehensive monitoring and diagnostics capabilities for complex systems. We are exploring the use of one of these techniques, which utilizes multi-signal modeling and the TEAMS-RT real-time diagnostic engine, on the UH-60 Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) flight research aircraft. We focus on the engine and transmission systems, and acquire sensor data across the 1553 bus as well as by direct analog-to-digital conversion from sensors to the QHuMS (Qualtech health and usage monitoring system) computer. The QHuMS computer uses commercially available components and is rack-mounted in the RASCAL facility. A multi-signal model of the transmission and engine subsystems enables studies of system testability and analysis of the degree of fault isolation available with various instrumentation suites. The model and examples of these analyses will be described and the data architectures enumerated. Flight tests of this system will validate the data architecture and provide real-time flight profiles to be further analyzed in the laboratory.

  14. Cardiovascular modeling and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kangas, L.J.; Keller, P.E.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    In this paper, a novel approach to modeling and diagnosing the cardiovascular system is introduced. A model exhibits a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. Potentially, a model will be incorporated into a cardiovascular diagnostic system. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and the variables of an individual at a given time are used for diagnosis. This approach also exploits sensor fusion to optimize the utilization of biomedical sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  15. Multirule Based Diagnostic Approach for the Fog Predictions Using WRF Modelling Tool

    Directory of Open Access Journals (Sweden)

    Swagata Payra

    2014-01-01

    Full Text Available The prediction of fog onset remains difficult despite the progress in numerical weather prediction. It is a complex process and requires adequate representation of the local perturbations in weather prediction models. It mainly depends upon microphysical and mesoscale processes that act within the boundary layer. This study utilizes a multirule based diagnostic (MRD approach using postprocessing of the model simulations for fog predictions. The empiricism involved in this approach is mainly to bridge the gap between mesoscale and microscale variables, which are related to mechanism of the fog formation. Fog occurrence is a common phenomenon during winter season over Delhi, India, with the passage of the western disturbances across northwestern part of the country accompanied with significant amount of moisture. This study implements the above cited approach for the prediction of occurrences of fog and its onset time over Delhi. For this purpose, a high resolution weather research and forecasting (WRF model is used for fog simulations. The study involves depiction of model validation and postprocessing of the model simulations for MRD approach and its subsequent application to fog predictions. Through this approach model identified foggy and nonfoggy days successfully 94% of the time. Further, the onset of fog events is well captured within an accuracy of 30–90 minutes. This study demonstrates that the multirule based postprocessing approach is a useful and highly promising tool in improving the fog predictions.

  16. Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837

    Science.gov (United States)

    Levy, Roy

    2014-01-01

    Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…

  17. Modeling Diagnostic Assessments with Bayesian Networks

    Science.gov (United States)

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  18. Research on Fault Diagnostic System in CVT Based on UDS

    Directory of Open Access Journals (Sweden)

    Jiande Wang

    2015-01-01

    Full Text Available A communication model of diagnostic network and implementation of unified diagnostic services (UDS based on controller area network (CAN bus are presented in this paper, and fault diagnostic function of transmission control unit (TCU, USB- (universal serial bus- CAN hardware and software modules, and fault diagnostic software based on personal computer (PC are designed. Model diagnostic method is applied on ratio control, and fault diagnostic system is tested in vehicle.

  19. Testing Expert-Based versus Student-Based Cognitive Models for a Grade 3 Diagnostic Mathematics Assessment

    Science.gov (United States)

    Roduta Roberts, Mary; Alves, Cecilia B.; Chu, Man-Wai; Thompson, Margaret; Bahry, Louise M.; Gotzmann, Andrea

    2014-01-01

    The purpose of this study was to evaluate the adequacy of three cognitive models, one developed by content experts and two generated from student verbal reports for explaining examinee performance on a grade 3 diagnostic mathematics test. For this study, the items were developed to directly measure the attributes in the cognitive model. The…

  20. A diagnostic interface for the ICOsahedral Non-hydrostatic (ICON) modelling framework based on the Modular Earth Submodel System (MESSy v2.50)

    Science.gov (United States)

    Kern, Bastian; Jöckel, Patrick

    2016-10-01

    Numerical climate and weather models have advanced to finer scales, accompanied by large amounts of output data. The model systems hit the input and output (I/O) bottleneck of modern high-performance computing (HPC) systems. We aim to apply diagnostic methods online during the model simulation instead of applying them as a post-processing step to written output data, to reduce the amount of I/O. To include diagnostic tools into the model system, we implemented a standardised, easy-to-use interface based on the Modular Earth Submodel System (MESSy) into the ICOsahedral Non-hydrostatic (ICON) modelling framework. The integration of the diagnostic interface into the model system is briefly described. Furthermore, we present a prototype implementation of an advanced online diagnostic tool for the aggregation of model data onto a user-defined regular coarse grid. This diagnostic tool will be used to reduce the amount of model output in future simulations. Performance tests of the interface and of two different diagnostic tools show, that the interface itself introduces no overhead in form of additional runtime to the model system. The diagnostic tools, however, have significant impact on the model system's runtime. This overhead strongly depends on the characteristics and implementation of the diagnostic tool. A diagnostic tool with high inter-process communication introduces large overhead, whereas the additional runtime of a diagnostic tool without inter-process communication is low. We briefly describe our efforts to reduce the additional runtime from the diagnostic tools, and present a brief analysis of memory consumption. Future work will focus on optimisation of the memory footprint and the I/O operations of the diagnostic interface.

  1. Development of a Diagnostic and Remedial Learning System Based on an Enhanced Concept--Effect Model

    Science.gov (United States)

    Panjaburees, Patcharin; Triampo, Wannapong; Hwang, Gwo-Jen; Chuedoung, Meechoke; Triampo, Darapond

    2013-01-01

    With the rapid advances in computer technology during recent years, researchers have demonstrated the pivotal influences of computer-assisted diagnostic systems on student learning performance improvement. This research aims to develop a Diagnostic and Remedial Learning System (DRLS) for an algebra course in a Thai lower secondary school context…

  2. Rocket engine diagnostics using qualitative modeling techniques

    Science.gov (United States)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  3. Knowledge based diagnostics in nuclear power plants

    International Nuclear Information System (INIS)

    In the paper to be given a special process diagnostic system (PDS) will be presented, taking into account corresponding user experiences. It must be seen the result of a long term work on computerized process surveillance and control on NPP; it includes a model based system for noise analysis of mechanical vibrations, which has been enhanced by using of knowledge based technique (expert systems). The paper will discuss the process diagnostic frame concept and emphasize the vibration analysis expertsystem RADEX, with the parts modelling (building a knowledge base), man-machine communication aspects, implementation. (author). 5 refs, 5 figs

  4. Cotton-based diagnostic devices.

    Science.gov (United States)

    Lin, Shang-Chi; Hsu, Min-Yen; Kuan, Chen-Meng; Wang, Hsi-Kai; Chang, Chia-Ling; Tseng, Fan-Gang; Cheng, Chao-Min

    2014-01-01

    A good diagnostic procedure avoids wasting medical resources, is easy to use, resists contamination, and provides accurate information quickly to allow for rapid follow-up therapies. We developed a novel diagnostic procedure using a "cotton-based diagnostic device" capable of real-time detection, i.e., in vitro diagnostics (IVD), which avoids reagent contamination problems common to existing biomedical devices and achieves the abovementioned goals of economy, efficiency, ease of use, and speed. Our research reinforces the advantages of an easy-to-use, highly accurate diagnostic device created from an inexpensive and readily available U.S. FDA-approved material (i.e., cotton as flow channel and chromatography paper as reaction zone) that adopts a standard calibration curve method in a buffer system (i.e., nitrite, BSA, urobilinogen and uric acid assays) to accurately obtain semi-quantitative information and limit the cross-contamination common to multiple-use tools. Our system, which specifically targets urinalysis diagnostics and employs a multiple biomarker approach, requires no electricity, no professional training, and is exceptionally portable for use in remote or home settings. This could be particularly useful in less industrialized areas. PMID:25393975

  5. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Sean Patrick; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji

    2014-11-01

    We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

  6. On-line experimental validation of a model-based diagnostic algorithm dedicated to a solid oxide fuel cell system

    Science.gov (United States)

    Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas

    2016-02-01

    In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.

  7. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  8. Growth curve models and statistical diagnostics

    CERN Document Server

    Pan, Jian-Xin

    2002-01-01

    Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.

  9. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen; Heaney, Michael; Jin, Xin; Robertson, Joseph; Cheung, Howard; Elmore, Ryan; Henze, Gregor

    2016-08-26

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energy models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.

  10. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen; Heaney, Michael; Jin, Xin; Robertson, Joseph; Cheung, Howard; Elmore, Ryan; Henze, Gregor

    2016-08-01

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energy models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.

  11. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  12. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    International Nuclear Information System (INIS)

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models

  13. DNA Microarray-Based Diagnostics.

    Science.gov (United States)

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications. PMID:26614075

  14. DNA Microarray-Based Diagnostics.

    Science.gov (United States)

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.

  15. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  16. Integrated Case-Based Applied Pathology (ICAP): a diagnostic-approach model for the learning and teaching of veterinary pathology.

    Science.gov (United States)

    Krockenberger, Mark B; Bosward, Katrina L; Canfield, Paul J

    2007-01-01

    Integrative Case-Based Applied Pathology (ICAP) cases form one component of learning and understanding the role of pathology in the veterinary diagnostic process at the Faculty of Veterinary Science, University of Sydney. It is a strategy that focuses on student-centered learning in a problem-solving context in the year 3 curriculum. Learning exercises use real case material and are primarily delivered online, providing flexibility for students with differing learning needs, who are supported by online, peer, and tutor support. The strategy relies heavily on the integration of pre-clinical and para-clinical information with the introduction of clinical material for the purposes of a logical three-level, problem-oriented approach to the diagnosis of disease. The focus is on logical diagnostic problem solving, primarily using gross pathology and histopathological material, with the inclusion of microbiological, parasitological, and clinical pathological data. The ICAP approach is linked to and congruent with the problem-oriented approach adopted in veterinary medicine and the case-based format used by one of the authors (PJC) for the teaching and learning of veterinary clinical pathology in year 4. Additionally, final-year students have the opportunity, during a diagnostic pathology rotation, to assist in the development and refinement of further ICAPs, which reinforces the importance of pathology in the veterinary diagnostic process. Evidence of the impact of the ICAP approach, based primarily on student surveys and staff peer feedback collected over five years, shows that discipline-specific learning, vertical and horizontal integration, alignment of learning outcomes and assessment, and both veterinary and generic graduate attributes were enhanced. Areas for improvement were identified in the approach, most specifically related to assistance in the development of generic teamwork skills.

  17. A Causal Model for Diagnostic Reasoning

    Institute of Scientific and Technical Information of China (English)

    PENG Guoqiang; CHENG Hu

    2000-01-01

    Up to now, there have been many methods for knowledge representation and reasoning in causal networks, but few of them include the research on the coactions of nodes. In practice, ignoring these coactions may influence the accuracy of reasoning and even give rise to incorrect reasoning. In this paper, based on multilayer causal networks, the definitions on coaction nodes are given to construct a new causal network called Coaction Causal Network, which serves to construct a model of neural network for diagnosis followed by fuzzy reasoning, and then the activation rules are given and neural computing methods are used to finish the diagnostic reasoning. These methods are proved in theory and a method of computing the number of solutions for the diagnostic reasoning is given. Finally, the experiments and the conclusions are presented.

  18. Modelling reflections on ITER CXRS diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Cantarini, J. [Max Planck Institute, Greifswald (Germany); Barnsley, R.; Thomas, D. [ITER Organization, Saint Paul les Durance (France)

    2011-07-01

    Modelling reflections on ITER will yield important input data for the design of all IR-Vis-UV diagnostics. The outcome of modelling reflections enables us to describe how parasitic light entering a collection optic will affect the signal-to-noise ratio of the measurement. The deterioration of the signal by stray light could be especially significant for optical diagnostics, such as the Charge exchange Recombination Spectroscopy (CXRS) diagnostic, which suffer from high attenuation of the dedicated diagnostic beam and important background radiation (Bremsstrahlung and first wall light reflection of the diagnostic beam). In order to quantify the deterioration of the CXRS diagnostic signal which is the main measurement tool for the ion temperature profile and helium concentration, an analysis of parasitic light within the ITER vessel has been made. This study is supported by the light modelling software package Light Tools which has adapted solid modelling technology to accommodate the inherent accuracy required to simulate ray paths of light as they traverse through, and within, optical elements and mechanical structures. Therefore as a first study, different specular distribution scenarios of monochromatic visible parasitic light provided by reflections of a simplified model of the ITER first wall have been investigated at the Upper Port 3 and Equatorial Port 3 input of the CXRS diagnostic. The corresponding signal-to-noise ratios have been calculated as well. (authors)

  19. A Multi-Expert Approach for Developing Testing and Diagnostic Systems Based on the Concept-Effect Model

    Science.gov (United States)

    Panjaburee, Patcharin; Hwang, Gwo-Jen; Triampo, Wannapong; Shih, Bo-Ying

    2010-01-01

    With the popularization of computer and communication technologies, researchers have attempted to develop computer-assisted testing and diagnostic systems to help students improve their learning performance on the Internet. In developing a diagnostic system for detecting students' learning problems, it is difficult for individual teachers to…

  20. Nanotechnology based diagnostics for neurological disorders

    International Nuclear Information System (INIS)

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  1. Nanotechnology based diagnostics for neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Nicholas S.; Chandra, Sathees B., E-mail: schandra@roosevelt.edu [Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL (United States)

    2012-07-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  2. ELECTRIC MOTOR DIAGNOSTICS OF SWITCHES BASED ON THE NEURAL NETWORK DATA MODELING THE SPECTRAL DECOMPOSITION OF THE CURRENTS

    Directory of Open Access Journals (Sweden)

    O. M. Shvets

    2009-07-01

    Full Text Available The method of automated diagnostics of electric motors is offered. It uses a neural network revealing the electric motor faults on the basis of analysis of frequency spectrum of current flowing through the motor.

  3. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  4. Symptom diagnostics based on clinical records

    NARCIS (Netherlands)

    de Jong, Marianne; Punt, Marja; de Groot, Erik; Hielkema, Tjitske; Struik, Marianne; Minderaa, Ruud B.; Hadders-Algra, Mijna

    2009-01-01

    Child psychiatric diagnoses are generally based on a clinical examination and not on standardized questionnaires. The present study assessed whether symptom diagnostics based on clinical records facilitates the use of non-standardized clinical material for research. Six hundred and eighty-five child

  5. Diagnostic and assessment models patterns

    Directory of Open Access Journals (Sweden)

    Maria Cristina Núñez Martínez

    2009-12-01

    Full Text Available A bibliographic review was carried out about the professional competence assessment of human resources in the Health System and the main characteristics of different models that contribute to their improvement, establishing direct links with the present context of National Health System in Cuba. We include trends and common practices related with assessment models, highlighting those aspects associated with professional competence assessment and its inclusion in the dynamic of a strategy to increase the quality of human resources in Health Services. It has been proved that the appropriate assessment of competences among these professionals assures, through its results, to make valuable decisions on the need of knowledge associated with skills and attitudes that should be present in their daily professional practice.

  6. Facial-paralysis diagnostic system based on 3D reconstruction

    Science.gov (United States)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  7. Diagnostic indicators for integrated assessment models of climate policy

    Energy Technology Data Exchange (ETDEWEB)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Mejean, Aurelie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economic systems can be performed by a variety of models with different functional structures. This article proposes a diagnostic scheme that can be applied to a wide range of integrated assessment models to classify differences among models based on their carbon price responses. Model diagnostics can uncover patterns and provide insights into why, under a given scenario, certain types of models behave in observed ways. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnostic indicators to characterize model responses to carbon price signals and test these in a diagnostic study with 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to more easily explain variations among policy-relevant model results.

  8. Diagnostic tests based on human basophils

    DEFF Research Database (Denmark)

    Kleine-Tebbe, Jörg; Erdmann, Stephan; Knol, Edward F;

    2006-01-01

    -maximal responses, termed 'intrinsic sensitivity'. These variables give rise to shifts in the dose-response curves which, in a diagnostic setting where only a single antigen concentration is employed, may produce false-negative data. Thus, in order to meaningfully utilize the current basophil activation tests....... Diagnostic studies using CD63 or CD203c in hymenoptera, food and drug allergy are critically discussed. Basophil-based tests are indicated for allergy testing in selected cases but should only be performed by experienced laboratories.......Human basophils are important tools for studying immediate-type hypersensitivity reactions since they release a variety of mediators (e.g., histamine, leukotriene C4, IL-4 and IL-13) following allergen triggering. Several diagnostic tools have been introduced that measure either leukotriene...

  9. Methodology, models and algorithms in thermographic diagnostics

    CERN Document Server

    Živčák, Jozef; Madarász, Ladislav; Rudas, Imre J

    2013-01-01

    This book presents  the methodology and techniques of  thermographic applications with focus primarily on medical thermography implemented for parametrizing the diagnostics of the human body. The first part of the book describes the basics of infrared thermography, the possibilities of thermographic diagnostics and the physical nature of thermography. The second half includes tools of intelligent engineering applied for the solving of selected applications and projects. Thermographic diagnostics was applied to problematics of paraplegia and tetraplegia and carpal tunnel syndrome (CTS). The results of the research activities were created with the cooperation of the four projects within the Ministry of Education, Science, Research and Sport of the Slovak Republic entitled Digital control of complex systems with two degrees of freedom, Progressive methods of education in the area of control and modeling of complex object oriented systems on aircraft turbocompressor engines, Center for research of control of te...

  10. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  11. Modelling of JET diagnostics using Bayesian Graphical Models

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.

    2011-07-01

    The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This

  12. Surface CUrrents from a Diagnostic model (SCUD): Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SCUD data product is an estimate of upper-ocean velocities computed from a diagnostic model (Surface CUrrents from a Diagnostic model). This model makes daily...

  13. Bayesian Diagnostic Network: A Powerful Model for Representation and Reasoning of Engineering Diagnostic Knowledge

    Institute of Scientific and Technical Information of China (English)

    HU Zhao-yong

    2005-01-01

    Engineering diagnosis is essential to the operation of industrial equipment. The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesian network is a powerful tool for it. This paper utilizes the Bayesian network to represent and reason diagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologic structure based on operating conditions, possible faults and corresponding symptoms. The paper also discusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gas turbine diagnosis is constructed on a platform developed under a Visual C++ environment. It shows that the Bayesian network is a powerful model for representation and reasoning of diagnostic knowledge. The three-layer structure and the approximate algorithm are effective also.

  14. A general diagnostic model applied to language testing data.

    Science.gov (United States)

    von Davier, Matthias

    2008-11-01

    Probabilistic models with one or more latent variables are designed to report on a corresponding number of skills or cognitive attributes. Multidimensional skill profiles offer additional information beyond what a single test score can provide, if the reported skills can be identified and distinguished reliably. Many recent approaches to skill profile models are limited to dichotomous data and have made use of computationally intensive estimation methods such as Markov chain Monte Carlo, since standard maximum likelihood (ML) estimation techniques were deemed infeasible. This paper presents a general diagnostic model (GDM) that can be estimated with standard ML techniques and applies to polytomous response variables as well as to skills with two or more proficiency levels. The paper uses one member of a larger class of diagnostic models, a compensatory diagnostic model for dichotomous and partial credit data. Many well-known models, such as univariate and multivariate versions of the Rasch model and the two-parameter logistic item response theory model, the generalized partial credit model, as well as a variety of skill profile models, are special cases of this GDM. In addition to an introduction to this model, the paper presents a parameter recovery study using simulated data and an application to real data from the field test for TOEFL Internet-based testing.

  15. Droplet Microfluidics for Chip-Based Diagnostics

    Directory of Open Access Journals (Sweden)

    Karan V. I. S. Kaler

    2014-12-01

    Full Text Available Droplet microfluidics (DMF is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays.

  16. Mixed Portmanteau Test for Diagnostic Checking of Time Series Models

    Directory of Open Access Journals (Sweden)

    Sohail Chand

    2014-01-01

    Full Text Available Model criticism is an important stage of model building and thus goodness of fit tests provides a set of tools for diagnostic checking of the fitted model. Several tests are suggested in literature for diagnostic checking. These tests use autocorrelation or partial autocorrelation in the residuals to criticize the adequacy of fitted model. The main idea underlying these portmanteau tests is to identify if there is any dependence structure which is yet unexplained by the fitted model. In this paper, we suggest mixed portmanteau tests based on autocorrelation and partial autocorrelation functions of the residuals. We derived the asymptotic distribution of the mixture test and studied its size and power using Monte Carlo simulations.

  17. A universal model of diagnostic reasoning.

    Science.gov (United States)

    Croskerry, Pat

    2009-08-01

    Clinical judgment is a critical aspect of physician performance in medicine. It is essential in the formulation of a diagnosis and key to the effective and safe management of patients. Yet, the overall diagnostic error rate remains unacceptably high. In more than four decades of research, a variety of approaches have been taken, but a consensus approach toward diagnostic decision making has not emerged. In the last 20 years, important gains have been made in psychological research on human judgment. Dual-process theory has emerged as the predominant approach, positing two systems of decision making, System 1 (heuristic, intuitive) and System 2 (systematic, analytical). The author proposes a schematic model that uses the theory to develop a universal approach toward clinical decision making. Properties of the model explain many of the observed characteristics of physicians' performance. Yet the author cautions that not all medical reasoning and decision making falls neatly into one or the other of the model's systems, even though they provide a basic framework incorporating the recognized diverse approaches. He also emphasizes the complexity of decision making in actual clinical situations and the urgent need for more research to help clinicians gain additional insight and understanding regarding their decision making.

  18. Web4diagnostics - experience with web-based diagnostic systems in power plants

    International Nuclear Information System (INIS)

    At SMORN 8, a new web-based diagnostic system - web4diagnostics - was presented (Kunze, 2002). During the last two years, this system became the standard diagnostic system infrastructure for internal use in Siemens Power Generation, which integrates a large data archive of measured data and capabilities for data analysis and evaluation. Besides this internal use, today some 15 power plants worldwide use web4diagnostics in their companies communication network. Essential features are: monitoring and diagnostic information are provided in HTML page format; diagnosis can be performed on any suitable machine in the computer network; a 'central diagnostic laboratory' can be configured as a virtual facility using the existing IT infrastructure; analysis results can be accessed from any computer in the information network, only a web browser is required. The system employs well-known standard diagnostic modules and also owns tools such as operational based limit surveillance, automatic report generation and automatic information in case of deviations. (author)

  19. A traceability framework for diagnostics of global land models

    Science.gov (United States)

    Luo, Yiqi; Xia, Jianyang; Liang, Junyi; Jiang, Lifen; Shi, Zheng; KC, Manoj; Hararuk, Oleksandra; Rafique, Rashid; Wang, Ying-Ping

    2015-04-01

    The biggest impediment to model diagnostics and improvement at present is model intractability. The more processes incorporated, the more difficult it becomes to understand or evaluate model behavior. As a result, uncertainty in predictions among global land models cannot be easily diagnosed and attributed to their sources. We have recently developed an approach to analytically decompose a complex land model into traceable components based on mutually independent properties of modeled core biogeochemical processes. As all global land carbon models share those common properties, this traceability framework is applicable to all of them to improve their tractability. Indeed, we have applied the traceability framework to improve model diagnostics in several aspects. First, we have applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model and Community Land Model version 3.5 (CLM3.5) to identify sources of those model differences. The major causes of different predictions were found to be parameter setting related to carbon input and baseline residence times between the two models. Second, we have used the framework to diagnose impacts of adding nitrogen processes into CABLE on its carbon simulation. Adding nitrogen processes not only reduces net primary production but also shortens residence times in the CABLE model. Third, the framework helps isolate components of CLM3.5 for data assimilation. Data assimilation with global land models has been computationally extremely difficult. By isolating traceable components, we have improved parameterization of CLM3.4 related to soil organic decomposition, microbial kinetics and carbon use efficiency, and litter decomposition. Further, we are currently developing the traceability framework to analyze transient simulations of models that were involved in the coupled Model Intercomparison Project Phase 5 (CMIP5) to improve our understanding on parameter space of global carbon models. This

  20. Atomic Models for Motional Stark Effects Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K

    2007-07-26

    We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.

  1. Modelling the Spoon IRS diagnostic diagram

    CERN Document Server

    Rowan-Robinson, Michael

    2009-01-01

    We explore whether our models for starbursts, quiescent star-forming galaxies and for AGN dust tori are able to model the full range of IRS spectra measured with Spitzer. The diagnostic plot of 9.7 mu silicate optical depth versus 6.2 mu PAH equivalent width, introduced by Spoon and coworkers in 2007, gives a good indication of the age and optical depth of a starburst, and of the contribution of an AGN dust torus. However there is aliasing between age and optical depth at later times in the evolution of a starburst, and between age and the presence of an AGN dust torus. Modeling the full IRS spectra and using broad-band 25-850 mu fluxes can help to resolve these aliases. The observed spectral energy distributions require starbursts of a range of ages with initial dust optical depth ranging from 50-200, optically thin dust emission ('cirrus') illuminated by a range of surface brightnesses of the interstellar radiation field, and AGN dust tori with a range of viewing angles.

  2. Defining Characteristics of Diagnostic Classification Models and the Problem of Retrofitting in Cognitive Diagnostic Assessment

    Science.gov (United States)

    Gierl, Mark J.; Cui, Ying

    2008-01-01

    One promising application of diagnostic classification models (DCM) is in the area of cognitive diagnostic assessment in education. However, the successful application of DCM in educational testing will likely come with a price--and this price may be in the form of new test development procedures and practices required to yield data that satisfy…

  3. Physical Modeling for Anomaly Diagnostics and Prognostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop developed an innovative, model-driven anomaly diagnostic and fault characterization system for electromechanical actuator (EMA) systems to mitigate...

  4. Introduction to DNA-Based Genetic Diagnostics

    OpenAIRE

    Glickman, Richard M.; Phillips, M. Ann; Glickman, Barry W.

    1988-01-01

    Molecular biology and recombinant DNA technology are beginning to have an effect on the medical health care field, particularly in the area of clinical genetics. Dramatic improvements in the prerequisite technology are in the process of being transferred from the research lab to routine clinical laboratories. The general practitioner, along with his genetic diagnostic colleagues, can soon expect to have access to accurate and reliable diagnostic assays for a wide variety of genetic disorders....

  5. Diagnostic reasoning using qualitative causal models

    International Nuclear Information System (INIS)

    The application of expert systems to reasoning problems involving real-time data from plant measurements has been a topic of much research, but few practical systems have been deployed. One obstacle to wider use of expert systems in applications involving real-time data is the lack of adequate knowledge representation methodologies for dynamic processes. Knowledge bases composed mainly of rules have disadvantages when applied to dynamic processes and real-time data. This paper describes a methodology for the development of qualitative causal models that can be used as knowledge bases for reasoning about process dynamic behavior. These models provide a systematic method for knowledge base construction, considerably reducing the engineering effort required. They also offer much better opportunities for verification and validation of the knowledge base, thus increasing the possibility of the application of expert systems to reasoning about mission critical systems. Starting with the Signed Directed Graph (SDG) method that has been successfully applied to describe the behavior of diverse dynamic processes, the paper shows how certain non-physical behaviors that result from abstraction may be eliminated by applying causal constraint to the models. The resulting Extended Signed Directed Graph (ESDG) may then be compiled to produce a model for use in process fault diagnosis. This model based reasoning methodology is used in the MOBIAS system being developed by Duke Power Company under EPRI sponsorship. 15 refs., 4 figs

  6. Diagnostics and future evolution analysis of the two parametric models

    CERN Document Server

    Yang, Guang; Meng, Xinhe

    2016-01-01

    In this paper, we apply three diagnostics including $Om$, Statefinder hierarchy and the growth rate of perturbations into discriminating the two parametric models for the effective pressure with the $\\Lambda$CDM model. By using the $Om$ diagnostic, we find that both the model 1 and the model 2 can be hardly distinguished from each other as well as the $\\Lambda$CDM model in terms of 68\\% confidence level. As a supplement, by using the Statefinder hierarchy diagnostics and the growth rate of perturbations, we discover that not only can our two parametric models be well distinguished from $\\Lambda$CDM model, but also, by comparing with $Om$ diagnostic, the model 1 and the model 2 can be distinguished better from each other. In addition, we also explore the fate of universe evolution of our two models by means of the rip analysis.

  7. Toward Validation of the Diagnostic-Prescriptive Model

    Science.gov (United States)

    Ysseldyke, James E.; Sabatino, David A.

    1973-01-01

    Criticized are recent research efforts to validate the diagnostic prescriptive model of remediating learning disabilities, and proposed is a 6-step psychoeducational model designed to ascertain links between behavioral differences and instructional outcomes. (DB)

  8. Beam Loss Diagnostics Based on Pressure Measurements

    CERN Document Server

    Weinrich, U

    2003-01-01

    The GSI is operating a heavy ion synchrotron, which is currently undergoing an upgrade towards higher beam intensities. It was discovered that beam losses induce a significant pressure increase in the vacuum system. In order to detect the time constants of the pressure increase and decrease, fast total pressure measurements were put into operation. With the recently installed partial pressure diagnostics it is also possible to follow up which types of molecules are released. The presentation will focus on the different techniques applied as well as on some measurement results. The potential and difficulties of this diagnostic tool will also be discussed.

  9. Data mining approach to model the diagnostic service management.

    Science.gov (United States)

    Lee, Sun-Mi; Lee, Ae-Kyung; Park, Il-Su

    2006-01-01

    Korea has National Health Insurance Program operated by the government-owned National Health Insurance Corporation, and diagnostic services are provided every two year for the insured and their family members. Developing a customer relationship management (CRM) system using data mining technology would be useful to improve the performance of diagnostic service programs. Under these circumstances, this study developed a model for diagnostic service management taking into account the characteristics of subjects using a data mining approach. This study could be further used to develop an automated CRM system contributing to the increase in the rate of receiving diagnostic services. PMID:17102454

  10. Autofluorescence based diagnostic techniques for oral cancer

    OpenAIRE

    Balasubramaniam, A. Murali; Sriraman, Rajkumari; Sindhuja, P; Mohideen, Khadijah; Parameswar, R. Arjun; Muhamed Haris, K. T.

    2015-01-01

    Oral cancer is one of the most common cancers worldwide. Despite of various advancements in the treatment modalities, oral cancer mortalities are more, particularly in developing countries like India. This is mainly due to the delay in diagnosis of oral cancer. Delay in diagnosis greatly reduces prognosis of the treatment and also cause increased morbidity and mortality rates. Early diagnosis plays a key role in effective management of oral cancer. A rapid diagnostic technique can greatly aid...

  11. Diagnostics

    DEFF Research Database (Denmark)

    Donné, A.J.H.; Costley, A.E.; Barnsley, R.;

    2007-01-01

    on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R...

  12. Development of a Model-tracing Intelligent Tutor in Diagnostic Pathology

    OpenAIRE

    Crowley, Rebecca S; Monaco, Valerie

    2001-01-01

    We report on the design and development of an intelligent tutoring system in diagnostic pathology. Based on a cognitive model of skill in this domain, the system provides individualized instruction to students. An underlying production-rule system models diagnostic skills as a set of production-rules and domain knowledge as a set of working-memory elements. The model-tracing aspect of the system guides the student to correctly search a slide, identify relevant evidence, and formulate and test...

  13. Google glass based immunochromatographic diagnostic test analysis

    Science.gov (United States)

    Feng, Steve; Caire, Romain; Cortazar, Bingen; Turan, Mehmet; Wong, Andrew; Ozcan, Aydogan

    2015-03-01

    Integration of optical imagers and sensors into recently emerging wearable computational devices allows for simpler and more intuitive methods of integrating biomedical imaging and medical diagnostics tasks into existing infrastructures. Here we demonstrate the ability of one such device, the Google Glass, to perform qualitative and quantitative analysis of immunochromatographic rapid diagnostic tests (RDTs) using a voice-commandable hands-free software-only interface, as an alternative to larger and more bulky desktop or handheld units. Using the built-in camera of Glass to image one or more RDTs (labeled with Quick Response (QR) codes), our Glass software application uploads the captured image and related information (e.g., user name, GPS, etc.) to our servers for remote analysis and storage. After digital analysis of the RDT images, the results are transmitted back to the originating Glass device, and made available through a website in geospatial and tabular representations. We tested this system on qualitative human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) RDTs. For qualitative HIV tests, we demonstrate successful detection and labeling (i.e., yes/no decisions) for up to 6-fold dilution of HIV samples. For quantitative measurements, we activated and imaged PSA concentrations ranging from 0 to 200 ng/mL and generated calibration curves relating the RDT line intensity values to PSA concentration. By providing automated digitization of both qualitative and quantitative test results, this wearable colorimetric diagnostic test reader platform on Google Glass can reduce operator errors caused by poor training, provide real-time spatiotemporal mapping of test results, and assist with remote monitoring of various biomedical conditions.

  14. Technical Note: The Simple Diagnostic Photosynthesis and Respiration Model (SDPRM

    Directory of Open Access Journals (Sweden)

    B. Badawy

    2012-10-01

    Full Text Available We present a Simple Diagnostic Photosynthesis and Respiration Model (SDPRM that has been developed based on pre-existing formulations. The photosynthesis model is based on the light use efficiency logic, suggested by Monteith1977, for calculating the Gross Primary Production (GPP while the ecosystem respiration (Reco model is based on the formulations introduced by Lloyd1994 and modified by Reichstein2003. SDPRM is driven by satellite-derived fAPAR (fraction of Absorbed Photosynthetically Active Radiation and climate data from NCEP/NCAR. The model estimates 3-hourly values of GPP for seven major biomes and daily Reco. The motivation is to provide a-priori fields of surface CO2 fluxes with fine temporal and spatial scales, and their derivatives with respect to adjustable model parameters, for atmospheric CO2 inversions. The estimated fluxes from SDPRM showed that the model is capable of producing flux estimates consistent with the ones inferred from atmospheric CO2 inversion or simulated from process-based models. In this Technical Note, different analyses were carried out to test the sensitivity of the estimated fluxes of GPP and Reco to their driving forces. The spatial patterns of the climatic controls (temperature, precipitation, water on the interannual variability of GPP are consistent with previous studies even though SDPRM has a very simple structure and few adjustable parameters, and hence it is much easier to modify than more sophisticated process-based models used in these previous studies. According to SDPRM, the results show that temperature is a limiting factor for the interannual variability of Reco over the cold boreal forest, while precipitation is the main limiting factor of Reco over the tropics and the southern hemisphere, consistent with previous regional studies.

  15. Silk-based blood stabilization for diagnostics.

    Science.gov (United States)

    Kluge, Jonathan A; Li, Adrian B; Kahn, Brooke T; Michaud, Dominique S; Omenetto, Fiorenzo G; Kaplan, David L

    2016-05-24

    Advanced personalized medical diagnostics depend on the availability of high-quality biological samples. These are typically biofluids, such as blood, saliva, or urine; and their collection and storage is critical to obtain reliable results. Without proper temperature regulation, protein biomarkers in particular can degrade rapidly in blood samples, an effect that ultimately compromises the quality and reliability of laboratory tests. Here, we present the use of silk fibroin as a solid matrix to encapsulate blood analytes, protecting them from thermally induced damage that could be encountered during nonrefrigerated transportation or freeze-thaw cycles. Blood samples are recovered by simple dissolution of the silk matrix in water. This process is demonstrated to be compatible with a number of immunoassays and provides enhanced sample preservation in comparison with traditional air-drying paper approaches. Additional processing can remediate interactions with conformational structures of the silk protein to further enhance blood stabilization and recovery. This approach can provide expanded utility for remote collection of blood and other biospecimens empowering new modalities of temperature-independent remote diagnostics. PMID:27162330

  16. Assessing Fit of Cognitive Diagnostic Models: A Case Study

    Science.gov (United States)

    Sinharay, Sandip; Almond, Russell G.

    2007-01-01

    A cognitive diagnostic model uses information from educational experts to describe the relationships between item performances and posited proficiencies. When the cognitive relationships can be described using a fully Bayesian model, Bayesian model checking procedures become available. Checking models tied to cognitive theory of the domains…

  17. Diagnostic and Prognostic Models for Generator Step-Up Transformers

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Agarwal; Nancy J. Lybeck; Binh T. Pham

    2014-09-01

    In 2014, the online monitoring (OLM) of active components project under the Light Water Reactor Sustainability program at Idaho National Laboratory (INL) focused on diagnostic and prognostic capabilities for generator step-up transformers. INL worked with subject matter experts from the Electric Power Research Institute (EPRI) to augment and revise the GSU fault signatures previously implemented in the Electric Power Research Institute’s (EPRI’s) Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. Two prognostic models were identified and implemented for GSUs in the FW-PHM Suite software. INL and EPRI demonstrated the use of prognostic capabilities for GSUs. The complete set of fault signatures developed for GSUs in the Asset Fault Signature Database of the FW-PHM Suite for GSUs is presented in this report. Two prognostic models are described for paper insulation: the Chendong model for degree of polymerization, and an IEEE model that uses a loading profile to calculates life consumption based on hot spot winding temperatures. Both models are life consumption models, which are examples of type II prognostic models. Use of the models in the FW-PHM Suite was successfully demonstrated at the 2014 August Utility Working Group Meeting, Idaho Falls, Idaho, to representatives from different utilities, EPRI, and the Halden Research Project.

  18. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics.

    Science.gov (United States)

    Choi, Jane Ru; Tang, Ruihua; Wang, ShuQi; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2015-12-15

    Nucleic acid testing (NAT), as a molecular diagnostic technique, including nucleic acid extraction, amplification and detection, plays a fundamental role in medical diagnosis for timely medical treatment. However, current NAT technologies require relatively high-end instrumentation, skilled personnel, and are time-consuming. These drawbacks mean conventional NAT becomes impractical in many resource-limited disease-endemic settings, leading to an urgent need to develop a fast and portable NAT diagnostic tool. Paper-based devices are typically robust, cost-effective and user-friendly, holding a great potential for NAT at the point of care. In view of the escalating demand for the low cost diagnostic devices, we highlight the beneficial use of paper as a platform for NAT, the current state of its development, and the existing challenges preventing its widespread use. We suggest a strategy involving integrating all three steps of NAT into one single paper-based sample-to-answer diagnostic device for rapid medical diagnostics in the near future.

  19. Diagnostic checking for conditional heteroscedasticity models

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We suggest the score type tests for goodness-of-fit of conditional heteroscedasticity models in both univariate and multivariate time series.The tests can detect the alternatives converging to the null at a parametric rate.Weight functions are involved in the construction of the tests,which provides us with the flexibility to choose scores,especially under directional alternatives,for enhancing power performance.Furthermore,when the alternatives are not directional,we construct asymptotically distribution-free maximin tests for a large class of alternatives.A possibility to construct score-based omnibus tests is discussed when the alternative is saturated.The power performance is also investigated.A simulation study is carried out and a real data is analyzed.

  20. Current development of saliva/oral fluid-based diagnostics.

    Science.gov (United States)

    Yeh, Chih-Ko; Christodoulides, Nicolaos J; Floriano, Pierre N; Miller, Craig S; Ebersole, Jeffrey L; Weigum, Shannon E; McDevitt, John; Redding, Spencer W

    2010-07-01

    Saliva can be easily obtained in medical and non-medical settings, and contains numerous bio-molecules, including those typically found in serum for disease detection and monitoring. In the past two decades, the achievements of high-throughput approaches afforded by biotechnology and nanotechnology allow for disease-specific salivary biomarker discovery and establishment of rapid, multiplex, and miniaturized analytical assays. These developments have dramatically advanced saliva-based diagnostics. In this review, we discuss the current consensus on development of saliva/oral fluid-based diagnostics and provide a summary of recent research advancements of the Texas-Kentucky Saliva Diagnostics Consortium. In the foreseeable future, current research on saliva based diagnostic methods could revolutionize health care.

  1. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Moges, Edom M.; Demissie, Yonas; Li, Hongyi

    2016-05-18

    In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integrate expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.

  2. Structural Equation Modeling Diagnostics Using R Package Semdiag and EQS

    Science.gov (United States)

    Yuan, Ke-Hai; Zhang, Zhiyong

    2012-01-01

    Yuan and Hayashi (2010) introduced 2 scatter plots for model and data diagnostics in structural equation modeling (SEM). However, the generation of the plots requires in-depth understanding of their underlying technical details. This article develops and introduces an R package semdiag for easily drawing the 2 plots. With a model specified in EQS…

  3. A Pilot Study on Modeling of Diagnostic Criteria Using OWL and SWRL.

    Science.gov (United States)

    Hong, Na; Jiang, Guoqian; Pathak, Jyotishiman; Chute, Christopher G

    2015-01-01

    The objective of this study is to describe our efforts in a pilot study on modeling diagnostic criteria using a Semantic Web-based approach. We reused the basic framework of the ICD-11 content model and refined it into an operational model in the Web Ontology Language (OWL). The refinement is based on a bottom-up analysis method, in which we analyzed data elements (including value sets) in a collection (n=20) of randomly selected diagnostic criteria. We also performed a case study to formalize rule logic in the diagnostic criteria of metabolic syndrome using the Semantic Web Rule Language (SWRL). The results demonstrated that it is feasible to use OWL and SWRL to formalize the diagnostic criteria knowledge, and to execute the rules through reasoning. PMID:26262392

  4. A Pilot Study on Modeling of Diagnostic Criteria Using OWL and SWRL.

    Science.gov (United States)

    Hong, Na; Jiang, Guoqian; Pathak, Jyotishiman; Chute, Christopher G

    2015-01-01

    The objective of this study is to describe our efforts in a pilot study on modeling diagnostic criteria using a Semantic Web-based approach. We reused the basic framework of the ICD-11 content model and refined it into an operational model in the Web Ontology Language (OWL). The refinement is based on a bottom-up analysis method, in which we analyzed data elements (including value sets) in a collection (n=20) of randomly selected diagnostic criteria. We also performed a case study to formalize rule logic in the diagnostic criteria of metabolic syndrome using the Semantic Web Rule Language (SWRL). The results demonstrated that it is feasible to use OWL and SWRL to formalize the diagnostic criteria knowledge, and to execute the rules through reasoning.

  5. Performance-analysis-based gas turbine diagnostics: a review.

    OpenAIRE

    Li, Y.G.

    2002-01-01

    Gas turbine diagnostics has a history almost as long as gas turbine development itself. Early engine fault diagnosis was carried out based on manufacturer information supplied in a technical manual combined with maintenance experience. In the late 1960’s when Urban introduced Gas Path Analysis, gas turbine diagnostics made a big breakthrough. Since then different methods have been developed and used in both aero and industrial applications. Until now a substantial number of papers have been p...

  6. Technical Note: The Simple Diagnostic Photosynthesis and Respiration Model (SDPRM)

    Science.gov (United States)

    Badawy, B.; Rödenbeck, C.; Reichstein, M.; Carvalhais, N.; Heimann, M.

    2013-10-01

    We present a Simple Diagnostic Photosynthesis and Respiration Model (SDPRM) that has been developed based on pre-existing formulations. The photosynthesis model is based on the light use efficiency logic for calculating the gross primary production (GPP), while the ecosystem respiration (Reco) is a modified version of an Arrhenius-type equation. SDPRM is driven by satellite-derived fAPAR (fraction of Absorbed Photosynthetically Active Radiation) and climate data from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP/NCAR). The model estimates 3-hourly values of GPP for seven major biomes and daily Reco. The motivation is to provide a priori fields of surface CO2 fluxes with fine temporal and spatial scales for atmospheric CO2 inversions. The estimated fluxes from SDPRM showed that the model is capable of producing flux estimates consistent with the ones inferred from atmospheric CO2 inversion or simulated from process-based models. In this Technical Note, different analyses were carried out to test the sensitivity of the estimated fluxes of GPP and CO2 to their driving forces. The spatial patterns of the climatic controls (temperature, precipitation, water) on the interannual variability of GPP are consistent with previous studies, even though SDPRM has a very simple structure and few adjustable parameters and hence it is much easier to modify in an inversion than more sophisticated process-based models. In SDPRM, temperature is a limiting factor for the interannual variability of Reco over cold boreal forest, while precipitation is the main limiting factor of Reco over the tropics and the southern hemisphere, consistent with previous regional studies.

  7. Technical Note: The Simple Diagnostic Photosynthesis and Respiration Model (SDPRM

    Directory of Open Access Journals (Sweden)

    B. Badawy

    2013-10-01

    Full Text Available We present a Simple Diagnostic Photosynthesis and Respiration Model (SDPRM that has been developed based on pre-existing formulations. The photosynthesis model is based on the light use efficiency logic for calculating the gross primary production (GPP, while the ecosystem respiration (Reco is a modified version of an Arrhenius-type equation. SDPRM is driven by satellite-derived fAPAR (fraction of Absorbed Photosynthetically Active Radiation and climate data from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP/NCAR. The model estimates 3-hourly values of GPP for seven major biomes and daily Reco. The motivation is to provide a priori fields of surface CO2 fluxes with fine temporal and spatial scales for atmospheric CO2 inversions. The estimated fluxes from SDPRM showed that the model is capable of producing flux estimates consistent with the ones inferred from atmospheric CO2 inversion or simulated from process-based models. In this Technical Note, different analyses were carried out to test the sensitivity of the estimated fluxes of GPP and CO2 to their driving forces. The spatial patterns of the climatic controls (temperature, precipitation, water on the interannual variability of GPP are consistent with previous studies, even though SDPRM has a very simple structure and few adjustable parameters and hence it is much easier to modify in an inversion than more sophisticated process-based models. In SDPRM, temperature is a limiting factor for the interannual variability of Reco over cold boreal forest, while precipitation is the main limiting factor of Reco over the tropics and the southern hemisphere, consistent with previous regional studies.

  8. Research support for plasma diagnostics on Elmo Bumpy Torus - development of a multichannel Hall-probe based diamagnetic diagnostic instrument and observation and modeling of EBT electron rings. Final report, October 1, 1982-September 30, 1983

    International Nuclear Information System (INIS)

    Use of multiple Hall effect probes is a cost effective way to observe diamagnetic fields from the hot electron rings in the Elmo Bumpy Torus device at several locations simultaneously. A special diagnostic instrument has been developed having six Hall probe channels with the sensitivity and stability needed for the diamagnetic measurements. The instrument uses an AC carrier system with isolation transformers located remotely from the instrument and near the probe locations. Details of instrument design as well as operating instructions for it are included in this report

  9. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    Directory of Open Access Journals (Sweden)

    W. Wang

    2015-03-01

    Full Text Available We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic. We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes. There is good agreement (99–135 x 104 km2 between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2. However the uncertainty (1–128 x 104 km2 using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index, while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan

  10. Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle

    Directory of Open Access Journals (Sweden)

    Ewert Linder

    2016-06-01

    Full Text Available Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of “smartphones” is not restricted by limited expertise or limitations set by visual perception of a microscopist. Thus diagnostics currently almost exclusively dependent on recognition of morphological features of pathogenic organisms could be based on additional properties, such as motility characteristics recognizable by computer vision. Of special interest are infectious larval stages and “micro swimmers” of e.g., the schistosome life cycle, which infect the intermediate and definitive hosts, respectively. The ciliated miracidium, emerges from the excreted egg upon its contact with water. This means that for diagnostics, recognition of a swimming miracidium is equivalent to recognition of an egg. The motility pattern of miracidia could be defined by computer vision and used as a diagnostic criterion. To develop motility pattern-based diagnostics of schistosomiasis using simple imaging devices, we analyzed Paramecium as a model for the schistosome miracidium. As a model for invasive nematodes, such as strongyloids and filaria, we examined a different type of motility in the apathogenic nematode Turbatrix, the “vinegar eel.” The results of motion time and frequency analysis suggest that target motility may be expressed as specific spectrograms serving as “diagnostic fingerprints.”

  11. Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle.

    Science.gov (United States)

    Linder, Ewert; Varjo, Sami; Thors, Cecilia

    2016-01-01

    Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of "smartphones" is not restricted by limited expertise or limitations set by visual perception of a microscopist. Thus diagnostics currently almost exclusively dependent on recognition of morphological features of pathogenic organisms could be based on additional properties, such as motility characteristics recognizable by computer vision. Of special interest are infectious larval stages and "micro swimmers" of e.g., the schistosome life cycle, which infect the intermediate and definitive hosts, respectively. The ciliated miracidium, emerges from the excreted egg upon its contact with water. This means that for diagnostics, recognition of a swimming miracidium is equivalent to recognition of an egg. The motility pattern of miracidia could be defined by computer vision and used as a diagnostic criterion. To develop motility pattern-based diagnostics of schistosomiasis using simple imaging devices, we analyzed Paramecium as a model for the schistosome miracidium. As a model for invasive nematodes, such as strongyloids and filaria, we examined a different type of motility in the apathogenic nematode Turbatrix, the "vinegar eel." The results of motion time and frequency analysis suggest that target motility may be expressed as specific spectrograms serving as "diagnostic fingerprints." PMID:27322330

  12. Diagnostic indicators for integrated assessment models of climate policy

    NARCIS (Netherlands)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Valeria Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Méjean, Aurélie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef P.

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economy systems can be performed by a variety of models with different functional structures. In order to provide insights into why results differ between models, this article proposes a diagnostic scheme that can be applied to a wid

  13. Experimental data base of Tokamak KTM physical diagnostics

    International Nuclear Information System (INIS)

    The process of software creation of experimental data storage of Tokamak KTM physical diagnostics based on analysis of storage methods of operating Tokamaks data is considered. Task of specific kinds of information storage is solved; experimental data base that is thr part of system providing information analysis performance in the post-start period is developed.(author)

  14. Comparison of the diagnostic accuracy of commercial NS1-based diagnostic tests for early dengue infection

    OpenAIRE

    Villar Luis A; Bonelo Anilza; Ramirez Meleny; Osorio Lyda; Parra Beatriz

    2010-01-01

    Abstract Background We compared the diagnostic accuracy and reproducibility of commercially available NS1-based dengue tests and explored factors influencing their sensitivities. Methods Paired analysis of 310 samples previously characterized as positive (n = 218) and negative (n = 92) for viral isolation and/or RT-PCR and/or IgM seroconversion. Masked samples were tested by two observers with Platelia™ Dengue NS1 Ag, second generation Pan-E™ Dengue Early ELISA, SD Dengue NS1 Ag ELISA, Dengue...

  15. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Nor Ashidi Mat [Imaging and Intelligent System Research Team (ISRT), School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-05-15

    as mathematical model of clustering technique have been widely used in developing the medical diagnostic systems. The selected features will be classified using mathematical models that embedded engineering theory such as artificial intelligence, support vector machine, neural network and fuzzy-neuro system. These classifiers will provide the diagnostic results without human intervention. Among many publishable researches, several prototypes have been developed namely NeuralPap, Neural Mammo, and Cervix Kit. The former system (NeuralPap) is an automatic intelligent diagnostic system for classifying and distinguishing between the normal and cervical cancerous cells. Meanwhile, the Cervix Kit is a portable Field-programmable gate array (FPGA)-based cervical diagnostic kit that could automatically diagnose the cancerous cell based on the images obtained during sampling test. Besides the cervical diagnostic system, the Neural Mammo system is developed to specifically aid the diagnosis of breast cancer using a fine needle aspiration image.

  16. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    International Nuclear Information System (INIS)

    as mathematical model of clustering technique have been widely used in developing the medical diagnostic systems. The selected features will be classified using mathematical models that embedded engineering theory such as artificial intelligence, support vector machine, neural network and fuzzy-neuro system. These classifiers will provide the diagnostic results without human intervention. Among many publishable researches, several prototypes have been developed namely NeuralPap, Neural Mammo, and Cervix Kit. The former system (NeuralPap) is an automatic intelligent diagnostic system for classifying and distinguishing between the normal and cervical cancerous cells. Meanwhile, the Cervix Kit is a portable Field-programmable gate array (FPGA)-based cervical diagnostic kit that could automatically diagnose the cancerous cell based on the images obtained during sampling test. Besides the cervical diagnostic system, the Neural Mammo system is developed to specifically aid the diagnosis of breast cancer using a fine needle aspiration image

  17. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    Science.gov (United States)

    Isa, Nor Ashidi Mat

    2015-05-01

    as mathematical model of clustering technique have been widely used in developing the medical diagnostic systems. The selected features will be classified using mathematical models that embedded engineering theory such as artificial intelligence, support vector machine, neural network and fuzzy-neuro system. These classifiers will provide the diagnostic results without human intervention. Among many publishable researches, several prototypes have been developed namely NeuralPap, Neural Mammo, and Cervix Kit. The former system (NeuralPap) is an automatic intelligent diagnostic system for classifying and distinguishing between the normal and cervical cancerous cells. Meanwhile, the Cervix Kit is a portable Field-programmable gate array (FPGA)-based cervical diagnostic kit that could automatically diagnose the cancerous cell based on the images obtained during sampling test. Besides the cervical diagnostic system, the Neural Mammo system is developed to specifically aid the diagnosis of breast cancer using a fine needle aspiration image.

  18. Invariance Properties for General Diagnostic Classification Models

    Science.gov (United States)

    Bradshaw, Laine P.; Madison, Matthew J.

    2016-01-01

    In item response theory (IRT), the invariance property states that item parameter estimates are independent of the examinee sample, and examinee ability estimates are independent of the test items. While this property has long been established and understood by the measurement community for IRT models, the same cannot be said for diagnostic…

  19. Diagnostics and modeling of high pressure streamer induced discharges

    International Nuclear Information System (INIS)

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  20. A Mixed Model Approach to Meta-Analysis of Diagnostic Studies with Binary Test Outcome

    Science.gov (United States)

    Doebler, Philipp; Holling, Heinz; Bohning, Dankmar

    2012-01-01

    We propose 2 related models for the meta-analysis of diagnostic tests. Both models are based on the bivariate normal distribution for transformed sensitivities and false-positive rates. Instead of using the logit as a transformation for these proportions, we employ the "t"[subscript alpha] family of transformations that contains the log, logit,…

  1. Managing evidence-based health care: a diagnostic framework.

    Science.gov (United States)

    Newman, K; Pyne, T; Cowling, A

    1998-01-01

    This paper proposes a diagnostic framework useful to Trust managers who are faced with the task of devising and implementing strategies for improvements in clinical effectiveness, and is based on a recent study incorporating clinicians, managers, and professional staff in four NHS Trusts in the North Thames Region. The gap framework is inspired by the gap model developed by Zeithaml, Parasuraman and Berry from their research into service quality and incorporates Dave Sackett's schema as well as a personal competency profile needed for the practice of evidence based health-care (EBHC). The paper highlights the four organisational and personal failures (gaps) which contribute to the fifth gap, namely the discrepancy between clinically relevant research evidence and its implementation in health care. To close the gaps, Trusts need to set the goal and tackle the cultural, organisational, attitudinal and more material aspects such as investment in the information infrastructure, education and training of doctors. Doctors need to go through a process from awareness to action facilitated through a combination of personal and organisational incentives and rewards as well as training in the requisite skills. Researchers should take steps to improve the quality of the evidence and its accessibility and purchasers should reinforce the use of EBHC by withdrawing funding for care which has proved to be ineffective, inappropriate or inferior.

  2. Can model observers be developed to reproduce radiologists' diagnostic performances? Our study says not so fast!

    Science.gov (United States)

    Lee, Juhun; Nishikawa, Robert M.; Reiser, Ingrid; Boone, John M.

    2016-03-01

    The purpose of this study was to determine radiologists' diagnostic performances on different image reconstruction algorithms that could be used to optimize image-based model observers. We included a total of 102 pathology proven breast computed tomography (CT) cases (62 malignant). An iterative image reconstruction (IIR) algorithm was used to obtain 24 reconstructions with different image appearance for each image. Using quantitative image feature analysis, three IIRs and one clinical reconstruction of 50 lesions (25 malignant) were selected for a reader study. The reconstructions spanned a range of smooth-low noise to sharp-high noise image appearance. The trained classifiers' AUCs on the above reconstructions ranged from 0.61 (for smooth reconstruction) to 0.95 (for sharp reconstruction). Six experienced MQSA radiologists read 200 cases (50 lesions times 4 reconstructions) and provided the likelihood of malignancy of each lesion. Radiologists' diagnostic performances (AUC) ranged from 0.7 to 0.89. However, there was no agreement among the six radiologists on which image appearance was the best, in terms of radiologists' having the highest diagnostic performances. Specifically, two radiologists indicated sharper image appearance was diagnostically superior, another two radiologists indicated smoother image appearance was diagnostically superior, and another two radiologists indicated all image appearances were diagnostically similar to each other. Due to the poor agreement among radiologists on the diagnostic ranking of images, it may not be possible to develop a model observer for this particular imaging task.

  3. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    Science.gov (United States)

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future

  4. [Practical diagnostics of acid-base disorders: part I: differentiation between respiratory and metabolic disturbances].

    Science.gov (United States)

    Deetjen, P; Lichtwarck-Aschoff, M

    2012-11-01

    The first part of this overview on diagnostic tools for acid-base disorders focuses on basic knowledge for distinguishing between respiratory and metabolic causes of a particular disturbance. Rather than taking sides in the great transatlantic or traditional-modern debate on the best theoretical model for understanding acid-base physiology, this article tries to extract what is most relevant for everyday clinical practice from the three schools involved in these keen debates: the Copenhagen, the Boston and the Stewart schools. Each school is particularly strong in a specific diagnostic or therapeutic field. Appreciating these various strengths a unifying, simplified algorithm together with an acid-base calculator will be discussed.

  5. A modelling framework to support the selection and implementation of new tuberculosis diagnostic tools.

    Science.gov (United States)

    Lin, H-H; Langley, I; Mwenda, R; Doulla, B; Egwaga, S; Millington, K A; Mann, G H; Murray, M; Squire, S B; Cohen, T

    2011-08-01

    Efforts to stimulate technological innovation in the diagnosis of tuberculosis (TB) have resulted in the recent introduction of several novel diagnostic tools. As these products come to market, policy makers must make difficult decisions about which of the available tools to implement. This choice should depend not only on the test characteristics (e.g., sensitivity and specificity) of the tools, but also on how they will be used within the existing health care infrastructure. Accordingly, policy makers choosing between diagnostic strategies must decide: 1) What is the best combination of tools to select? 2)Who should be tested with the new tools? and 3)Will these tools complement or replace existing diagnostics? The best choice of diagnostic strategy will likely vary between settings with different epidemiology (e.g., levels of TB incidence, human immunodeficiency virus co-infection and drug-resistant TB) and structural and resource constraints (e.g., existing diagnostic pathways, human resources and laboratory capacity). We propose a joint modelling framework that includes a tuberculosis (TB) transmission component (a dynamic epidemiological model) and a health system component (an operational systems model) to support diagnostic strategy decisions. This modelling approach captures the complex feedback loops in this system: new diagnostic strategies alter the demands on and performance of health systems that impact TB transmission dynamics which, in turn, result in further changes to demands on the health system. We demonstrate the use of a simplified model to support the rational choice of a diagnostic strategy based on health systems requirements, patient outcomes and population-level TB impact. PMID:21740663

  6. Study on Fault Diagnostics of a Turboprop Engine Using Inverse Performance Model and Artificial Intelligent Methods

    Science.gov (United States)

    Kong, Changduk; Lim, Semyeong

    2011-12-01

    Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.

  7. Metabolomics-based discovery of diagnostic biomarkers for onchocerciasis.

    Directory of Open Access Journals (Sweden)

    Judith R Denery

    Full Text Available BACKGROUND: Development of robust, sensitive, and reproducible diagnostic tests for understanding the epidemiology of neglected tropical diseases is an integral aspect of the success of worldwide control and elimination programs. In the treatment of onchocerciasis, clinical diagnostics that can function in an elimination scenario are non-existent and desperately needed. Due to its sensitivity and quantitative reproducibility, liquid chromatography-mass spectrometry (LC-MS based metabolomics is a powerful approach to this problem. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of an African sample set comprised of 73 serum and plasma samples revealed a set of 14 biomarkers that showed excellent discrimination between Onchocerca volvulus-positive and negative individuals by multivariate statistical analysis. Application of this biomarker set to an additional sample set from onchocerciasis endemic areas where long-term ivermectin treatment has been successful revealed that the biomarker set may also distinguish individuals with worms of compromised viability from those with active infection. Machine learning extended the utility of the biomarker set from a complex multivariate analysis to a binary format applicable for adaptation to a field-based diagnostic, validating the use of complex data mining tools applied to infectious disease biomarker discovery and diagnostic development. CONCLUSIONS/SIGNIFICANCE: An LC-MS metabolomics-based diagnostic has the potential to monitor the progression of onchocerciasis in both endemic and non-endemic geographic areas, as well as provide an essential tool to multinational programs in the ongoing fight against this neglected tropical disease. Ultimately this technology can be expanded for the diagnosis of other filarial and/or neglected tropical diseases.

  8. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  9. Using Enstrophy-Based Diagnostics in an Ensemble for Two Blocking Events

    Directory of Open Access Journals (Sweden)

    Andrew D. Jensen

    2013-01-01

    Full Text Available Recent research has used enstrophy-based diagnostics to identify the development and dissipation stages of blocking events. These previous studies made use of reanalysis data sets in the calculations of the enstrophy-based diagnostics, such as the NCEP-NCAR reanalysis (2.5° × 2.5° of geopotential height and horizontal winds. However, none of these studies has explored the use of the enstrophy-based diagnostics in weather or climate models with higher horizontal resolution. In this paper, the enstrophy-based diagnostics are used to analyze two blocking events, using data from the ERA-Interim reanalysis data set (0.75° × 0.75° and also the Global Ensemble Forecast System (GEFS (1° × 1°. The results of this work indicate that using an ensemble may be more effective than a single dynamical control forecast in evaluating the enstrophy-based diagnostic quantities, and that the results are similar to those obtained with coarser resolution.

  10. Probabilistic methods of technical diagnostics based on expert knowledge

    International Nuclear Information System (INIS)

    A brief overview is given of the premises and theoretical starting points of various decision models that operate with the expert knowledge notion and are well suited to technical diagnostics purposes. With regard to their assets, probabilistic methods receive particular attention. It is demonstrated why expert systems are only suitable for consultations while the final decision must always (especially in vital problems) be left to man. (Z.M.). 1 fig., 23 refs

  11. Advances in nucleic acid-based diagnostics of bacterial infections

    DEFF Research Database (Denmark)

    Barken, Kim Bundvig; Haagensen, Janus Anders Juul; Tolker-Nielsen, Tim

    2007-01-01

    of these pathogens is important to isolate patients and prevent further spreading of the diseases. Newly developed diagnostic procedures are superior with respect to turnaround time, sensitivity and specificity. Methods like multiplex real time PCR and different array-based technologies offer the possibility...... and slow growing microorgansims. The widespread use of antibiotics has resulted in an increased number of cases with resistant microorganisms such as methicillin-resistant Staphylococcus aureus, vancomycin resistant enterococci, and multidrug-resistant Mycobacterium tuberculosis. Rapid detection......Methods for rapid detection of infectious bacteria and antimicrobial-resistant pathogens have evolved significantly over the last decade. Many of the new procedures are nucleic acid-based and replace conventional diagnostic methods like culturing which is time consuming especially with fastidious...

  12. Validation of a Cognitive Diagnostic Model across Multiple Forms of a Reading Comprehension Assessment

    Science.gov (United States)

    Clark, Amy K.

    2013-01-01

    The present study sought to fit a cognitive diagnostic model (CDM) across multiple forms of a passage-based reading comprehension assessment using the attribute hierarchy method. Previous research on CDMs for reading comprehension assessments served as a basis for the attributes in the hierarchy. The two attribute hierarchies were fit to data from…

  13. Finite Elements Modeling in Diagnostics of Small Closed Pneumothorax.

    Science.gov (United States)

    Lorkowski, J; Mrzygłód, M; Grzegorowska, O

    2015-01-01

    Posttraumatic pneumothorax still remains to be a serious clinical problem and requires a comprehensive diagnostic and monitoring during treatment. The aim of this paper is to present a computer method of modeling of small closed pneumothorax. Radiological images of 34 patients of both sexes with small closed pneumothorax were taken into consideration. The control group consisted of X-rays of 22 patients treated because of tension pneumothorax. In every single case the model was correlated with the clinical manifestations. The procedure of computational rapid analysis (CRA) for in silico analysis of surgical intervention was introduced. It included implementation of computerize tomography images and their automatic conversion into 3D finite elements model (FEM). In order to segmentize the 3D model, an intelligent procedure of domain recognition was used. In the final step, a computer simulation project of fluid-structure interaction was built, using the ANSYS\\Workbench environment of multi-physics analysis. The FEM model and computer simulation project were employed in the analysis in order to optimize surgical intervention. The model worked out well and was compatible with the clinical manifestations of pneumothorax. We conclude that the created FEM model is a promising tool for facilitation of diagnostic procedures and prognosis of treatment in the case of small closed pneumothorax.

  14. Proteinuria: The diagnostic strategy based on urine proteins differentiation

    Directory of Open Access Journals (Sweden)

    Stojimirović Biljana B.

    2004-01-01

    Full Text Available Basal glomerular membrane represents mechanical and electrical barrier for passing of the plasma proteins. Mechanical barrier is composed of cylindrical pores and filtration fissure, and negative layer charge in exterior and interior side of basal glomerular membrane, made of heparan sulphate and sialoglicoproteine, provides certain electrical barrier. Diagnostic strategy based on different serum and urine proteins enables the differentiation of various types of proteinuria. Depending on etiology of proteinuria it can be prerenal, renal and postrenal. By analyzing albumin, armicroglobulin, immunoglobulin G and armacroglobulin, together with total protein in urine, it is possible to detect and differentiate causes of prerenal, renal (glomerular, tubular, glomerulo-tubular and postrenal proteinuria. The adequate and early differentiation of proteinuria type is of an immense diagnostic and therapeutic importance.

  15. Automation based on knowledge modeling theory and its applications in engine diagnostic systems using Space Shuttle Main Engine vibrational data. M.S. Thesis

    Science.gov (United States)

    Kim, Jonnathan H.

    1995-01-01

    Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).

  16. 基于机器学习算法的前列腺癌诊断模型研究%Diagnostic Model Research of Prostate Cancer Based on Machine Learning Algorithm

    Institute of Scientific and Technical Information of China (English)

    曹文哲; 应俊; 张亚慧; 马海洋; 陈广飞; 周丹

    2016-01-01

    目的:基于机器学习的3种算法建立诊断预测模型,比较3种模型对前列腺癌的诊断价值。方法选择2008~2014年在中国人民解放军总医院进行前列腺穿刺活检的患者956例(其中前列腺癌463例,前列腺增生493例),采用Logistic回归分析,筛选出预测因子(年龄、游离之前列腺特异抗原、游离之前列腺特异抗原百分比、前列腺体积和前列腺特异性抗原密度)。应用基于机器学习的BP神经网络、Logistic回归和随机森林算法构建诊断预测模型,比较3种模型对前列腺癌的预测准确性。结果 Logistic回归、BP神经网络和随机森林模型对前列腺癌的诊断能力比任一单项指标都高,3种模型的灵敏度分别为77.5%、77.4%、76.2%,特异度分别为74.8%、76.8%、76.9%,精确度分别为76%、77%、77%,受试者工作特征曲线下面积(AUC)分别为0.831、0.832、0.833,3种模型对前列腺癌的诊断能力没有显著性差异。结论上述结果验证了3种模型均具有较高的诊断有效性,可将模型纳入泌尿决策,协助临床医生对前列腺癌患者进行诊断和治疗,并减少不必要的活检。%Objective To establish diagnostic prediction models based on three machine learning algorithms and compare the value of the three models in the diagnosis of prostate cancer (PC).Methods The research selected the clinical data of 956 patients (including 463 cases of prostate cancer and 493 cases of benign prostatic hyperplasia) with prostate biopsy in the General Hospital of PLA during 2008~2014. Predictors were screened by Logistic regression which included age, free prostate-speciifc antigen (fPSA), the percentage of free prostate-speciifc antigen (free PSA/total PSA), prostate volume, and PSA density (PSAD). The paper further compared the diagnostic accuracy of three models in the prediction of prostate cancer by using BP neural network, Logistic regression (LR), and

  17. Meta-analysis of diagnostic tests accounting for disease prevalence: a new model using trivariate copulas.

    Science.gov (United States)

    Hoyer, A; Kuss, O

    2015-05-20

    In real life and somewhat contrary to biostatistical textbook knowledge, sensitivity and specificity (and not only predictive values) of diagnostic tests can vary with the underlying prevalence of disease. In meta-analysis of diagnostic studies, accounting for this fact naturally leads to a trivariate expansion of the traditional bivariate logistic regression model with random study effects. In this paper, a new model is proposed using trivariate copulas and beta-binomial marginal distributions for sensitivity, specificity, and prevalence as an expansion of the bivariate model. Two different copulas are used, the trivariate Gaussian copula and a trivariate vine copula based on the bivariate Plackett copula. This model has a closed-form likelihood, so standard software (e.g., SAS PROC NLMIXED) can be used. The results of a simulation study have shown that the copula models perform at least as good but frequently better than the standard model. The methods are illustrated by two examples. PMID:25712874

  18. Meta-analysis of diagnostic tests accounting for disease prevalence: a new model using trivariate copulas.

    Science.gov (United States)

    Hoyer, A; Kuss, O

    2015-05-20

    In real life and somewhat contrary to biostatistical textbook knowledge, sensitivity and specificity (and not only predictive values) of diagnostic tests can vary with the underlying prevalence of disease. In meta-analysis of diagnostic studies, accounting for this fact naturally leads to a trivariate expansion of the traditional bivariate logistic regression model with random study effects. In this paper, a new model is proposed using trivariate copulas and beta-binomial marginal distributions for sensitivity, specificity, and prevalence as an expansion of the bivariate model. Two different copulas are used, the trivariate Gaussian copula and a trivariate vine copula based on the bivariate Plackett copula. This model has a closed-form likelihood, so standard software (e.g., SAS PROC NLMIXED) can be used. The results of a simulation study have shown that the copula models perform at least as good but frequently better than the standard model. The methods are illustrated by two examples.

  19. Case-based reasoning combined with statistics for diagnostics and prognosis

    International Nuclear Information System (INIS)

    Many approaches used for diagnostics today are based on a precise model. This excludes diagnostics of many complex types of machinery that cannot be modelled and simulated easily or without great effort. Our aim is to show that by including human experience it is possible to diagnose complex machinery when there is no or limited models or simulations available. This also enables diagnostics in a dynamic application where conditions change and new cases are often added. In fact every new solved case increases the diagnostic power of the system. We present a number of successful projects where we have used feature extraction together with case-based reasoning to diagnose faults in industrial robots, welding, cutting machinery and we also present our latest project for diagnosing transmissions by combining Case-Based Reasoning (CBR) with statistics. We view the fault diagnosis process as three consecutive steps. In the first step, sensor fault signals from machines and/or input from human operators are collected. Then, the second step consists of extracting relevant fault features. In the final diagnosis/prognosis step, status and faults are identified and classified. We view prognosis as a special case of diagnosis where the prognosis module predicts a stream of future features.

  20. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.; Haves, Philip; Sohn, Michael D.

    2010-05-30

    Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models are imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.

  1. Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics

    International Nuclear Information System (INIS)

    Paper-based diagnostics have shown promising potential applications in human disease surveillance and food safety analysis at the point-of-care (POC). The liquid wicking behavior in diagnostic fibrous paper plays an important role in development of paper-based diagnostics. In the current study, we performed experimental and numerical research on the liquid wicking height and mass with three width strips into filter paper. The effective porosity could be conveniently measured in the light of the linear correlation between wicking height and mass by the experimental system. A modified model with considering evaporation effect was proposed to predict wicking height and mass. The predicted wicking height and mass using the evaporation model was much closer to the experimental data compared with the model without evaporation. The wicking speed initially decreased significantly and then maintained at a constant value at lower level. The evaporation effect tends to reduce the wicking flow speed. More wicking mass could be obtained at larger strip width but the corresponding reagent loss became significant. The proposed model with evaporation paved a way to understanding the fundamental of fluid flow in diagnostic paper and was essential to provide meaningful and useful reference for the research and development of paper-based diagnostics devices. - Highlights: • A model with considering evaporation was proposed to predict wicking height and mass. • Flow characteristics of filter paper were experimentally and theoretically studied. • Effective porosity could be conveniently measured by the experimental platform. • The evaporation effect tended to reduce the wicking flow speed

  2. Working Environment with Social and Personal Open Tools for inquiry based learning: Pedagogic and Diagnostic Frameworks

    OpenAIRE

    Protopsaltis, A; Seitlinger, P; Chaimala, Fotini; Firssova, Olga; Hetzner, Sonja; Kikis-Papadakis, K; Boytchev, Pavel

    2013-01-01

    Abstract: The weSPOT project aims at propagating scientific inquiry as the approach for science learning and teaching in combination with today’s curricula and teaching practices The project focuses on inquiry-based learning with a theoretically sound and technology supported personal inquiry approach and it contains three main development aspects: (a) define a reference model for inquiry-based learning skills, (b) create a diagnostic instrument for measuring inquiry skills, and (c) implement...

  3. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  4. Error field and magnetic diagnostic modeling for W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Sam A. [PPPL; Gates, David A. [PPPL; NEILSON, GEORGE H. [PPPL; OTTE, M.; Bozhenkov, S.; Pedersen, T. S.; GEIGER, J.; LORE, J.

    2014-07-01

    The prediction, detection, and compensation of error fields for the W7-X device will play a key role in achieving a high beta (Β = 5%), steady state (30 minute pulse) operating regime utilizing the island divertor system [1]. Additionally, detection and control of the equilibrium magnetic structure in the scrape-off layer will be necessary in the long-pulse campaign as bootstrapcurrent evolution may result in poor edge magnetic structure [2]. An SVD analysis of the magnetic diagnostics set indicates an ability to measure the toroidal current and stored energy, while profile variations go undetected in the magnetic diagnostics. An additional set of magnetic diagnostics is proposed which improves the ability to constrain the equilibrium current and pressure profiles. However, even with the ability to accurately measure equilibrium parameters, the presence of error fields can modify both the plasma response and diverter magnetic field structures in unfavorable ways. Vacuum flux surface mapping experiments allow for direct measurement of these modifications to magnetic structure. The ability to conduct such an experiment is a unique feature of stellarators. The trim coils may then be used to forward model the effect of an applied n = 1 error field. This allows the determination of lower limits for the detection of error field amplitude and phase using flux surface mapping. *Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  5. A Ribeiroia spp. (Class: Trematoda) - Specific PCR-based diagnostic

    Science.gov (United States)

    Reinitz, D.M.; Yoshino, T.P.; Cole, R.A.

    2007-01-01

    Increased reporting of amphibian malformations in North America has been noted with concern in light of reports that amphibian numbers and species are declining worldwide. Ribeiroia ondatrae has been shown to cause a variety of types of malformations in amphibians. However, little is known about the prevalence of R. ondatrae in North America. To aid in conducting field studies of Ribeiroia spp., we have developed a polymerase chain reaction (PCR)-based diagnostic. Herein, we describe the development of an accurate, rapid, simple, and cost-effective diagnostic for detection of Ribeiroia spp. infection in snails (Planorbella trivolvis). Candidate oligonucleotide primers for PCR were designed via DNA sequence analyses of multiple ribosomal internal transcribed spacer-2 regions from Ribeiroia spp. and Echinostoma spp. Comparison of consensus sequences determined from both genera identified areas of sequence potentially unique to Ribeiroia spp. The PCR reliably produced a diagnostic 290-base pair (bp) product in the presence of a wide concentration range of snail or frog DNA. Sensitivity was examined with DNA extracted from single R. ondatrae cercaria. The single-tube PCR could routinely detect less than 1 cercariae equivalent, because DNA isolated from a single cercaria could be diluted at least 1:50 and still yield a positive result via gel electrophoresis. An even more sensitive nested PCR also was developed that routinely detected 100 fg of the 290-bp fragment. The assay did not detect furcocercous cercariae of certain Schistosomatidae, Echinostoma sp., or Sphaeridiotrema globulus nor adults of Clinostomum sp. or Cyathocotyle bushiensis. Field testing of 137 P. trivolvis identified 3 positives with no overt environmental cross-reactivity, and results concurred with microscopic examinations in all cases. ?? American Society of Parasitologists 2007.

  6. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    Science.gov (United States)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  7. 基于CT图像的孤立性肺结节诊断模型研究%Research on the Solitary Pulmonary Nodule Diagnostic Model Based on CT Images

    Institute of Scientific and Technical Information of China (English)

    周洋; 张修石; 张红霞; 吴军; 刘露; 马建为; 刘宛予

    2011-01-01

    目的 探讨计算机辅助诊断孤立性肺结节(SPN)对人工诊断的意义.方法 搜集经CT引导下肺组织活检穿刺病理证实的SPN 193例(恶性结节144例,良性结节49例),分析21项(实际应用20项)薄层CT指标(部位、长径、短径、形态、边缘、毛刺、晕征、分叶、棘突、空泡、空洞、细支气管气象、与血管关系、与胸膜关系、钙化、脂肪、卫星灶、透亮影、周围肺气肿、胸膜肥厚、密度).以CT引导下肺活检穿刺的病理结果为金标准,比较神经网络、支持向量机诊断模型及人工诊断3种方法对SPN的诊断效果.结果 神经网络模型诊断准确率71.5%,支持向量机诊断模型诊断准确率68.9%,人工诊断准确率80.3%;敏感性分别为84.0%、65.3%、91.0%;特异性分别为34.7%、79.6%、49.0%.结论 神经网络和支持向量机2种诊断模型对SPN的诊断有一定意义,但准确率低于人工诊断,还不能完全代替人工诊断.%Objective To study the signification of computer-aided diagnosis of solitary pulmonary nodule( SPN) for artificial diagnosis. Methods 193 cases of proven SPNs with pathology undergone CT-guided lung biopsy(144 cases of malignant nodules and 49 cases of benign nodules) were collected in this study. 21 findings of the thin layer CT images of SPNs(practical application of 20) ,including position , length , diameter, morphology, edge , burrs , dizzy, lobulated , spinous , vacuole, cavity , fine bronchioles air sign , relationship with vessel and pleura , calcification , fat , satellite, bright , focal around emphysema , pleural hypertrophy and density of the lesions. Based on the pathologic results of CT-guided biopsy, the diagnostic accuracy of SPN with neural network and support vector machine ( SVM) model and artificial diagnosis was compared. Results The diagnostic accurate rate, sensitivity and specificity in diagnosing SPN were 71. 5% , 84. 0 % and 34. 7% respectively with neural network, 80. 3

  8. LED-based near infrared sensor for cancer diagnostics

    Science.gov (United States)

    Bogomolov, Andrey; Ageev, Vladimir; Zabarylo, Urszula; Usenov, Iskander; Schulte, Franziska; Kirsanov, Dmitry; Belikova, Valeria; Minet, Olaf; Feliksberger, E.; Meshkovsky, I.; Artyushenko, Viacheslav

    2016-03-01

    Optical spectroscopic technologies are increasingly used for cancer diagnostics. Feasibility of differentiation between malignant and healthy samples of human kidney using Fluorescence, Raman, MIR and NIR spectroscopy has been recently reported . In the present work, a simplification of NIR spectroscopy method has been studied. Traditional high-resolution NIR spectrometry was replaced by an optical sensor based on a set of light-emitting diodes at selected wavelengths as light sources and a photodiode. Two prototypes of the sensor have been developed and tested using 14 in-vitro samples of seven kidney tumor patients. Statistical evaluation of results using principal component analysis and partial least-squares discriminant analysis has been performed. Despite only partial discrimination between tumor and healthy tissue achieved by the presented new technique, the results evidence benefits of LED-based near-infrared sensing used for oncological diagnostics. Publisher's Note: This paper, originally published on 4 March, 2016, was replaced with a corrected/revised version on 7 April, 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  9. Laser based diagnostics - from cultural heritage to human health

    Science.gov (United States)

    Svanberg, S.

    2008-09-01

    An overview of applied laser-based diagnostics as pursued at the Division of Atomic Physics, Lund University, is given. The fields of application range from environmental monitoring including cultural heritage assessment, to biomedical applications. General aspects of laser-based methods are non-intrusiveness, high spectral- and spatial resolution, and data production in real-time. Different applications are frequently generically very similar irrespective of the particular context, which, however, decides the spatial and temporal scales as well as the size of the optics employed. Thus, volcanic plume mapping by lidar, and optical mammography are two manifestations of the same principle, as is fluorescence imaging of a human bronchus by an endoscope, and the scanning of a cathedral using a fluorescence lidar system. Recent applications include remote laser-induced break-down spectroscopy (LIBS) and gas monitoring in scattering media (GASMAS). In particular, a powerful method for diagnostics of human sinus cavities was developed, where free oxygen and water molecules are monitored simultaneously.

  10. Translating sanger-based routine DNA diagnostics into generic massive parallel ion semiconductor sequencing

    NARCIS (Netherlands)

    Diekstra, A.; Bosgoed, E.A.J.; Rikken, A.; Lier, B. van; Kamsteeg, E.J.; Tychon, M.W.J.; Derks, R.C.; Soest, R.A.; Mensenkamp, A.R.; Scheffer, H.; Neveling, K.; Nelen, M.R.

    2015-01-01

    BACKGROUND: Dideoxy-based chain termination sequencing developed by Sanger is the gold standard sequencing approach and allows clinical diagnostics of disorders with relatively low genetic heterogeneity. Recently, new next generation sequencing (NGS) technologies have found their way into diagnostic

  11. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; Frith, S. M.; Gettleman, A.; Hardiman, S. C.; Kinnison, D. E.; Lamarque, J.-F.; Mancini, E.; Marchand, M.; Michou, M.; Morgenstern, O.; Nakamura, T.; Olivie, D.; Pawson, S.; Pitari, G.; Plummer, D. A.; Pyle, J. A.

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  12. Comparison of the diagnostic accuracy of commercial NS1-based diagnostic tests for early dengue infection

    Directory of Open Access Journals (Sweden)

    Villar Luis A

    2010-12-01

    Full Text Available Abstract Background We compared the diagnostic accuracy and reproducibility of commercially available NS1-based dengue tests and explored factors influencing their sensitivities. Methods Paired analysis of 310 samples previously characterized as positive (n = 218 and negative (n = 92 for viral isolation and/or RT-PCR and/or IgM seroconversion. Masked samples were tested by two observers with Platelia™ Dengue NS1 Ag, second generation Pan-E™ Dengue Early ELISA, SD Dengue NS1 Ag ELISA, Dengue NS1 Ag STRIP™, and SD BIOLINE™ Dengue Duo (NS1/IgM/IgG. Results SD BIOLINE™ NS1/IgM/IgG had the highest sensitivity (80.7% 95%CI 75-85.7 with likelihood ratios of 7.4 (95%CI 4.1-13.8 and 0.21 (95%CI 0.16-0.28. The ELISA-format tests showed comparable sensitivities; all below 75%. STRIP™ and SD NS1 had even lower sensitivities ( Conclusions The simultaneous detection of NS1/IgM/IgG would be potentially useful for dengue diagnosis in both endemic and non endemic areas. A negative result does not rule out dengue. Further studies are required to assess the performance and impact of early laboratory diagnosis of dengue in the routine clinical setting.

  13. Model performance metrics and process diagnostics for boreal summer intraseasonal variability

    Science.gov (United States)

    Neena, J. M.; Waliser, Duane; Jiang, Xianan

    2016-05-01

    Representation of the boreal summer intraseasonal oscillations (BSISO) is evaluated in the 20-year climate simulations from 27 general circulation models (GCMs), produced as part of a global multi-model evaluation project coordinated to study the vertical structure and physical processes of the Madden-Julian oscillation (MJO). Model performance metrics are developed to assess the simulated BSISO characteristics, with a special focus on its northward propagation over the Asian monsoon domain. Several process-oriented diagnostics developed by the MJO community are also tested for the BSISO. Simulating the phase speed and meridional extent of BSISO northward propagation, the northwest-southeast tilted rain-band structure and the quasi-biweekly mode are identified as some of the persisting problems for many GCMs. Interestingly, many of the GCMs, which capture BSISO eastward propagation, also show good fidelity in simulating BSISO northward propagation. Meridional vertical profiles of anomalous wind, temperature and diabatic heating of BSISO are better simulated in the GCMs that simulate the northward propagation. Process-oriented diagnostics based on seasonal mean vertical shear of zonal and meridional wind, large-scale rain fraction and relative humidity are also examined, but it still remains challenge to find a process diagnostic which is strongly linked to BSISO northward propagation. The complex spatial structure and presence of multi-scale disturbances, demand the development of more focused GCM evaluation metrics and process diagnostics specifically for the BSISO.

  14. Introduction to a diagnostic approach for point processes based on weighted second-order statistics

    OpenAIRE

    Giada Adelfio; Frederic Paik Schoenberg

    2007-01-01

    A new diagnostic method for point processes is here presented. It is based on their second-order analysis, transforming the original point process by the inverse of its conditional intensity function in order to form a generalized estimate of various second-order point process properties. The result is generalized versions of the spectral density, R/S statistic, correlation integral and K-function, which can be used to test the fit of complex point process models with arbitrary conditional in...

  15. Perspectives for Monocyte/Macrophage-Based Diagnostics of Chronic Inflammation.

    Science.gov (United States)

    Kzhyshkowska, Julia; Gudima, Alexandru; Moganti, Kondaiah; Gratchev, Alexei; Orekhov, Alexander

    2016-03-01

    Low-grade chronic inflammation underlies the development of the most dangerous cardiometabolic disorders including type 2 diabetes and its vascular complications. In contrast to acute inflammation induced by bacteria and viruses, chronic inflammation can be driven by abnormal reaction to endogenous factors, including Th2 cytokines, metabolic factors like advanced glycation end products (AGEs), modified lipoproteins, or hyperglycemia. The key innate immune cells that recognize these factors in blood circulation are monocytes. Inflammatory programming of monocytes which migrate into tissues can, in turn, result into generation of tissue macrophages with pathological functions. Therefore, determination of the molecular and functional phenotype of circulating monocytes is a very promising diagnostic tool for the identification of hidden inflammation, which can precede the development of the pathology. Here we propose a new test system for the identification of inflammatory programming of monocytes: surface biomarkers and ex vivo functional system. We summarize the current knowledge about surface biomarkers for monocyte subsets, including CD16, CCR2, CX3CR1, CD64, stabilin-1 and CD36, and their association with inflammatory human disorders. Furthermore, we present the design of an ex vivo monocyte-based test system with minimal set of parameters as a potential diagnostic tool for the identification of personalized inflammatory responses. PMID:27226789

  16. Score, Pseudo-Score and Residual Diagnostics for Spatial Point Process Models

    OpenAIRE

    Baddeley, Adrian; Rubak, Ege; Møller, Jesper

    2012-01-01

    We develop new tools for formal inference and informal model validation in the analysis of spatial point pattern data. The score test is generalized to a "pseudo-score" test derived from Besag's pseudo-likelihood, and to a class of diagnostics based on point process residuals. The results lend theoretical support to the established practice of using functional summary statistics, such as Ripley's $K$-function, when testing for complete spatial randomness; and they provide new tools such as th...

  17. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  18. Flotation process diagnostics and modelling by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ofori, P; O' Brien, G.; Firth, B.; Jenkins, B. [CSIRO Energy Technology, Brisbane, Qld. (Australia)

    2006-05-15

    In coal flotation, particles of different components of the coal such as maceral groups and mineral matter and their associations have different hydrophobicities and therefore different flotation responses. By using a new coal grain analysis method for characterising individual grains, more detailed flotation performance analysis and modelling approaches have been developed. The method involves the use of microscopic imaging techniques to obtain estimates of size, compositional and density information on individual grains of fine coal. The density and composition partitioning of coal processed through different flotation systems provides an avenue to pinpoint the actual cause of poor process performance so that corrective action may be initiated. The information on grain size, density and composition is being used as input data to develop more detailed flotation process models to provide better predictions of process performance for both mechanical and column flotation devices. A number of approaches may be taken to flotation modelling such as the probability approach and the kinetic model approach or a combination of the two. In the work reported here, a simple probability approach has been taken, which will be further refined in due course. The use of grain data to map the responses of different types of coal grains through various fine coal cleaning processes provided a more advanced diagnostic capability for fine coal cleaning circuits. This enabled flotation performance curves analogous to partition curves for density separators to be produced for flotation devices.

  19. Pathways of marine debris in statistical and diagnostic ocean circulation models

    Science.gov (United States)

    Maximenko, N.; Hafner, J.; Lumpkin, R.

    2012-04-01

    Statistical and diagnostic models are used in this study to describe long-term dynamics of objects floating at the sea surface. The statistical model is based of the particle displacement probability density function, derived from trajectories of drifting buoys, and is supplemented by the probability of running aground. This model reveals five main areas of debris accumulation in the subtropical ocean, all confirmed with direct observations. It also reveals the global pattern of shores impacted by marine debris, correlated with dominant winds. The diagnostic model (SCUD - Surface CUrrents from Diagnostic) utilizes satellite data of altimetry and QuikSCAT/ASCAT winds to assess near-real time surface velocities and its parameters are optimized using drifter trajectories. Numerical experiments with various sources and life times of the model debris help to understand main pathways of the tracer and distributions of its properties within and across individual oceans. Applications of statistical and diagnostic models help to assess probable motion of the debris, generated in Japan by tsunami of March 11, 2011. The timeline, derived from the statistical model, and maps, computed with SCUD, are used to coordinate operational at-sea and on-coast observations and preparations for the debris impact. Most of debris is drifting from Japan towards east, while dispersing over increasing area. After passing Hawaii in the north it is expected to recirculate into the so-called North Pacific Garbage Patch - the area, located between Hawaii and California, where convergent surface currents collect all floating waste. Only a small fraction of tsunami debris, on the edge of the debris field, will "touch" Hawaii and US/Canada west coast. Yet the amount and composition may be anomalous. Mixed with the older waste, tsunami debris will slowly leak from the patch, polluting Hawaiian Islands.

  20. On Diagnostic Checking of Vector ARMA-GARCH Models with Gaussian and Student-t Innovations

    Directory of Open Access Journals (Sweden)

    Yongning Wang

    2013-04-01

    Full Text Available This paper focuses on the diagnostic checking of vector ARMA (VARMA models with multivariate GARCH errors. For a fitted VARMA-GARCH model with Gaussian or Student-t innovations, we derive the asymptotic distributions of autocorrelation matrices of the cross-product vector of standardized residuals. This is different from the traditional approach that employs only the squared series of standardized residuals. We then study two portmanteau statistics, called Q1(M and Q2(M, for model checking. A residual-based bootstrap method is provided and demonstrated as an effective way to approximate the diagnostic checking statistics. Simulations are used to compare the performance of the proposed statistics with other methods available in the literature. In addition, we also investigate the effect of GARCH shocks on checking a fitted VARMA model. Empirical sizes and powers of the proposed statistics are investigated and the results suggest a procedure of using jointly Q1(M and Q2(M in diagnostic checking. The bivariate time series of FTSE 100 and DAX index returns is used to illustrate the performance of the proposed portmanteau statistics. The results show that it is important to consider the cross-product series of standardized residuals and GARCH effects in model checking.

  1. Ewing sarcoma family of tumors: a model for the new era of integrated laboratory diagnostics.

    Science.gov (United States)

    Khoury, Joseph D

    2008-01-01

    The Ewing sarcoma family of tumors (ESFT) represents one of the best models illustrating the multifaceted approach to the diagnosis of cancer that has evolved over the past decade. ESFT encompasses tumors that arise in bone or soft tissues and may have disparate histologic features. As a result, it was not until the discovery that these tumors share a common underlying molecular pathogenesis (chromosomal translocations involving the EWS gene and one of several members of the ETS family of transcription factors) that significant advances in the diagnosis and therapy of ESFT became possible. As a result, ESFT has come to embody the amalgamation of classical diagnostic tools, such as histology and routine microscopy, with newer techniques, such as immunohistochemistry and molecular techniques; the latter include PCR-based methods and fluorescence in situ hybridization. This review will address the features of ESFT and how it has emerged as a model for the new era of integrated diagnostics.

  2. Medical diagnostics by laser-based analysis of exhaled breath

    Science.gov (United States)

    Giubileo, Gianfranco

    2002-08-01

    IMany trace gases can be found in the exhaled breath, some of them giving the possibility of a non invasive diagnosis of related diseases or allowing the monitoring of the disease in the course of its therapy. In the present lecture the principle of medical diagnosis based on the breath analysis will be introduced and the detection of trace gases in exhaled breath by high- resolution molecular spectroscopy in the IR spectral region will be discussed. A number of substrates and the optical systems for their laser detection will be reported. The following laser based experimental systems has been realised in the Molecular Spectroscopy Laboratory in ENEA in Frascati for the analysis of specific substances in the exhaled breath. A tuneable diode laser absorption spectroscopy (TDLAS) appartus for the measurement of 13C/12C isotopic ratio in carbon dioxide, a TDLAS apparatus for the detection of CH4 and a CO2 laser based photoacoustic system to detect trace ethylene at atmospheric pressure. The experimental set-up for each one of the a.m. optical systems will be shown and the related medical applications will be illustrated. The concluding remarks will be focuses on chemical species that are of major interest for medical people today and their diagnostic ability.

  3. Diagnostic calibration of a hydrological model in an alpine area by hydrograph partitioning

    Directory of Open Access Journals (Sweden)

    Z. H. He

    2014-12-01

    Full Text Available Hydrological modeling can exploit informative signatures extracted from long time sequences of observed streamflow for parameter calibration and model diagnosis. In this study we explore the diagnostic potential of hydrograph partitioning for model calibration in alpine areas, where meltwater from snow and glaciers are important sources for river runoff (in addition to rainwater. We propose an index-based method to partition the hydrograph according to dominant runoff water sources, and a diagnostic approach to calibrate an alpine hydrological model. First, by accounting for the seasonal variability of precipitation and the altitudinal variability of temperature and snow/glacier coverage, we develop a set of indices to indicate the daily status of runoff generation from each type of water source (i.e. glacier meltwater, snow meltwater, rainwater, and groundwater. Second, these indices are used to partition a hydrograph into four parts associated with four different combinations of dominant water sources (i.e. groundwater, groundwater + snow meltwater, groundwater + snow meltwater + glacier meltwater, groundwater + snow meltwater + glacier meltwater + rainwater. Third, the hydrological model parameters are grouped by the associated runoff generation mechanism, and each group is calibrated to match the corresponding hydrograph partition in a stepwise and iterative manner. Similar to use of the regime curve to diagnose seasonality of streamflow, the hydrograph partitioning curve based on a dominant runoff water source (more briefly called the partitioning curve, not necessarily continuous can serve as a diagnostic signature that helps relate model performance to model components. The proposed methods are demonstrated via application of a semi-distributed hydrological model (THREW to the Tailan River basin (1324 km2 in the Tianshan Mountain of China.

  4. Changing Histopathological Diagnostics by Genome-Based Tumor Classification

    Directory of Open Access Journals (Sweden)

    Michael Kloth

    2014-05-01

    Full Text Available Traditionally, tumors are classified by histopathological criteria, i.e., based on their specific morphological appearances. Consequently, current therapeutic decisions in oncology are strongly influenced by histology rather than underlying molecular or genomic aberrations. The increase of information on molecular changes however, enabled by the Human Genome Project and the International Cancer Genome Consortium as well as the manifold advances in molecular biology and high-throughput sequencing techniques, inaugurated the integration of genomic information into disease classification. Furthermore, in some cases it became evident that former classifications needed major revision and adaption. Such adaptations are often required by understanding the pathogenesis of a disease from a specific molecular alteration, using this molecular driver for targeted and highly effective therapies. Altogether, reclassifications should lead to higher information content of the underlying diagnoses, reflecting their molecular pathogenesis and resulting in optimized and individual therapeutic decisions. The objective of this article is to summarize some particularly important examples of genome-based classification approaches and associated therapeutic concepts. In addition to reviewing disease specific markers, we focus on potentially therapeutic or predictive markers and the relevance of molecular diagnostics in disease monitoring.

  5. A qualitative model construction method of nuclear power plants for effective diagnostic knowledge generation

    International Nuclear Information System (INIS)

    This paper discusses a method to construct a qualitative model of a nuclear power plant, in order to generate effective diagnostic knowledge. The proposed method is to prepare deep knowledge to be provided to a knowledge compiler based upon qualitative reasoning (QR). Necessity of knowledge compilation for nuclear plant diagnosis will be explained first, and conventionally-experienced problems in qualitative reasoning and a proposed method to overcome this problem is shown next, then a sample procedure to build a qualitative nuclear plant model is demonstrated. (author)

  6. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing.

    Directory of Open Access Journals (Sweden)

    Athanasios Tsalatsanis

    Full Text Available Dual Processing Theories (DPT assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive and type 2 (deliberative. Based on DPT we have derived a Dual Processing Model (DPM to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called "threshold probability" at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today's clinical practice.

  7. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing.

    Science.gov (United States)

    Tsalatsanis, Athanasios; Hozo, Iztok; Kumar, Ambuj; Djulbegovic, Benjamin

    2015-01-01

    Dual Processing Theories (DPT) assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive) and type 2 (deliberative). Based on DPT we have derived a Dual Processing Model (DPM) to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called "threshold probability" at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT) and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today's clinical practice. PMID:26244571

  8. Numerical experimentation of a diagnostic model of 3-D circulation in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Dube, S.K.; Rao, A.D.

    Climatic circulation in the upper levels of the Arabian Sea and western equatorial Indian Ocean are computed using a 3-dimensional, 33 level diagnostic circulation model. A steady state solution is obtained within 30 days of model integration. Model...

  9. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  10. DIAGNOSTIC FEEDBACK MODEL IN DEVELOPING SPEAKING SKILLS IN ESL LEARNERS – AN EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    V. Rajesh, J. Jaya Parveen

    2013-01-01

    Full Text Available Engineering classrooms often contain mixed-ability students with less interest in language study. These students come from different backgrounds and different mediums of instruction. Grammar translation method, communicative approach, or multimedia fail to entertain one or the other group of students in the same classroom. Diagnostic Feedback Model can be utilised for effective language teaching in such mixed-ability classrooms. With a descriptive research design, an evaluative study is conducted in VV College of Engineering, Tisaiyanvilai. 200 students and 10 teachers are involved in the study. Meetings are conducted periodically. Tasks for the pre-tests and criteria for evaluation are designed by the teachers. The pre-assessment contains items to check listening, body language, fluency, and accuracy of the students in speaking. The criteria provides 5 – 1 range of marks for each sub-skill in speaking. The students are made to speak and are evaluated by the teachers using the criteria. Based on the diagnostic feedback model, data consolidation is done by the teachers. The diagnostic feedback model provide the teachers with the strengths and areas of improvement of the students. According to the overall scores, the students are classified into Beginner / Intermediate / Proficient instead of Below Average / Average / Above Average. Activities for each group are defined uniquely, and training is conducted separately for each group. At the end of the course, post-assessments are conducted using the same criteria. In the post-assessments, the average scores of 'Beginners' have increased from 20 to 35, the average scores of 'Intermediate' students have increased from 30 to 43, and the average scores of 'Proficient' students have increased from 40 to 48. This implies that diagnostic feedback model works well in mixed ability classrooms in engineering colleges.

  11. An XML-based loose-schema approach to managing diagnostic data in heterogeneous formats

    Energy Technology Data Exchange (ETDEWEB)

    Naito, O., E-mail: naito.osamu@jaea.go.j [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2010-07-15

    An approach to managing diagnostic data in heterogenous formats by using XML-based (eXtensible Markup Language) tag files is discussed. The tag file functions like header information in ordinary data formats but it is separate from the main body of data, human readable, and self-descriptive. Thus all the necessary information for reading the contents of data can be obtained without prior information or reading the data body itself. In this paper, modeling of diagnostic data and its representation in XML are studied and a very primitive implementation of this approach in C++ is presented. The overhead of manipulating XML in a proof-of-principle code was found to be small. The merits, demerits, and possible extensions of this approach are also discussed.

  12. Magnetic nanoparticles for biomedical NMR-based diagnostics

    Directory of Open Access Journals (Sweden)

    Huilin Shao

    2010-12-01

    Full Text Available Rapid and accurate measurements of protein biomarkers, pathogens and cells in biological samples could provide useful information for early disease diagnosis, treatment monitoring, and design of personalized medicine. In general, biological samples have only negligible magnetic susceptibility. Thus, using magnetic nanoparticles for biosensing not only enhances sensitivity but also effectively reduces sample preparation needs. This review focuses on the use of magnetic nanoparticles for in vitro detection of biomolecules and cells based on magnetic resonance effects. This detection platform, termed diagnostic magnetic resonance (DMR, exploits magnetic nanoparticles as proximity sensors, which modulate the spin–spin relaxation time of water molecules surrounding molecularly-targeted nanoparticles. By developing more effective magnetic nanoparticle biosensors, DMR detection limits for various target moieties have been considerably improved over the last few years. Already, a library of magnetic nanoparticles has been developed, in which a wide range of targets, including DNA/mRNA, proteins, small molecules/drugs, bacteria, and tumor cells, have been quantified. More recently, the capabilities of DMR technology have been further advanced with new developments such as miniaturized nuclear magnetic resonance detectors, better magnetic nanoparticles and novel conjugational methods. These developments have enabled parallel and sensitive measurements to be made from small volume samples. Thus, the DMR technology is a highly attractive platform for portable, low-cost, and efficient biomolecular detection within a biomedical setting.

  13. Beam Diagnostics for Laser Undulator Based on Compton Backward Scattering

    CERN Document Server

    Kuroda, R

    2005-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on Compton backward scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser (10ps FWHM) and about 5 MeV high quality electron beam (10ps FWHM) generated from rf gun system. The range of X-ray energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein's coefficient in this range, a dehydration of the specimens is not necessary. To generate the soft X-ray pulse stably, the electron beam diagnostics have been developed such as the emittance measurement using double slit scan technique, the bunch length measurement using two frequency analysis technique. In this confere...

  14. [SCAN system--semi-structured interview based on diagnostic criteria].

    Science.gov (United States)

    Adamowski, Tomasz; Kiejna, Andrzej; Hadryś, Tomasz

    2006-01-01

    This paper presents the main features of contemporary diagnostic systems which are implemented into the SCAN--modern and semi-structured diagnostic interview. The concepts of further development of the classifications, rationale for operationalized diagnostic criteria and for the divisional approach to mental diagnoses will be in focus. The structure and components of SCAN ver. 2.1 (WHO), i.e. Present State Examination--10th edition, Item Group Checklist, Clinical History Schedule, Glossary of Definitions and computer software with the diagnostic algorithm: I-Shell, as well as rules for a reliable use of diagnostic rating scales, will be discussed within the scope of this paper. The materials and training sets necessary for the learning of proper use of the SCAN, especially training sets for SCAN Training Centers and the Reference Manual--a form of guidebook for SCAN shall be introduced. Finally the paper will present evidence that SCAN is an instrument feasible in different cultural settings. Reliability and validity data of SCAN will also be dealt with indicating that SCAN could be widely used in research studies as well as in everyday clinical practice facilitating more detailed diagnostic approach to a patient.

  15. [SCAN system--semi-structured interview based on diagnostic criteria].

    Science.gov (United States)

    Adamowski, Tomasz; Kiejna, Andrzej; Hadryś, Tomasz

    2006-01-01

    This paper presents the main features of contemporary diagnostic systems which are implemented into the SCAN--modern and semi-structured diagnostic interview. The concepts of further development of the classifications, rationale for operationalized diagnostic criteria and for the divisional approach to mental diagnoses will be in focus. The structure and components of SCAN ver. 2.1 (WHO), i.e. Present State Examination--10th edition, Item Group Checklist, Clinical History Schedule, Glossary of Definitions and computer software with the diagnostic algorithm: I-Shell, as well as rules for a reliable use of diagnostic rating scales, will be discussed within the scope of this paper. The materials and training sets necessary for the learning of proper use of the SCAN, especially training sets for SCAN Training Centers and the Reference Manual--a form of guidebook for SCAN shall be introduced. Finally the paper will present evidence that SCAN is an instrument feasible in different cultural settings. Reliability and validity data of SCAN will also be dealt with indicating that SCAN could be widely used in research studies as well as in everyday clinical practice facilitating more detailed diagnostic approach to a patient. PMID:17068947

  16. A stochastic model to determine the economic value of changing diagnostic test characteristics for identification of cattle for treatment of bovine respiratory disease.

    Science.gov (United States)

    Theurer, M E; White, B J; Larson, R L; Schroeder, T C

    2015-03-01

    Bovine respiratory disease is an economically important syndrome in the beef industry, and diagnostic accuracy is important for optimal disease management. The objective of this study was to determine whether improving diagnostic sensitivity or specificity was of greater economic value at varied levels of respiratory disease prevalence by using Monte Carlo simulation. Existing literature was used to populate model distributions of published sensitivity, specificity, and performance (ADG, carcass weight, yield grade, quality grade, and mortality risk) differences among calves based on clinical respiratory disease status. Data from multiple cattle feeding operations were used to generate true ranges of respiratory disease prevalence and associated mortality. Input variables were combined into a single model that calculated estimated net returns for animals by diagnostic category (true positive, false positive, false negative, and true negative) based on the prevalence, sensitivity, and specificity for each iteration. Net returns for each diagnostic category were multiplied by the proportion of animals in each diagnostic category to determine group profitability. Apparent prevalence was categorized into low (diagnostic specificity, perhaps through a confirmatory test interpreted in series or pen-level diagnostics, can increase diagnostic value more than improving sensitivity. Mortality risk was the primary driver for net returns. The results from this study are important for determining future research priorities to analyze diagnostic techniques for bovine respiratory disease and provide a novel way for modeling diagnostic tests.

  17. Learning Diagnostic Diagrams in Transport-Based Data-Collection Systems

    DEFF Research Database (Denmark)

    Tran, Vu The; Eklund, Peter; Cook, Chris

    2014-01-01

    Insights about service improvement in a transit network can be gained by studying transit service reliability. In this paper, a general procedure for constructing a transit service reliability diagnostic (Tsrd) diagram based on a Bayesian network is proposed to automatically build a behavioural...... model from Automatic Vehicle Location (AVL) and Automatic Passenger Counters (APC) data. Our purpose is to discover the variability of transit service attributes and their effects on traveller behaviour. A Tsrd diagram describes and helps to analyse factors affecting public transport by combining domain...... knowledge with statistical data....

  18. MODELING MID-INFRARED DIAGNOSTICS OF OBSCURED QUASARS AND STARBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Gregory F.; Jonsson, Patrik; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Sajina, Anna [Department of Physics and Astronomy, Tufts University, 4 Colby Street, Medford, MA 02155 (United States); Cox, Thomas J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Hopkins, Philip F. [Department of Astronomy, University of California at Berkeley, C-208 Hearst Field Annex, Berkeley, CA 94720 (United States); Yan Lin, E-mail: gsnyder@cfa.harvard.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-05-10

    We analyze the link between active galactic nuclei (AGNs) and mid-infrared flux using dust radiative transfer calculations of starbursts realized in hydrodynamical simulations. Focusing on the effects of galaxy dust, we evaluate diagnostics commonly used to disentangle AGN and star formation in ultraluminous infrared galaxies (ULIRGs). We examine these quantities as a function of time, viewing angle, dust model, AGN spectrum, and AGN strength in merger simulations representing two possible extremes of the ULIRG population: one is a typical gas-rich merger at z {approx} 0, and the other is characteristic of extremely obscured starbursts at z {approx} 2-4. This highly obscured burst begins star-formation-dominated with significant polycyclic aromatic hydrocarbon (PAH) emission, and ends with a {approx}10{sup 9} yr period of red near-IR colors. At coalescence, when the AGN is most luminous, dust obscures the near-infrared AGN signature, reduces the relative emission from PAHs, and enhances the 9.7 {mu}m absorption by silicate grains. Although generally consistent with previous interpretations, our results imply none of these indicators can unambiguously estimate the AGN luminosity fraction in all cases. Motivated by the simulations, we show that a combination of the extinction feature at 9.7 {mu}m, the PAH strength, and a near-infrared slope can simultaneously constrain the AGN fraction and dust grain distribution for a wide range of obscuration. We find that this indicator, accessible to the James Webb Space Telescope, may estimate the AGN power as tightly as the hard X-ray flux alone, thereby providing a valuable future cross-check and constraint for large samples of distant ULIRGs.

  19. Integrating molecular diagnostics into histopathology training: the Belfast model.

    Science.gov (United States)

    Flynn, C; James, J; Maxwell, P; McQuaid, S; Ervine, A; Catherwood, M; Loughrey, M B; McGibben, D; Somerville, J; McManus, D T; Gray, M; Herron, B; Salto-Tellez, M

    2014-07-01

    Molecular medicine is transforming modern clinical practice, from diagnostics to therapeutics. Discoveries in research are being incorporated into the clinical setting with increasing rapidity. This transformation is also deeply changing the way we practise pathology. The great advances in cell and molecular biology which have accelerated our understanding of the pathogenesis of solid tumours have been embraced with variable degrees of enthusiasm by diverse medical professional specialties. While histopathologists have not been prompt to adopt molecular diagnostics to date, the need to incorporate molecular pathology into the training of future histopathologists is imperative. Our goal is to create, within an existing 5-year histopathology training curriculum, the structure for formal substantial teaching of molecular diagnostics. This specialist training has two main goals: (1) to equip future practising histopathologists with basic knowledge of molecular diagnostics and (2) to create the option for those interested in a subspecialty experience in tissue molecular diagnostics to pursue this training. It is our belief that this training will help to maintain in future the role of the pathologist at the centre of patient care as the integrator of clinical, morphological and molecular information.

  20. Intraoral fiber-optic-based diagnostic for periodontal disease

    Science.gov (United States)

    Colston, Bill W., Jr.; Gutierrez, Dora M.; Everett, Matthew J.; Brown, Steve B.; Langry, Kevin C.; Cox, Weldon R.; Johnson, Paul W.; Roe, Jeffrey N.

    2000-05-01

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic senor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research too.

  1. OIL MONITORING DIAGNOSTIC CRITERIONS BASED ON MAXIMUM ENTROPY PRINCIPLE

    Institute of Scientific and Technical Information of China (English)

    Huo Hua; Li Zhuguo; Xia Yanchun

    2005-01-01

    A method of applying maximum entropy probability density estimation approach to constituting diagnostic criterions of oil monitoring data is presented. The method promotes the precision of diagnostic criterions for evaluating the wear state of mechanical facilities, and judging abnormal data. According to the critical boundary points defined, a new measure on monitoring wear state and identifying probable wear faults can be got. The method can be applied to spectrometric analysis and direct reading ferrographic analysis. On the basis of the analysis and discussion of two examples of 8NVD48A-2U diesel engines, the practicality is proved to be an effective method in oil monitoring.

  2. Intraoral fiber optic-based diagnostic for periodontal disease

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P W; Gutierrez, D M; Everett, M J; Brown, S B; Langry, K C; Colston, B W; Roe, J N

    2000-01-21

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic sensor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research tool.

  3. Study design requirements for RNA sequencing-based breast cancer diagnostics.

    Science.gov (United States)

    Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias

    2016-01-01

    Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic. PMID:26830453

  4. An expert system for vibration based diagnostics of rotating machines

    International Nuclear Information System (INIS)

    Very often changes in the mechanical condition of the rotating machinery can be observed as changes in its vibration. This paper presents an expert system for vibration-based diagnosis of rotating machines by describing the architecture of the developed prototype system. The importance of modelling the problem solving knowledge as well as the domain knowledge is emphasized by presenting the knowledge in several levels

  5. Status of the DNB based ITER CXRS and BES diagnostic

    NARCIS (Netherlands)

    Hellermann, M. von; Jaspers, R.; Biel, W.; Litnovsky, A.; Neubauer, O.; Pap, M.; Hawkes, N.C.; Marren, C.; Walton, B.; Kaschuck, Y.; Serov, V.; Tugarinov, S.; Vliegenthart, W.A.; Moddemeijer, K.; Walker, C.; Ingesson, C.

    2006-01-01

    A status report is given on recent joint activities on the ITER CXRS and BES diagnostic package. Expected measurement performances are reviewed as well as comprehensive discussions are led on an integral approach to the implementation of Core and Edge CXRS observation periscopes. The "first mirror"

  6. Simulation-based diagnostics and control for nuclear power plants. Final report, April 15, 1992--April 14, 1995

    International Nuclear Information System (INIS)

    The objective of the project was to develop and test a simulation-based diagnostics and control guidance system that can be used to diagnose and manage off-normal transient events in nuclear power plants. The research has focused on developing two diagnostic approaches suitable for detection and identification of faults involving multiple components, subject to uncertainties in system modeling and observations. The first approach is based on a fuzzy logic framework that can diagnose binary failures using a single-failure diagnostic knowledge base. Construction of the binary-failure knowledge base is accomplished through the use of macroscopic conservation relationships and a fuzzy inference structure is developed to determine the magnitude of faults and the associated certainty. In the second diagnostic approach, an adaptive Kalman filter algorithm is derived to yield information on the type and magnitude of feasible component transitions that can account for system observations. To obtain the likelihood of feasible component failures or degradations, a general probabilistic formulation is developed where statistical distributions associated with component reliability data are explicitly represented. Testing of the diagnostic algorithms has been performed through the analysis of simulated transient events for light water reactor systems. Preliminary studies have been conducted to develop Monte Carlo algorithms for flexible control of transient events

  7. Flow diagnostics downstream of a tribladed rotor model

    DEFF Research Database (Denmark)

    Naumov, I. V.; Rahmanov, V. V.; Okulov, Valery;

    2012-01-01

    and subsequently quantitative data were recorded through velocity field restoration from particle tracks using a stereo PIV system.The study supplied flow diagnostics and recovered the instantaneous 3D velocity fields in the longitudinal cross section behind a tribladed rotor at different values of tip speed ratio...

  8. The Feasibility of a Diagnostic Media Test System Model.

    Science.gov (United States)

    Rapp, Alfred V.

    Research investigated the feasibility of a diagnostic media test system. Two distinct tests were developed for sixth grade and university populations, each having: 1) a main phase with three specific teaching sequences, one for each media form; 2) test items for each teaching sequence; and 3) a validation phase with one teaching sequence…

  9. Have Cognitive Diagnostic Models Delivered Their Goods? Some Substantial and Methodological Concerns

    Science.gov (United States)

    Wilhelm, Oliver; Robitzsch, Alexander

    2009-01-01

    The paper by Rupp and Templin (2008) is an excellent work on the characteristics and features of cognitive diagnostic models (CDM). In this article, the authors comment on some substantial and methodological aspects of this focus paper. They organize their comments by going through issues associated with the terms "cognitive," "diagnostic" and…

  10. The SUCCESS model for laboratory performance and execution of rapid molecular diagnostics in patients with sepsis.

    Science.gov (United States)

    Dekmezian, Mhair; Beal, Stacy G; Damashek, Mary Jane; Benavides, Raul; Dhiman, Neelam

    2015-04-01

    Successful performance and execution of rapid diagnostics in a clinical laboratory hinges heavily on careful validation, accurate and timely communication of results, and real-time quality monitoring. Laboratories must develop strategies to integrate diagnostics with stewardship and evidence-based clinical practice guidelines. We present a collaborative SUCCESS model for execution and monitoring of rapid sepsis diagnostics to facilitate timely treatment. Six months after execution of the Verigene Gram-Positive Blood Culture (BC-GP) and the AdvanDx PNA-FISH assays, data were collected on 579 and 28 episodes of bacteremia and fungemia, respectively. Clinical testing was executed using a SUCCESS model comprising the following components: stewardship, utilization of resources, core strategies, concierge services, education, support, and surveillance. Stewardship needs were identified by evaluating the specialty services benefiting from new testing. Utilization of resources was optimized by reviewing current treatment strategies and antibiogram and formulary options. Core strategies consisted of input from infectious disease leadership, pharmacy, and laboratory staff. Concierge services included automated Micro-eUpdate and physician-friendly actionable reports. Education modules were user-specific, and support was provided through a dedicated 24/7 microbiology hotline. Surveillance was performed by daily audit by the director. Using the SUCCESS model, the turnaround time for the detailed report with actionable guidelines to the physician was ∼3 hours from the time of culture positivity. The overall correlation between rapid methods and culture was 94% (546/579). Discrepant results were predominantly contaminants such as a coagulase-negative staphylococci or viridans streptococci in mixed cultures. SUCCESS is a cost-effective and easily adaptable model for clinical laboratories with limited stewardship resources. PMID:25829640

  11. Fetal Implications of Diagnostic Radiation Exposure During Pregnancy: Evidence-based Recommendations.

    Science.gov (United States)

    Rimawi, Bassam H; Green, Victoria; Lindsay, Michael

    2016-06-01

    The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described. PMID:26982251

  12. New Developments in Structural Health Monitoring Based on Diagnostic Lamb Wave

    Institute of Scientific and Technical Information of China (English)

    Shenfang YUAN; Yingdi XU; Ge PENG

    2004-01-01

    Structure health monitoring based on diagnostic Lamb waves has been found to be one of the most promising techniques recently. This paper has a brief review of the new developments on this method including the basic novel of the method, fundamentals and mathematics of Lamb wave propagation, narrowband and wideband Lamb wave excitation methods, optimization of excitation factors and diagnostic Lamb wave interpretation methods.

  13. A WAO - ARIA - GA2LEN consensus document on molecular-based allergy diagnostics

    DEFF Research Database (Denmark)

    Canonica, Giorgio Walter; Ansotegui, Ignacio J; Pawankar, Ruby;

    2013-01-01

    Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly ...

  14. Prevention of Disease Complications through Diagnostic Models: How to Tackle the Problem of Missing Data?

    OpenAIRE

    Marzban, M; Faramarzi, H; Baneshi, MR

    2012-01-01

    Background: Diagnostic models are frequently used to assess the role of risk factors on disease complications, and therefore to avoid them. Missing data is an issue that challenges the model making. The aim of this study was to develop a diagnostic model to predict death in HIV/AIDS patients when missing data exist. Methods: HIV patients (n=1460) referred to Voluntary Consoling and Testing Center (VCT) of Shiraz southern Iran during 2004–2009 were recruited. Univariate association between var...

  15. Dynamics model for real time diagnostics of Triga RC-1 system

    International Nuclear Information System (INIS)

    This paper presents dynamics model of TRIGA RC-1 reactor system. The model is dedicated to the real-time early fault detection during a reactor operation in one week exploitation cycle. The algorithms are specially suited for real-time, long time and also accelerated simulations with assumed diagnostic oriented accuracy. The approximations, modular structure, numerical methods and validation are discussed. The elaborated model will be build in the TRIGA Supervisor System and TRIGA Diagnostic Simulator

  16. Design, modeling, and diagnostics of microplasma generation at microwave frequency

    Science.gov (United States)

    Miura, Naoto

    Plasmas are partially ionized gases that find wide utility in the processing of materials, especially in integrated circuit fabrication. Most industrial applications of plasma occur in near-vacuum where the electrons are hot (>10,000 K) but the gas remains near room temperature. Typical atmospheric plasmas, such as arcs, are hot and destructive to sensitive materials. Recently the emerging field of microplasmas has demonstrated that atmospheric ionization of cold gases is possible if the plasma is microscopic. This dissertation investigates the fundamental physical properties of two classes of microplasma, both driven by microwave electric fields. The extension of point-source microplasmas into a line-shaped plasma is also described. The line-shape plasma is important for atmospheric processing of materials using roll-coating. Microplasma generators driven near 1 GHz were designed using microstrip transmission lines and characterized using argon near atmospheric pressure. The electrical characteristics of the microplasma including the discharge voltage, current and resistance were estimated by comparing the experimental power reflection coefficient to that of an electromagnetic simulation. The gas temperature, argon metastable density and electron density were obtained by optical absorption and emission spectroscopy. The microscopic internal plasma structure was probed using spatially-resolved diode laser absorption spectroscopy of excited argon states. The spatially resolved diagnostics revealed that argon metastable atoms were depleted within the 200mum core of the microplasma where the electron density was maximum. Two microplasma generators, the split-ring resonator (SRR) and the transmission line (T-line) generator, were compared. The SRR ran efficiently with a high impedance plasma (>1000 O) and was stabilized by the self-limiting of absorbed power (<1W) as a lower impedance plasma caused an impedance mismatch. Gas temperatures were <1000 K and electron

  17. A computerized data base system for medical diagnostic studies (Diastu).

    Science.gov (United States)

    Rosen, I I; Hall, T C; Mettler, F; Wicks, J; Kelsey, C A; Gustafson, D E

    1980-12-01

    A computerized database system (DIASTU) has been developed for the storage and selective retrieval of the results of medical diagnostic studies. The system is being used to analyze the disease process and the efficacy and yield of selected diagnostic studies. The system runs on a DEC PDP-11/60 computer. It consists of three FORTRAN IV programs linked to a general-purpose assembly language database handler. One program, DSENT, interactively modifies the information in the database. The second, DSLIST, prints all or portions of the database. The third program, DSTAT, interactively assembles the parameters for selective searches of the database and executes them. A query language is used that allows the use of time and size specifications and Boolean operators in nested loops. PMID:7249603

  18. Field-based multiplex and quantitative assay platforms for diagnostics

    Science.gov (United States)

    Venkatasubbarao, Srivatsa; Dixon, C. Edward; Chipman, Russell; Scherer, Axel; Beshay, Manal; Kempen, Lothar U.; Chandra Sekhar, Jai Ganesh; Yan, Hong; Puccio, Ava; Okonkwo, David; McClain, Stephen; Gilbert, Noah; Vyawahare, Saurabh

    2011-06-01

    The U.S. military has a continued interest in the development of handheld, field-usable sensors and test kits for a variety of diagnostic applications, such as traumatic brain injury (TBI) and infectious diseases. Field-use presents unique challenges for biosensor design, both for the readout unit and for the biological assay platform. We have developed robust biosensor devices that offer ultra-high sensitivity and also meet field-use needs. The systems under development include a multiplexed quantitative lateral flow test strip for TBI diagnostics, a field test kit for the diagnosis of pathogens endemic to the Middle East, and a microfluidic assay platform with a label-free reader for performing complex biological automated assays in the field.

  19. Fuzzy fault diagnostic system based on fault tree analysis

    OpenAIRE

    Yang, Zong Xiao; Suzuki, Kazuhiko; Shimada, Yukiyasu; Sayama, Hayatoshi

    1995-01-01

    A method is presented for process fault diagnosis using information from fault tree analysis and uncertainty/imprecision of data. Fault tree analysis, which has been used as a method of system reliability/safety analysis, provides a procedure for identifying failures within a process. A fuzzy fault diagnostic system is constructed which uses the fuzzy fault tree analysis to represent a knowledge of the causal relationships in process operation and control system. The proposed method is applie...

  20. Absolute calibration of a multilayer-based XUV diagnostic

    CERN Document Server

    Stuik, R; Tümmler, J; Bijkerk, F

    2002-01-01

    A portable, universal narrowband XUV diagnostic suitable for calibration of various XUV light sources, was built, tested and fully calibrated. The diagnostic allows measurement of the absolute XUV energy and average power in two selected wavelength bands, at 11.4 and 13.4 nm. In addition, the pulse-to-pulse and long-term XUV stability of the source can be assessed, as well as the contamination of multilayer XUV optics exposed to the source. This paper describes the full calibration procedure: all optical elements were calibrated at the wavelength of operation by Physikalisch-Technische Bundesanstalt at the storage ring Bessy II, a full analysis of geometrical factors was done, and the influence of the spectral emissivity of the source on the calibration was analyzed in detail. The calibration was performed both for the centroid wavelength as for the full bandwidth of the diagnostic. The total uncertainty in the absolute calibration allowed measurement of source characteristics with an uncertainty of less than...

  1. Watershed modeling tools and data for prognostic and diagnostic

    Science.gov (United States)

    Chambel-Leitao, P.; Brito, D.; Neves, R.

    2009-04-01

    's widely used in the world. Watershed models can be characterized by the high number of processes associated simulated. The estimation of these processes is also data intensive, requiring data on topography, land use / land cover, agriculture practices, soil type, precipitation, temperature, relative humidity, wind and radiation. Every year new data is being made available namely by satellite, that has allow to improve the quality of model input and also the calibration of the models (Galvão et. al, 2004b). Tools to cope with the vast amount of data have been developed: data formatting, data retrieving, data bases, metadata bases. The high number of processes simulated in watershed models makes them very wide in terms of output. The SWAT model outputs were modified to produce MOHID compliant result files (time series and HDF). These changes maintained the integrity of the original model, thus guarantying that results remain equal to the original version of SWAT. This allowed to output results in MOHID format, thus making it possible to immediately process it with MOHID visualization and data analysis tools (Chambel-Leitão et. al 2007; Trancoso et. al, 2009). Besides SWAT was modified to produce results files in HDF5 format, this allows the visualization of watershed properties (modeled by SWAT) in animated maps using MOHID GIS. The modified version of SWAT described here has been applied to various national and European projects. Results of the application of this modified version of SWAT to estimate hydrology and nutrients loads to estuaries and water bodies will be shown (Chambel-Leitão, 2008; Yarrow & Chambel-Leitão 2008; Chambel-Leitão et. al 2008; Yarrow & P. Chambel-Leitão, 2007; Yarrow & P. Chambel-Leitão, 2007; Coelho et. al., 2008). Keywords: Watershed models, SWAT, MOHID LAND, Hydrology, Nutrient Loads Arnold, J. G. and Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrol. Process. 19, 563

  2. Diagnostics of enterprise bankruptcy occurrence probability in an anti-crisis management: modern approaches and classification of models

    Directory of Open Access Journals (Sweden)

    I.V. Zhalinska

    2015-09-01

    Full Text Available Diagnostics of enterprise bankruptcy occurrence probability is defined as an important tool ensuring the viability of an organization under conditions of unpredictable dynamic environment. The paper aims to define the basic features of diagnostics of bankruptcy occurrence probability models and their classification. The article grounds the objective increasing of crisis probability in modern enterprises where such increasing leads to the need to improve the efficiency of anti-crisis enterprise activities. The system of anti-crisis management is based on the subsystem of diagnostics of bankruptcy occurrence probability. Such a subsystem is the main one for further measures to prevent and overcome the crisis. The classification of existing models of enterprise bankruptcy occurrence probability has been suggested. The classification is based on methodical and methodological principles of models. The following main groups of models are determined: the models using financial ratios, aggregates and scores, the models of discriminated analysis, the methods of strategic analysis, informal models, artificial intelligence systems and the combination of the models. The classification made it possible to identify the analytical capabilities of each of the groups of models suggested.

  3. Kaluza-Klein Gluons as a Diagnostic of Warped Models

    CERN Document Server

    Lillie, Benjamin Huntington; Tait, Tim M P

    2007-01-01

    We study the properties of $g^{1}$, the first excited state of the gluon in representative variants of the Randall Sundrum model with the Standard Model fields in the bulk. We find that measurements of the coupling to light quarks (from the inclusive cross-section for $pp\\to g^{1} \\to t\\bar t$), the coupling to bottom quarks (from the rate of $pp\\to g^{1} b$), as well as the overall width, can provide powerful discriminants between the models. In models with large brane kinetic terms, the $g^1$ resonance can even potentially be discovered decaying into dijets against the large QCD background. We also derive bounds based on existing Tevatron searches for resonant $t \\bar{t}$ production and find that they require $M_{g^{1}} \\gtrsim 950$ GeV. In addition we explore the pattern of interference between the $g^1$ signal and the non-resonant SM background, defining an asymmetry parameter for the invariant mass distribution. The interference probes the relative signs of the couplings of the $g^{1}$ to light quark pai...

  4. Novel Diagnostic Model for the Deficient and Excess Pulse Qualities

    Directory of Open Access Journals (Sweden)

    Jaeuk U. Kim

    2012-01-01

    Full Text Available The deficient and excess pulse qualities (DEPs are the two representatives of the deficiency and excess syndromes, respectively. Despite its importance in the objectification of pulse diagnosis, a reliable classification model for the DEPs has not been reported to date. In this work, we propose a classification method for the DEPs based on a clinical study. First, through factor analysis and Fisher's discriminant analysis, we show that all the pulse amplitudes obtained at various applied pressures at Chon, Gwan, and Cheok contribute on equal orders of magnitude in the determination of the DEPs. Then, we discuss that the pulse pressure or the average pulse amplitude is appropriate for describing the collective behaviors of the pulse amplitudes and a simple and reliable classification can be constructed from either quantity. Finally, we propose an enhanced classification model that combines the two complementary variables sequentially.

  5. Automatically Building Diagnostic Bayesian Networks from On-line Data Sources and the SMILE Web-based Interface

    OpenAIRE

    Tungkasthan, Anucha; Jongsawat, Nipat; Poompuang, Pittaya; Intarasema, Sarayut; Premchaiswadi, Wichian

    2010-01-01

    This paper presented a practical framework for automating the building of diagnostic BN models from data sources obtained from the WWW and demonstrates the use of a SMILE web-based interface to represent them. The framework consists of the following components: RSS agent, transformation/conversion tool, core reasoning engine, and the SMILE web-based interface. The RSS agent automatically collects and reads the provided RSS feeds according to the agent's predefined URLs. A transformation/conve...

  6. Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, H. [ed.

    1997-01-01

    This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)

  7. Diagnostic Evaluation of Ozone Production and Horizontal Transport in a Regional Photochemical Air Quality Modeling System

    Science.gov (United States)

    A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O3) within the lower troposphere. Results from th...

  8. Forecast of the Economic- Financial Performance Based on Diagnostic Analysis

    Directory of Open Access Journals (Sweden)

    Daniela Solomon

    2010-12-01

    Full Text Available To ensure efficient financial management is necessary to achieve the forecast of economic and financial performance on the basis of diagnostic analysis, approach most often developed starting from the prediction of turnover and also necessary for shaping an organization's prospects. In financial management, the turnover’s increasing is considered an objective in itself, being interpreted as generating increased market share, profit. Sales condition therefore the entire activity of a company, their variation being considered the main risk factor of enterprise’s economic and financial performance and the staring point in their forecast.

  9. Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics.

    Science.gov (United States)

    Malon, Radha S P; Sadir, Sahba; Balakrishnan, Malarvili; Córcoles, Emma P

    2014-01-01

    Saliva is increasingly recognised as an attractive diagnostic fluid. The presence of various disease signalling salivary biomarkers that accurately reflect normal and disease states in humans and the sampling benefits compared to blood sampling are some of the reasons for this recognition. This explains the burgeoning research field in assay developments and technological advancements for the detection of various salivary biomarkers to improve clinical diagnosis, management, and treatment. This paper reviews the significance of salivary biomarkers for clinical diagnosis and therapeutic applications, with focus on the technologies and biosensing platforms that have been reported for screening these biomarkers.

  10. Saliva-Based Biosensors: Noninvasive Monitoring Tool for Clinical Diagnostics

    Directory of Open Access Journals (Sweden)

    Radha S. P. Malon

    2014-01-01

    Full Text Available Saliva is increasingly recognised as an attractive diagnostic fluid. The presence of various disease signalling salivary biomarkers that accurately reflect normal and disease states in humans and the sampling benefits compared to blood sampling are some of the reasons for this recognition. This explains the burgeoning research field in assay developments and technological advancements for the detection of various salivary biomarkers to improve clinical diagnosis, management, and treatment. This paper reviews the significance of salivary biomarkers for clinical diagnosis and therapeutic applications, with focus on the technologies and biosensing platforms that have been reported for screening these biomarkers.

  11. Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan.

    Directory of Open Access Journals (Sweden)

    Chau-Ren Jung

    Full Text Available There is limited evidence that long-term exposure to ambient air pollution increases the risk of childhood autism spectrum disorder (ASD. The objective of the study was to investigate the associations between long-term exposure to air pollution and newly diagnostic ASD in Taiwan. We conducted a population-based cohort of 49,073 children age less than 3 years in 2000 that were retrieved from Taiwan National Insurance Research Database and followed up from 2000 through 2010. Inverse distance weighting method was used to form exposure parameter for ozone (O3, carbon monoxide (CO, nitrogen dioxide (NO2, sulfur dioxide (SO2, and particles with aerodynamic diameter less than 10 µm (PM10. Time-dependent Cox proportional hazards (PH model was performed to evaluate the relationship between yearly average exposure air pollutants of preceding years and newly diagnostic ASD. The risk of newly diagnostic ASD increased according to increasing O3, CO, NO2, and SO2 levels. The effect estimate indicating an approximately 59% risk increase per 10 ppb increase in O3 level (95% CI 1.42-1.79, 37% risk increase per 10 ppb in CO (95% CI 1.31-1.44, 340% risk increase per 10 ppb increase in NO2 level (95% CI 3.31-5.85, and 17% risk increase per 1 ppb in SO2 level (95% CI 1.09-1.27 was stable with different combinations of air pollutants in the multi-pollutant models. Our results provide evident that children exposure to O3, CO, NO2, and SO2 in the preceding 1 year to 4 years may increase the risk of ASD diagnosis.

  12. A Laser-Based Diagnostic Suite for Hypersonic Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR effort, Los Gatos Research (LGR) proposes to develop a suite of laser-based diagnostics for the study of reactive and non-reactive hypersonic flows....

  13. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    Science.gov (United States)

    Sartori, E.; Panasenkov, A.; Veltri, P.; Serianni, G.; Pasqualotto, R.

    2016-11-01

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  14. A Robust Automated Cataract Detection Algorithm Using Diagnostic Opinion Based Parameter Thresholding for Telemedicine Application

    Directory of Open Access Journals (Sweden)

    Shashwat Pathak

    2016-09-01

    Full Text Available This paper proposes and evaluates an algorithm to automatically detect the cataracts from color images in adult human subjects. Currently, methods available for cataract detection are based on the use of either fundus camera or Digital Single-Lens Reflex (DSLR camera; both are very expensive. The main motive behind this work is to develop an inexpensive, robust and convenient algorithm which in conjugation with suitable devices will be able to diagnose the presence of cataract from the true color images of an eye. An algorithm is proposed for cataract screening based on texture features: uniformity, intensity and standard deviation. These features are first computed and mapped with diagnostic opinion by the eye expert to define the basic threshold of screening system and later tested on real subjects in an eye clinic. Finally, a tele-ophthamology model using our proposed system has been suggested, which confirms the telemedicine application of the proposed system.

  15. Diagnostic, Predictive and Compositional Modeling with Data Mining in Integrated Learning Environments

    Science.gov (United States)

    Lee, Chien-Sing

    2007-01-01

    Models represent a set of generic patterns to test hypotheses. This paper presents the CogMoLab student model in the context of an integrated learning environment. Three aspects are discussed: diagnostic and predictive modeling with respect to the issues of credit assignment and scalability and compositional modeling of the student profile in the…

  16. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    Science.gov (United States)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  17. Kernel model-based diagnosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The methods for computing the kemel consistency-based diagnoses and the kernel abductive diagnoses are only suited for the situation where part of the fault behavioral modes of the components are known. The characterization of the kernel model-based diagnosis based on the general causal theory is proposed, which can break through the limitation of the above methods when all behavioral modes of each component are known. Using this method, when observation subsets deduced logically are respectively assigned to the empty or the whole observation set, the kernel consistency-based diagnoses and the kernel abductive diagnoses can deal with all situations. The direct relationship between this diagnostic procedure and the prime implicants/implicates is proved, thus linking theoretical result with implementation.

  18. Large biases in regression-based constituent flux estimates: causes and diagnostic tools

    Science.gov (United States)

    Hirsch, Robert M.

    2014-01-01

    It has been documented in the literature that, in some cases, widely used regression-based models can produce severely biased estimates of long-term mean river fluxes of various constituents. These models, estimated using sample values of concentration, discharge, and date, are used to compute estimated fluxes for a multiyear period at a daily time step. This study compares results of the LOADEST seven-parameter model, LOADEST five-parameter model, and the Weighted Regressions on Time, Discharge, and Season (WRTDS) model using subsampling of six very large datasets to better understand this bias problem. This analysis considers sample datasets for dissolved nitrate and total phosphorus. The results show that LOADEST-7 and LOADEST-5, although they often produce very nearly unbiased results, can produce highly biased results. This study identifies three conditions that can give rise to these severe biases: (1) lack of fit of the log of concentration vs. log discharge relationship, (2) substantial differences in the shape of this relationship across seasons, and (3) severely heteroscedastic residuals. The WRTDS model is more resistant to the bias problem than the LOADEST models but is not immune to them. Understanding the causes of the bias problem is crucial to selecting an appropriate method for flux computations. Diagnostic tools for identifying the potential for bias problems are introduced, and strategies for resolving bias problems are described.

  19. Real-time Modelling, Diagnostics and Optimised MPPT for Residental PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso

    to diagnostic functions as an additional tool to maximise the energy yield of photovoltaic arrays (Chapter 4). Furthermore, mathematical models of PV panels and arrays have been developed and built (detailed in Chapter 3) for testing MPPT algorithms, and for diagnostic purposes. In Chapter 2 an overview.......g. from datasheet or reference measurement) I −V characteristic, is proposed. A considerable part of the thesis is dedicated to the diagnostic functions of crystalline photovoltaic panels, aimed to detect failures related to increased series resistance and partial shadowing, the two major factors....... In order to eliminate the iterative calculations for parameter determinations, a simplified three-parameter model is used throughout Chapter 4, dedicated to diagnostic functions of PV panels. Simple analytic expressions for the model important parameters, which could reflect deviations from the normal (e...

  20. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R T; O' Brien, D W; Kamperschroer, J H; Nelson, J R

    2007-10-03

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated and gated X-ray sensors, and laser velocity interferometry. Diagnostics to diagnose fusion ignition implosion and neutron emissions are being planned. Many diagnostics will be developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. An instrument-based controls (I-BC) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the I-BC architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. I-BCs are reusable by replication and reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and better reliability. Collaborators save costs by assembling diagnostics with existing I-BCs. This paper discusses target diagnostic instrumentation used on NIF and presents the I-BC architecture and framework.

  1. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  2. A diagnostic expert system for a boiling water reactor using a dynamic model

    International Nuclear Information System (INIS)

    A diagnostic expert system for abnormal disturbances in a BWR (Boiling Water Reactor) plant has been developed. The peculiar feature of this system is a diagnostic method which combines artificial intelligence technique with numerical analysis technique. The system has three diagnostic functions, 1) identification of anomaly position (device or sensor), 2) identification of anomaly mode and 3) identification of anomaly cause. Function 1) is implemented as follows. First, a hypothesis about anomaly propagation paths is built up by qualitative reasoning, using knowledge of causal relations among observed signals. Next, the abnormal device or sensor is found by applying model reference method and fuzzy set theory to test the hypothesis, using knowledge of plant structure and function, heuristic strategy of diagnosis and module type dynamic simulator. This simulator is composed of basic transfer function modules. The simulation model for the testing region is built up automatically, according to the requirement from the diagnostic task. Function 2) means identification of dynamic characteristics for an anomaly. It is realized by tuning model parameters so as to reproduce the abnormal signal behavior using the non-linear programing method. Function 3) derives probable anomaly causes from heuristic rules between anomaly mode and cause. A basic plant dynamic model was built up and adjusted to dynamic characteristics for one BWR plant (1100MWe). In order to verify the diagnostic functions of this system, data for several abnormal events was compiled by modifying this model. The diagnostic functions were proved useful, through the simulated abnormal data

  3. Inter-Model Diagnostics for Two Snow Models Across Multiple Western U.S. Locations and Implications for Management

    Science.gov (United States)

    Houle, E. S.; Livneh, B.; Kasprzyk, J. R.

    2014-12-01

    In the western United States, water resource management is increasingly reliant on numerical modeling of hydrological processes, namely snow accumulation and ablation. We seek to advance a framework for providing model diagnostics for such systems by combining an improved understanding of model structural differences (i.e., conceptual vs. physically based) and parameter sensitivities. The two snow models used in this study are SNOW-17, a conceptual degree-day model, and the Variable Infiltration Capacity (VIC) snow model, which is physically based and solves the full water and energy balances. To better understand the performance of these models, several approaches will be used. For the conceptual model, global sensitivity analysis methods (e.g., Sobol' and Method of Morris), and a multi-objective calibration will be applied to identify important parameters and show calibrated parameter values. For the physically based model, we will contribute a novel exploration of some parameters that can be adjusted within the model, including the liquid water holding capacity, the density of newly fallen snow, and the snow roughness. Additionally, the VIC model will be run with explicit radiation inputs at selected sites. For each model run, snow sensitivities and errors (i.e., snow water equivalent results) will be translated into estimated changes in annual water yield for the study areas. Accurately predicting water yield is essential for water management, and it is used here as a practical measure to determine the importance of model parameter sensitivity and calibration. The analysis will be conducted across a range of snow-dominated locations representing a variety of climates across the western United States (e.g. continental, maritime, alpine).

  4. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    CERN Document Server

    Thurman-Keup, R; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-01-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measur...

  5. Overview of the Diagnostic Cloud Forecast Model at the Air Force Weather Agency

    Science.gov (United States)

    Hildebrand, E. P.

    2014-12-01

    The Air Force Weather Agency (AFWA) is responsible for running and maintaining the Diagnostic Cloud Forecast (DCF) model to support DoD missions and those of their external partners. The DCF model generates three-dimensional cloud forecasts for global and regional domains at various resolutions. Regional domains are chosen based on Air Force mission needs. DCF is purely a statistical model that can be appended to any numerical weather prediction (NWP) model. Operationally, AFWA runs the DCF model deterministically using GFS data from NCEP and WRF data that are created in-house. In addition, AFWA also runs an ensemble version of the DCF model using the Mesoscale Ensemble Prediction System (MEPS). The deterministic DCF uses predictor variables from the WRF or GFS models, depending on whether the domain is regional or global, and statistically relates them to observed cloud cover from the World-Wide Merged Cloud Analysis (WWMCA). The forecast process of the model uses an ordinal logistic regression to predict membership in one of 101 groups (every 1% from 0-100%). The predicted group membership then is translated into a cloud amount. This is performed on 21 pressure levels ranging from 1000 hPa to 100 hPa. Cloud amount forecasts on these 21 levels are used along with the NWP geopotential height forecasts to estimate the base and top heights of cloud layers in the vertical. DCF also includes routines to estimate the amount and type of cloud within each layer. Forecasts of total cloud amount are verified using the WWMCA, as well as independent sources of cloud data. This presentation will include an overview of the DCF model and its use at AFWA. Results will be presented to show that DCF adds value over the raw cloud forecasts from NWP models. Ideas for future work also will be addressed.

  6. Software architecture and design of the web services facilitating climate model diagnostic analysis

    Science.gov (United States)

    Pan, L.; Lee, S.; Zhang, J.; Tang, B.; Zhai, C.; Jiang, J. H.; Wang, W.; Bao, Q.; Qi, M.; Kubar, T. L.; Teixeira, J.

    2015-12-01

    Climate model diagnostic analysis is a computationally- and data-intensive task because it involves multiple numerical model outputs and satellite observation data that can both be high resolution. We have built an online tool that facilitates this process. The tool is called Climate Model Diagnostic Analyzer (CMDA). It employs the web service technology and provides a web-based user interface. The benefits of these choices include: (1) No installation of any software other than a browser, hence it is platform compatable; (2) Co-location of computation and big data on the server side, and small results and plots to be downloaded on the client side, hence high data efficiency; (3) multi-threaded implementation to achieve parallel performance on multi-core servers; and (4) cloud deployment so each user has a dedicated virtual machine. In this presentation, we will focus on the computer science aspects of this tool, namely the architectural design, the infrastructure of the web services, the implementation of the web-based user interface, the mechanism of provenance collection, the approach to virtualization, and the Amazon Cloud deployment. As an example, We will describe our methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). Another example is the use of Docker, a light-weight virtualization container, to distribute and deploy CMDA onto an Amazon EC2 instance. Our tool of CMDA has been successfully used in the 2014 Summer School hosted by the JPL Center for Climate Science. Students had positive feedbacks in general and we will report their comments. An enhanced version of CMDA with several new features, some requested by the 2014 students, will be used in the 2015 Summer School soon.

  7. Evolvable Smartphone-Based Platforms for Point-Of-Care In-Vitro Diagnostics Applications

    DEFF Research Database (Denmark)

    Patou, François; Al Atraktchi, Fatima Al-Zahraa; Kjærgaard, Claus;

    2016-01-01

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting ......The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long......-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued...... recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry...

  8. Diagnostic test of predicted height model in Indonesian elderly: a study in an urban area

    Directory of Open Access Journals (Sweden)

    Fatmah Fatmah

    2010-08-01

    Full Text Available Aim In an anthropometric assessment, elderly are frequently unable to measure their height due to mobility and skeletal deformities. An alternative is to use a surrogate value of stature from arm span, knee height, and sitting height. The equations developed for predicting height in Indonesian elderly using these three predictors. The equations put in the nutritional assessment card (NSA of older people. Before the card which is the first new technology in Indonesia will be applied in the community, it should be tested. The study aimed was to conduct diagnostic test of predicted height model in the card compared to actual height.Methods Model validation towards 400 healthy elderly conducted in Jakarta City with cross-sectional design. The study was the second validation test of the model besides Depok City representing semi urban area which was undertaken as the first study.Result Male elderly had higher mean age, height, weight, arm span, knee height, and sitting height as compared to female elderly. The highest correlation between knee height and standing height was similar in women (r = 0.80; P < 0.001 and men (r = 0.78; P < 0.001, and followed by arm span and sitting height. Knee height had the lowest difference with standing height in men (3.13 cm and women (2.79 cm. Knee height had the biggest sensitivity (92.2%, and the highest specificity on sitting height (91.2%.Conclusion Stature prediction equation based on knee-height, arm span, and sitting height are applicable for nutritional status assessment in Indonesian elderly. (Med J Indones 2010;19:199-204Key words: diagnostic test, elderly, predicted height model

  9. Applying the Weisbord model as a diagnostic framework for organizational analysis

    OpenAIRE

    Kontić Ljiljana

    2012-01-01

    This study investigates the effectiveness of the Weisbord's Six Box Model as a diagnostic framework for assessing the factors affecting organizational development. The research area consisted of an international bank which operates in Serbia. In order to identify strengths and weaknesses in the bank, Weisbord's diagnostic questionnaire has been used. Respondents were 137 middle managers in the selected bank. The research results revealed that the bank has strengths in the areas of leadership,...

  10. Development and Evaluation of the Diagnostic Power for a Computer-Based Two-Tier Assessment

    Science.gov (United States)

    Lin, Jing-Wen

    2016-01-01

    This study adopted a quasi-experimental design with follow-up interview to develop a computer-based two-tier assessment (CBA) regarding the science topic of electric circuits and to evaluate the diagnostic power of the assessment. Three assessment formats (i.e., paper-and-pencil, static computer-based, and dynamic computer-based tests) using…

  11. Cost Implications of Value-Based Pricing for Companion Diagnostic Tests in Precision Medicine.

    Science.gov (United States)

    Zaric, Gregory S

    2016-07-01

    Many interpretations of personalized medicine, also referred to as precision medicine, include discussions of companion diagnostic tests that allow drugs to be targeted to those individuals who are most likely to benefit or that allow treatment to be designed in a way such that individuals who are unlikely to benefit do not receive treatment. Many authors have commented on the clinical and competitive implications of companion diagnostics, but there has been relatively little formal analysis of the cost implications of companion diagnostics, although cost reduction is often cited as a significant benefit of precision medicine. We investigate the potential impact on costs of precision medicine implemented through the use of companion diagnostics. We develop a framework in which the costs of companion diagnostic tests are determined by considerations of profit maximization and cost effectiveness. We analyze four scenarios that are defined by the incremental cost-effectiveness ratio of the new drug in the absence of a companion diagnostic test. We find that, in most scenarios, precision medicine strategies based on companion diagnostics should be expected to lead to increases in costs in the short term and that costs would fall only in a limited number of situations. PMID:26899833

  12. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease.

    OpenAIRE

    Sieving, P A; Yashar, B M; Ayyagari, R

    1999-01-01

    BACKGROUND AND PURPOSE: X-linked juvenile retinoschisis (RS) provides a starting point to define clinical paradigms and understand the limitations of diagnostic molecular testing. The RS phenotype is specific, but the broad severity range is clinically confusing. Molecular diagnostic testing obviates unnecessary examinations for boys at-risk and identifies carrier females who otherwise show no clinical signs. METHODS: The XLRS1 gene has 6 exons of 26-196 base-pair size. Each exon is amplified...

  13. Opportunities for improving pLDH-based malaria diagnostic tests

    Directory of Open Access Journals (Sweden)

    Choi Young

    2011-08-01

    Full Text Available Abstract Background Monoclonal antibodies to Plasmodium lactate dehydrogenase (pLDH have been previously used to format immunochromatographic tests for the diagnosis of malaria. Using pLDH as an antigen has several advantages as a sensitive measure of the presence of parasites within patient blood samples. However, variable results in terms of specificity and sensitivity among different commercially available diagnostic kits have been reported and it has not been clear from these studies whether the performance of an individual test is due simply to how it is engineered or whether it is due to the biochemical nature of the pLDH-antibody reaction itself. Methods A series of systematic studies to determine how various pLDH monoclonal antibodies work in combination was undertaken. Different combinations of anti-pLDH monoclonal antibodies were used in a rapid-test immunochromatographic assay format to determine parameters of sensitivity and specificity with regard to individual Plasmodium species. Results Dramatic differences were found in both species specificity and overall sensitivity depending on which antibody is used on the immunochromatographic strip and which is used on the colorimetric colloidal-gold used for visual detection. Discussion The results demonstrate the feasibility of different test formats for the detection and speciation of malarial infections. In addition, the data will enable the development of a universal rapid test algorithm that may potentially provide a cost-effective strategy to diagnose and manage patients in a wide range of clinical settings. Conclusion These data emphasize that using different anti-pLDH antibody combinations offers a tractable way to optimize immunochromatographic pLDH tests.

  14. 非线性再生散度模型的诊断%SOME DIAGNOSTICS IN NONLINEAR REPRODUCTIVE DISPERSION MODELS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This article discusses the problem of the detection of influential cases in nonlinear reproductive dispersion models (NRDM). A diagnostic based on case-deletion approach in estimating equations is proposed. The relationships between the generalized leverage defined by Wei et al. in 1998, statistical curvature, and the local influence of the response vector perturbations are investigated in NRDM. Two numerical examples are given to illustrate the results.

  15. A stochastic model to determine the economic value of changing diagnostic test characteristics for identification of cattle for treatment of bovine respiratory disease.

    Science.gov (United States)

    Theurer, M E; White, B J; Larson, R L; Schroeder, T C

    2015-03-01

    Bovine respiratory disease is an economically important syndrome in the beef industry, and diagnostic accuracy is important for optimal disease management. The objective of this study was to determine whether improving diagnostic sensitivity or specificity was of greater economic value at varied levels of respiratory disease prevalence by using Monte Carlo simulation. Existing literature was used to populate model distributions of published sensitivity, specificity, and performance (ADG, carcass weight, yield grade, quality grade, and mortality risk) differences among calves based on clinical respiratory disease status. Data from multiple cattle feeding operations were used to generate true ranges of respiratory disease prevalence and associated mortality. Input variables were combined into a single model that calculated estimated net returns for animals by diagnostic category (true positive, false positive, false negative, and true negative) based on the prevalence, sensitivity, and specificity for each iteration. Net returns for each diagnostic category were multiplied by the proportion of animals in each diagnostic category to determine group profitability. Apparent prevalence was categorized into low (<15%) and high (≥15%) groups. For both apparent prevalence categories, increasing specificity created more rapid, positive change in net returns than increasing sensitivity. Improvement of diagnostic specificity, perhaps through a confirmatory test interpreted in series or pen-level diagnostics, can increase diagnostic value more than improving sensitivity. Mortality risk was the primary driver for net returns. The results from this study are important for determining future research priorities to analyze diagnostic techniques for bovine respiratory disease and provide a novel way for modeling diagnostic tests. PMID:26020916

  16. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    Science.gov (United States)

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  17. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    Science.gov (United States)

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  18. Model-based sensor diagnosis

    International Nuclear Information System (INIS)

    Running a nuclear power plant involves monitoring data provided by the installation's sensors. Operators and computerized systems then use these data to establish a diagnostic of the plant. However, the instrumentation system is complex, and is not immune to faults and failures. This paper presents a system for detecting sensor failures using a topological description of the installation and a set of component models. This model of the plant implicitly contains relations between sensor data. These relations must always be checked if all the components are functioning correctly. The failure detection task thus consists of checking these constraints. The constraints are extracted in two stages. Firstly, a qualitative model of their existence is built using structural analysis. Secondly, the models are formally handled according to the results of the structural analysis, in order to establish the constraints on the sensor data. This work constitutes an initial step in extending model-based diagnosis, as the information on which it is based is suspect. This work will be followed by surveillance of the detection system. When the instrumentation is assumed to be sound, the unverified constraints indicate errors on the plant model. (authors). 8 refs., 4 figs

  19. Diagnostic tests for influenza and other respiratory viruses: determining performance specifications based on clinical setting.

    Science.gov (United States)

    Takahashi, Hiroshi; Otsuka, Yoshihito; Patterson, Bruce K

    2010-06-01

    The lack of sensitivity of rapid immunoassays in detecting the novel 2009 H1N1 influenza virus infection has led to recommendations on influenza diagnostic testing for clinicians treating patients as well as advising clinicians on testing decisions. Studies have also shown that rapid immunoassays for seasonal influenza virus show considerable variability in performance characteristics, based on age of patient, prevalence of disease, course of infection, and the quality of the kit used. While public health authorities are currently focused on influenza virus diagnostics, a lack of sensitivity of rapid immunoassays for other viral respiratory pathogens has been widely reported, such as the very limited value of rapid immunoassays for the detection of respiratory syncytial virus in adults. In light of the lack of sensitivity of diagnostic tests for suspected 2009 H1N1 influenza virus infection, as well as their variable performance characteristics for seasonal influenza virus, a number of recommendations have been made by public health authorities advising clinicians on the need for clinical judgment as an important part of testing and treatment decisions as well as reliance on local epidemiologic and surveillance data. With the availability of new molecular methodologies that are user-friendly and allow the front-line physician as well as hospital infection control programs to significantly improve respiratory viral diagnostics, there is a need to carefully determine the most optimal diagnostic testing methodology based on the clinical setting. This review will describe the historical, current, and changing dynamics of respiratory virus infection diagnostics.

  20. Product qualification: a barrier to point-of-care microfluidic-based diagnostics?

    Science.gov (United States)

    Tantra, Ratna; van Heeren, Henne

    2013-06-21

    One of the most exciting applications of microfluidics-based diagnostics is its potential use in next generation point-of-care (POC) devices. Many prototypes are already in existence, but, as of yet, few have achieved commercialisation. In this article, we consider the issue surrounding product qualification as a potential barrier to market success. The study discusses, in the context of POC microfluidics-based diagnostics, what the generic issues are and potential solutions. Our findings underline the need for a community-based effort that is necessary to speed up the product qualification process. PMID:23652789

  1. Model-based geostatistics

    CERN Document Server

    Diggle, Peter J

    2007-01-01

    Model-based geostatistics refers to the application of general statistical principles of modeling and inference to geostatistical problems. This volume provides a treatment of model-based geostatistics and emphasizes on statistical methods and applications. It also features analyses of datasets from a range of scientific contexts.

  2. Study of Internet-based Open Remote Diagnostic System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the wide application of information technologi es , Internet-based remote diagnosis (IRD) of plant will surely become the main se rvice mode of corporations in the future. Therefore, it has received a great dea l recognition from academia and the industry. The IRD technology, which is based upon database, computer, and network technologies is the focus of correlative r esearch all over the world. Although some scientific institutions have developed primary IRD systems, their functions are quite narro...

  3. Comprehensive examination of the trans-diagnostic cognitive behavioral model of eating disorders in males.

    Science.gov (United States)

    Dakanalis, Antonios; Timko, C Alix; Clerici, Massimo; Zanetti, M Assunta; Riva, Giuseppe

    2014-01-01

    The Trans-diagnostic Model (TM) of eating pathology describes how one or more of four hypothesized mechanisms (i.e., mood intolerance, core low self-esteem, clinical perfectionism and interpersonal difficulties) may interrelate with each other and with the core psychopathology of eating disorders (i.e., over-evaluation of weight and shape) to maintain the disordered behaviors. Although a cognitive behavioral treatment based on the TM has shown to be effective in treating eating disorders, the model itself has undergone only limited testing. This is the first study to both elaborate and test the validity of the TM in a large sample (N=605) of undergraduate men. Body mass index was controlled within structural equation modeling analyses. Although not all expected associations for the maintenance variables were significant, overall the validity of the model was supported. Concern about shape and weight directly led to exercise behaviors. There was a direct path from binge eating to exercise and other forms of compensatory behaviors (i.e., purging); but no significant path from restriction to binge eating. Of the maintaining factors, mood intolerance was the only maintaining variable directly linked to men's eating disorder symptoms. The other three maintaining factors of the TM indirectly impacted restriction through concerns about shape and weight, whereas only interpersonal difficulties predicted low self-esteem and binge eating. Potential implications for understanding and targeting eating disturbances in men are discussed. PMID:24411752

  4. Residual diagnostics for cross-section time series regression models

    OpenAIRE

    Baum, Christopher F

    2001-01-01

    These routines support the diagnosis of groupwise heteroskedasticity and cross-sectional correlation in the context of a regression model fit to pooled cross-section time series (xt) data. Copyright 2001 by Stata Corporation.

  5. Statefinder Diagnostic for Dark Energy Models in Bianchi I Universe

    CERN Document Server

    Sharif, M

    2013-01-01

    In this paper, we investigate the statefinder, the deceleration and equation of state parameters when universe is composed of generalized holographic dark energy or generalized Ricci dark energy for Bianchi I universe model. These parameters are found for both interacting as well as non-interacting scenarios of generalized holographic or generalized Ricci dark energy with dark matter and generalized Chaplygin gas. We explore these parameters graphically for different situations. It is concluded that these models represent accelerated expansion of the universe.

  6. Statefinder Diagnostic for Phantom Model with V(φ)= V0exp(-λφ2)

    Institute of Scientific and Technical Information of China (English)

    CHANG Bao-Rong; LIU Hong-Ya; XU Li-Xin; ZHANG Cheng-Wu

    2007-01-01

    We investigate the phantom field with potential V(φ) = V0 exp(-λφ2) and dark matter in the spatially flat Friedman-Robertson-Walker model. It has been shown by numerical calculation that there is a attractor solution in this model. We also apply the statefinder diagnostic to this phantom model. It is shown that the evolving trajectories of this scenario in the s - r diagram is quite different from other dark energy models.

  7. Diagnostic method for photovoltaic systems based on light I-V measurements

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas;

    2015-01-01

    , increased series-resistance losses, and potential-induced degradation of the PV generator by analysing changes its current-voltage characteristic curve. The diagnostic method is based on parameters that can be easily calculated from the shape of the current-voltage curve, making it machine-analysis friendly...... and analysis of the diagnostic parameters and logic was performed based on module level tests on standard crystalline silicon PV modules, and were optimized to detect even small partial shading and increase series-resistance losses. To demonstrate the practical application and operation of this method......, the diagnostic parameters and rules were applied “as is” to a field test setup consisting of a crystalline silicon based PV string and a commercial string inverter capable of measuring the I-V curve of the PV string, yielding a similar high-detection rate....

  8. A temporally and spatially resolved electron density diagnostic method for the edge plasma based on Stark broadening

    Science.gov (United States)

    Zafar, A.; Martin, E. H.; Shannon, S. C.; Isler, R. C.; Caughman, J. B. O.

    2016-11-01

    An electron density diagnostic (≥1010 cm-3) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6-2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 1010-1013 cm-3. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.

  9. An Embedded Rule-Based Diagnostic Expert System in Ada

    Science.gov (United States)

    Jones, Robert E.; Liberman, Eugene M.

    1992-01-01

    Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with it portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assumed a growing role in providing human-like reasoning capability expertise for computer systems. The integration is discussed of expert system technology with Ada programming language, especially a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell. NASA Lewis was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-based power expert system, in ART-Ada. Three components, the rule-based expert systems, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The rules were written in the ART-Ada development environment and converted to Ada source code. The graphics interface was developed with the Transportable Application Environment (TAE) Plus, which generates Ada source code to control graphics images. SMART-Ada communicates with a remote host to obtain either simulated or real data. The Ada source code generated with ART-Ada, TAE Plus, and communications code was incorporated into an Ada expert system that reads the data from a power distribution test bed, applies the rule to determine a fault, if one exists, and graphically displays it on the screen. The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.

  10. EDGE2D modelling of edge profiles obtained in JET diagnostic optimized configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kallenbach, A [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Andrew, Y [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Beurskens, M [FOM-Rijnhuizen, Ass. Euratom-FOM, TEC (Netherlands); Corrigan, G [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Eich, T [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Jachmich, S [ERM, Brussels (Belgium); Kempenaars, M [FOM-Rijnhuizen, Ass. Euratom-FOM, TEC (Netherlands); Korotkov, A [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Loarte, A [EFDA Close Support Unit, Garching (Germany); Matthews, G [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Monier-Garbet, P [CEA Cadarache (France); Saibene, G [EFDA Close Support Unit, Garching (Germany); Spence, J [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Suttrop, W [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2004-03-01

    Nine type-I ELMy H-mode discharges in diagnostic optimized configuration in JET are analysed with the EDGE2D/NIMBUS package. EDGE2D solves the fluid equations for the conservation of particles, momentum and energy for hydrogenic and impurity ions, while neutrals are followed with the two-dimensional Monte Carlo module NIMBUS. Using external boundary conditions from the experiment, the perpendicular heat conductivities {chi}{sub i,e} and the particle transport coefficients D, v are varied until good agreement between code result and measured data is obtained. A step-like ansatz is used for the edge transport parameters for the outer core region, the edge transport barrier and the outer scrape-off layer. The time-dependent effect of edge localized modes on the edge profiles is simulated with an ad hoc ELM model based on the repetitive increase of the transport coefficients {chi}{sub i,e} and D. The values of the transport coefficients are matched to experimental data mapped to the outer midplane, in the course of which radial shifts of experimental profiles of the order of 1 cm caused by the accuracy limit of the equilibrium reconstruction are taken into account. Simulated divertor profiles obtained from the upstream transport ansatz and the experimental boundary conditions agree with measurements, except a small region localized at the separatrix strike points which is supposed to be affected by direct ion losses. The integrated analysis using EDGE2D modelling, although still limited by the marginal spatial resolution of individual diagnostics, allows the characterization of profiles in the edge/pedestal region and supplies additional information on the separatrix position. The steep density gradient zone inside the separatrix shrinks compared to the electron temperature with increasing density, indicating the effect of the neutral penetration depth becoming shorter than the region of reduced transport.

  11. Predicting population coverage of T-cell epitope-based diagnostics and vaccines

    Directory of Open Access Journals (Sweden)

    Newman Mark J

    2006-03-01

    Full Text Available Abstract Background T cells recognize a complex between a specific major histocompatibility complex (MHC molecule and a particular pathogen-derived epitope. A given epitope will elicit a response only in individuals that express an MHC molecule capable of binding that particular epitope. MHC molecules are extremely polymorphic and over a thousand different human MHC (HLA alleles are known. A disproportionate amount of MHC polymorphism occurs in positions constituting the peptide-binding region, and as a result, MHC molecules exhibit a widely varying binding specificity. In the design of peptide-based vaccines and diagnostics, the issue of population coverage in relation to MHC polymorphism is further complicated by the fact that different HLA types are expressed at dramatically different frequencies in different ethnicities. Thus, without careful consideration, a vaccine or diagnostic with ethnically biased population coverage could result. Results To address this issue, an algorithm was developed to calculate, on the basis of HLA genotypic frequencies, the fraction of individuals expected to respond to a given epitope set, diagnostic or vaccine. The population coverage estimates are based on MHC binding and/or T cell restriction data, although the tool can be utilized in a more general fashion. The algorithm was implemented as a web-application available at http://epitope.liai.org:8080/tools/population. Conclusion We have developed a web-based tool to predict population coverage of T-cell epitope-based diagnostics and vaccines based on MHC binding and/or T cell restriction data. Accordingly, epitope-based vaccines or diagnostics can be designed to maximize population coverage, while minimizing complexity (that is, the number of different epitopes included in the diagnostic or vaccine, and also minimizing the variability of coverage obtained or projected in different ethnic groups.

  12. Infant Hip Joint Diagnostic Support System Based on Clinical Manifestations in X-ray Images

    OpenAIRE

    Honda, Mitsugi; Arita, Seizaburo; Mitani, Shigeru; TAKEDA, Yoshihiro; Ozaki,Toshifumi; Inamura, Keiji; Kanazawa, Susumu

    2010-01-01

    Plain X-ray radiography is frequently used for the diagnosis of developmental dislocation of the hip (DDH). The aim of this study was to construct a diagnostic support system for DDH based on clinical findings obtained from the X-ray images of 154 female infants with confirmed diagnoses made by orthopedists. The data for these subjects were divided into 2 groups. The Min-Max method of nonlinear analysis was applied to the data from Group 1 to construct the diagnostic support system based on t...

  13. Laser direct write techniques for the fabrication of paper-based diagnostic devices

    OpenAIRE

    Katis, Ioannis

    2015-01-01

    We report on the use of laser direct-write techniques for the fabrication of point-of-care paper-based diagnostic sensors. These include laser-based deposition, laser ablation and laser-induced photo-polymerisation. Firstly, Laser Induced Forward Transfer (LIFT) was employed to deposit biomolecules from a donor film onto paper receivers. Paper was chosen as the ideal receiver because of its inherent properties which make it an efficient and suitable platform for point-of-care diagnostic s...

  14. The road map towards providing a robust Raman spectroscopy-based cancer diagnostic platform and integration into clinic

    Science.gov (United States)

    Lau, Katherine; Isabelle, Martin; Lloyd, Gavin R.; Old, Oliver; Shepherd, Neil; Bell, Ian M.; Dorney, Jennifer; Lewis, Aaran; Gaifulina, Riana; Rodriguez-Justo, Manuel; Kendall, Catherine; Stone, Nicolas; Thomas, Geraint; Reece, David

    2016-03-01

    Despite the demonstrated potential as an accurate cancer diagnostic tool, Raman spectroscopy (RS) is yet to be adopted by the clinic for histopathology reviews. The Stratified Medicine through Advanced Raman Technologies (SMART) consortium has begun to address some of the hurdles in its adoption for cancer diagnosis. These hurdles include awareness and acceptance of the technology, practicality of integration into the histopathology workflow, data reproducibility and availability of transferrable models. We have formed a consortium, in joint efforts, to develop optimised protocols for tissue sample preparation, data collection and analysis. These protocols will be supported by provision of suitable hardware and software tools to allow statistically sound classification models to be built and transferred for use on different systems. In addition, we are building a validated gastrointestinal (GI) cancers model, which can be trialled as part of the histopathology workflow at hospitals, and a classification tool. At the end of the project, we aim to deliver a robust Raman based diagnostic platform to enable clinical researchers to stage cancer, define tumour margin, build cancer diagnostic models and discover novel disease bio markers.

  15. Local Dependence Diagnostics in IRT Modeling of Binary Data

    Science.gov (United States)

    Liu, Yang; Maydeu-Olivares, Alberto

    2013-01-01

    Local dependence (LD) for binary IRT models can be diagnosed using Chen and Thissen's bivariate X[superscript 2] statistic and the score test statistics proposed by Glas and Suarez-Falcon, and Liu and Thissen. Alternatively, LD can be assessed using general purpose statistics such as bivariate residuals or Maydeu-Olivares and Joe's M[subscript r]…

  16. Diagnostics of Robust Growth Curve Modeling Using Student's "t" Distribution

    Science.gov (United States)

    Tong, Xin; Zhang, Zhiyong

    2012-01-01

    Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…

  17. Semiempirical model for diagnostication Helicobacter pylori infection by use of 14C labelled urea

    International Nuclear Information System (INIS)

    The main aim of this study was to create a semiempirical model, helpful in estimating severity of the Helicobacter pylori (H.pylori) infection by using the urea breath test (UBT), when urea labelled 14C has been used for diagnostics. The model consists of four compartments representing stomach (1), blood vascular system (2), lungs (3) and urinary system (4). Mathematical model is based on the balance of radioactive 14C in compartments from 1 to 4. The histological investigations were used as reference methods. Comparison of the results obtained from simulation, which yields dependence of 14C activity on time, to experimental results of UBT, made it possible to determine the ranges of coefficient HB value, which characterized each degrees of severity of H. pylori infection: degree 0 (lack of infection) - hB below 0.025; degree 1 (not large) - hB in range 0.025-0.115; degree 2 (moderate) - hB in the range 0.115-0.300; degree 3 (significant) - hB above 0.300. It was possible to estimate severity of H.pylori infection in clinical practice on the basis of comparing the 14C activity value of experimental points as obtained from the breath test, to the results of simulation with suitable value of the fitted parameter hB indicating degree of severity of infection. (author)

  18. An intercomparison of several diagnostic meteorological processors used in mesoscale air quality modeling

    Energy Technology Data Exchange (ETDEWEB)

    Vimont, J.C. [National Park Service, Lakewood, CO (United States); Scire, J.S. [Sigma Research Corp., Concord, MA (United States)

    1994-12-31

    A major component, and area of uncertainty, in mesoscale air quality modeling, is the specification of the meteorological fields which affect the transport and dispersion of pollutants. Various options are available for estimating the wind and mixing depth fields over a mesoscale domain. Estimates of the wind field can be obtained from spatial and temporal interpolation of available observations or from diagnostic meteorological models, which estimate a meteorological field from available data and adjust those fields based on parameterizations of physical processes. A major weakness of these processors is their dependence on spatially and temporally sparse input data, particularly upper air data. These problems are exacerbated in regions of complex terrain and along the shorelines of large bodies of water. Similarly, the estimation of mixing depth is also reliant upon sparse observations and the parameterization of the convective and mechanical processes. The meteorological processors examined in this analysis were developed to drive different Lagrangian puff models. This paper describes the algorithms these processors use to estimate the wind fields and mixing depth fields.

  19. Diagnostics of gas turbines based on changes in thermodynamics parameters

    Directory of Open Access Journals (Sweden)

    Hocko Marián

    2016-01-01

    Full Text Available This article is focused on solving the problems of determining the true state of gas turbine based on measured changes in thermodynamic parameters. Dependence between the real individual parts for gas turbines and changing the thermodynamic parameters were experimentally verified and confirmed on a small jet engine MPM-20 in the laboratory of the Department of Aviation Engineering at Technical University in Košice. The results of experiments confirm that the wear and tear of basic parts for gas turbines (turbo-compressor engines to effect the change of thermodynamic parameters of the engine.

  20. Diagnostics of gas turbines based on changes in thermodynamics parameters

    Science.gov (United States)

    Hocko, Marián; Klimko, Marek

    2016-03-01

    This article is focused on solving the problems of determining the true state of gas turbine based on measured changes in thermodynamic parameters. Dependence between the real individual parts for gas turbines and changing the thermodynamic parameters were experimentally verified and confirmed on a small jet engine MPM-20 in the laboratory of the Department of Aviation Engineering at Technical University in Košice. The results of experiments confirm that the wear and tear of basic parts for gas turbines (turbo-compressor engines) to effect the change of thermodynamic parameters of the engine.

  1. A pilot study using laser-based technique for non-invasive diagnostics of hypertensive conditions in mice

    Science.gov (United States)

    Litvinova, Karina S.; Ahmad, Shakil; Wang, Keqing; Rafailov, Ilya E.; Sokolovski, Sergei G.; Zhang, Lin; Rafailov, Edik U.; Ahmed, Asif

    2016-02-01

    Endothelial dysfunction is directly linked to preeclampsia, a maternal hypertensive condition that is life threating for both the mother and the baby. Epidemiological studies show that women with a history of pre-eclampsia have an elevated risk for cardiovascular disease. Here we report a new non-invasive diagnostic test for preeclampsia in mice that allows us to non-invasively assess the condition of the animals during the experiment and treatment in established models of preeclampsia. A laser-based multifunctional diagnostics system (LAKK-M) was chosen to carry out non-invasive analysis of multiple parameters. The device was used to simultaneously record the microcirculatory blood flow and oxygen saturation, as well as fluorescence levels of endogenous fluorophores. Preliminary experiments were conducted on adenoviral (Ad-)- mediated overexpression of sFlt-1 (Ad-sFlt-1) to mimic preeclampsialike symptoms in mice. The recorded data displayed the ability of the LAKK-M diagnostics device to detect significant differences in perfusion measurements between the control and Ad-sFlt-1 treatment. Preliminary results provide a potential avenue to employ these diagnostics technology to monitor and aid in maintaining control of live animal conditions throughout the experiment and treatment.

  2. Diagnostic software and fault tolerant microprocessor based system architectures

    International Nuclear Information System (INIS)

    In numerous industrial applications including power generation, the availability of electronic systems to perform the tasks assigned has become a major issue. At the same time, the functional complexity of these systems has increased enormously. Fortunately, the arrival of cost effective microprocessor based hardware has given the system designer a cadre of techniques to ensure the desired degree of system integrity and availability. These include: dynamic redundancy, isolation, functional diversity, built-in self-tests, embedded test subsystems, communications, error checking and error correcting codes, etc. The choice among the available techniques is generally heuristic and depends greatly on the structure of major components and systems external to the electronic system itself as well as the postulated faults and their relative frequency. Indiscriminate use of these techniques will inevitably increase cost and reduce maintainability while actually reducing system availability and reliability. The issues and the application of these techniques are discussed by describing recent examples of fault tolerant microprocessor based system architectures which include the Plant Safety Monitoring System, the EAGLE-21 Process Protection System and the Advanced Rod Position Indication System for pressurized water reactors. Each of these systems utilize unique internal architectures that address the reliability, availability, and the communications issues while improving maintainability and man-machine interfaces

  3. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    International Nuclear Information System (INIS)

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller was built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug and play-like ease of installation and flexibility, and provides a much more localized solution

  4. Analysis of Chronic Temporomandibular Disorders Based on the Latest Diagnostic Criteria

    Directory of Open Access Journals (Sweden)

    Svechtarov V.

    2015-05-01

    Full Text Available The objective of this study is to analyze the distribution of the most common diagnoses observed in patients with chronic temporomandibular disorders, based on the new diagnostic criteria (DC/TMD adopted in 2014. The previous Research Diagnostic Criteria (RDC/TMD adopted in 1992, consisted of three main groups of eight diagnostic subgroups and is currently transformed into two main groups and twelve subgroups, respectively. All subgroups correspond to the nomenclature of the ICD-10. The new clinical diagnostic indices are also modified. The analysis showed a prevalence of Pain-Related TMD compared with that of intra-articular disorders in ratio 57.89% to 42.10%. In Pain-Related TMD arthralgia was represented in 55% of cases; local myalgia - in 12%, myofascial pain - in 18%, myofascial pain with referral - in 14%, headache attributed to TMD - in 1%. In Intra-articular TMD disc displacement with reduction was found in 23% of the cases, disc displacement with reduction with intermittent locking - in 3%, disc displacement without reduction with limited opening - in 25%, disc displacement without reduction and without limited opening - in 8%. Degenerative diseases were found in 14.28%, and hypermobility and subluxations - in 26.98%. These analyzes differ and can only partly be compared with previous analyzes based on RDC system. The changes in the diagnostic criteria require new clinical studies in order to refine the picture of temporomandibular pathology in accordance with the modern views on the matter.

  5. Bivariate Random Effects Meta-analysis of Diagnostic Studies Using Generalized Linear Mixed Models

    OpenAIRE

    Chu, Haitao; Guo, Hongfei; Zhou, Yijie

    2009-01-01

    Bivariate random effect models are currently one of the main methods recommended to synthesize diagnostic test accuracy studies. However, only the logit-transformation on sensitivity and specificity has been previously considered in the literature. In this paper, we consider a bivariate generalized linear mixed model to jointly model the sensitivities and specificities, and discuss the estimation of the summary receiver operating characteristic curve (ROC) and the area under the ROC curve (AU...

  6. A diagnostic system to assess sustainability at farm level: the SOSTARE model

    OpenAIRE

    PARACCHINI Maria-Luisa; BULGHERONI CLAUDIA; BORREANI Giorgio; Tabacco, Ernesto; Banterle, Alessandro; BERTONI Danilo; Rossi, Graziano; PAROLO Gilberto; ORIGGI Roberto; DE PAOLA Claudio

    2013-01-01

    The paper presents a model for integrated sustainability assessment at a farm scale. The SOSTARE model (analysis of farm technical efficiency and impacts on environmental and economic sustainability), in fact, aims at providing a diagnostic tool to farmers and advisory services to assess the general performance of the farm, explore in detail any perceived weaknesses in farm management and to investigate the impact of changes that might improve efficiency. The model is derived from a survey of...

  7. Molecular diagnostics based on clustering dynamics of magnetic nanobeads

    DEFF Research Database (Denmark)

    Donolato, Marco; Bejhed, Rebecca S.; de la Torre, Teresa Zardán Gómez;

    2014-01-01

    or on the polymerase chain reaction (PCR) [1]. In this work we demonstrate detection of DNA coils formed from a Vibrio Cholerae DNA target at pM concentrations using a novel opto-magnetic approach exploiting the dynamic collective behavior of magnetic nanobeads. The technique relies on measurements of the light...... and isothermal rolling circle amplification from Vibrio cholerae DNA. The detection method is shown in Figure 1. MNBs which specifically bind to the micrometric sized DNA coil cannot rotate under the field action as free beads and form chains; this results in a strongly modified opto-magnetic signal. As a core...... a miniaturized version of the readout system based on the use of a commercial Blu-Ray pickup head used as a single and unique optomagnetic component. Figure 3 shows measurements on Bacillus Globigii spores detected using this novel setup. The data demonstrate fast and low-cost implementation of bacterial DNA...

  8. Biomarkers in schizophrenia: A focus on blood based diagnostics and theranostics.

    Science.gov (United States)

    Lai, Chi-Yu; Scarr, Elizabeth; Udawela, Madhara; Everall, Ian; Chen, Wei J; Dean, Brian

    2016-03-22

    Identifying biomarkers that can be used as diagnostics or predictors of treatment response (theranostics) in people with schizophrenia (Sz) will be an important step towards being able to provide personalized treatment. Findings from the studies in brain tissue have not yet been translated into biomarkers that are practical in clinical use because brain biopsies are not acceptable and neuroimaging techniques are expensive and the results are inconclusive. Thus, in recent years, there has been search for blood-based biomarkers for Sz as a valid alternative. Although there are some encouraging preliminary data to support the notion of peripheral biomarkers for Sz, it must be acknowledged that Sz is a complex and heterogeneous disorder which needs to be further dissected into subtype using biological based and clinical markers. The scope of this review is to critically examine published blood-based biomarker of Sz, focusing on possible uses for diagnosis, treatment response, or their relationship with schizophrenia-associated phenotype. We sorted the studies into six categories which include: (1) brain-derived neurotrophic factor; (2) inflammation and immune function; (3) neurochemistry; (4) oxidative stress response and metabolism; (5) epigenetics and microRNA; and (6) transcriptome and proteome studies. This review also summarized the molecules which have been conclusively reported as potential blood-based biomarkers for Sz in different blood cell types. Finally, we further discusses the pitfall of current blood-based studies and suggest that a prediction model-based, Sz specific, blood oriented study design as well as standardize blood collection conditions would be useful for Sz biomarker development. PMID:27014601

  9. Plasma Fluctuation Studies in the TCV Tokamak: Modeling of Shaping Effects and Advanced Diagnostic Development

    International Nuclear Information System (INIS)

    One of the most important issues for magnetic-confinement fusion research is the so-called anomalous transport across magnetic field lines, i.e. transport that is in excess of that caused by collisional processes. The need to reduce anomalous transport in order to increase the efficiency of a prospective fusion reactor must be addressed through an investigation of its fundamental underlying causes. This thesis is divided into two distinct components: one experimental and instrumental, and the other theoretical and based on numerical modeling. The experimental part consists of the design and installation of a new diagnostic for core turbulence fluctuations in the TCV tokamak. An extensive conceptual investigation of a number of possible solutions, including Beam Emission Spectroscopy, Reflectometry, Cross Polarization, Collective Scattering and different Imaging techniques, was carried out at first. A number of criteria, such as difficulties in data interpretation, costs, variety of physics issues that could be addressed and expected performance, were used to compare the different techniques for specific application to the TCV tokamak. The expected signal to noise ratio and the required sampling frequency for TCV were estimated on the basis of a large number of linear, local gyrokinetic simulations of plasma fluctuations. This work led to the choice of a Zernike phase contrast imaging system in a tangential launching configuration. The diagnostic was specifically designed to provide information on turbulence features up to now unknown. In particular, it is characterized by an outstanding spatial resolution and by the capability to measure a very broad range of fluctuations, from ion to electron Larmor radius scales, thus covering the major part of the instabilities expected to be at play in TCV. The spectrum accessible covers the wavenumber region from 0.9 cm-1 to 60 cm-1 at 24 radial positions with 3 MHz bandwidth. The diagnostic is an imaging technique and is

  10. Towards diagnostic tools for analysing Swarm data through model retrievals

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Plank, Gernot; Haagmans, R.;

    satellites. Thus it gives us the possibility to compare the single- and the multi-satellite gradient approach showing the various advantages of the multi-satellite setup. Once the study is carried out conclusions about how the errors interfere and propagate into the models can be drawn.......The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal dependency, and to gain new insights into improving our knowledge of the Earth’s interior and climate. The Swarm concept consists of a constellation of three satellites in three different...... to test the influence of ionospheric residual signal or the impact of data selection on the lithospheric retrieval. Initially, the study considers one satellite and emphasises on the lithospheric field reconstruction, but in a second step it is extended to a realistic Swarm constellation of three...

  11. A web-based test of residents' skills in diagnostic radiology

    International Nuclear Information System (INIS)

    To develop an objective, Web-based tool for evaluating residents' knowledge of diagnostic radiology. We developed and tested a Web-based evaluation tool (the Diagnostic Radiology Skills Test) that consists of 3 tests, one in each of 3 domains of diagnostic radiology: chest, gastrointestinal, and musculoskeletal imaging. Each test comprises 30 cases representing a range of difficulty in the domain, including normal states, normal variants, typical cases of common diagnoses, and cases with more subtle findings. Cases are presented with a long menu of domain-specific possible diagnoses (response options), each coded for diagnostic appropriateness. Our subjects were 21 residents in postgraduate year (PGY) 2 to 5 and 11 experts in diagnostic radiology. Subjects accessed the tool via a Web site on our Web server. Residents test results were compared for reliability and validity across domain, case, and training level. In addition, results were correlated with commonly used established and objective evaluation tools. The tool demonstrated consistent monotonic improvement in performance with training level. It showed acceptable reliability in discriminating between residents at different performance levels, both within and across training levels (r = 0.53 within level and 0.69 across levels). Test results also had concurrent validity against the American College of Radiology In-Training Examination, a widely accepted objective assessment tool (r = 0.65, P < 0.01), and 2 Objective Structured Clinical Examinations (OSCEs) focusing on diagnostic skills (r = 0.78 and r 0.69, P < 0.01, respectively). Our study demonstrates the feasibility of a Web-based, standardized, objective assessment method for evaluating residents' performance. (author)

  12. Cognitive Diagnostic Models for Tests with Multiple-Choice and Constructed-Response Items

    Science.gov (United States)

    Kuo, Bor-Chen; Chen, Chun-Hua; Yang, Chih-Wei; Mok, Magdalena Mo Ching

    2016-01-01

    Traditionally, teachers evaluate students' abilities via their total test scores. Recently, cognitive diagnostic models (CDMs) have begun to provide information about the presence or absence of students' skills or misconceptions. Nevertheless, CDMs are typically applied to tests with multiple-choice (MC) items, which provide less diagnostic…

  13. Predictive Modeling of Student Performances for Retention and Academic Support in a Diagnostic Medical Sonography Program

    Science.gov (United States)

    Borghese, Peter; Lacey, Sandi

    2014-01-01

    As part of a retention and academic support program, data was collected to develop a predictive model of student performances in core classes in a Diagnostic Medical Sonography (DMS) program. The research goal was to identify students likely to have difficulty with coursework and provide supplemental tutorial support. The focus was on the…

  14. An Application of M[subscript 2] Statistic to Evaluate the Fit of Cognitive Diagnostic Models

    Science.gov (United States)

    Liu, Yanlou; Tian, Wei; Xin, Tao

    2016-01-01

    The fit of cognitive diagnostic models (CDMs) to response data needs to be evaluated, since CDMs might yield misleading results when they do not fit the data well. Limited-information statistic M[subscript 2] and the associated root mean square error of approximation (RMSEA[subscript 2]) in item factor analysis were extended to evaluate the fit of…

  15. Neural Network Based State of Health Diagnostics for an Automated Radioxenon Sampler/Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E.; Kangas, Lars J.; Hayes, James C.; Schrom, Brian T.; Suarez, Reynold; Hubbard, Charles W.; Heimbigner, Tom R.; McIntyre, Justin I.

    2009-05-13

    Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA’s complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented.

  16. Prodiag--a hybrid artificial intelligence based reactor diagnostic system for process faults

    International Nuclear Information System (INIS)

    Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL) are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA), project to perform feasibility studies on a novel approach to Artificial Intelligence (Al) based diagnostics for component faults in nuclear power plants. Investigations are being performed in the construction of a first-principles physics-based plant level process diagnostic expert system (ES) and the identification of component-level fault patterns through operating component characteristics using artificial neural networks (ANNs). The purpose of the proof-of-concept project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use thermal hydraulic (T-H) signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance.To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. A full-scope operator training simulator representing the Commonwealth Edison Braidwood nuclear power plant is being used both as the source of development data and as the means to evaluate the advantages of the proposed diagnostic system. This is an ongoing multi-year project and this paper presents the results to date of the CRADA phase

  17. Web-Based Two-Tier Diagnostic Test and Remedial Learning Experiment

    Science.gov (United States)

    Lai, Ah-Fur; Chen, Deng-Jyi

    2010-01-01

    Offering a series of diagnosis and individual remedial learning activities for a general class by means of web and multimedia technology can overcome the dilemma of conventional diagnosis and remedial instruction. The study proposes a three-layer conceptual framework and adopts a two-tier diagnostic test theory to develop a web-based two-tier…

  18. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics.

    Science.gov (United States)

    Linnes, J C; Rodriguez, N M; Liu, L; Klapperich, C M

    2016-04-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  19. Network design of data monitoring subsystem based on ethernet of technical diagnostic system for EAST tokamak

    International Nuclear Information System (INIS)

    This article introduces a network design of the data monitoring subsystem based on Ethernet of the technical diagnostic system for EAST Tokamak. How to realize network safety is mostly described. It has been proved a reliable network with good real-time and safe performance by experiments last year. (authors)

  20. Prediction of stroke-related diagnostic and prognostic measures using robot-based evaluation.

    Science.gov (United States)

    Mostafavi, Sayyed Mostafa; Glasgow, Janice I; Dukelow, Sean P; Scott, Stephen H; Mousavi, Parvin

    2013-06-01

    Traditional clinical scores for assessment of impairments resulting from stroke are inherently subjective and limited by inter-rater and intra-rater reliability. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of motor performance of stroke subjects. Although use of robotic technologies has been widely suggested in the literature, they are not an established tool and their relationship to traditional clinical scales for stroke diagnosis and prognosis is mostly unknown. In this study we propose the application of two non-linear system identification methods, Parallel Cascade Identification and Fast Orthogonal Search, for prediction of stroke-related clinical scores using robot-based metrics. We show the suitability of these two methods for prediction of both diagnostic and prognostic scores. We compare our results with a previously applied approach based on linear regression and show the superiority of our modeling approach. Our results also underscore the importance of quantifying proprioceptive deficits in the prediction of motor-related prognosis scores.

  1. Prediction of stroke-related diagnostic and prognostic measures using robot-based evaluation.

    Science.gov (United States)

    Mostafavi, Sayyed Mostafa; Glasgow, Janice I; Dukelow, Sean P; Scott, Stephen H; Mousavi, Parvin

    2013-06-01

    Traditional clinical scores for assessment of impairments resulting from stroke are inherently subjective and limited by inter-rater and intra-rater reliability. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of motor performance of stroke subjects. Although use of robotic technologies has been widely suggested in the literature, they are not an established tool and their relationship to traditional clinical scales for stroke diagnosis and prognosis is mostly unknown. In this study we propose the application of two non-linear system identification methods, Parallel Cascade Identification and Fast Orthogonal Search, for prediction of stroke-related clinical scores using robot-based metrics. We show the suitability of these two methods for prediction of both diagnostic and prognostic scores. We compare our results with a previously applied approach based on linear regression and show the superiority of our modeling approach. Our results also underscore the importance of quantifying proprioceptive deficits in the prediction of motor-related prognosis scores. PMID:24187274

  2. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  3. Evidence-Based Point-of-Care Diagnostics: Current Status and Emerging Technologies

    Science.gov (United States)

    Chan, Cangel Pui Yee; Mak, Wing Cheung; Cheung, Kwan Yee; Sin, King Keung; Yu, Cheuk Man; Rainer, Timothy H.; Renneberg, Reinhard

    2013-06-01

    Point-of-care (POC) diagnostics brings tests nearer to the site of patient care. The turnaround time is short, and minimal manual interference enables quick clinical management decisions. Growth in POC diagnostics is being continuously fueled by the global burden of cardiovascular and infectious diseases. Early diagnosis and rapid initiation of treatment are crucial in the management of such patients. This review provides the rationale for the use of POC tests in acute coronary syndrome, heart failure, human immunodeficiency virus, and tuberculosis. We also consider emerging technologies that are based on advanced nanomaterials and microfluidics, improved assay sensitivity, miniaturization in device design, reduced costs, and high-throughput multiplex detection, all of which may shape the future development of POC diagnostics.

  4. a Diagnostic System Measuring Orthogonal Factors of Sound Fields in a Scale Model of Auditorium

    Science.gov (United States)

    SAKURAI, M.; AIZAWA, S.; SUZUMURA, Y.; ANDO, Y.

    2000-04-01

    Based on the model of auditory-brain system which consists of the autocorrelation mechanism, the interaural cross-correlation mechanism between both the auditory pathways, and the specialization of human cerebral hemispheres (Y. Ando 1998 Architectural Acoustics, Blending Sound Sources, Sound Fields, and Listeners New York: AIP Press/Springer-Verlag), a new diagnostic system was developed. After obtaining the binaural impulse response, four orthogonal factors including the SPL, the initial time-delay gap between the direct sound and the first reflection, the subsequent reverberation time and the IACC can be analyzed for the calculation of the scale values of both global and individual subjective preferences. In addition, two more factors extracted from the interaural cross-correlation functionτIACC and WIACC, can be figured out. Also, the sound energy,Φ (0), the effective duration, τe, and fine structures of autocorrelation function of sound signals including the magnitude of first maximum, φ1, and its delay time,τ1 , can be analyzed. As an example of the measurement, effects of reflectors' array above the stage in a 1/10 scale model of auditorium at each seat are discussed here.

  5. Diagnostic model of saliva protein finger print analysis of patients with gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Zheng-Zhi Wu; Ji-Guo Wang; Xiao-Li Zhang

    2009-01-01

    AIM: To explore the method for early diagnosis of gastric cancer by screening the expression spectrum of saliva protein in gastric cancer patients using mass spectrometry for proteomics. METHODS: Proportional peptide mass fingerprints were obtained by analysis based on proteomics matrixassisted laser desorption ionization time-of-flight/mass spectrometry. A diagnosis model was established using weak cation exchange magnetic beads to test saliva specimens from gastric cancer patients and healthy subjects. RESULTS: Significant differences were observed in the mass to charge ratio (m/z) peaks of four proteins (1472.78 Da, 2936.49 Da, 6556.81 Da and 7081.17 Da) between gastric cancer patients and healthy subjects. CONCLUSION: The finger print mass spectrum of saliva protein in patients with gastric cancer can be established using gastric cancer proteomics. A diagnostic model for distinguishing protein expression mass spectra of gastric cancer from non-gastriccancer saliva can be established according to the different expression of proteins 1472.78 Da, 2936.49 Da, 6556.81 Da and 7081.17 Da. The method for early diagnosis of gastric cancer is of certain value for screening special biological markers.

  6. Optimal linear combinations of multiple diagnostic biomarkers based on Youden index.

    Science.gov (United States)

    Yin, Jingjing; Tian, Lili

    2014-04-15

    In practice, usually multiple biomarkers are measured on the same subject for disease diagnosis. Combining these biomarkers into a single score could improve diagnostic accuracy. Many researchers have addressed the problem of finding the optimal linear combination based on maximizing the area under ROC curve (AUC). Actually, such combined score might have less than optimal property at the diagnostic threshold. In this paper, we propose the idea of using Youden index as an objective function for searching the optimal linear combination. The combined score directly achieves the maximum overall correct classification rate at the diagnostic threshold corresponding to Youden index; in other words, it is the optimal linear combination score for making the disease diagnosis. We present both empirical and numerical searching methods for the optimal linear combination. We carry out extensive simulation study to investigate the performance of the proposed methods. Additionally, we empirically compare the optimal overall classification rates between the proposed combination based on Youden index and the traditional one based on AUC and demonstrate a significant gain in diagnostic accuracy for the proposed combination. In the end, we apply the proposed methods to a real data set. PMID:24311111

  7. Score, pseudo-score and residual diagnostics for goodness-of-fit of spatial point process models

    DEFF Research Database (Denmark)

    Baddeley, Adrian; Rubak, Ege H.; Møller, Jesper

    We develop newtools for formal inference and informalmodel validation in the analysis of spatial point pattern data. The score test is generalised to a ‘pseudo-score’ test derived from Besag’s pseudolikelihood, and to a class of diagnostics based on point process residuals. The results lend...... theoretical support to the established practice of using functional summary statistics such as Ripley’s K-function, when testing for complete spatial randomness; and they provide new tools such as the compensator of the K-function for testing other fitted models. The results also support localisation methods...... such as the scan statistic and smoothed residual plots. Software for computing the diagnostics is provided....

  8. Reference dosimetry during diagnostic CT examination using XR-QA radiochromic film model

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, Jonathan; Tomic, Nada; Fadlallah, Bassam; DeBlois, Francois; Devic, Slobodan [Institut de Genie Biomedical, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Medical Physics Unit, McGill University, Montral, Quebec H3G 1A4, Canada and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, 3755 chemin de la Cote-Sainte-Catherine, Montreal, Quebec H3T 1E2 (Canada); Department of Biomedical Engineering, SMBD Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2 (Canada); Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4, Canada and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2 (Canada)

    2011-09-15

    Purpose: The authors applied 2D reference dosimetry protocol for dose measurements using XR-QA radiochromic film model during diagnostic computed tomography (CT) examinations carried out on patients and humanoid Rando phantom. Methods: Response of XR-QA model GAFCHROMIC film reference dosimetry system was calibrated in terms of Air-Kerma in air. Four most commonly used CT protocols were selected on their CT scanner (GE Lightspeed VCT 64), covering three anatomical sites (head, chest, and abdomen). For each protocol, 25 patients ongoing planned diagnostic CT examination were recruited. Surface dose was measured using four or eight film strips taped on patients' skin and on Rando phantom. Film pieces were scanned prior to and after irradiation using Epson Expression 10000XL document scanner. Optical reflectance of the unexposed film piece was subtracted from exposed one to obtain final net reflectance change, which is subsequently converted to dose using previously established calibration curves. Results: The authors' measurements show that body skin dose variation has a sinusoidal pattern along the scanning axis due to the helical movement of the x-ray tube, and a comb pattern for head dose measurements due to its axial movement. Results show that the mean skin dose at anterior position for patients is (51 {+-} 6) mGy, (29 {+-} 11) mGy, (45 {+-} 13) mGy and (38 {+-} 20) mGy for head, abdomen, angio Abdomen, and chest and abdomen protocol (UP position), respectively. The obtained experimental dose length products (DLP) show higher values than CT based DLP taken from the scanner console for body protocols, but lower values for the head protocol. Internal dose measurements inside the phantom's head indicate nonuniformity of dose distribution within scanned volume. Conclusions: In this work, the authors applied an Air-Kerma in air based radiochromic film reference dosimetry protocol for in vivo skin dose measurements. In this work, they employed green

  9. Developing and Implementing Diagnostic Prediction Models for Vestibular Diseases in Primary Care.

    Science.gov (United States)

    Grill, Eva; Groezinger, Michael; Feil, Katharina; Strupp, Michael

    2016-01-01

    Diagnosing patients with vertigo and dizziness is a challenge in primary care settings where laboratory examinations are often not available. This study uses data from patients with confirmed diagnoses of vestibular syndromes to develop and validate simple diagnostic prediction models for the primary care physician. We describe the implementation of these models into an application that may assist the practitioners with their clinical decisions. PMID:27577483

  10. NS1-based tests with diagnostic utility for confirming dengue infection: a meta-analysis

    OpenAIRE

    Hao Zhang; Wei Li; Junjie Wang; Hongjuan Peng; Xiaoyan Che; Xiaoguang Chen; Yuanping Zhou

    2014-01-01

    Objectives: Non-structural protein 1 (NS1)-based tests may offer a larger window of opportunity for dengue diagnosis and could constitute a very useful diagnostic tool. The aim of this study was to establish the overall accuracy of NS1-based tests for diagnosing dengue infection. Methods: A meta-analysis was conducted including 18 studies published up to October 1, 2012 identified using PubMed, ISI Web of Science, Google Scholar, and the Chinese National Knowledge Infrastructure (CNKI) dat...

  11. Fuzzy based method for project planning of the infrastructure design for the diagnostic in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Piros, Attila, E-mail: attila.piros@gt3.bme.hu [Department of Machine and Product Design, Budapest University of Technology and Economics, Budapest (Hungary); Veres, Gábor [Department of Plasma Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-10-15

    The long-term design projects need special preparation before the start of the execution. This preparation usually includes the drawing of the network diagram for the whole procedure. This diagram includes the time estimation of the individual subtasks and gives us information about the predicted dates of the milestones. The calculated critical path in this network characterizes a specific design project concerning to its duration very well. Several methods are available to support this step of preparation. This paper describes a new method to map the structure of the design process and clarify the milestones and predict the dates of these milestones. The method is based on the PERT (Project Evaluation and Review Technique) network but as a novelty it applies fuzzy logic to find out the concerning times in this graph. With the application of the fuzzy logic the handling of the different kinds of design uncertainties becomes feasible. Many kinds of design uncertainties exist from the possible electric blackout up to the illness of an engineer. In many cases these uncertainties are related with human errors and described with linguistic expressions. The fuzzy logic enables to transform these ambiguous expressions into numeric values for further mathematical evaluation. The method is introduced in the planning of the design project of the infrastructure for the diagnostic systems of ITER. The method not only helps the project in the planning phase, but it will be a powerful tool in mathematical modeling and monitoring of the project execution.

  12. Coherent photon beam based diagnostics for a seeded extreme ultraviolet free electron laser

    CERN Document Server

    Deng, Haixiao; Liu, Bo; Tian, Shunqiang; Zhang, Manzhou; Zhang, Meng

    2012-01-01

    Independently from electron beam based procedures, photon beam based diagnostics is an alternative way for alignment and commissioning of the numerous undulator cells in high-gain short-wavelength free electron laser (FEL). In this paper, using the seed laser modulated electron beam and the undulator fine tuning technique, a coherent photon beam based diagnostic was proposed for seeded FEL, and some preliminary experimental results at Shanghai deep ultraviolet FEL test facility was presented. It shows that spatial distribution analysis of the coherent harmonic radiation of individual or two consecutive undulator segments can be used to optimize the electron beam trajectory, to verify the magnetic gap, and to adjust the phase match between two undulator segments.

  13. Guide waves-based multi-damage identification using a local probability-based diagnostic imaging method

    Science.gov (United States)

    Gao, Dongyue; Wu, Zhanjun; Yang, Lei; Zheng, Yuebin

    2016-04-01

    Multi-damage identification is an important and challenging task in the research of guide waves-based structural health monitoring. In this paper, a multi-damage identification method is presented using a guide waves-based local probability-based diagnostic imaging (PDI) method. The method includes a path damage judgment stage, a multi-damage judgment stage and a multi-damage imaging stage. First, damage imaging was performed by partition. The damage imaging regions are divided into beside damage signal paths. The difference in guide waves propagation characteristics between cross and beside damage paths is proposed by theoretical analysis of the guide wave signal feature. The time-of-flight difference of paths is used as a factor to distinguish between cross and beside damage paths. Then, a global PDI method (damage identification using all paths in the sensor network) is performed using the beside damage path network. If the global PDI damage zone crosses the beside damage path, it means that the discrete multi-damage model (such as a group of holes or cracks) has been misjudged as a continuum single-damage model (such as a single hole or crack) by the global PDI method. Subsequently, damage imaging regions are separated by beside damage path and local PDI (damage identification using paths in the damage imaging regions) is performed in each damage imaging region. Finally, multi-damage identification results are obtained by superimposing the local damage imaging results and the marked cross damage paths. The method is employed to inspect the multi-damage in an aluminum plate with a surface-mounted piezoelectric ceramic sensors network. The results show that the guide waves-based multi-damage identification method is capable of visualizing the presence, quantity and location of structural damage.

  14. Consistency of Cluster Analysis for Cognitive Diagnosis: The Reduced Reparameterized Unified Model and the General Diagnostic Model.

    Science.gov (United States)

    Chiu, Chia-Yi; Köhn, Hans-Friedrich

    2016-09-01

    The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnostic classification model (DCM) underlying the data is unknown and possibly misspecified, or the items of a test conform to a mix of multiple DCMs. Clustering methods can also be an option when fitting advanced and complex DCMs encounters computational difficulties. These can range from the use of excessive CPU times to plain computational infeasibility. However, the propositions of the ACTCD have only been proven for the Deterministic Input Noisy Output "AND" gate (DINA) model and the Deterministic Input Noisy Output "OR" gate (DINO) model. For other DCMs, there does not exist a theoretical justification to use clustering for assigning examinees to proficiency classes. But if clustering is to be used legitimately, then the ACTCD must cover a larger number of DCMs than just the DINA model and the DINO model. Thus, the purpose of this article is to prove the theoretical propositions of the ACTCD for two other important DCMs, the Reduced Reparameterized Unified Model and the General Diagnostic Model. PMID:27230079

  15. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications.

    Science.gov (United States)

    Patou, François; AlZahra'a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E

    2016-01-01

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods. PMID:27598208

  16. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications

    Science.gov (United States)

    Patou, François; AlZahra’a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E.

    2016-01-01

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods. PMID:27598208

  17. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications

    Directory of Open Access Journals (Sweden)

    François Patou

    2016-09-01

    Full Text Available The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods.

  18. Convergence between DSM-IV-TR and DSM-5 diagnostic models for personality disorder: evaluation of strategies for establishing diagnostic thresholds.

    Science.gov (United States)

    Morey, Leslie C; Skodol, Andrew E

    2013-05-01

    The Personality and Personality Disorders Work Group for the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) recommended substantial revisions to the personality disorders (PDs) section of DSM-IV-TR, proposing a hybrid categorical-dimensional model that represented PDs as combinations of core personality dysfunctions and various configurations of maladaptive personality traits. Although the DSM-5 Task Force endorsed the proposal, the Board of Trustees of the American Psychiatric Association (APA) did not, placing the Work Group's model in DSM-5 Section III ("Emerging Measures and Models") with other concepts thought to be in need of additional research. This paper documents the impact of using this alternative model in a national sample of 337 patients as described by clinicians familiar with their cases. In particular, the analyses focus on alternative strategies considered by the Work Group for deriving decision rules, or diagnostic thresholds, with which to assign categorical diagnoses. Results demonstrate that diagnostic rules could be derived that yielded appreciable correspondence between DSM-IV-TR and proposed DSM-5 PD diagnoses-correspondence greater than that observed in the transition between DSM-III and DSM-III-R PDs. The approach also represents the most comprehensive attempt to date to provide conceptual and empirical justification for diagnostic thresholds utilized within the DSM PDs.

  19. UK-based real-time lymphoproliferative disorder diagnostic service to improve the management of patients in Ghana.

    Science.gov (United States)

    Parkins, Elizabeth; Owen, Roger G; Bedu-Addo, George; Sem, Ohene Opare; Ekem, Ivy; Adomakoh, Yvonne; Bates, Imelda

    2009-07-09

    The objective of the study was to evaluate the feasibility of a UK-based real-time service to improve the diagnosis and management of lymphoproliferative disorders (LPDs) in Ghana. Adult patients reporting to hospital with a suspected LPD, during a 1 year period, were prospectively enrolled. Bone marrow and/or lymph node biopsies were posted to the Haematology Malignancy Diagnostic Service (HMDS), Leeds, UK and underwent morphological analysis and immunophenotyping. Results were returned by e-mail. The initial diagnoses made in Ghana were compared with the final HMDS diagnoses to assess the contribution of the HMDS diagnosis to management decisions. The study was conducted at the two teaching hospitals in Ghana-Komfo Anokye, Kumasi and Korle Bu, Accra. Participants comprised 150 adult patients (>/=12 years old), 79 women, median age 46 years. Bone marrow and lymph node biopsy samples from all adults presenting with features suggestive of a LPD, at the two teaching hospitals in Ghana, over 1 year were posted to a UK LPD diagnostic centre, where immunophenotyping was performed by immunohistochemistry. Molecular analysis was performed where indicated. Diagnostic classifications were made according to international criteria. Final diagnosis was compared to the initial Ghanaian diagnosis to evaluate discrepancies; implications for alterations in treatment decisions were evaluated. Median time between taking samples and receiving e-mail results in Ghana was 15 days. Concordance between initial and final diagnoses was 32% (48 of 150). The HMDS diagnosis would have changed management in 31% (46 of 150) of patients. It is feasible to provide a UK-based service for LPD diagnosis in Africa using postal services and e-mail. This study confirmed findings from wealthy countries that a specialised haematopathology service can improve LPD diagnosis. This model of Ghana-UK collaboration provides a platform on which to build local capacity to operate an international quality

  20. Computation of large scale currents in the Arabian Sea during winter using a semi-diagnostic model

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Rao, A.D.; Dube, S.K.

    A 3-dimensional, semi-diagnostic model with 331 levels in the vertical has been used for the computation of climatic circulation in the western tropical Indian Ocean. Model is driven with the seasonal mean data on wind stress, temperature...

  1. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.

    Science.gov (United States)

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination.

  2. Marketing diagnostics in consumer cooperatives trade enterprises

    OpenAIRE

    O.S. Krivoruchko

    2013-01-01

    The aim of the article. The article highlights main demands and levels of realization of consumer cooperatives trade enterprises` diagnostics.We demonstrate the chain of marketing diagnostics; we offer the model of diagnostics process of marketing problems (opportunities) of cooperative trade enterprises.The results of the analysis. Marketing diagnostics is one of the marketing researches directions, which is matching of the researched object characteristics with comparison base for definitio...

  3. Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia.

    Science.gov (United States)

    Simons, Annet; Stevens-Kroef, Marian; El Idrissi-Zaynoun, Najat; van Gessel, Sabine; Weghuis, Daniel Olde; van den Berg, Eva; Waanders, Esmé; Hoogerbrugge, Peter; Kuiper, Roland; van Kessel, Ad Geurts

    2011-12-01

    In acute lymphoblastic leukemia (ALL) specific genomic abnormalities provide important clinical information. In most routine clinical diagnostic laboratories conventional karyotyping, in conjunction with targeted screens using e.g., fluorescence in situ hybridization (FISH), is currently considered as the gold standard to detect such aberrations. Conventional karyotyping, however, is limited in its resolution and yield, thus hampering the genetic diagnosis of ALL. We explored whether microarray-based genomic profiling would be feasible as an alternative strategy in a routine clinical diagnostic setting. To this end, we compared conventional karyotypes with microarray-deduced copy number aberration (CNA) karyotypes in 60 ALL cases. Microarray-based genomic profiling resulted in a CNA detection rate of 90%, whereas for conventional karyotyping this was 61%. In addition, many small (< 5 Mb) genetic lesions were encountered, frequently harboring clinically relevant ALL-related genes such as CDKN2A/B, ETV6, PAX5, and IKZF1. From our data we conclude that microarray-based genomic profiling serves as a robust tool in the genetic diagnosis of ALL, outreaching conventional karyotyping in CNA detection both in terms of sensitivity and specificity. We also propose a practical workflow for a comprehensive and objective interpretation of CNAs obtained through microarray-based genomic profiling, thereby facilitating its application in a routine clinical diagnostic setting.

  4. Application of Laser-based Diagnostics to a Prototype Gas Turbine Burner at Selected Pressures

    OpenAIRE

    Whiddon, Ronald

    2014-01-01

    The matured laser-diagnostic techniques of planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) were applied to a prototype gas turbine burner operating on various fuels. The work was performed to provide verification of computational fluid dynamic (CFD) models of the combustion of atypical fuels in a gas turbine combustor. The burner was operated using methane and three synthesized fuels of interest- one with hydrogen as the principle component and two with a low hea...

  5. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice

    Science.gov (United States)

    Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa

    2016-03-01

    In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.

  6. Appraising and applying evidence about a diagnostic test during a performance-based assessment

    Directory of Open Access Journals (Sweden)

    Franklin Ellen

    2004-10-01

    Full Text Available Abstract Background The practice of Evidence-based Medicine requires that clinicians assess the validity of published research and then apply the results to patient care. We wanted to assess whether our soon-to-graduate medical students could appraise and apply research about a diagnostic test within a clinical context and to compare our students with peers trained at other institutions. Methods 4th year medical students who previously had demonstrated competency at probability revision and just starting first-year Internal Medicine residents were used for this research. Following an encounter with a simulated patient, subjects critically appraised a paper about an applicable diagnostic test and revised the patient's pretest probability given the test result. Results The medical students and residents demonstrated similar skills at critical appraisal, correctly answering 4.7 and 4.9, respectively, of 6 questions (p = 0.67. Only one out of 28 (3% medical students and none of the 15 residents were able to correctly complete the probability revision task (p = 1.00. Conclusions This study found that most students completing medical school are able to appraise an article about a diagnostic test but few are able to apply the information from the article to a patient. These findings raise questions about the clinical usefulness of the EBM skills possessed by graduating medical students within the area of diagnostic testing.

  7. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    Energy Technology Data Exchange (ETDEWEB)

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  8. Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers

    Directory of Open Access Journals (Sweden)

    Issouf Fofana

    2016-08-01

    Full Text Available The condition of the internal cellulosic paper and oil insulation are of concern for the performance of power transformers. Over the years, a number of methods have been developed to diagnose and monitor the degradation/aging of the transformer internal insulation system. Some of this degradation/aging can be assessed from electrical responses. Currently there are a variety of electrical-based diagnostic techniques available for insulation condition monitoring of power transformers. In most cases, the electrical signals being monitored are due to mechanical or electric changes caused by physical changes in resistivity, inductance or capacitance, moisture, contamination or aging by-products in the insulation. This paper presents a description of commonly used and modern electrical-based diagnostic techniques along with their interpretation schemes.

  9. Infant Hip Joint Diagnostic Support System Based on Clinical Manifestations in X-ray Images

    Directory of Open Access Journals (Sweden)

    Honda,Mitsugi

    2010-06-01

    Full Text Available Plain X-ray radiography is frequently used for the diagnosis of developmental dislocation of the hip (DDH. The aim of this study was to construct a diagnostic support system for DDH based on clinical findings obtained from the X-ray images of 154 female infants with confirmed diagnoses made by orthopedists. The data for these subjects were divided into 2 groups. The Min-Max method of nonlinear analysis was applied to the data from Group 1 to construct the diagnostic support system based on the measurement of 4 items in X-ray images:the outward displacement rate, upward displacement rate, OE angle, and alpha angle. This system was then applied to the data from Group 2, and the results were compared between the 2 groups to verify the reliability of the system. We obtained good results that matched the confirmed diagnoses of orthopedists with an accuracy of 85.9%.

  10. EEG Analysis during complex diagnostic tasks in Nuclear Power Plants - Simulator-based Experimental Study

    International Nuclear Information System (INIS)

    In literature, there are a lot of studies based on EEG signals during cognitive activities of human-beings but most of them dealt with simple cognitive activities such as transforming letters into Morse code, subtraction, reading, semantic memory search, visual search, memorizing a set of words and so on. In this work, EEG signals were analyzed during complex diagnostic tasks in NPP simulator-based environment. Investigated are the theta, alpha, beta, and gamma band EEG powers during the diagnostic tasks. The experimental design and procedure are represented in section 2 and the results are shown in section 3. Finally some considerations are discussed and the direction for the further work is proposed in section 4

  11. Diagnostic of the temperature and differential emission measure (DEM based on Hinode/XRT data

    Directory of Open Access Journals (Sweden)

    P. Rudawy

    2008-10-01

    Full Text Available We discuss here various methodologies and an optimal strategy of the temperature and emission measure diagnostics based on Hinode X-Ray Telescope data. As an example of our results we present the determination of the temperature distribution of the X-rays emitting plasma using a filters ratio method and three various methods of the calculation of the differential emission measure (DEM. We have found that all these methods give results similar to the two filters ratio method. Additionally, all methods of the DEM calculation gave similar solutions. We can state that the majority of the pairs of the Hinode filters allows one to derive the temperature and emission measure in the isothermal plasma approximation using standard diagnostics based on the two filters ratio method. In cases of strong flares one can also expect good conformity of the results obtained using a Withbroe – Sylwester, genetic algorithm and least-squares methods of the DEM evaluation.

  12. Estimating the True Accuracy of Diagnostic Tests for Dengue Infection Using Bayesian Latent Class Models

    OpenAIRE

    Wirichada Pan-ngum; Blacksell, Stuart D; Yoel Lubell; Sasithon Pukrittayakamee; Bailey, Mark S.; Janaka de Silva, H.; David G Lalloo; Day, Nicholas P. J.; White, Lisa J; Direk Limmathurotsakul

    2013-01-01

    BACKGROUND: Accuracy of rapid diagnostic tests for dengue infection has been repeatedly estimated by comparing those tests with reference assays. We hypothesized that those estimates might be inaccurate if the accuracy of the reference assays is not perfect. Here, we investigated this using statistical modeling. METHODS/PRINCIPAL FINDINGS: Data from a cohort study of 549 patients suspected of dengue infection presenting at Colombo North Teaching Hospital, Ragama, Sri Lanka, that described the...

  13. Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics

    OpenAIRE

    Bruno, John G.

    2015-01-01

    Despite the great promise of nucleic acid aptamers in the areas of diagnostics and therapeutics for their facile in vitro development, lack of immunogenicity and other desirable properties, few truly successful aptamer-based products exist in the clinical or other markets. Core reasons for these commercial deficiencies probably stem from industrial commitment to antibodies including a huge financial investment in humanized monoclonal antibodies and a general ignorance about aptamers and their...

  14. Computer-based diagnostic and prognostic approaches in medical research using brain MRI

    OpenAIRE

    Weygandt, Martin

    2016-01-01

    Die vorliegende Habilitationsschrift zu „Computer-based diagnostic and prognostic approaches in medical research using brain MRI“ ist in zwei Abschnitte gegliedert. Konkret wird im ersten Abschnitt eine Übersicht über verschiedene Aspekte des Computer- und MRT-basierten Vorhersageansatzes gegeben. Im zweiten Abschnitt werden die Artikel aus diesem Feld beschrieben, die ich für die Habilitation eingereicht habe. Konkret beginnt der erste Abschnitt der Habilitationsschrift damit, das grundlege...

  15. Comparison of Diagnostic Cytomorphology of Atypical Squamous Cells in Liquid-Based Preparations and Conventional Smears

    OpenAIRE

    Lee, Jung Dal; Oh, Young-Ha; Lee, Seong Ok; Kim, Jong Yull

    2012-01-01

    Background The aims of this study were to compare the cytomorphologic features diagnostic of atypical squamous cells (ASC) in liquid-based preparations (LBPs) and conventional Pap (CP) smears and to cytomorphologically assess the performance of the Cell Scan 1500™ in cervical cytology practice. Methods Cervicovaginal smears were obtained from 938 women. Two smears were obtained simultaneously from each individual, one for an LBP and the other for a CP smear; the smears were independently exam...

  16. Diagnostic properties of nerve conduction tests in population-based carpal tunnel syndrome

    Directory of Open Access Journals (Sweden)

    Johnsson Ragnar

    2003-05-01

    Full Text Available Abstract Background Numerous nerve conduction tests are used for the electrodiagnosis of carpal tunnel syndrome (CTS, with a wide range of sensitivity and specificity reported for each test in clinical studies. The tests have not been assessed in population-based studies. Such information would be important when using electrodiagnosis in epidemiologic research. The purpose of this study was to compare the diagnostic accuracy of various nerve conduction tests in population-based CTS and determine the properties of the most accurate test. Methods In a population-based study a questionnaire was mailed to a random sample of 3,000 persons. Of 2,466 responders, 262 symptomatic (numbness/tingling in the radial fingers and 125 randomly selected asymptomatic responders underwent clinical and electrophysiologic examinations. A standardized hand diagram was administered to the symptomatic persons. At the clinical examination, the examining surgeon identified 94 symptomatic persons as having clinically certain CTS. Nerve conduction tests were then performed on the symptomatic and the asymptomatic persons by blinded examiners. Analysis with receiver operating characteristic (ROC curves was used to compare the diagnostic accuracy of the nerve conduction tests in distinguishing the persons with clinically certain CTS from the asymptomatic persons. Results No difference was shown in the diagnostic accuracy of median nerve distal motor latency, digit-wrist sensory latency, wrist-palm sensory conduction velocity, and wrist-palm/forearm sensory conduction velocity ratio (area under curve, 0.75–0.76. Median-ulnar digit-wrist sensory latency difference had a significantly higher diagnostic accuracy (area under curve, 0.80. Using the optimal cutoff value of 0.8 ms for abnormal sensory latency difference shown on the ROC curve the sensitivity was 70%, specificity 82%, positive predictive value 19% and negative predictive value 98%. Based on the clinical diagnosis

  17. An Overview of Models of Speaking Performance and Its Implications for the Development of Procedural Framework for Diagnostic Speaking Tests

    Science.gov (United States)

    Zhao, Zhongbao

    2013-01-01

    This paper aims at developing a procedural framework for the development and validation of diagnostic speaking tests. The researcher reviews the current available models of speaking performance, analyzes the distinctive features and then points out the implications for the development of a procedural framework for diagnostic speaking tests. On…

  18. Health facility-based malaria surveillance: The effects of age, area of residence and diagnostics on test positivity rates

    Directory of Open Access Journals (Sweden)

    Francis Damon

    2012-07-01

    Full Text Available Abstract Background The malaria test positivity rate (TPR is increasingly used as an indicator of malaria morbidity because TPR is based on laboratory-confirmed cases and is simple to incorporate into existing surveillance systems. However, temporal trends in TPR may reflect changes in factors associated with malaria rather than true changes in malaria morbidity. This study examines the effects of age, area of residence and diagnostic test on TPR at two health facilities in regions of Uganda with differing malaria endemicity. Methods The analysis included data from diagnostic blood smears performed at health facilities in Walukuba and Aduku between January 2009 and December 2010. The associations between age and time and between age and TPR were evaluated independently to determine the potential for age to confound temporal trends in TPR. Subsequently, differences between observed TPR and TPR adjusted for age were compared to determine if confounding was present. A similar analysis was performed for area of residence. Temporal trends in observed TPR were compared to trends in TPR expected using rapid diagnostic tests, which were modelled based upon sensitivity and specificity in prior studies. Results Age was independently associated with both TPR and time at both sites. At Aduku, age-adjusted TPR increased relative to observed TPR due to the association between younger age and TPR and the gradual increase in age distribution. At Walukuba, there were no clear differences between observed and age-adjusted TPR. Area of residence was independently associated with both TPR and time at both sites, though there were no clear differences in temporal trends in area of residence-adjusted TPR and observed TPR at either site. Expected TPR with pLDH- and HRP-2-based rapid diagnostic tests (RDTs was higher than observed TPR at all time points at both sites. Conclusions Adjusting for potential confounders such as age and area of residence can ensure that

  19. Estimating the true accuracy of diagnostic tests for dengue infection using bayesian latent class models.

    Directory of Open Access Journals (Sweden)

    Wirichada Pan-ngum

    Full Text Available BACKGROUND: Accuracy of rapid diagnostic tests for dengue infection has been repeatedly estimated by comparing those tests with reference assays. We hypothesized that those estimates might be inaccurate if the accuracy of the reference assays is not perfect. Here, we investigated this using statistical modeling. METHODS/PRINCIPAL FINDINGS: Data from a cohort study of 549 patients suspected of dengue infection presenting at Colombo North Teaching Hospital, Ragama, Sri Lanka, that described the application of our reference assay (a combination of Dengue IgM antibody capture ELISA and IgG antibody capture ELISA and of three rapid diagnostic tests (Panbio NS1 antigen, IgM antibody and IgG antibody rapid immunochromatographic cassette tests were re-evaluated using bayesian latent class models (LCMs. The estimated sensitivity and specificity of the reference assay were 62.0% and 99.6%, respectively. Prevalence of dengue infection (24.3%, and sensitivities and specificities of the Panbio NS1 (45.9% and 97.9%, IgM (54.5% and 95.5% and IgG (62.1% and 84.5% estimated by bayesian LCMs were significantly different from those estimated by assuming that the reference assay was perfect. Sensitivity, specificity, PPV and NPV for a combination of NS1, IgM and IgG cassette tests on admission samples were 87.0%, 82.8%, 62.0% and 95.2%, respectively. CONCLUSIONS: Our reference assay is an imperfect gold standard. In our setting, the combination of NS1, IgM and IgG rapid diagnostic tests could be used on admission to rule out dengue infection with a high level of accuracy (NPV 95.2%. Further evaluation of rapid diagnostic tests for dengue infection should include the use of appropriate statistical models.

  20. Next-generation sequencing-based genome diagnostics across clinical genetics centers : implementation choices and their effects

    NARCIS (Netherlands)

    Vrijenhoek, Terry; Kraaijeveld, Ken; Elferink, Martin; de Ligt, Joep; Kranendonk, Elcke; Santen, Gijs; Nijman, Isaac J.; Butler, Derek; Claes, Godelieve; Costessi, Adalberto; Dorlijn, Wim; van Eyndhoven, Winfried; Halley, Dicky J. J.; van den Hout, Mirjam C. G. N.; van Hove, Steven; Johansson, Lennart F.; Jongbloed, Jan D. H.; Kamps, Rick; Kockx, Christel E. M.; de Koning, Bart; Kriek, Marjolein; Deprez, Ronald Lekanne Dit; Lunstroo, Hans; Mannens, Marcel; Mook, Olaf R.; Nelen, Marcel; Ploem, Corrette; Rijnen, Marco; Saris, Jasper J.; Sinke, Richard; Sistermans, Erik; van Slegtenhorst, Marjon; Sleutels, Frank; van der Stoep, Nienke; van Tienhoven, Marianne; Vermaat, Martijn; Vogel, Maartje; Waisfisz, Quinten; Weiss, Janneke Marjan; van den Wijngaard, Arthur; van Workum, Wilbert; Ijntema, Helger; van der Zwaag, Bert; van IJcken, Wilfred F. J.; den Dunnen, Johan T.; Veltman, Joris A.; Hennekam, Raoul; Cuppen, Edwin

    2015-01-01

    Implementation of next-generation DNA sequencing (NGS) technology into routine diagnostic genome care requires strategic choices. Instead of theoretical discussions on the consequences of such choices, we compared NGS-based diagnostic practices in eight clinical genetic centers in the Netherlands, b

  1. Prevention of Disease Complications Through Diagnostic Models: How to Tackle the Problem of Missing Data?

    Directory of Open Access Journals (Sweden)

    M Marzban

    2012-01-01

    Full Text Available Background: Diagnostic models are frequently used to assess the role of risk factors on disease complications, and therefore to avoid them. Missing data is an issue that challenges the model making. The aim of this study was to develop a diagnostic model to predict death in HIV/ AIDS patients when missing data exist.Methods: HIV patients (n=1460 referred to Voluntary Consoling and Testing Center (VCT of Shiraz southern Iran during 2004-2009 were recruited. Univariate association between variables and death was assessed. Only variables which had univariate P< 0.25 were selected to be offered to the Multifactorial models. First, patients with missing data on candidate variables were deleted (C-C model. Then, applying Multivariable Imputation via Chained Equations (MICE, missing data were imputed. Logistic regression was fitted to C-C and imputed data sets (MICE model. Models were compared in terms of number of variables retained in the final model, width of confidence intervals, and discrimination ability.Result: About 22% of data were lost in C-C model. Number of variables retained in the C-C and MICE models was 2 and 6 respectively. Confidence Intervals (C.I. corresponding to C-C model was wider than that of MICE. The MICE model showed greater discrimination ability than C-C model (70% versus 64%.Conclusion: The -C analysis resulted to loss of power and wide CI's. Once missing data were imputed, more variables reached significance level and C.I.'s were narrower. Therefore, we do recommend the application of the imputation method for handling missing data.

  2. Prevention of Disease Complications through Diagnostic Models: How to Tackle the Problem of Missing Data?

    Science.gov (United States)

    Baneshi, MR; Faramarzi, H; Marzban, M

    2012-01-01

    Background: Diagnostic models are frequently used to assess the role of risk factors on disease complications, and therefore to avoid them. Missing data is an issue that challenges the model making. The aim of this study was to develop a diagnostic model to predict death in HIV/AIDS patients when missing data exist. Methods: HIV patients (n=1460) referred to Voluntary Consoling and Testing Center (VCT) of Shiraz southern Iran during 2004–2009 were recruited. Univariate association between variables and death was assessed. Only variables which had univariate P< 0.25 were selected to be offered to the Multifactorial models. First, patients with missing data on candidate variables were deleted (C-C model). Then, applying Multivariable Imputation via Chained Equations (MICE), missing data were imputed. Logistic regression was fitted to C-C and imputed data sets (MICE model). Models were compared in terms of number of variables retained in the final model, width of confidence intervals, and discrimination ability. Result: About 22% of data were lost in C-C model. Number of variables retained in the C-C and MICE models was 2 and 6 respectively. Confidence Intervals (C.I.) corresponding to C-C model was wider than that of MICE. The MICE model showed greater discrimination ability than C-C model (70% versus 64%). Conclusion: The C-C analysis resulted to loss of power and wide CI's. Once missing data were imputed, more variables reached significance level and C.I.'s were narrower. Therefore, we do recommend the application of the imputation method for handling missing data. PMID:23113124

  3. Diagnostic model of 3-D circulation in the Arabian Sea and western equatorial Indian Ocean: Results of monthly mean sea surface topography

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.

    A three-dimensional diagnostic model has been developed to compute the monthly mean circulation and sea surface topography in the Western Tropical Indian Ocean north of 20 degrees S and west of 80 degrees E. The diagnostic model equations...

  4. Scintillator Based Energetic Ion Loss Diagnostic for the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Darrow

    2007-07-02

    A scintillator based energetic ion loss detector has been built and installed on the National Spherical Torus Experiment (NSTX) to measure the loss of neutral beam ions. The detector is able to resolve the pitch angle and gyroradius of the lost energetic ions. It has a wide acceptance range in pitch angle and energy, and is able to resolve the full, one-half, and one-third energy components of the 80 keV D neutral beams up to the maximum toroidal magnetic field of NSTX. Multiple Faraday cups have been embedded behind the scintillator to allow easy absolute calibration of the diagnostic and to measure the energetic ion loss to several ranges of pitch angle with good time resolution. Several small, vacuum compatible lamps allow simple calibration of the scintillator position within the field of view of the diagnostic's video camera.

  5. Tuning, Diagnostics & Data Preparation for Generalized Linear Models Supervised Algorithm in Data Mining Technologies

    Directory of Open Access Journals (Sweden)

    Sachin Bhaskar

    2015-07-01

    Full Text Available Data mining techniques are the result of a long process of research and product development. Large amount of data are searched by the practice of Data Mining to find out the trends and patterns that go beyond simple analysis. For segmentation of data and also to evaluate the possibility of future events, complex mathematical algorithms are used here. Specific algorithm produces each Data Mining model. More than one algorithms are used to solve in best way by some Data Mining problems. Data Mining technologies can be used through Oracle. Generalized Linear Models (GLM Algorithm is used in Regression and Classification Oracle Data Mining functions. For linear modelling, GLM is one the popular statistical techniques. For regression and binary classification, GLM is implemented by Oracle Data Mining. Row diagnostics as well as model statistics and extensive co-efficient statistics are provided by GLM. It also supports confidence bounds.. This paper outlines and produces analysis of GLM algorithm, which will guide to understand the tuning, diagnostics & data preparation process and the importance of Regression & Classification supervised Oracle Data Mining functions and it is utilized in marketing, time series prediction, financial forecasting, overall business planning, trend analysis, environmental modelling, biomedical and drug response modelling, etc.

  6. Applying the Weisbord model as a diagnostic framework for organizational analysis

    Directory of Open Access Journals (Sweden)

    Kontić Ljiljana

    2012-06-01

    Full Text Available This study investigates the effectiveness of the Weisbord's Six Box Model as a diagnostic framework for assessing the factors affecting organizational development. The research area consisted of an international bank which operates in Serbia. In order to identify strengths and weaknesses in the bank, Weisbord's diagnostic questionnaire has been used. Respondents were 137 middle managers in the selected bank. The research results revealed that the bank has strengths in the areas of leadership, relations, purpose and helpful mechanisms. The weaker aspects were organizational structure and rewards. The options for improving structure, as well as rewards system, are suggested. The findings add to the existing literature on organizational diagnosis in cross-cultural contexts.

  7. Some analytic diagnostic models for transport processes in estuarine and coastal waters

    International Nuclear Information System (INIS)

    Advection and dispersion processes in estuarine and coastal waters are briefly reviewed. Beginning from the basic macroscopic equations of transport for a substance diluted or suspended in the considered body of water,several levels of filtering in time and space are described and applied to obtain suitable diagnostic mathematical models both with scale effects and gaussian.The solutions of the aforementioned models,for initial distributions and boundary conditions with enough symmetry,are discussed, as well as their applications to a parameter characterization of the transport properties of the receiving body of water

  8. Rapid Immunoglobulin M-Based Dengue Diagnostic Test Using Surface Plasmon Resonance Biosensor

    OpenAIRE

    Peyman Jahanshahi; Erfan Zalnezhad; Shamala Devi Sekaran; Faisal Rafiq Mahamd Adikan

    2014-01-01

    Surface plasmon resonance (SPR) is a medical diagnosis technique with high sensitivity and specificity. In this research, a new method based on SPR is proposed for rapid, 10-minute detection of the anti-dengue virus in human serum samples. This novel technique, known as rapid immunoglobulin M (IgM)-based dengue diagnostic test, can be utilized quickly and easily at the point of care. Four dengue virus serotypes were used as ligands on a biochip. According to the results, a serum volume of onl...

  9. Validation of Ten Noninvasive Diagnostic Models for Prediction of Liver Fibrosis in Patients with Chronic Hepatitis B.

    Directory of Open Access Journals (Sweden)

    Jieyao Cheng

    Full Text Available Noninvasive models have been developed for fibrosis assessment in patients with chronic hepatitis B. However, the sensitivity, specificity and diagnostic accuracy in evaluating liver fibrosis of these methods have not been validated and compared in the same group of patients. The aim of this study was to verify the diagnostic performance and reproducibility of ten reported noninvasive models in a large cohort of Asian CHB patients.The diagnostic performance of ten noninvasive models (HALF index, FibroScan, S index, Zeng model, Youyi model, Hui model, APAG, APRI, FIB-4 and FibroTest was assessed against the liver histology by ROC curve analysis in CHB patients. The reproducibility of the ten models were evaluated by recalculating the diagnostic values at the given cut-off values defined by the original studies.Six models (HALF index, FibroScan, Zeng model, Youyi model, S index and FibroTest had AUROCs higher than 0.70 in predicting any fibrosis stage and 2 of them had best diagnostic performance with AUROCs to predict F≥2, F≥3 and F4 being 0.83, 0.89 and 0.89 for HALF index, 0.82, 0.87 and 0.87 for FibroScan, respectively. Four models (HALF index, FibroScan, Zeng model and Youyi model showed good diagnostic values at given cut-offs.HALF index, FibroScan, Zeng model, Youyi model, S index and FibroTest show a good diagnostic performance and all of them, except S index and FibroTest, have good reproducibility for evaluating liver fibrosis in CHB patients.ChiCTR-DCS-07000039.

  10. MJO Simulation Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Waliser, D; Sperber, K; Hendon, H; Kim, D; Maloney, E; Wheeler, M; Weickmann, K; Zhang, C; Donner, L; Gottschalck, J; Higgins, W; Kang, I; Legler, D; Moncrieff, M; Schubert, S; Stern, W; Vitart, F; Wang, B; Wang, W; Woolnough, S

    2008-06-02

    The Madden-Julian Oscillation (MJO) interacts with, and influences, a wide range of weather and climate phenomena (e.g., monsoons, ENSO, tropical storms, mid-latitude weather), and represents an important, and as yet unexploited, source of predictability at the subseasonal time scale. Despite the important role of the MJO in our climate and weather systems, current global circulation models (GCMs) exhibit considerable shortcomings in representing this phenomenon. These shortcomings have been documented in a number of multi-model comparison studies over the last decade. However, diagnosis of model performance has been challenging, and model progress has been difficult to track, due to the lack of a coherent and standardized set of MJO diagnostics. One of the chief objectives of the US CLIVAR MJO Working Group is the development of observation-based diagnostics for objectively evaluating global model simulations of the MJO in a consistent framework. Motivation for this activity is reviewed, and the intent and justification for a set of diagnostics is provided, along with specification for their calculation, and illustrations of their application. The diagnostics range from relatively simple analyses of variance and correlation, to more sophisticated space-time spectral and empirical orthogonal function analyses. These diagnostic techniques are used to detect MJO signals, to construct composite life-cycles, to identify associations of MJO activity with the mean state, and to describe interannual variability of the MJO.

  11. New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range

    Science.gov (United States)

    Bogdanoff, David W.

    2012-01-01

    This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations.

  12. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  13. Visual saliency models for summarization of diagnostic hysteroscopy videos in healthcare systems.

    Science.gov (United States)

    Muhammad, Khan; Ahmad, Jamil; Sajjad, Muhammad; Baik, Sung Wook

    2016-01-01

    In clinical practice, diagnostic hysteroscopy (DH) videos are recorded in full which are stored in long-term video libraries for later inspection of previous diagnosis, research and training, and as an evidence for patients' complaints. However, a limited number of frames are required for actual diagnosis, which can be extracted using video summarization (VS). Unfortunately, the general-purpose VS methods are not much effective for DH videos due to their significant level of similarity in terms of color and texture, unedited contents, and lack of shot boundaries. Therefore, in this paper, we investigate visual saliency models for effective abstraction of DH videos by extracting the diagnostically important frames. The objective of this study is to analyze the performance of various visual saliency models with consideration of domain knowledge and nominate the best saliency model for DH video summarization in healthcare systems. Our experimental results indicate that a hybrid saliency model, comprising of motion, contrast, texture, and curvature saliency, is the more suitable saliency model for summarization of DH videos in terms of extracted keyframes and accuracy. PMID:27652068

  14. The Diagnostic Validity and Reliability of an Internet-Based Clinical Assessment Program for Mental Disorders

    Science.gov (United States)

    Klein, Britt; Meyer, Denny; Austin, David William; Abbott, Jo-Anne M

    2015-01-01

    Background Internet-based assessment has the potential to assist with the diagnosis of mental health disorders and overcome the barriers associated with traditional services (eg, cost, stigma, distance). Further to existing online screening programs available, there is an opportunity to deliver more comprehensive and accurate diagnostic tools to supplement the assessment and treatment of mental health disorders. Objective The aim was to evaluate the diagnostic criterion validity and test-retest reliability of the electronic Psychological Assessment System (e-PASS), an online, self-report, multidisorder, clinical assessment and referral system. Methods Participants were 616 adults residing in Australia, recruited online, and representing prospective e-PASS users. Following e-PASS completion, 158 participants underwent a telephone-administered structured clinical interview and 39 participants repeated the e-PASS within 25 days of initial completion. Results With structured clinical interview results serving as the gold standard, diagnostic agreement with the e-PASS varied considerably from fair (eg, generalized anxiety disorder: κ=.37) to strong (eg, panic disorder: κ=.62). Although the e-PASS’ sensitivity also varied (0.43-0.86) the specificity was generally high (0.68-1.00). The e-PASS sensitivity generally improved when reducing the e-PASS threshold to a subclinical result. Test-retest reliability ranged from moderate (eg, specific phobia: κ=.54) to substantial (eg, bulimia nervosa: κ=.87). Conclusions The e-PASS produces reliable diagnostic results and performs generally well in excluding mental disorders, although at the expense of sensitivity. For screening purposes, the e-PASS subclinical result generally appears better than a clinical result as a diagnostic indicator. Further development and evaluation is needed to support the use of online diagnostic assessment programs for mental disorders. Trial Registration Australian and New Zealand Clinical Trials

  15. Physics-Based Methods of Failure Analysis and Diagnostics in Human Space Flight

    Science.gov (United States)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry Georgievich; Hafiychuk, Vasyl Nmn; Osipov, Viatcheslav V.; Patterson-Hine, F. Ann

    2010-01-01

    The Integrated Health Management (IHM) for the future aerospace systems requires to interface models of multiple subsystems in an efficient and accurate information environment at the earlier stages of system design. The complexity of modern aeronautic and aircraft systems (including e.g. the power distribution, flight control, solid and liquid motors) dictates employment of hybrid models and high-level reasoners for analysing mixed continuous and discrete information flow involving multiple modes of operation in uncertain environments, unknown state variables, heterogeneous software and hardware components. To provide the information link between key design/performance parameters and high-level reasoners we rely on development of multi-physics performance models, distributed sensors networks, and fault diagnostic and prognostic (FD&P) technologies in close collaboration with system designers. The main challenges of our research are related to the in-flight assessment of the structural stability, engine performance, and trajectory control. The main goal is to develop an intelligent IHM that not only enhances components and system reliability, but also provides a post-flight feedback helping to optimize design of the next generation of aerospace systems. Our efforts are concentrated on several directions of the research. One of the key components of our strategy is an innovative approach to the diagnostics/prognostics based on the real time dynamical inference (DI) technologies extended to encompass hybrid systems with hidden state trajectories. The major investments are into the multiphysics performance modelling that provides an access of the FD&P technologies to the main performance parameters of e.g. solid and liquid rocket motors and composite materials of the nozzle and case. Some of the recent results of our research are discussed in this chapter. We begin by introducing the problem of dynamical inference of stochastic nonlinear models and reviewing earlier

  16. Distribution of phytoplankton functional types in high-nitrate, low-chlorophyll waters in a new diagnostic ecological indicator model

    Directory of Open Access Journals (Sweden)

    A. P. Palacz

    2013-11-01

    Full Text Available Modeling and monitoring plankton functional types (PFTs is challenged by the insufficient amount of field measurements of ground truths in both plankton models and bio-optical algorithms. In this study, we combine remote sensing data and a dynamic plankton model to simulate an ecologically sound spatial and temporal distribution of phyto-PFTs. We apply an innovative ecological indicator approach to modeling PFTs and focus on resolving the question of diatom–coccolithophore coexistence in the subpolar high-nitrate and low-chlorophyll regions. We choose an artificial neural network as our modeling framework because it has the potential to interpret complex nonlinear interactions governing complex adaptive systems, of which marine ecosystems are a prime example. Using ecological indicators that fulfill the criteria of measurability, sensitivity and specificity, we demonstrate that our diagnostic model correctly interprets some basic ecological rules similar to ones emerging from dynamic models. Our time series highlight a dynamic phyto-PFT community composition in all high-latitude areas and indicate seasonal coexistence of diatoms and coccolithophores. This observation, though consistent with in situ and remote sensing measurements, has so far not been captured by state-of-the-art dynamic models, which struggle to resolve this "paradox of the plankton". We conclude that an ecological indicator approach is useful for ecological modeling of phytoplankton and potentially higher trophic levels. Finally, we speculate that it could serve as a powerful tool in advancing ecosystem-based management of marine resources.

  17. Smartphone-Based Accurate Analysis of Retinal Vasculature towards Point-of-Care Diagnostics

    Science.gov (United States)

    Xu, Xiayu; Ding, Wenxiang; Wang, Xuemin; Cao, Ruofan; Zhang, Maiye; Lv, Peilin; Xu, Feng

    2016-01-01

    Retinal vasculature analysis is important for the early diagnostics of various eye and systemic diseases, making it a potentially useful biomarker, especially for resource-limited regions and countries. Here we developed a smartphone-based retinal image analysis system for point-of-care diagnostics that is able to load a fundus image, segment retinal vessels, analyze individual vessel width, and store or uplink results. The proposed system was not only evaluated on widely used public databases and compared with the state-of-the-art methods, but also validated on clinical images directly acquired with a smartphone. An Android app is also developed to facilitate on-site application of the proposed methods. Both visual assessment and quantitative assessment showed that the proposed methods achieved comparable results to the state-of-the-art methods that require high-standard workstations. The proposed system holds great potential for the early diagnostics of various diseases, such as diabetic retinopathy, for resource-limited regions and countries. PMID:27698369

  18. Image-based diagnostic aid for interstitial lung disease with secondary data integration

    Science.gov (United States)

    Depeursinge, Adrien; Müller, Henning; Hidki, Asmâa; Poletti, Pierre-Alexandre; Platon, Alexandra; Geissbuhler, Antoine

    2007-03-01

    Interstitial lung diseases (ILDs) are a relatively heterogeneous group of around 150 illnesses with often very unspecific symptoms. The most complete imaging method for the characterisation of ILDs is the high-resolution computed tomography (HRCT) of the chest but a correct interpretation of these images is difficult even for specialists as many diseases are rare and thus little experience exists. Moreover, interpreting HRCT images requires knowledge of the context defined by clinical data of the studied case. A computerised diagnostic aid tool based on HRCT images with associated medical data to retrieve similar cases of ILDs from a dedicated database can bring quick and precious information for example for emergency radiologists. The experience from a pilot project highlighted the need for detailed database containing high-quality annotations in addition to clinical data. The state of the art is studied to identify requirements for image-based diagnostic aid for interstitial lung disease with secondary data integration. The data acquisition steps are detailed. The selection of the most relevant clinical parameters is done in collaboration with lung specialists from current literature, along with knowledge bases of computer-based diagnostic decision support systems. In order to perform high-quality annotations of the interstitial lung tissue in the HRCT images an annotation software and its own file format is implemented for DICOM images. A multimedia database is implemented to store ILD cases with clinical data and annotated image series. Cases from the University & University Hospitals of Geneva (HUG) are retrospectively and prospectively collected to populate the database. Currently, 59 cases with certified diagnosis and their clinical parameters are stored in the database as well as 254 image series of which 26 have their regions of interest annotated. The available data was used to test primary visual features for the classification of lung tissue patterns

  19. Clinical prediction model to aid emergency doctors managing febrile children at risk of serious bacterial infections: Diagnostic study

    NARCIS (Netherlands)

    R.G. Nijman (Ruud); Y. Vergouwe (Yvonne); M.J. Thompson (Matthew); M.V. Veen (Mirjam Van); A.H.J. van Meurs (Alfred); J. van der Lei (Johan); E.W. Steyerberg (Ewout); H.A. Moll (Henriëtte); R. Oostenbrink (Rianne)

    2013-01-01

    textabstractObjective: To derive, cross validate, and externally validate a clinical prediction model that assesses the risks of different serious bacterial infections in children with fever at the emergency department. Design: Prospective observational diagnostic study. Setting: Three paediatric em

  20. Collisional-radiative modelling for the spectroscopic diagnostic of turbulent plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J.; Lefevre, T.; Escarguel, A.; Capes, H.; Catoire, F.; Marandet, Y.; Stamm, R. [PIIM, Universite de Provence, CNRS, Marseille (France); Rosmej, F.B. [Universite Pierre et Marie Curie, Paris (France)] [LULI, Palaiseau (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [NFI, Russian Research Center, Kurchatov Institute, Moscow (Russian Federation); Bonhomme, G. [IJL, Universite de Nancy, CNRS, Vandoeuvre-les-Nancy (France)

    2011-07-01

    Spectroscopy is a diagnostic method widely used in plasma physics research, e.g. in laboratory experiments, in fusion devices or in astrophysics. Information on the plasma parameters (electron density, temperature etc.) can be obtained from the analysis of both line shapes and intensities through the use of suitable models. The aim of the present paper is to assess the role of turbulent fluctuations on line intensity ratios in the case of weakly radiating plasmas. This involves the use of collisional-radiative modelling. In the present work we address the radiation due to atomic lines in turbulent helium plasmas at low density/temperature. The statistical formalism previously used in line shape modelling is adapted in this way, and the atomic populations are calculated with a collisional-radiative code. Different regimes, according to the turbulence correlation time, have been considered. In the static case, which corresponds to low-frequency fluctuations, it has been shown that the turbulence can lead to an increase of the line intensities. An application to helium in realistic experimental conditions has revealed that line ratios are sensitive to the fluctuations, which offers a track to a diagnostic. In the dynamic case, the use of a reduced model in the case of an ideal two-level atom has revealed the possibility for a significant dependence of the atomic populations on the turbulence frequency

  1. Observational constraints and diagnostics for time-dependent dark energy models

    CERN Document Server

    Wang, Deng

    2016-01-01

    In this paper, we constrain four time-dependent dark energy (TDDE) models by using the Type Ia supernovae (SNe Ia), baryonic acoustic oscillations (BAO), observational Hubble parameter (OHD) data-sets as well as the single data point from the newest event GW150914. Subsequently, adopting the best fitting values of the model parameters, we apply the original statefinder, statefinder hierarchy, the growth rate of matter perturbations and $Om(z)$ diagnostics to distinguish the TDDE scenarios and the $\\Lambda$CDM scenario from each other. We discover that all the TDDE models and $\\Lambda$CDM model can be distinguished better at the present epoch by using the statefinder hierarchy than using the original statefinder, the growth rate of matter perturbations and $Om(z)$ diagnostics, especially, in the planes of $\\{S_3^{(1)},S_4^{(1)}\\}$, $\\{S_3^{(2)},S_4^{(2)}\\}$, $\\{S_5^{(1)},S_5^{(2)}\\}$ and $\\{S_4^{(2)},S_5^{(2)}\\}$.

  2. Development and Evaluation of the Diagnostic Power for a Computer-Based Two-Tier Assessment

    Science.gov (United States)

    Lin, Jing-Wen

    2016-06-01

    This study adopted a quasi-experimental design with follow-up interview to develop a computer-based two-tier assessment (CBA) regarding the science topic of electric circuits and to evaluate the diagnostic power of the assessment. Three assessment formats (i.e., paper-and-pencil, static computer-based, and dynamic computer-based tests) using two-tier items were conducted on Grade 4 ( n = 90) and Grade 5 ( n = 86) students, respectively. One-way ANCOVA was conducted to investigate whether the different assessment formats affected these students' posttest scores on both the phenomenon and reason tiers, and confidence rating for an answer was assessed to diagnose the nature of students' responses (i.e., scientific answer, guessing, alternative conceptions, or knowledge deficiency). Follow-up interview was adopted to explore whether and how the various CBA representations influenced both graders' responses. Results showed that the CBA, in particular the dynamic representation format, allowed students who lacked prior knowledge (Grade 4) to easily understand the question stems. The various CBA representations also potentially encouraged students who already had learning experience (Grade 5) to enhance the metacognitive judgment of their responses. Therefore, CBA could reduce students' use of test-taking strategies and provide better diagnostic power for a two-tier instrument than the traditional paper-based version.

  3. Two-dimensional MHD models of solar magnetogranulation. Testing of the models and methods of Stokes diagnostics

    CERN Document Server

    Sheminova, V A

    2012-01-01

    We carried out the Stokes diagnostics of new two-dimensional magnetohydrodynamic models with a continuous evolution of magnetogranulation in the course of two hours of the hydrodynamic (solar) time. Our results agree satisfactorily with the results of Stokes diagnostics of the solar small-scale flux tubes observed in quiet network elements and active plages. The straightforward methods often used in the Stokes diagnostics of solar small-scale magnetic elements were tested by means of the magnetohydrodynamic models. We conclude that the most reliable methods are the determination of magnetic field strength from the separation of the peaks in the Stokes V profiles of the infrared Fe I line 1564.8 nm and the determination of the magnetic inclination angle from the ratio tan^2 gamma approx (Q^2 + U^2)^{1/2}/V^2. The lower limits for such determinations are about 20 mT and 10 degree, respectively. We also conclude that the 2D MHD models of solar magnetogranulation are in accord with observations and may be success...

  4. Implementing an ultrasound-based protocol for diagnosingappendicitis while maintaining diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Van Atta, Angela J. [University of Utah School of Medicine, Salt Lake City, UT (United States); Baskin, Henry J.; Maves, Connie K.; Dansie, David M. [Primary Children' s Hospital, Department of Radiology, Salt Lake City, UT (United States); Rollins, Michael D. [University of Utah School of Medicine, Department of Surgery, Division of Pediatric Surgery, Salt Lake City, UT (United States); Bolte, Robert G. [University of Utah School of Medicine, Department of Pediatrics, Division of Pediatric Emergency Medicine, Salt Lake City, UT (United States); Mundorff, Michael B.; Andrews, Seth P. [Primary Children' s Hospital, Systems Improvement, Salt Lake City, UT (United States)

    2015-05-01

    The use of ultrasound to diagnose appendicitis in children is well-documented but not universally employed outside of pediatric academic centers, especially in the United States. Various obstacles make it difficult for institutions and radiologists to abandon a successful and accurate CT-based imaging protocol in favor of a US-based protocol. To describe how we overcame barriers to implementing a US-based appendicitis protocol among a large group of nonacademic private-practice pediatric radiologists while maintaining diagnostic accuracy and decreasing medical costs. A multidisciplinary team of physicians (pediatric surgery, pediatric emergency medicine and pediatric radiology) approved an imaging protocol using US as the primary modality to evaluate suspected appendicitis with CT for equivocal cases. The protocol addressed potential bias against US and accommodated for institutional limitations of radiologist and sonographer experience and availability. Radiologists coded US reports according to the probability of appendicitis. Radiology reports were compared with clinical outcomes to assess diagnostic accuracy. During the study period, physicians from each group were apprised of the interim US protocol accuracy results. Problematic cases were discussed openly. A total of 512 children were enrolled and underwent US for evaluation of appendicitis over a 30-month period. Diagnostic accuracy was comparable to published results for combined US/CT protocols. Comparing the first 12 months to the last 12 months of the study period, the proportion of children achieving an unequivocal US result increased from 30% (51/169) to 53% (149/282) and the proportion of children undergoing surgery based solely on US findings increased from 55% (23/42) to 84% (92/109). Overall, 63% (325/512) of patients in the protocol did not require a CT. Total patient costs were reduced by $30,182 annually. We overcame several barriers to implementing a US protocol. During the study period our

  5. A Turbidity Test Based Centrifugal Microfluidics Diagnostic System for Simultaneous Detection of HBV, HCV, and CMV

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Chang

    2015-01-01

    Full Text Available This paper presents a LAMP- (loop-mediated isothermal amplification- based lab-on-disk optical system that allows the simultaneous detection of hepatitis B virus, hepatitis C virus, and cytomegalovirus. The various flow stages are controlled in the proposed system using different balance among centrifugal pumping, Coriolis pumping, and the capillary force. We have implemented a servo system for positioning and speed control for the heating and centrifugal pumping. We have also successfully employed a polymer light-emitting diode section for turbidity detection. The easy-to-use one-click system can perform diagnostics in less than 1 hour.

  6. A Pull-in Based Test Mechanism for Device Diagnostic and Process Characterization

    Directory of Open Access Journals (Sweden)

    L. A. Rocha

    2008-01-01

    Full Text Available A test technique for capacitive MEMS accelerometers and electrostatic microactuators, based on the measurement of pull-in voltages and resonance frequency, is described. Using this combination of measurements, one can estimate process-induced variations in the device layout dimensions as well as deviations from nominal value in material properties, which can be used either for testing or device diagnostics purposes. Measurements performed on fabricated devices confirm that the 250 nm overetch observed on SEM images can be correctly estimated using the proposed technique.

  7. Model Based Definition

    Science.gov (United States)

    Rowe, Sidney E.

    2010-01-01

    In September 2007, the Engineering Directorate at the Marshall Space Flight Center (MSFC) created the Design System Focus Team (DSFT). MSFC was responsible for the in-house design and development of the Ares 1 Upper Stage and the Engineering Directorate was preparing to deploy a new electronic Configuration Management and Data Management System with the Design Data Management System (DDMS) based upon a Commercial Off The Shelf (COTS) Product Data Management (PDM) System. The DSFT was to establish standardized CAD practices and a new data life cycle for design data. Of special interest here, the design teams were to implement Model Based Definition (MBD) in support of the Upper Stage manufacturing contract. It is noted that this MBD does use partially dimensioned drawings for auxiliary information to the model. The design data lifecycle implemented several new release states to be used prior to formal release that allowed the models to move through a flow of progressive maturity. The DSFT identified some 17 Lessons Learned as outcomes of the standards development, pathfinder deployments and initial application to the Upper Stage design completion. Some of the high value examples are reviewed.

  8. Comprehensive evaluation of a somatostatin-based radiolabelled antagonist for diagnostic imaging and radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuejuan; Fani, Melpomeni [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Schulz, Stefan [Jena University Hospital - Friedrich Schiller University Jena, Department of Pharmacology and Toxicology, Jena (Germany); Rivier, Jean [The Salk Institute for Biological Studies, The Clayton Foundation Laboratories for Peptide Biology, La Jolla, CA (United States); Reubi, Jean Claude [University of Bern, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, Bern (Switzerland); Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-12-15

    Targeting of tumours positive for somatostatin receptors (sst) with radiolabelled peptides is of interest for tumour localization, staging, therapy follow-up and targeted radionuclide therapy. The peptides used clinically are exclusively agonists, but recently we have shown that the radiolabelled somatostatin-based antagonist {sup 111}In-DOTA-sst2-ANT may be preferable to agonists. However, a comprehensive study of this radiolabelled antagonist to determine its significance was lacking. The present report describes the evaluation of this novel antagonist labelled with {sup 111}In and {sup 177}Lu in three different tumour models. Radiopeptide binding, internalization and dissociation studies were performed using cells expressing HEK293-rsst{sub 2}. Biodistribution studies were performed in HEK293-rsst{sub 2}, HEK293-hsst{sub 2} and HEK293-rsst{sub 3} xenografted mice. Saturation binding analysis confirmed earlier IC{sub 50} data for {sup 111/nat}In-DOTA-sst2-ANT and showed similar affinity of {sup 177/nat}Lu-DOTA-sst2-ANT for the sst{sub 2}. Only low internalization was found in cell culture (6.68 {+-} 0.06 % at 4 h), which was not unexpected for an antagonist, and this could be further reduced by the addition of sucrose. No internalization was observed in HEK293 cells not expressing sst. Both results indicate that the internalization was specific. {sup 111}In-DOTA-sst2-ANT and {sup 177}Lu-DOTA-sst2-ANT were shown to target tumour xenografts expressing the rat and the human sst{sub 2} receptor with no differences in their uptake or pharmacokinetics. The uptake in rsst{sub 2} and hsst{sub 2} was high (about 30 %IA/g 4 h after injection) and surprisingly long-lasting (about 20-23 %IA/g 24 h after injection). Kidney uptake was blocked by approximately 50 % by lysine or Gelofusine. These results indicate that radiolabelled somatostatin-based antagonists may be superior to corresponding agonists. The long tumour retention time of {sup 177}Lu-DOTA-sst2-ANT indicates that

  9. An Integrated Model-Based Diagnostic and Prognostic Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — Systems health monitoring is essential in guar- anteeing the safe, efficient, and correct opera- tion of complex engineered systems. Diagnosis, which consists of...

  10. Diagnostics of helium plasma by collisional-radiative modeling and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonwook; Kwon, Duck-Hee [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Optical diagnostics for the electron temperature (T{sub e}) and the electron density (n{sub e}) of fusion plasma is important for understanding and controlling the edge and the divertor plasmas in tokamak. Since the line intensity ratio method using the collisional-radiative modeling and OES (optical emission spectroscopy) is simple and does not disturb the plasma, many fusion devices with TEXTOR, JET, JT-60U, LHD, and so on, have employed the line intensity ratio method as a basic diagnostic tool for neutral helium (He I). The accuracy of the line intensity ratio method depends on the reliability of the cross sections and rate coefficients. We performed state-of-the-art R-matrix calculations including couplings up to n=7 states and the distorted wave (DW) calculations for the electron-impact excitation (EIE) cross sections of He I using the flexible atomic code (FAC). The collisional-radiative model for He I was constructed using the calculated the cross sections. The helium collisional-radiative model for He I was constructed to diagnose the electron temperature and the electron density of the plasma. The electron temperature and density were determined by using the line intensity ratio method.

  11. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications.

    Science.gov (United States)

    Kim, Jung Eun; Choi, Ji Hye; Colas, Marion; Kim, Dong Ha; Lee, Hyukjin

    2016-06-15

    The properties of gold nanomaterials are particularly of interest to many researchers, since they show unique physiochemical properties such as optical adsorption of specific wavelength of light, high electrical conductance with rich surface electrons, and facile surface modification with sulfhydryl groups. These properties have facilitated the use of gold nanomaterials in the development of various hybrid systems for biosensors and molecular diagnostics. Combined with various synthetic materials such as fluorescence dyes, polymers, oligonucleotides, graphene oxides (GO), and quantum dots (QDs), the gold-based hybrid nanomaterials offer multi-functionalities in molecular detection with high specificity and sensitivity. These two aspects result in the increase of detection speed as well as the lower detection limits, having shown that this diagnosis method is more effective than other conventional ones. In this review, we have highlighted various examples of nanomaterials for biosensing and molecular diagnostics. The gold-based hybrid systems are categorized by three distinct detection approaches, in which include (1) optical, such as surface plasmon resonance (SPR), RAMAN, and surface-enhanced Raman scattering (SERS), (2) fluorescence, such as förster resonance energy transfer (FRET) and nanomaterial surface energy transfer (NSET), and (3) electrochemical, such as potentiometic, amperometric, and conductometric. Each example provides the detailed mechanism of molecular detection as well as the supporting experimental result with the limit of detection (LOD). Lastly, future perspective on novel development of gold-based hybrid nanomaterials is discussed as well as their challenges. PMID:26894985

  12. Opacity free and space resolved x-ray diagnostics based on satellite lines near H-like Lyα of highly charged ions

    International Nuclear Information System (INIS)

    Space resolved high resolution spectroscopic methods have shown that dielectronic satellite emission in high energy laser produced plasmas is confined to the area of highest density and temperature. Employing satellite transitions near Lyα we demonstrate, that opacity free temperature and density diagnostic can be based solely on the satellite transitions 2lnl' → 1snl' + hv. The exclusion of the resonance line transition in the analysis provides an opacity free diagnostic method with limited need for spatial deconvolution. For the interpretation of the experimental data we have developed a collisional-radiative model involving autoionising states with high n spectator electrons. The atomic data for dielectronic satellite transitions are calculated with different methods and compared also in view for diagnostic applications. For n = 2 satellite transitions we find in general good agreement, however, for higher quantum numbers n, the agreement of data is found to be not satisfactory. (author)

  13. Realization of process improvement at a diagnostic radiology department with aid of simulation modeling.

    Science.gov (United States)

    Oh, Hong-Choon; Toh, Hong-Guan; Giap Cheong, Eddy Seng

    2011-11-01

    Using the classical process improvement framework of Plan-Do-Study-Act (PDSA), the diagnostic radiology department of a tertiary hospital identified several patient cycle time reduction strategies. Experimentation of these strategies (which included procurement of new machines, hiring of new staff, redesign of queue system, etc.) through pilot scale implementation was impractical because it might incur substantial expenditure or be operationally disruptive. With this in mind, simulation modeling was used to test these strategies via performance of "what if" analyses. Using the output generated by the simulation model, the team was able to identify a cost-free cycle time reduction strategy, which subsequently led to a reduction of patient cycle time and achievement of a management-defined performance target. As healthcare professionals work continually to improve healthcare operational efficiency in response to rising healthcare costs and patient expectation, simulation modeling offers an effective scientific framework that can complement established process improvement framework like PDSA to realize healthcare process enhancement.

  14. Optical diagnostics based on elastic scattering: Recent clinical demonstrations with the Los Alamos Optical Biopsy System

    Energy Technology Data Exchange (ETDEWEB)

    Bigio, I.J.; Loree, T.R.; Mourant, J.; Shimada, T. [Los Alamos National Lab., NM (United States); Story-Held, K.; Glickman, R.D. [Texas Univ. Health Science Center, San Antonio, TX (United States). Dept. of Ophthalmology; Conn, R. [Lovelace Medical Center, Albuquerque, NM (United States). Dept. of Urology

    1993-08-01

    A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.

  15. A diagnostic model incorporating P50 sensory gating and neuropsychological tests for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jia-Chi Shan

    Full Text Available OBJECTIVES: Endophenotypes in schizophrenia research is a contemporary approach to studying this heterogeneous mental illness, and several candidate neurophysiological markers (e.g. P50 sensory gating and neuropsychological tests (e.g. Continuous Performance Test (CPT and Wisconsin Card Sorting Test (WCST have been proposed. However, the clinical utility of a single marker appears to be limited. In the present study, we aimed to construct a diagnostic model incorporating P50 sensory gating with other neuropsychological tests in order to improve the clinical utility. METHODS: We recruited clinically stable outpatients meeting DSM-IV criteria of schizophrenia and age- and gender-matched healthy controls. Participants underwent P50 sensory gating experimental sessions and batteries of neuropsychological tests, including CPT, WCST and Wechsler Adult Intelligence Scale Third Edition (WAIS-III. RESULTS: A total of 106 schizophrenia patients and 74 healthy controls were enrolled. Compared with healthy controls, the patient group had significantly a larger S2 amplitude, and thus poorer P50 gating ratio (gating ratio = S2/S1. In addition, schizophrenia patients had a poorer performance on neuropsychological tests. We then developed a diagnostic model by using multivariable logistic regression analysis to differentiate patients from healthy controls. The final model included the following covariates: abnormal P50 gating (defined as P50 gating ratio >0.4, three subscales derived from the WAIS-III (Arithmetic, Block Design, and Performance IQ, sensitivity index from CPT and smoking status. This model had an adequate accuracy (concordant percentage = 90.4%; c-statistic = 0.904; Hosmer-Lemeshow Goodness-of-Fit Test, p = 0.64>0.05. CONCLUSION: To the best of our knowledge, this is the largest study to date using P50 sensory gating in subjects of Chinese ethnicity and the first to use P50 sensory gating along with other neuropsychological tests

  16. Continued experimental evaluations of a diagnostic rule-based expert system for the nuclear industry

    International Nuclear Information System (INIS)

    This experiment which was the second in a series, conducted at the OECD Halden Reactor Project, Halden, Norway in the spring 1991, aimed to assess the effect on nuclear power plant operators diagnostic behaviour when using a rule based diagnostic expert system. The rule based expert system used in the experiment is called DISKET (Diagnosis System Using Knowledge Engineering Technique) and was originally developed by the Japan Atomic Energy Research Institute (JAERI). The experiment was performed in the Halden man-machine laboratory using a full scope pressurized water reactor simulator called NORS. Operator performance in terms of quality of diagnosis is improved by the use of SISKET. The use of the DISKET system also influences operators problem solving behaviour. The main difference between the two experimental conditions can be characterized as while the DISKET users during the diagnosis process are following a strategy which is direct and narrowed, the non-DISKET users are using a much broader and less focused search when trying to diagnose a disturbance. (author)

  17. The diagnostic rules of peripheral lung cancer preliminary study based on data mining technique

    Institute of Scientific and Technical Information of China (English)

    Yongqian Qiang; Youmin Guo; Xue Li; Qiuping Wang; Hao Chen; Duwu Cui

    2007-01-01

    Objective: To discuss the clinical and imaging diagnostic rules of peripheral lung cancer by data mining technique, and to explore new ideas in the diagnosis of peripheral lung cancer, and to obtain early-stage technology and knowledge support of computer-aided detecting (CAD). Methods: 58 cases of peripheral lung cancer confirmed by clinical pathology were collected. The data were imported into the database after the standardization of the clinical and CT findings attributes were identified. The data was studied comparatively based on Association Rules (AR) of the knowledge discovery process and the Rough Set (RS) reduction algorithm and Genetic Algorithm(GA) of the generic data analysis tool (ROSETTA), respectively. Results: The genetic classification algorithm of ROSETTA generates 5 000 or so diagnosis rules. The RS reduction algorithm of Johnson's Algorithm generates 51 diagnosis rules and the AR algorithm generates 123 diagnosis rules. Three data mining methods basically consider gender, age,cough, location, lobulation sign, shape, ground-glass density attributes as the main basis for the diagnosis of peripheral lung cancer. Conclusion: These diagnosis rules for peripheral lung cancer with three data mining technology is same as clinical diagnostic rules, and these rules also can be used to build the knowledge base of expert system. This study demonstrated the potential values of data mining technology in clinical imaging diagnosis and differential diagnosis.

  18. EICT Based Diagnostic Tool and Monitoring System for EMF Radiation to Sustain Environmental Safety

    Directory of Open Access Journals (Sweden)

    K Parandham

    2013-10-01

    Full Text Available the adverse effects of electromagnetic radiation from mobile phones and communication towers on health issues are being well documented today. However, exact correlation between radiation of communication towers and their radiation levels, are not monitored. Aim of this paper is to study, analyze, apply networking and data mining technologies to develop an EICT based Diagnostic tool and Monitoring system for electromagnetic radiation levels into environment. This system is to network all mobile towers of each service provider as a single entity and then connect all service providers to a central monitoring agency online for continuous monitoring. Since very large numbers of mobile towers exist in India, each state can have its own regional network which is further networked with national central network. This can be enlarged to entire world for monitoring the EMF radiation levels near every mobile tower. For these regional national and international networks the connectivity is to be instituted by the respective service provider. In this paper an attempt is made to logically apply Data Mining and networking technologies to develop a central EICT based diagnostic tool and monitoring system for EMF radiation from each transmission tower. With this system regional, national and international agencies/authorities can monitor the EMF radiation at each and every transmission tower area continuously and verify them with exposure standards. It is proposed to display this information using Integrated Display System in front of monitoring authority at appropriate levels.

  19. Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer

    Directory of Open Access Journals (Sweden)

    Stobiecki Maciej

    2009-07-01

    Full Text Available Abstract Background Mass spectrometric analysis of the blood proteome is an emerging method of clinical proteomics. The approach exploiting multi-protein/peptide sets (fingerprints detected by mass spectrometry that reflect overall features of a specimen's proteome, termed proteome pattern analysis, have been already shown in several studies to have applicability in cancer diagnostics. We aimed to identify serum proteome patterns specific for early stage breast cancer patients using MALDI-ToF mass spectrometry. Methods Blood samples were collected before the start of therapy in a group of 92 patients diagnosed at stages I and II of the disease, and in a group of age-matched healthy controls (104 women. Serum specimens were purified and the low-molecular-weight proteome fraction was examined using MALDI-ToF mass spectrometry after removal of albumin and other high-molecular-weight serum proteins. Protein ions registered in a mass range between 2,000 and 10,000 Da were analyzed using a new bioinformatic tool created in our group, which included modeling spectra as a sum of Gaussian bell-shaped curves. Results We have identified features of serum proteome patterns that were significantly different between blood samples of healthy individuals and early stage breast cancer patients. The classifier built of three spectral components that differentiated controls and cancer patients had 83% sensitivity and 85% specificity. Spectral components (i.e., protein ions that were the most frequent in such classifiers had approximate m/z values of 2303, 2866 and 3579 Da (a biomarker built from these three components showed 88% sensitivity and 78% specificity. Of note, we did not find a significant correlation between features of serum proteome patterns and established prognostic or predictive factors like tumor size, nodal involvement, histopathological grade, estrogen and progesterone receptor expression. In addition, we observed a significantly (p = 0

  20. Web-based tools for quality assurance and radiation protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Practical and philosophical aspects of radiation protection in diagnostic radiology have changed very little over the past 50 y even though patient doses have continued to rise significantly in this period. This rise has been driven by technological developments, such as multi-slice computed tomography, that have been able to improve diagnostic accuracy but not necessarily provide the same level of risk-benefit to all patients or groups of patients given the dose levels involved. Can practical radiation protection strategies hope to keep abreast of these ongoing developments? A project was started in 1992 in Liverpool that aimed to develop IT driven quality assurance (QA)/radiation protection software tools based upon a modular quality assurance dose data system. One of the modules involved the assessment of the patient entrance surface air kerma (ESAK) for an X-ray examination that was based upon the use of calibrated X-ray tube exposure factors to calculate ESAK as well as collecting appropriate patient details (age, sex, weight, thickness etc). The package also contained modules for logging all necessary equipment performance QA data. This paper will outline the experience gained with this system through its transition from a local application on a stand alone PC within the department to the current web-based approach. Advantages of a web-based approach to delivering such an application as well as centrally storing data originating on many hospital sites will be discussed together with the scientific support processes that can be developed with such a system. This will include local, national and international considerations. The advantages of importing radiographic examination details directly from other electronic storage systems such as a hospital's radiology information system will be presented together with practical outcomes already achieved. This will include the application of statistical techniques to the very large data sets generated. The development

  1. Static Digital Telepathology: A Model for Diagnostic and Educational Support to Pathologists in the Developing World

    Science.gov (United States)

    Sohani, Aliyah R.; Sohani, Moez A.

    2012-01-01

    Background: The practice of pathology in the developing world presents challenges in terms of limited resources, shortages of trained personnel, and lack of continuing education programs. Telepathology holds promise as a means of diagnostic and educational support. Methods: We donated multiheaded teaching microscopes equipped with digital cameras to four hospitals in Eastern Africa and trained local pathologists on their use. Static images of challenging cases were posted on a web-based telepathology platform. A U.S.-based pathologist reviewed images in consultation with subspecialist colleagues. Results: Over a period of 40 months, 109 cases were submitted for second opinion consultation, including 29 dermatopathology cases (26.6%), 14 hematopathology cases (12.8%), and 13 cases each (11.9%) in cytopathology and bone and soft tissue pathology. Static images enabled a complete or partial diagnosis in 100/109 cases (91.7%). Factors precluding a definitive diagnosis included absence of confirmatory immunophenotyping, technical issues, or lack of clinical history. Case responses included a diagnosis and discussion, including differential diagnosis, references, and treatment recommendations. Conclusion: Static digital telepathology is a simple, cost-effective, reliable and efficient means to provide diagnostic and educational support to pathologists in the developing world. Additional training may help overcome technical factors precluding a definitive diagnosis in certain cases. PMID:22233701

  2. Dose assessment for medical exposure from diagnostic X-rays using a human voxel model

    International Nuclear Information System (INIS)

    Korean voxel model, KORMAN, segmented from whole-body MR data of an adult male, was used to calculate organ equivalent doses and effective doses due to diagnostic X-ray examinations. Calculated doses were normalized to entrance air kerma and compared with those derived using a stylized mathematical model, MIRD5. General purposed Monte Carlo code, MCNPX 2.3 was used for simulation of X-ray procedure. Korean voxel model picked up 0.048 Sv/Gy of effective dose per unit air kerma from a single chest PA examination, and 0.277 Sv/Gy from abdomen AP examination. These calculated results are higher than those MIRD5. The difference of effective doses between Korean voxel model and MIRD5 was within 32%, which were caused by significant discrepancies of organ equivalent doses between the two models. As MIRD5 is representing reference man, whereas KORMAN is segmented from specific individual MR data, it is recognized that variation among individuals could be significant for dose assessment in X-ray examination. Substantial differences in calculated doses between voxel and mathematical models suggested that existing mathematical models should be revised. (author)

  3. Evaluation of interpolation procedures to input turbulence fields from a prognostic model to a diagnostic mass consistent model

    Science.gov (United States)

    Trini Castelli, S.; Anfossi, D.

    2009-09-01

    An appropriate description of the meteorology in highly complex terrain encompasses atmospheric processes characterized by all scales of motion, from synoptic scale fronts and waves, through mesoscale mountain-valley circulations and gravity waves, till very small scale turbulence. To study the regional and local circulation at high resolutions (around 100 m) in complex terrain, we often couple a prognostic model (RAMS) to a mass-consistent diagnostic model (MINERVE). This downscaling approach allows representing both the mesoscale forcing and the peculiarities of the local flow in complex topography, since it combines the 3D gridded prognostic fields with local available measurements and it gives the possibility to include a high-resolution detailed topography, thus providing more spatially detailed meteorological fields. Diagnostic atmospheric mass-consistent models generally are used together with turbulence parameterisations defined for flat terrain, thus in principle not able to catch the variability of the turbulence field induced by the presence of complex terrain and inhomogeneous conditions. The possibility of using prognostic turbulence fields produced accounting for the topography is then an appealing approach in inhomogeneous conditions. In this work we investigate whether a proper interpolation from the coarser-resolution prognostic 3D-gridded turbulence fields, like diffusion coefficients, turbulent kinetic energy and its dissipation, might be used in mountainous and inhomogeneous terrain. The final goal is to evaluate if the shortcoming of using parameterised turbulent fields might be overcome when coupling the mass consistent model with a module calculating the turbulence fields at the high-resolution diagnostic grid points, by interpolating from the coarser prognostic grid.

  4. Applying the Burke–Litwin model as a diagnostic framework for assessing organisational effectiveness

    Directory of Open Access Journals (Sweden)

    Nico Martins

    2009-04-01

    Full Text Available This exploratory study investigated the utility of the Burke–Litwin model as a diagnostic framework for assessing the factors affecting organisational effectiveness. The research setting consisted of an international company, with a population comprising representatives of more than 17 different nationalities. The purposive sampling method was used to  involve employee participants (N = 147  in  focus groups  and  executive managers  (N =  11  in semi- structured probing  interviews. The  factors identified related  to both  the  transformational and  transactional dimensions of  the Burke–Litwin model. The f ndings add to the existing literature on factors causing organisational effectiveness and ineffectiveness in cross-cultural organisational contexts.

  5. Guided waves based diagnostic imaging of circumferential cracks in small-diameter pipe.

    Science.gov (United States)

    Liu, Kehai; Wu, Zhanjun; Jiang, Youqiang; Wang, Yishou; Zhou, Kai; Chen, Yingpu

    2016-02-01

    To improve the safety and reliability of pipeline structures, much work has been done using ultrasonic guided waves methods for pipe inspection. Though good for evaluating the defects in the pipes, most of the methods lack the capability to precisely identify the defects in the pipe features like welds or supports. Therefore, a novel guided wave based cross-sectional diagnostic imaging algorithm was developed to improve the ability of circumferential cracks identification in the pipe features. To ensure the accuracy of the imaging, an angular profile-based frequency selection method is presented. As validation, the approach was employed to identify the presence and location of a small circumferential crack with 1.13% cross sectional area (CSA) in the welding zone of a 48 mm diameter type 304 stainless steel pipe. Accurate identification results have demonstrated the effectiveness of the developed approach. PMID:26548527

  6. A knowledge based on-line diagnostic system for the fast breeder reactor KNKII

    International Nuclear Information System (INIS)

    In the nuclear research center at Karlsruhe, a diagnostic expert system is developed to supervise a fast breeder process (KNKII). The problem is to detect critical phases in the beginning state before fault propagation. The expert system itself is integrated in a computer network (realized by a local area network), where different computers are involved as special detection systems (for example acoustic noise, temperature noise, covergas monitoring and so on), which produce partial diagnoses, based on intelligent signal processing techniques like pattern recognition. Additional to the detection systems a process computer is integrated as well as a test computer, which simulates hypothetical and real fault data. On the logical top level the expert system manages the partial diagnoses of the detection systems with the operating data of the process computer and to produce a final diagnosis including the explanation part for operator support. The knowledge base is developed by typical Artificial Intelligence tools. Both fact based and rule based knowledge representations are stored in form of flavors and predications. The inference engine operates on a rule based approach. Specific detail knowledge, based on experience about any years, is available to influence the decision process by increasing or decreasing of the generated hypotheses. In a meta knowledge base, a rule master triggers the special domain experts and contributes the tasks to the specific rule complexes. Such a system management guarantees a problem solving strategy, which operates event triggered and situation specific in a local inference domain. (author). 3 refs, 6 figs, 2 tabs

  7. Comparing Multiple-Group Multinomial Log-Linear Models for Multidimensional Skill Distributions in the General Diagnostic Model. Research Report. ETS RR-08-35

    Science.gov (United States)

    Xu, Xueli; von Davier, Matthias

    2008-01-01

    The general diagnostic model (GDM) utilizes located latent classes for modeling a multidimensional proficiency variable. In this paper, the GDM is extended by employing a log-linear model for multiple populations that assumes constraints on parameters across multiple groups. This constrained model is compared to log-linear models that assume…

  8. A memory-based model of posttraumatic stress disorder

    DEFF Research Database (Denmark)

    Rubin, David C.; Berntsen, Dorthe; Johansen, Marlene Klindt

    2008-01-01

    In the mnemonic model of posttraumatic stress disorder (PTSD), the current memory of a negative event, not the event itself, determines symptoms. The model is an alternative to the current event-based etiology of PTSD represented in the Diagnostic and Statistical Manual of Mental Disorders (4th ed......., text rev.; American Psychiatric Association, 2000). The model accounts for important and reliable findings that are often inconsistent with the current diagnostic view and that have been neglected by theoretical accounts of the disorder, including the following observations. The diagnosis needs...... objective information about the trauma and peritraumatic emotions but uses retrospective memory reports that can have substantial biases. Negative events and emotions that do not satisfy the current diagnostic criteria for a trauma can be followed by symptoms that would otherwise qualify for PTSD...

  9. Diagnostic performance of line-immunoassay based algorithms for incident HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Schüpbach Jörg

    2012-04-01

    Full Text Available Abstract Background Serologic testing algorithms for recent HIV seroconversion (STARHS provide important information for HIV surveillance. We have previously demonstrated that a patient's antibody reaction pattern in a confirmatory line immunoassay (INNO-LIA™ HIV I/II Score provides information on the duration of infection, which is unaffected by clinical, immunological and viral variables. In this report we have set out to determine the diagnostic performance of Inno-Lia algorithms for identifying incident infections in patients with known duration of infection and evaluated the algorithms in annual cohorts of HIV notifications. Methods Diagnostic sensitivity was determined in 527 treatment-naive patients infected for up to 12 months. Specificity was determined in 740 patients infected for longer than 12 months. Plasma was tested by Inno-Lia and classified as either incident ( Results The 10 best algorithms had a mean raw sensitivity of 59.4% and a mean specificity of 95.1%. Adjustment for overrepresentation of patients in the first quarter year of infection further reduced the sensitivity. In the preferred model, the mean adjusted sensitivity was 37.4%. Application of the 10 best algorithms to four annual cohorts of HIV-1 notifications totalling 2'595 patients yielded a mean IIR of 0.35 in 2005/6 (baseline and of 0.45, 0.42 and 0.35 in 2008, 2009 and 2010, respectively. The increase between baseline and 2008 and the ensuing decreases were highly significant. Other adjustment models yielded different absolute IIR, although the relative changes between the cohorts were identical for all models. Conclusions The method can be used for comparing IIR in annual cohorts of HIV notifications. The use of several different algorithms in combination, each with its own sensitivity and specificity to detect incident infection, is advisable as this reduces the impact of individual imperfections stemming primarily from relatively low sensitivities and

  10. Activity based costing of diagnostic procedures at a nuclear medicine center of a tertiary care hospital

    International Nuclear Information System (INIS)

    Escalating health care expenses pose a new challenge to the health care environment of becoming more cost-effective. There is an urgent need for more accurate data on the costs of health care procedures. Demographic changes, changing morbidity profile, and the rising impact of noncommunicable diseases are emphasizing the role of nuclear medicine (NM) in the future health care environment. However, the impact of emerging disease load and stagnant resource availability needs to be balanced by a strategic drive towards optimal utilization of available healthcare resources. The aim was to ascertain the cost of diagnostic procedures conducted at the NM Department of a tertiary health care facility by employing activity based costing (ABC) method. A descriptive cross-sectional study was carried out over a period of 1 year. ABC methodology was utilized for ascertaining unit cost of different diagnostic procedures and such costs were compared with prevalent market rates for estimating cost effectiveness of the department being studied. The cost per unit procedure for various procedures varied from Rs. 869 (USD 14.48) for a thyroid scan to Rs. 11230 (USD 187.16) for a meta-iodo-benzyl-guanidine (MIBG) scan, the most cost-effective investigations being the stress thallium, technetium-99 m myocardial perfusion imaging (MPI) and MIBG scan. The costs obtained from this study were observed to be competitive when compared to prevalent market rates. ABC methodology provides precise costing inputs and should be used for all future costing studies in NM Departments

  11. Development of diagnostic SPR based biosensor for the detection of pharmaceutical compounds in saliva

    Science.gov (United States)

    Sonny, Susanna; Sesay, Adama M.; Virtanen, Vesa

    2010-11-01

    The aim of the study is to develop diagnostic tests for the detection of pharmaceutical compounds in saliva. Oral fluid is increasingly being considered as an ideal sample matrix. It can be collected non-invasively and causes less stress to the person being tested. The detection of pharmaceutical compounds and drugs in saliva can give valuable information on individual bases on dose response, usage, characterization and clinical diagnostics. Surface plasmon resonance (SPR) is a highly sensitive, fast and label free analytical technique for the detection of molecular interactions. The specific binding of measured analyte onto the active gold sensing surface of the SPR device induces a refractive index change that can be monitored. To monitor these pharmaceutical compounds in saliva the immunoassays were developed using a SPR instrument. The instrument is equipped with a 670nm laser diode and has two sensing channels. Monoclonal antibodies against the pharmaceutical compounds were used to specifically recognise and capture the compounds which intern will have an effect of the refractive index monitored. Preliminary results show that the immunoassays for cocaine and MDMA (3,4-methylenedioxymethamphetamine) are very sensitive and have linear ranges of 0.01 pg/ml - 1 ng/ml and 0.1 pg/ml - 100 ng/ml, respectively.

  12. From Present Fusion Devices to DEMO: a Changing Role between Diagnostics and Modeling

    NARCIS (Netherlands)

    Donne, A. J. H.

    2013-01-01

    On present-day devices much effort is devoted to develop state-of-the-art diagnostics with a continuous drive towards higher accuracy, better spatial and temporal resolution and more diagnostic channels. Diagnostic innovations often lead to better physics insight and they are often a driver for impr

  13. Real time model based diagnosis of gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Trave-Massuyes, L. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Milne, R.

    1995-12-31

    Exxon petrochemical plant in Scotland requires continuous ethylene supply from offshore site in North Sea. The supply is achieved thanks to compressors driven by a 28 MW gas turbine, whose monitoring is of major importance. The TIGER fault diagnostic system is a knowledge base system containing a prediction model. (D.L.)

  14. Development and validation of a microRNA based diagnostic assay for primary tumor site classification of liver core biopsies.

    Science.gov (United States)

    Perell, Katharina; Vincent, Martin; Vainer, Ben; Petersen, Bodil Laub; Federspiel, Birgitte; Møller, Anne Kirstine; Madsen, Mette; Hansen, Niels Richard; Friis-Hansen, Lennart; Nielsen, Finn Cilius; Daugaard, Gedske

    2015-01-01

    Identification of the primary tumor site in patients with metastatic cancer is clinically important, but remains a challenge. Hence, efforts have been made towards establishing new diagnostic tools. Molecular profiling is a promising diagnostic approach, but tissue heterogeneity and inadequacy may negatively affect the accuracy and usability of molecular classifiers. We have developed and validated a microRNA-based classifier, which predicts the primary tumor site of liver biopsies, containing a limited number of tumor cells. Concurrently we explored the influence of surrounding normal tissue on classification. MicroRNA profiling was performed using quantitative Real-Time PCR on formalin-fixed paraffin-embedded samples. 278 primary tumors and liver metastases, representing nine primary tumor classes, as well as normal liver samples were used as a training set. A statistical model was applied to adjust for normal liver tissue contamination. Performance was estimated by cross-validation, followed by independent validation on 55 liver core biopsies with a tumor content as low as 10%. A microRNA classifier developed, using the statistical contamination model, showed an overall classification accuracy of 74.5% upon independent validation. Two-thirds of the samples were classified with high-confidence, with an accuracy of 92% on high-confidence predictions. A classifier trained without adjusting for liver tissue contamination, showed a classification accuracy of 38.2%. Our results indicate that surrounding normal tissue from the biopsy site may critically influence molecular classification. A significant improvement in classification accuracy was obtained when the influence of normal tissue was limited by application of a statistical contamination model. PMID:25131495

  15. Dielectric characterization of PCL-based thermoplastic materials for microwave diagnostic and therapeutic applications.

    Science.gov (United States)

    Aguilar, Suzette M; Shea, Jacob D; Al-Joumayly, Mudar A; Van Veen, Barry D; Behdad, Nader; Hagness, Susan C

    2012-03-01

    We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5-3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported 3-D anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications.

  16. Model-Independent Evaluation of Tumor Markers and a Logistic-Tree Approach to Diagnostic Decision Support

    Directory of Open Access Journals (Sweden)

    Weizeng Ni

    2014-01-01

    Full Text Available Sensitivity and specificity of using individual tumor markers hardly meet the clinical requirement. This challenge gave rise to many efforts, e.g., combing multiple tumor markers and employing machine learning algorithms. However, results from different studies are often inconsistent, which are partially attributed to the use of different evaluation criteria. Also, the wide use of model-dependent validation leads to high possibility of data overfitting when complex models are used for diagnosis. We propose two model-independent criteria, namely, area under the curve (AUC and Relief to evaluate the diagnostic values of individual and multiple tumor markers, respectively. For diagnostic decision support, we propose the use of logistic-tree which combines decision tree and logistic regression. Application on a colorectal cancer dataset shows that the proposed evaluation criteria produce results that are consistent with current knowledge. Furthermore, the simple and highly interpretable logistic-tree has diagnostic performance that is competitive with other complex models.

  17. Spectrometer Based on a VLS Grating for Diagnostics of a Vacuum-Ultraviolet Free Electron Laser

    International Nuclear Information System (INIS)

    Photon beam diagnostics for vacuum-ultraviolet free electron lasers (VUV FEL) are critical to monitoring and understanding their performance characteristics. Due to the shot-to-shot fluctuations inherent in FELs based on the self amplified spontaneous emission (SASE) process, it is mandatory to use pulse-resolved diagnostics. We have designed a spectrograph based on a variable-line-spacing (VLS) plane grating and a phosphor/CCD to monitor single shot spectra of the free electron laser at DESY. The basic concept is to allow most of the beam to be reflected towards an experimental station while the first order light is dispersed and focused by the VLS grating onto the CCD. The spectrograph will cover the wavelength range 6.4-60 nm with the CCD accepting a bandwidth of ∼10%. The grazing angle of incidence on the grating is 2 deg., the central line density is 1200 l/mm, and the distance grating-CCD is approximately 2 m. The linear variation of the grating line spacing combined with positioning the detector at the focal curve, allows zeroing the defocus in the full spectrograph wavelength range. The correction of higher order grating aberrations yields a theoretical resolving power greater than 20000 over the full length of the 20 mm CCD when the CCD is positioned tangent to the focal plane. Based on power considerations, a shallow blazed grating is the preferred profile. Efficiency calculations over the spectrograph range show that with a carbon coating the absolute efficiency for zeroth order is higher than 0.85 and the first order efficiency varies between 0.5% and 8%

  18. Diagnostic Development for Heavy-Ion Based HEDP and HIF Experiments

    Science.gov (United States)

    Bieniosek, F.; Molvik, A. W.; Covo, M. K.

    2005-10-01

    We discuss diagnostics used in the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL). Time-resolved optical imaging diagnostics provide 4-D transverse beam phase space information on the experimental beams. Current work includes a high speed (sub-ns) optical system, a compact optical diagnostic suitable for insertion in transport lines, improved algorithms for data analysis, and a high-resolution electrostatic energy analyzer. A longitudinal diagnostic kicker/buncher generates longitudinal space-charge waves. Time of flight of the space charge wave and the electrostatic energy analyzer provide an absolute measure of the beam energy. Special diagnostics to detect secondary electrons and gases desorbed from the wall have been developed. Optical imaging of the gas cloud is used to study evolution of the gas cloud and as a beam current diagnostic. Experiment and diagnostics definition and layout for upcoming high energy density physics (HEDP) experiments are in the planning stages.

  19. The development of a hassle-based diagnostic scale for predicting burnout in call centres

    Directory of Open Access Journals (Sweden)

    Willie A. Visser

    2009-04-01

    Full Text Available The aim of this study was to develop a brief daily hassle diagnostic questionnaire that could be used to identify daily hassles for customer service representatives within a call centre environment, and to investigate the relationship between daily hassles and burnout. A crosssectional survey was used with an accidental sample (N = 394 taken from a service and sales call centre. An exploratory factor analysis of the data resulted in a six-factor model of daily hassles consisting of daily demands, continuous change, co-worker hassles, demotivating work environment, transportation hassles and personal concerns. The internal consistency of one factor, namely personal concerns, was low. Exhaustion was best predicted by four categories of daily hassles, namely daily demands, continuous change, a demotivating work environment, and transportation hassles.

  20. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Missailidis, Sotiris [The Open University, Milton Keynes (United Kingdom). Dept. of Chemistry and Analytical Sciences]. E-mail: s.missailidis@open.ac.uk; Perkins, Alan [University of Nottingham (United Kingdom). Dept. of Medical Physics; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria

    2008-12-15

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  1. Evaluation of User Performance in Simulation-Based Diagnostic Cerebral Angiography Training.

    Science.gov (United States)

    Zaika, Oleksiy; Nguyen, Ngan; Boulton, Mel; Eagleson, Roy; de Ribaupierre, Sandrine

    2016-01-01

    Simulation of anatomically complex procedures, such as angiography, is becoming more practical, however, computer-based modules require extensive research to assess their effectiveness. We organized two training schemas - alternating cases and consistent cases - and hypothesized that the alternating practice cases would be beneficial to test performance. Eight residents (4 radiology/4 neurosurgery) and 8 anatomy graduate students were trained on the SimbionixTM simulator in order to assess skill acquisition in diagnostic cerebral angiography over 8 sessions. We found that participants improve on total procedure time and total fluoroscopy time (p<0.05), but not on contrast injected or roadmaps created. There were no significant differences between alternating and consistent training types. Additional work needs to be done with higher sample numbers and visuospatial scores as criteria. PMID:27046624

  2. Tomographic capabilities of the new GEM based SXR diagnostic of WEST

    Science.gov (United States)

    Jardin, A.; Mazon, D.; O'Mullane, M.; Mlynar, J.; Loffelmann, V.; Imrisek, M.; Chernyshova, M.; Czarski, T.; Kasprowicz, G.; Wojenski, A.; Bourdelle, C.; Malard, P.

    2016-07-01

    The tokamak WEST (Tungsten Environment in Steady-State Tokamak) will start operating by the end of 2016 as a test bed for the ITER divertor components in long pulse operation. In this context, radiative cooling of heavy impurities like tungsten (W) in the Soft X-ray (SXR) range [0.1 keV; 20 keV] is a critical issue for the plasma core performances. Thus reliable tools are required to monitor the local impurity density and avoid W accumulation. The WEST SXR diagnostic will be equipped with two new GEM (Gas Electron Multiplier) based poloidal cameras allowing to perform 2D tomographic reconstructions in tunable energy bands. In this paper tomographic capabilities of the Minimum Fisher Information (MFI) algorithm developed for Tore Supra and upgraded for WEST are investigated, in particular through a set of emissivity phantoms and the standard WEST scenario including reconstruction errors, influence of noise as well as computational time.

  3. Limitations of Label-Free Sensors in Serum Based Molecular Diagnostics

    CERN Document Server

    Varma, Manoj M

    2015-01-01

    Immunoassay formats applicable for clinical or point-of-care diagnostics fall into two broad classes. One which uses labeled secondary antibodies for signal transduction and the other which does not require the use of any labels. Comparison of the limits of detection (LoD) reported by these two sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Further, a vast majority of commercial tests and recent examples of technology translations are based on labeled assay formats. In light of this data, it is argued that extension of traditional labeled approaches and enhancing their functionality may have better clinical impact than the development of newer label-free techniques.

  4. Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2013-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.

  5. The use of deep knowledge qualitative models as a basis for real-time diagnostic support systems for power plant control room operators

    International Nuclear Information System (INIS)

    There is a need for diagnostic support systems in power stations to reduce the amount of information presented to the operator in order to prevent information overload and mindset during events in which a large number of plant measurements are changing rapidly. Existing alarm analysis systems have proved to be non-robust, inflexible and incomplete due principally to their event-based nature. Other approaches based on quantitative models are vulnerable to inaccurate measurements and uncertainties in system parameters, and would be both difficult and costly to apply to a whole plant. The recent commercial development of expert systems and artificial intelligence technology has opened up the possibility of new operator support systems with greater flexibility, robustness, improved man-machine interaction including dialogue and explanation of reasoning, and better transferability between similar applications. Most diagnostic expert systems already developed have been based on simple relationships between specific faults and specific symptoms. This type of knowledge is termed shallow to distinguish it from deep knowledge describing the behaviour of the plant. This project is concerned with the development of a diagnostic expert system based on a deep knowledge qualitative model. The system described is not intended to be an operational support system, merely to establish appropriate techniques to be used within such a system

  6. An informatics model for guiding assembly of telemicrobiology workstations for malaria collaborative diagnostics using commodity products and open-source software

    Directory of Open Access Journals (Sweden)

    Crandall Ian

    2009-07-01

    Full Text Available Abstract Background Deficits in clinical microbiology infrastructure exacerbate global infectious disease burdens. This paper examines how commodity computation, communication, and measurement products combined with open-source analysis and communication applications can be incorporated into laboratory medicine microbiology protocols. Those commodity components are all now sourceable globally. An informatics model is presented for guiding the use of low-cost commodity components and free software in the assembly of clinically useful and usable telemicrobiology workstations. Methods The model incorporates two general principles: 1 collaborative diagnostics, where free and open communication and networking applications are used to link distributed collaborators for reciprocal assistance in organizing and interpreting digital diagnostic data; and 2 commodity engineering, which leverages globally available consumer electronics and open-source informatics applications, to build generic open systems that measure needed information in ways substantially equivalent to more complex proprietary systems. Routine microscopic examination of Giemsa and fluorescently stained blood smears for diagnosing malaria is used as an example to validate the model. Results The model is used as a constraint-based guide for the design, assembly, and testing of a functioning, open, and commoditized telemicroscopy system that supports distributed acquisition, exploration, analysis, interpretation, and reporting of digital microscopy images of stained malarial blood smears while also supporting remote diagnostic tracking, quality assessment and diagnostic process development. Conclusion The open telemicroscopy workstation design and use-process described here can address clinical microbiology infrastructure deficits in an economically sound and sustainable manner. It can boost capacity to deal with comprehensive measurement of disease and care outcomes in individuals and

  7. Model-Based Real Time Assessment of Capability Left for Spacecraft Under Failure Mode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is aimed at developing a model based diagnostics system for spacecraft that will allow real time assessment of its state, while it is impacted...

  8. Method for gesture based modeling

    DEFF Research Database (Denmark)

    2006-01-01

    A computer program based method is described for creating models using gestures. On an input device, such as an electronic whiteboard, a user draws a gesture which is recognized by a computer program and interpreted relative to a predetermined meta-model. Based on the interpretation, an algorithm...... is assigned to the gesture drawn by the user. The executed algorithm may, for example, consist in creating a new model element, modifying an existing model element, or deleting an existing model element....

  9. An XML-based Schema-less Approach to Managing Diagnostic Data in Heterogeneous Formats

    Energy Technology Data Exchange (ETDEWEB)

    Naito, O. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2009-07-01

    Managing diagnostic data in heterogeneous formats is always a nuisance, especially when a new diagnostic technique requires a new data structure that does not fit in the existing data format. Ideally, it is best to have an all-purpose schema that can specify any data structures. But devising such a schema is a difficult task and the resultant data management system tends to be large and complicated. As a complementary approach, we can think of a system that has no specific schema but requires each of the data to describe itself without assuming any prior information. In this paper, a very primitive implementation of such a system based on extensible Markup Language (XML) is examined. The actual implementation is no more than an addition of a tiny XML meta-data file that describes the detailed format of the associated diagnostic data file. There are many ways to write and read such meta-data files. For example, if the data are in a standard format that is foreign to the existing system, just specify the name of the format and what interface to use for reading the data. If the data are in a non-standard arbitrary format, write what is written and how into the meta-data file at every occurrence of data output. And as a last resort, if the format of the data is too complicated, a code to read the data can be stored in the meta-data file. Of course, this schema-less approach has some drawbacks, two of which are the doubling of the number of files to be managed and the low performance of data handling, though the former can be a merit, when it is necessary to update the meta-data leaving the body data intact. The important point is that the necessary information to read the data is decoupled from data itself. The merits and demerits of this approach are discussed. This document is composed of an abstract followed by the presentation slides. (author)

  10. Gamma-ray diagnostics of Type Ia supernovae: Predictions of observables from three-dimensional modeling

    CERN Document Server

    Summa, A; Kromer, M; Boyer, S; Roepke, F K; Sim, S A; Seitenzahl, I R; Fink, M; Mannheim, K; Pakmor, R; Ciaraldi-Schoolmann, F; Diehl, R; Maeda, K; Hillebrandt, W

    2013-01-01

    Besides the fact that the gamma-ray emission due to radioactive decays is responsible for powering the light curves of Type Ia supernovae (SNe Ia), gamma rays themselves are of particular interest as a diagnostic tool because they provide a direct way to obtain deeper insights into the nucleosynthesis and the kinematics of these explosion events. Focusing on two of the most broadly discussed SN Ia progenitor scenarios - a delayed detonation in a Chandrasekhar-mass white dwarf (WD) and a violent merger of two WDs - we use three-dimensional explosion models and perform radiative transfer simulations to obtain synthetic gamma-ray spectra. Both chosen models produce the same mass of 56Ni and have similar optical properties that are in reasonable agreement with the recently observed supernova SN 2011fe. In contrast to the optical regime, the gamma-ray emission of our two chosen models proves to be rather different. The almost direct connection of the emission of gamma rays to fundamental physical processes occurin...

  11. Development of recombinant nucleoprotein-based diagnostic systems for Lassa fever.

    Science.gov (United States)

    Saijo, Masayuki; Georges-Courbot, Marie-Claude; Marianneau, Philippe; Romanowski, Victor; Fukushi, Shuetsu; Mizutani, Tetsuya; Georges, Alain-Jean; Kurata, Takeshi; Kurane, Ichiro; Morikawa, Shigeru

    2007-09-01

    Diagnostic systems for Lassa fever (LF), a viral hemorrhagic fever caused by Lassa virus (LASV), such as enzyme immunoassays for the detection of LASV antibodies and LASV antigens, were developed using the recombinant nucleoprotein (rNP) of LASV (LASV-rNP). The LASV-rNP was expressed in a recombinant baculovirus system. LASV-rNP was used as an antigen in the detection of LASV-antibodies and as an immunogen for the production of monoclonal antibodies. The LASV-rNP was also expressed in HeLa cells by transfection with the expression vector encoding cDNA of the LASV-NP gene. An immunoglobulin G enzyme-linked immunosorbent assay (ELISA) using LASV-rNP and an indirect immunofluorescence assay using LASV-rNP-expressing HeLa cells were confirmed to have high sensitivity and specificity in the detection of LASV-antibodies. A novel monoclonal antibody to LASV-rNP, monoclonal antibody 4A5, was established. A sandwich antigen capture (Ag-capture) ELISA using the monoclonal antibody and an anti-LASV-rNP rabbit serum as capture and detection antibodies, respectively, was then developed. Authentic LASV nucleoprotein in serum samples collected from hamsters experimentally infected with LASV was detected by the Ag-capture ELISA. The Ag-capture ELISA specifically detected LASV-rNP but not the rNPs of lymphocytic choriomeningitis virus or Junin virus. The sensitivity of the Ag-capture ELISA in detecting LASV antigens was comparable to that of reverse transcription-PCR in detecting LASV RNA. These LASV rNP-based diagnostics were confirmed to be useful in the diagnosis of LF even in institutes without a high containment laboratory, since the antigens can be prepared without manipulation of the infectious viruses. PMID:17634509

  12. Development of Recombinant Nucleoprotein-Based Diagnostic Systems for Lassa Fever▿

    Science.gov (United States)

    Saijo, Masayuki; Georges-Courbot, Marie-Claude; Marianneau, Philippe; Romanowski, Victor; Fukushi, Shuetsu; Mizutani, Tetsuya; Georges, Alain-Jean; Kurata, Takeshi; Kurane, Ichiro; Morikawa, Shigeru

    2007-01-01

    Diagnostic systems for Lassa fever (LF), a viral hemorrhagic fever caused by Lassa virus (LASV), such as enzyme immunoassays for the detection of LASV antibodies and LASV antigens, were developed using the recombinant nucleoprotein (rNP) of LASV (LASV-rNP). The LASV-rNP was expressed in a recombinant baculovirus system. LASV-rNP was used as an antigen in the detection of LASV-antibodies and as an immunogen for the production of monoclonal antibodies. The LASV-rNP was also expressed in HeLa cells by transfection with the expression vector encoding cDNA of the LASV-NP gene. An immunoglobulin G enzyme-linked immunosorbent assay (ELISA) using LASV-rNP and an indirect immunofluorescence assay using LASV-rNP-expressing HeLa cells were confirmed to have high sensitivity and specificity in the detection of LASV-antibodies. A novel monoclonal antibody to LASV-rNP, monoclonal antibody 4A5, was established. A sandwich antigen capture (Ag-capture) ELISA using the monoclonal antibody and an anti-LASV-rNP rabbit serum as capture and detection antibodies, respectively, was then developed. Authentic LASV nucleoprotein in serum samples collected from hamsters experimentally infected with LASV was detected by the Ag-capture ELISA. The Ag-capture ELISA specifically detected LASV-rNP but not the rNPs of lymphocytic choriomeningitis virus or Junin virus. The sensitivity of the Ag-capture ELISA in detecting LASV antigens was comparable to that of reverse transcription-PCR in detecting LASV RNA. These LASV rNP-based diagnostics were confirmed to be useful in the diagnosis of LF even in institutes without a high containment laboratory, since the antigens can be prepared without manipulation of the infectious viruses. PMID:17634509

  13. Summary receiver operating characteristics (SROC) and hierarchical SROC models for analysis of diagnostic test evaluations of antibody ELISAs for paratuberculosis.

    Science.gov (United States)

    Toft, Nils; Nielsen, Søren S

    2009-11-15

    Critical, systematic reviews of available diagnostic test evaluations are a meticulous approach to synthesize evidence about a diagnostic test. However, often the review finds that data quality is poor due to deficiencies in design and reporting of the test evaluations and formal statistical comparisons are discouraged. Even when only simple summary measures are appropriate, the strong correlation between sensitivity and specificity and their dependence on differences in diagnostic threshold across studies, creates the need for tools to summarise properties of the diagnostic test under investigation. This study presents summary receiver operating characteristics (SROC) analysis as a means to synthesize information from diagnostic test evaluation studies. Using data from a review of diagnostic tests for ante mortem diagnosis of paratuberculosis as an illustration, SROC and hierarchical SROC (HSROC) analysis were used to estimate overall diagnostic accuracies of antibody ELISAs for bovine paratuberculosis while accounting for covariates: the target condition (infectious or infected) used in the test evaluation (one for the evaluation of Se and one for Sp); and the type of test (serum vs. milk). The methods gave comparable results (regarding the estimated diagnostic log odds ratio), considering the small sample size and the quality of data. The SROC analysis found a difference in the performance of tests when the target condition for evaluation of Se was infected rather than infectious, suggesting that ELISAs are not suitable for detecting infected cattle. However, the SROC model does not take differences in sample size between study units into account, whereas the HSROC allows for both between and within study variation. Considering the small sample size, more credibility should be given to the results of the HSROC. For both methods the area under the (H)SROC curve was calculated and results were comparable. The conclusion is that while the SROC is simpler and easier

  14. Application of Simulate Problem-Based Learning Teaching Model Combine with Role-Playing Method in the History-Taking Practices of Diagnostics%拟PBL教学模式加角色扮演法在诊断学问诊实践教学中的应用

    Institute of Scientific and Technical Information of China (English)

    杨波; 邹曲; 杨孟雪; 李娟; 聂永胜; 谭天海

    2015-01-01

    目的:探讨拟PBL教学模式+角色扮演法在诊断学问诊实践教学中的应用效果。方法:随机选择本院2012级临床医学专业97名学生为研究对象,所有同学均先后接受传统教学模式+SP教学法、拟PBL教学模式+角色扮演法进行问诊实践教学,每种方法实践学时均为4学时,通过学生问诊技能水平的比较和心得反馈评价两种教学方法的效果。结果:使用拟PBL教学模式+角色扮演法进行问诊实验教学时学生的各项问诊技能表现优于传统教学模式+SP教学法(P<0.05);90%以上的学生均认为使用拟PBL教学模式+角色扮演法进行问诊实验教学时对学习更感兴趣、课堂氛围更加活跃、对教学效果满意、有利于医患沟通能力的提高。结论:拟PBL教学模式+角色扮演教学法应用于问诊实践能调动学生的学习积极性,是培养学生问诊技能的好方法。%Objective:To evaluate the effect of simulate Problem-based learning (PBL) teaching model combine with Role-playing method in the history-taking practices of diagnostics.Method:97 students of grade 2012 clinical medicine specialty of Zunyi medical college were randomly selected.The traditional teaching model +standardized patient (SP) teaching method, simulate PBL teaching model + Role-playing method were applied in the history-taking practices teaching of all students successively, each method practice periods are for 4 hours.Two kinds of teaching methods effect was evaluated according to the results of history-taking skills test score and feelings of students after history-taking practices.Result:The score of history-taking skills test in the simulate PBL teaching model +Role-playing method were higher than traditional teaching model + SP teaching method group(P< 0.05), more than 90% of the students feel that the simulate PBL teaching model +Role-playing method was applied to history-taking practices teaching was more interested in

  15. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: overview and description of models, simulations and climate diagnostics

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2012-08-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.

  16. Model Construct Based Enterprise Model Architecture and Its Modeling Approach

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to support enterprise integration, a kind of model construct based enterprise model architecture and its modeling approach are studied in this paper. First, the structural makeup and internal relationships of enterprise model architecture are discussed. Then, the concept of reusable model construct (MC) which belongs to the control view and can help to derive other views is proposed. The modeling approach based on model construct consists of three steps, reference model architecture synthesis, enterprise model customization, system design and implementation. According to MC based modeling approach a case study with the background of one-kind-product machinery manufacturing enterprises is illustrated. It is shown that proposal model construct based enterprise model architecture and modeling approach are practical and efficient.

  17. Qualitative Event-based Diagnosis with Possible Conflicts: Case Study on the Third International Diagnostic Competition

    Data.gov (United States)

    National Aeronautics and Space Administration — We describe two model-based diagnosis algo- rithms entered into the Third International Diag- nostic Competition. We focus on the first diag- nostic problem of the...

  18. Model-based software design

    Science.gov (United States)

    Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui; Yenne, Britt; Vansickle, Larry; Ballantyne, Michael

    1992-01-01

    Domain-specific knowledge is required to create specifications, generate code, and understand existing systems. Our approach to automating software design is based on instantiating an application domain model with industry-specific knowledge and then using that model to achieve the operational goals of specification elicitation and verification, reverse engineering, and code generation. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model.

  19. Model-Based Reasoning

    Science.gov (United States)

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  20. Structured syncope care pathways based on lean six sigma methodology optimises resource use with shorter time to diagnosis and increased diagnostic yield.

    Directory of Open Access Journals (Sweden)

    Leon Martens

    Full Text Available To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines.Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1 Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2 Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3 Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four.With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048 and a 75% increase in diagnostic yield (p = 0.007. There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests.Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield.

  1. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  2. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  3. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  4. Probability-Based Diagnostic Imaging Technique Using Error Functions for Active Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Rahim Gorgin,

    2014-07-01

    Full Text Available This study presents a novel probability-based diagnostic imaging (PDI technique using error functions for active structural health monitoring (SHM. To achieve this, first the changes between baseline and current signals of each sensing path are measured, and by taking the root mean square of such changes, the energy of the scattered signal at different times can be calculated. Then, for different pairs of signal acquisition paths, an error function based on the energy of the scattered signals is introduced. Finally, the resultant error function is fused to the final estimation of the probability of damage presence in the monitoring area. As for applications, developed methods were employed to various damage identification cases, including cracks located in regions among an active sensor network with different configurations (pulse-echo and pitch-catch, and holes located in regions outside active network sensors with pitch-catch configuration. The results identified using experimental Lamb wave signals at different central frequencies corroborated that the developed PDI technique using error functions is capable of monitoring structural damage, regardless of its shape, size and location. The developed method doesn’t need direct interpretation of overlaid and dispersed lamb wave components for damage identification and can monitor damage located anywhere in the structure. These bright advantages, qualify the above presented PDI method for online structural health monitoring.

  5. Perspective ground-based method for diagnostics of the lower ionosphere and the neutral atmosphere

    Science.gov (United States)

    Bakhmetieva, N. V.; Grigoriev, G. I.; Tolmacheva, A. V.

    We present a new perspective ground-based method for diagnostics of the ionosphere and atmosphere parameters. The method uses one of the numerous physical phenomena observed in the ionosphere illuminated by high-power radio waves. It is a generation of the artificial periodic irregularities (APIs) in the ionospheric plasma. The APIs were found while studying the effects of ionospheric high-power HF modification. It was established that the APIs are formed by a standing wave that occurs due to interference between the upwardly radiated radio wave and its reflection off the ionosphere. The API studies are based upon observation of the Bragg backscatter of the pulsed probe radio wave from the artificial periodic structure. Bragg backscatter occurs if the spatial period of the irregularities is equal to half a wavelength of the probe signal. The API techniques makes it possible to obtain the following information: the profiles of electron density from the lower D-region up to the maximum of the F-layer; the irregular structure of the ionosphere including split of the regular E-layer, the sporadic layers; the vertical velocities in the D- and E-regions of the ionosphere; the turbulent velocities, turbulent diffusion coefficients and the turbopause altitude; the neutral temperatures and densities at the E-region altitudes; the parameters of the internal gravity waves and their spectral characteristics; the relative concentration of negative oxygen ions in the D-region. Some new results obtained by the API technique are discussed .

  6. Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes.

    Science.gov (United States)

    Sze, N N; Wong, S C

    2007-11-01

    This study attempts to evaluate the injury risk of pedestrian casualties in traffic crashes and to explore the factors that contribute to mortality and severe injury, using the comprehensive historical crash record that is maintained by the Hong Kong Transport Department. The injury, demographic, crash, environmental, geometric, and traffic characteristics of 73,746 pedestrian casualties that were involved in traffic crashes from 1991 to 2004 are considered. Binary logistic regression is used to determine the associations between the probability of fatality and severe injury and all contributory factors. A consideration of the influence of implicit attributes on the trend of pedestrian injury risk, temporal confounding, and interaction effects is progressively incorporated into the predictive model. To verify the goodness-of-fit of the proposed model, the Hosmer-Lemeshow test and logistic regression diagnostics are conducted. It is revealed that there is a decreasing trend in pedestrian injury risk, controlling for the influences of demographic, road environment, and other risk factors. In addition, the influences of pedestrian behavior, traffic congestion, and junction type on pedestrian injury risk are subject to temporal variation.

  7. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    infrastructure for different symbolic positioning technologies, e.g., Bluetooth and RFID. More specifically, the paper proposes a model of indoor space that comprises a base graph and mappings that represent the topology of indoor space at different levels. The resulting model can be used for one or several...... indoor positioning technologies. Focusing on RFID-based positioning, an RFID specific reader deployment graph model is built from the base graph model. This model is then used in several algorithms for constructing and refining trajectories from raw RFID readings. Empirical studies with implementations...

  8. PEP-on-DEP: A competitive peptide-based disposable electrochemical aptasensor for renin diagnostics.

    Science.gov (United States)

    Biyani, Manish; Kawai, Keiko; Kitamura, Koichiro; Chikae, Miyuki; Biyani, Madhu; Ushijima, Hiromi; Tamiya, Eiichi; Yoneda, Takashi; Takamura, Yuzuru

    2016-10-15

    Antibody-based immunosensors are relatively less accessible to a wide variety of unreachable targets, such as low-molecular-weight biomarkers that represent a rich untapped source of disease-specific diagnostic information. Here, we present a peptide aptamer-based electrochemical sensor technology called 'PEP-on-DEP' to detect less accessible target molecules, such as renin, and to improve the quality of life. Peptide-based aptamers represent a relatively smart class of affinity binders and show great promise in biosensor development. Renin is involved in the regulation of arterial blood pressure and is an emerging biomarker protein for predicting cardiovascular risk and prognosis. To our knowledge, no studies have described aptamer molecules that can be used as new potent probes for renin. Here, we describe a portable electrochemical biosensor platform based on the newly identified peptide aptamer molecules for renin. We constructed a randomized octapeptide library pool with diversified sequences and selected renin specific peptide aptamers using cDNA display technology. We identified a few peptide aptamer sequences with a KD in the µM binding affinity range for renin. Next, we grafted the selected peptide aptamers onto gold nanoparticles and detected renin in a one-step competitive assay using our originally developed DEP (Disposable Electrochemical Printed) chip and a USB powered portable potentiostat system. We successfully detected renin in as little as 300ngmL(-1) using the PEP-on-DEP method. Thus, the generation and characterization of novel probes for unreachable target molecules by merging a newly identified peptide aptamer with electrochemical transduction allowed for the development of a more practical biosensor that, in principle, can be adapted to develop a portable, low-cost and mass-producible biosensor for point-of-care applications. PMID:26746799

  9. Experimental guinea pig model of dermatophytosis: a simple and useful tool for the evaluation of new diagnostics and antifungals

    DEFF Research Database (Denmark)

    Saunte, D.M.; Hasselby, J.P.; Brillowska-Dabrowska, A.;

    2008-01-01

    of the model was evaluated with a recently developed diagnostic pan-dermatophyte PCR and antifungal treatment was tested with an oral solution of itraconazole, 10 mg/kg, once daily during days 3-14 of the test period. Pre-treatment of the skin with a manual razor was for practical reasons preferable to tape...

  10. Effects of Concept Map Extraction and a Test-Based Diagnostic Environment on Learning Achievement and Learners' Perceptions

    Science.gov (United States)

    Lin, Yu-Shih; Chang, Yi-Chun; Liew, Keng-Hou; Chu, Chih-Ping

    2016-01-01

    Computerised testing and diagnostics are critical challenges within an e-learning environment, where the learners can assess their learning performance through tests. However, a test result based on only a single score is insufficient information to provide a full picture of learning performance. In addition, because test results implicitly…

  11. Curriculum-Based Measurement as a Predictor of Performance on a State Assessment: Diagnostic Efficiency of Local Norms

    Science.gov (United States)

    Sandberg Patton, Karen L.; Reschly, Amy L.; Appleton, James

    2014-01-01

    With the concurrent emphasis on accountability, prevention, and early intervention, curriculum-based measurement of reading (R-CBM) is playing an increasingly important role in the educational process. This study investigated the differences in diagnostic accuracy and utility between commercial norms and local norms when making high-stakes, local…

  12. Complex diagnostic investigations of energetic boiler elements as a base for modernization and safe exploitation time belonging

    International Nuclear Information System (INIS)

    Different methods for energetic boiler testing have been described for assessing safety of their exploitation. The results for typical boiler steels have been presented. The recommendations concerning exploitation time and conditions, modernization proposals or emergency repairs needs can be done on the base of results analysis of complex diagnostic testing. 14 refs, 7 figs

  13. Meta-analysis for diagnostic accuracy studies: a new statistical model using beta-binomial distributions and bivariate copulas.

    Science.gov (United States)

    Kuss, Oliver; Hoyer, Annika; Solms, Alexander

    2014-01-15

    There are still challenges when meta-analyzing data from studies on diagnostic accuracy. This is mainly due to the bivariate nature of the response where information on sensitivity and specificity must be summarized while accounting for their correlation within a single trial. In this paper, we propose a new statistical model for the meta-analysis for diagnostic accuracy studies. This model uses beta-binomial distributions for the marginal numbers of true positives and true negatives and links these margins by a bivariate copula distribution. The new model comes with all the features of the current standard model, a bivariate logistic regression model with random effects, but has the additional advantages of a closed likelihood function and a larger flexibility for the correlation structure of sensitivity and specificity. In a simulation study, which compares three copula models and two implementations of the standard model, the Plackett and the Gauss copula do rarely perform worse but frequently better than the standard model. We use an example from a meta-analysis to judge the diagnostic accuracy of telomerase (a urinary tumor marker) for the diagnosis of primary bladder cancer for illustration.

  14. Multi-Seconds Diagnostic Neutral Beam Injector Based on Arc-Discharge with LaB6 Hollow Cathode

    International Nuclear Information System (INIS)

    The diagnostic neutral beam injector based on arc-discharge plasma source with LaB6 hollow cathode is described.The ion source of the diagnostic injector provides a proton beam with a current up to 2.5A, the particle energy up to 50 keV, the beam divergence is ∼0.5 deg. The beam species at the 2 A ion current are: H+-83%, H2+-5%, H3+-12%. The injector was tested at pulse duration up to 2 seconds

  15. Diagnostics of separately excited DC motor based on analysis and recognition of signals using FFT and Bayes classifier

    Directory of Open Access Journals (Sweden)

    Glowacz Witold

    2015-03-01

    Full Text Available In this article results of diagnostic investigations of separately excited DC motor were presented. In diagnostics were applied a Fourier analysis method based on the fast Fourier transform (FFT and a recognition method using Bayes classifier. In training process a set of the most important frequencies has been determined for which differences of corresponding signals in two states are the largest. Three categories of signals have been recognized in identification process: faultless state, state of the rotor broken one coil and state of the rotor shorted three coils.

  16. Application of new simulation algorithms for modeling rf diagnostics of electron clouds

    International Nuclear Information System (INIS)

    Traveling wave rf diagnostics of electron cloud build-up show promise as a non-destructive technique for measuring plasma density and the efficacy of mitigation techniques. However, it is very difficult to derive an absolute measure of plasma density from experimental measurements for a variety of technical reasons. Detailed numerical simulations are vital in order to understand experimental data, and have successfully modeled build-up. Such simulations are limited in their ability to reproduce experimental data due to the large separation of scales inherent to the problem. Namely, one must resolve both rf frequencies in the GHz range, as well as the plasma modulation frequency of tens of MHz, while running for very long simulations times, on the order of microseconds. The application of new numerical simulation techniques allow us to bridge the simulation scales in this problem and produce spectra that can be directly compared to experiments. The first method is to use a plasma dielectric model to measure plasma-induced phase shifts in the rf wave. The dielectric is modulated at a low frequency, simulating the effects of multiple bunch crossings. This allows simulations to be performed without kinetic particles representing the plasma, which both speeds up the simulations as well as reduces numerical noise from interpolation of particle charge and currents onto the computational grid. Secondly we utilize a port boundary condition model to simultaneously absorb rf at the simulation boundaries, and to launch the rf into the simulation. This method improves the accuracy of simulations by restricting rf frequencies better than adding an external (finite) current source to drive rf, and absorbing layers at the boundaries. We also explore the effects of non-uniform plasma densities on the simulated spectra.

  17. Teaching dual-process diagnostic reasoning to doctor of nursing practice students: problem-based learning and the illness script.

    Science.gov (United States)

    Durham, Catherine O; Fowler, Terri; Kennedy, Sally

    2014-11-01

    Accelerating the development of diagnostic reasoning skills for nurse practitioner students is high on the wish list of many faculty. The purpose of this article is to describe how the teaching strategy of problem-based learning (PBL) that drills the hypothetico-deductive or analytic reasoning process when combined with an assignment that fosters pattern recognition (a nonanalytic process) teaches and reinforces the dual process of diagnostic reasoning. In an online Doctor of Nursing Practice program, four PBL cases that start with the same symptom unfold over 2 weeks. These four cases follow different paths as they unfold leading to different diagnoses. Culminating each PBL case, a unique assignment called an illness script was developed to foster the development of pattern recognition. When combined with hypothetico-deductive reasoning drilled during the PBL case, students experience the dual process approach to diagnostic reasoning used by clinicians.

  18. Appropriate targeting of artemisinin-based combination therapy by community health workers using malaria rapid diagnostic tests

    DEFF Research Database (Denmark)

    Ndyomugyenyi, Richard; Magnussen, Pascal; Lal, Sham;

    2016-01-01

    OBJECTIVE: To compare the impact of malaria rapid diagnostic tests (mRDTs), used by community health workers (CHWs), on the proportion of children ...-randomized trials were conducted in two contrasting areas of moderate-to-high and low malaria transmission in rural Uganda. Each trial examined the effectiveness of mRDTs in the management of malaria and targeting of ACTs by CHWs comparing two diagnostic approaches: (i) presumptive clinical diagnosis of malaria...... sensitivity of current mRDTs in patients with low parasite density are a concern. For community-based treatment in areas of low transmission and/or non-immune populations, presumptive treatment of all fevers as malaria may be advisable, until more sensitive diagnostic assays, suitable for routine use by CHWs...

  19. Teaching dual-process diagnostic reasoning to doctor of nursing practice students: problem-based learning and the illness script.

    Science.gov (United States)

    Durham, Catherine O; Fowler, Terri; Kennedy, Sally

    2014-11-01

    Accelerating the development of diagnostic reasoning skills for nurse practitioner students is high on the wish list of many faculty. The purpose of this article is to describe how the teaching strategy of problem-based learning (PBL) that drills the hypothetico-deductive or analytic reasoning process when combined with an assignment that fosters pattern recognition (a nonanalytic process) teaches and reinforces the dual process of diagnostic reasoning. In an online Doctor of Nursing Practice program, four PBL cases that start with the same symptom unfold over 2 weeks. These four cases follow different paths as they unfold leading to different diagnoses. Culminating each PBL case, a unique assignment called an illness script was developed to foster the development of pattern recognition. When combined with hypothetico-deductive reasoning drilled during the PBL case, students experience the dual process approach to diagnostic reasoning used by clinicians. PMID:25350904

  20. An engineering approach to knowledge-based systems, the alarm processing and diagnostic system

    International Nuclear Information System (INIS)

    The number of alarms that may be initiated during transients or accidents in nuclear-generating control rooms may temporarily exceed an operator's ability to assimilate and respond. This phenomenon is characterized as Cognitive Overload. The Alarm Processing and Diagnostic System (APDS) was designed to deal with this problem through a unique and operationally sensitive method of alarm prioritization and filtration. The approach taken attempts to parallel the operator's situation assessment methodology when dealing with transient conditions. A strong criteria for the development methodology employed was its ultimate acceptance by parties engaged in the operation of nuclear power facilities. As such, the methodology used had to be easily understood and consistent with the acceptance standards of nuclear power. This necessitated the verifiable practices found in engineering design. While APDS remains rooted in artificial intelligence or expert systems, it goes beyond the paradigm of rules and inferencing to an object-oriented structure that allows traditional and well-documented engineering-based decision methods to be applied. These features have important consequences when considering final acceptance, implementation, and maintenance. 3 refs., 1 tab

  1. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel.

    Science.gov (United States)

    Granger, Jennifer H; Granger, Michael C; Firpo, Matthew A; Mulvihill, Sean J; Porter, Marc D

    2013-01-21

    Proteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples. This paper describes the development of a nanoparticle-based multiplexed platform that has the potential for simultaneous read-out of large numbers of biomolecules. For this purpose, we have chosen pancreatic adenocarcinoma (PA) as a test bed for diagnosis and prognosis. PA is a devastating form of cancer in which an estimated 86% of diagnoses resulted in death in the United States in 2010. The high mortality rate is due, in part, to the asymptomatic development of the disease and the dearth of sensitive diagnostics available for early detection. One promising route lies in the development of a serum biomarker panel that can generate a signature unique to early stage PA. We describe the design and development of a proof-of-concept PA biomarker immunoassay array coupled with surface-enhanced Raman scattering (SERS) as a sensitive readout method. PMID:23150876

  2. TADPOLE for longitudinal electron-bunch diagnostics based on electro-optic upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick, E-mail: jan-patrick.schwinkendorf@desy.de; Wunderlich, Steffen, E-mail: steffen.wunderlich@desy.de; Schaper, Lucas; Schmidt, Bernhard; Osterhoff, Jens

    2014-03-11

    Electron-bunch diagnostics are desired to utilize unambiguous, non-destructive, single-shot techniques. Various methods fulfill the latter two demands, but feature significant ambiguities and constraints in the reconstruction of time-domain electron-bunch profiles, e.g. uncertainties arising from the phase retrieval of coherent radiation using the Kramers–Kronig relation. We present a novel method of measuring the spectral phase. The measurement is based on upconversion in an electro-optic crystal, where the THz-field spectrum of fs-electron bunches is shifted to the near-infrared. This technique allows the single-shot detection of its longitudinal form factor in both, amplitude and phase. The spectral phase and amplitude information is measured and thus the temporal profile reconstructed using temporal analysis by dispersing a pair of light E-fields, also known as TADPOLE. This is a combination of frequency resolved optical gating (FROG) and spectral interferometry, enabling the temporal measurement of low-power laser pulses. In this procedure, a narrow-bandwidth laser pulse detecting the longitudinal variations in the transverse electric field of an electron bunch via frequency mixing is interfered with a broadband and FROG-characterized reference pulse. The longitudinal beam profile may therefore be unambiguously inferred from the generated interferogram and the detected spectral-phase-information of the reference pulse.

  3. Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy

    International Nuclear Information System (INIS)

    Results of investigation of cutaneous benign and malignant pigmented lesions by laser-induced autofluorescence spectroscopy (LIAFS) and diffuse reflectance spectroscopy (DRS) are presented. The autofluorescence of human skin was excited by a 337-nm nitrogen laser. A broadband halogen lamp (400-900 nm) was used for diffuse reflectance measurements. A microspectrometer detected in vivo the fluorescence and reflectance signals from human skin. The main spectral features of benign (dermal nevi, compound nevi, dysplastic nevi) and malignant (melanoma) lesions are discussed. The combined usage of the fluorescence and reflectance spectral methods to determine the type of the lesion, which increases the total diagnostic accuracy, is compared with the usage of LIAFS or DRS only. We also applied colorimetric transformation of the reflectance spectra detected and received additional evaluation criteria for determination of type of the lesion under study. Spectra from healthy skin areas near the lesion were detected and changes between healthy and lesion skin spectra were revealed. The influence of the main skin pigments on the detected spectra is discussed and evaluation of possibilities for differentiation between malignant and benign lesions is performed based on their spectral properties. This research shows that the non-invasive and high-sensitive in vivo detection by means of appropriate light sources and detectors should be possible, related to the real-time determination of existing pathological conditions. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  4. Flux Emergence In The Solar Photosphere - Diagnostics Based On 3-D Rradiation-MHD Simulations

    Science.gov (United States)

    Yelles Chaouche, L.; Cheung, M.; Lagg, A.; Solanki, S.

    2006-08-01

    We investigate flux tube emergence in the solar photosphere using a diagnostic procedure based on analyzing Stokes signals from different spectral lines calculated in 3-D radiation-MHD simulations. The simulations include the effects of radiative transport and partial ionization and cover layers both above and below the solar surface. The simulations consider the emergence of a twisted magnetic flux tube through the solar surface. We consider different stages in the emergence process, starting from the early appearance of the flux tube at the solar surface, and following the emergence process until the emerged flux looks similar to a normal bipolar region. At every stage we compute line profiles by numerically solving the Unno-Rachkovsky equations at every horizontal grid point. Then, following observational practice, we apply Milne-Eddington-type inversions to the synthetic spectra in order to retrieve different atmospheric parameters. We include the influence of spatial smearing on the deduced atmospheric parameters to identify signatures of different stages of flux emergence in the solar photosphere.

  5. Molecular diagnostics for pharmacogenomic testing of fluoropyrimidine based-therapy: costs, methods and applications.

    Science.gov (United States)

    Di Francia, Raffaele; Berretta, Massimiliano; Catapano, Oriana; Canzoniero, Lorella M T; Formisano, Luigi

    2011-07-01

    Abstract Genetic testing of drug response represents an important goal for targeted therapy. In particular, 5-fluorouracil (5-FU) is the backbone of several chemotherapic protocols for treatment of solid tumors. Unfortunately, in some patients, 5-FU is toxic and causes gastrointestinal and hematologic lesions leading to the suspension of therapy. Some adverse drug responses can be predicted by pharmacogenomics. Recently, several polymorphic traits of different genes involved with 5-FU biotransformation have been reported. Many methods have been used for qualitative and quantitative assessment of the mutational status of these genes, without a precise cost-effectiveness analysis. This article reviews recent findings on the seven germline polymorphic traits of four genes involved in the biotransformation of the 5-FU. In particular, we analyze the most common platforms used to identify the specific genetic alterations and their relative costs. Genotyping can be performed either by custom service laboratories or academic reference laboratories by using either the commercial kits (when available) or "in house" tests. By random selection of 20 certified laboratories out of a total of 71, we estimate that the cost of the analysis/single trait is on average €120.00 as custom genotyping service. "In house" validated tests by PCR-based platforms cost approximately €20.00 per single polimorphism. On the basis of this information, the lab manager can evaluate the advantage and limitations, in terms of costs and applicability, of the most appropriate methods for diagnostics of 5-FU pharmacogenomics tests.

  6. Model-based consensus

    NARCIS (Netherlands)

    Boumans, Marcel

    2014-01-01

    The aim of the rational-consensus method is to produce “rational consensus”, that is, “mathematical aggregation”, by weighing the performance of each expert on the basis of his or her knowledge and ability to judge relevant uncertainties. The measurement of the performance of the experts is based on

  7. Model-based consensus

    NARCIS (Netherlands)

    M. Boumans

    2014-01-01

    The aim of the rational-consensus method is to produce "rational consensus", that is, "mathematical aggregation", by weighing the performance of each expert on the basis of his or her knowledge and ability to judge relevant uncertainties. The measurement of the performance of the experts is based on

  8. Hepatic trauma: CT findings and considerations based on our experience in emergency diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Luigia; Giovine, Sabrina; Guidi, Guido; Tortora, Giovanni; Cinque, Teresa; Romano, Stefania E-mail: stefromano@libero.it

    2004-04-01

    findings and peritoneal fluid evaluation may be used to make a first differentiation of severity of lesions, but haemodynamic parameters may help the clinician to prefer a conservative treatment. In emergency based hospitals and also in our experience, positive benefits spring from diagnostic accuracy and consequent correct therapeutic management.

  9. Hepatic trauma: CT findings and considerations based on our experience in emergency diagnostic imaging

    International Nuclear Information System (INIS)

    and peritoneal fluid evaluation may be used to make a first differentiation of severity of lesions, but haemodynamic parameters may help the clinician to prefer a conservative treatment. In emergency based hospitals and also in our experience, positive benefits spring from diagnostic accuracy and consequent correct therapeutic management

  10. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...... datasets. Our model also outperforms A Decision Cluster Classification (ADCC) and the Decision Cluster Forest Classification (DCFC) models on the Reuters-21578 dataset....

  11. A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy.

    Science.gov (United States)

    Hingtgen, Shawn D; Kasmieh, Randa; van de Water, Jeroen; Weissleder, Ralph; Shah, Khalid

    2010-04-01

    Stem cells are promising therapeutic delivery vehicles; however pre-clinical and clinical applications of stem cell-based therapy would benefit significantly from the ability to simultaneously determine therapeutic efficacy and pharmacokinetics of therapies delivered by engineered stem cells. In this study, we engineered and screened numerous fusion variants that contained therapeutic (TRAIL) and diagnostic (luciferase) domains designed to allow simultaneous investigation of multiple events in stem cell-based therapy in vivo. When various stem cell lines were engineered with the optimized molecule, SRL(O)L(2)TR, diagnostic imaging showed marked differences in the levels and duration of secretion between stem cell lines, while the therapeutic activity of the molecule showed the different secretion levels translated to significant variability in tumor cell killing. In vivo, simultaneous diagnostic and therapeutic monitoring revealed that stem cell-based delivery significantly improved pharmacokinetics and anti-tumor effectiveness of the therapy compared to intravenous or intratumoral delivery. As treatment for highly malignant brain tumor xenografts, tracking SRL(O)L(2)TR showed stable stem cell-mediated delivery significantly regressed peripheral and intracranial tumors. Together, the integrated diagnostic and therapeutic properties of SRL(O)L(2)TR answer critical questions necessary for successful utilization of stem cells as novel therapeutic vehicles. PMID:20127797

  12. Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers

    Directory of Open Access Journals (Sweden)

    Janvier Sylvestre N’cho

    2016-05-01

    Full Text Available A power transformer outage has a dramatic financial consequence not only for electric power systems utilities but also for interconnected customers. The service reliability of this important asset largely depends upon the condition of the oil-paper insulation. Therefore, by keeping the qualities of oil-paper insulation system in pristine condition, the maintenance planners can reduce the decline rate of internal faults. Accurate diagnostic methods for analyzing the condition of transformers are therefore essential. Currently, there are various electrical and physicochemical diagnostic techniques available for insulation condition monitoring of power transformers. This paper is aimed at the description, analysis and interpretation of modern physicochemical diagnostics techniques for assessing insulation condition in aged transformers. Since fields and laboratory experiences have shown that transformer oil contains about 70% of diagnostic information, the physicochemical analyses of oil samples can therefore be extremely useful in monitoring the condition of power transformers.

  13. Modular microfluidic cartridge-based universal diagnostic system for global health applications

    Science.gov (United States)

    Becker, Holger; Klemm, Richard; Dietze, William; White, Wallace; Hlawatsch, Nadine; Freyberg, Susanne; Moche, Christian; Dailey, Peter; Gärtner, Claudia

    2016-03-01

    Current microfluidics-enabled point-of-care diagnostic systems are typically designed specifically for one assay type, e.g. a molecular diagnostic assay for a single disease of a class of diseases. This approach often leads to high development cost and a significant training requirement for users of different instruments. We have developed an open platform diagnostic system which allows to run molecular, immunological and clinical assays on a single instrument platform with a standardized microfluidic cartridge architecture in an automated sample-in answer-out fashion. As examples, a molecular diagnostic assay for tuberculosis, an immunoassay for HIV p24 and a clinical chemistry assay for ALT liver function have been developed and results of their pre-clinical validation are presented.

  14. On-Line Fast Motor Fault Diagnostics Based on Fuzzy Neural Networks

    Institute of Scientific and Technical Information of China (English)

    DONG Mingchui; CHEANG Takson; CHAN Sileong

    2009-01-01

    An on-line method was developed to improve diagnostic accuracy and speed for analyzing run-ning motors on site. On-line pre-measured data was used as the basis for constructing the membership functions used in a fuzzy neural network (FNN) as well as for network training to reduce the effects of vari-ous static factors, such as unbalanced input power and asymmetrical motor alignment, to increase accuracy.The preprocessed data and fuzzy logic were used to find the nonlinear mapping relationships between the data and the conclusions. The FNN was then constructed to carry motor fault diagnostics, which gives fast accurate diagnostics. The on-line fast motor fault diagnostics clearly indicate the fault type, location, and severity in running motors. This approach can also be extended to other applications.

  15. In-cylinder pressure-based direct techniques and time frequency analysis for combustion diagnostics in IC engines

    International Nuclear Information System (INIS)

    Highlights: • Direct pressure-based techniques have been applied successfully to spark-ignition engines. • The burned mass fraction of pressure-based techniques has been compared with that of 2- and 3-zone combustion models. • The time frequency analysis has been employed to simulate complex diesel combustion events. - Abstract: In-cylinder pressure measurement and analysis has historically been a key tool for off-line combustion diagnosis in internal combustion engines, but online applications for real-time condition monitoring and combustion management have recently become popular. The present investigation presents and compares different low computing-cost in-cylinder pressure based methods for the analyses of the main features of combustion, that is, the start of combustion, the end of combustion and the crankshaft angle that responds to half of the overall burned mass. The instantaneous pressure in the combustion chamber has been used as an input datum for the described analytical procedures and it has been measured by means of a standard piezoelectric transducer. Traditional pressure-based techniques have been shown to be able to predict the burned mass fraction time history more accurately in spark ignition engines than in diesel engines. The most suitable pressure-based techniques for both spark ignition and compression ignition engines have been chosen on the basis of the available experimental data. Time–frequency analysis has also been applied to the analysis of diesel combustion, which is richer in events than spark ignited combustion. Time frequency algorithms for the calculation of the mean instantaneous frequency are computationally efficient, allow the main events of the diesel combustion to be identified and provide the greatest benefits in the presence of multiple injection events. These algorithms can be optimized and applied to onboard diagnostics tools designed for real control, but can also be used as an advanced validation tool for

  16. Nanotechnology-Based Surface Plasmon Resonance Affinity Biosensors for In Vitro Diagnostics

    Science.gov (United States)

    Antiochia, Riccarda; Bollella, Paolo; Favero, Gabriele

    2016-01-01

    In the last decades, in vitro diagnostic devices (IVDDs) became a very important tool in medicine for an early and correct diagnosis, a proper screening of targeted population, and also assessing the efficiency of a specific therapy. In this review, the most recent developments regarding different configurations of surface plasmon resonance affinity biosensors modified by using several nanostructured materials for in vitro diagnostics are critically discussed. Both assembly and performances of the IVDDs tested in biological samples are reported and compared. PMID:27594884

  17. Nanotechnology-Based Surface Plasmon Resonance Affinity Biosensors for In Vitro Diagnostics.

    Science.gov (United States)

    Antiochia, Riccarda; Bollella, Paolo; Favero, Gabriele; Mazzei, Franco

    2016-01-01

    In the last decades, in vitro diagnostic devices (IVDDs) became a very important tool in medicine for an early and correct diagnosis, a proper screening of targeted population, and also assessing the efficiency of a specific therapy. In this review, the most recent developments regarding different configurations of surface plasmon resonance affinity biosensors modified by using several nanostructured materials for in vitro diagnostics are critically discussed. Both assembly and performances of the IVDDs tested in biological samples are reported and compared. PMID:27594884

  18. Modeling and diagnostic techniques applicable to the analysis of pressure noise in pressurized water reactors and pressure-sensing systems

    International Nuclear Information System (INIS)

    Pressure noise data from a PWR are interpreted by means of a computer-implemented model. The model's parameters, namely hydraulic impedances and noise sources, are either calculated or deduced from fits to data. Its accuracy is encouraging and raises the possibility of diagnostic assistance for nuclear plant monitoring. A number of specific applications of pressure noise in the primary system of a PWR and in a pressure sensing system are suggested

  19. Means-End based Functional Modeling for Intelligent Control: Modeling and Experiments with an Industrial Heat Pump System

    DEFF Research Database (Denmark)

    Saleem, Arshad

    2007-01-01

    The purpose of this paper is to present a Multilevel Flow Model (MFM) of an industrial heat pump system and its use for diagnostic reasoning. MFM is functional modeling language supporting an explicit means-ends intelligent control strategy for large industrial process plants. The model is used...... in several diagnostic experiments analyzing different fault scenarios. The model and results of the experiments are explained and it is shown how MFM based intelligent modeling and automated reasoning can improve the fault diagnosis process significantly....

  20. Diagnostic non-invasive model of large risky esophageal varices in cirrhotic hepatitis C virus patients

    Science.gov (United States)

    Elalfy, Hatem; Elsherbiny, Walid; Abdel Rahman, Ashraf; Elhammady, Dina; Shaltout, Shaker Wagih; Elsamanoudy, Ayman Z; El Deek, Bassem

    2016-01-01

    AIM To build a diagnostic non-invasive model for screening of large varices in cirrhotic hepatitis C virus (HCV) patients. METHODS This study was conducted on 124 post-HCV cirrhotic patients presenting to the clinics of the Endemic Medicine Department at Mansoura University Hospital for evaluation before HCV antiviral therapy: 78 were Child A and 46 were Child B (score ≤ 8). Inclusion criteria for patients enrolled in this study was presence of cirrhotic HCV (diagnosed by either biopsy or fulfillment of clinical basis). Exclusion criteria consisted of patients with other etiologies of liver cirrhosis, e.g., hepatitis B virus and patients with high MELD score on transplant list. All patients were subjected to full medical record, full basic investigations, endoscopy, and computed tomography (CT), and then divided into groups with no varices, small varices, or large risky varices. In addition, values of Fibrosis-4 score (FIB-4), aminotransferase-to-platelet ratio index (APRI), and platelet count/splenic diameter ratio (PC/SD) were also calculated. RESULTS Detection of large varies is a multi-factorial process, affected by many variables. Choosing binary logistic regression, dependent factors were either large or small varices while independent factors included CT variables such coronary vein diameter, portal vein (PV) diameter, lieno-renal shunt and other laboratory non-invasive variables namely FIB-4, APRI, and platelet count/splenic diameter. Receiver operating characteristic (ROC) curve was plotted to determine the accuracy of non-invasive parameters for predicting the presence of large esophageal varices and the area under the ROC curve for each one of these parameters was obtained. A model was established and the best model for prediction of large risky esophageal varices used both PC/SD and PV diameter (75% accuracy), while the logistic model equation was shown to be (PV diameter × -0.256) plus (PC/SD × -0.006) plus (8.155). Values nearing 2 or more denote

  1. Static Digital Telepathology: A Model for Diagnostic and Educational Support to Pathologists in the Developing World

    Directory of Open Access Journals (Sweden)

    Aliyah R. Sohani

    2012-01-01

    Full Text Available Background: The practice of pathology in the developing world presents challenges in terms of limited resources, shortages of trained personnel, and lack of continuing education programs. Telepathology holds promise as a means of diagnostic and educational support.

  2. An MRI-based diagnostic framework for early diagnosis of dyslexia

    Energy Technology Data Exchange (ETDEWEB)

    El-Baz, A. [University of Louisville, Bioengineering Department, Louisville, KY (United States); Casanova, M.; Mott, M.; Switala, A. [University of Louisville, Department of Psychiatry and Behavioral Science, Louisville, KY (United States); Gimel' farb, G. [University of Auckland, Computer Science Department, Auckland (New Zealand)

    2008-09-15

    A computer-aided diagnosis (CAD) system for early diagnosis of dyslexia was developed and tested. Dyslexia can severely impair the learning abilities of children so improved diagnostic methods are needed. Neuropathological studies show abnormal anatomy of the cerebral white matter (CWM) in dyslexic brains. We sought to develop an MRI-based macroscopic neuropathological correlate to the minicolumnopathy of dyslexia that relates to cortical connectivity: the gyral window. The brains of dyslexic patients often exhibit decreased gyrifications, so the thickness of gyral CWM for dyslexic subjects is greater than for normal subjects. We developed an MRI-based method for assessment of gyral CWM thickness with automated recognition of abnormal (e.g., dyslexic) brains. In vivo data was collected from 16 right-handed dyslexic men aged 18-40 years, and a group of 14 controls matched for gender, age, educational level, socioeconomic background, handedness and general intelligence. All the subjects were physically healthy and free of history of neurological diseases and head injury. Images were acquired with the same 1.5T MRI scanner (GE, Milwaukee, WI, USA) with voxel resolution 0.9375 x 0.9375 x 1.5 mm using a T1-weighted imaging sequence protocol. The ''ground truth'' diagnosis to evaluate the classification accuracy for each patient was given by the clinicians. The accuracy of diagnosis/classification of both the training and test subjects was evaluated using the Chi-square test at the three confidence levels - 85, 90 and 95% - in order to examine significant differences in the Levy distances. As expected, the 85% confidence level yielded the best results, the system correctly classified 16 out of 16 dyslexic subjects (a 100% accuracy) and 14 out of 14 control subjects (a 100% accuracy). At the 90% confidence level, 16 out of 16 dyslexic subjects were still classified correctly; however, only 13 out of 14 control subjects were correct, bringing the

  3. An MRI-based diagnostic framework for early diagnosis of dyslexia

    International Nuclear Information System (INIS)

    A computer-aided diagnosis (CAD) system for early diagnosis of dyslexia was developed and tested. Dyslexia can severely impair the learning abilities of children so improved diagnostic methods are needed. Neuropathological studies show abnormal anatomy of the cerebral white matter (CWM) in dyslexic brains. We sought to develop an MRI-based macroscopic neuropathological correlate to the minicolumnopathy of dyslexia that relates to cortical connectivity: the gyral window. The brains of dyslexic patients often exhibit decreased gyrifications, so the thickness of gyral CWM for dyslexic subjects is greater than for normal subjects. We developed an MRI-based method for assessment of gyral CWM thickness with automated recognition of abnormal (e.g., dyslexic) brains. In vivo data was collected from 16 right-handed dyslexic men aged 18-40 years, and a group of 14 controls matched for gender, age, educational level, socioeconomic background, handedness and general intelligence. All the subjects were physically healthy and free of history of neurological diseases and head injury. Images were acquired with the same 1.5T MRI scanner (GE, Milwaukee, WI, USA) with voxel resolution 0.9375 x 0.9375 x 1.5 mm using a T1-weighted imaging sequence protocol. The ''ground truth'' diagnosis to evaluate the classification accuracy for each patient was given by the clinicians. The accuracy of diagnosis/classification of both the training and test subjects was evaluated using the Chi-square test at the three confidence levels - 85, 90 and 95% - in order to examine significant differences in the Levy distances. As expected, the 85% confidence level yielded the best results, the system correctly classified 16 out of 16 dyslexic subjects (a 100% accuracy) and 14 out of 14 control subjects (a 100% accuracy). At the 90% confidence level, 16 out of 16 dyslexic subjects were still classified correctly; however, only 13 out of 14 control subjects were correct, bringing the accuracy rate for the

  4. NIF neutron diagnostic concept based on n-p scattering from a thin CH2 converter foil

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) is a 1.8 MJ glass laser which will initially be used to demonstrate ignition and gain in an inertially confined plasma. The present NIF target design is predicted to have a thermonuclear output of up to 10 MH for 1.8 MJ of 0.35 microm laser energy incident in a hohlraum with a peak radiation drive temperature of 300 eV. These levels of thermonuclear output open up the possibility of several new classes of neutron diagnostics. One such class of instruments is based on the measurement of proton recoils from the interaction of 2.45 MeV and 14.1 MeV neutrons in thin CH2 foils. The diagnostic would operate by detecting the proton recoils at near forward angles in either time-integrated detectors or time-resolved current mode detectors. The protons may be energy resolved using range filters or by magnetic analysis in a simple dipole magnet spectrography. This diagnostic technique offers a very clean measurement of neutron yield that can be almost entirely free of scattered neutron backgrounds. At higher neutron yields, measurements of time-resolved ion temperature and reaction burn time become possible. The paper discusses several possible diagnostic configurations based on this concept and presents calculations of the sensitivity of the technique

  5. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event......-based modeling approaches are analyzed and the results are used to formulate a general event concept that can be used for unifying the seemingly unrelated event concepts. Events are characterized as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms...... of information structures. The general event concept can be used to guide systems analysis and design and to improve modeling approaches....

  6. A Clinical Analysis of 293 FUO Patients, A Diagnostic Model Discriminating infectious Diseases from Non-infectious Diseases

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Objective A diagnostic model was established to discriminate infectious diseases from non-infectious diseases. Methods The clinical data of patients with fever of unknown origin (FUO) hospitalized in Xiangya Hospital Central South University, from January, 2006 to April, 2011 were retrospectively analyzed. Patients enrolled were divided into two groups. The ifrst group was used to develop a diagnostic model: independent variables were recorded and considered in a logistic regression analysis to identify infectious and non-infectious diseases (αin= 0.05, αout= 0.10). The second group was used to evaluate the diagnostic model and make ROC analysis. Results The diagnostic rate of 143 patients in the ifrst group was 87.4%, the diagnosis included infectious disease (52.4%), connective tissue diseases (16.8%), neoplastic disease (16.1%) and miscellaneous (2.1%). The diagnostic rate of 168 patients in the second group was 88.4%, and the diagnosis was similar to the ifrst group. Logistic regression analysis showed that decreased white blood cell count (WBC 320 U/L) and lymphadenectasis were independent risk factors associated with non-infectious diseases. The odds ratios were 14.74, 5.84 and 5.11 (P≤ 0.01) , respectively. In ROC analysis, the sensitivity and speciifcity of the positive predictive values was 62.1% and 89.1%, respectively, while that of negative predicting values were 75% and 81.7%, respectively (AUC = 0.76,P = 0.00). Conclusions The combination of WBC 320 U/L and lymphadenectasis may be useful in discriminating infectious diseases from non-infectious diseases in patients hospitalized as FUO.

  7. Modelling stochastic chances in curve shape, with an application to cancer diagnostics

    DEFF Research Database (Denmark)

    Hobolth, A; Jensen, Eva B. Vedel

    2000-01-01

    Often, the statistical analysis of the shape of a random planar curve is based on a model for a polygonal approximation to the curve. In the present paper, we instead describe the curve as a continuous stochastic deformation of a template curve. The advantage of this continuous approach...... is that the parameters in the model do not relate to a particular polygonal approximation. A somewhat similar approach has been used by Kent et al. (1996), who describe the limiting behaviour of a model with a first-order Markov property as the landmarks on the curve become closely spaced; see also Grenander(1993...

  8. Numerical Simulation and Analysis of the Localized Heavy Precipitation Event in South Korea based on diagnostic variables

    Science.gov (United States)

    Roh, Joon-Woo; Choi, Young-Jean

    2016-04-01

    Accurate prediction of precipitation is one of the most difficult and significant tasks in weather forecasting. Heavy precipitations in the Korean Peninsula are caused by various physical mechanisms, which are affected by shortwave trough, quasi-stationary moisture convergence zone among varying air masses, and a direct/indirect effect of tropical cyclone. Many previous studies have used observations, numerical modeling, and statistics to investigate the potential causes of warm-season heavy precipitation in South Korea. Especially, the frequency of warm-season torrential rainfall events more than 30 mm/h precipitation has increased threefold in Seoul, a metropolitan city in South Korea, in recent 30 years. Localized heavy rainfall events in South Korea generally arise from mesoscale convective systems embedded in these synoptic scale disturbances along the Changma front, or from convective instabilities resulting from unstable air masses. In order to investigate localized heavy precipitation system in Seoul metropolitan area, analysis and numerical experiment were performed for a typical event in 20 June 2014. This case is described to a structure of baroclinic instability associated with a short-wave trough from the northwest and high moist and warm air by a thermal low from the southwest of the Korean Peninsula. We investigated localized heavy precipitation in narrow zone of the Seoul urban area using numerical simulations based on the Weather Research and Forecast (WRF) model with convective scale. The topography and land use data of the revised U.S. Geological Survey (USGS) data and the appropriate set of physical scheme options for WRF model simulation were deliberated. Simulation experiments showed patches of primary physical structures related to the localized heavy precipitation using the diagnostic fields, which are storm relative helicity (SRH), updraft helicity (UH), and instantaneous contraction rates (ICON). SRH and UH are dominantly related to

  9. A strategy for establishing diagnostic and related services to dairy farmers in developing countries based on radioimmunoassay of progesterone in milk

    International Nuclear Information System (INIS)

    The radioimmunoassay (RIA) for progesterone in milk samples collected from cattle has been used for monitoring ovarian activity, diagnosis of pregnancy and non-pregnancy, assessment of the accuracy of oestrus detection and for surveying efficiency of artificial insemination services. The establishment of a service to dairy farmers in developing countries based on this technique has not been previously reported but there are clear potential benefits in such a service. A strategy was therefore developed for the establishment of diagnostic and related services to dairy farmers in Morocco on a pilot basis, using RIA of progesterone in milk for possible adoption as a model for other developing countries. (author)

  10. Modeling Guru: Knowledge Base for NASA Modelers

    Science.gov (United States)

    Seablom, M. S.; Wojcik, G. S.; van Aartsen, B. H.

    2009-05-01

    Modeling Guru is an on-line knowledge-sharing resource for anyone involved with or interested in NASA's scientific models or High End Computing (HEC) systems. Developed and maintained by the NASA's Software Integration and Visualization Office (SIVO) and the NASA Center for Computational Sciences (NCCS), Modeling Guru's combined forums and knowledge base for research and collaboration is becoming a repository for the accumulated expertise of NASA's scientific modeling and HEC communities. All NASA modelers and associates are encouraged to participate and provide knowledge about the models and systems so that other users may benefit from their experience. Modeling Guru is divided into a hierarchy of communities, each with its own set forums and knowledge base documents. Current modeling communities include those for space science, land and atmospheric dynamics, atmospheric chemistry, and oceanography. In addition, there are communities focused on NCCS systems, HEC tools and libraries, and programming and scripting languages. Anyone may view most of the content on Modeling Guru (available at http://modelingguru.nasa.gov/), but you must log in to post messages and subscribe to community postings. The site offers a full range of "Web 2.0" features, including discussion forums, "wiki" document generation, document uploading, RSS feeds, search tools, blogs, email notification, and "breadcrumb" links. A discussion (a.k.a. forum "thread") is used to post comments, solicit feedback, or ask questions. If marked as a question, SIVO will monitor the thread, and normally respond within a day. Discussions can include embedded images, tables, and formatting through the use of the Rich Text Editor. Also, the user can add "Tags" to their thread to facilitate later searches. The "knowledge base" is comprised of documents that are used to capture and share expertise with others. The default "wiki" document lets users edit within the browser so others can easily collaborate on the

  11. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of...

  12. [Content-based image-retrieval system - development, usefulness and perspectives of diagnostic assistant robot].

    Science.gov (United States)

    Endo, Masahiro; Aramaki, Takeshi; Moriguchi, Michihisa; Sawada, Akihiro; Asakura, Koiku; Bekku, Emima; Yamaguchi, Ken

    2012-07-01

    In recent years, diagnostic imaging modalities have proliferated from standard X-ray to CT, MRI and PET, and the working environments of radiologists have changed greatly with the popular spread of the PACS system. Radiologists are now facing enormous duties due to the dramatic increase in the volume of images from various modalities, and the shortage of radiologists in Japan has reached near-crisis levels. Furthermore, it is difficult to gain the knowledge needed to interpret diagnostic imaging and modalities under the growing, increasingly diverse and complex modalities and methods, for general physicians and trainees. On the other hand, there are some computer-aided diagnosis and detection systems that support radiologists. Here, we introduce a new diagnostic assistant robot that automatically retrieves cases on record that are similar to new cases, helps in making diagnoses, and can create CT reports semi-automatically, using an existing past CT database of pulmonary nodules with a structured report. PMID:22790038

  13. Constraint Based Modeling Going Multicellular.

    Science.gov (United States)

    Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas

    2016-01-01

    Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches.

  14. Pancreatic carcinoma, pancreatitis, and healthy controls: metabolite models in a three-class diagnostic dilemma.

    Science.gov (United States)

    Leichtle, Alexander Benedikt; Ceglarek, Uta; Weinert, Peter; Nakas, Christos T; Nuoffer, Jean-Marc; Kase, Julia; Conrad, Tim; Witzigmann, Helmut; Thiery, Joachim; Fiedler, Georg Martin

    2013-06-01

    Metabolomics as one of the most rapidly growing technologies in the "-omics" field denotes the comprehensive analysis of low molecular-weight compounds and their pathways. Cancer-specific alterations of the metabolome can be detected by high-throughput mass-spectrometric metabolite profiling and serve as a considerable source of new markers for the early differentiation of malignant diseases as well as their distinction from benign states. However, a comprehensive framework for the statistical evaluation of marker panels in a multi-class setting has not yet been established. We collected serum samples of 40 pancreatic carcinoma patients, 40 controls, and 23 pancreatitis patients according to standard protocols and generated amino acid profiles by routine mass-spectrometry. In an intrinsic three-class bioinformatic approach we compared these profiles, evaluated their selectivity and computed multi-marker panels combined with the conventional tumor marker CA 19-9. Additionally, we tested for non-inferiority and superiority to determine the diagnostic surplus value of our multi-metabolite marker panels. Compared to CA 19-9 alone, the combined amino acid-based metabolite panel had a superior selectivity for the discrimination of healthy controls, pancreatitis, and pancreatic carcinoma patients [Formula: see text] We combined highly standardized samples, a three-class study design, a high-throughput mass-spectrometric technique, and a comprehensive bioinformatic framework to identify metabolite panels selective for all three groups in a single approach. Our results suggest that metabolomic profiling necessitates appropriate evaluation strategies and-despite all its current limitations-can deliver marker panels with high selectivity even in multi-class settings. PMID:23678345

  15. Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis.

    Directory of Open Access Journals (Sweden)

    Jaume Pérez-Sánchez

    Full Text Available Mucins are O-glycosylated glycoproteins present on the apex of all wet-surfaced epithelia with a well-defined expression pattern, which is disrupted in response to a wide range of injuries or challenges. The aim of this study was to identify mucin gene sequences of gilthead sea bream (GSB, to determine its pattern of distribution in fish tissues and to analyse their transcriptional regulation by dietary and pathogenic factors. Exhaustive search of fish mucins was done in GSB after de novo assembly of next-generation sequencing data hosted in the IATS transcriptome database (www.nutrigroup-iats.org/seabreamdb. Six sequences, three categorized as putative membrane-bound mucins and three putative secreted-gel forming mucins, were identified. The transcriptional tissue screening revealed that Muc18 was the predominant mucin in skin, gills and stomach of GSB. In contrast, Muc19 was mostly found in the oesophagus and Muc13 was along the entire intestinal tract, although the posterior intestine exhibited a differential pattern with a high expression of an isoform that does not share a clear orthologous in mammals. This mucin was annotated as intestinal mucin (I-Muc. Its RNA expression was highly regulated by the nutritional background, whereas the other mucins, including Muc2 and Muc2-like, were expressed more constitutively and did not respond to high replacement of fish oil (FO by vegetable oils (VO in plant protein-based diets. After challenge with the intestinal parasite Enteromyxum leei, the expression of a number of mucins was decreased mainly in the posterior intestine of infected fish. But, interestingly, the highest down-regulation was observed for the I-Muc. Overall, the magnitude of the changes reflected the intensity and progression of the infection, making mucins and I-Muc, in particular, reliable markers of prognostic and diagnostic value of fish intestinal health.

  16. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  17. Event-Based Activity Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2004-01-01

    We present and discuss a modeling approach that supports event-based modeling of information and activity in information systems. Interacting human actors and IT-actors may carry out such activity. We use events to create meaningful relations between information structures and the related activit...

  18. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  19. A model for understanding diagnostic imaging referrals and complex interaction processes within the bigger picture of a healthcare system

    International Nuclear Information System (INIS)

    Using experiences from the South African public healthcare system with limited resources, this review proposes a model that captures a holistic perspective of diagnostic imaging services embedded in a network of negotiated decision-making processes. Professional interdependency and interprofessional collaboration, cooperation and coordination are built around the central notion of integration in order to achieve a seamless transition through the continuum of various types of services needed to come to a diagnosis. Health-system role players interact with patients who enter the system from the perspective of their life-world. The distribution of diagnostic imaging services – within one setting or at multiple levels of care – demonstrates how fragments of information are filtered, interpreted and transformed at each point of care. The proposed model could contribute to alignment towards a common goal: services providing holistic quality of care within and beyond a complex healthcare system

  20. Modelling magnetic fields diagnostic coils using a 3D free-boundary equilibrium code

    International Nuclear Information System (INIS)

    A project to interpret the magnetic field diagnostics of the W VII-X stellarator is summarized. The NEMEC free-boundary equilibrium code is used to calculate 3D ideal-MHD equilibria which are consistent with the fields due to external currents. The signals of the diagnostic coils are related to the plasma equilibrium by combining the NEMEC code with a technique for calculating the magnetic field outside the plasma due to the plasma currents alone. These techniques will be used to design the diagnostic coils on the W VII-X device. Test run results are shown. The arrow plot for a beta value of 0.9 % shows the characteristic dipole-like field of the plasma currents. The signals of three flux loops as a function of beta produce curves which are quite smooth for moderate beta values

  1. Survivors of early childhood trauma: evaluating a two-dimensional diagnostic model of the impact of trauma and neglect

    OpenAIRE

    Wildschut, Marleen; Langeland, Willemien; Jan H Smit; Draijer, Nel

    2014-01-01

    Background: A two-dimensional diagnostic model for (complex) trauma-related and personality disorders has been proposed to assess the severity and prognosis of the impact of early childhood trauma and emotional neglect. An important question that awaits empirical examination is whether a distinction between trauma-related disorders and personality disorders reflects reality when focusing on survivors of early childhood trauma. And, is a continuum of trauma diagnoses a correct assumption and, ...

  2. Analytical Redundancy Design for Aeroengine Sensor Fault Diagnostics Based on SROS-ELM

    OpenAIRE

    Jun Zhou; Yuan Liu; Tianhong Zhang

    2016-01-01

    Analytical redundancy technique is of great importance to guarantee the reliability and safety of aircraft engine system. In this paper, a machine learning based aeroengine sensor analytical redundancy technique is developed and verified through hardware-in-the-loop (HIL) simulation. The modified online sequential extreme learning machine, selective updating regularized online sequential extreme learning machine (SROS-ELM), is employed to train the model online and estimate sensor measurement...

  3. A microcomputer-based data acquisition system for diagnostic monitoring and control of high-speed electric motors

    OpenAIRE

    Moyers, Kevin Keith

    1987-01-01

    A microcomputer-based data acquisition and control system was designed for the diagnostic monitoring and control of high-speed electric motors. The system was utilized in high-speed bearing life-testing, using an electric motor as a test vehicle. Bearing vibration and outer race temperature were continuously monitored for each ball bearing in the motor. In addition, the stator winding and motor casing temperature were monitored. The monitoring system was successful i...

  4. A Needs-Based Approach to the Development of a Diagnostic College English Speaking Test

    Science.gov (United States)

    Zhao, Zhongbao

    2014-01-01

    This paper investigated the current situation of oral English teaching, learning, and assessment at the tertiary level in China through needs analysis and explored the implications for the development of a diagnostic speaking test. Through random sampling, the researcher administered both a student questionnaire and a teacher questionnaire to over…

  5. Nanostructured tracers for laser-based diagnostics in high-speed flows

    NARCIS (Netherlands)

    Ghaemi, S.; Schmidt-Ott, A.; Scarano, F.

    2010-01-01

    The potential application of aggregates of nanoparticles for high-speed flow diagnostics is investigated. Aluminum nanoparticles around 10 nm in diameter are produced by spark discharge in argon gas. Through rapid coagulation and oxidation, aggregates of small effective density are formed. They are

  6. DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of-care diagnostic

    Science.gov (United States)

    Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.

    2014-03-01

    Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.

  7. Evidence-based medical research on diagnostic criteria and screening technique of vascular mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Xia-wei LIU

    2015-07-01

    Full Text Available Background Vascular mild cognitive impairment (VaMCI is the prodromal syndrome of vascular dementia (VaD and key target for drug treatment. There is controversy over the diagnostic criteria and screening tools of VaMCI, which affects its clinical diagnosis. This paper aims to explore the clinical features, diagnostic criteria and screening technique of VaMCI.  Methods Taking "vascular mild cognitive impairment OR vascular cognitive impairment no dementia" as retrieval terms, search in PubMed database from January 1997 to March 2015 and screen relevant literatures concerning VaMCI. According to Guidance for the Preparation of Neurological Management Guidelines revised by European Federation of Neurological Societies (EFNS in 2004, evidence grading was performed on literatures. Results A total of 32 literatures in English were selected according to inclusion and exclusion criteria, including 3 guidelines and consensus and 29 clinical studies. Seven literatures (2 on Level Ⅰ, 5 on Level Ⅱ studied on neuropsychological features in VaMCI patients and found reduced processing speed and executive function impairment were main features. Two literatures reported the diagnostic criteria of VaMCI, including VaMCI criteria published by American Heart Association (AHA/American Stroke Association (ASA in 2011 and "Diagnostic Criteria for Vascular Cognitive Disorders" published by International Society for Vascular Behavioral and Cognitive Disorders (VASCOG in 2014. Fifteen literatures (4 on LevelⅠ, 11 on Level Ⅱ described the diagnostic criteria of VaMCI used in clinical research, from which 6 operational diagnostic items were extracted. Fourteen literatures (4 on Level Ⅰ, 10 on Level Ⅱ described neuropsychological assessment tools for VaMCI screening, and found the 5-minute protocol recommended by National Institute of Neurological Disorders and Stroke-Canadian Stroke Network (NINDS-CSN was being good consistency with other neuropsychological

  8. A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears.

    Directory of Open Access Journals (Sweden)

    Nina Linder

    Full Text Available INTRODUCTION: Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method using computer vision detection and visualization of only the diagnostically most relevant sample regions in digitized blood smears. METHODS: Giemsa-stained thin blood films with P. falciparum ring-stage trophozoites (n = 27 and uninfected controls (n = 20 were digitally scanned with an oil immersion objective (0.1 µm/pixel to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast and Scale-invariant feature transform descriptors used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples. RESULTS: The diagnostic accuracy was tested on 31 samples (19 infected and 12 controls. From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by the automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97. CONCLUSION: We developed a decision support system for detecting malaria parasites using a computer vision algorithm combined with visualization of sample areas with the highest probability of malaria infection. The system provides a novel method for blood smear screening with a significantly reduced need for

  9. Score, pseudo-score and residual diagnostics for goodness-of-fit of spatial point process models

    OpenAIRE

    Baddeley, Adrian; Rubak, Ege Holger; Møller, Jesper

    2010-01-01

    We develop newtools for formal inference and informalmodel validation in the analysis of spatial point pattern data. The score test is generalised to a ‘pseudo-score’ test derived from Besag’s pseudolikelihood, and to a class of diagnostics based on point process residuals. The results lend theoretical support to the established practice of using functional summary statistics such as Ripley’s K-function, when testing for complete spatial randomness; and they provide new tools such as the comp...

  10. Knowledge-based applications for diagnostic and maintenance support; Applications a base de connaissances pour l'aide au diagnostic et a la maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, B. [Electricite de France (EDF), 75 - Paris (France)

    2002-06-01

    Interpreting monitoring information to diagnose faulty equipment requires an important level of expertise. Software products which include a knowledge model and well fitted solving mechanism have been designed to assist plant operators in diagnosing faults for main components of EDF power plants. Three applications among those are presented here: SILEX for control rod command cabinets, DIVA for turbine generator units and DIAPO for reactor coolant pumps. Success of these applications emphasises the key role of a well adapted modelling of relevant knowledge. (author)

  11. Modelling Gesture Based Ubiquitous Applications

    CERN Document Server

    Zacharia, Kurien; Varghese, Surekha Mariam

    2011-01-01

    A cost effective, gesture based modelling technique called Virtual Interactive Prototyping (VIP) is described in this paper. Prototyping is implemented by projecting a virtual model of the equipment to be prototyped. Users can interact with the virtual model like the original working equipment. For capturing and tracking the user interactions with the model image and sound processing techniques are used. VIP is a flexible and interactive prototyping method that has much application in ubiquitous computing environments. Different commercial as well as socio-economic applications and extension to interactive advertising of VIP are also discussed.

  12. Diagnostic, Explanatory, and Detection Models of Munchausen by Proxy: Extrapolations from Malingering and Deception

    Science.gov (United States)

    Rogers, Richard

    2004-01-01

    Objective: The overriding objective is a critical examination of Munchausen syndrome by proxy (MSBP) and its closely-related alternative, factitious disorder by proxy (FDBP). Beyond issues of diagnostic validity, assessment methods and potential detection strategies are explored. Methods: A painstaking analysis was conducted of the MSBP and FDBP…

  13. Diagnostic model for assessing traceability system performance in fish processing plants

    NARCIS (Netherlands)

    Mgonja, J.T.; Luning, P.A.; Vorst, van der J.G.A.J.

    2013-01-01

    This paper introduces a diagnostic tool that can be used by fish processing companies to evaluate their own traceability systems in a systematic manner. The paper begins with discussions on the rationale of traceability systems in food manufacturing companies, followed by a detailed analysis of the

  14. Image-based medical expert teleconsultation in acute care of injuries. A systematic review of effects on information accuracy, diagnostic validity, clinical outcome, and user satisfaction.

    Directory of Open Access Journals (Sweden)

    Marie Hasselberg

    Full Text Available OBJECTIVE: To systematically review the literature on image-based telemedicine for medical expert consultation in acute care of injuries, considering system, user, and clinical aspects. DESIGN: Systematic review of peer-reviewed journal articles. DATA SOURCES: Searches of five databases and in eligible articles, relevant reviews, and specialized peer-reviewed journals. ELIGIBILITY CRITERIA: Studies were included that covered teleconsultation systems based on image capture and transfer with the objective of seeking medical expertise for the diagnostic and treatment of acute injury care and that presented the evaluation of one or several aspects of the system based on empirical data. Studies of systems not under routine practice or including real-time interactive video conferencing were excluded. METHOD: The procedures used in this review followed the PRISMA Statement. Predefined criteria were used for the assessment of the risk of bias. The DeLone and McLean Information System Success Model was used as a framework to synthesise the results according to system quality, user satisfaction, information quality and net benefits. All data extractions were done by at least two reviewers independently. RESULTS: Out of 331 articles, 24 were found eligible. Diagnostic validity and management outcomes were often studied; fewer studies focused on system quality and user satisfaction. Most systems were evaluated at a feasibility stage or during small-scale pilot testing. Although the results of the evaluations were generally positive, biases in the methodology of evaluation were concerning selection, performance and exclusion. Gold standards and statistical tests were not always used when assessing diagnostic validity and patient management. CONCLUSIONS: Image-based telemedicine systems for injury emergency care tend to support valid diagnosis and influence patient management. The evidence relates to a few clinical fields, and has substantial methodological

  15. Towards literature-based feature selection for diagnostic classification: A meta-analysis of resting-state fMRI in depression

    Directory of Open Access Journals (Sweden)

    Benedikt eSundermann

    2014-09-01

    Full Text Available Information derived from functional magnetic resonance imaging (fMRI during wakeful rest has been introduced as a candidate diagnostic biomarker in unipolar major depressive disorder (MDD. Multiple reports of resting state fMRI in MDD describe group effects. Such prior knowledge can be adopted to pre-select potentially discriminating features for diagnostic classification models with the aim to improve diagnostic accuracy. Purpose of this analysis was to consolidate spatial information about alterations of spontaneous brain activity in MDD, primarily to serve as feature selection for multivariate pattern analysis techniques (MVPA. 32 studies were included in final analyses. Coordinates extracted from the original reports were assigned to two categories based on directionality of findings. Meta-analyses were calculated using the non-additive activation likelihood estimation approach with coordinates organized by subject group to account for non-independent samples. Converging evidence revealed a distributed pattern of brain regions with increased or decreased spontaneous activity in MDD. The most distinct finding was hyperactivity/hyperconnectivity presumably reflecting the interaction of cortical midline structures (posterior default mode network components including the precuneus and neighboring posterior cingulate cortices associated with self-referential processing and the subgenual anterior cingulate and neighboring medial frontal cortices with lateral prefrontal areas related to externally-directed cognition. Other areas of hyperactivity/hyperconnectivity include the left lateral parietal cortex, right hippocampus and right cerebellum whereas hypoactivity/hypoconnectivity was observed mainly in the left temporal cortex, the insula, precuneus, superior frontal gyrus, lentiform nucleus and thalamus. Results are made available in two different data formats to be used as spatial hypotheses in future studies, particularly for diagnostic

  16. Curriculum-based measurement of oral reading (R-CBM): a diagnostic test accuracy meta-analysis of evidence supporting use in universal screening.

    Science.gov (United States)

    Kilgus, Stephen P; Methe, Scott A; Maggin, Daniel M; Tomasula, Jessica L

    2014-08-01

    A great deal of research over the past decade has examined the appropriateness of curriculum-based measurement of oral reading (R-CBM) in universal screening. Multiple researchers have meta-analyzed available correlational evidence, yielding support for the interpretation of R-CBM as an indicator of general reading proficiency. In contrast, researchers have yet to synthesize diagnostic accuracy evidence, which pertains to the defensibility of the use of R-CBM for screening purposes. The overall purpose of this research was to therefore conduct the first meta-analysis of R-CBM diagnostic accuracy research. A systematic search of the literature resulted in the identification of 34 studies, including 20 peer-reviewed articles, 7 dissertations, and 7 technical reports. Bivariate hierarchical linear models yielded generalized estimates of diagnostic accuracy statistics, which predominantly exceeded standards for acceptable universal screener performance. For instance, when predicting criterion outcomes within a school year (≤9 months), R-CBM sensitivity ranged between .80 and .83 and specificity ranged between .71 and .73. Multiple moderators of R-CBM diagnostic accuracy were identified, including the (a) R-CBM cut score used to define risk, (b) lag in time between R-CBM and criterion test administration, and (c) percentile rank corresponding to the criterion test cut score through which students were identified as either truly at risk or not at risk. Follow-up analyses revealed substantial variability of extracted cut scores within grade and time of year (i.e., fall, winter, and spring). This result called into question the inflexible application of a single cut score across contexts and suggested the potential necessity of local cut scores. Implications for practices, directions for future research, and limitations are discussed. PMID:25107410

  17. Sketch-based geologic modeling

    Science.gov (United States)

    Rood, M. P.; Jackson, M.; Hampson, G.; Brazil, E. V.; de Carvalho, F.; Coda, C.; Sousa, M. C.; Zhang, Z.; Geiger, S.

    2015-12-01

    Two-dimensional (2D) maps and cross-sections, and 3D conceptual models, are fundamental tools for understanding, communicating and modeling geology. Yet geologists lack dedicated and intuitive tools that allow rapid creation of such figures and models. Standard drawing packages produce only 2D figures that are not suitable for quantitative analysis. Geologic modeling packages can produce 3D models and are widely used in the groundwater and petroleum communities, but are often slow and non-intuitive to use, requiring the creation of a grid early in the modeling workflow and the use of geostatistical methods to populate the grid blocks with geologic information. We present an alternative approach to rapidly create figures and models using sketch-based interface and modelling (SBIM). We leverage methods widely adopted in other industries to prototype complex geometries and designs. The SBIM tool contains built-in geologic rules that constrain how sketched lines and surfaces interact. These rules are based on the logic of superposition and cross-cutting relationships that follow from rock-forming processes, including deposition, deformation, intrusion and modification by diagenesis or metamorphism. The approach allows rapid creation of multiple, geologically realistic, figures and models in 2D and 3D using a simple, intuitive interface. The user can sketch in plan- or cross-section view. Geologic rules are used to extrapolate sketched lines in real time to create 3D surfaces. Quantitative analysis can be carried our directly on the models. Alternatively, they can be output as simple figures or imported directly into other modeling tools. The software runs on a tablet PC and can be used in a variety of settings including the office, classroom and field. The speed and ease of use of SBIM enables multiple interpretations to be developed from limited data, uncertainty to be readily appraised, and figures and models to be rapidly updated to incorporate new data or concepts.

  18. OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project

    Science.gov (United States)

    Griffies, Stephen M.; Danabasoglu, Gokhan; Durack, Paul J.; Adcroft, Alistair J.; Balaji, V.; Böning, Claus W.; Chassignet, Eric P.; Curchitser, Enrique; Deshayes, Julie; Drange, Helge; Fox-Kemper, Baylor; Gleckler, Peter J.; Gregory, Jonathan M.; Haak, Helmuth; Hallberg, Robert W.; Heimbach, Patrick; Hewitt, Helene T.; Holland, David M.; Ilyina, Tatiana; Jungclaus, Johann H.; Komuro, Yoshiki; Krasting, John P.; Large, William G.; Marsland, Simon J.; Masina, Simona; McDougall, Trevor J.; Nurser, A. J. George; Orr, James C.; Pirani, Anna; Qiao, Fangli; Stouffer, Ronald J.; Taylor, Karl E.; Treguier, Anne Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valdivieso, Maria; Wang, Qiang; Winton, Michael; Yeager, Stephen G.

    2016-09-01

    The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs.OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.

  19. DNA Barcode-Based PCR-RFLP and Diagnostic PCR for Authentication of Jinqian Baihua She (Bungarus Parvus

    Directory of Open Access Journals (Sweden)

    Xiaolei Li

    2015-01-01

    Full Text Available We established polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP and diagnostic PCR based on cytochrome C oxidase subunit I (COI barcodes of Bungarus multicinctus, genuine Jinqian Baihua She (JBS, and adulterant snake species. The PCR-RFLP system utilizes the specific restriction sites of SpeI and BstEII in the COI sequence of B. multicinctus to allow its cleavage into 3 fragments (120 bp, 230 bp, and 340 bp; the COI sequences of the adulterants do not contain these restriction sites and therefore remained intact after digestion with SpeI and BstEII (except for that of Zaocys dhumnades, which could be cleaved into a 120 bp and a 570 bp fragment. For diagnostic PCR, a pair of species-specific primers (COI37 and COI337 was designed to amplify a specific 300 bp amplicon from the genomic DNA of B. multicinctus; no such amplicons were found in other allied species. We tested the two methods using 11 commercial JBS samples, and the results demonstrated that barcode-based PCR-RFLP and diagnostic PCR both allowed effective and accurate authentication of JBS.

  20. [Differential diagnostics of chronic tonsillitis based on the severity of manifestations of tonsillogenic intoxication of the organism].

    Science.gov (United States)

    Pal'chun, V T; Gurov, A V; Aksenova, A V; Guseva, O A

    2015-01-01

    The objective of the present study was to elucidate the objective diagnostic criteria for the differentiation between various forms of chronic tonsillitis (CT) based on the results of clinical, bacteriological, and serological investigations. A total of 13 patients presenting with various forms of CT were available for the examination. The mathematical analysis of the data thus obtained made it possible to identify the most clinically significant diagnostic criteria allowing to verify the form of CT. It is concluded that their application in the combination with the classification of chronic tonsillitis proposed earlier by B.S. Preobrazhensky and V.T. Pal'chun can be recommended for the choice of the most adequate strategy for the treatment of the patients chronic tonsillitis on an individual basis. PMID:26525464

  1. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    Science.gov (United States)

    Chernyshova, M.; Malinowski, K.; Czarski, T.; Wojeński, A.; Vezinet, D.; Poźniak, K. T.; Kasprowicz, G.; Mazon, D.; Jardin, A.; Herrmann, A.; Kowalska-Strzeciwilk, E.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P.

    2016-11-01

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  2. Thrombocytosis: Diagnostic Evaluation, Thrombotic Risk Stratification, and Risk-Based Management Strategies

    Directory of Open Access Journals (Sweden)

    Jonathan S. Bleeker

    2011-01-01

    Full Text Available Thrombocytosis is a commonly encountered clinical scenario, with a large proportion of cases discovered incidentally. The differential diagnosis for thrombocytosis is broad and the diagnostic process can be challenging. Thrombocytosis can be spurious, attributed to a reactive process or due to clonal disorder. This distinction is important as it carries implications for evaluation, prognosis, and treatment. Clonal thrombocytosis associated with the myeloproliferative neoplasms, especially essential thrombocythemia and polycythemia vera, carries a unique prognostic profile, with a markedly increased risk of thrombosis. This risk is the driving factor behind treatment strategies in these disorders. Clinical trials utilizing targeted therapies in thrombocytosis are ongoing with new therapeutic targets waiting to be explored. This paper will outline the mechanisms underlying thrombocytosis, the diagnostic evaluation of thrombocytosis, complications of thrombocytosis with a special focus on thrombotic risk as well as treatment options for clonal processes leading to thrombocytosis, including essential thrombocythemia and polycythemia vera.

  3. Consensus-based reporting standards for diagnostic test accuracy studies for paratuberculosis in ruminants

    DEFF Research Database (Denmark)

    Gardner, Ian A.; Nielsen, Søren Saxmose; Whittington, Richard;

    2011-01-01

    The Standards for Reporting of Diagnostic Accuracy (STARD) statement (www.stard-statement.org) was developed to encourage complete and transparent reporting of key elements of test accuracy studies in human medicine. The statement was motivated by widespread evidence of bias in test accuracy...... for Reporting of Animal Diagnostic Accuracy Studies for paratuberculosis), should facilitate improved quality of reporting of the design, conduct and results of paratuberculosis test accuracy studies which were identified as “poor” in a review published in 2008 in Veterinary Microbiology...... studies and the finding that incomplete or absent reporting of items in the STARD checklist was associated with overly optimistic estimates of test performance characteristics. Although STARD principles apply broadly, specific guidelines do not exist to account for unique considerations in livestock...

  4. Flyer-Plate-Based Current Diagnostic for Magnetized Liner Inertial Fusion Experiments

    Science.gov (United States)

    Reneker, Joseph; Gomez, Matthew; Hess, Mark; Jennings, Christopher

    2015-11-01

    Accurate measurements of the current delivered to Magnetized Liner Inertial Fusion (MagLIF) loads on the Z machine are important for understanding the dynamics of liner implosions. Difficulty acquiring a reliable load current measurement with the standard Z load B-dots has spurred the development of alternative load current diagnostics. Velocimetry of an electromagnetically-accelerated flyer plate can be used to infer the drive current on a flyer surface. A load current diagnostic design is proposed using a cylindrical flyer plate in series with the MagLIF target. Aspects of the flyer plate design were optimized using magnetohydrodynamic simulations. Design and preliminary results will be presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Computer-based diagnostic monitoring to enhance the human-machine interface of complex processes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.S.

    1992-02-01

    There is a growing interest in introducing an automated, on-line, diagnostic monitoring function into the human-machine interfaces (HMIs) or control rooms of complex process plants. The design of such a system should be properly integrated with other HMI systems in the control room, such as the alarms system or the Safety Parameter Display System (SPDS). This paper provides a conceptual foundation for the development of a Plant-wide Diagnostic Monitoring System (PDMS), along with functional requirements for the system and other advanced HMI systems. Insights are presented into the design of an efficient and robust PDMS, which were gained from a critical review of various methodologies developed in the nuclear power industry, the chemical process industry, and the space technological community.

  6. PCA3 and PCA3-Based Nomograms Improve Diagnostic Accuracy in Patients Undergoing First Prostate Biopsy

    OpenAIRE

    Virginie Vlaeminck-Guillem; Paul Perrin; Philippe Paparel; Claire Rodriguez-Lafrasse; Myriam Decaussin-Petrucci; Alain Ruffion; Denis Champetier; Marian Devonec

    2013-01-01

    While now recognized as an aid to predict repeat prostate biopsy outcome, the urinary PCA3 (prostate cancer gene 3) test has also been recently advocated to predict initial biopsy results. The objective is to evaluate the performance of the PCA3 test in predicting results of initial prostate biopsies and to determine whether its incorporation into specific nomograms reinforces its diagnostic value. A prospective study included 601 consecutive patients addressed for initial prostate biopsy. Th...

  7. Deep Convolutional Neural Networks for Microscopy-Based Point of Care Diagnostics

    OpenAIRE

    Quinn, John A.; Nakasi, Rose; Mugagga, Pius K. B.; Byanyima, Patrick; Lubega, William; Andama, Alfred

    2016-01-01

    Point of care diagnostics using microscopy and computer vision methods have been applied to a number of practical problems, and are particularly relevant to low-income, high disease burden areas. However, this is subject to the limitations in sensitivity and specificity of the computer vision methods used. In general, deep learning has recently revolutionised the field of computer vision, in some cases surpassing human performance for other object recognition tasks. In this paper, we evaluate...

  8. Sub-millimeter Bunch Length Non-invasive Diagnostic Based on the Diffraction and Cherenkov Radiation

    International Nuclear Information System (INIS)

    A layout for the investigation the coherent Cherenkov radiation from a dielectric target with a large spectral dispersion and the coherent diffraction radiation from a conducting screen as a tool for non-invasive longitudinal electron beam profile diagnostics are proposed for the 20∼30MeV Linac at Shanghai Institute of Applied Physics (SINAP). In this paper the status of the joint experiment and future plans are presented.

  9. Nanomaterials—Tools, Technology and Methodology of Nanotechnology Based Biomedical Systems for Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Christian Schmidt

    2015-07-01

    Full Text Available Nanomedicine helps to fight diseases at the cellular and molecular level by utilizing unique properties of quasi-atomic particles at a size scale ranging from 1 to 100 nm. Nanoparticles are used in therapeutic and diagnostic approaches, referred to as theranostics. The aim of this review is to illustrate the application of general principles of nanotechnology to select examples of life sciences, molecular medicine and bio-assays. Critical aspects relating to those examples are discussed.

  10. Agent Based Multiviews Requirements Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the current researches of viewpoints oriented requirements engineering and intelligent agent, we present the concept of viewpoint agent and its abstract model based on a meta-language for multiviews requirements engineering. It provided a basis for consistency checking and integration of different viewpoint requirements, at the same time, these checking and integration works can automatically realized in virtue of intelligent agent's autonomy, proactiveness and social ability. Finally, we introduce the practical application of the model by the case study of data flow diagram.

  11. Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy

    Science.gov (United States)

    Liu, Jen-Jane; Chang, Timothy C.; Pan, Ying; Hsiao, Shelly T.; Mach, Kathleen E.; Jensen, Kristin C.; Liao, Joseph C.

    2012-02-01

    Real-time imaging with confocal laser endomicroscopy (CLE) probes that fit in standard endoscopes has emerged as a clinically feasible technology for optical biopsy of bladder cancer. Confocal images of normal, inflammatory, and neoplastic urothelium obtained with intravesical fluorescein can be differentiated by morphologic characteristics. We compiled a confocal atlas of the urinary tract using these diagnostic criteria to be used in a prospective diagnostic accuracy study. Patients scheduled to undergo transurethral resection of bladder tumor underwent white light cystoscopy (WLC), followed by CLE, and histologic confirmation of resected tissue. Areas that appeared normal by WLC were imaged and biopsied as controls. We imaged and prospectively analyzed 135 areas in 57 patients. We show that CLE improves the diagnostic accuracy of WLC for diagnosing benign tissue, low and high grade cancer. Interobserver studies showed a moderate level of agreement by urologists and nonclinical researchers. Despite morphologic differences between inflammation and cancer, real-time differentiation can still be challenging. Identification of bladder cancer-specific contrast agents could provide molecular specificity to CLE. By using fluorescently-labeled antibodies or peptides that bind to proteins expressed in bladder cancer, we have identified putative molecular contrast agents for targeted imaging with CLE. We describe one candidate agent - anti-CD47 - that was instilled into bladder specimens. The tumor and normal urothelium were imaged with CLE, with increased fluorescent signal demonstrated in areas of tumor compared to normal areas. Thus, cancer-specificity can be achieved using molecular contrast agents ex vivo in conjunction with CLE.

  12. AN EXAMPLE - BASED, DIAGNOSTIC INVESTIGATION OF VALUE CREATION AND VALUE DESTRUCTION BY CORPORATE ACTIVISTS

    Directory of Open Access Journals (Sweden)

    GABURICI Matei

    2014-06-01

    Full Text Available This paper investigates, through an example-based scenario, the extent to which corporate activists create or destroy shareholder value; there are five high-profile campaigns analyzed related to four major players. The foundation of the analysis is a variant of DCF model which examines the cash flows to equity. In 4 out of 5 cases the financial metrics are computed in order to assess the performance of the subject company ex-ante and ex-post activists’ involvement.

  13. Partial shadowing detection based on equivalent thermal voltage monitoring for PV module diagnostics

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Rodriguez, Pedro

    2009-01-01

    in a larger system do not have a very obvious effect on the output power or fill factor of the PV array and can remain undetected, leading to failure. In this paper a method for detecting small area partial shadows, based on equivalent thermal voltage, is presented. A simplified expression of the equivalent...... thermal voltage is proposed, which increases the robustness against measurement errors and model limitations at low irradiation conditions. Experimental results confirm the high sensitivity of the method even to a relatively small area shadow, while showing very good robustness against increase in series...... resistance....

  14. Analytical Redundancy Design for Aeroengine Sensor Fault Diagnostics Based on SROS-ELM

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    2016-01-01

    Full Text Available Analytical redundancy technique is of great importance to guarantee the reliability and safety of aircraft engine system. In this paper, a machine learning based aeroengine sensor analytical redundancy technique is developed and verified through hardware-in-the-loop (HIL simulation. The modified online sequential extreme learning machine, selective updating regularized online sequential extreme learning machine (SROS-ELM, is employed to train the model online and estimate sensor measurements. It selectively updates the output weights of neural networks according to the prediction accuracy and the norm of output weight vector, tackles the problems of singularity and ill-posedness by regularization, and adopts a dual activation function in the hidden nodes combing neural and wavelet theory to enhance prediction capability. The experimental results verify the good generalization performance of SROS-ELM and show that the developed analytical redundancy technique for aeroengine sensor fault diagnosis based on SROS-ELM is effective and feasible.

  15. Use of the Attribute Hierarchy Method for Development of Student Cognitive Models and Diagnostic Assessments in Geoscience Education

    Science.gov (United States)

    Corrigan, S.; Brodsky, L. M.; Loper, S.; Brown, N.; Curley, J.; Baker, J.; Goss, M.; Castek, J.; Barber, J.

    2010-12-01

    There is a recognized need to better understand student learning in the geosciences (Stofflet, 1994; Zalles, Quallmalz, Gobert and Pallant, 2007). Educators, cognitive psychologists and practicing scientists have also called for instructional approaches that support deep conceptual development (Manduca, Mogk and Stillings, 2004, Libarkin and Kurdziel, 2006). In both cases there is an important role for educational measures that can generate descriptions of how student understanding develops over time and inform instruction. The presenters will suggest one way of responding to these needs by describing the Attribute Hierarchy Method (AHM) of assessment (Leighton, Gierl and Hunka, 2004; Gierl, Cui, Wang and Zhou, 2008) as enacted in a large-scale earth science curriculum development project funded by the Bill and Melinda Gates Foundation. The AHM is one approach to criterion referenced, diagnostic assessment that ties measure design to cognitive models of student learning in order to support justified inferences about students’ understanding and the knowledge required for continued development. The Attribute Hierarchy Method bears potential for researchers and practitioners interested in learning progressions and solves many problems associated with making meaningful, justified inferences about students’ understanding based on their assessment performances. The process followed to design and develop the project’s cognitive models as well as a description of how they are used in subsequent assessment task design will be emphasized in order to demonstrate how the AHM may be applied in the context of geoscience education. Results from over twenty student cognitive interviews, and two hypothesized cognitive models -- one describing a student pathway for understanding rock formation and a second describing a student pathway for increasingly sophisticated use of maps and models in the geosciences - are also described. Sample assessment items will be provided as

  16. A novel serum metabolomics-based diagnostic approach for colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shin Nishiumi

    Full Text Available BACKGROUND: To improve the quality of life of colorectal cancer patients, it is important to establish new screening methods for early diagnosis of colorectal cancer. METHODOLOGY/PRINCIPAL FINDINGS: We performed serum metabolome analysis using gas-chromatography/mass-spectrometry (GC/MS. First, the accuracy of our GC/MS-based serum metabolomic analytical method was evaluated by calculating the RSD% values of serum levels of various metabolites. Second, the intra-day (morning, daytime, and night and inter-day (among 3 days variances of serum metabolite levels were examined. Then, serum metabolite levels were compared between colorectal cancer patients (N = 60; N = 12 for each stage from 0 to 4 and age- and sex-matched healthy volunteers (N = 60 as a training set. The metabolites whose levels displayed significant changes were subjected to multiple logistic regression analysis using the stepwise variable selection method, and a colorectal cancer prediction model was established. The prediction model was composed of 2-hydroxybutyrate, aspartic acid, kynurenine, and cystamine, and its AUC, sensitivity, specificity, and accuracy were 0.9097, 85.0%, 85.0%, and 85.0%, respectively, according to the training set data. In contrast, the sensitivity, specificity, and accuracy of CEA were 35.0%, 96.7%, and 65.8%, respectively, and those of CA19-9 were 16.7%, 100%, and 58.3%, respectively. The validity of the prediction model was confirmed using colorectal cancer patients (N = 59 and healthy volunteers (N = 63 as a validation set. At the validation set, the sensitivity, specificity, and accuracy of the prediction model were 83.1%, 81.0%, and 82.0%, respectively, and these values were almost the same as those obtained with the training set. In addition, the model displayed high sensitivity for detecting stage 0-2 colorectal cancer (82.8%. CONCLUSIONS/SIGNIFICANCE: Our prediction model established via GC/MS-based serum metabolomic analysis

  17. A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore.

    Directory of Open Access Journals (Sweden)

    Vernon J Lee

    Full Text Available INTRODUCTION: Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI to determine predictors of influenza infection. METHODS: Personnel with FRI (defined as fever ≥ 37.5 °C, with cough or sore throat were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model. RESULTS: 821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9% had 2009 influenza A (H1N1, 58 (7.1% seasonal influenza A (H3N2 and 269 (32.8% influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%, specificity of 69% (95% CI: 62%, 75%, and overall accuracy of 68% (95% CI: 64%, 71%, performing significantly better than conventional influenza-like illness (ILI criteria. CONCLUSIONS: Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.

  18. HMM-based Trust Model

    DEFF Research Database (Denmark)

    ElSalamouny, Ehab; Nielsen, Mogens; Sassone, Vladimiro

    2010-01-01

    Probabilistic trust has been adopted as an approach to taking security sensitive decisions in modern global computing environments. Existing probabilistic trust frameworks either assume fixed behaviour for the principals or incorporate the notion of ‘decay' as an ad hoc approach to cope with thei...... the major limitation of existing Beta trust model. We show the consistency of the HMM-based trust model and contrast it against the well known Beta trust model with the decay principle in terms of the estimation precision....

  19. Model-Based Security Testing

    CERN Document Server

    Schieferdecker, Ina; Schneider, Martin; 10.4204/EPTCS.80.1

    2012-01-01

    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing,...

  20. Evidence Based Medicine; Positive and Negative Likelihood Ratios of Diagnostic Tests

    Directory of Open Access Journals (Sweden)

    Alireza Baratloo

    2015-10-01

    Full Text Available In the previous two parts of educational manuscript series in Emergency, we explained some screening characteristics of diagnostic tests including accuracy, sensitivity, specificity, and positive and negative predictive values. In the 3rd  part we aimed to explain positive and negative likelihood ratio (LR as one of the most reliable performance measures of a diagnostic test. To better understand this characteristic of a test, it is first necessary to fully understand the concept of sensitivity and specificity. So we strongly advise you to review the 1st part of this series again. In short, the likelihood ratios are about the percentage of people with and without a disease but having the same test result. The prevalence of a disease can directly influence screening characteristics of a diagnostic test, especially its sensitivity and specificity. Trying to eliminate this effect, LR was developed. Pre-test probability of a disease multiplied by positive or negative LR can estimate post-test probability. Therefore, LR is the most important characteristic of a test to rule out or rule in a diagnosis. A positive likelihood ratio > 1 means higher probability of the disease to be present in a patient with a positive test. The further from 1, either higher or lower, the stronger the evidence to rule in or rule out the disease, respectively. It is obvious that tests with LR close to one are less practical. On the other hand, LR further from one will have more value for application in medicine. Usually tests with 0.1 < LR > 10 are considered suitable for implication in routine practice.

  1. A Diagnostic Procedure for Transformative Change Based on Transitions, Resilience, and Institutional Thinking

    Directory of Open Access Journals (Sweden)

    Briony C. Ferguson

    2013-12-01

    Full Text Available Urban water governance regimes around the world have traditionally planned large-scale, centralized infrastructure systems that aim to control variables and reduce uncertainties. There is growing sectoral awareness that a transition toward sustainable alternatives is necessary if systems are to meet society's future water needs in the context of drivers such as climate change and variability, demographic changes, environmental degradation, and resource scarcity. However, there is minimal understanding of how the urban water sector should operationalize its strategic planning for such change to facilitate the transition to a sustainable water future. We have integrated concepts from transitions, resilience, and institutional theory to develop a diagnostic procedure for revealing insights into which types of strategic action are most likely to influence the direction and pace of change in the overall system toward a desired trajectory. The procedure used the multipattern approach, from transition theory, to identify the system conditions and type of changes necessary for enabling system transformation. It incorporated the adaptive cycle, from resilience theory, to identify the current phase of change for different parts of the system. Finally, it drew on the concepts of institutional pillars and institutional work to identify mechanisms that are likely to be most effective in influencing the transformative dynamics of the system toward a desired trajectory. We have demonstrated application of the proposed diagnostic procedure on a case study of recent transformative change in the urban water system of Melbourne, Australia. We have proposed that an operational diagnostic procedure provides a useful platform from which planners, policy analysts, and decision makers could follow a process of deduction that identifies which types of strategic action best fit the current system conditions.

  2. A contactless microwave-based diagnostic tool for high repetition rate laser systems

    CERN Document Server

    Braggio, C

    2014-01-01

    We report on a novel electro-optic device for the diagnostics of high repetition rate laser systems. It is composed of a microwave receiver and of a second order nonlinear crystal, whose irradiation with a train of short laser pulses produces a time-dependent polarization in the crystal itself as a consequence of optical rectification. This process gives rise to the emission of microwave radiation that is detected by a receiver and is analyzed to infer the repetition rate and intensity of the pulses. We believe that this new method may overcome some of the limitations of photodetection techniques.

  3. Development of Recombinant Nucleoprotein-Based Diagnostic Systems for Lassa Fever▿

    OpenAIRE

    Saijo, Masayuki; Georges-Courbot, Marie-Claude; Marianneau, Philippe; Romanowski, Victor; Fukushi, Shuetsu; Mizutani, Tetsuya; Georges, Alain-Jean; Kurata, Takeshi; Kurane, Ichiro; Morikawa, Shigeru

    2007-01-01

    Diagnostic systems for Lassa fever (LF), a viral hemorrhagic fever caused by Lassa virus (LASV), such as enzyme immunoassays for the detection of LASV antibodies and LASV antigens, were developed using the recombinant nucleoprotein (rNP) of LASV (LASV-rNP). The LASV-rNP was expressed in a recombinant baculovirus system. LASV-rNP was used as an antigen in the detection of LASV-antibodies and as an immunogen for the production of monoclonal antibodies. The LASV-rNP was also expressed in HeLa ce...

  4. Comparing Tuberculosis Diagnostic Yield in Smear/Culture and Xpert® MTB/RIF-Based Algorithms Using a Non-Randomised Stepped-Wedge Design.

    Directory of Open Access Journals (Sweden)

    Pren Naidoo

    Full Text Available Primary health services in Cape Town, South Africa.To compare tuberculosis (TB diagnostic yield in an existing smear/culture-based and a newly introduced Xpert® MTB/RIF-based algorithm.TB diagnostic yield (the proportion of presumptive TB cases with a laboratory diagnosis of TB was assessed using a non-randomised stepped-wedge design as sites transitioned to the Xpert® based algorithm. We identified the full sequence of sputum tests recorded in the electronic laboratory database for presumptive TB cases from 60 primary health sites during seven one-month time-points, six months apart. Differences in TB yield and temporal trends were estimated using a binomial regression model.TB yield was 20.9% (95% CI 19.9% to 22.0% in the smear/culture-based algorithm compared to 17.9% (95%CI 16.4% to 19.5% in the Xpert® based algorithm. There was a decline in TB yield over time with a mean risk difference of -0.9% (95% CI -1.2% to -0.6% (p<0.001 per time-point. When estimates were adjusted for the temporal trend, TB yield was 19.1% (95% CI 17.6% to 20.5% in the smear/culture-based algorithm compared to 19.3% (95% CI 17.7% to 20.9% in the Xpert® based algorithm with a risk difference of 0.3% (95% CI -1.8% to 2.3% (p = 0.796. Culture tests were undertaken for 35.5% of smear-negative compared to 17.9% of Xpert® negative low MDR-TB risk cases and for 82.6% of smear-negative compared to 40.5% of Xpert® negative high MDR-TB risk cases in respective algorithms.Introduction of an Xpert® based algorithm did not produce the expected increase in TB diagnostic yield. Studies are required to assess whether improving adherence to the Xpert® negative algorithm for HIV-infected individuals will increase yield. In light of the high cost of Xpert®, a review of its role as a screening test for all presumptive TB cases may be warranted.

  5. PCA3 and PCA3-Based Nomograms Improve Diagnostic Accuracy in Patients Undergoing First Prostate Biopsy

    Directory of Open Access Journals (Sweden)

    Virginie Vlaeminck-Guillem

    2013-08-01

    Full Text Available While now recognized as an aid to predict repeat prostate biopsy outcome, the urinary PCA3 (prostate cancer gene 3 test has also been recently advocated to predict initial biopsy results. The objective is to evaluate the performance of the PCA3 test in predicting results of initial prostate biopsies and to determine whether its incorporation into specific nomograms reinforces its diagnostic value. A prospective study included 601 consecutive patients addressed for initial prostate biopsy. The PCA3 test was performed before ≥12-core initial prostate biopsy, along with standard risk factor assessment. Diagnostic performance of the PCA3 test was evaluated. The three available nomograms (Hansen’s and Chun’s nomograms, as well as the updated Prostate Cancer Prevention Trial risk calculator; PCPT were applied to the cohort, and their predictive accuracies were assessed in terms of biopsy outcome: the presence of any prostate cancer (PCa and high-grade prostate cancer (HGPCa. The PCA3 score provided significant predictive accuracy. While the PCPT risk calculator appeared less accurate; both Chun’s and Hansen’s nomograms provided good calibration and high net benefit on decision curve analyses. When applying nomogram-derived PCa probability thresholds ≤30%, ≤6% of HGPCa would have been missed, while avoiding up to 48% of unnecessary biopsies. The urinary PCA3 test and PCA3-incorporating nomograms can be considered as reliable tools to aid in the initial biopsy decision.

  6. A new interferometry-based electron density fluctuation diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Kasten, C. P.; Irby, J. H.; Murray, R.; White, A. E.; Pace, D. C.

    2012-10-01

    The two-color interferometry diagnostic on the Alcator C-Mod tokamak has been upgraded to measure fluctuations in the electron density and density gradient for turbulence and transport studies. Diagnostic features and capabilities are described. In differential mode, fast phase demodulation electronics detect the relative phase change between ten adjacent, radially-separated (ΔR = 1.2 cm, adjustable), vertical-viewing chords, which allows for measurement of the line-integrated electron density gradient. The system can be configured to detect the absolute phase shift of each chord by comparison to a local oscillator, measuring the line-integrated density. Each chord is sensitive to density fluctuations with kR < 20.3 cm-1 and is digitized at up to 10 MS/s, resolving aspects of ion temperature gradient-driven modes and other long-wavelength turbulence. Data from C-Mod discharges is presented, including observations of the quasi-coherent mode in enhanced D-alpha H-mode plasmas and the weakly coherent mode in I-mode.

  7. Appropriate targeting of artemisinin-based combination therapy by community health workers using malaria rapid diagnostic tests

    DEFF Research Database (Denmark)

    Ndyomugyenyi, Richard; Magnussen, Pascal; Lal, Sham;

    2016-01-01

    delivered by CHWs are more accurately targeted to children with malaria parasites. mRDT use could play an important role in reducing overdiagnosis of malaria and improving fever case management within iCCM, in both moderate-to-high and low transmission areas. Nonetheless, missed treatments due to the low...... sensitivity of current mRDTs in patients with low parasite density are a concern. For community-based treatment in areas of low transmission and/or non-immune populations, presumptive treatment of all fevers as malaria may be advisable, until more sensitive diagnostic assays, suitable for routine use by CHWs...

  8. Improving procedure and results of diagnostic roentgenologic examination of pulmonary emphysema by methods based on lung function tests

    International Nuclear Information System (INIS)

    The article reports a comparative evaluation of examinations in 225 patients intended to show the achievements of a novel procedure based on lung function tests for optimisation of the roentgenologic diagnosis of pulmonary emphysema. The improvements are quantified by discrimination analyses. The approach introduces a novel, additional roentgenological criterion indicating emphysema, called 'Anlagemass', which supplements the usual qualitative and quantitative evaluation of the chest radiograph. A suitable computer code developed for data processing adds advantages in terms of processing time and improved objectiveness of diagnostic evaluation, as compared to existing techniques. The screening results obtained with the method reported ought to be verified by other methods such as bodyplethysmography or CT. (orig.)

  9. Model-based requirements engineering

    CERN Document Server

    Holt, Jon

    2012-01-01

    This book provides a hands-on introduction to model-based requirementsengineering and management by describing a set of views that form the basisfor the approach. These views take into account each individual requirement interms of its description, but then also provide each requirement with meaning byputting it into the correct 'context'. A requirement that has been put into a contextis known as a 'use case' and may be based upon either stakeholders or levelsof hierarchy in a system. Each use case must then be analysed and validated bydefining a combination of scenarios and formal mathematica

  10. A meta-analysis of the diagnostic accuracy of dengue virus-specific IgA antibody-based tests for detection of dengue infection.

    Science.gov (United States)

    Alagarasu, K; Walimbe, A M; Jadhav, S M; Deoshatwar, A R

    2016-03-01

    Immunoglobulin A (IgA)-based tests have been evaluated in different studies for their utility in diagnosing dengue infections. In most of the studies, the results were inconclusive because of a small sample size. Hence, a meta-analysis involving nine studies with 2096 samples was performed to assess the diagnostic accuracy of IgA-based tests in diagnosing dengue infections. The analysis was conducted using Meta-Disc software. The results revealed that IgA-based tests had an overall sensitivity, specificity, diagnostic odds ratio, and positive and negative likelihood ratios of 73·9%, 95·2%, 66·7, 22·0 and 0·25, respectively. Significant heterogeneity was observed between the studies. The type of test, infection status and day of sample collection influenced the diagnostic accuracy. The IgA-based diagnostic tests showed a greater accuracy when the samples were collected 4 days after onset of symptoms and for secondary infections. The results suggested that IgA-based tests had a moderate level of accuracy and are diagnostic of the disease. However, negative results cannot be used alone for dengue diagnosis. More prospective studies comparing the diagnostic accuracy of combinations of antigen-based tests with either IgA or IgM are needed and might be useful for suggesting the best strategy for dengue diagnosis.

  11. Modeling and Diagnostics of Fuel Cell Porous Media for Improving Water Transport

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Jeff; M' edici, Ezequiel

    2011-07-01

    When a fuel cell is operating at high current density, water accumulation is a significant cause of performance and component degradation. Investigating the water transport inside the fuel cell is a challenging task due to opacity of the components, the randomness of the porous materials, and the difficulty in gain access to the interior for measurement due to the small dimensions of components. Numerical simulation can provide a good insight of the evolution of the water transport under different working condition. However, the validation of those simulations is remains an issue due the same experimental obstacles associated with in-situ measurements. The discussion herein will focus on pore-network modeling of the water transport on the PTL and the insights gained from simulations as well as in the validation technique. The implications of a recently published criterion to characterize PTL, based on percolation theory, and validate numerical simulation are discussed.

  12. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    Science.gov (United States)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  13. Model-based tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, David H.; Lehman, Sean K.; Goodman, Dennis M.

    2012-06-26

    A model-based approach to estimating wall positions for a building is developed and tested using simulated data. It borrows two techniques from geophysical inversion problems, layer stripping and stacking, and combines them with a model-based estimation algorithm that minimizes the mean-square error between the predicted signal and the data. The technique is designed to process multiple looks from an ultra wideband radar array. The processed signal is time-gated and each section processed to detect the presence of a wall and estimate its position, thickness, and material parameters. The floor plan of a building is determined by moving the array around the outside of the building. In this paper we describe how the stacking and layer stripping algorithms are combined and show the results from a simple numerical example of three parallel walls.

  14. Evaluating Frequency, Diagnostic Quality, and Cost of Lyme Borreliosis Testing in Germany: A Retrospective Model Analysis

    Directory of Open Access Journals (Sweden)

    I. Müller

    2012-01-01

    Full Text Available Background. Data on the economic impact of Lyme borreliosis (LB on European health care systems is scarce. This project focused on the epidemiology and costs for laboratory testing in LB patients in Germany. Materials and Methods. We performed a sentinel analysis of epidemiological and medicoeconomic data for 2007 and 2008. Data was provided by a German statutory health insurance (DAK company covering approx. 6.04 million members. In addition, the quality of diagnostic testing for LB in Germany was studied. Results. In 2007 and 2008, the incident diagnosis LB was coded on average for 15,742 out of 6.04 million insured members (0.26%. 20,986 EIAs and 12,558 immunoblots were ordered annually for these patients. For all insured members in the outpatient sector, a total of 174,820 EIAs and 52,280 immunoblots were reimbursed annually to health care providers (cost: 2,600,850€. For Germany, the overall expected cost is estimated at 51,215,105€. However, proficiency testing data questioned test quality and standardization of diagnostic assays used. Conclusion. Findings from this study suggest ongoing issues related to care for LB and may help to improve future LB disease management.

  15. Energy based hybrid turbulence modeling

    Science.gov (United States)

    Haering, Sigfried; Moser, Robert

    2015-11-01

    Traditional hybrid approaches exhibit deficiencies when used for fluctuating smooth-wall separation and reattachment necessitating ad-hoc delaying functions and model tuning making them no longer useful as a predictive tool. Additionally, complex geometries and flows often require high cell aspect-ratios and large grid gradients as a compromise between resolution and cost. Such transitions and inconsistencies in resolution detrimentally effect the fidelity of the simulation. We present the continued development of a new hybrid RANS/LES modeling approach specifically developed to address these challenges. In general, modeled turbulence is returned to resolved scales by reduced or negative model viscosity until a balance between theoretical and actual modeled turbulent kinetic energy is attained provided the available resolution. Anisotropy in the grid and resolved field are directly integrated into this balance. A viscosity-based correction is proposed to account for resolution inhomogeneities. Both the hybrid framework and resolution gradient corrections are energy conserving through an exchange of resolved and modeled turbulence.

  16. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard; Braun, James E.

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  17. Pulsed Blue and Ultraviolet Laser System for Fluorescence Diagnostics based on Nonlinear Frequency Conversion

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay

    . The spatial and spectral properties of the pump source were also investigated individually, and it was concluded that a broad spectrum tapered diode pump source may be most stable and cost-effective. To generate high peak power pulsed output, Q-switched lasers were considered. In particular, synchronized Q...... was directly frequency-doubled to 404 nm using an external cavity, and was used in an animal experiment for a novel approach in estimating photosensitizer concentration using fluorescence imaging. Secondly, a frequency-tripled, 355 nm, Q-switched, DPSS laser was used in a preliminary clinical investigation...... in autofluorescence diagnostic of skin cancer. While the preliminary results are promising, the system would benefit from a 340 nm light source that tunes into the absorption peaks of endogenous fluorophores. The imaging system would also benefit from a high-peak power light source that would increase the signal...

  18. A fully automated in vitro diagnostic system based on magnetic tunnel junction arrays and superparamagnetic particles

    Science.gov (United States)

    Lian, Jie; Chen, Si; Qiu, Yuqin; Zhang, Suohui; Shi, Stone; Gao, Yunhua

    2012-04-01

    A fully automated in vitro diagnostic (IVD) system for diagnosing acute myocardial infarction was developed using high sensitivity MTJ array as sensors and nano-magnetic particles as tags. On the chip is an array of 12 × 106 MTJ devices integrated onto a 3 metal layer CMOS circuit. The array is divided into 48 detection areas, therefore 48 different types of bio targets can be analyzed simultaneously if needed. The chip is assembled with a micro-fluidic cartridge which contains all the reagents necessary for completing the assaying process. Integrated with electrical, mechanical and micro-fluidic pumping devices and with the reaction protocol programed in a microprocessor, the system only requires a simple one-step analyte application procedure to operate and yields results of the three major AMI bio-markers (cTnI, MYO, CK-MB) in 15 mins.

  19. A knowledge-based system for finding cutsets and performing diagnostics

    International Nuclear Information System (INIS)

    In performing a probabilistic risk assessment (PRA), fault trees are constructed and evaluated; this is called fault-tree analysis. The end products of fault-tree analysis are cutsets. Cutsets are defined as lists of components whose failure causes the failure of the system. Fault-tree analysis is error prone and time consuming. The Expert System for Analyzing Systems (ESAS) has been developed, which implements a method that bypasses fault-tree analysis for finding cutsets. This expert system then uses these cutsets for diagnostic purposes. Given an anomaly, ESAS finds the corresponding cutsets that contain the probable causes. Several thermal-hydraulic and electrical systems were analyzed by ESAS, and the cutsets found were identical to those obtained by performing fault-tree analysis. To further test ESAS, it is hoped to analyze systems in the Duane Arnold Energy Center nuclear power plant located at Palo, Iowa, operated by Iowa Electric and Light Company

  20. Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals

    Directory of Open Access Journals (Sweden)

    Glowacz A.

    2014-10-01

    Full Text Available In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance and the number of faulty motors in the industry.