WorldWideScience

Sample records for based cortical thickness

  1. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  2. Heritability analysis of surface-based cortical thickness estimation on a large twin cohort

    Science.gov (United States)

    Shen, Kaikai; Doré, Vincent; Rose, Stephen; Fripp, Jurgen; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Thompson, Paul M.; Wright, Margaret J.; Salvado, Olivier

    2015-03-01

    The aim of this paper is to assess the heritability of cerebral cortex, based on measurements of grey matter (GM) thickness derived from structural MR images (sMRI). With data acquired from a large twin cohort (328 subjects), an automated method was used to estimate the cortical thickness, and EM-ICP surface registration algorithm was used to establish the correspondence of cortex across the population. An ACE model was then employed to compute the heritability of cortical thickness. Heritable cortical thickness measures various cortical regions, especially in frontal and parietal lobes, such as bilateral postcentral gyri, superior occipital gyri, superior parietal gyri, precuneus, the orbital part of the right frontal gyrus, right medial superior frontal gyrus, right middle occipital gyrus, right paracentral lobule, left precentral gyrus, and left dorsolateral superior frontal gyrus.

  3. Online Learning for Classification of Alzheimer Disease based on Cortical Thickness and Hippocampal Shape Analysis.

    Science.gov (United States)

    Lee, Ga-Young; Kim, Jeonghun; Kim, Ju Han; Kim, Kiwoong; Seong, Joon-Kyung

    2014-01-01

    Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify AD patients using magnetic resonance imaging in the mobile environment. We propose an incremental classification for mobile healthcare systems. Our classification method is based on incremental learning for AD diagnosis and AD prediction using the cortical thickness data and hippocampus shape. We constructed a classifier based on principal component analysis and linear discriminant analysis. We performed initial learning and mobile subject classification. Initial learning is the group learning part in our server. Our smartphone agent implements the mobile classification and shows various results. With use of cortical thickness data analysis alone, the discrimination accuracy was 87.33% (sensitivity 96.49% and specificity 64.33%). When cortical thickness data and hippocampal shape were analyzed together, the achieved accuracy was 87.52% (sensitivity 96.79% and specificity 63.24%). In this paper, we presented a classification method based on online learning for AD diagnosis by employing both cortical thickness data and hippocampal shape analysis data. Our method was implemented on smartphone devices and discriminated AD patients for normal group.

  4. Cortical thickness and prosocial behavior in school-age children: A population-based MRI study.

    Science.gov (United States)

    Thijssen, Sandra; Wildeboer, Andrea; Muetzel, Ryan L; Bakermans-Kranenburg, Marian J; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W V; van der Lugt, Aad; Verhulst, Frank C; Tiemeier, Henning; van IJzendoorn, Marinus H; White, Tonya

    2015-01-01

    Prosocial behavior plays an important role in establishing and maintaining relationships with others and thus may have important developmental implications. This study examines the association between cortical thickness and prosocial behavior in a population-based sample of 6- to 9-year-old children. The present study was embedded within the Generation R Study. Magnetic resonance scans were acquired from 464 children whose parents had completed the prosocial scale of the Strengths and Difficulties Questionnaire. To study the association between cortical thickness and prosocial behavior, we performed whole-brain surface-based analyses. Prosocial behavior was related to a thicker cortex in a cluster that covers part of the left superior frontal and rostral middle frontal cortex (p Gender moderated the association between prosocial behavior and cortical thickness in a cluster including the right rostral middle frontal and superior frontal cortex (p right superior parietal cortex, cuneus, and precuneus (p theory of mind (superior frontal cortex, rostral middle frontal cortex cuneus, and precuneus) and inhibitory control (superior frontal and rostral middle frontal cortex).

  5. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures.

    Science.gov (United States)

    Wang, Gang; Wang, Yalin

    2017-02-15

    In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Cortical thickness patterns as state biomarker of anorexia nervosa.

    Science.gov (United States)

    Lavagnino, Luca; Mwangi, Benson; Cao, Bo; Shott, Megan E; Soares, Jair C; Frank, Guido K W

    2018-03-01

    Only few studies have investigated cortical thickness in anorexia nervosa (AN), and it is unclear whether patterns of altered cortical thickness can be identified as biomarkers for AN. Cortical thickness was measured in 19 adult women with restricting-type AN, 24 individuals recovered from restricting-type AN (REC-AN) and 24 healthy controls. Those individuals with current or recovered from AN had previously shown altered regional cortical volumes across orbitofrontal cortex and insula. A linear relevance vector machine-learning algorithm estimated patterns of regional thickness across 24 subdivisions of those regions. Region-based analysis showed higher cortical thickness in AN and REC-AN, compared to controls, in the right medial orbital (olfactory) sulcus, and greater cortical thickness for short insular gyri in REC-AN versus controls bilaterally. The machine-learning algorithm identified a pattern of relatively higher right orbital, right insular and left middle frontal cortical thickness, but lower left orbital, right middle and inferior frontal, and bilateral superior frontal cortical thickness specific to AN versus controls (74% specificity and 74% sensitivity, χ 2 p < .004); predicted probabilities differed significantly between AN and controls (p < .023). No pattern significantly distinguished the REC-AN group from controls. Higher cortical thickness in medial orbitofrontal cortex and insula probably contributes to higher gray matter volume in AN in those regions. The machine-learning algorithm identified a mixed pattern of mostly higher orbital and insular, but relatively lower superior frontal cortical thickness in individuals with current AN. These novel results suggest that regional cortical thickness patterns could be state markers for AN. © 2018 Wiley Periodicals, Inc.

  7. Perceived stress is associated with increased rostral middle frontal gyrus cortical thickness: a family-based and discordant-sibling investigation.

    Science.gov (United States)

    Michalski, L J; Demers, C H; Baranger, D A A; Barch, D M; Harms, M P; Burgess, G C; Bogdan, R

    2017-11-01

    Elevated stress perception and depression commonly co-occur, suggesting that they share a common neurobiology. Cortical thickness of the rostral middle frontal gyrus (RMFG), a region critical for executive function, has been associated with depression- and stress-related phenotypes. Here, we examined whether RMFG cortical thickness is associated with these phenotypes in a large family-based community sample. RMFG cortical thickness was estimated using FreeSurfer among participants (n = 879) who completed the ongoing Human Connectome Project. Depression-related phenotypes (i.e. sadness, positive affect) and perceived stress were assessed via self-report. After accounting for sex, age, ethnicity, average whole-brain cortical thickness, twin status and familial structure, RMFG thickness was positively associated with perceived stress and sadness and negatively associated with positive affect at small effect sizes (accounting for 0.2-2.4% of variance; p-fdr: 0.0051-0.1900). Perceived stress was uniquely associated with RMFG thickness after accounting for depression-related phenotypes. Further, among siblings discordant for perceived stress, those reporting higher perceived stress had increased RMFG thickness (P = 4 × 10 -7 ). Lastly, RMFG thickness, perceived stress, depressive symptoms, and positive affect were all significantly heritable, with evidence of shared genetic and environmental contributions between self-report measures. Stress perception and depression share common genetic, environmental, and neural correlates. Variability in RMFG cortical thickness may play a role in stress-related depression, although effects may be small in magnitude. Prospective studies are required to examine whether variability in RMFG thickness may function as a risk factor for stress exposure and/or perception, and/or arises as a consequence of these phenotypes. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. Reduced cortical thickness in gambling disorder

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Chamberlain, Samuel R

    2015-01-01

    with significant reductions (average 15.8-19.9 %) in cortical thickness, versus controls, predominantly in right frontal cortical regions. Pronounced right frontal morphometric brain abnormalities occur in gambling disorder, supporting neurobiological overlap with substance disorders and its recent......Gambling disorder has recently been recognized as a prototype 'behavioral addiction' by virtue of its inclusion in the DSM-5 category of 'Substance-Related and Addictive Disorders.' Despite its newly acquired status and prevalence rate of 1-3 % globally, relatively little is known regarding...... the neurobiology of this disorder. The aim of this study was to explore cortical morphometry in untreated gambling disorder, for the first time. Subjects with gambling disorder (N = 16) free from current psychotropic medication or psychiatric comorbidities, and healthy controls (N = 17), were entered...

  9. Cortical Thickness and Episodic Memory Impairment in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Bizzo, Bernardo Canedo; Sanchez, Tiago Arruda; Tukamoto, Gustavo; Zimmermann, Nicolle; Netto, Tania Maria; Gasparetto, Emerson Leandro

    2017-01-01

    The purpose of this study was to investigate differences in brain cortical thickness of systemic lupus erythematosus (SLE) patients with and without episodic memory impairment and healthy controls. We studied 51 patients divided in 2 groups (SLE with episodic memory deficit, n = 17; SLE without episodic memory deficit, n = 34) by the Rey Auditory Verbal Learning Test and 34 healthy controls. Groups were paired based on sex, age, education, Mini-Mental State Examination score, and accumulation of disease burden. Cortical thickness from magnetic resonance imaging scans was determined using the FreeSurfer software package. SLE patients with episodic memory deficits presented reduced cortical thickness in the left supramarginal cortex and superior temporal gyrus when compared to the control group and in the right superior frontal, caudal, and rostral middle frontal and precentral gyri when compared to the SLE group without episodic memory impairment considering time since diagnosis of SLE as covaried. There were no significant differences in the cortical thickness between the SLE without episodic memory and control groups. Different memory-related cortical regions thinning were found in the episodic memory deficit group when individually compared to the groups of patients without memory impairment and healthy controls. Copyright © 2016 by the American Society of Neuroimaging.

  10. Cortical Thickness Changes Associated with Photoparoxysmal Response

    DEFF Research Database (Denmark)

    Hanganu, Alexandru; Groppa, Stanislav A; Deuschl, Günther

    2014-01-01

    Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal co...... in the occipital lobe, frontoparietal regions and temporal lobe, which also show functional changes associated with PPR. Patients with epilepsy present changes in the temporal lobe and supplementary motor area.......-positive-subjects presented a significant decrease of cortical thickness in the temporal cortex in the same group contrast. IGE patients exhibited lower cortical thickness in the temporal lobe bilaterally and in the right paracentral region in comparison to PPR-positive-subjects. Our study demonstrates structural changes......Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal...

  11. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  13. Technical note: cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    NARCIS (Netherlands)

    Humbert, L.; Hazrati Marangalou, J.; Del Río Barquero, L.M.; van Lenthe, G.H.; van Rietbergen, B.

    2016-01-01

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical

  14. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Science.gov (United States)

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  15. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Directory of Open Access Journals (Sweden)

    Kai Yuan

    Full Text Available Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18 and age-, education- and gender-matched controls (n = 18 were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC, insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  16. Overweight is not associated with cortical thickness alterations in children

    Directory of Open Access Journals (Sweden)

    Rachel Jane Sharkey

    2015-02-01

    Full Text Available IntroductionSeveral studies report an association between body mass index (BMI and cortical thickness in adults. Some studies demonstrate diffuse cortical thinning in obesity, while others report effects in areas that are associated with self-regulation, such as lateral prefrontal cortex. MethodsThis study used multilevel modelling of data from the NIH Pediatric MRI Data Repository, a mixed longitudinal and cross-sectional database, to examine the relationship between cortical thickness and body weight in children. Cortical thickness was computed at 81,942 vertices of 716 MRI scans from 378 children aged between 4 and 18 years. Body mass index Z score for age was computed for each participant. We preformed vertex-wise statistical analysis of the relationship between cortical thickness and BMI, accounting for age and gender. In addition, cortical thickness was extracted from regions of interest in prefrontal cortex and insula.ResultsNo significant association between cortical thickness and BMI was found, either by statistical parametric mapping or by region of interest analysis. Results remained negative when the analysis was restricted to children aged 12-18.ConclusionsThe correlation between BMI and cortical thickness was not found in this large pediatric sample. The association between BMI and cortical thinning develops after adolescence. This has implications for the nature of the relationship between brain anatomy and weight gain.

  17. Obstructive sleep apnea and cortical thickness in females and males.

    Science.gov (United States)

    Macey, Paul M; Haris, Natasha; Kumar, Rajesh; Thomas, M Albert; Woo, Mary A; Harper, Ronald M

    2018-01-01

    Obstructive sleep apnea (OSA) affects approximately 10% of adults, and alters brain gray and white matter. Psychological and physiological symptoms of the disorder are sex-specific, perhaps related to greater injury occurs in female than male patients in white matter. Our objective was to identify influences of OSA separated by sex on cortical gray matter. We assessed cortical thickness in 48 mild-severe OSA patients (mean age±std[range] = 46.5±9.0[30.8-62.7] years; apnea-hypopnea index = 32.6±21.1[6-102] events/hour; 12 female, 36 male; OSA severity: 5 mild, 18 moderate, 25 severe) and 62 controls (mean age = 47.7±8.9[30.9-65.8] years; 22 female, 40 male). All OSA patients were recently-diagnosed via polysomnography, and control subjects screened and a subset assessed with sleep studies. We used high-resolution magnetic resonance imaging to identify OSA-related cortical thinning, based on a model with condition and sex as independent variables. OSA and OSA-by-sex interaction effects were assessed (Pfrontal lobe in female OSA vs. all other groups. Significant thinning within the pre- and post-central gyri and the superior temporal gyrus, extending into the insula, appeared between the general OSA populations vs. control subjects. No areas showed increased thickness in OSA vs. controls or positive female OSA interaction effects. Reduced cortical thickness likely represents tissue atrophy from long term injury, including death of neurons and supporting glia from repeated intermittent hypoxic exposure in OSA, although disease comordities may also contribute to thinning. Lack of polysomnography in all control subjects means results may be confounded by undiagnosed OSA. The greater cortical injury in cognitive areas of female OSA patients may underlie enhanced symptoms in that group. The thinning associated with OSA in male and females OSA patients may contribute to autonomic dysregulation and impaired upper airway sensori-motor function.

  18. Brain cortical thickness in male adolescents with serious substance use and conduct problems.

    Science.gov (United States)

    Chumachenko, Serhiy Y; Sakai, Joseph T; Dalwani, Manish S; Mikulich-Gilbertson, Susan K; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K; Banich, Marie T; Crowley, Thomas J

    2015-01-01

    Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right > left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches.

  19. Increased Insular Cortical Thickness Associated With Symptom Severity in Male Youths With Internet Gaming Disorder: A Surface-Based Morphometric Study

    Science.gov (United States)

    Wang, Shuai; Liu, Jing; Tian, Lin; Chen, Limin; Wang, Jun; Tang, Qunfeng; Zhang, Fuquan; Zhou, Zhenhe

    2018-01-01

    With the rising increase in Internet-usage, Internet gaming disorder (IGD) has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT). We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder. PMID:29666588

  20. Increased Insular Cortical Thickness Associated With Symptom Severity in Male Youths With Internet Gaming Disorder: A Surface-Based Morphometric Study

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2018-04-01

    Full Text Available With the rising increase in Internet-usage, Internet gaming disorder (IGD has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT. We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder.

  1. Evaluation of deep gray matter volume, cortical thickness and white matter integrity in patients with typical absence epilepsy: a study using voxelwise-based techniques

    International Nuclear Information System (INIS)

    Correa, D.G.; Ventura, N.; Tukamoto, G.; Gasparetto, E.L.; Zimmermann, N.; Doring, T.M.; Leme, J.; Pereira, M.; Andrea, I. d'; Rego, C.; Alves-Leon, S.V.

    2017-01-01

    The objective of this study was to evaluate the cortical thickness and the volume of deep gray matter structures, measured from 3D T1-weighted gradient echo imaging, and white matter integrity, by diffusion tensor imaging (DTI) in patients with typical absence epilepsy (AE). Patients (n = 19) with typical childhood AE and juvenile AE, currently taking antiepileptic medication, were compared with control subjects (n = 19), matched for gender and age. 3D T1 magnetization-prepared rapid gradient echo-weighted imaging and DTI along 30 noncolinear directions were performed using a 1.5-T MR scanner. FreeSurfer was used to perform cortical volumetric reconstruction and segmentation of deep gray matter structures. For tract-based spatial statistics analysis of DTI, a white matter skeleton was created, along with a permutation-based inference with 5000 permutations. A threshold of p < 0.05 was used to identify abnormalities in fractional anisotropy (FA). The mean, radial, and axial diffusivities were also projected onto the mean FA skeleton. Patients with AE presented decreased FA and increased mean diffusivity and radial diffusivity values in the genu and the body of the corpus callosum and right anterior corona radiata, as well as decreased axial diffusivity in the left posterior thalamic radiation, inferior cerebellar peduncle, right cerebral peduncle, and right corticospinal tract. However, there were no significant differences in cortical thickness or deep gray matter structure volumes between patients with AE and controls. Abnormalities found in white matter integrity may help to better understand the pathophysiology of AE and optimize diagnosis and treatment strategies. (orig.)

  2. Evaluation of deep gray matter volume, cortical thickness and white matter integrity in patients with typical absence epilepsy: a study using voxelwise-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Correa, D.G.; Ventura, N.; Tukamoto, G.; Gasparetto, E.L. [Federal University of Rio de Janeiro, Department of Radiology, Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro (Brazil); Zimmermann, N. [Federal University of Rio de Janeiro, Department of Radiology, Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Pontifical Catholic University of Rio Grande do Sul, Department of Psychology, Porto Alegre (Brazil); Doring, T.M. [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro (Brazil); Leme, J.; Pereira, M. [Federal University of Rio de Janeiro, Department of Radiology, Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Andrea, I. d' ; Rego, C.; Alves-Leon, S.V. [Federal University of Rio de Janeiro, Department of Neurology, Epilepsy Center, Hospital Universitario Clementino Fraga Filho, Rio de Janeiro (Brazil)

    2017-03-15

    The objective of this study was to evaluate the cortical thickness and the volume of deep gray matter structures, measured from 3D T1-weighted gradient echo imaging, and white matter integrity, by diffusion tensor imaging (DTI) in patients with typical absence epilepsy (AE). Patients (n = 19) with typical childhood AE and juvenile AE, currently taking antiepileptic medication, were compared with control subjects (n = 19), matched for gender and age. 3D T1 magnetization-prepared rapid gradient echo-weighted imaging and DTI along 30 noncolinear directions were performed using a 1.5-T MR scanner. FreeSurfer was used to perform cortical volumetric reconstruction and segmentation of deep gray matter structures. For tract-based spatial statistics analysis of DTI, a white matter skeleton was created, along with a permutation-based inference with 5000 permutations. A threshold of p < 0.05 was used to identify abnormalities in fractional anisotropy (FA). The mean, radial, and axial diffusivities were also projected onto the mean FA skeleton. Patients with AE presented decreased FA and increased mean diffusivity and radial diffusivity values in the genu and the body of the corpus callosum and right anterior corona radiata, as well as decreased axial diffusivity in the left posterior thalamic radiation, inferior cerebellar peduncle, right cerebral peduncle, and right corticospinal tract. However, there were no significant differences in cortical thickness or deep gray matter structure volumes between patients with AE and controls. Abnormalities found in white matter integrity may help to better understand the pathophysiology of AE and optimize diagnosis and treatment strategies. (orig.)

  3. Age Effects on Cortical Thickness in Cognitively Normal Elderly Individuals

    Directory of Open Access Journals (Sweden)

    Sona Hurtz

    2014-07-01

    Full Text Available Background/Aims: Atrophy in both grey and white matter is found in normal aging. The prefrontal cortex and the frontal lobe white matter are thought to be the most affected regions. Our aim was to examine the effects of normal aging on cortical grey matter using a 3D quantitative cortical mapping method. Methods: We analyzed 1.5-tesla brain magnetic resonance imaging data from 44 cognitively normal elderly subjects using cortical pattern matching and cortical thickness analyses. Linear regression analysis was used to study the effect of age on cortical thickness. 3D map-wide correction for multiple comparisons was conducted with permutation analyses using a threshold of p Results: We found a significant negative association between age and cortical thickness in the right hemisphere (pcorrected = 0.009 and a trend level association in the left hemisphere (pcorrected = 0.081. Age-related changes were greatest in the sensorimotor, bilateral dorsal anterior cingulate and supplementary motor cortices, and the right posterior middle and inferior frontal gyri. Age effects greater in the medial than lateral visual association cortices were also seen bilaterally. Conclusion: Our novel method further validates that normal aging results in diffuse cortical thinning that is most pronounced in the frontal and visual association cortices.

  4. Increased Cortical Thickness in Professional On-Line Gamers

    Science.gov (United States)

    Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam

    2013-01-01

    Objective The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. Methods High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. Results Career length was positively correlated with cortical thickness in three brain regions: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Conclusion Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility. PMID:24474988

  5. Cortical thickness differences between bipolar depression and major depressive disorder.

    Science.gov (United States)

    Lan, Martin J; Chhetry, Binod Thapa; Oquendo, Maria A; Sublette, M Elizabeth; Sullivan, Gregory; Mann, J John; Parsey, Ramin V

    2014-06-01

    Bipolar disorder (BD) is a psychiatric disorder with high morbidity and mortality that cannot be distinguished from major depressive disorder (MDD) until the first manic episode. A biomarker able to differentiate BD and MDD could help clinicians avoid risks of treating BD with antidepressants without mood stabilizers. Cortical thickness differences were assessed using magnetic resonance imaging in BD depressed patients (n = 18), MDD depressed patients (n = 56), and healthy volunteers (HVs) (n = 54). A general linear model identified clusters of cortical thickness difference between diagnostic groups. Compared to the HV group, the BD group had decreased cortical thickness in six regions, after controlling for age and sex, located within the frontal and parietal lobes, and the posterior cingulate cortex. Mean cortical thickness changes in clusters ranged from 7.6 to 9.6% (cluster-wise p-values from 1.0 e-4 to 0.037). When compared to MDD, three clusters of lower cortical thickness in BD were identified that overlapped with clusters that differentiated the BD and HV groups. Mean cortical thickness changes in the clusters ranged from 7.5 to 8.2% (cluster-wise p-values from 1.0 e-4 to 0.023). The difference in cortical thickness was more pronounced when the subgroup of subjects with bipolar I disorder (BD-I) was compared to the MDD group. Cortical thickness patterns were distinct between BD and MDD. These results are a step toward developing an imaging test to differentiate the two disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Reduced cortical thickness in veterans exposed to early life trauma.

    Science.gov (United States)

    Corbo, Vincent; Salat, David H; Amick, Melissa M; Leritz, Elizabeth C; Milberg, William P; McGlinchey, Regina E

    2014-08-30

    Studies have shown that early life trauma may influence neural development and increase the risk of developing psychological disorders in adulthood. We used magnetic resonance imaging to examine the impact of early life trauma on the relationship between current posttraumatic stress disorder (PTSD) symptoms and cortical thickness/subcortical volumes in a sample of deployed personnel from Operation Enduring Freedom/Operation Iraqi Freedom. A group of 108 service members enrolled in the Translational Research Center for Traumatic Brain Injury and Stress Disorders (TRACTS) were divided into those with interpersonal early life trauma (EL-Trauma+) and Control (without interpersonal early life trauma) groups based on the Traumatic Life Events Questionnaire. PTSD symptoms were assessed using the Clinician-Administered PTSD Scale. Cortical thickness and subcortical volumes were analyzed using the FreeSurfer image analysis package. Thickness of the paracentral and posterior cingulate regions was positively associated with PTSD severity in the EL-Trauma+ group and negatively in the Control group. In the EL-Trauma+ group, both the right amygdala and the left hippocampus were positively associated with PTSD severity. This study illustrates a possible influence of early life trauma on the vulnerability of specific brain regions to stress. Changes in neural morphometry may provide information about the emergence and maintenance of symptoms in individuals with PTSD. Published by Elsevier Ireland Ltd.

  7. Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Li, Chuanming; Wang, Jian; Gui, Li; Zheng, Jian; Liu, Chen; Du, Hanjian

    2011-01-01

    Gray matter volume and density of several brain regions, determined by magnetic resonance imaging (MRI), are decreased in Alzheimer's disease (AD). Animal studies have indicated that changes in cortical area size is relevant to thinking and behavior, but alterations of cortical area and thickness in the brains of individuals with AD or its likely precursor, mild cognitive impairment (MCI), have not been reported. In this study, 25 MCI subjects, 30 AD subjects, and 30 age-matched normal controls were recruited for brain MRI scans and Functional Activities Questionnaire (FAQ) assessments. Based on the model using FreeSurfer software, two brain lobes were divided into various regions according to the Desikan-Killiany atlas and the cortical area and thickness of every region was compared and analyzed. We found a significant increase in cortical area of several regions in the frontal and temporal cortices, which correlated negatively with MMSE scores, and a significant decrease in cortical area of several regions in the parietal cortex and the cingulate gyrus in AD subjects. Increased cortical area was also seen in some regions of the frontal and temporal cortices in MCI subjects, whereas the cortical thickness of the same regions was decreased. Our observations suggest characteristic differences of the cortical area and thickness in MCI, AD, and normal control subjects, and these changes may help diagnose both MCI and AD.

  8. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  9. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  10. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Schuster, Christina; Kasper, Elisabeth; Machts, Judith; Bittner, Daniel; Kaufmann, Jörn; Benecke, Reiner; Teipel, Stefan; Vielhaber, Stefan; Prudlo, Johannes

    2014-10-01

    To determine longitudinal rates of cortical atrophy in classical Amyotrophic lateral sclerosis (ALS) and ALS variants. Rates of cortical thinning were determined between 2 scans, 3-15 months apart, in 77 ALS patients: 51 classical, 12 upper motor neuron (UMN), and 14 lower motor neuron (LMN) ALS variants. Cortical thickness at the first assessment was compared with 60 healthy controls matched by age and gender. Atrophy rates were compared between patient sub-groups and correlated with disease duration, progression, and severity. Using a cross-sectional analysis, we found a significant difference in cortical thickness between ALS patients and controls in the motor and extra-motor areas (left medial orbito frontal gyrus, left inferior parietal gyrus, bilateral insular cortex, right fusiform gyrus, bilateral precuneus). Using a longitudinal analysis, we found a significant decline of cortical thickness in frontal, temporal, and parietal regions over the course of the study in ALS patients. Effects were independent of the clinical subtype, with exception of the precentral gyrus (p gyrus, the UMN-dominant subjects exhibited intermediate rates of atrophy, and the classical ALS patients exhibited no such change. Atrophy of the precentral gyrus in classical ALS indicates a floor effect at the first assessment, resulting in a lack of further atrophy over time. Structural loss of the precentral gyrus appears to be an early sign of classical ALS. Over time, patterns of cortical thinning in extra-motor areas can be identified in ALS, regardless of the phenotype.

  11. Longitudinal changes in cortical thickness in autism and typical development.

    Science.gov (United States)

    Zielinski, Brandon A; Prigge, Molly B D; Nielsen, Jared A; Froehlich, Alyson L; Abildskov, Tracy J; Anderson, Jeffrey S; Fletcher, P Thomas; Zygmunt, Kristen M; Travers, Brittany G; Lange, Nicholas; Alexander, Andrew L; Bigler, Erin D; Lainhart, Janet E

    2014-06-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3-36 years) and 60 males with typical development (mean age = 18 years; range 4-39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  12. On the homogeneity and heterogeneity of cortical thickness profiles in Homo sapiens sapiens.

    Science.gov (United States)

    Koten, Jan Willem; Schüppen, André; Morozova, Maria; Lehofer, Agnes; Koschutnig, Karl; Wood, Guilherme

    2017-12-20

    Cortical thickness has been investigated since the beginning of the 20th century, but we do not know how similar the cortical thickness profiles among humans are. In this study, the local similarity of cortical thickness profiles was investigated using sliding window methods. Here, we show that approximately 5% of the cortical thickness profiles are similarly expressed among humans while 45% of the cortical thickness profiles show a high level of heterogeneity. Therefore, heterogeneity is the rule, not the exception. Cortical thickness profiles of somatosensory homunculi and the anterior insula are consistent among humans, while the cortical thickness profiles of the motor homunculus are more variable. Cortical thickness profiles of homunculi that code for muscle position and skin stimulation are highly similar among humans despite large differences in sex, education, and age. This finding suggests that the structure of these cortices remains well preserved over a lifetime. Our observations possibly relativize opinions on cortical plasticity.

  13. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    International Nuclear Information System (INIS)

    Humbert, Ludovic; Hazrati Marangalou, Javad; Rietbergen, Bert van; Río Barquero, Luis Miguel del; Lenthe, G. Harry van

    2016-01-01

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm"3) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm"3), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm"3) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm"3). A trend for the cortical thickness and

  14. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, Ludovic, E-mail: ludohumberto@gmail.com [Galgo Medical, Barcelona 08036 (Spain); Hazrati Marangalou, Javad; Rietbergen, Bert van [Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Río Barquero, Luis Miguel del [CETIR Centre Medic, Barcelona 08029 (Spain); Lenthe, G. Harry van [Biomechanics Section, KU Leuven–University of Leuven, Leuven 3001 (Belgium)

    2016-04-15

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm{sup 3}) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm{sup 3}), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm{sup 3}) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm{sup 3}). A trend for the

  15. Reduced cortical thickness associated with visceral fat and BMI

    Directory of Open Access Journals (Sweden)

    Ralf Veit

    2014-01-01

    Full Text Available Structural brain imaging studies have shown that obesity is associated with widespread reductions in gray matter (GM volume. Although the body mass index (BMI is an easily accessible anthropometric measure, substantial health problems are more related to specific body fat compartments, like visceral adipose tissue (VAT. We investigated cortical thickness measures in a group of 72 healthy subjects (BMI range 20–35 kg/m2, age range 19–50 years. Multiple regression analyses were performed using VAT and BMI as predictors and age, gender, total surface area and education as confounds. BMI and VAT were independently associated with reductions in cortical thickness in clusters comprising the left lateral occipital area, the left inferior temporal cortex, and the left precentral and inferior parietal area, while the right insula, the left fusiform gyrus and the right inferior temporal area showed a negative correlation with VAT only. In addition, we could show significant reductions in cortical thickness with increasing VAT adjusted for BMI in the left temporal cortex. We were able to detect widespread cortical thinning in a young to middle-aged population related to BMI and VAT; these findings show close resemblance to studies focusing on GM volume differences in diabetic patients. This may point to the influence of VAT related adverse effects, like low-grade inflammation, as a potentially harmful factor on brain integrity already in individuals at risk of developing diabetes, metabolic syndromes and arteriosclerosis.

  16. Adolescent cortical thickness pre- and post marijuana and alcohol initiation.

    Science.gov (United States)

    Jacobus, Joanna; Castro, Norma; Squeglia, Lindsay M; Meloy, M J; Brumback, Ty; Huestis, Marilyn A; Tapert, Susan F

    Cortical thickness abnormalities have been identified in youth using both alcohol and marijuana. However, limited studies have followed individuals pre- and post initiation of alcohol and marijuana use to help identify to what extent discrepancies in structural brain integrity are pre-existing or substance-related. Adolescents (N=69) were followed from ages 13 (pre-initiation of substance use, baseline) to ages 19 (post-initiation, follow-up). Three subgroups were identified, participants that initiated alcohol use (ALC, n=23, >20 alcohol use episodes), those that initiated both alcohol and marijuana use (ALC+MJ, n=23, >50 marijuana use episodes) and individuals that did not initiate either substance regularly by follow-up (CON, n=23, marijuana use episodes). All adolescents underwent neurocognitive testing, neuroimaging, and substance use and mental health interviews. Significant group by time interactions and main effects on cortical thickness estimates were identified for 18 cortical regions spanning the left and right hemisphere (pseffect, in cortical thickness by follow-up for individuals who have not initiated regular substance use or alcohol use only by age 19; modest between-group differences were identified at baseline in several cortical regions (ALC and CON>ALC+MJ). Minimal neurocognitive differences were observed in this sample. Findings suggest pre-existing neural differences prior to marijuana use may contribute to initiation of use and observed neural outcomes. Marijuana use may also interfere with thinning trajectories that contribute to morphological differences in young adulthood that are often observed in cross-sectional studies of heavy marijuana users. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Age effects on cortical thickness in young Down's syndrome subjects: a cross-sectional gender study

    International Nuclear Information System (INIS)

    Romano, Andrea; Moraschi, Marta; Cornia, Riccardo; Stella, Giacomo; Bozzao, Alessandro; Gagliardo, Olga; Chiacchiararelli, Laura; Iani, Cristina; Albertini, Giorgio; Pierallini, Alberto

    2015-01-01

    The aim of this study was to determine differences in the characteristic pattern of age-related cortical thinning in men and women with Down's syndrome (DS) by means of MRI and automatic cortical thickness measurements and a cross-sectional design, in a large cohort of young subjects. Eighty-four subjects with DS, 30 females (11-35 years, mean age ± SD = 22.8 ± 5.9) and 54 males (11-35 years, mean age ± SD = 21.5 ± 6.5), were examined using a 1.5-T scanner. MRI-based quantification of cortical thickness was performed using FreeSurfer software package. For all subjects participating in the study, the Pearson product-moment correlation coefficient between age and mean cortical thickness values has been evaluated. A significant negative correlation between cortical thickness and age was found in female DS subjects, predominantly in frontal and parietal lobes, bilaterally. In male DS subjects, a significant negative correlation between cortical thickness and age was found in the right fronto-temporal lobes and cingulate regions. Whole brain mean cortical thickness values were significantly negative correlated with age only in female DS subjects. Females with Down's syndrome showed a strong correlation between cortical thickness and age, already in early age. We suggest that the cognitive impairment due to hormonal deficit in the postmenopausal period could be emphasized by the early structural decline of gray matter in female DS subjects. (orig.)

  18. Age effects on cortical thickness in young Down's syndrome subjects: a cross-sectional gender study

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Andrea; Moraschi, Marta [San Raffaele Foundation Rome, Rehabilitation Facility Ceglie Messapica, Rome (Italy); Cornia, Riccardo; Stella, Giacomo [University of Modena and Reggio Emilia, Department of Education and Human Sciences, Emilia-Romagna (Italy); Bozzao, Alessandro; Gagliardo, Olga [University Sapienza, NESMOS, Department of Neuroradiology, S. Andrea Hospital, Rome (Italy); Chiacchiararelli, Laura [University Sapienza, Department of Medical Physics, S. Andrea Hospital, Rome (Italy); Iani, Cristina [University of Modena and Reggio Emilia, Department of Communication and Economy, Emilia-Romagna (Italy); Albertini, Giorgio [IRCSS San Raffaele Pisana, Department of Paediatrics, Rome (Italy); Pierallini, Alberto [IRCSS San Raffaele Pisana, Department of Radiology, Rome (Italy)

    2015-04-01

    The aim of this study was to determine differences in the characteristic pattern of age-related cortical thinning in men and women with Down's syndrome (DS) by means of MRI and automatic cortical thickness measurements and a cross-sectional design, in a large cohort of young subjects. Eighty-four subjects with DS, 30 females (11-35 years, mean age ± SD = 22.8 ± 5.9) and 54 males (11-35 years, mean age ± SD = 21.5 ± 6.5), were examined using a 1.5-T scanner. MRI-based quantification of cortical thickness was performed using FreeSurfer software package. For all subjects participating in the study, the Pearson product-moment correlation coefficient between age and mean cortical thickness values has been evaluated. A significant negative correlation between cortical thickness and age was found in female DS subjects, predominantly in frontal and parietal lobes, bilaterally. In male DS subjects, a significant negative correlation between cortical thickness and age was found in the right fronto-temporal lobes and cingulate regions. Whole brain mean cortical thickness values were significantly negative correlated with age only in female DS subjects. Females with Down's syndrome showed a strong correlation between cortical thickness and age, already in early age. We suggest that the cognitive impairment due to hormonal deficit in the postmenopausal period could be emphasized by the early structural decline of gray matter in female DS subjects. (orig.)

  19. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    Science.gov (United States)

    Ma, Yizhou; Koyama, Maki S.; Milham, Michael P.; Castellanos, F. Xavier; Quinn, Brian T.; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2014-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status. PMID:25610779

  20. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  1. Sexual orientation related differences in cortical thickness in male individuals.

    Directory of Open Access Journals (Sweden)

    Christoph Abé

    Full Text Available Previous neuroimaging studies demonstrated sex and also sexual orientation related structural and functional differences in the human brain. Genetic information and effects of sex hormones are assumed to contribute to the male/female differentiation of the brain, and similar effects could play a role in processes influencing human's sexual orientation. However, questions about the origin and development of a person's sexual orientation remain unanswered, and research on sexual orientation related neurobiological characteristics is still very limited. To contribute to a better understanding of the neurobiology of sexual orientation, we used magnetic resonance imaging (MRI in order to compare regional cortical thickness (Cth and subcortical volumes of homosexual men (hoM, heterosexual men (heM and heterosexual women (heW. hoM (and heW had thinner cortices primarily in visual areas and smaller thalamus volumes than heM, in which hoM and heW did not differ. Our results support previous studies, which suggest cerebral differences between hoM and heM in regions, where sex differences have been reported, which are frequently proposed to underlie biological mechanisms. Thus, our results contribute to a better understanding of the neurobiology of sexual orientation.

  2. Sexual orientation related differences in cortical thickness in male individuals.

    Science.gov (United States)

    Abé, Christoph; Johansson, Emilia; Allzén, Elin; Savic, Ivanka

    2014-01-01

    Previous neuroimaging studies demonstrated sex and also sexual orientation related structural and functional differences in the human brain. Genetic information and effects of sex hormones are assumed to contribute to the male/female differentiation of the brain, and similar effects could play a role in processes influencing human's sexual orientation. However, questions about the origin and development of a person's sexual orientation remain unanswered, and research on sexual orientation related neurobiological characteristics is still very limited. To contribute to a better understanding of the neurobiology of sexual orientation, we used magnetic resonance imaging (MRI) in order to compare regional cortical thickness (Cth) and subcortical volumes of homosexual men (hoM), heterosexual men (heM) and heterosexual women (heW). hoM (and heW) had thinner cortices primarily in visual areas and smaller thalamus volumes than heM, in which hoM and heW did not differ. Our results support previous studies, which suggest cerebral differences between hoM and heM in regions, where sex differences have been reported, which are frequently proposed to underlie biological mechanisms. Thus, our results contribute to a better understanding of the neurobiology of sexual orientation.

  3. The relationship of impulsivity and cortical thickness in depressed and non-depressed adolescents.

    Science.gov (United States)

    Fradkin, Yuli; Khadka, Sabin; Bessette, Katie L; Stevens, Michael C

    2017-10-01

    Major Depressive Disorder (MDD) is recognized to be heterogeneous in terms of brain structure abnormality findings across studies, which might reflect previously unstudied traits that confer variability to neuroimaging measurements. The purpose of this study was to examine the relationships between different types of trait impulsivity and MDD diagnosis on adolescent brain structure. We predicted that adolescents with depression who were high on trait impulsivity would have more abnormal cortical structure than depressed patients or non-MDD who were low on impulsivity. We recruited 58 subjects, including 29 adolescents (ages 12-19) with a primary DSM-IV diagnosis of MDD and a history of suicide attempt and 29 demographically-matched healthy control participants. Our GLM-based analyses sought to describe differences in the linear relationships between cortical thickness and impulsivity trait levels. As hypothesized, we found significant moderation effects in rostral middle frontal gyrus and right paracentral lobule cortical thickness for different subscales of the Barratt Impulsiveness Scale. However, although these brain-behavior relationships differed between diagnostic study groups, they were not simple additive effects as we had predicted. For the middle frontal gyrus, non-MDD participants showed a strong positive association between cortical thickness and BIS-11 Motor scores, while MDD-diagnosed participants showed a negative association. For Non-Planning Impulsiveness, paracentral lobule cortical thickness was observed with greater impulsivity in MDD, but no association was found for controls. In conclusion, the findings confirm that dimensions of impulsivity have discrete neural correlates, and show that relationships between impulsivity and brain structure are expressed differently in adolescents with MDD compared to non-MDD.

  4. Heritability of cortical thickness changes over time in twin pairs discordant for schizophrenia

    NARCIS (Netherlands)

    Hedman, Anna M.; van Haren, Neeltje E M; van Baal, G. Caroline M; Brouwer, Rachel M.; Brans, Rachel G H; Schnack, Hugo G.; Kahn, René S.; Hulshoff Pol, Hilleke E.

    2016-01-01

    Background: Cortical thickness and surface area changes have repeatedly been found in schizophrenia. Whether progressive loss in cortical thickness and surface area are mediated by genetic or disease related factors is unknown. Here we investigate to what extent genetic and/or environmental factors

  5. Interactive effects of dehydroepiandrosterone and testosterone on cortical thickness during early brain development.

    Science.gov (United States)

    Nguyen, Tuong-Vi; McCracken, James T; Ducharme, Simon; Cropp, Brett F; Botteron, Kelly N; Evans, Alan C; Karama, Sherif

    2013-06-26

    Humans and the great apes are the only species demonstrated to exhibit adrenarche, a key endocrine event associated with prepubertal increases in the adrenal production of androgens, most significantly dehydroepiandrosterone (DHEA) and to a certain degree testosterone. Adrenarche also coincides with the emergence of the prosocial and neurobehavioral skills of middle childhood and may therefore represent a human-specific stage of development. Both DHEA and testosterone have been reported in animal and in vitro studies to enhance neuronal survival and programmed cell death depending on the timing, dose, and hormonal context involved, and to potentially compete for the same signaling pathways. Yet no extant brain-hormone studies have examined the interaction between DHEA- and testosterone-related cortical maturation in humans. Here, we used linear mixed models to examine changes in cortical thickness associated with salivary DHEA and testosterone levels in a longitudinal sample of developmentally healthy children and adolescents 4-22 years old. DHEA levels were associated with increases in cortical thickness of the left dorsolateral prefrontal cortex, right temporoparietal junction, right premotor and right entorhinal cortex between the ages of 4-13 years, a period marked by the androgenic changes of adrenarche. There was also an interaction between DHEA and testosterone on cortical thickness of the right cingulate cortex and occipital pole that was most significant in prepubertal subjects. DHEA and testosterone appear to interact and modulate the complex process of cortical maturation during middle childhood, consistent with evidence at the molecular level of fast/nongenomic and slow/genomic or conversion-based mechanisms underlying androgen-related brain development.

  6. Increased Cortical Thickness in Male-to-Female Transsexualism.

    Science.gov (United States)

    Luders, Eileen; Sánchez, Francisco J; Tosun, Duygu; Shattuck, David W; Gaser, Christian; Vilain, Eric; Toga, Arthur W

    2012-08-01

    The degree to which one identifies as male or female has a profound impact on one's life. Yet, there is a limited understanding of what contributes to this important characteristic termed gender identity . In order to reveal factors influencing gender identity, studies have focused on people who report strong feelings of being the opposite sex, such as male-to-female (MTF) transsexuals. To investigate potential neuroanatomical variations associated with transsexualism, we compared the regional thickness of the cerebral cortex between 24 MTF transsexuals who had not yet been treated with cross-sex hormones and 24 age-matched control males. Results revealed thicker cortices in MTF transsexuals, both within regions of the left hemisphere (i.e., frontal and orbito-frontal cortex, central sulcus, perisylvian regions, paracentral gyrus) and right hemisphere (i.e., pre-/post-central gyrus, parietal cortex, temporal cortex, precuneus, fusiform, lingual, and orbito-frontal gyrus). These findings provide further evidence that brain anatomy is associated with gender identity, where measures in MTF transsexuals appear to be shifted away from gender-congruent men.

  7. Cortical thickness and low insight into symptoms in enduring schizophrenia.

    Science.gov (United States)

    Emami, Seema; Guimond, Synthia; Mallar Chakravarty, M; Lepage, Martin

    2016-01-01

    Poor insight is a common, multidimensional phenomenon in patients with schizophrenia, associated with poorer outcomes and treatment non-adherence. Yet scant research has investigated the neuronal correlates of insight into symptoms (IS), a dimension of insight that may be particularly significant in enduring schizophrenia. Sixty-six patients with enduring schizophrenia (duration >4years) and 33 healthy controls completed MRI scanning and IQ, depression, and anxiety assessments. The Scale to Assess Insight-Expanded (SAI-E) measured insight into patients' four most prominent symptoms and patients were classified into two groups: low IS (0-2; n=33), and high IS (>2; n=33). We evaluated the association between cortical thickness (CT) and insight into symptoms using two methods: (1) a between-patients region-of-interest analysis in the insula, superior temporal gyrus (STG) and frontal lobe; and (2) a whole-brain exploratory regression between patient and controls. Brain regions were segmented using a neuroanatomical atlas and vertex-wise CT analyses were conducted with CIVET, covaried for age and sex. ROI analysis revealed thinner insula cortex in patients with low IS (pinsight-related differences in CT that has been previously unexplored in enduring schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy

    Directory of Open Access Journals (Sweden)

    Jiabao Lin

    2017-01-01

    Full Text Available Conventional MRI studies showed that radiation-induced brain necrosis in patients with nasopharyngeal carcinoma (NPC in years after radiotherapy (RT could involve brain gray matter (GM and impair brain function. However, it is still unclear the radiation-induced brain morphological changes in NPC patients with normal-appearing GM in the early period after RT. In this study, we acquired high-resolution brain structural MRI data from three groups of patients, 22 before radiotherapy (pre-RT NPC patients with newly diagnosed but not yet medically treated, 22 NPC patients in the early-delayed stage after radiotherapy (post-RT-ED, and 20 NPC patients in the late-delayed stage after radiotherapy (post-RT-LD, and then analyzed the radiation-induced cortical thickness alteration in NPC patients after RT. Using a vertex-wise surface-based morphometry (SBM approach, we detected significantly decreased cortical thickness in the precentral gyrus (PreCG in the post-RT-ED group compared to the pre-RT group. And the post-RT-LD group showed significantly increased cortical thickness in widespread brain regions, including the bilateral inferior parietal, left isthmus of the cingulate, left bank of the superior temporal sulcus and left lateral occipital regions, compared to the pre-RT group, and in the bilateral PreCG compared to the post-RT-ED group. Similar analysis with ROI-wise SBM method also found the consistent results. These results indicated that radiation-induced brain injury mainly occurred in the post-RT-LD group and the cortical thickness alterations after RT were dynamic in different periods. Our findings may reflect the pathogenesis of radiation-induced brain injury in NPC patients with normal-appearing GM and an early intervention is necessary for protecting GM during RT.

  9. Entorhinal Cortex: Antemortem Cortical Thickness and Postmortem Neurofibrillary Tangles and Amyloid Pathology.

    Science.gov (United States)

    Thaker, A A; Weinberg, B D; Dillon, W P; Hess, C P; Cabral, H J; Fleischman, D A; Leurgans, S E; Bennett, D A; Hyman, B T; Albert, M S; Killiany, R J; Fischl, B; Dale, A M; Desikan, R S

    2017-05-01

    The entorhinal cortex, a critical gateway between the neocortex and hippocampus, is one of the earliest regions affected by Alzheimer disease-associated neurofibrillary tangle pathology. Although our prior work has automatically delineated an MR imaging-based measure of the entorhinal cortex, whether antemortem entorhinal cortex thickness is associated with postmortem tangle burden within the entorhinal cortex is still unknown. Our objective was to evaluate the relationship between antemortem MRI measures of entorhinal cortex thickness and postmortem neuropathological measures. We evaluated 50 participants from the Rush Memory and Aging Project with antemortem structural T1-weighted MR imaging and postmortem neuropathologic assessments. Here, we focused on thickness within the entorhinal cortex as anatomically defined by our previously developed MR imaging parcellation system (Desikan-Killiany Atlas in FreeSurfer). Using linear regression, we evaluated the association between entorhinal cortex thickness and tangles and amyloid-β load within the entorhinal cortex and medial temporal and neocortical regions. We found a significant relationship between antemortem entorhinal cortex thickness and entorhinal cortex ( P = .006) and medial temporal lobe tangles ( P = .002); we found no relationship between entorhinal cortex thickness and entorhinal cortex ( P = .09) and medial temporal lobe amyloid-β ( P = .09). We also found a significant association between entorhinal cortex thickness and cortical tangles ( P = .003) and amyloid-β ( P = .01). We found no relationship between parahippocampal gyrus thickness and entorhinal cortex ( P = .31) and medial temporal lobe tangles ( P = .051). Our findings indicate that entorhinal cortex-associated in vivo cortical thinning may represent a marker of postmortem medial temporal and neocortical Alzheimer disease pathology. © 2017 by American Journal of Neuroradiology.

  10. LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement

    Science.gov (United States)

    Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan

    2015-03-01

    Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.

  11. Associations between cortical thickness and general intelligence in children, adolescents and young adults

    Science.gov (United States)

    Menary, Kyle; Collins, Paul F.; Porter, James N.; Muetzel, Ryan; Olson, Elizabeth A.; Kumar, Vipin; Steinbach, Michael; Lim, Kelvin O.; Luciana, Monica

    2013-01-01

    Neuroimaging research indicates that human intellectual ability is related to brain structure including the thickness of the cerebral cortex. Most studies indicate that general intelligence is positively associated with cortical thickness in areas of association cortex distributed throughout both brain hemispheres. In this study, we performed a cortical thickness mapping analysis on data from 182 healthy typically developing males and females ages 9 to 24 years to identify correlates of general intelligence (g) scores. To determine if these correlates also mediate associations of specific cognitive abilities with cortical thickness, we regressed specific cognitive test scores on g scores and analyzed the residuals with respect to cortical thickness. The effect of age on the association between cortical thickness and intelligence was examined. We found a widely distributed pattern of positive associations between cortical thickness and g scores, as derived from the first unrotated principal factor of a factor analysis of Wechsler Abbreviated Scale of Intelligence (WASI) subtest scores. After WASI specific cognitive subtest scores were regressed on g factor scores, the residual score variances did not correlate significantly with cortical thickness in the full sample with age covaried. When participants were grouped at the age median, significant positive associations of cortical thickness were obtained in the older group for g-residualized scores on Block Design (a measure of visual-motor integrative processing) while significant negative associations of cortical thickness were observed in the younger group for g-residualized Vocabulary scores. These results regarding correlates of general intelligence are concordant with the existing literature, while the findings from younger versus older subgroups have implications for future research on brain structural correlates of specific cognitive abilities, as well as the cognitive domain specificity of behavioral

  12. SKA2 Methylation is associated with Decreased Prefrontal Cortical Thickness and Greater PTSD Severity among Trauma-Exposed Veterans

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M.; Logue, Mark W.; Wolf, Erika J.; Smith, Alicia K.; Lusk, Joanna; Hayes, Jasmeet P.; Sperbeck, Emily; Milberg, William P.; McGlinchey, Regina E.; Salat, David H.; Carter, Weleetka C.; Stone, Annjanette; Schichman, Steven A.; Humphries, Donald E.; Miller, Mark W.

    2015-01-01

    Methylation of the SKA2 gene has recently been identified as a promising biomarker of suicide risk. Based on this finding, we examined associations between SKA2 methylation, cortical thickness, and psychiatric phenotypes linked to suicide in trauma-exposed veterans. 200 trauma-exposed white non-Hispanic veterans of the recent conflicts in Iraq and Afghanistan (91% male) underwent clinical assessment and had blood drawn for genotyping and methylation analysis. 145 participants also had neuroimaging data available. Based on previous research, we examined DNA methylation at the CpG locus cg13989295 as well as DNA methylation adjusted for genotype at the methylation-associated SNP (rs7208505) in relationship to whole-brain cortical thickness, posttraumatic stress disorder symptoms (PTSD), and depression symptoms. Whole-brain vertex-wise analyses identified three clusters in prefrontal cortex that were associated with genotype-adjusted SKA2 DNA methylation (methylationadj). Specifically, DNA methylationadj was associated with bilateral reductions of cortical thickness in frontal pole and superior frontal gyrus, and similar effects were found in the right orbitofrontal cortex and right inferior frontal gyrus. PTSD symptom severity was positively correlated with SKA2 DNA methylationadj and negatively correlated with cortical thickness in these regions. Mediation analyses showed a significant indirect effect of PTSD on cortical thickness via SKA2 methylation status. Results suggest that DNA methylationadj of SKA2 in blood indexes stress-related psychiatric phenotypes and neurobiology, pointing to its potential value as a biomarker of stress exposure and susceptibility. PMID:26324104

  13. Is the Alzheimer's disease cortical thickness signature a biological marker for memory?

    Science.gov (United States)

    Busovaca, Edgar; Zimmerman, Molly E; Meier, Irene B; Griffith, Erica Y; Grieve, Stuart M; Korgaonkar, Mayuresh S; Williams, Leanne M; Brickman, Adam M

    2016-06-01

    Recent work suggests that analysis of the cortical thickness in key brain regions can be used to identify individuals at greatest risk for development of Alzheimer's disease (AD). It is unclear to what extent this "signature" is a biological marker of normal memory function - the primary cognitive domain affected by AD. We examined the relationship between the AD signature biomarker and memory functioning in a group of neurologically healthy young and older adults. Cortical thickness measurements and neuropsychological evaluations were obtained in 110 adults (age range 21-78, mean = 46) drawn from the Brain Resource International Database. The cohort was divided into young adult (n = 64, age 21-50) and older adult (n = 46, age 51-78) groups. Cortical thickness analysis was performed with FreeSurfer, and the average cortical thickness extracted from the eight regions that comprise the AD signature. Mean AD-signature cortical thickness was positively associated with performance on the delayed free recall trial of a list learning task and this relationship did not differ between younger and older adults. Mean AD-signature cortical thickness was not associated with performance on a test of psychomotor speed, as a control task, in either group. The results suggest that the AD signature cortical thickness is a marker for memory functioning across the adult lifespan.

  14. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease.

    Science.gov (United States)

    Gerrits, Niels J H M; van Loenhoud, Anita C; van den Berg, Stan F; Berendse, Henk W; Foncke, Elisabeth M J; Klein, Martin; Stoffers, Diederick; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2016-01-01

    Parkinson's disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and surface area (SA), which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii) the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes.

  15. Brief communication: Paleobiological inferences on the locomotor repertoire of extinct hominoids based on femoral neck cortical thickness: The fossil great ape hispanopithecus laietanus as a test-case study.

    Science.gov (United States)

    Pina, Marta; Alba, David M; Almécija, Sergio; Fortuny, Josep; Moyà-Solà, Salvador

    2012-09-01

    The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle-walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test-case study. Both an orthograde body plan and orang-like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape-like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Copyright © 2012 Wiley Periodicals, Inc.

  16. Development of cortical thickness and surface area in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Vincent T. Mensen

    2017-01-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder often associated with changes in cortical volume. The constituents of cortical volume – cortical thickness and surface area – have separable developmental trajectories and are related to different neurobiological processes. However, little is known about the developmental trajectories of cortical thickness and surface area in ASD. In this magnetic resonance imaging (MRI study, we used an accelerated longitudinal design to investigate the cortical development in 90 individuals with ASD and 90 typically developing controls, aged 9 to 20 years. We quantified cortical measures using the FreeSurfer software package, and then used linear mixed model analyses to estimate the developmental trajectories for each cortical measure. Our primary finding was that the development of surface area follows a linear trajectory in ASD that differs from typically developing controls. In typical development, we found a decline in cortical surface area between the ages of 9 and 20 that was absent in ASD. We found this pattern in all regions where developmental trajectories for surface area differed between groups. When we applied a more stringent correction that takes the interdependency of measures into account, this effect on cortical surface area retained significance for left banks of superior temporal sulcus, postcentral area, and right supramarginal area. These areas have previously been implicated in ASD and are involved in the interpretation and processing of audiovisual social stimuli and distinction between self and others. Although some differences in cortical volume and thickness were found, none survived the more stringent correction for multiple testing. This study underscores the importance of distinguishing between cortical surface area and thickness in investigating cortical development, and suggests the development of cortical surface area is of importance to ASD.

  17. Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy.

    Directory of Open Access Journals (Sweden)

    Amanda Worker

    Full Text Available Parkinson's disease (PD, Multiple System Atrophy (MSA and Progressive Supranuclear Palsy (PSP are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features.High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0. Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group.Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology.These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients.

  18. The relationship between age and the mandibular cortical bone thickness by using panoramic radiograph

    International Nuclear Information System (INIS)

    Kim, Yun Suk; Kim, Kyoung A; Koh, Kwang Joon

    2010-01-01

    This study was to determine the relationship between age and the mandibular cortical bone thickness on panoramic radiograph. Panoramic radiographs of 360 patients (180 men and 180 women) over 20 years old, who visited the Chonbuk National University Hospital from January to December in 2007, were assessed. The subjects were divided into 5 age groups. Five indices such as cortical bone thickness at the gonion (GI), antegonion (AI), and below the mental foramen (MI), the panoramic mandibular index (PMI), the mandibular cortical index (MCI) were measured on panoramic radiographs. All five indices including GI, AI, MI, PMI, and MCI showed significant differences between third decade and over 8 decade groups (p,0.05). PMI, MI and GI showed significant differences with gender statistically (p<0.05). The mandibular cortical bone thickness showed negative correlation with age, and the value of the thickness (PMI, MI, and GI) was greater in men than in women.

  19. Investigation of cortical thickness abnormalities in lithium-free adults with bipolar type I disorder using cortical pattern matching

    Science.gov (United States)

    Foland-Ross, Lara C.; Thompson, Paul M.; Sugar, Catherine A.; Madsen, Sarah K.; Shen, Jim K.; Penfold, Conor; Ahlf, Kyle; Rasser, Paul E.; Fischer, Jeffrey; Yang, Yilan; Townsend, Jennifer; Bookheimer, Susan Y.; Altshuler, Lori L.

    2013-01-01

    Objective Several lines of evidence implicate gray matter abnormalities in the prefrontal cortex and anterior cingulate cortex in patients with bipolar disorder. Findings however, have been largely inconsistent across studies. Differences in patients’ medication status or mood state, or the application of traditional volumetric methods that are insensitive to subtle neuroanatomic differences may have contributed to these inconsistent findings. Given this, we used magnetic resonance imaging (MRI) in conjunction with cortical pattern matching methods to assess cortical thickness abnormalities in euthymic bipolar subjects who were not treated with lithium. Method Sixty-five subjects, including 34 lithium-free euthymic subjects with bipolar (type I) disorder and 31 healthy subjects were scanned using magnetic resonance imaging (MRI). Data were processed to measure cortical gray matter thickness. Cortical pattern matching methods associated homologous brain regions across subjects. Spatially normalized thickness maps were analyzed to assess illness effects and associations with clinical variables. Results Relative to healthy subjects, euthymic bipolar I subjects had significantly thinner gray matter in bilateral prefrontal cortex (Brodmann Areas 11, 10, 8 and 44) and left anterior cingulate cortex (Brodmann Areas 24/32). Additionally, thinning in these regions was more pronounced in patients with a history of psychosis. No areas of thicker cortex were detected in bipolar subjects versus healthy subjects. Conclusions Using a technique that is highly sensitive to subtle neuroanatomic differences, significant regional cortical thinning was found in euthymic subjects with bipolar disorder. Clinical implications are discussed. PMID:21285139

  20. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder

    OpenAIRE

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-01-01

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the gr...

  1. The impact of B1+ correction on MP2RAGE cortical T1 and apparent cortical thickness at 7T

    NARCIS (Netherlands)

    Haast, Roy A M; Ivanov, Dimo; Uludağ, Kâmil

    2018-01-01

    Determination of cortical thickness using MRI has often been criticized due to the presence of various error sources. Specifically, anatomical MRI relying on T1 contrast may be unreliable due to spatially variable image contrast between gray matter (GM), white matter (WM) and cerebrospinal fluid

  2. Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness.

    Science.gov (United States)

    Neilson, Emma; Bois, Catherine; Gibson, Jude; Duff, Barbara; Watson, Andrew; Roberts, Neil; Brandon, Nicholas J; Dunlop, John; Hall, Jeremy; McIntosh, Andrew M; Whalley, Heather C; Lawrie, Stephen M

    2017-06-01

    There are established differences in cortical thickness (CT) in schizophrenia (SCZ) and bipolar (BD) patients when compared to healthy controls (HC). However, it is unknown to what extent environmental or genetic risk factors impact on CT in these populations. We have investigated the effect of Environmental Risk Scores (ERS) and Polygenic Risk Scores for SCZ (PGRS-SCZ) on CT. Structural MRI scans were acquired at 3T for patients with SCZ or BD (n=57) and controls (n=41). Cortical reconstructions were generated in FreeSurfer (v5.3). The ERS was created by determining exposure to cannabis use, childhood adverse events, migration, urbanicity and obstetric complications. The PGRS-SCZ were generated, for a subset of the sample (Patients=43, HC=32), based on the latest PGC GWAS findings. ANCOVAs were used to test the hypotheses that ERS and PGRS-SCZ relate to CT globally, and in frontal and temporal lobes. An increase in ERS was negatively associated with CT within temporal lobe for patients. A higher PGRS-SCZ was also related to global cortical thinning for patients. ERS effects remained significant when including PGRS-SCZ as a fixed effect. No relationship which survived FDR correction was found for ERS and PGRS-SCZ in controls. Environmental risk for SCZ was related to localised cortical thinning in patients with SCZ and BD, while increased PGRS-SCZ was associated with global cortical thinning. Genetic and environmental risk factors for SCZ appear therefore to have differential effects. This provides a mechanistic means by which different risk factors may contribute to the development of SCZ and BD. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The impact of occipital lobe cortical thickness on cognitive task performance: An investigation in Huntington's Disease.

    Science.gov (United States)

    Johnson, Eileanoir B; Rees, Elin M; Labuschagne, Izelle; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund A C; Reilmann, Ralf; Johnson, Hans; Hobbs, Nicola Z; Langbehn, Douglas R; Stout, Julie C; Tabrizi, Sarah J; Scahill, Rachael I

    2015-12-01

    The occipital lobe is an important visual processing region of the brain. Following consistent findings of early neural changes in the occipital lobe in Huntington's Disease (HD), we examined cortical thickness across four occipital regions in premanifest (preHD) and early HD groups compared with controls. Associations between cortical thickness in gene positive individuals and performance on six cognitive tasks, each with a visual component, were examined. In addition, the association between cortical thickness in gene positive participants and one non-visual motor task was also examined for comparison. Cortical thickness was determined using FreeSurfer on T1-weighted 3T MR datasets from controls (N=97), preHD (N=109) and HD (N=69) from the TRACK-HD study. Regression models were fitted to assess between-group differences in cortical thickness, and relationships between performance on the cognitive tasks, the motor task and occipital thickness were examined in a subset of gene-positive participants (N=141). Thickness of the occipital cortex in preHD and early HD participants was reduced compared with controls. Regionally-specific associations between reduced cortical thickness and poorer performance were found for five of the six cognitive tasks, with the strongest associations in lateral occipital and lingual regions. No associations were found with the cuneus. The non-visual motor task was not associated with thickness of any region. The heterogeneous pattern of associations found in the present study suggests that occipital thickness negatively impacts cognition, but only in regions that are linked to relatively advanced visual processing (e.g., lateral occipital, lingual regions), rather than in basic visual processing regions such as the cuneus. Our results show, for the first time, the functional implications of occipital atrophy highlighted in recent studies in HD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    Science.gov (United States)

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-12

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  5. Cortical thickness difference across the central sulcus visualized in the presence of vasogenic edema

    International Nuclear Information System (INIS)

    Togao, Osamu; Yoshiura, Takashi; Mihara, Futoshi; Noguchi, Tomoyuki; Hiwatashi, Akio; Yamashita, Koji; Yoshitake, Tadamasa; Honda, Hiroshi

    2008-01-01

    Purpose: To confirm the cortical thickness difference across the central sulcus (CS) visualized in the presence of vasogenic edema on MRI. Materials and methods: T2-weighted images of 70 cerebral hemispheres showing vasogenic edema infiltrating into subcortical white matter around the CS were studied retrospectively. Two neuroradiologists measured the cortical thickness of the anterior and posterior banks of the CS, precentral sulci (PrCS), and postcentral sulci (PoCS). Additionally, we compared the cortical thickness of the anterior and posterior banks of each sulcus visually using a grading scale. Results: On T2-weighted images, the cerebral cortex was highlighted by a high signal-intensity vasogenic edema in the adjacent white matter, and its thickness was readily measurable. The unique cortical thickness difference between the anterior and posterior banks of the CS were confirmed with measurements of 2.67 and 1.48 mm (p < 0.0001). The cortical measurements across other cerebral sulci were 2.04 and 1.95 mm (NS) for the PrCS, and 1.67 and 1.77 mm (NS) for the PoCS. The cortical thickness ratios were 1.86 for the CS, 1.05 for the PrCS, and 0.96 for the PoCS. On visual evaluation, the anterior bank of the CS was thicker than the posterior bank in 93% (65/70). For the PrCS and PoCS, the thickness of the anterior and posterior banks appeared to be equal in over 70% of the patients. Conclusion: A prominent cortical thickness difference across the CS in the presence of vasogenic edema was confirmed. This finding is considered to facilitate the identification of the CS in patients with brain tumors

  6. Cortical thickness difference across the central sulcus visualized in the presence of vasogenic edema

    Energy Technology Data Exchange (ETDEWEB)

    Togao, Osamu [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan)], E-mail: togao@dr.hosp.kyushu-u.ac.jp; Yoshiura, Takashi; Mihara, Futoshi; Noguchi, Tomoyuki; Hiwatashi, Akio; Yamashita, Koji; Yoshitake, Tadamasa; Honda, Hiroshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan)

    2008-05-15

    Purpose: To confirm the cortical thickness difference across the central sulcus (CS) visualized in the presence of vasogenic edema on MRI. Materials and methods: T2-weighted images of 70 cerebral hemispheres showing vasogenic edema infiltrating into subcortical white matter around the CS were studied retrospectively. Two neuroradiologists measured the cortical thickness of the anterior and posterior banks of the CS, precentral sulci (PrCS), and postcentral sulci (PoCS). Additionally, we compared the cortical thickness of the anterior and posterior banks of each sulcus visually using a grading scale. Results: On T2-weighted images, the cerebral cortex was highlighted by a high signal-intensity vasogenic edema in the adjacent white matter, and its thickness was readily measurable. The unique cortical thickness difference between the anterior and posterior banks of the CS were confirmed with measurements of 2.67 and 1.48 mm (p < 0.0001). The cortical measurements across other cerebral sulci were 2.04 and 1.95 mm (NS) for the PrCS, and 1.67 and 1.77 mm (NS) for the PoCS. The cortical thickness ratios were 1.86 for the CS, 1.05 for the PrCS, and 0.96 for the PoCS. On visual evaluation, the anterior bank of the CS was thicker than the posterior bank in 93% (65/70). For the PrCS and PoCS, the thickness of the anterior and posterior banks appeared to be equal in over 70% of the patients. Conclusion: A prominent cortical thickness difference across the CS in the presence of vasogenic edema was confirmed. This finding is considered to facilitate the identification of the CS in patients with brain tumors.

  7. The relationship between neuropsychological tests of visuospatial function and lobar cortical thickness.

    Science.gov (United States)

    Zink, Davor N; Miller, Justin B; Caldwell, Jessica Z K; Bird, Christopher; Banks, Sarah J

    2018-06-01

    Tests of visuospatial function are often administered in comprehensive neuropsychological evaluations. These tests are generally considered assays of parietal lobe function; however, the neural correlates of these tests, using modern imaging techniques, are not well understood. In the current study we investigated the relationship between three commonly used tests of visuospatial function and lobar cortical thickness in each hemisphere. Data from 374 patients who underwent a neuropsychological evaluation and MRI scans in an outpatient dementia clinic were included in the analysis. We examined the relationships between cortical thickness, as assessed with Freesurfer, and performance on three tests: Judgment of Line Orientation (JoLO), Block Design (BD) from the Fourth edition of the Wechsler Adult Intelligence Scale, and Brief Visuospatial Memory Test-Revised Copy Trial (BVMT-R-C) in patients who showed overall average performance on these tasks. Using a series of multiple regression models, we assessed which lobe's overall cortical thickness best predicted test performance. Among the individual lobes, JoLO performance was best predicted by cortical thickness in the right temporal lobe. BD performance was best predicted by cortical thickness in the right parietal lobe, and BVMT-R-C performance was best predicted by cortical thickness in the left parietal lobe. Performance on constructional tests of visuospatial function appears to correspond best with underlying cortical thickness of the parietal lobes, while performance on visuospatial judgment tests appears to correspond best to temporal lobe thickness. Future research using voxel-wise and connectivity techniques and including more diverse samples will help further understanding of the regions and networks involved in visuospatial tests.

  8. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    Science.gov (United States)

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-05-01

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  9. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa

    Science.gov (United States)

    Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-01

    Background Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. Methods We collected anatomical MRI data from adolescent girls and women (ages 12–38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. Results We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. Limitations These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Conclusion Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential

  10. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  11. Cortical thickness and surface area correlates with cognitive dysfunction among first-episode psychosis patients.

    Science.gov (United States)

    Haring, L; Müürsepp, A; Mõttus, R; Ilves, P; Koch, K; Uppin, K; Tarnovskaja, J; Maron, E; Zharkovsky, A; Vasar, E; Vasar, V

    2016-07-01

    In studies using magnetic resonance imaging (MRI), some have reported specific brain structure-function relationships among first-episode psychosis (FEP) patients, but findings are inconsistent. We aimed to localize the brain regions where cortical thickness (CTh) and surface area (cortical area; CA) relate to neurocognition, by performing an MRI on participants and measuring their neurocognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB), in order to investigate any significant differences between FEP patients and control subjects (CS). Exploration of potential correlations between specific cognitive functions and brain structure was performed using CANTAB computer-based neurocognitive testing and a vertex-by-vertex whole-brain MRI analysis of 63 FEP patients and 30 CS. Significant correlations were found between cortical parameters in the frontal, temporal, cingular and occipital brain regions and performance in set-shifting, working memory manipulation, strategy usage and sustained attention tests. These correlations were significantly dissimilar between FEP patients and CS. Significant correlations between CTh and CA with neurocognitive performance were localized in brain areas known to be involved in cognition. The results also suggested a disrupted structure-function relationship in FEP patients compared with CS.

  12. Genetic associations between intelligence and cortical thickness emerge at the start of puberty.

    Science.gov (United States)

    Brouwer, Rachel M; van Soelen, Inge L C; Swagerman, Suzanne C; Schnack, Hugo G; Ehli, Erik A; Kahn, René S; Hulshoff Pol, Hilleke E; Boomsma, Dorret I

    2014-08-01

    Cognitive abilities are related to (changes in) brain structure during adolescence and adulthood. Previous studies suggest that associations between cortical thickness and intelligence may be different at different ages. As both intelligence and cortical thickness are heritable traits, the question arises whether the association between cortical thickness development and intelligence is due to genes influencing both traits. We study this association in a longitudinal sample of young twins. Intelligence was assessed by standard IQ tests at age 9 in 224 twins, 190 of whom also underwent structural magnetic resonance imaging (MRI). Three years later at age 12, 177/125 twins returned for a follow-up measurement of intelligence/MRI scanning, respectively. We investigated whether cortical thickness was associated with intelligence and if so, whether this association was driven by genes. At age 9, there were no associations between cortical thickness and intelligence. At age 12, a negative relationship emerged. This association was mainly driven by verbal intelligence, and manifested itself most prominently in the left hemisphere. Cortical thickness and intelligence were explained by the same genes. As a post hoc analysis, we tested whether a specific allele (rs6265; Val66Met in the BDNF gene) contributed to this association. Met carriers showed lower intelligence and a thicker cortex, but only the association between the BDNF genotype and cortical thickness in the left superior parietal gyrus reached significance. In conclusion, it seems that brain areas contributing to (verbal) intellectual performance are specializing under the influence of genes around the onset of puberty. Copyright © 2013 Wiley Periodicals, Inc.

  13. A Preliminary Study of the Influence of Age of Onset and Childhood Trauma on Cortical Thickness in Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Natalia Jaworska

    2014-01-01

    Full Text Available Background. Major depressive disorder (MDD neural underpinnings may differ based on onset age and childhood trauma. We assessed cortical thickness in patients who differed in age of MDD onset and examined trauma history influence. Methods. Adults with MDD (N=36 and controls (HC; N=18 underwent magnetic resonance imaging. Twenty patients had MDD onset 25 years of age (adult onset. The MDD group was also subdivided into those with (N=12 and without (N=19 physical and/or sexual abuse as assessed by the Childhood Trauma Questionnaire (CTQ. Cortical thickness was analyzed with FreeSurfer software. Results. Thicker frontal pole and a tendency for thinner transverse temporal cortices existed in MDD. The former was driven by the pediatric onset group and abuse history (independently, particularly in the right frontal pole. Inverse correlations existed between CTQ scores and frontal pole cortex thickness. A similar inverse relation existed with left inferior and right superior parietal cortex thickness. The superior temporal cortex tended to be thinner in pediatric versus adult onset groups with childhood abuse. Conclusions. This preliminary work suggests neural differences between pediatric and adult MDD onset. Trauma history also contributes to cytoarchitectural modulation. Thickened frontal pole cortices as a compensatory mechanism in MDD warrant evaluation.

  14. 4D segmentation of brain MR images with constrained cortical thickness variation.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Segmentation of brain MR images plays an important role in longitudinal investigation of developmental, aging, disease progression changes in the cerebral cortex. However, most existing brain segmentation methods consider multiple time-point images individually and thus cannot achieve longitudinal consistency. For example, cortical thickness measured from the segmented image will contain unnecessary temporal variations, which will affect the time related change pattern and eventually reduce the statistical power of analysis. In this paper, we propose a 4D segmentation framework for the adult brain MR images with the constraint of cortical thickness variations. Specifically, we utilize local intensity information to address the intensity inhomogeneity, spatial cortical thickness constraint to maintain the cortical thickness being within a reasonable range, and temporal cortical thickness variation constraint in neighboring time-points to suppress the artificial variations. The proposed method has been tested on BLSA dataset and ADNI dataset with promising results. Both qualitative and quantitative experimental results demonstrate the advantage of the proposed method, in comparison to other state-of-the-art 4D segmentation methods.

  15. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness.

    Science.gov (United States)

    Staubo, Sara C; Aakre, Jeremiah A; Vemuri, Prashanthi; Syrjanen, Jeremy A; Mielke, Michelle M; Geda, Yonas E; Kremers, Walter K; Machulda, Mary M; Knopman, David S; Petersen, Ronald C; Jack, Clifford R; Roberts, Rosebud O

    2017-02-01

    The Mediterranean diet (MeDi) is associated with reduced risk of cognitive impairment, but it is unclear whether it is associated with better brain imaging biomarkers. Among 672 cognitively normal participants (mean age, 79.8 years, 52.5% men), we investigated associations of MeDi score and MeDi components with magnetic resonance imaging measures of cortical thickness for the four lobes separately and averaged (average lobar). Higher MeDi score was associated with larger frontal, parietal, occipital, and average lobar cortical thickness. Higher legume and fish intakes were associated with larger cortical thickness: legumes with larger superior parietal, inferior parietal, precuneus, parietal, occipital, lingual, and fish with larger precuneus, superior parietal, posterior cingulate, parietal, and inferior parietal. Higher carbohydrate and sugar intakes were associated with lower entorhinal cortical thickness. In this sample of elderly persons, higher adherence to MeDi was associated with larger cortical thickness. These cross-sectional findings require validation in prospective studies. Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  16. Macrostructural brain changes in patients with longstanding type 1 diabetes mellitus - a cortical thickness analysis study

    DEFF Research Database (Denmark)

    Frøkjær, J B; Brock, C; Søfteland, E

    2013-01-01

    .03) and superior parietal gyrus (P=0.008) in patients. The cortical thickness of these regions was not associated with diabetes duration, age at diabetes onset or to HbA1c (all P>0.08). Patients with peripheral neuropathy showed reduced right postcentral gyrus cortical thickness compared to patients without...... peripheral neuropathy (P=0.02).Patients with longstanding type 1 diabetes showed cortical thinning involving sensory related areas, even though no overall macrostructural brain alterations were detected. This could possibly have underlying functional significance since cortical thinning was associated...... to presence of peripheral neuropathy. The absence of universal macrostructural changes might illustrate that more pronounced brain pathology is likely to be preceded by more subtle microstructural changes as reported in other studies...

  17. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

    Science.gov (United States)

    Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

    2010-11-01

    The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Association between cortical thickness and CSF biomarkers in mild cognitive impairment and Alzheimer’s disease

    DEFF Research Database (Denmark)

    Mohades, Sara; Dubois, Jonathan; Parent, Maxime

    regional cortical thinning (CT) measured by Magnetic Resonance Imaging (MRI) and brain amyloidosis (measured by CSF Ab 1-42 concentrations), or tau hyperphosphorylation (tau 181; p-tau) in Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) patients. We test the hypothesis that the association...... (CN; n¼8) were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Cortical surface reconstruction and group registration were generated using Freesurfer. A general linear model was used to conduct regressions between CSF markers and cortical thickness. Results: Correlation...

  19. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    Science.gov (United States)

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  20. Longitudinal data on cortical thickness before and after working memory training

    Directory of Open Access Journals (Sweden)

    Claudia Metzler-Baddeley

    2016-06-01

    Full Text Available The data and supplementary information provided in this article relate to our research article “Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training” (Metzler-Baddeley et al., 2016 [1]. We provide cortical thickness and subcortical volume data derived from parieto-frontal cortical regions and the basal ganglia with the FreeSurfer longitudinal analyses stream (http://surfer.nmr.mgh.harvard.edu [2] before and after Cogmed working memory training (Cogmed and Cogmed Working Memory Training, 2012 [3]. This article also provides supplementary information to the research article, i.e., within-group comparisons between baseline and outcome cortical thickness and subcortical volume measures, between-group tests of performance changes in cognitive benchmark tests (www.cambridgebrainsciences.com [4], correlation analyses between performance changes in benchmark tests and training-related structural changes, correlation analyses between the time spent training and structural changes, a scatterplot of the relationship between cortical thickness measures derived from the occipital lobe as control region and the chronological order of the MRI sessions to assess potential scanner drift effects and a post-hoc vertex-wise whole brain analysis with FreeSurfer Qdec (https://surfer.nmr.mgh.harvard.edu/fswiki/Qdec [5].

  1. Longitudinal data on cortical thickness before and after working memory training.

    Science.gov (United States)

    Metzler-Baddeley, Claudia; Caeyenberghs, Karen; Foley, Sonya; Jones, Derek K

    2016-06-01

    The data and supplementary information provided in this article relate to our research article "Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training" (Metzler-Baddeley et al., 2016) [1]. We provide cortical thickness and subcortical volume data derived from parieto-frontal cortical regions and the basal ganglia with the FreeSurfer longitudinal analyses stream (http://surfer.nmr.mgh.harvard.edu [2]) before and after Cogmed working memory training (Cogmed and Cogmed Working Memory Training, 2012) [3]. This article also provides supplementary information to the research article, i.e., within-group comparisons between baseline and outcome cortical thickness and subcortical volume measures, between-group tests of performance changes in cognitive benchmark tests (www.cambridgebrainsciences.com [4]), correlation analyses between performance changes in benchmark tests and training-related structural changes, correlation analyses between the time spent training and structural changes, a scatterplot of the relationship between cortical thickness measures derived from the occipital lobe as control region and the chronological order of the MRI sessions to assess potential scanner drift effects and a post-hoc vertex-wise whole brain analysis with FreeSurfer Qdec (https://surfer.nmr.mgh.harvard.edu/fswiki/Qdec [5]).

  2. Cortical thickness and subcortical brain volumes in professional rugby league players

    Directory of Open Access Journals (Sweden)

    Magdalena Wojtowicz

    Full Text Available Purpose: The purpose of this study was to examine cortical thickness and subcortical volumes in professional rugby players with an extensive history of concussions compared to control subjects. Method: Participants included 24 active and former professional rugby league players [Age M(SD = 33.3(6.3; Range = 21–44] with an extensive history of concussion and 18 age- and education-matched controls with no history of neurotrauma or participation in contact sports. Participants underwent T1-weighted imaging and completed a neuropsychological battery, including two tests of memory. Whole brain cortical thickness analysis and structural volume analysis was performed using FreeSurfer version 6.0. Results: Professional rugby league players reported greater alcohol consumption (p < .001 and had significantly worse delayed recall of a visually complex design (p = .04. They did not differ from controls on other clinical outcome measures. There were no differences in cortical thickness between the groups. Professional players had smaller whole brain (p = .003, bilateral hippocampi (ps = .03, and left amygdala volumes (p = .01 compared to healthy controls. Within the players group, there were significant associations between greater alcohol use and smaller bilateral hippocampi and left amygdala volumes. There were no associations between structural volumes and history of concussions or memory performance. Conclusions: The literature examining cortical thickness in athletes with a history of multiple concussions is mixed. We did not observe differences in cortical thickness in professional rugby league players compared to controls. However, smaller subcortical volumes were found in players that were, in part, associated with greater alcohol consumption. Keywords: Volumetric MRI, Cortical thickness, Concussion, Brain morphometry, Athletes, Rugby

  3. Cortical thickness changes correlate with cognition changes after cognitive training: Evidence from a Chinese community study

    Directory of Open Access Journals (Sweden)

    Lijuan eJiang

    2016-05-01

    Full Text Available The aim of this study was to investigate whether changes in cortical thickness correlated with cognitive function changes in healthy older adults after receiving cognitive training interventions. Moreover, it also aimed to examine the differential impacts of a multi-domain and a single-domain cognitive training interventions. Longitudinal magnetic resonance imaging (MRI scanning was performed on participants 65 to 75 years of age using the Siemens 3.0 T Trio Tim with the MPRAGE sequence. The cortical thickness was determined using FreeSurfer software. Cognitive functioning was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS. There were significant group × time interaction effects on the left supramarginal, the left frontal pole cortical regions; and a marginal significant group × time interaction effects on visuospatial/constructional and delayed memory scores. In a multi-domain cognitive training group, a number of cortical region changes were significantly positively correlated with changes in attention, delayed memory, and the total score, but significantly negatively correlated with changes in immediate memory and language scores. In the single-domain cognitive training group, some cortical region changes were significantly positively associated with changes in immediate memory, delayed memory, and the total score, while they were significantly negatively associated with changes in visuospatial/constructional, language, and attention scores. Overall, multi-domain cognitive training offered more advantages in visuospatial/constructional, attention, and delayed memory abilities, while single-domain cognitive training benefited immediate memory ability more effectively. These findings suggest that healthy older adults benefit more from the multi-domain cognitive training than single-domain cognitive training. Cognitive training has impacted on cortical thickness changes in healthy elderly

  4. Cortical thickness development of human primary visual cortex related to the age of blindness onset.

    Science.gov (United States)

    Li, Qiaojun; Song, Ming; Xu, Jiayuan; Qin, Wen; Yu, Chunshui; Jiang, Tianzi

    2017-08-01

    Blindness primarily induces structural alteration in the primary visual cortex (V1). Some studies have found that the early blind subjects had a thicker V1 compared to sighted controls, whereas late blind subjects showed no significant differences in the V1. This implies that the age of blindness onset may exert significant effects on the development of cortical thickness of the V1. However, no previous research used a trajectory of the age of blindness onset-related changes to investigate these effects. Here we explored this issue by mapping the cortical thickness trajectory of the V1 against the age of blindness onset using data from 99 blind individuals whose age of blindness onset ranged from birth to 34 years. We found that the cortical thickness of the V1 could be fitted well with a quadratic curve in both the left (F = 11.59, P = 3 × 10 -5 ) and right hemispheres (F = 6.54, P = 2 × 10 -3 ). Specifically, the cortical thickness of the V1 thinned rapidly during childhood and adolescence and did not change significantly thereafter. This trend was not observed in the primary auditory cortex (A1), primary motor cortex (M1), or primary somatosensory cortex (S1). These results provide evidence that an onset of blindness before adulthood significantly affects the cortical thickness of the V1 and suggest a critical period for cortical development of the human V1.

  5. Heritability of cortical thickness changes over time in twin pairs discordant for schizophrenia.

    Science.gov (United States)

    Hedman, Anna M; van Haren, Neeltje E M; van Baal, G Caroline M; Brouwer, Rachel M; Brans, Rachel G H; Schnack, Hugo G; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-06-01

    Cortical thickness and surface area changes have repeatedly been found in schizophrenia. Whether progressive loss in cortical thickness and surface area are mediated by genetic or disease related factors is unknown. Here we investigate to what extent genetic and/or environmental factors contribute to the association between change in cortical thickness and surface area and liability to develop schizophrenia. Longitudinal magnetic resonance imaging study over a 5-year interval. Monozygotic (MZ) and dizygotic (DZ) twin pairs discordant for schizophrenia were compared with healthy control twin pairs using repeated measures analysis of variance (RM-ANOVA) and structural equation modeling (SEM). Twins discordant for schizophrenia and healthy control twins were recruited from the twin cohort at the University Medical Centre Utrecht, The Netherlands. A total of 90 individuals from 46 same sex twin pairs were included: 9 MZ and 10 DZ discordant for schizophrenia and 14 MZ and 13 (11 complete and 2 incomplete) DZ healthy twin-pairs. Age varied between 19 and 57years. Higher genetic liability for schizophrenia was associated with progressive global thinning of the cortex, particularly of the left superior temporal cortex. Higher environmental liability for schizophrenia was associated with global attenuated thinning of the cortex, and including of the left superior temporal cortex. Cortical surface area change was heritable, but not significantly associated with higher genetic or environmental liability for schizophrenia. Excessive cortical thinning, particularly of the left superior temporal cortex, may represent a genetic risk marker for schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Normal kidney size and renal cortical thickness of the Korean adults

    International Nuclear Information System (INIS)

    Chung, Hee Kyung; Hahm, Chang Kok

    1974-01-01

    1. The kidney size and cortical thickness were measured from intravenous pyelograms of healthy Korean adults of 250 males and 250 females. 2. The measured size and cortical thickness of kidney were following figure (mm). 3. The size of kidney of male is a little larger than female both in vertical length and horizontal width. 4. The renal cortical thickness were not significant in differences between male and female, right and left, in each poles. 5. In the study of distribution of length differences between pairs of kidneys in our series, the length of right kidney is larger in 18.6%, and width in 27.2%. 6. Comparative study is carried out measuring the length of first lumbar vertebral bodies including 4 intervertebral spaces. 7. The site of kidney is larger in the group of greater length of vertebral height. 8. The renal cortical thickness have no significant differences in according to the differences of length of vertebral height, in each poles. 9. Comparing with the western authors, the kidney size of the Korean adult is not smaller than western

  8. Altered grey matter volume and cortical thickness in patients with schizo-obsessive comorbidity

    DEFF Research Database (Denmark)

    Wang, Yong-Ming; Zou, Lai-Quan; Xie, Wen-Lan

    2018-01-01

    Recent findings suggest that schizo-obsessive comorbidity (SOC) may be a unique diagnostic entity. We examined grey matter (GM) volume and cortical thickness in 22 patients with SOC, and compared them with 21 schizophrenia (SCZ) patients, 22 obsessive-compulsive disorder (OCD) patients and 22...

  9. AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct

    DEFF Research Database (Denmark)

    Odgaard, Elvin V. P.; Prætorius, Helle; Leipziger, Jens Georg

    2009-01-01

    is stimulated remain elusive. Here, we investigate the phenomenon of nucleotide secretion in intact, perfused mouse medullary thick ascending limb (mTAL) and cortical collecting duct (CCD). The nucleotide secretion was monitored by a biosensor adapted to register nucleotides in the tubular outflow...

  10. MRI study on the cortical thickness of occipital lobe in children with ametropic amblyopia

    International Nuclear Information System (INIS)

    Du Hanjian; Wang Jian; Li Chuan; Zhang Jiuquan; Chen Li; Liu Bo

    2008-01-01

    Objective: To study cortical thickness of the occipital lobe in children with ametropic amblyopia by using MRI technique and the FreeSurfer software. Methods: Nine children with ametropic amblyopia were included in the amblyopic group and 8 normal children were included in the control group. All the children underwent brain MRI on the Siemens Avanto 1.5 T scanner. For the cortical thickness analysis, 3-demensional MPRAGE images were collected and analyzed with FreeSurfer software package. Cortical thickness of related regions in the occipital lobe (including the cuneus, later occipital, lingual, and pericalcarine gyri) were recorded and compared. Results: The cortical thickness of the lingual, pericalcarine gyri on the left hemisphere and the cuneus, lateraloccipital, lingual gyri on the right hemisphere in amblyopic group were lower than the control group (P<0.05). Conclusion: Morphological changes existed in the occipital lobe in ametropic amblyopic children. The analysis technique with the FreeSurfer package has a potential value in the clinical application. (authors)

  11. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates?

    Science.gov (United States)

    Nishimura, Abigail C; Russo, Gabrielle A

    2017-04-01

    The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories. © 2017 Wiley Periodicals, Inc.

  12. Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life.

    Science.gov (United States)

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-08-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, longitudinal MR images of 73 healthy subjects from birth to 2 year old are used. For each subject at each time point, its measures of cortical thickness, cortical folding, and fiber density are projected to its cortical surface that has been partitioned into 78 cortical regions. Then, the correlation matrices for cortical thickness, cortical folding, and fiber density at each time point can be constructed, respectively, by computing the inter-regional Pearson correlation coefficient (of any pair of ROIs) across all 73 subjects. Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is constructed from each inter-regional correlation matrix, and its statistical and anatomical properties are adopted to analyze the longitudinal development of anatomical networks. The results show that the development of anatomical network could be characterized differently by using different anatomical properties (i.e., using cortical thickness, cortical folding, or fiber density). Copyright © 2013 Wiley Periodicals, Inc.

  13. A Retrospective Study on Indian Population to evaluate Cortical Bone Thickness in Maxilla and Mandible using Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Jeegar Ketan Vakil

    2014-01-01

    Conclusion: Mini-implants have gained considerable popularity due to their low cost, effectiveness, clinical management and stability. Among the factors related to microimplant stability, bone density and cortical bone thickness appear to be critical for successful placement. This study will provide knowledge of cortical bone thickness in various areas which can guide the clinicians in selecting the placement site.

  14. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    Science.gov (United States)

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  15. Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome.

    Science.gov (United States)

    Maeda, Yumi; Kettner, Norman; Kim, Jieun; Kim, Hyungjun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Libby, Alexandra; Mezzacappa, Pia; Mawla, Ishtiaq; Morse, Leslie R; Audette, Joseph; Napadow, Vitaly

    2016-05-01

    Paresthesia-dominant and pain-dominant subgroups have been noted in carpal tunnel syndrome (CTS), a peripheral neuropathic disorder characterized by altered primary somatosensory/motor (S1/M1) physiology. We aimed to investigate whether brain morphometry dissociates these subgroups. Subjects with CTS were evaluated with nerve conduction studies, whereas symptom severity ratings were used to allocate subjects into paresthesia-dominant (CTS-paresthesia), pain-dominant (CTS-pain), and pain/paresthesia nondominant (not included in further analysis) subgroups. Structural brain magnetic resonance imaging data were acquired at 3T using a multiecho MPRAGE T1-weighted pulse sequence, and gray matter cortical thickness was calculated across the entire brain using validated, automated methods. CTS-paresthesia subjects demonstrated reduced median sensory nerve conduction velocity (P = 0.05) compared with CTS-pain subjects. In addition, cortical thickness in precentral and postcentral gyri (S1/M1 hand area) contralateral to the more affected hand was significantly reduced in CTS-paresthesia subgroup compared with CTS-pain subgroup. Moreover, in CTS-paresthesia subjects, precentral cortical thickness was negatively correlated with paresthesia severity (r(34) = -0.40, P = 0.016) and positively correlated with median nerve sensory velocity (r(36) = 0.51, P = 0.001), but not with pain severity. Conversely, in CTS-pain subjects, contralesional S1 (r(9) = 0.62, P = 0.042) and M1 (r(9) = 0.61, P = 0.046) cortical thickness were correlated with pain severity, but not median nerve velocity or paresthesia severity. This double dissociation in somatotopically specific S1/M1 areas suggests a neuroanatomical substrate for symptom-based CTS subgroups. Such fine-grained subgrouping of CTS may lead to improved personalized therapeutic approaches, based on superior characterization of the linkage between peripheral and central neuroplasticity.

  16. Longitudinal Development of Cortical Thickness, Folding, and Fiber Density Networks in the First 2 Years of Life

    OpenAIRE

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H.; Shen, Dinggang

    2013-01-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, ...

  17. Restoration of Thickness, Density, and Volume for Highly Blurred Thin Cortical Bones in Clinical CT Images.

    Science.gov (United States)

    Pakdel, Amirreza; Hardisty, Michael; Fialkov, Jeffrey; Whyne, Cari

    2016-11-01

    In clinical CT images containing thin osseous structures, accurate definition of the geometry and density is limited by the scanner's resolution and radiation dose. This study presents and validates a practical methodology for restoring information about thin bone structure by volumetric deblurring of images. The methodology involves 2 steps: a phantom-free, post-reconstruction estimation of the 3D point spread function (PSF) from CT data sets, followed by iterative deconvolution using the PSF estimate. Performance of 5 iterative deconvolution algorithms, blind, Richardson-Lucy (standard, plus Total Variation versions), modified residual norm steepest descent (MRNSD), and Conjugate Gradient Least-Squares were evaluated using CT scans of synthetic cortical bone phantoms. The MRNSD algorithm resulted in the highest relative deblurring performance as assessed by a cortical bone thickness error (0.18 mm) and intensity error (150 HU), and was subsequently applied on a CT image of a cadaveric skull. Performance was compared against micro-CT images of the excised thin cortical bone samples from the skull (average thickness 1.08 ± 0.77 mm). Error in quantitative measurements made from the deblurred images was reduced 82% (p < 0.01) for cortical thickness and 55% (p < 0.01) for bone mineral mass. These results demonstrate a significant restoration of geometrical and radiological density information derived for thin osseous features.

  18. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous-unemotional traits.

    Science.gov (United States)

    Fairchild, Graeme; Toschi, Nicola; Hagan, Cindy C; Goodyer, Ian M; Calder, Andrew J; Passamonti, Luca

    2015-01-01

    Previous studies have reported changes in gray matter volume in youths with conduct disorder (CD), although these differences are difficult to interpret as they may have been driven by alterations in cortical thickness, surface area (SA), or folding. The objective of this study was to use surface-based morphometry (SBM) methods to compare male youths with CD and age and sex-matched healthy controls (HCs) in cortical thickness, SA, and folding. We also tested for structural differences between the childhood-onset and adolescence-onset subtypes of CD and performed regression analyses to assess for relationships between CD symptoms and callous-unemotional (CU) traits and SBM-derived measures. We acquired structural neuroimaging data from 20 HCs and 36 CD participants (18 with childhood-onset CD and 18 with adolescence-onset CD) and analyzed the data using FreeSurfer. Relative to HCs, youths with CD showed reduced cortical thickness in the superior temporal gyrus, reduced SA in the orbitofrontal cortex (OFC), and increased cortical folding in the insula. There were no significant differences between the childhood-onset and adolescence-onset CD subgroups in cortical thickness or SA, but several frontal and temporal regions showed increased cortical folding in childhood-onset relative to adolescence-onset CD participants. Both CD subgroups also showed increased cortical folding relative to HCs. CD symptoms were negatively correlated with OFC SA whereas CU traits were positively correlated with insula folding. Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and

  19. Cortical thickness estimation of the proximal femur from multi-view dual-energy X-ray absorptiometry (DXA)

    Science.gov (United States)

    Tsaousis, N.; Gee, A. H.; Treece, G. M.; Poole, K. E. S.

    2013-02-01

    Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 +/- 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 +/- 0:79 mm.

  20. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  1. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  2. Imaging derived cortical thickness reduction in high-functioning autism: key regions and temporal slope.

    Science.gov (United States)

    Scheel, Christian; Rotarska-Jagiela, Anna; Schilbach, Leonhard; Lehnhardt, Fritz G; Krug, Barbara; Vogeley, Kai; Tepest, Ralf

    2011-09-15

    Cortical thickness (CT) changes possibly contribute to the complex symptomatology of autism. The aberrant developmental trajectories underlying such differences in certain brain regions and their continuation in adulthood are a matter of intense debate. We studied 28 adults with high-functioning autism (HFA) and 28 control subjects matched for age, gender, IQ and handedness. A surface-based whole brain analysis utilizing FreeSurfer was employed to detect CT differences between the two diagnostic groups and to investigate the time course of age-related changes. Direct comparison with control subjects revealed thinner cortex in HFA in the posterior superior temporal sulcus (pSTS) of the left hemisphere. Considering the time course of CT development we found clusters around the pSTS and cuneus in the left and the paracentral lobule in the right hemisphere to be thinner in HFA with comparable age-related slopes in patients and controls. Conversely, we found clusters around the supramarginal gyrus and inferior parietal lobule (IPL) in the left and the precentral and postcentral gyrus in the right hemisphere to be thinner in HFA, but with different age-related slopes in patients and controls. In the latter regions CT showed a steady decrease in controls but no analogous thinning in HFA. CT analyses contribute in characterizing neuroanatomical correlates of HFA. Reduced CT is present in brain regions involved in social cognition. Furthermore, our results demonstrate that aberrant brain development leading to such differences is proceeding throughout adulthood. Discrepancies in prior morphometric studies may be induced by the complex time course of cortical changes. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Increased Executive Functioning, Attention, and Cortical Thickness in White-Collar Criminals

    Science.gov (United States)

    Raine, Adrian; Laufer, William S.; Yang, Yaling; Narr, Katherine L.; Thompson, Paul; Toga, Arthur W.

    2011-01-01

    Very little is known on white collar crime and how it differs to other forms of offending. This study tests the hypothesis that white collar criminals have better executive functioning, enhanced information processing, and structural brain superiorities compared to offender controls. Using a case-control design, executive functioning, orienting, and cortical thickness was assessed in 21 white collar criminals matched with 21 controls on age, gender, ethnicity, and general level of criminal offending. White collar criminals had significantly better executive functioning, increased electrodermal orienting, increased arousal, and increased cortical gray matter thickness in the ventromedial prefrontal cortex, inferior frontal gyrus, somatosensory cortex, and the temporal-parietal junction compared to controls. Results, while initial, constitute the first findings on neurobiological characteristics of white-collar criminals It is hypothesized that white collar criminals have information-processing and brain superiorities that give them an advantage in perpetrating criminal offenses in occupational settings. PMID:22002326

  4. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population

    OpenAIRE

    Porat, Shai; Goukasian, Naira; Hwang, Kristy S.; Zanto, Theodore; Do, Triet; Pierce, Jonathan; Joshi, Shantanu; Woo, Ellen; Apostolova, Liana G.

    2016-01-01

    Introduction: We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI). Methods: 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clin...

  5. Impaired response inhibition and excess cortical thickness as candidate endophenotypes for trichotillomania

    DEFF Research Database (Denmark)

    Odlaug, Brian Lawrence; Chamberlain, Samuel R; Derbyshire, Katie L

    2014-01-01

    occupying an intermediate position. Permutation cluster analysis revealed significant excesses of cortical thickness in patients and their relatives compared to controls, in right inferior/middle frontal gyri (Brodmann Area, BA 47 & 11), right lingual gyrus (BA 18), left superior temporal cortex (BA 21......Trichotillomania is characterized by repetitive pulling out of one's own hair. Impaired response inhibition has been identified in patients with trichotillomania, along with gray matter density changes in distributed neural regions including frontal cortex. The objective of this study...

  6. Maternal pre-pregnancy obesity and child ADHD symptoms, executive function and cortical thickness

    Directory of Open Access Journals (Sweden)

    Claudia Buss

    2012-09-01

    Full Text Available Rationale/statement of the problem : Increasing evidence suggests exposure to adverse conditions in intrauterine life may increase the risk of developing attention-deficit/hyperactivity disorder (ADHD in childhood. High maternal pre-pregnancy body mass index (BMI has been shown to predict child ADHD symptoms; however, the neurocognitive processes underlying this relationship are not known. The aim of the present study was to test the hypothesis that this association is mediated by alterations in child executive function and cortical development. Methods : A population-based cohort of 174 children (mean age = 7.3±0.9 (SD years, 55% girls was evaluated for ADHD symptoms, using the Child Behavior Checklist, and for neurocognitive function, using the Go/No-go Task. This cohort had been followed prospectively from early gestation and birth through infancy and childhood with serial measures of maternal and child prenatal and postnatal factors. In 108 children, a structural MRI scan was acquired and the association between maternal obesity and child cortical thickness was investigated using Freesurfer software. Results : Maternal pre-pregnancy BMI was a significant predictor of child ADHD symptoms (F (1,158=4.80, p = 0.03 and of child performance on the Go/No-go Task (F (1,157=8.37, p=0.004 after controlling for key potential confounding variables. A test of the mediation model revealed that the association between higher maternal pre-pregnancy BMI and child ADHD symptoms was mediated by impaired executive function (inefficient/less attentive processing; Sobel test: t=2.39 (±0.002, SEM; p=0.02. Interestingly, after controlling for key potential confounding variables pre-pregnancy obesity was furthermore associated with region-specific thinner cortices, including regions previously reported to be thinner in children with ADHD, like the prefrontal cortex. Conclusion : To the best of our knowledge, this is the first study to report the

  7. Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task.

    Science.gov (United States)

    Frank, Sebastian M; Reavis, Eric A; Greenlee, Mark W; Tse, Peter U

    2016-03-01

    We report that preexisting individual differences in the cortical thickness of brain areas involved in a perceptual learning task predict the subsequent perceptual learning rate. Participants trained in a motion-discrimination task involving visual search for a "V"-shaped target motion trajectory among inverted "V"-shaped distractor trajectories. Motion-sensitive area MT+ (V5) was functionally identified as critical to the task: after 3 weeks of training, activity increased in MT+ during task performance, as measured by functional magnetic resonance imaging. We computed the cortical thickness of MT+ from anatomical magnetic resonance imaging volumes collected before training started, and found that it significantly predicted subsequent perceptual learning rates in the visual search task. Participants with thicker neocortex in MT+ before training learned faster than those with thinner neocortex in that area. A similar association between cortical thickness and training success was also found in posterior parietal cortex (PPC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia.

    Science.gov (United States)

    Tully, Laura M; Lincoln, Sarah Hope; Liyanage-Don, Nadia; Hooker, Christine I

    2014-02-01

    Structural abnormalities in the lateral prefrontal cortex (LPFC) are well-documented in schizophrenia and recent evidence suggests that these abnormalities relate to functional outcome. Cognitive control mechanisms, reliant on the LPFC, are impaired in schizophrenia and predict functional outcome, thus impaired cognitive control could mediate the relationship between neuroanatomical abnormalities in the LPFC and functional outcome. We used surface-based morphometry to investigate relationships between cortical surface characteristics, cognitive control, and measures of social and role functioning in 26 individuals with schizophrenia and 29 healthy controls. Results demonstrate that schizophrenia participants had thinner cortex in a region of the superior frontal gyrus (BA10). Across all participants, decreased cortical thickness in this region related to decreased cognitive control and decreased role functioning. Moreover, cognitive control fully mediated the relationship between cortical thickness in the superior frontal gyrus and role functioning, indicating that neuroanatomical abnormalities in the LPFC adversely impact role functioning via impaired cognitive control processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood.

    Science.gov (United States)

    Lyall, Amanda E; Shi, Feng; Geng, Xiujuan; Woolson, Sandra; Li, Gang; Wang, Li; Hamer, Robert M; Shen, Dinggang; Gilmore, John H

    2015-08-01

    Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Type-2 diabetes mellitus reduces cortical thickness and decreases oxidative metabolism in sensorimotor regions after stroke.

    Science.gov (United States)

    Ferris, Jennifer K; Peters, Sue; Brown, Katlyn E; Tourigny, Katherine; Boyd, Lara A

    2018-05-01

    Individuals with type-2 diabetes mellitus experience poor motor outcomes after ischemic stroke. Recent research suggests that type-2 diabetes adversely impacts neuronal integrity and function, yet little work has considered how these neuronal changes affect sensorimotor outcomes after stroke. Here, we considered how type-2 diabetes impacted the structural and metabolic function of the sensorimotor cortex after stroke using volumetric magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We hypothesized that the combination of chronic stroke and type-2 diabetes would negatively impact the integrity of sensorimotor cortex as compared to individuals with chronic stroke alone. Compared to stroke alone, individuals with stroke and diabetes had lower cortical thickness bilaterally in the primary somatosensory cortex, and primary and secondary motor cortices. Individuals with stroke and diabetes also showed reduced creatine levels bilaterally in the sensorimotor cortex. Contralesional primary and secondary motor cortex thicknesses were negatively related to sensorimotor outcomes in the paretic upper-limb in the stroke and diabetes group such that those with thinner primary and secondary motor cortices had better motor function. These data suggest that type-2 diabetes alters cerebral energy metabolism, and is associated with thinning of sensorimotor cortex after stroke. These factors may influence motor outcomes after stroke.

  11. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population.

    Science.gov (United States)

    Porat, Shai; Goukasian, Naira; Hwang, Kristy S; Zanto, Theodore; Do, Triet; Pierce, Jonathan; Joshi, Shantanu; Woo, Ellen; Apostolova, Liana G

    2016-01-01

    We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI). 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clinical and neuropsychological evaluations. An advanced 3D cortical mapping technique was then applied to calculate cortical thickness. Despite having a trend-level significantly thinner cortex, dancers performed better in cognitive tasks involving learning and memory, such as the California Verbal Learning Test-II (CVLT-II) short delay free recall (p = 0.004), the CVLT-II long delay free recall (p = 0.003), and the CVLT-II learning over trials 1-5 (p = 0.001). Together, these results suggest that dance may result in an enhancement of cognitive reserve in aging, which may help avert or delay MCI.

  12. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population

    Directory of Open Access Journals (Sweden)

    Shai Porat

    2016-10-01

    Full Text Available Introduction: We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI. Methods: 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clinical and neuropsychological evaluations. An advanced 3D cortical mapping technique was then applied to calculate cortical thickness. Results: Despite having a trend-level significantly thinner cortex, dancers performed better in cognitive tasks involving learning and memory, such as the California Verbal Learning Test-II (CVLT-II short delay free recall (p = 0.004, the CVLT-II long delay free recall (p = 0.003, and the CVLT-II learning over trials 1-5 (p = 0.001. Discussion: Together, these results suggest that dance may result in an enhancement of cognitive reserve in aging, which may help avert or delay MCI.

  13. Cortical thickness predicts the first onset of major depression in adolescence.

    Science.gov (United States)

    Foland-Ross, Lara C; Sacchet, Matthew D; Prasad, Gautam; Gilbert, Brooke; Thompson, Paul M; Gotlib, Ian H

    2015-11-01

    Given the increasing prevalence of Major Depressive Disorder and recent advances in preventative treatments for this disorder, an important challenge in pediatric neuroimaging is the early identification of individuals at risk for depression. We examined whether machine learning can be used to predict the onset of depression at the individual level. Thirty-three never-disordered adolescents (10-15 years old) underwent structural MRI. Participants were followed for 5 years to monitor the emergence of clinically significant depressive symptoms. We used support vector machines (SVMs) to test whether baseline cortical thickness could reliably distinguish adolescents who develop depression from adolescents who remained free of any Axis I disorder. Accuracies from subsampled cross-validated classification were used to assess classifier performance. Baseline cortical thickness correctly predicted the future onset of depression with an overall accuracy of 70% (69% sensitivity, 70% specificity; p=0.021). Examination of SVM feature weights indicated that the right medial orbitofrontal, right precentral, left anterior cingulate, and bilateral insular cortex contributed most strongly to this classification. These findings indicate that cortical gray matter structure can predict the subsequent onset of depression. An important direction for future research is to elucidate mechanisms by which these anomalies in gray matter structure increase risk for developing this disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The alterations of cortical volume, thickness, surface and density in the intermediate sporadic Parkinson's disease from the Han population of Mainland China

    Directory of Open Access Journals (Sweden)

    Xia Deng

    2016-08-01

    Full Text Available Many symptoms of sporadic Parkinson's disease (sPD can’t be completely explained by the lesion of simple typical extrapyramidal circuit between striatum and substantia nigra. Therefore, we investigated the alteration of cortical volume, thickness, surface and density in the intermediate sPD from the Han population of Mainland China in order to find the new pathological brain regions associated with the complex clinical manifestations of sPD. The cortical volume, thickness, surface and density were examined using the voxel-based cortical morphometry and corticometry on magnetic resonance image (MRI in 67 intermediate sPD and 35 controls, the multiple adjusted comparisons analysis of all MRI data were employed to assess the relationships between the cortical morphometric alteration in the specific brain regions and sPD. Results showed that a significantly shrunk volume, thinned thickness and enlarged or reduced surface of cortex in some specific brain regions were closely associated with sPD, but all cortical densities were not different. The majority of morphometric alteration of hemisphere cortex was symmetric, but that in the left hemisphere was more significant. The cortical morphometric alterations in the frontal, temporal, parietal, occipital and limbic lobe, cerebellum, caudate and thalamus were closely related to the clinical neural dysfunction (Clinical manifestations of sPD. Our data indicated that the deficits of extensive brain regions involved in the development of sPD, resulted in a series of correspondent complex clinical manifestations in the disease.

  15. Prediction of Alzheimer’s disease in mild cognitive impairment using sulcal morphology and cortical thickness

    DEFF Research Database (Denmark)

    Plocharski, Maciej; Østergaard, Lasse Riis

    2019-01-01

    converters, or MCIc). The purpose of this study was to predict future AD-conversion in patients with MCI using machine learning with sulcal morphology and cortical thickness measures as classification features. 32 sulci per subject were extracted from 1.5T T1-weighted ADNI database MRI scans of 90 MCIc......Mild cognitive impairment (MCI) is an intermediate condition between healthy ageing and dementia. The amnestic MCI is often a high risk factor for subsequent Alzheimer’s disease (AD) conversion. Some MCI patients never develop AD (MCI non-converters, or MCInc), but some do progress to AD (MCI...... subjects as future converters, (89.7% sensitivity, 84.4% specificity, 0.94 AUC), using 10-fold cross-validation. These results using sulcal and cortical features are superior to the state-of-the-art methods. The most discriminating predictive features were observed in the temporal and frontal lobes...

  16. Contributions of polygenic risk for obesity to PTSD-related metabolic syndrome and cortical thickness.

    Science.gov (United States)

    Wolf, Erika J; Miller, Danielle R; Logue, Mark W; Sumner, Jennifer; Stoop, Tawni B; Leritz, Elizabeth C; Hayes, Jasmeet P; Stone, Annjanette; Schichman, Steven A; McGlinchey, Regina E; Milberg, William P; Miller, Mark W

    2017-10-01

    Research suggests that posttraumatic stress disorder (PTSD) is associated with metabolic syndrome (MetS) and that PTSD-associated MetS is related to decreased cortical thickness. However, the role of genetic factors in these associations is unclear. This study evaluated contributions of polygenic obesity risk and PTSD to MetS and of MetS and polygenic obesity risk to cortical thickness. 196 white, non-Hispanic veterans of the wars in Iraq and Afghanistan underwent clinical diagnostic interviews, physiological assessments, and genome-wide genotyping; 168 also completed magnetic resonance imaging scans. Polygenic risk scores (PRSs) for obesity were calculated from results of a prior genome-wide association study (Speliotes et al., 2010) and PTSD and MetS severity factor scores were obtained. Obesity PRS (β=0.15, p=0.009) and PTSD (β=0.17, p=0.005) predicted MetS and interacted such that the association between PTSD and MetS was stronger in individuals with greater polygenic obesity risk (β=0.13, p=0.02). Whole-brain vertex-wise analyses suggested that obesity PRS interacted with MetS to predict decreased cortical thickness in left rostral middle frontal gyrus (β=-0.40, pobesity genetic risk increases stress-related metabolic pathology, and compounds the ill health effects of MetS on the brain. Genetic proclivity towards MetS should be considered in PTSD patients when prescribing psychotropic medications with adverse metabolic profiles. Results are consistent with a growing literature suggestive of PTSD-related accelerated aging. Published by Elsevier Inc.

  17. Altered grey matter volume and cortical thickness in patients with schizo-obsessive comorbidity

    DEFF Research Database (Denmark)

    Wang, Yongming; Zou, Lai-quan; Xie, Wen-lan

    2018-01-01

    healthy controls (HCs). We found that patients with SOC exhibited reduced GM volume in the left thalamus, the left inferior semi-lunar lobule of the cerebellum, the bilateral medial orbitofrontal cortex (medial oFC), the medial superior frontal gyrus (medial sFG), the rectus gyrus and the anterior...... cingulate cortex (aCC) compared with HCs. Patients with SOC also exhibited reduced cortical thickness in the right superior temporal gyrus (sTG), the right angular gyrus, the right supplementary motor area (SMA), the right middle cingulate cortex (mCC) and the right middle occipital gyrus (mOG) compared...

  18. Influence of basis images and skull position on evaluation of cortical bone thickness in cone beam computed tomography.

    Science.gov (United States)

    Nascimento, Monikelly do Carmo Chagas; Boscolo, Solange Maria de Almeida; Haiter-Neto, Francisco; Santos, Emanuela Carla Dos; Lambrichts, Ivo; Pauwels, Ruben; Jacobs, Reinhilde

    2017-06-01

    The aim of this study was to assess the influence of the number of basis images and the orientation of the skull on the evaluation of cortical alveolar bone in cone beam computed tomography (CBCT). Eleven skulls with a total of 59 anterior teeth were selected. CBCT images were acquired by using 4 protocols, by varying the rotation of the tube-detector arm and the orientation of the skull (protocol 1: 360°/0°; protocol 2: 180°/0°; protocol 3: 180°/90°; protocol 4: 180°/180°). Observers evaluated cortical bone as absent, thin, or thick. Direct observation of the skulls was used as the gold standard. Intra- and interobserver agreement, as well as agreement of scoring between the 3 bone thickness classifications, were calculated by using the κ statistic. The Wilcoxon signed-rank test was used to compare the 4 protocols. For lingual cortical bone, protocol 1 showed no statistical difference from the gold standard. Higher reliability was found in protocol 3 for absent (κ = 0.80) and thin (κ = 0.47) cortices, whereas for thick cortical bone, protocol 2 was more consistent (κ = 0.60). In buccal cortical bone, protocol 1 obtained the highest agreement for absent cortices (κ = 0.61), whereas protocol 4 was better for thin cortical plates (κ = 0.38) and protocol 2 for thick cortical plates (κ = 0.40). No consistent effect of the number of basis images or head orientation for visual detection of alveolar bone was detected, except for lingual cortical bone, for which full rotation scanning showed improved visualization. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reduced cortical thickness and increased surface area in antisocial personality disorder.

    Science.gov (United States)

    Jiang, Weixiong; Li, Gang; Liu, Huasheng; Shi, Feng; Wang, Tao; Shen, Celina; Shen, Hui; Lee, Seong-Whan; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2016-11-19

    Antisocial personality disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness (CTh) and surface area (SA), as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of CTh and SA in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger SA in several specific brain regions, i.e., bilateral superior frontal gyrus (SFG), orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus (MFG), middle temporal gyrus (MTG), and left bank of superior temporal sulcus (STS). In addition, we also found that the ability of impulse control was positively correlated with CTh in the SFG, MFG, orbitofrontal cortex (OFC), pars triangularis, superior temporal gyrus (STG), and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in CTh and SA in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Postnatal Changes in Humerus Cortical Bone Thickness Reflect the Development of Metabolic Bone Disease in Preterm Infants

    Directory of Open Access Journals (Sweden)

    Shuko Tokuriki

    2016-01-01

    Full Text Available Objective. To use cortical bone thickness (CBT of the humerus to identify risk factors for the development of metabolic bone disease in preterm infants. Methods. Twenty-seven infants born at <32 weeks of gestational age, with a birth weight of <1,500 g, were enrolled. Humeral CBT was measured from chest radiographs at birth and at 27-28, 31-32, and 36–44 weeks of postmenstrual age (PMA. The risk factors for the development of osteomalacia were statistically analyzed. Results. The humeral CBT at 36–44 weeks of PMA was positively correlated with gestational age and birth weight and negatively correlated with the duration of mechanical ventilation. CBT increased with PMA, except in six very early preterm infants in whom it decreased. Based on logistic regression analysis, gestational age and duration of mechanical ventilation were identified as risk factors for cortical bone thinning. Conclusions. Humeral CBT may serve as a radiologic marker of metabolic bone disease at 36–44 weeks of PMA in preterm infants. Cortical bones of extremely preterm infants are fragile, even when age is corrected for term, and require extreme care to lower the risk of fractures.

  1. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    Science.gov (United States)

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  2. Value of renal cortical thickness as a predictor of renal function impairment in chronic renal disease patients

    Directory of Open Access Journals (Sweden)

    Samia Rafael Yamashita

    2015-02-01

    Full Text Available Objective: To determine the presence of linear relationship between renal cortical thickness, bipolar length, and parenchymal thickness in chronic kidney disease patients presenting with different estimated glomerular filtration rates (GFRs and to assess the reproducibility of these measurements using ultrasonography. Materials and Methods: Ultrasonography was performed in 54 chronic renal failure patients. The scans were performed by two independent and blinded radiologists. The estimated GFR was calculated using the Cockcroft-Gault equation. Interobserver agreement was calculated and a linear correlation coefficient (r was determined in order to establish the relationship between the different renal measurements and estimated GFR. Results: The correlation between GFR and measurements of renal cortical thickness, bipolar length, and parenchymal thickness was, respectively, moderate (r = 0.478; p < 0.001, poor (r = 0.380; p = 0.004, and poor (r = 0.277; p = 0.116. The interobserver agreement was considered excellent (0.754 for measurements of cortical thickness and bipolar length (0.833, and satisfactory for parenchymal thickness (0.523. Conclusion: The interobserver reproducibility for renal measurements obtained was good. A moderate correlation was observed between estimated GFR and cortical thickness, but bipolar length and parenchymal thickness were poorly correlated.

  3. Allostatic Load Is Linked to Cortical Thickness Changes Depending on Body-Weight Status

    Directory of Open Access Journals (Sweden)

    Jonatan Ottino-González

    2017-12-01

    Full Text Available Objective: Overweight (body mass index or BMI ≥ 25 kg/m2 and stress interact with each other in complex ways. Overweight promotes chronic low-inflammation states, while stress is known to mediate caloric intake. Both conditions are linked to several avoidable health problems and to cognitive decline, brain atrophy, and dementia. Since it was proposed as a framework for the onset of mental illness, the allostatic load model has received increasing attention. Although changes in health and cognition related to overweight and stress are well-documented separately, the association between allostatic load and brain integrity has not been addressed in depth, especially among overweight subjects.Method: Thirty-four healthy overweight-to-obese and 29 lean adults underwent blood testing, neuropsychological examination, and magnetic resonance imaging to assess the relationship between cortical thickness and allostatic load, represented as an index of 15 biomarkers (this is, systolic and diastolic arterial tension, glycated hemoglobin, glucose, creatinine, total cholesterol, HDL and LDL cholesterol, triglycerides, c-reactive protein, interleukin-6, insulin, cortisol, fibrinogen, and leptin.Results: Allostatic load indexes showed widespread positive and negative significant correlations (p < 0.01 with cortical thickness values depending on body-weight status.Conclusion: The increase of allostatic load is linked to changes in the gray matter composition of regions monitoring behavior, sensory-reward processing, and general cognitive function.

  4. Allostatic Load Is Linked to Cortical Thickness Changes Depending on Body-Weight Status

    Science.gov (United States)

    Ottino-González, Jonatan; Jurado, María A.; García-García, Isabel; Segura, Bàrbara; Marqués-Iturria, Idoia; Sender-Palacios, María J.; Tor, Encarnació; Prats-Soteras, Xavier; Caldú, Xavier; Junqué, Carme; Garolera, Maite

    2017-01-01

    Objective: Overweight (body mass index or BMI ≥ 25 kg/m2) and stress interact with each other in complex ways. Overweight promotes chronic low-inflammation states, while stress is known to mediate caloric intake. Both conditions are linked to several avoidable health problems and to cognitive decline, brain atrophy, and dementia. Since it was proposed as a framework for the onset of mental illness, the allostatic load model has received increasing attention. Although changes in health and cognition related to overweight and stress are well-documented separately, the association between allostatic load and brain integrity has not been addressed in depth, especially among overweight subjects. Method: Thirty-four healthy overweight-to-obese and 29 lean adults underwent blood testing, neuropsychological examination, and magnetic resonance imaging to assess the relationship between cortical thickness and allostatic load, represented as an index of 15 biomarkers (this is, systolic and diastolic arterial tension, glycated hemoglobin, glucose, creatinine, total cholesterol, HDL and LDL cholesterol, triglycerides, c-reactive protein, interleukin-6, insulin, cortisol, fibrinogen, and leptin). Results: Allostatic load indexes showed widespread positive and negative significant correlations (p < 0.01) with cortical thickness values depending on body-weight status. Conclusion: The increase of allostatic load is linked to changes in the gray matter composition of regions monitoring behavior, sensory-reward processing, and general cognitive function. PMID:29375342

  5. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aldhafeeri, Faten M [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Khalid General Hospital, Ministry of Health, Radiology Department, Hafral-batin (Saudi Arabia); Mackenzie, Ian; Kay, Tony [Aintree University Hospitals NHS Foundation Trust, Liverpool (United Kingdom); Alghamdi, Jamaan [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Abdul Aziz University, Physics Department, Faculty of Sciences, Jeddah (Saudi Arabia); Sluming, Vanessa [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, Liverpool (United Kingdom)

    2012-08-15

    Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions. Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects. Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system. Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations. (orig.)

  6. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Aldhafeeri, Faten M.; Mackenzie, Ian; Kay, Tony; Alghamdi, Jamaan; Sluming, Vanessa

    2012-01-01

    Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions. Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects. Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system. Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations. (orig.)

  7. Effects of cross-sex hormone treatment on cortical thickness in transsexual individuals.

    Science.gov (United States)

    Zubiaurre-Elorza, Leire; Junque, Carme; Gómez-Gil, Esther; Guillamon, Antonio

    2014-05-01

    Untreated transsexuals have a brain cortical phenotype. Cross-sex hormone treatments are used to masculinize or feminize the bodies of female-to-male (FtMs) or male-to-female (MtFs) transsexuals, respectively. A longitudinal design was conducted to investigate the effects of treatments on brain cortical thickness (CTh) of FtMs and MtFs. This study investigated 15 female-to-male (FtMs) and 14 male-to-female (MtFs) transsexuals prior and during at least six months of cross-sex hormone therapy treatment. Brain MRI imaging was performed in a 3-Tesla TIM-TRIO Siemens scanner. T1-weighted images were analyzed with FreeSurfer software to obtain CTh as well as subcortical volumetric values. Changes in brain CTh thickness and volumetry associated to changes in hormonal levels due to cross-sex hormone therapy. After testosterone treatment, FtMs showed increases of CTh bilaterally in the postcentral gyrus and unilaterally in the inferior parietal, lingual, pericalcarine, and supramarginal areas of the left hemisphere and the rostral middle frontal and the cuneus region of the right hemisphere. There was a significant positive correlation between the serum testosterone and free testosterone index changes and CTh changes in parieto-temporo-occipital regions. In contrast, MtFs, after estrogens and antiandrogens treatment, showed a general decrease in CTh and subcortical volumetric measures and an increase in the volume of the ventricles. Testosterone therapy increases CTh in FtMs. Thickening in cortical regions is associated to changes in testosterone levels. Estrogens and antiandrogens therapy in MtFs is associated to a decrease in the CTh that consequently induces an enlargement of the ventricular system. © 2014 International Society for Sexual Medicine.

  8. Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps.

    Directory of Open Access Journals (Sweden)

    Piotr Bogorodzki

    Full Text Available PURPOSE: To estimate and compare cerebral cortex thickness in patients with unilateral end-stage glaucoma with that of age-matched individuals with unaffected vision. METHODS: 14 patients with unilateral end-stage primary open angle glaucoma (POAG and 12 age-matched control individuals with no problems with vision were selected for the study based on detailed ophthalmic examination. For each participant 3D high-resolution structural brain T1-weighted magnetization prepared MR images were acquired on a 3.0 T scanner. Brain cortex thickness was estimated using the FreeSurfer image analysis environment. After warping of subjects' cortical surfaces to FreeSurfer common space, differences between POAG and control groups were inferred at the group analysis level with the General Linear Model. RESULTS: The analysis performed revealed local thinning in the visual cortex areas in the POAG group. Statistically significant differences form 600 mm2 clusters located in the Brodmann area BA19 in the left and right hemisphere. CONCLUSION: Unilateral vision loss due to end-stage neuropathy from POAG is associated with significant thinning of cortical areas employed in vision.

  9. Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement.

    Science.gov (United States)

    Rossi, Margherita; Bruno, Giovanni; De Stefani, Alberto; Perri, Alessandro; Gracco, Antonio

    2017-12-01

    To assess whether cortical bone thickness and density vary in relation to age, sex and skeletal pattern at the maxillary and mandibular areas suitable for miniplates placement for orthodontic purposes. CBCT of 92 subjects (42 males and 50 females) with skeletal class I, II or III malocclusion, divided between adolescents and adults, were examined. InVivoDental ® software (Anatomage Inc, USA) was used to measure 34 maxillary areas and 40 mandibular areas per side. Values obtained were then compared between the groups of subjects. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney rank-sum test for independent samples. No significant differences were found in the cortical bone thickness values between the three skeletal patterns, and according to sex and age. Both maxilla and mandible showed an increase in cortical bone thickness from the anterior towards the posterior regions, and from the alveolar boneto the basal bone. Cortical bone density significantly varied in relation to the subject's age, with adults always showing higher values. Slight clinically significant differences were found between the three skeletal patterns and sex. In terms of cortical bone thickness, age, sex and skeletal pattern do not represent valid decision criteria for the evaluation of the best insertion areas for miniplates, while in terms of cortical bone density, only age is useful as a decision criterion. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  10. Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder.

    Science.gov (United States)

    Meier, Timothy B; Drevets, Wayne C; Wurfel, Brent E; Ford, Bart N; Morris, Harvey M; Victor, Teresa A; Bodurka, Jerzy; Teague, T Kent; Dantzer, Robert; Savitz, Jonathan

    2016-03-01

    Reductions in gray matter volume of the medial prefrontal cortex (mPFC), especially the rostral and subgenual anterior cingulate cortex (rACC, sgACC) are a widely reported finding in major depressive disorder (MDD). Inflammatory mediators, which are elevated in a subgroup of patients with MDD, activate the kynurenine metabolic pathway and increase production of neuroactive metabolites such as kynurenic acid (KynA), 3-hydroxykynurenine (3HK) and quinolinic acid (QA) which influence neuroplasticity. It is not known whether the alterations in brain structure and function observed in major depressive disorders are due to the direct effect of inflammatory mediators or the effects of neurotoxic kynurenine metabolites. Here, using partial posterior predictive distribution mediation analysis, we tested whether the serum concentrations of kynurenine pathway metabolites mediated reductions in cortical thickness in mPFC regions in MDD. Further, we tested whether any association between C-reactive protein (CRP) and cortical thickness would be mediated by kynurenine pathway metabolites. Seventy-three unmedicated subjects who met DSM-IV-TR criteria for MDD and 91 healthy controls (HC) completed MRI scanning using a pulse sequence optimized for tissue contrast resolution. Automated cortical parcellation was performed using the PALS-B12 Brodmann area atlas as implemented in FreeSurfer in order to compare the cortical thickness and cortical area of six PFC regions: Brodmann areas (BA) 9, 10, 11, 24, 25, and 32. Serum concentrations of kynurenine pathway metabolites were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) detection, while high-sensitivity CRP concentration was measured immunoturbidimetrically. Compared with HCs, the MDD group showed a reduction in cortical thickness of the right BA24 (pdepressive episodes displayed thinner cortex in BA32 (pmediated the relationship between diagnosis and cortical thickness of right BA32

  11. Right frontal pole cortical thickness and executive functioning in children with traumatic brain injury: the impact on social problems.

    Science.gov (United States)

    Levan, Ashley; Black, Garrett; Mietchen, Jonathan; Baxter, Leslie; Brock Kirwan, C; Gale, Shawn D

    2016-12-01

    Cognitive and social outcomes may be negatively affected in children with a history of traumatic brain injury (TBI). We hypothesized that executive function would mediate the association between right frontal pole cortical thickness and problematic social behaviors. Child participants with a history of TBI were recruited from inpatient admissions for long-term follow-up (n = 23; average age = 12.8, average time post-injury =3.2 years). Three measures of executive function, the Trail Making Test, verbal fluency test, and the Conners' Continuous Performance Test-Second edition (CPT-II), were administered to each participant while caregivers completed the Childhood Behavior Checklist (CBCL). All participants underwent brain magnetic resonance imaging following cognitive testing. Regression analysis demonstrated right frontal pole cortical thickness significantly predicted social problems. Measures of executive functioning also significantly predicted social problems; however, the mediation model testing whether executive function mediated the relationship between cortical thickness and social problems was not statistically significant. Right frontal pole cortical thickness and omission errors on the CPT-II predicted Social Problems on the CBCL. Results did not indicate that the association between cortical thickness and social problems was mediated by executive function.

  12. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.

    Directory of Open Access Journals (Sweden)

    Megan M Herting

    Full Text Available Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.

  13. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.

    Science.gov (United States)

    Herting, Megan M; Gautam, Prapti; Spielberg, Jeffrey M; Dahl, Ronald E; Sowell, Elizabeth R

    2015-01-01

    Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal) on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.

  14. Focal Cortical Thickness Correlates of Exceptional Memory Training in Vedic Priests

    Directory of Open Access Journals (Sweden)

    Giridhar Padmanabhan Kalamangalam

    2014-10-01

    Full Text Available The capacity for semantic memory – the ability to acquire and store knowledge of the world - is highly developed in the human brain. In particular, semantic memory assimilated through an auditory route may be a uniquely human capacity. One method of obtaining neurobiological insight into auditory semantic memory mechanisms is through the study of experts. In this work, we study a group of Hindu Vedic priests, whose religious training requires the memorization of vast tracts of scriptural texts through an oral tradition, recalled spontaneously during a lifetime of subsequent spiritual practice. We demonstrate focal increases of cortical thickness in the dominant prefrontal lobe and non-dominant temporal lobe in Vedic priests, in comparison to a group of matched controls. The findings are relevant to current hypotheses regarding cognitive processes underlying storage and recall of long-term declarative memory.

  15. Right frontal pole cortical thickness and social competence in children with chronic traumatic brain injury: cognitive proficiency as a mediator.

    Science.gov (United States)

    Levan, Ashley; Baxter, Leslie; Kirwan, C Brock; Black, Garrett; Gale, Shawn D

    2015-01-01

    To examine the association between right frontal pole cortical thickness, social competence, and cognitive proficiency in children participants with a history of chronic traumatic brain injury (TBI). Twenty-three children (65% male; M age = 12.8 years, SD = 2.3 years) at least 1 year post-injury (M = 3.3 years, SD = 1.7 years) were evaluated with the Cognitive Proficiency Index (CPI) from the Wechsler Intelligence Scale for Children, 4th Edition, and their caregiver completed the Child Behavior Checklist. Social competence was evaluated with the Social Competence and Social Problems subscales from the Child Behavior Checklist. Right frontal pole cortical thickness was calculated via FreeSurfer from high-resolution 3-dimensional T1 magnetic resonance imaging scans. Direct effect of right frontal pole cortical thickness on social competence was significant (β = 14.09, SE = 4.6, P Right frontal pole cortical thickness significantly predicted CPI (β = 18.44, SE = 4.9, P right frontal lobe cortical integrity and social competence in pediatric participants with chronic TBI may be mediated through cognitive proficiency.

  16. Negative correlation of cortical thickness with the severity and duration of abdominal pain in Asian women with irritable bowel syndrome.

    Science.gov (United States)

    Chua, Chian Sem; Bai, Chyi-Huey; Shiao, Chen-Yu; Hsu, Chien-Yeh; Cheng, Chiao-Wen; Yang, Kuo-Ching; Chiu, Hung-Wen; Hsu, Jung-Lung

    2017-01-01

    Irritable bowel syndrome (IBS) manifests as chronic abdominal pain. One pathophysiological theory states that the brain-gut axis is responsible for pain control in the intestine. Although several studies have discussed the structural changes in the brain of IBS patients, most of these studies have been conducted in Western populations. Different cultures and sexes experience different pain sensations and have different pain responses. Accordingly, we aimed to identify the specific changes in the cortical thickness of Asian women with IBS and to compare these data to those of non-Asian women with IBS. Thirty Asian female IBS patients (IBS group) and 39 healthy individuals (control group) were included in this study. Brain structural magnetic resonance imaging was performed. We used FreeSurfer to analyze the differences in the cortical thickness and their correlations with patient characteristics. The left cuneus, left rostral middle frontal cortex, left supramarginal cortex, right caudal anterior cingulate cortex, and bilateral insula exhibited cortical thinning in the IBS group compared with those in the controls. Furthermore, the brain cortical thickness correlated negatively the severity as well as duration of abdominal pain. Some of our findings differ from those of Western studies. In our study, all of the significant brain regions in the IBS group exhibited cortical thinning compared with those in the controls. The differences in cortical thickness between the IBS patients and controls may provide useful information to facilitate regulating abdominal pain in IBS patients. These findings offer insights into the association of different cultures and sexes with differences in cortical thinning in patients with IBS.

  17. Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients.

    Directory of Open Access Journals (Sweden)

    Kanthanat Chatvaratthana

    Full Text Available Resonance frequency analysis (RFA is clinically used in dentistry to access the stiffness of dental implants in surrounding bone. However, the clear advantages and disadvantages of this method are still inconclusive. The aim of this study was to investigate and compare implant stability quotient (ISQ values obtained from RFA with parameters obtained from a cone beam computed tomography (CBCT scan of the same region.Nineteen implants (Conelog were inserted in the posterior maxillary and mandibular partially edentulous regions of 16 patients. At the time of implant placement, the ISQ values were obtained using RFA (Osstell. CBCT was used to measure the thickness of the crestal, cortical, buccolingual cortical, and cancellous bone at 3, 6, and 9 mm below the crestal bone level, as indicated by radiographic markers. The ratio of the thickness of the cortical to cancellous bone at varying depths was also calculated and classified into 4 groups (Group 1-4.There was a strong correlation between the crestal cortical bone thickness and ISQ values (P<0.001. The thickness of the buccolingual cortical bone and ratio of the cortical to cancellous bone thickness at 3 mm were significantly related to the ISQ (P = 0.018 and P = 0.034, respectively. Furthermore, the ISQs in Group 1 were the highest compared with those in Group 2 and Group 3, whereas the CBCT parameters at 6 and 9 mm did not have any specific correlation with the ISQ values.This study showed that the ISQ values obtained from RFA highly correlated with the quantity and quality of bone 3 mm below the crestal bone level. The correlation between the ISQ and bone surrounding the implant site was dependent on the depth of measurement. Therefore, RFA can help to predict the marginal bone level, as confirmed in this study.

  18. Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI.

    Science.gov (United States)

    Sale, Martin V; Reid, Lee B; Cocchi, Luca; Pagnozzi, Alex M; Rose, Stephen E; Mattingley, Jason B

    2017-09-01

    Although different aspects of neuroplasticity can be quantified with behavioral probes, brain stimulation, and brain imaging assessments, no study to date has combined all these approaches into one comprehensive assessment of brain plasticity. Here, 24 healthy right-handed participants practiced a sequence of finger-thumb opposition movements for 10 min each day with their left hand. After 4 weeks, performance for the practiced sequence improved significantly (P left (mean increase: 53.0% practiced, 6.5% control) and right (21.0%; 15.8%) hands. Training also induced significant (cluster p-FWE right hemisphere, 301 voxel cluster; left hemisphere 700 voxel cluster), and sensorimotor cortices and superior parietal lobules (right hemisphere 864 voxel cluster; left hemisphere, 1947 voxel cluster). Transcranial magnetic stimulation over the right ("trained") primary motor cortex yielded a 58.6% mean increase in a measure of motor evoked potential amplitude, as recorded at the left abductor pollicis brevis muscle. Cortical thickness analyses based on structural MRI suggested changes in the right precentral gyrus, right post central gyrus, right dorsolateral prefrontal cortex, and potentially the right supplementary motor area. Such findings are consistent with LTP-like neuroplastic changes in areas that were already responsible for finger sequence execution, rather than improved recruitment of previously nonutilized tissue. Hum Brain Mapp 38:4773-4787, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Genetic Analysis of Cortical Thickness and Fractional Anisotropy of Water Diffusion in the Brain

    Directory of Open Access Journals (Sweden)

    Peter eKochunov

    2011-10-01

    Full Text Available ObjectivesThe thickness of the brain’s cortical gray matter (GM and the fractional anisotropy (FA of the cerebral white matter (WM each follow an inverted U-shape trajectory with age. Both measures are positively correlated, suggesting a common biological mechanism. We employed bivariate genetic analyses to localize quantitative trait loci (QTLs and individual genes acting pleiotropically upon these phenotypes.MethodsWhole-brain and regional GM thickness and FA values were measured from high-resolution anatomical (0.8mm isotropic and diffusion tensor MR images (1.7x1.7x3.0mm, 55 directions collected for 712 active participants (274/438 male/females, age=47.9±13.2years in the Genetics of Brain Structure study.ResultsBivariate, whole-genome quantitative trait loci (QTL analyses of the whole brain measures localized significant (LOD≥3.0 QTLs within chromosome region 15q22-23. More detailed localization was achieved using single nuclear polymorphism (SNP association and gene expression analyses. No significant association (p<510-5 was observed for 1565 SNPs located within the QTLs. However, post-hoc analysis indicated that 40% of the potentially significant (p≤10-3 polymorphisms were localized to the RORA and NARG2 genes. A potentially significant association (p=310-4 was also observed for the rs2456930 polymorphism that was previously reported as a significant GWAS finding in ADNI subjects. Lymphocyte expression measurements for two genes, located under QTL, RORA and ADAM10 were significantly (p<0.05 correlated with both FA and GM thickness values. Expression measurements for NARG2 was significantly correlated with GM thickness (p<0.05 but failed to show a significant correlation (p=0.09 with FA.Discussion This study identified a novel, significant QTL at 15q22-23. SNP association and correlation with gene-expression analyses indicated that RORA, NARG2 and ADAM10 jointly influence GM thickness and cerebral WM integrity.

  20. Cortical thickness in adolescent marijuana and alcohol users: A three-year prospective study from adolescence to young adulthood

    Directory of Open Access Journals (Sweden)

    Joanna Jacobus

    2015-12-01

    Full Text Available Studies suggest marijuana impacts gray and white matter neural tissue development, however few prospective studies have determined the relationship between cortical thickness and cannabis use spanning adolescence to young adulthood. This study aimed to understand how heavy marijuana use influences cortical thickness trajectories across adolescence. Subjects were adolescents with heavy marijuana use and concomitant alcohol use (MJ + ALC, n = 30 and controls (CON, n = 38 with limited substance use histories. Participants underwent magnetic resonance imaging and comprehensive substance use assessment at three independent time points. Repeated measures analysis of covariance was used to look at main effects of group, time, and Group × Time interactions on cortical thickness. MJ + ALC showed thicker cortical estimates across the brain (23 regions, particularly in frontal and parietal lobes (ps < .05. More cumulative marijuana use was associated with increased thickness estimates by 3-year follow-up (ps < .05. Heavy marijuana use during adolescence and into young adulthood may be associated with altered neural tissue development and interference with neuromaturation that can have neurobehavioral consequences. Continued follow-up of adolescent marijuana users will help understand ongoing neural changes that are associated with development of problematic use into adulthood, as well as potential for neural recovery with cessation of use.

  1. Automated Volumetry and Regional Thickness Analysis of Hippocampal Subfields and Medial Temporal Cortical Structures in Mild Cognitive Impairment

    Science.gov (United States)

    Yushkevich, Paul A.; Pluta, John B.; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, E. C.; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R.; Wolk, David A.

    2014-01-01

    We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe (MTL) in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm3 resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI (Yushkevich et al., 2010), our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic Mild Cognitive Impairment (aMCI), and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797) and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest non-uniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. PMID:25181316

  2. Computed tomography evaluation of human mandibles with regard to layer thickness and bone density of the cortical bone

    International Nuclear Information System (INIS)

    Markwardt, Jutta; Meissner, H.; Weber, A.; Reitemeier, B.; Laniado, M.

    2013-01-01

    Application of function-restoring individual implants for the bridging of defects in mandibles with continuity separation requires a stable fixation with special use of the cortical bone stumps. Five section planes each of 100 computed tomographies of poly-traumatized patients' jaws were used for measuring the thickness of the cortical layer and the bone density of the mandible. The CT scans of 28 female and 72 male candidates aged between 12 and 86 years with different dentition of the mandible were available. The computed tomographic evaluations of human mandibles regarding the layer thickness of the cortical bone showed that the edge of the mandible in the area of the horizontal branch possesses the biggest layer thickness of the whole of the lower jaws. The highest medians of the cortical bone layer thickness were found in the area of the molars and premolars at the lower edge of the lower jaws in 6-o'clock position, in the area of the molars in the vestibular cranial 10-o'clock position and in the chin region lingual-caudal in the 4-o'clock position. The measurement of the bone density showed the highest values in the 8-o'clock position (vestibular-caudal) in the molar region in both males and females. The average values available of the bone density and the layer thickness of the cortical bone in the various regions of the lower jaw, taking into consideration age, gender and dentition, are an important aid in practice for determining a safe fixation point for implants in the area of the surface layer of the mandible by means of screws or similar fixation elements. (orig.)

  3. Laminar thickness alterations in the fronto-parietal cortical mantle of patients with attention-deficit/hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Elseline Hoekzema

    Full Text Available Although Attention-Deficit/Hyperactivity Disorder (ADHD was initially regarded as a disorder exclusive to childhood, nowadays its prevalence in adulthood is well established. The development of novel techniques for quantifying the thickness of the cerebral mantle allows the further exploration of the neuroanatomical profiles underlying the child and adult form of the disorder. To examine the cortical mantle in children and adults with ADHD, we applied a vertex-wise analysis of cortical thickness to anatomical brain MRI scans acquired from children with (n = 43 and without ADHD (n = 41, as well as a group of adult neurotypical individuals (n = 31, adult patients with a history of stimulant treatment (n = 31 and medication-naïve adults with ADHD (n = 24. We observed several clusters of reduced laminar cortical thickness in ADHD patients in comparison to neurotypical individuals. These differences were primarily located in the dorsal attention network, including the bilateral inferior and superior parietal cortex and a section of the frontal cortex (centered on the superior frontal and precentral gyrus bilaterally. Further laminar thickness deficits were observed in the bilateral orbitofrontal cortex and medial occipital cortex. The deficits in the cortical surface were especially pronounced in the child sample, while adult patients showed a more typical laminar thickness across the cerebral mantle. These findings show that the neuroanatomical profile of ADHD, especially the childhood form of the disorder, involves robust alterations in the cortical mantle, which are most prominent in brain regions subserving attentional processing.

  4. Reduced Inhibitory Control Mediates the Relationship Between Cortical Thickness in the Right Superior Frontal Gyrus and Body Mass Index.

    Science.gov (United States)

    Lavagnino, Luca; Mwangi, Benson; Bauer, Isabelle E; Cao, Bo; Selvaraj, Sudhakar; Prossin, Alan; Soares, Jair C

    2016-08-01

    Unhealthy eating behaviors often develop in the setting of inadequate inhibitory control, a function broadly ascribed to the prefrontal cortex (PFC). Regulation of inhibitory control by the PFC and its anatomical components and their contribution to increasing body mass index (BMI) are poorly understood. To study the role of PFC in the regulation of inhibitory control and body weight, we examined measures of cortical thickness in PFC sub-regions, inhibitory control (color-word interference task (CWIT)), and BMI in 91 healthy volunteers. We tested the predictive effect of PFC sub-regional cortical thickness on BMI and mediation by inhibitory control measured with CWIT. Measures of depression (BDI-II), anxiety (STAI-T) and trauma-related symptoms (TSC-40) were collected; the disinhibition scale of the three-factor eating questionnaire (TFEQ) was used to assess disinhibited eating. We then tested the relationship between BD-II, STAI-T, TSC-40, TFEQ, CWIT, and BMI with correlation analyses. Right superior frontal gyrus cortical thickness significantly predicted BMI (β=-0.91; t=-3.2; p=0.002). Mediation analysis showed a significant indirect effect of cortical thickness on BMI mediated by inhibitory control (95% CI=-6.1, -0.67). BMI was unrelated to BDI-II, STAI-T, TSC-40, or TFEQ scores. We found an inverse relationship between cortical thickness in the right-superior frontal gyrus and BMI, which was fully mediated by inhibitory control neurocognitive performance. Our results suggest possible targets for neuromodulation in obesity (ie superior frontal gyrus) and a quantifiable mediator of their effects (ie inhibitory control).

  5. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sorenson Donna J

    2009-12-01

    Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

  6. Cortical thickness in children receiving intensive therapy for idiopathic apraxia of speech.

    Science.gov (United States)

    Kadis, Darren S; Goshulak, Debra; Namasivayam, Aravind; Pukonen, Margit; Kroll, Robert; De Nil, Luc F; Pang, Elizabeth W; Lerch, Jason P

    2014-03-01

    Children with idiopathic apraxia experience difficulties planning the movements necessary for intelligible speech. There is increasing evidence that targeted early interventions, such as Prompts for Restructuring Oral Muscular Phonetic Targets (PROMPT), can be effective in treating these disorders. In this study, we investigate possible cortical thickness correlates of idiopathic apraxia of speech in childhood, and changes associated with participation in an 8-week block of PROMPT therapy. We found that children with idiopathic apraxia (n = 11), aged 3-6 years, had significantly thicker left supramarginal gyri than a group of typically-developing age-matched controls (n = 11), t(20) = 2.84, p ≤ 0.05. Over the course of therapy, the children with apraxia (n = 9) experienced significant thinning of the left posterior superior temporal gyrus (canonical Wernicke's area), t(8) = 2.42, p ≤ 0.05. This is the first study to demonstrate experience-dependent structural plasticity in children receiving therapy for speech sound disorders.

  7. Cortical thickness of the dorsolateral prefrontal cortex predicts strategic choices in economic games.

    Science.gov (United States)

    Yamagishi, Toshio; Takagishi, Haruto; Fermin, Alan de Souza Rodrigues; Kanai, Ryota; Li, Yang; Matsumoto, Yoshie

    2016-05-17

    Human prosociality has been traditionally explained in the social sciences in terms of internalized social norms. Recent neuroscientific studies extended this traditional view of human prosociality by providing evidence that prosocial choices in economic games require cognitive control of the impulsive pursuit of self-interest. However, this view is challenged by an intuitive prosociality view emphasizing the spontaneous and heuristic basis of prosocial choices in economic games. We assessed the brain structure of 411 players of an ultimatum game (UG) and a dictator game (DG) and measured the strategic reasoning ability of 386. According to the reflective norm-enforcement view of prosociality, only those capable of strategically controlling their selfish impulses give a fair share in the UG, but cognitive control capability should not affect behavior in the DG. Conversely, we support the intuitive prosociality view by showing for the first time, to our knowledge, that strategic reasoning and cortical thickness of the dorsolateral prefrontal cortex were not related to giving in the UG but were negatively related to giving in the DG. This implies that the uncontrolled choice in the DG is prosocial rather than selfish, and those who have a thicker dorsolateral prefrontal cortex and are capable of strategic reasoning (goal-directed use of the theory of mind) control this intuitive drive for prosociality as a means to maximize reward when there are no future implications of choices.

  8. Greater Cortical Thickness in Elderly Female Yoga Practitioners—A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Rui F. Afonso

    2017-06-01

    Full Text Available Yoga, a mind-body activity that requires attentional engagement, has been associated with positive changes in brain structure and function, especially in areas related to awareness, attention, executive functions and memory. Normal aging, on the other hand, has also been associated with structural and functional brain changes, but these generally involve decreased cognitive functions. The aim of this cross-sectional study was to compare brain cortical thickness (CT in elderly yoga practitioners and a group of age-matched healthy non-practitioners. We tested 21 older women who had practiced hatha yoga for at least 8 years and 21 women naive to yoga, meditation or any mind-body interventions who were matched to the first group in age, years of formal education and physical activity level. A T1-weighted MPRAGE sequence was acquired for each participant. Yoga practitioners showed significantly greater CT in a left prefrontal lobe cluster, which included portions of the lateral middle frontal gyrus, anterior superior frontal gyrus and dorsal superior frontal gyrus. We found greater CT in the left prefrontal cortex of healthy elderly women who trained yoga for a minimum of 8 years compared with women in the control group.

  9. Cortical thickness in adolescent marijuana and alcohol users: A three-year prospective study from adolescence to young adulthood.

    Science.gov (United States)

    Jacobus, Joanna; Squeglia, Lindsay M; Meruelo, Alejandro D; Castro, Norma; Brumback, Ty; Giedd, Jay N; Tapert, Susan F

    2015-12-01

    Studies suggest marijuana impacts gray and white matter neural tissue development, however few prospective studies have determined the relationship between cortical thickness and cannabis use spanning adolescence to young adulthood. This study aimed to understand how heavy marijuana use influences cortical thickness trajectories across adolescence. Subjects were adolescents with heavy marijuana use and concomitant alcohol use (MJ+ALC, n=30) and controls (CON, n=38) with limited substance use histories. Participants underwent magnetic resonance imaging and comprehensive substance use assessment at three independent time points. Repeated measures analysis of covariance was used to look at main effects of group, time, and Group × Time interactions on cortical thickness. MJ+ALC showed thicker cortical estimates across the brain (23 regions), particularly in frontal and parietal lobes (psadolescence and into young adulthood may be associated with altered neural tissue development and interference with neuromaturation that can have neurobehavioral consequences. Continued follow-up of adolescent marijuana users will help understand ongoing neural changes that are associated with development of problematic use into adulthood, as well as potential for neural recovery with cessation of use. Published by Elsevier Ltd.

  10. Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms.

    Science.gov (United States)

    Ecker, Christine; Ginestet, Cedric; Feng, Yue; Johnston, Patrick; Lombardo, Michael V; Lai, Meng-Chuan; Suckling, John; Palaniyappan, Lena; Daly, Eileen; Murphy, Clodagh M; Williams, Steven C; Bullmore, Edward T; Baron-Cohen, Simon; Brammer, Michael; Murphy, Declan G M

    2013-01-01

    Neuroimaging studies of brain anatomy in autism spectrum disorder (ASD) have mostly been based on measures of cortical volume (CV). However, CV is a product of 2 distinct parameters, cortical thickness (CT) and surface area (SA), that in turn have distinct genetic and developmental origins. To investigate regional differences in CV, SA, and CT as well as their relationship in a large and well-characterized sample of men with ASD and matched controls. Multicenter case-control design using quantitative magnetic resonance imaging. Medical Research Council UK Autism Imaging Multicentre Study. A total of 168 men, 84 diagnosed as having ASD and 84 controls who did not differ significantly in mean (SD) age (26 [7] years vs 28 [6] years, respectively) or full-scale IQ (110 [14] vs 114 [12], respectively). Between-group differences in CV, SA, and CT investigated using a spatially unbiased vertex-based approach; the degree of spatial overlap between the differences in CT and SA; and their relative contribution to differences in regional CV. Individuals with ASD differed from controls in all 3 parameters. These mainly consisted of significantly increased CT within frontal lobe regions and reduced SA in the orbitofrontal cortex and posterior cingulum. These differences in CT and SA were paralleled by commensurate differences in CV. The spatially distributed patterns for CT and SA were largely nonoverlapping and shared only about 3% of all significantly different locations on the cerebral surface. Individuals with ASD have significant differences in CV, but these may be underpinned by (separable) variations in its 2 components, CT and SA. This is of importance because both measures result from distinct developmental pathways that are likely modulated by different neurobiological mechanisms. This finding may provide novel targets for future studies into the etiology of the condition and a new way to fractionate the disorder.

  11. Alterations in Cortical Thickness and White Matter Integrity in Mild-to-Moderate Communicating Hydrocephalic School-Aged Children Measured by Whole-Brain Cortical Thickness Mapping and DTI

    Directory of Open Access Journals (Sweden)

    Siyu Zhang

    2017-01-01

    Full Text Available Follow-up observation is required for mild-to-moderate hydrocephalic patients because of the potential damage to brain. However, effects of mild-to-moderate hydrocephalus on gray and white matter remain unclear in vivo. Using structural MRI and diffusion tensor imaging (DTI, current study compared the cortical thickness and white matter integrity between children with mild-to-moderate communicating hydrocephalus and healthy controls. The relationships between cortical changes and intelligence quota were also examined in patients. We found that cortical thickness in the left middle temporal and left rostral middle frontal gyrus was significantly lower in the hydrocephalus group compared with that of controls. Fractional anisotropy in the right corpus callosum body was significantly lower in the hydrocephalus group compared with that of controls. In addition, there was no association of cortical thinning or white matter fractional anisotropy with intelligence quota in either group. Thus, our findings provide clues to that mild-to-moderate hydrocephalus could lead to structural brain deficits especially in the middle temporal and middle frontal gyrus prior to the behavior changes.

  12. Cortical Thickness Changes and Their Relationship to Dual-Task Performance following Mild Traumatic Brain Injury in Youth.

    Science.gov (United States)

    Urban, Karolina J; Riggs, Lily; Wells, Greg D; Keightley, Michelle; Chen, Jen-Kai; Ptito, Alain; Fait, Philippe; Taha, Tim; Sinopoli, Katia J

    2017-02-15

    Mild traumatic brain injury (mTBI) is common in youth, especially in those who participate in sport. Recent investigations from our group have shown that asymptomatic children and adolescents with mTBI continue to exhibit alterations in neural activity and cognitive performance compared with those without a history of mTBI. This is an intriguing finding, given that current return-to-learn and return-to-play protocols rely predominately on subjective symptom reports, which may not be sensitive enough to detect subtle injury-related changes. As a result, youth may be at greater risk for re-injury and long-term consequences if they are cleared for activity while their brains continue to be compromised. It is currently unknown whether mTBI also affects brain microstructure in the developing brain, particularly cortical thickness, and whether such changes are also related to cognitive performance. The present study examined cortical thickness in 13 asymptomatic youth (10-14 years old) who had sustained an mTBI 3-8 months prior to testing compared with 14 age-matched typically developing controls. Cortical thickness was also examined in relation to working memory performance during single and dual task paradigms. The results show that youth who had sustained an mTBI had thinner cortices in the left dorsolateral prefrontal region and right anterior and posterior inferior parietal lobes. Additionally, cortical thinning was associated with slower reaction time during the dual-task condition in the injured youth only. The results also point to a possible relationship between functional and structural alterations as a result of mTBI in youth, and lend evidence for neural changes beyond symptom resolution.

  13. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy.

    Science.gov (United States)

    Amlien, Inge K; Fjell, Anders M; Tamnes, Christian K; Grydeland, Håkon; Krogsrud, Stine K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2016-01-01

    The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. The Right Hemisphere Planum Temporale Supports Enhanced Visual Motion Detection Ability in Deaf People: Evidence from Cortical Thickness.

    Science.gov (United States)

    Shiell, Martha M; Champoux, François; Zatorre, Robert J

    2016-01-01

    After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl's gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area's involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity.

  15. Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children.

    Science.gov (United States)

    Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D; Evans, Alan C; Karama, Sherif

    2011-08-01

    The anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Data from 193 representative 6- to 18-year-old healthy children were obtained from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development after a blinded quality control. Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist. AGG scores were regressed against cortical thickness and basal ganglia volumes using first- and second-order linear models while controlling for age, gender, scanner site, and total brain volume. Gender by AGG interactions were analyzed. There were positive associations between bilateral striatal volumes and AGG scores (right: r = .238, p = .001; left: r = .188, p = .01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p right ACC cortex. An AGG by gender interaction trend was found in bilateral OFC and ACC associations with AGG scores. This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender-specific patterns of association in OFC/ACC gray matter. These results may guide research on oppositional-defiant and conduct disorders. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Increased cortical thickness and altered functional connectivity of the right superior temporal gyrus in left-handers.

    Science.gov (United States)

    Li, Meiling; Chen, Heng; Wang, Junping; Liu, Feng; Wang, Yifeng; Lu, Fengmei; Yu, Chunshui; Chen, Huafu

    2015-01-01

    Altered structure in the temporal cortex has been implicated in the variable language laterality of left-handers (LH). The neuroanatomy of language lateralization and the corresponding synchronous functional connectivity (FC) in handedness cohorts are not, however, fully understood. We used structural and resting-state functional magnetic resonance imaging (fMRI) data to investigate the effect of altered cortical thickness on FC in LH and right-handers (RH). Whole-brain cortical thickness was calculated and compared between the LH and RH. We observed increased cortical thickness in the right superior temporal gyrus (STG) in the LH. A further FC analysis was conducted between the right STG and the remaining voxels in the brain. Compared with RH, the LH showed significantly higher FC in the left STG, right occipital cortex, and lower FC in the left inferior frontal gyrus and supramarginal gyrus. Our findings suggest that LH have atypical connectivity in the language network, with an enhanced role of the STG, findings which provide novel insights into the structural and functional substrates underlying the atypical language development of left-handed individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    Science.gov (United States)

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  18. Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder

    DEFF Research Database (Denmark)

    Järnum, Hanna; Eskildsen, Simon Fristed; Steffensen, Elena G

    2011-01-01

    OBJECTIVE: To determine whether patients with major depressive disorder (MDD) display morphologic, functional, and metabolic brain abnormalities in limbic-cortical regions at a baseline magnetic resonance (MR) scan and whether these changes are normalized in MDD patients in remission at a follow......-acetylaspartate, myo-inositol, and glutamate levels in MDD patients compared with healthy controls at baseline. CONCLUSION: Using novel MRI techniques, we have found abnormalities in cerebral regions related to cortical-limbic pathways in MDD patients....

  19. Association of GSK-3β genetic variation with GSK-3β expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia.

    Science.gov (United States)

    Blasi, Giuseppe; Napolitano, Francesco; Ursini, Gianluca; Di Giorgio, Annabella; Caforio, Grazia; Taurisano, Paolo; Fazio, Leonardo; Gelao, Barbara; Attrotto, Maria Teresa; Colagiorgio, Lucia; Todarello, Giovanna; Piva, Francesco; Papazacharias, Apostolos; Masellis, Rita; Mancini, Marina; Porcelli, Annamaria; Romano, Raffaella; Rampino, Antonio; Quarto, Tiziana; Giulietti, Matteo; Lipska, Barbara K; Kleinman, Joel E; Popolizio, Teresa; Weinberger, Daniel R; Usiello, Alessandro; Bertolino, Alessandro

    2013-08-01

    OBJECTIVE Glycogen synthase kinase 3β (GSK-3β) is an enzyme implicated in neurodevelopmental processes with a broad range of substrates mediating several canonical signaling pathways in the brain. The authors investigated the association of variation in the GSK-3β gene with a series of progressively more complex phenotypes of relevance to schizophrenia, a neurodevelopmental disorder with strong genetic risk. METHOD Based on computer predictions, the authors investigated in humans the association of GSK-3β functional variation with 1) GSK-3β mRNA expression from postmortem prefrontal cortex, 2) GSK-3β and β-catenin protein expression from peripheral blood mononuclear cells (PBMCs), 3) prefrontal imaging phenotypes, and 4) diagnosis of schizophrenia. RESULTS Consistent with predictions, the TT genotype of a single-nucleotide polymorphism in GSK-3β (rs12630592) was associated with reduced GSK-3β mRNA from postmortem prefrontal cortex. Furthermore, this genotype was associated with GSK-3β protein expression and kinase activity, as well as with downstream effects on β-catenin expression in PBMCs. Finally, the TT genotype was associated with attenuated functional MRI prefrontal activity, reduced prefrontal cortical thickness, and diagnosis of schizophrenia. CONCLUSIONS These results suggest that GSK-3β variation is implicated in multiple phenotypes relevant to schizophrenia.

  20. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    Science.gov (United States)

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  1. Irritability Trajectories, Cortical Thickness, and Clinical Outcomes in a Sample Enriched for Preschool Depression.

    Science.gov (United States)

    Pagliaccio, David; Pine, Daniel S; Barch, Deanna M; Luby, Joan L; Leibenluft, Ellen

    2018-05-01

    Cross-sectional, longitudinal, and genetic associations exist between irritability and depression. Prior studies have examined developmental trajectories of irritability, clinical outcomes, and associations with child and familial depression. However, studies have not integrated neurobiological measures. The present study examined developmental trajectories of irritability, clinical outcomes, and cortical structure among preschoolers oversampled for depressive symptoms. Beginning at 3 to 5 years old, a sample of 271 children enriched for early depressive symptoms were assessed longitudinally by clinical interview. Latent class mixture models identified trajectories of irritability severity. Risk factors, clinical outcomes, and cortical thickness were compared across trajectory classes. Cortical thickness measures were extracted from 3 waves of magnetic resonance imaging at 7 to 12 years of age. Three trajectory classes were identified among these youth: 53.50% of children exhibited elevated irritability during preschool that decreased longitudinally, 30.26% exhibited consistently low irritability, and 16.24% exhibited consistently elevated irritability. Compared with other classes, the elevated irritability class exhibited higher rates of maternal depression, early life adversity, later psychiatric diagnoses, and functional impairment. Further, elevated baseline irritability predicted later depression beyond adversity and personal and maternal depression history. The elevated irritability class exhibited a thicker cortex in the left superior frontal and temporal gyri and the right inferior parietal lobule. Irritability manifested with specific developmental trajectories in this sample enriched for early depression. Persistently elevated irritability predicted poor psychiatric outcomes, higher risk for later depression, and decreased overall function later in development. Greater frontal, temporal, and parietal cortical thickness also was found, providing neural

  2. Mesenchymal stem cells can modulate longitudinal changes in cortical thickness and its related cognitive decline in patients with multiple system atrophy

    Science.gov (United States)

    Sunwoo, Mun Kyung; Yun, Hyuk Jin; Song, Sook K.; Ham, Ji Hyun; Hong, Jin Yong; Lee, Ji E.; Lee, Hye S.; Sohn, Young H.; Lee, Jong-Min; Lee, Phil Hyu

    2014-01-01

    Multiple system atrophy (MSA) is an adult-onset, sporadic neurodegenerative disease. Because the prognosis of MSA is fatal, neuroprotective or regenerative strategies may be invaluable in MSA treatment. Previously, we obtained clinical and imaging evidence that mesenchymal stem cell (MSC) treatment could have a neuroprotective role in MSA patients. In the present study, we evaluated the effects of MSC therapy on longitudinal changes in subcortical deep gray matter volumes and cortical thickness and their association with cognitive performance. Clinical and imaging data were obtained from our previous randomized trial of autologous MSC in MSA patients. During 1-year follow-up, we assessed longitudinal differences in automatic segmentation-based subcortical deep gray matter volumes and vertex-wise cortical thickness between placebo (n = 15) and MSC groups (n = 11). Next, we performed correlation analysis between the changes in cortical thickness and changes in the Korean version of the Montreal Cognitive Assessment (MoCA) scores and cognitive performance of each cognitive subdomain using a multiple, comparison correction. There were no significant differences in age at baseline, age at disease onset, gender ratio, disease duration, clinical severity, MoCA score, or education level between the groups. The automated subcortical volumetric analysis revealed that the changes in subcortical deep gray matter volumes of the caudate, putamen, and thalamus did not differ significantly between the groups. The areas of cortical thinning over time in the placebo group were more extensive, including the frontal, temporal, and parietal areas, whereas these areas in the MSC group were less extensive. Correlation analysis indicated that declines in MoCA scores and phonemic fluency during the follow-up period were significantly correlated with cortical thinning of the frontal and posterior temporal areas and anterior temporal areas in MSA patients, respectively. In contrast, no

  3. Glucose hypometabolism is highly localized, but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults.

    Science.gov (United States)

    Nugent, Scott; Castellano, Christian-Alexandre; Goffaux, Philippe; Whittingstall, Kevin; Lepage, Martin; Paquet, Nancy; Bocti, Christian; Fulop, Tamas; Cunnane, Stephen C

    2014-06-01

    Several studies have suggested that glucose hypometabolism may be present in specific brain regions in cognitively normal older adults and could contribute to the risk of subsequent cognitive decline. However, certain methodological shortcomings, including a lack of partial volume effect (PVE) correction or insufficient cognitive testing, confound the interpretation of most studies on this topic. We combined [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging to quantify cerebral metabolic rate of glucose (CMRg) as well as cortical volume and thickness in 43 anatomically defined brain regions from a group of cognitively normal younger (25 ± 3 yr old; n = 25) and older adults (71 ± 9 yr old; n = 31). After correcting for PVE, we observed 11-17% lower CMRg in three specific brain regions of the older group: the superior frontal cortex, the caudal middle frontal cortex, and the caudate (P ≤ 0.01 false discovery rate-corrected). In the older group, cortical volumes and cortical thickness were 13-33 and 7-18% lower, respectively, in multiple brain regions (P ≤ 0.01 FDR correction). There were no differences in CMRg between individuals who were or were not prescribed antihypertensive medication. There were no significant correlations between CMRg and cognitive performance or metabolic parameters measured in fasting plasma. We conclude that highly localized glucose hypometabolism and widespread cortical thinning and atrophy can be present in older adults who are cognitively normal, as assessed using age-normed neuropsychological testing measures. Copyright © 2014 the American Physiological Society.

  4. Neonatal pain-related stress predicts cortical thickness at age 7 years in children born very preterm.

    Directory of Open Access Journals (Sweden)

    Manon Ranger

    Full Text Available Altered brain development is evident in children born very preterm (24-32 weeks gestational age, including reduction in gray and white matter volumes, and thinner cortex, from infancy to adolescence compared to term-born peers. However, many questions remain regarding the etiology. Infants born very preterm are exposed to repeated procedural pain-related stress during a period of very rapid brain development. In this vulnerable population, we have previously found that neonatal pain-related stress is associated with atypical brain development from birth to term-equivalent age. Our present aim was to evaluate whether neonatal pain-related stress (adjusted for clinical confounders of prematurity is associated with altered cortical thickness in very preterm children at school age.42 right-handed children born very preterm (24-32 weeks gestational age followed longitudinally from birth underwent 3-D T1 MRI neuroimaging at mean age 7.9 yrs. Children with severe brain injury and major motor/sensory/cognitive impairment were excluded. Regional cortical thickness was calculated using custom developed software utilizing FreeSurfer segmentation data. The association between neonatal pain-related stress (defined as the number of skin-breaking procedures accounting for clinical confounders (gestational age, illness severity, infection, mechanical ventilation, surgeries, and morphine exposure, was examined in relation to cortical thickness using constrained principal component analysis followed by generalized linear modeling.After correcting for multiple comparisons and adjusting for neonatal clinical factors, greater neonatal pain-related stress was associated with significantly thinner cortex in 21/66 cerebral regions (p-values ranged from 0.00001 to 0.014, predominately in the frontal and parietal lobes.In very preterm children without major sensory, motor or cognitive impairments, neonatal pain-related stress appears to be associated with thinner cortex

  5. Neonatal pain-related stress predicts cortical thickness at age 7 years in children born very preterm.

    Science.gov (United States)

    Ranger, Manon; Chau, Cecil M Y; Garg, Amanmeet; Woodward, Todd S; Beg, Mirza Faisal; Bjornson, Bruce; Poskitt, Kenneth; Fitzpatrick, Kevin; Synnes, Anne R; Miller, Steven P; Grunau, Ruth E

    2013-01-01

    Altered brain development is evident in children born very preterm (24-32 weeks gestational age), including reduction in gray and white matter volumes, and thinner cortex, from infancy to adolescence compared to term-born peers. However, many questions remain regarding the etiology. Infants born very preterm are exposed to repeated procedural pain-related stress during a period of very rapid brain development. In this vulnerable population, we have previously found that neonatal pain-related stress is associated with atypical brain development from birth to term-equivalent age. Our present aim was to evaluate whether neonatal pain-related stress (adjusted for clinical confounders of prematurity) is associated with altered cortical thickness in very preterm children at school age. 42 right-handed children born very preterm (24-32 weeks gestational age) followed longitudinally from birth underwent 3-D T1 MRI neuroimaging at mean age 7.9 yrs. Children with severe brain injury and major motor/sensory/cognitive impairment were excluded. Regional cortical thickness was calculated using custom developed software utilizing FreeSurfer segmentation data. The association between neonatal pain-related stress (defined as the number of skin-breaking procedures) accounting for clinical confounders (gestational age, illness severity, infection, mechanical ventilation, surgeries, and morphine exposure), was examined in relation to cortical thickness using constrained principal component analysis followed by generalized linear modeling. After correcting for multiple comparisons and adjusting for neonatal clinical factors, greater neonatal pain-related stress was associated with significantly thinner cortex in 21/66 cerebral regions (p-values ranged from 0.00001 to 0.014), predominately in the frontal and parietal lobes. In very preterm children without major sensory, motor or cognitive impairments, neonatal pain-related stress appears to be associated with thinner cortex in multiple

  6. Effects of traumatic brain injury on a virtual reality social problem solving task and relations to cortical thickness in adolescence.

    Science.gov (United States)

    Hanten, Gerri; Cook, Lori; Orsten, Kimberley; Chapman, Sandra B; Li, Xiaoqi; Wilde, Elisabeth A; Schnelle, Kathleen P; Levin, Harvey S

    2011-02-01

    Social problem solving was assessed in 28 youth ages 12-19 years (15 with moderate to severe traumatic brain injury (TBI), 13 uninjured) using a naturalistic, computerized virtual reality (VR) version of the Interpersonal Negotiations Strategy interview (Yeates, Schultz, & Selman, 1991). In each scenario, processing load condition was varied in terms of number of characters and amount of information. Adolescents viewed animated scenarios depicting social conflict in a virtual microworld environment from an avatar's viewpoint, and were questioned on four problem solving steps: defining the problem, generating solutions, selecting solutions, and evaluating the likely outcome. Scoring was based on a developmental scale in which responses were judged as impulsive, unilateral, reciprocal, or collaborative, in order of increasing score. Adolescents with TBI were significantly impaired on the summary VR-Social Problem Solving (VR-SPS) score in Condition A (2 speakers, no irrelevant information), p=0.005; in Condition B (2 speakers+irrelevant information), p=0.035; and Condition C (4 speakers+irrelevant information), p=0.008. Effect sizes (Cohen's D) were large (A=1.40, B=0.96, C=1.23). Significant group differences were strongest and most consistent for defining the problems and evaluating outcomes. The relation of task performance to cortical thickness of specific brain regions was also explored, with significant relations found with orbitofrontal regions, the frontal pole, the cuneus, and the temporal pole. Results are discussed in the context of specific cognitive and neural mechanisms underlying social problem solving deficits after childhood TBI. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.

    Science.gov (United States)

    Peters, Sabine; Van Duijvenvoorde, Anna C K; Koolschijn, P Cédric M P; Crone, Eveline A

    2016-06-01

    Feedback learning is a crucial skill for cognitive flexibility that continues to develop into adolescence, and is linked to neural activity within a frontoparietal network. Although it is well conceptualized that activity in the frontoparietal network changes during development, there is surprisingly little consensus about the direction of change. Using a longitudinal design (N=208, 8-27 years, two measurements in two years), we investigated developmental trajectories in frontoparietal activity during feedback learning. Our first aim was to test for linear and nonlinear developmental trajectories in dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), supplementary motor area (SMA) and anterior cingulate cortex (ACC). Second, we tested which factors (task performance, working memory, cortical thickness) explained additional variance in time-related changes in activity besides age. Developmental patterns for activity in DLPFC and SPC were best characterized by a quadratic age function leveling off/peaking in late adolescence. There was a linear increase in SMA and a linear decrease with age in ACC activity. In addition to age, task performance explained variance in DLPFC and SPC activity, whereas cortical thickness explained variance in SMA activity. Together, these findings provide a novel perspective of linear and nonlinear developmental changes in the frontoparietal network during feedback learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness

    Directory of Open Access Journals (Sweden)

    Sabine Peters

    2016-06-01

    Full Text Available Feedback learning is a crucial skill for cognitive flexibility that continues to develop into adolescence, and is linked to neural activity within a frontoparietal network. Although it is well conceptualized that activity in the frontoparietal network changes during development, there is surprisingly little consensus about the direction of change. Using a longitudinal design (N = 208, 8–27 years, two measurements in two years, we investigated developmental trajectories in frontoparietal activity during feedback learning. Our first aim was to test for linear and nonlinear developmental trajectories in dorsolateral prefrontal cortex (DLPFC, superior parietal cortex (SPC, supplementary motor area (SMA and anterior cingulate cortex (ACC. Second, we tested which factors (task performance, working memory, cortical thickness explained additional variance in time-related changes in activity besides age. Developmental patterns for activity in DLPFC and SPC were best characterized by a quadratic age function leveling off/peaking in late adolescence. There was a linear increase in SMA and a linear decrease with age in ACC activity. In addition to age, task performance explained variance in DLPFC and SPC activity, whereas cortical thickness explained variance in SMA activity. Together, these findings provide a novel perspective of linear and nonlinear developmental changes in the frontoparietal network during feedback learning.

  9. Adaptations in tibial cortical thickness and total volumetric bone density in postmenopausal South Asian women with small bone size.

    Science.gov (United States)

    Darling, Andrea L; Hakim, Ohood A; Horton, Khim; Gibbs, Michelle A; Cui, Liang; Berry, Jacqueline L; Lanham-New, Susan A; Hart, Kathryn H

    2013-07-01

    There is some evidence that South Asian women may have an increased risk of osteoporosis compared with Caucasian women, although whether South Asians are at increased risk of fracture is not clear. It is unknown whether older South Asian women differ from Caucasian women in bone geometry. This is the first study, to the authors' knowledge, to use peripheral Quantitative Computed Tomography (pQCT) to measure radial and tibial bone geometry in postmenopausal South Asian women. In comparison to Caucasian women, Asian women had smaller bone size at the 4% (-18% pAsians had increased cortical thickness (-17% p=0.04) at the 38% tibia, (in proportion to bone size (-30% p=0.003)). Furthermore, at the 4% and 14% tibia there were increased total densities (+12% to +29% pAsians. These differences at the 14% and 38% (but not 4%) remained statistically significant after adjustment for Body Mass Index (BMI). These adaptations are similar to those seen previously in Chinese women. Asian women had reduced strength at the radius and tibia, evidenced by the 20-40% reduction in both polar Strength Strain Index (SSIp) and fracture load (under bending). Overall, the smaller bone size in South Asians is likely to be detrimental to bone strength, despite some adaptations in tibial cortical thickness and tibial and radial density which may partially compensate for this. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature.

    Science.gov (United States)

    Kong, Li; Herold, Christina J; Zöllner, Frank; Salat, David H; Lässer, Marc M; Schmid, Lena A; Fellhauer, Iven; Thomann, Philipp A; Essig, Marco; Schad, Lothar R; Erickson, Kirk I; Schröder, Johannes

    2015-02-28

    Grey matter volume and cortical thickness are the two most widely used measures for detecting grey matter morphometric changes in various diseases such as schizophrenia. However, these two measures only share partial overlapping regions in identifying morphometric changes. Few studies have investigated the contributions of the potential factors to the differences of grey matter volume and cortical thickness. To investigate this question, 3T magnetic resonance images from 22 patients with schizophrenia and 20 well-matched healthy controls were chosen for analyses. Grey matter volume and cortical thickness were measured by VBM and Freesurfer. Grey matter volume results were then rendered onto the surface template of Freesurfer to compare the differences from cortical thickness in anatomical locations. Discrepancy regions of the grey matter volume and thickness where grey matter volume significantly decreased but without corresponding evidence of cortical thinning involved the rostral middle frontal, precentral, lateral occipital and superior frontal gyri. Subsequent region-of-interest analysis demonstrated that changes in surface area, grey/white matter intensity contrast and curvature accounted for the discrepancies. Our results suggest that the differences between grey matter volume and thickness could be jointly driven by surface area, grey/white matter intensity contrast and curvature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Normalization of cortical thickness measurements across different T1 magnetic resonance imaging protocols by novel W-Score standardization.

    Science.gov (United States)

    Chung, Jinyong; Yoo, Kwangsun; Lee, Peter; Kim, Chan Mi; Roh, Jee Hoon; Park, Ji Eun; Kim, Sang Joon; Seo, Sang Won; Shin, Jeong-Hyeon; Seong, Joon-Kyung; Jeong, Yong

    2017-10-01

    The use of different 3D T1-weighted magnetic resonance (T1 MR) imaging protocols induces image incompatibility across multicenter studies, negating the many advantages of multicenter studies. A few methods have been developed to address this problem, but significant image incompatibility still remains. Thus, we developed a novel and convenient method to improve image compatibility. W-score standardization creates quality reference values by using a healthy group to obtain normalized disease values. We developed a protocol-specific w-score standardization to control the protocol effect, which is applied to each protocol separately. We used three data sets. In dataset 1, brain T1 MR images of normal controls (NC) and patients with Alzheimer's disease (AD) from two centers, acquired with different T1 MR protocols, were used (Protocol 1 and 2, n = 45/group). In dataset 2, data from six subjects, who underwent MRI with two different protocols (Protocol 1 and 2), were used with different repetition times, echo times, and slice thicknesses. In dataset 3, T1 MR images from a large number of healthy normal controls (Protocol 1: n = 148, Protocol 2: n = 343) were collected for w-score standardization. The protocol effect and disease effect on subjects' cortical thickness were analyzed before and after the application of protocol-specific w-score standardization. As expected, different protocols resulted in differing cortical thickness measurements in both NC and AD subjects. Different measurements were obtained for the same subject when imaged with different protocols. Multivariate pattern difference between measurements was observed between the protocols. Classification accuracy between two protocols was nearly 90%. After applying protocol-specific w-score standardization, the differences between the protocols substantially decreased. Most importantly, protocol-specific w-score standardization reduced both univariate and multivariate differences in the images while

  12. A roentgenographic study of cortical thickness and bone density of mandible

    International Nuclear Information System (INIS)

    Shin, Dong Jin; Lee, Sang Rae

    1984-01-01

    The aim of this study was to investigate the thickness of angular cortex and bone density of mandible in norm al person. Age changes and sex differences of those were comprised in this study. Material included 456 pantomographic views and 309 intraoral films taken by paralleling techinic. Conclusions from this study were as follows. 1. The thickness of mandibular angular cortex increased with age in both sexes before 15 to 19-year-old group. And those were relatively constant in the age range from 20 to 49 years in male and in the age range from 20 to 39 years in female, but decreased after that age. 2. The thickness of mandibular angular cortex were larger in male than in female. And no significant differences between sexes were noted before 40 to 49-year-old group. 3. Changes of bone density with age were analogous to changes of thickness of mandibular angular cortex. Correlation coefficients between changes of bone density and age were arranged, and male group underwent comparatively low correlation while insignificant statistically in female group. And no significant differences between sexes were found in all age group except 50 to 59-year-old group.

  13. Cortical thickness, surface area, and volume of the brain reward system in alcohol dependence: relationships to relapse and extended abstinence.

    Science.gov (United States)

    Durazzo, Timothy C; Tosun, Duygu; Buckley, Shannon; Gazdzinski, Stefan; Mon, Anderson; Fryer, Susanna L; Meyerhoff, Dieter J

    2011-06-01

    At least 60% of those treated for an alcohol use disorder will relapse. Empirical study of the integrity of the brain reward system (BRS) is critical to understanding the mechanisms of relapse as this collection of circuits is implicated in the development and maintenance of all forms of addictive disorders. This study compared thickness, surface area, and volume in neocortical components of the BRS among nonsmoking light-drinking controls (controls), individuals who remained abstinent and those who relapsed after treatment. Seventy-five treatment-seeking alcohol-dependent individuals (abstinent for 7±3 days) and 43 controls completed 1.5T proton magnetic resonance imaging studies. Parcellated morphological data were obtained for following bilateral components of the BRS: rostral and caudal anterior cingulate cortex, insula, medial and lateral orbitofrontal cortex (OFC), rostral and caudal middle and superior frontal gyri, amygdala and hippocampus as well as for 26 other bilateral neocortical regions. Alcohol-dependent participants were followed over 12-months after baseline study and were classified as abstainers (no alcohol consumption; n=24) and relapsers (any alcohol consumption; n=51) at follow-up. Relapsers and abstainers demonstrated lower cortical thickness in the vast majority of BRS regions as well as lower global thickness compared to controls. Relapsers had lower total BRS surface area than both controls and abstainers, but abstainers were not significantly different from controls on any surface area measure. Relapsers demonstrated lower volumes than controls in the majority of regions, while abstainers showed lower volumes than controls in the superior frontal gyrus, insula, amygdala, and hippocampus, bilaterally. Relapsers exhibited smaller volumes than abstainers in the right rostral middle and caudal middle frontal gyri and the lateral OFC, bilaterally. In relapsers, lower baseline volumes and surface areas in multiple regions were associated with

  14. Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: implications for the neural substrates of emotion regulation.

    Science.gov (United States)

    Albaugh, Matthew D; Ducharme, Simon; Collins, D Louis; Botteron, Kelly N; Althoff, Robert R; Evans, Alan C; Karama, Sherif; Hudziak, James J

    2013-05-01

    Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Synchronous changes of cortical thickness and corresponding white matter microstructure during brain development accessed by diffusion MRI tractography from parcellated cortex

    Directory of Open Access Journals (Sweden)

    Tina eJeon

    2015-12-01

    Full Text Available Cortical thickness (CT changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI, especially fractional anisotropy (FA. We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 to 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, includeing Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46 and 47, decreased significantly and heterogeneously; concurrently, significant and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for

  16. Positive Association between Cognitive Ability and Cortical Thickness in a Representative US Sample of Healthy 6 to 18 Year-Olds

    Science.gov (United States)

    Karama, S.; Ad-Dab'bagh, Y.; Haier, R. J.; Deary, I. J.; Lyttelton, O. C.; Lepage, C.; Evans, A. C.

    2009-01-01

    Neuroimaging studies, using various modalities, have evidenced a link between the general intelligence factor (g) and regional brain function and structure in several multimodal association areas. While in the last few years, developments in computational neuroanatomy have made possible the "in vivo" quantification of cortical thickness, the…

  17. Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents a new gradient based method for performing discrete material and thickness optimization of laminated composite structures. The novelty in the new method lies in the application of so-called casting constraints, or thickness filters in this context, to control the thickness...... variation throughout the laminate. The filters replace the layerwise density variables with a single continuous through-the-thickness design variable. Consequently, the filters eliminate the need for having explicit constraints for preventing intermediate void through the thickness of the laminate....... Therefore, the filters reduce both the number of constraints and design variables in the optimization problem. Based upon a continuous approximation of a unit step function, the thickness filters are capable of projecting discrete 0/1 values to the underlying layerwise or ”physical” density variables which...

  18. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease

    NARCIS (Netherlands)

    Gerrits, Niels J H M; van Loenhoud, Anita C; van den Berg, Stan F; Berendse, Henk W; Foncke, Elisabeth M J; Klein, Martin; Stoffers, Diederick; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2016-01-01

    Parkinson's disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does,

  19. T171. REDUCED FRONTAL CORTICAL THICKNESS AND SURFACE IN A 10 YEARS FOLLOW-UP OF EARLY ONSET PSYCHOSIS

    Science.gov (United States)

    Ilzarbe, Daniel; de la Serna, Elena; Baeza, Inmaculada; Pariente, Jose; Fortea, Adriana; Redondo, Marina; Bargallo, Nuria; Castro-Fornieles, Josefina; Sugranyes, Gisela

    2018-01-01

    Abstract Background Structural volume loss of cortical gray matter over time in schizophrenia has been widely reported (Vita et al. 2012), and may be more pronounced when the disorder has an onset prior to age 18 (Early Onset Psychosis, EOP; Arango et al. 2008). More recently, studies have focused on measures of cortical morphology. The single study in EOP so far has identified greater loss of cortical thickness (CTH) in patients with schizophrenia over time (van Haren et al. 2011), whereas to our knowledge, no so far study has examined measures of surface area (SA) in EOP following a longitudinal design. We set out to examine measures of both CTH and SA in a sample of EOP at 10-year-follow-up. Methods Patients with EOP were recruited at first episode, matched by sex and age with healthy controls (HC) and re-assessed at 10 years. Subjects were evaluated clinically and structural T1 volumes were acquired using magnetic resonance imaging at baseline and 10-year-follow-up. Images were preprocessed, segmented and analysed with FreeSurfer. Quality control procedure was carried out by two raters. Images were segmented and CTH and SA values were extracted for each parcellation employing Desikan-Killiany Atlas; these were grouped in frontal, occipital, temporal, parietal and cingulate lobes so as to reduce multiple comparisons. When group or group by time effects were detected, parcellations were individually examined. A linear mixed model was built using Stata IC 13.1 to evaluate the effect of group and time on CTH and SA, including hemisphere as fixed effects and correcting by total intracranial volume and setting a critical p-value of .05. Results Thirty-nine subjects completed the follow-up. After removing 9 due to poor quality T1 images (technical problems, excess of movement), 28 subjects were finally included (13 EOP, 15 HC). There were no significant differences in age (EOP=26.9 ± 0.6 vs HC=27.2 ± 0.3 at follow-up) or sex distribution (%female: EOP=43% vs HC=38

  20. Cortical thickness and VBM in young women at risk for familial depression and their depressed mothers with positive family history.

    Science.gov (United States)

    Ozalay, Ozgun; Aksoy, Burcu; Tunay, Sebnem; Simsek, Fatma; Chandhoki, Swati; Kitis, Omer; Eker, Cagdas; Gonul, Ali Saffet

    2016-06-30

    It has been demonstrated that compared to low-risk subjects, high-risk subjects for depression have structural and functional alterations in their brain scans even before the disease onset. However, it is not known if these alterations are related to vulnerability to depression or epiphenomena. One way to resolve this ambiguity is to detect the structural alterations in the high-risk subjects and determine if the same alterations are present in the probands. In this study, we recruited 24 women with the diagnosis of Major Depressive Disorder (MDD) with recurrent episodes and their healthy daughters (the high-risk for familial depression group; HRFD). We compared structural brain scans of the patients and HRFG group with those of 24 age-matched healthy mothers and their healthy daughters at similar ages to the HRFD group; respectively. Both cortical gray matter (GM) volume and thickness analyses revealed that HRFD daughters and their MDD mothers had similar GM differences in two regions: the right temporoparietal region and the dorsomedial prefrontal cortex. These results suggested that the observed alterations may be related to trait clinical and neurophysiological characteristics of MDD and may present before the onset of illness. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Mesenchymal stem cells can modulate longitudinal changes in cortical thickness and its related cognitive decline in patients with multiple system atrophy

    Directory of Open Access Journals (Sweden)

    Mun Kyung eSunwoo

    2014-06-01

    Full Text Available Multiple system atrophy (MSA is an adult-onset sporadic neurodegenerative disease. Because the prognosis of MSA is fatal, neuroprotective or regenerative strategies may be invaluable in MSA treatment. Previously, we obtained clinical and imaging evidence that mesenchymal stem cell (MSC treatment could have a neuroprotective role in MSA patients. In the present study, we evaluated the effects of MSC therapy on longitudinal changes in subcortical deep grey matter volumes and cortical thickness and their association with cognitive performance. Clinical and imaging data were obtained from our previous randomized trial of autologous MSC in MSA patients. During 1-year follow-up, we assessed longitudinal differences in subcortical deep grey matter volumes and cortical thickness between placebo (n=15 and MSC groups (n=11. Next, we performed correlation analysis between the changes in cortical thickness and changes in the Korean version of the Montreal Cognitive Assessment (MoCA scores and detailed cognitive performance. There were no significant differences in age, gender ratio, disease duration, clinical severity, MoCA score, or education level between the groups. The subcortical volumetric analysis revealed that the changes in deep grey matter volumes of the caudate, putamen, and thalamus did not differ significantly between the groups. The areas of cortical thinning over time in the placebo group were more extensive, including the frontal, temporal, and parietal areas, whereas these areas in the MSC group were less extensive. Correlation analysis indicated that declines in MoCA scores and phonemic fluency were significantly correlated with cortical thinning of the frontal and posterior temporal areas and anterior temporal areas in MSA patients, respectively. These results suggest that MSC treatment in patients with MSA may modulate cortical thinning over time and related cognitive performance, inferring a future therapeutic candidate for cognitive

  2. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention

    Directory of Open Access Journals (Sweden)

    Kamila U. Szulc-Lerch

    Full Text Available There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation.We conducted a controlled clinical trial with crossover of exercise training (vs. no training in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs. The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline.Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline.Overall, our results

  3. Detecting Alzheimer’s disease by morphological MRI using hippocampal grading and cortical thickness

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Coupé, Pierrick; Fonov, Vladimir

    2014-01-01

    effort has been dedicated to separate AD related modifications from normal ag-ing for the purpose of early detection and prediction. Several groups have re-ported promising results using automatic methods; however, it is very difficult to compare these methods due to varying cohorts and different...... validation frameworks. To address this issue, the public challenge on Computer-Aided Di-agnosis of Dementia based on structural MRI data (CADDementia) was pro-posed. The challenge calls for accurate classification of 354 MRI scans collect-ed among AD patients, subjects with mild cognitive impairment...... and cognitively normal control. The true diagnosis is hidden from the participating groups, thus making the validation truly objective. This paper describes our proposed meth-od to automatically classify the challenge data along with a validation on 30 scans with known diagnosis also provided for the challenge....

  4. Altered Cortical Thickness and Tract Integrity of the Mirror Neuron System and Associated Social Communication in Autism Spectrum Disorder.

    Science.gov (United States)

    Chien, Hsiang-Yun; Gau, Susan Shur-Fen; Hsu, Yung-Chin; Chen, Yu-Jen; Lo, Yu-Chun; Shih, Yao-Chia; Tseng, Wen-Yih Isaac

    2015-12-01

    Previous studies using neural activity recording and neuroimaging techniques have reported functional deficits in the mirror neuron system (MNS) for individuals with autism spectrum disorder (ASD). However, a few studies focusing on gray and white matter structures of the MNS have yielded inconsistent results. The current study recruited adolescents and young adults with ASD (aged 15-26 years) and age-matched typically developing (TD) controls (aged 14-25 years). The cortical thickness (CT) and microstructural integrity of the tracts connecting the regions forming the classical MNS were investigated. High-resolution T1-weighted imaging and diffusion spectrum imaging were performed to quantify the CT and tract integrity, respectively. The structural covariance of the CT of the MNS regions revealed a weaker coordination of the MNS network in ASD. A strong correlation was found between the integrity of the right frontoparietal tracts and the social communication subscores measured by the Chinese version of the Social Communication Questionnaire. The results showed that there were no significant mean differences in the CTs and tract integrity between the ASD and TD groups, but revealed a moderate or even reverse age effect on the frontal MNS structures in ASD. In conclusion, aberrant structural coordination may be an underlying factor affecting the function of the MNS in ASD patients. The association between the right frontoparietal tracts and social communication performance implies a neural correlate of communication processing in the autistic brain. This study provides evidence of abnormal MNS structures and their influence on social communication in individuals with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  5. The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults.

    Science.gov (United States)

    Lisdahl, Krista M; Tamm, Leanne; Epstein, Jeffery N; Jernigan, Terry; Molina, Brooke S G; Hinshaw, Stephen P; Swanson, James M; Newman, Erik; Kelly, Clare; Bjork, James M

    2016-04-01

    Both Attention Deficit Hyperactivity Disorder (ADHD) and chronic cannabis (CAN) use have been associated with brain structural abnormalities, although little is known about the effects of both in young adults. Participants included: those with a childhood diagnosis of ADHD who were CAN users (ADHD_CAN; n=37) and non-users (NU) (ADHD_NU; n=44) and a local normative comparison group (LNCG) who did (LNCG_CAN; n=18) and did not (LNCG_NU; n=21) use CAN regularly. Multiple regressions and MANCOVAs were used to examine the independent and interactive effects of a childhood ADHD diagnosis and CAN group status and age of onset (CUO) on subcortical volumes and cortical thickness. After controlling for age, gender, total brain volume, nicotine use, and past-year binge drinking, childhood ADHD diagnosis did not predict brain structure; however, persistence of ADHD was associated with smaller left precentral/postcentral cortical thickness. Compared to all non-users, CAN users had decreased cortical thickness in right hemisphere superior frontal sulcus, anterior cingulate, and isthmus of cingulate gyrus regions and left hemisphere superior frontal sulcus and precentral gyrus regions. Early cannabis use age of onset (CUO) in those with ADHD predicted greater right hemisphere superior frontal and postcentral cortical thickness. Young adults with persistent ADHD demonstrated brain structure abnormalities in regions underlying motor control, working memory and inhibitory control. Further, CAN use was linked with abnormal brain structure in regions with high concentrations of cannabinoid receptors. Additional large-scale longitudinal studies are needed to clarify how substance use impacts neurodevelopment in youth with and without ADHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Comparison of interradicular distances and cortical bone thickness in Thai patients with class I and class II skeletal patterns using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Khumsarn, Nattida; Patanaporn, Virush; Janhom, Apirum; Jotikasthira, Dhirawat

    2016-01-01

    This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns

  7. Comparison of interradicular distances and cortical bone thickness in Thai patients with class I and class II skeletal patterns using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Khumsarn, Nattida [Dental Division of Lamphun Hospital, Lamphun (Thailand); Patanaporn, Virush; Janhom, Apirum; Jotikasthira, Dhirawat [Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand)

    2016-06-15

    This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns.

  8. Interaction between DRD2 and lead exposure on the cortical thickness of the frontal lobe in youth with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Kim, Johanna Inhyang; Kim, Jae-Won; Lee, Jong-Min; Yun, Hyuk Jin; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bongseog; Chae, Jonghee; Roh, Jaewoo; Kim, Bung-Nyun

    2018-03-02

    The dopamine receptor D2 receptor (DRD2) gene and lead exposure are both thought to contribute to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). ADHD is characterized by delay in brain maturation, most prominent in the prefrontal cortex (PFC). The D2 receptor is also mainly located in the PFC, and animal studies show that lead exposure affects the dopaminergic system of the frontal lobe, indicating an overlap in neural correlates of ADHD, DRD2, and lead exposure. We examined the interaction effects of DRD2 rs1800497 and lead exposure on the cortical thickness of the frontal lobe in patients with ADHD. A 1:1 age- and gender-matched sample of 75 participants with ADHD and 75 healthy participants was included in the analysis. The interaction effects of DRD2 and lead exposure on the cortical thickness of 12 regions of interest in the frontal lobe were examined by multivariable linear regression analyses. When we investigated the DRD2×lead effects in the ADHD and HC groups separately, significant DRD2×lead effects were found in the ADHD group, but not in the healthy control group in multiple ROIs of the frontal lobe. There was a significant negative correlation between the cortical thickness of the right superior frontal gyrus and inattention scores. The present findings demonstrated significant interaction effects of DRD2 and lead exposure on the cortical thickness of the frontal lobe in ADHD. Replication studies with larger sample sizes, using a prospective design, are warranted to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention.

    Science.gov (United States)

    Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J

    2018-01-01

    There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that

  10. Person identification based on multiscale matching of cortical images

    NARCIS (Netherlands)

    Kruizinga, P; Petkov, N; Hertzberger, B; Serazzi, G

    1995-01-01

    A set of so-called cortical images, motivated by the function of simple cells in the primary visual cortex of mammals, is computed from each of two input images and an image pyramid is constructed for each cortical image. The two sets of cortical image pyramids are matched synchronously and an

  11. Cortical dynamics of visual change detection based on sensory memory.

    Science.gov (United States)

    Urakawa, Tomokazu; Inui, Koji; Yamashiro, Koya; Tanaka, Emi; Kakigi, Ryusuke

    2010-08-01

    Detecting a visual change was suggested to relate closely to the visual sensory memory formed by visual stimuli before the occurrence of the change, because change detection involves identifying a difference between ongoing and preceding sensory conditions. Previous neuroimaging studies showed that an abrupt visual change activates the middle occipital gyrus (MOG). However, it still remains to be elucidated whether the MOG is related to visual change detection based on sensory memory. Here we tried to settle this issue using a new method of stimulation with blue and red LEDs to emphasize a memory-based change detection process. There were two stimuli, a standard trial stimulus and a deviant trial stimulus. The former was a red light lasting 500 ms, and the latter was a red light lasting 250 ms immediately followed by a blue light lasting 250 ms. Effects of the trial-trial interval, 250 approximately 2000 ms, were investigated to know how cortical responses to the abrupt change (from red to blue) were affected by preceding conditions. The brain response to the deviant trial stimulus was recorded by magnetoencephalography. Results of a multi-dipole analysis showed that the activity in the MOG, peaking at around 150 ms after the change onset, decreased in amplitude as the interval increased, but the earlier activity in BA 17/18 was not affected by the interval. These results suggested that the MOG is an important cortical area relating to the sensory memory-based visual change-detecting system. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Portable abdomen radiography. Moving to thickness-based protocols

    International Nuclear Information System (INIS)

    Sanchez, Adrian A.; Reiser, Ingrid; Baxter, Tina; Zhang, Yue; Finkle, Joshua H.; Lu, Zheng Feng; Feinstein, Kate A.

    2018-01-01

    Default pediatric protocols on many digital radiography systems are configured based on patient age. However, age does not adequately characterize patient size, which is the principal determinant of proper imaging technique. Use of default pediatric protocols by inexperienced technologists can result in patient overexposure, inadequate image quality, or repeated examinations. To ensure diagnostic image quality at a well-managed patient radiation exposure by transitioning to thickness-based protocols for pediatric portable abdomen radiography. We aggregated patient thickness data, milliamperes (mAs), kilovoltage peak (kVp), exposure index (EI), source-to-detector distance, and grid use for all portable abdomen radiographs performed in our pediatric hospital in a database with a combination of automated and manual data collection techniques. We then analyzed the database and used it as the basis to construct thickness-based protocols with consistent image quality across varying patient thicknesses, as determined by the EI. Retrospective analysis of pediatric portable exams performed at our adult-focused hospitals demonstrated substantial variability in EI relative to our pediatric hospital. Data collection at our pediatric hospital over 4 months accumulated roughly 800 portable abdomen exams, which we used to develop a thickness-based technique chart. Through automated retrieval of data in our systems' digital radiography exposure logs and recording of patient abdomen thickness, we successfully developed thickness-based techniques for portable abdomen radiography. (orig.)

  13. Portable abdomen radiography. Moving to thickness-based protocols

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Adrian A.; Reiser, Ingrid; Baxter, Tina; Zhang, Yue; Finkle, Joshua H.; Lu, Zheng Feng; Feinstein, Kate A. [University of Chicago Medical Center, Department of Radiology, Chicago, IL (United States)

    2018-02-15

    Default pediatric protocols on many digital radiography systems are configured based on patient age. However, age does not adequately characterize patient size, which is the principal determinant of proper imaging technique. Use of default pediatric protocols by inexperienced technologists can result in patient overexposure, inadequate image quality, or repeated examinations. To ensure diagnostic image quality at a well-managed patient radiation exposure by transitioning to thickness-based protocols for pediatric portable abdomen radiography. We aggregated patient thickness data, milliamperes (mAs), kilovoltage peak (kVp), exposure index (EI), source-to-detector distance, and grid use for all portable abdomen radiographs performed in our pediatric hospital in a database with a combination of automated and manual data collection techniques. We then analyzed the database and used it as the basis to construct thickness-based protocols with consistent image quality across varying patient thicknesses, as determined by the EI. Retrospective analysis of pediatric portable exams performed at our adult-focused hospitals demonstrated substantial variability in EI relative to our pediatric hospital. Data collection at our pediatric hospital over 4 months accumulated roughly 800 portable abdomen exams, which we used to develop a thickness-based technique chart. Through automated retrieval of data in our systems' digital radiography exposure logs and recording of patient abdomen thickness, we successfully developed thickness-based techniques for portable abdomen radiography. (orig.)

  14. A genome-wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus

    NARCIS (Netherlands)

    Cai, D.C.; Fonteijn, H.M.; Guadalupe, T.M.; Zwiers, M.P.; Wittfeld, K.; Teumer, A.; Hoogman, M.; Arias Vasquez, A.; Yang, Y; Buitelaar, J.K.; Fernandez, G.S.E.; Brunner, H.G.; Bokhoven, H. van; Franke, B.; Hegenscheid, K.; Homuth, G.; Fisher, S.E.; Grabe, H.J.; Francks, C.; Hagoort, P.

    2014-01-01

    Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical

  15. Model-based cartilage thickness measurement in the submillimeter range

    International Nuclear Information System (INIS)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-01-01

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  16. The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements

    OpenAIRE

    Gronenschild, Ed H. B. M.; Habets, Petra; Jacobs, Heidi I. L.; Mengelers, Ron; Rozendaal, Nico; van Os, Jim; Marcelis, Machteld

    2012-01-01

    FreeSurfer is a popular software package to measure cortical thickness and volume of neuroanatomical structures. However, little if any is known about measurement reliability across various data processing conditions. Using a set of 30 anatomical T1-weighted 3T MRI scans, we investigated the effects of data processing variables such as FreeSurfer version (v4.3.1, v4.5.0, and v5.0.0), workstation (Macintosh and Hewlett-Packard), and Macintosh operating system version (OSX 10.5 and OSX 10.6). S...

  17. A Surface-based Analysis of Language Lateralization and Cortical Asymmetry

    Science.gov (United States)

    Greve, Douglas N.; Van der Haegen, Lise; Cai, Qing; Stufflebeam, Steven; Sabuncu, Mert R.; Fischl, Bruce; Bysbaert, Marc

    2013-01-01

    Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl’s gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013–2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by

  18. Widespread cortical thinning in patients with neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Kim, S-H; Kwak, K; Hyun, J-W; Jeong, I H; Jo, H-J; Joung, A; Kim, J-H; Lee, S H; Yun, S; Joo, J; Lee, J-M; Kim, H J

    2016-07-01

    Studies on cortical involvement and its relationship with cognitive function in patients with neuromyelitis optica spectrum disorder (NMOSD) remain scarce. The objective of this study was to compare cortical thickness on magnetic resonance imaging (MRI) between patients with NMOSD and multiple sclerosis (MS) and to investigate its relationship with clinical features and cognitive function. This observational clinical imaging study of 91 patients with NMOSD, 52 patients with MS and 44 healthy controls was conducted from 1 December 2013 to 30 April 2015 at the institutional referral center. Three tesla MRI of the brain and neuropsychological tests were performed. Cortical thickness was measured using three-dimensional surface-based analysis. Both sets of patients exhibited cortical thinning throughout the entire brain cortex. Patients with MS showed a significantly greater reduction in cortical thickness over broad regions of the bilateral frontal and parieto-temporal cortices and the left precuneus compared to those with NMOSD. Memory functions in patients with MS were correlated with broad regional cortical thinning, whereas no significant associations were observed between cortical thickness and cognitive function in patients with NMOSD. Widespread cortical thinning was observed in patients with NMOSD and MS, but the extent of cortical thinning was greater in patients with MS. The more severe cortical atrophy may contribute to memory impairment in patients with MS but not in those with NMOSD. These results provide in vivo evidence that the severity and clinical relevance of cortical thinning differ between NMOSD and MS. © 2016 EAN.

  19. Order-based representation in random networks of cortical neurons.

    Directory of Open Access Journals (Sweden)

    Goded Shahaf

    2008-11-01

    Full Text Available The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen.

  20. Cortical thickness in de novo patients with Parkinson disease and mild cognitive impairment with consideration of clinical phenotype and motor laterality.

    Science.gov (United States)

    Danti, S; Toschi, N; Diciotti, S; Tessa, C; Poletti, M; Del Dotto, P; Lucetti, C

    2015-12-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with motor and non-motor symptoms, including cognitive deficits. Several magnetic resonance imaging approaches have been applied to investigate brain atrophy in PD. The aim of this study was to detect early structural cortical and subcortical changes in de novo PD whilst distinguishing cognitive status, clinical phenotype and motor laterality. Eighteen de novo PD with mild cognitive impairment (PD-MCI), 18 de novo PD without MCI (PD-NC) and 18 healthy control subjects were evaluated. In the PD-MCI group, nine were tremor dominant and nine were postural instability gait disorder (PIGD) phenotype; 11 had right-sided symptom dominance and seven had left-sided symptom dominance. FreeSurfer was used to measure cortical thickness/folding, subcortical structures and to study group differences as well as the association with clinical and neuropsychological data. Parkinson's disease with MCI showed regional thinning in the right frontal, right middle temporal areas and left insula compared to PD-NC. A reduction of the volume of the left and right thalamus and left hippocampus was found in PD-MCI compared to PD-NC. PD-MCI PIGD showed regional thinning in the right inferior parietal area compared to healthy controls. A decreased volume of the left thalamus was reported in PD-MCI with right-sided symptom dominance compared to PD-NC and PD-MCI with left-sided symptom dominance. When MCI was present, PD patients showed a fronto-temporo-parietal pattern of cortical thinning. This cortical pattern does not appear to be influenced by motor laterality, although one-sided symptom dominance may contribute to volumetric reduction of specific subcortical structures. © 2015 EAN.

  1. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  2. Focal cortical thinning in patients with stable relapsing-remitting multiple sclerosis. Cross-sectional-based novel estimation of gray matter kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Orbach, Lior; Menascu, Shay; Hoffmann, Chen; Achiron, Anat [Sheba Medical Center, Multiple Sclerosis Center, Tel-Hashomer (Israel); Tel-Aviv University, Sackler School of Medicine, Tel-Aviv (Israel); Miron, Shmuel [Sheba Medical Center, Multiple Sclerosis Center, Tel-Hashomer (Israel)

    2018-02-15

    The aim of our study is to identify radiological patterns of cortical gray matter atrophy (CGMA) that correlate with disease duration in patients with relapsing-remitting multiple sclerosis (RRMS). RRMS patients were randomly selected from the Sheba Multiple Sclerosis (MS) center computerized data registry based on stratification of disease duration up to 10 years. Patients were scanned by 3.0 T (Signa, GE) MRI, using a T1 weighted 3D high resolution, FSPGR, MS protocol. Neurological disability was assessed by the Expanded Disability Status Scale (EDSS). FreeSurfer was used to obtain brain volumetric segmentation and to perform cortical thickness surface-based analysis. Clusters of change in cortical thickness with correlation to disease duration were produced. Two hundred seventy-one RRMS patients, mean ± SD age 33.0 ± 7.0 years, EDSS 1.6 ± 1.2, disease duration 5.0 ± 3.4 years. Cortical thickness analysis demonstrated focal areas of cerebral thinning that correlated with disease duration. Seven clusters accounting for 11.7% of the left hemisphere surface and eight clusters accounting for 10.6% of the right hemisphere surface were identified, with cluster-wise probability of p < 0.002 and p < 0.02, respectively.The clusters included bilateral involvement of areas within the cingulate, precentral, postcentral, paracentral, superior-parietal, superior-frontal gyri and insular cortex. Mean and cluster-wise cortical thickness negatively correlated with EDSS score, p < 0.001, with stronger Spearman rho for cluster-wise measurements. We identified CGMA patterns in sensitive brain regions which give insight and better understanding of the progression of cortical gray matter loss in relation to dissemination in space and time. These patterns may serve as markers to modulate therapeutic interventions to improve the management of MS patients. (orig.)

  3. Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates

    Science.gov (United States)

    Grobys, Jan W. G.; Gohl, Karsten; Eagles, Graeme

    2008-01-01

    Zealandia is a key piece in the plate reconstruction of Gondwana. The positions of its submarine plateaus are major constraints on the best fit and breakup involving New Zealand, Australia, Antarctica, and associated microplates. As the submarine plateaus surrounding New Zealand consist of extended and highly extended continental crust, classic plate tectonic reconstructions assuming rigid plates and narrow plate boundaries fail to reconstruct these areas correctly. However, if the early breakup history shall be reconstructed, it is crucial to consider crustal stretching in a plate-tectonic reconstruction. We present a reconstruction of the basins around New Zealand (Great South Basin, Bounty Trough, and New Caledonia Basin) based on crustal balancing, an approach that takes into account the rifting and thinning processes affecting continental crust. In a first step, we computed a crustal thickness map of Zealandia using seismic, seismological, and gravity data. The crustal thickness map shows the submarine plateaus to have a uniform crustal thickness of 20-24 km and the basins to have a thickness of 12-16 km. We assumed that a reconstruction of Zealandia should close the basins and lead to a most uniform crustal thickness. We used the standard deviation of the reconstructed crustal thickness as a measure of uniformity. The reconstruction of the Campbell Plateau area shows that the amount of extension in the Bounty Trough and the Great South Basin is far smaller than previously thought. Our results indicate that the extension of the Bounty Trough and Great South Basin occurred simultaneously.

  4. Computer vision based nacre thickness measurement of Tahitian pearls

    Science.gov (United States)

    Loesdau, Martin; Chabrier, Sébastien; Gabillon, Alban

    2017-03-01

    The Tahitian Pearl is the most valuable export product of French Polynesia contributing with over 61 million Euros to more than 50% of the total export income. To maintain its excellent reputation on the international market, an obligatory quality control for every pearl deemed for exportation has been established by the local government. One of the controlled quality parameters is the pearls nacre thickness. The evaluation is currently done manually by experts that are visually analyzing X-ray images of the pearls. In this article, a computer vision based approach to automate this procedure is presented. Even though computer vision based approaches for pearl nacre thickness measurement exist in the literature, the very specific features of the Tahitian pearl, namely the large shape variety and the occurrence of cavities, have so far not been considered. The presented work closes the. Our method consists of segmenting the pearl from X-ray images with a model-based approach, segmenting the pearls nucleus with an own developed heuristic circle detection and segmenting possible cavities with region growing. Out of the obtained boundaries, the 2-dimensional nacre thickness profile can be calculated. A certainty measurement to consider imaging and segmentation imprecisions is included in the procedure. The proposed algorithms are tested on 298 manually evaluated Tahitian pearls, showing that it is generally possible to automatically evaluate the nacre thickness of Tahitian pearls with computer vision. Furthermore the results show that the automatic measurement is more precise and faster than the manual one.

  5. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    International Nuclear Information System (INIS)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun; Lee, Jae Hong; Roh, Jee Hoon

    2017-01-01

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease

  6. Evaluation of cortical bone mass, thickness and density by z-scores in osteopenic conditions and in relation to menopause and estrogen treatment

    International Nuclear Information System (INIS)

    Meema, S.; Meema, H.E.

    1982-01-01

    Z-scores express, differences from normals in standard deviation units, and are particularly useful for comparison of changes where normal values are age- and sex-dependent. We determined z-scores for bone mineral mass, cortical thickness, and bone mineral density in the radius in various conditions and diseases in both sexes. In the males, z-scores were calculated for age, but in the females z-scores for menopausal status (years postmenopausal exclusive of years on estrogen treatment) were found to be more appropriate. With few exceptions, changes in a disease were of a similar order in both sexes. For bone minerals mass few mean z-scores were significantly increased, but diseases with significantly decreased mean z-scores were numerous. The usefulness of z-scores in diagnosis and study of metabolic bone disease is discussed. (orig.)

  7. Go/No Go task performance predicts cortical thickness in the caudal inferior frontal gyrus in young adults with and without ADHD.

    Science.gov (United States)

    Newman, Erik; Jernigan, Terry L; Lisdahl, Krista M; Tamm, Leanne; Tapert, Susan F; Potkin, Steven G; Mathalon, Daniel; Molina, Brooke; Bjork, James; Castellanos, F Xavier; Swanson, James; Kuperman, Joshua M; Bartsch, Hauke; Chen, Chi-Hua; Dale, Anders M; Epstein, Jeffery N; Group, Mta Neuroimaging

    2016-09-01

    Response inhibition deficits are widely believed to be at the core of Attention-Deficit Hyperactivity Disorder (ADHD). Several studies have examined neural architectural correlates of ADHD, but research directly examining structural correlates of response inhibition is lacking. Here we examine the relationship between response inhibition as measured by a Go/No Go task, and cortical surface area and thickness of the caudal inferior frontal gyrus (cIFG), a region implicated in functional imaging studies of response inhibition, in a sample of 114 young adults with and without ADHD diagnosed initially during childhood. We used multiple linear regression models to test the hypothesis that Go/No Go performance would be associated with cIFG surface area or thickness. Results showed that poorer Go/No Go performance was associated with thicker cIFG cortex, and this effect was not mediated by ADHD status or history of substance use. However, independent of Go/No Go performance, persistence of ADHD symptoms and more frequent cannabis use were associated with thinner cIFG. Go/No Go performance was not associated with cortical surface area. The association between poor inhibitory functioning and thicker cIFG suggests that maturation of this region may differ in low performing participants. An independent association of persistent ADHD symptoms and frequent cannabis use with thinner cIFG cortex suggests that distinct neural mechanisms within this region may play a role in inhibitory function, broader ADHD symptomatology, and cannabis use. These results contribute to Research Domain Criteria (RDoC) by revealing novel associations between neural architectural phenotypes and basic neurobehavioral processes measured dimensionally.

  8. The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements.

    Science.gov (United States)

    Gronenschild, Ed H B M; Habets, Petra; Jacobs, Heidi I L; Mengelers, Ron; Rozendaal, Nico; van Os, Jim; Marcelis, Machteld

    2012-01-01

    FreeSurfer is a popular software package to measure cortical thickness and volume of neuroanatomical structures. However, little if any is known about measurement reliability across various data processing conditions. Using a set of 30 anatomical T1-weighted 3T MRI scans, we investigated the effects of data processing variables such as FreeSurfer version (v4.3.1, v4.5.0, and v5.0.0), workstation (Macintosh and Hewlett-Packard), and Macintosh operating system version (OSX 10.5 and OSX 10.6). Significant differences were revealed between FreeSurfer version v5.0.0 and the two earlier versions. These differences were on average 8.8 ± 6.6% (range 1.3-64.0%) (volume) and 2.8 ± 1.3% (1.1-7.7%) (cortical thickness). About a factor two smaller differences were detected between Macintosh and Hewlett-Packard workstations and between OSX 10.5 and OSX 10.6. The observed differences are similar in magnitude as effect sizes reported in accuracy evaluations and neurodegenerative studies.The main conclusion is that in the context of an ongoing study, users are discouraged to update to a new major release of either FreeSurfer or operating system or to switch to a different type of workstation without repeating the analysis; results thus give a quantitative support to successive recommendations stated by FreeSurfer developers over the years. Moreover, in view of the large and significant cross-version differences, it is concluded that formal assessment of the accuracy of FreeSurfer is desirable.

  9. The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements.

    Directory of Open Access Journals (Sweden)

    Ed H B M Gronenschild

    Full Text Available FreeSurfer is a popular software package to measure cortical thickness and volume of neuroanatomical structures. However, little if any is known about measurement reliability across various data processing conditions. Using a set of 30 anatomical T1-weighted 3T MRI scans, we investigated the effects of data processing variables such as FreeSurfer version (v4.3.1, v4.5.0, and v5.0.0, workstation (Macintosh and Hewlett-Packard, and Macintosh operating system version (OSX 10.5 and OSX 10.6. Significant differences were revealed between FreeSurfer version v5.0.0 and the two earlier versions. These differences were on average 8.8 ± 6.6% (range 1.3-64.0% (volume and 2.8 ± 1.3% (1.1-7.7% (cortical thickness. About a factor two smaller differences were detected between Macintosh and Hewlett-Packard workstations and between OSX 10.5 and OSX 10.6. The observed differences are similar in magnitude as effect sizes reported in accuracy evaluations and neurodegenerative studies.The main conclusion is that in the context of an ongoing study, users are discouraged to update to a new major release of either FreeSurfer or operating system or to switch to a different type of workstation without repeating the analysis; results thus give a quantitative support to successive recommendations stated by FreeSurfer developers over the years. Moreover, in view of the large and significant cross-version differences, it is concluded that formal assessment of the accuracy of FreeSurfer is desirable.

  10. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  11. Restoring Proprioception via a Cortical Prosthesis: A Novel Learning-Based Approach

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0510 TITLE: Restoring Proprioception via a Cortical Prosthesis : A Novel Learning-Based Approach PRINCIPAL INVESTIGATOR...Proprioception via a Cortical Prosthesis : A Novel Learning-Based Approach 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Philip Sabes, PhD 5d...component of this lost sensation is proprioception, the feeling of where the body is in space. The importance of proprioception is often not appreciated

  12. Restoring Proprioception via a Cortical Prosthesis: A Novel Learning Based Approach

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0510 TITLE: Restoring Proprioception via a Cortical Prosthesis : A Novel Learning-Based Approach PRINCIPAL INVESTIGATOR...Sep 2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Restoring Proprioception via a Cortical Prosthesis : A Novel Learning-Based...the feeling of where the body is in space. The importance of proprioception is often not appreciated; without it, we are unable to move normally

  13. Compressive forces achieved in simulated equine third metacarpal bone lateral condylar fractures of varying fragment thickness with Acutrak Plus screw and 4.5 mm AO cortical screws.

    Science.gov (United States)

    Lewis, Andrew J; Sod, Gary A; Burba, Daniel J; Mitchell, Colin F

    2010-01-01

    To compare compression pressure (CP) of 6.5 mm Acutrak Plus (AP) and 4.5 mm AO cortical screws (AO) when inserted in simulated lateral condylar fractures of equine 3rd metacarpal (MC3) bones. Paired in vitro biomechanical testing. Cadaveric equine MC3 bones (n=12 pair). Complete lateral condylar osteotomies were created parallel to the midsagittal ridge at 20, 12, and 8 mm axial to the epicondylar fossa on different specimens grouped accordingly. Interfragmentary compression was measured using a pressure sensor placed in the fracture plane before screw placement for fracture fixation. CP was acquired and mean values of CP for each fixation method were compared between the 6.5 mm (AP) and 4.5 mm (AO) for each group using a paired t-test within each fracture fragment thickness group with statistical significance set at Pfractures, especially complete fractures. Because interfragmentary compression plays a factor in the overall stability of a repair, it is recommended for use only in patients with thin lateral condyle fracture fragments, as the compression tends to decrease with an increase in thickness.

  14. Correlations between measures of executive attention and cortical thickness of left posterior middle frontal gyrus - a dichotic listening study

    Directory of Open Access Journals (Sweden)

    Lundervold Arvid

    2009-10-01

    Full Text Available Abstract Background The frontal lobe has been associated to a wide range of cognitive control functions and is also vulnerable to degeneration in old age. A recent study by Thomsen and colleagues showed a difference between a young and old sample in grey matter density and activation in the left middle frontal cortex (MFC and performance on a dichotic listening task. The present study investigated this brain behaviour association within a sample of healthy older individuals, and predicted a positive correlation between performance in a condition requiring executive attention and measures of grey matter structure of the posterior left MFC. Methods A dichotic listening forced attention paradigm was used to measure attention control functions. Subjects were instructed to report only the left or the right ear syllable of a dichotically presented consonant-vowel syllable pair. A conflict situation appears when subjects are instructed to report the left ear stimulus, caused by the conflict with the bottom-up, stimulus-driven right ear advantage. Overcoming this processing conflict was used as a measure of executive attention. Thickness and volumes of frontal lobe regions were derived from automated segmentation of 3D magnetic resonance image acquisitions. Results The results revealed a statistically significant positive correlation between the thickness measure of the left posterior MFC and performance on the dichotic listening measures of executive attention. Follow-up analyses showed that this correlation was only statistically significant in the subgroup that showed the typical bottom-up, stimulus-driven right ear advantage. Conclusion The results suggest that the left MFC is a part of an executive attention network, and that the dichotic listening forced attention paradigm may be a feasible tool for assessing subtle attentional dysfunctions in older adults.

  15. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    Science.gov (United States)

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  16. Determination of the coating base thickness with beta backscattering gauges

    International Nuclear Information System (INIS)

    Krejndlin, I.I.; Novikov, V.S.; Pravikov, A.A.

    1976-01-01

    In using beta thickness meters for coating examination, it is necessary that the substrate thickness be greater or equal to the saturation thickness for which one can neglect a systematic error caused by substrate thickness variation. A formula is derived and nomograms are presented for the determination of the substrate saturation thickness with the account of factors affecting the results of coating thickness measurement. The results of saturation thickness calculation are tabulated for a number of substrate materials with using different β-sources ( 147 Pm, 85 Kr, 90 Sr+ 90 Y)

  17. Characterization of Kerfless Linear Arrays Based on PZT Thick Film.

    Science.gov (United States)

    Zawada, Tomasz; Bierregaard, Louise Moller; Ringgaard, Erling; Xu, Ruichao; Guizzetti, Michele; Levassort, Franck; Certon, Dominique

    2017-09-01

    Multielement transducers enabling novel cost-effective fabrication of imaging arrays for medical applications have been presented earlier. Due to the favorable low lateral coupling of the screen-printed PZT, the elements can be defined by the top electrode pattern only, leading to a kerfless design with low crosstalk between the elements. The thick-film-based linear arrays have proved to be compatible with a commercial ultrasonic scanner and to support linear array beamforming as well as phased array beamforming. The main objective of the presented work is to investigate the performance of the devices at the transducer level by extensive measurements of the test structures. The arrays have been characterized by several different measurement techniques. First, electrical impedance measurements on several elements in air and liquid have been conducted in order to support material parameter identification using the Krimholtz-Leedom-Matthaei model. It has been found that electromechanical coupling is at the level of 35%. The arrays have also been characterized by a pulse-echo system. The measured sensitivity is around -60 dB, and the fractional bandwidth is close to 60%, while the center frequency is about 12 MHz over the whole array. Finally, laser interferometry measurements have been conducted indicating very good displacement level as well as pressure. The in-depth characterization of the array structure has given insight into the performance parameters for the array based on PZT thick film, and the obtained information will be used to optimize the key parameters for the next generation of cost-effective arrays based on piezoelectric thick film.

  18. Tensor-based cortical surface morphometry via weighted spherical harmonic representation.

    Science.gov (United States)

    Chung, Moo K; Dalton, Kim M; Davidson, Richard J

    2008-08-01

    We present a new tensor-based morphometric framework that quantifies cortical shape variations using a local area element. The local area element is computed from the Riemannian metric tensors, which are obtained from the smooth functional parametrization of a cortical mesh. For the smooth parametrization, we have developed a novel weighted spherical harmonic (SPHARM) representation, which generalizes the traditional SPHARM as a special case. For a specific choice of weights, the weighted-SPHARM is shown to be the least squares approximation to the solution of an isotropic heat diffusion on a unit sphere. The main aims of this paper are to present the weighted-SPHARM and to show how it can be used in the tensor-based morphometry. As an illustration, the methodology has been applied in the problem of detecting abnormal cortical regions in the group of high functioning autistic subjects.

  19. Aqueous-based thick photoresist removal for bumping applications

    Science.gov (United States)

    Moore, John C.; Brewer, Alex J.; Law, Alman; Pettit, Jared M.

    2015-03-01

    Cleaning processes account for over 25% of processing in microelectronic manufacturing [1], suggesting electronics to be one of the most chemical intensive markets in commerce. Industry roadmaps exist to reduce chemical exposure, usage, and waste [2]. Companies are encouraged to create a safer working environment, or green factory, and ultimately become certified similar to LEED in the building industry [3]. A significant step in this direction is the integration of aqueous-based photoresist (PR) strippers which eliminate regulatory risks and cut costs by over 50%. One of the largest organic solvent usages is based upon thick PR removal during bumping processes [4-6]. Using market projections and the benefits of recycling, it is estimated that over 1,000 metric tons (mt) of residuals originating from bumping processes are incinerated or sent to a landfill. Aqueous-based stripping would eliminate this disposal while also reducing the daily risks to workers and added permitting costs. Positive-tone PR dissolves in aqueous strippers while negative-tone systems are lifted-off from the substrate, bumps, pillars, and redistribution layers (RDL). While the wafers are further processed and rinsed, the lifted-off PR is pumped from the tank, collected onto a filter, and periodically back-flushed to the trash. The PR solids become a non-hazardous plastic waste while the liquids are mixed with the developer stream, neutralized, filtered, and in most cases, disposed to the sewer. Regardless of PR thickness, removal processes may be tuned to perform in <15min, performing at rates nearly 10X faster than solvents with higher bath lives. A balanced formula is safe for metals, dielectrics, and may be customized to any fab.

  20. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous–unemotional traits

    Directory of Open Access Journals (Sweden)

    Graeme Fairchild

    2015-01-01

    Conclusions: Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and adolescence-onset forms of CD.

  1. Group analyses of connectivity-based cortical parcellation using repeated k-means clustering

    NARCIS (Netherlands)

    Nanetti, Luca; Cerliani, Leonardo; Gazzola, Valeria; Renken, Remco; Keysers, Christian

    2009-01-01

    K-means clustering has become a popular tool for connectivity-based cortical segmentation using Diffusion Weighted Imaging (DWI) data. A sometimes ignored issue is, however, that the output of the algorithm depends on the initial placement of starting points, and that different sets of starting

  2. GLERL Great Lakes Ice Thickness Data Base, 1966-1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the winters of 1965/66 through 1976/77, NOAA/Great Lakes Environmental Research Laboratory (GLERL) collected weekly ice thickness and stratigraphy data at up...

  3. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers

    DEFF Research Database (Denmark)

    Eskildsen, Simon F; Østergaard, Lasse R; Rodell, Anders B

    2008-01-01

    with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy...... in the frontal and occipital lobes, and in the left temporal lobe. Results indicated that cortical thickness has a higher sensitivity for detecting small changes than whole-brain volumetric measures. Comparing mutation carriers with non-carriers revealed increased atrophy rates in mutation carriers bilaterally...

  4. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  5. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  6. Accommodating Thickness in Origami-Based Deployable Arrays

    Science.gov (United States)

    Zirbel, Shannon A.; Magleby, Spencer P.; Howell, Larry L.; Lang, Robert J.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Trease, Brian P.

    2013-01-01

    The purpose of this work is to create deployment systems with a large ratio of stowed-to-deployed diameter. Deployment from a compact form to a final flat state can be achieved through origami-inspired folding of panels. There are many models capable of this motion when folded in a material with negligible thickness; however, when the application requires the folding of thick, rigid panels, attention must be paid to the effect of material thickness not only on the final folded state, but also during the folding motion (i.e., the panels must not be required to flex to attain the final folded form). The objective is to develop new methods for deployment from a compact folded form to a large circular array (or other final form). This paper describes a mathematical model for modifying the pattern to accommodate material thickness in the context of the design, modeling, and testing of a deployable system inspired by an origami six-sided flasher model. The model is demonstrated in hardware as a 1/20th scale prototype of a deployable solar array for space applications. The resulting prototype has a ratio of stowed-to-deployed diameter of 9.2 (or 1.25 m deployed outer diameter to 0.136 m stowed outer diameter).

  7. Screen printed thick film based pMUT arrays

    DEFF Research Database (Denmark)

    Hedegaard, Tobias; Pedersen, T; Thomsen, Erik Vilain

    2008-01-01

    This article reports on the fabrication and characterization of lambda-pitched piezoelectric micromachined ultrasound transducer (pMUT) arrays fabricated using a unique process combining conventional silicon technology and low cost screen printing of thick film PZT. The pMUTs are designed as 8...

  8. A synergy-based hand control is encoded in human motor cortical areas

    Science.gov (United States)

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  9. Selection of independent components based on cortical mapping of electromagnetic activity

    Science.gov (United States)

    Chan, Hui-Ling; Chen, Yong-Sheng; Chen, Li-Fen

    2012-10-01

    Independent component analysis (ICA) has been widely used to attenuate interference caused by noise components from the electromagnetic recordings of brain activity. However, the scalp topographies and associated temporal waveforms provided by ICA may be insufficient to distinguish functional components from artifactual ones. In this work, we proposed two component selection methods, both of which first estimate the cortical distribution of the brain activity for each component, and then determine the functional components based on the parcellation of brain activity mapped onto the cortical surface. Among all independent components, the first method can identify the dominant components, which have strong activity in the selected dominant brain regions, whereas the second method can identify those inter-regional associating components, which have similar component spectra between a pair of regions. For a targeted region, its component spectrum enumerates the amplitudes of its parceled brain activity across all components. The selected functional components can be remixed to reconstruct the focused electromagnetic signals for further analysis, such as source estimation. Moreover, the inter-regional associating components can be used to estimate the functional brain network. The accuracy of the cortical activation estimation was evaluated on the data from simulation studies, whereas the usefulness and feasibility of the component selection methods were demonstrated on the magnetoencephalography data recorded from a gender discrimination study.

  10. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    in vivo, the relationship between radial SOS and cortical porosity can be utilized and a porosity based radial SOS estimate could be implemented to determine cortical thickness. This would constitute a step toward individualized quantitative ultrasound diagnostics of osteoporosis.

  11. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    International Nuclear Information System (INIS)

    Eneh, C. T. M.; Töyräs, J.; Jurvelin, J. S.; Malo, M. K. H.; Liukkonen, J.; Karjalainen, J. P.

    2016-01-01

    , the relationship between radial SOS and cortical porosity can be utilized and a porosity based radial SOS estimate could be implemented to determine cortical thickness. This would constitute a step toward individualized quantitative ultrasound diagnostics of osteoporosis.

  12. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters

    International Nuclear Information System (INIS)

    Prevrhal, S.; Engelke, K.; Kalender, W.A.

    1999-01-01

    In this study we analysed the accuracy of computed tomography (CT) measurements in assessing cortical bone. We determined the dependency of thickness and density measurements on the true width and density of the cortex and on the spatial resolution in the CT images using two optimized segmentation methods. As a secondary goal, we assessed the ability of CT to reflect small changes in cortical thickness. Two different bone-mimicking phantoms with varying cortical thickness were scanned with single-slice CT on a Somatom Plus 4 scanner. Images were reconstructed with both a standard and a high-resolution convolution kernel. Two special operator-independent segmentation methods were used to automatically detect the edges of the cortical shell. We measured cortical thickness and density and compared the phantom measurements with theoretical computations by simulating a cross-sectional shape of the cortical shell. Based on the simulations, we calculated CT's power to detect small changes in cortical thickness. Simulations and phantom measurements were in very good agreement. Cortical thickness could be measured with an error of less than 10% if the true thickness was larger than 0.9 (0.7) mm for the standard (high-resolution) kernel which is close to the full width at half maximum (FWHM) of the point spread functions for these kernels and our scanner. Density measurements yielded errors of less than 10% for true cortical thickness values above two to three times the FWHM corresponding to 2.5 (2) mm in our case. The simulations showed that a 10% change in cortical width would not be detected with satisfying probability in bones with a cortical shell thinner than 1.2 mm. An accurate determination of the cortical thickness is limited to bones with a thickness higher than the FWHM of the scanner's point spread function. Therefore, the use of a high-resolution reconstruction kernel is crucial. Cortical bone mineral density can only be measured accurately in bones two to three

  13. Different cortical mechanisms for spatial vs. feature-based attentional selection in visual working memory

    Directory of Open Access Journals (Sweden)

    Anna Heuer

    2016-08-01

    Full Text Available The limited capacity of visual working memory necessitates attentional mechanisms that selectively update and maintain only the most task-relevant content. Psychophysical experiments have shown that the retroactive selection of memory content can be based on visual properties such as location or shape, but the neural basis for such differential selection is unknown. For example, it is not known if there are different cortical modules specialized for spatial versus feature-based mnemonic attention, in the same way that has been demonstrated for attention to perceptual input. Here, we used transcranial magnetic stimulation (TMS to identify areas in human parietal and occipital cortex involved in the selection of objects from memory based on cues to their location (spatial information or their shape (featural information. We found that TMS over the supramarginal gyrus (SMG selectively facilitated spatial selection, whereas TMS over the lateral occipital cortex selectively enhanced feature-based selection for remembered objects in the contralateral visual field. Thus, different cortical regions are responsible for spatial vs. feature-based selection of working memory representations. Since the same regions are involved in attention to external events, these new findings indicate overlapping mechanisms for attentional control over perceptual input and mnemonic representations.

  14. Experimental Comparison of the Behavior between Base Oil and Grease Starvation Based on Inlet Film Thickness

    Directory of Open Access Journals (Sweden)

    D. Kostal

    2017-03-01

    Full Text Available This paper deals with the experimental study of an elastohydrodynamic contact under conditions of insufficient lubricant supply. Starvation level of this type of the contact may be experimentally determined based on the position of the meniscus, but this way can't determine all levels of starvation. Consequent development in the field of tribology achieved theoretical model that can determine all levels of starvation by dependency on the thickness of the lubricant film entering the contact, but it is difficult for experimental verification. The main goal of this work is an experimental study and description of the behavior of the elastohydrodynamic contact with controlled thickness of the lubricant film at the contact input. Contact was lubricated by the base oil and the grease and compared. Results were surprising because the only differences between oil and grease were observed for more viscous lubricants at thicker film layer entering to the contact.

  15. Quantitative materials analysis of micro devices using absorption-based thickness measurements

    International Nuclear Information System (INIS)

    Sim, L M; Wog, B S; Spowage, A C

    2006-01-01

    Preliminary work in designing an X-ray inspection machine with the capability of providing quantitative thickness analysis based on absorption measurements has been demonstrated. This study attempts to use the gray levels data to investigate the nature and thickness of occluded features and materials within devices. The investigation focused on metallic materials essential to semiconductor and MEMS technologies such as tin, aluminium, copper, silver, iron and zinc. The materials were arranged to simulate different feature thicknesses and sample geometries. The X-ray parameters were varied in-order to modify the X-ray energy spectrum with the aim of optimising the measurement conditions for each sample. The capability of the method to resolve differences in thicknesses was found to be highly dependent on the material. The thickness resolution with aluminium was the poorest due to its low radiographic density. The thickness resolutions achievable for silver and tin were significantly better and of the order of 0.015 mm and 0.025 mm respectively. From the linear relationship between the X-ray attenuation and sample thickness established, the energy dependent linear attenuation coefficient for each material was determined for a series of specific energy spectra. A decrease in the linear attenuation coefficient was observed as the applied voltage and thickness of the material increased. The results provide a platform for the development of a novel absorption-based thickness measurement system that can be optimised for a range of industrial applications

  16. Film-thickness and composition dependence of epitaxial thin-film PZT-based

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Dekkers, Jan M.; Vu, Hung Ngoc; Rijnders, Augustinus J.H.M.

    2013-01-01

    The transverse piezoelectric coefficient e31,f and mass-sensitivity were measured on piezoelectric cantilevers based on epitaxial PZT thin-films with film-thicknesses ranging from 100 to 2000 nm. The highest values of e31,f and mass-sensitivity were observed at a film thickness of 500–750 nm, while

  17. A New Rat Model of Epileptic Spasms Based on Methylazoxymethanol-Induced Malformations of Cortical Development

    Directory of Open Access Journals (Sweden)

    Eun-Hee Kim

    2017-06-01

    Full Text Available Malformations of cortical development (MCDs can cause medically intractable epilepsies and cognitive disabilities in children. We developed a new model of MCD-associated epileptic spasms by treating rats prenatally with methylazoxymethanol acetate (MAM to induce cortical malformations and postnatally with N-methyl-d-aspartate (NMDA to induce spasms. To produce cortical malformations to infant rats, two dosages of MAM (15 mg/kg, intraperitoneally were injected to pregnant rats at gestational day 15. In prenatally MAM-exposed rats and the controls, spasms were triggered by single (6 mg/kg on postnatal day 12 (P12 or 10 mg/kg on P13 or 15 mg/kg on P15 or multiple doses (P12, P13, and P15 of NMDA. In prenatally MAM-exposed rats with single NMDA-provoked spasms at P15, we obtain the intracranial electroencephalography and examine the pretreatment response to adrenocorticotropic hormone (ACTH or vigabatrin. Rat pups prenatally exposed to MAM exhibited a significantly greater number of spasms in response to single and multiple postnatal NMDA doses than vehicle-exposed controls. Vigabatrin treatment prior to a single NMDA dose on P15 significantly suppressed spasms in MAM group rats (p < 0.05, while ACTH did not. The MAM group also showed significantly higher fast oscillation (25–100 Hz power during NMDA-induced spasms than controls (p = 0.047. This new model of MCD-based epileptic spasms with corresponding features of human spasms will be valuable for future research of the developmental epilepsy.

  18. Group analyses of connectivity-based cortical parcellation using repeated k-means clustering.

    Science.gov (United States)

    Nanetti, Luca; Cerliani, Leonardo; Gazzola, Valeria; Renken, Remco; Keysers, Christian

    2009-10-01

    K-means clustering has become a popular tool for connectivity-based cortical segmentation using Diffusion Weighted Imaging (DWI) data. A sometimes ignored issue is, however, that the output of the algorithm depends on the initial placement of starting points, and that different sets of starting points therefore could lead to different solutions. In this study we explore this issue. We apply k-means clustering a thousand times to the same DWI dataset collected in 10 individuals to segment two brain regions: the SMA-preSMA on the medial wall, and the insula. At the level of single subjects, we found that in both brain regions, repeatedly applying k-means indeed often leads to a variety of rather different cortical based parcellations. By assessing the similarity and frequency of these different solutions, we show that approximately 256 k-means repetitions are needed to accurately estimate the distribution of possible solutions. Using nonparametric group statistics, we then propose a method to employ the variability of clustering solutions to assess the reliability with which certain voxels can be attributed to a particular cluster. In addition, we show that the proportion of voxels that can be attributed significantly to either cluster in the SMA and preSMA is relatively higher than in the insula and discuss how this difference may relate to differences in the anatomy of these regions.

  19. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  20. Estimation of skull table thickness with clinical CT and validation with microCT.

    Science.gov (United States)

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.

  1. High-performance piezoelectric thick film based energy harvesting micro-generators for MEMS

    DEFF Research Database (Denmark)

    Zawada, Tomasz; Hansen, Karsten; Lou-Moeller, Rasmus

    2010-01-01

    and are transformed by the energy harvesting micro-generator into usable electrical signal. The micro-generator comprises a silicon cantilever with integrated InSensor® TF2100 PZT thick film deposited using screen-printing. The output power versus frequency and electrical load has been investigated. Furthermore......, devices based on modified, pressure treated thick film materials have been tested and compared with the commercial InSensor® TF2100 PZT thick films. It has been found that the structures based on the pressure treated materials exhibit superior properties in terms of energy output....

  2. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images

    Science.gov (United States)

    Zhang, Xuming; Li, Liu; Zhu, Fei; Hou, Wenguang; Chen, Xinjian

    2014-06-01

    Optical coherence tomography (OCT) images are usually degraded by significant speckle noise, which will strongly hamper their quantitative analysis. However, speckle noise reduction in OCT images is particularly challenging because of the difficulty in differentiating between noise and the information components of the speckle pattern. To address this problem, the spiking cortical model (SCM)-based nonlocal means method is presented. The proposed method explores self-similarities of OCT images based on rotation-invariant features of image patches extracted by SCM and then restores the speckled images by averaging the similar patches. This method can provide sufficient speckle reduction while preserving image details very well due to its effectiveness in finding reliable similar patches under high speckle noise contamination. When applied to the retinal OCT image, this method provides signal-to-noise ratio improvements of >16 dB with a small 5.4% loss of similarity.

  3. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    Science.gov (United States)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  4. Thick-film textile-based amperometric sensors and biosensors.

    Science.gov (United States)

    Yang, Yang-Li; Chuang, Min-Chieh; Lou, Shyh-Liang; Wang, Joseph

    2010-06-01

    The incorporation of amperometric sensors into clothing through direct screen-printing onto the textile substrate is described. Particular attention is given to electrochemical sensors printed directly on the elastic waist of underwear that offers tight direct contact with the skin. The textile-based printed carbon electrodes have a well-defined appearance with relatively smooth conductor edges and no apparent defects or cracks. Convenient voltammetric and chronoamperometric measurements of 0-3 mM ferrocyanide, 0-25 mM hydrogen peroxide, and 0-100 muM NADH have been documented. The favorable electrochemical behavior is maintained under folding or stretching stress, relevant to the deformation of clothing. The electrochemical performance and tolerance to mechanical stress are influenced by the physical characteristics of the textile substrate. The results indicate the potential of textile-based screen-printed amperometric sensors for future healthcare, sport or military applications. Such future applications would benefit from tailoring the ink composition and printing conditions to meet the specific requirements of the textile substrate.

  5. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Jae Hong; Roh, Jee Hoon [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-11-15

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  6. Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing.

    Science.gov (United States)

    Rekik, Islem; Li, Gang; Lin, Weili; Shen, Dinggang

    2016-02-01

    Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our

  7. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery

    Science.gov (United States)

    Toppi, J.; Risetti, M.; Quitadamo, L. R.; Petti, M.; Bianchi, L.; Salinari, S.; Babiloni, F.; Cincotti, F.; Mattia, D.; Astolfi, L.

    2014-06-01

    Objective. It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Approach. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Main results. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. Significance. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.

  8. Development of design method of thick rubber bearings for three-dimensional base isolation

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Matuda, Akihiro

    2000-01-01

    Thick rubber bearings as 3-dimensional base isolators have been developed to reduce both horizontal and vertical seismic loads especially for equipment in Fast Breeder Reactors. In this report, a design method of thick rubber bearings is presented. To consider nonlinearity of vertical stiffness affected by vertical stress in the design of thick rubber bearings, Lindley's evaluation method of vertical stiffness is modified as an explicit form of vertical stress. We confirm that the presented method is efficient for design of the thick rubber bearings from comparing between test results and predicted values. Furthermore, rubber bearing tests are conducted with 1/3 scale models to evaluate mechanical properties of thick rubber bearings including ultimate limits. In the tests, horizontal and vertical characteristics of 1/3 scale model are compared with those of 1/6 scale model to discuss scale effect of test specimen. Ultimate limits such as failure shear strain of thick rubber bearings are obtained under various loading conditions. From the test results, we confirm that full scale thick rubber bearing to satisfy requirements is feasible. (author)

  9. Multi-dimensional modulations of alpha and gamma cortical dynamics following mindfulness-based cognitive therapy in Major Depressive Disorder

    NARCIS (Netherlands)

    Schoenberg, P.L.; Speckens, A.E.M.

    2015-01-01

    To illuminate candidate neural working mechanisms of Mindfulness-Based Cognitive Therapy (MBCT) in the treatment of recurrent depressive disorder, parallel to the potential interplays between modulations in electro-cortical dynamics and depressive symptom severity and self-compassionate experience.

  10. Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data

    Science.gov (United States)

    Gu, Yameng; Zhang, Xuming

    2017-05-01

    Optical coherence tomography (OCT) images are severely degraded by speckle noise. Existing methods for despeckling multiframe OCT data cannot deliver sufficient speckle suppression while preserving image details well. To address this problem, the spiking cortical model (SCM) based non-local means (NLM) method has been proposed in this letter. In the proposed method, the considered frame and two neighboring frames are input into three SCMs to generate the temporal series of pulse outputs. The normalized moment of inertia (NMI) of the considered patches in the pulse outputs is extracted to represent the rotational and scaling invariant features of the corresponding patches in each frame. The pixel similarity is computed based on the Euclidean distance between the NMI features and used as the weight. Each pixel in the considered frame is restored by the weighted averaging of all pixels in the pre-defined search window in the three frames. Experiments on the real multiframe OCT data of the pig eye demonstrate the advantage of the proposed method over the frame averaging method, the multiscale sparsity based tomographic denoising method, the wavelet-based method and the traditional NLM method in terms of visual inspection and objective metrics such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), equivalent number of looks (ENL) and cross-correlation (XCOR).

  11. The development of PC-based real time ultrasonic metal thickness inspection system

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohd Hanif Md Saad; Mohamad Pauzi Ismail; Ab Razak Hamzah; Abd Nassir Ibrahim; Amri Amin Abas

    2006-01-01

    This paper discusses the development of a PC-Based Real Time Ultrasonic Thickness Measurement system (UTMS) for metallic components such as pipes, pressure vessels and metal slabs. Metal thickness measurement for these components is crucial in industrial plants with dangerous environment, such as in oil and gas industry. From the measured metal thickness, a number of deductions could be made, for example the state and the rate of corrosion propagation inside a pipe or pressure vessel, etc. One of the most widely used methods in assessing metal thickness in industry is through the use of Ultrasonic technology. The benefits of using UTMS lies in the flexibility of data analysis, which includes signal processing, feature extraction, visualization capability and intelligent diagnosis. Data can be acquired in real-time and stored for future usage and application. The system was developed as a standalone computer software using Microsoft Visual-BASIC 6. (Author)

  12. Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data

    Science.gov (United States)

    Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang

    2017-10-01

    Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.

  13. Groupwise connectivity-based parcellation of the whole human cortical surface using watershed-driven dimension reduction.

    Science.gov (United States)

    Lefranc, Sandrine; Roca, Pauline; Perrot, Matthieu; Poupon, Cyril; Le Bihan, Denis; Mangin, Jean-François; Rivière, Denis

    2016-05-01

    Segregating the human cortex into distinct areas based on structural connectivity criteria is of widespread interest in neuroscience. This paper presents a groupwise connectivity-based parcellation framework for the whole cortical surface using a new high quality diffusion dataset of 79 healthy subjects. Our approach performs gyrus by gyrus to parcellate the whole human cortex. The main originality of the method is to compress for each gyrus the connectivity profiles used for the clustering without any anatomical prior information. This step takes into account the interindividual cortical and connectivity variability. To this end, we consider intersubject high density connectivity areas extracted using a surface-based watershed algorithm. A wide validation study has led to a fully automatic pipeline which is robust to variations in data preprocessing (tracking type, cortical mesh characteristics and boundaries of initial gyri), data characteristics (including number of subjects), and the main algorithmic parameters. A remarkable reproducibility is achieved in parcellation results for the whole cortex, leading to clear and stable cortical patterns. This reproducibility has been tested across non-overlapping subgroups and the validation is presented mainly on the pre- and postcentral gyri. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Ceramic thick film humidity sensor based on MgTiO3 + LiF

    International Nuclear Information System (INIS)

    Kassas, Ahmad; Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand; Lakiss, Hassan; Hamieh, Tayssir

    2013-01-01

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO 3 + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO 3 /LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time

  15. Ceramic thick film humidity sensor based on MgTiO{sub 3} + LiF

    Energy Technology Data Exchange (ETDEWEB)

    Kassas, Ahmad, E-mail: a.kassas.mcema@ul.edu.lb [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand [Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Lakiss, Hassan [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Faculty of Engineering, Section III, Hariri Campus, Hadath, Beirut (Lebanon); Hamieh, Tayssir [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon)

    2013-10-15

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO{sub 3} + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO{sub 3}/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time.

  16. Study of Individual Characteristic Abdominal Wall Thickness Based on Magnetic Anchored Surgical Instruments

    Directory of Open Access Journals (Sweden)

    Ding-Hui Dong

    2015-01-01

    Full Text Available Background: Magnetic anchored surgical instruments (MASI, relying on magnetic force, can break through the limitations of the single port approach in dexterity. Individual characteristic abdominal wall thickness (ICAWT deeply influences magnetic force that determines the safety of MASI. The purpose of this study was to research the abdominal wall characteristics in MASI applied environment to find ICAWT, and then construct an artful method to predict ICAWT, resulting in better safety and feasibility for MASI. Methods: For MASI, ICAWT is referred to the thickness of thickest point in the applied environment. We determined ICAWT through finding the thickest point in computed tomography scans. We also investigated the traits of abdominal wall thickness to discover the factor that can be used to predict ICAWT. Results: Abdominal wall at C point in the middle third lumbar vertebra plane (L3 is the thickest during chosen points. Fat layer thickness plays a more important role in abdominal wall thickness than muscle layer thickness. "BMI-ICAWT" curve was obtained based on abdominal wall thickness of C point in L3 plane, and the expression was as follow: f(x = P1 × x 2 + P2 × x + P3, where P1 = 0.03916 (0.01776, 0.06056, P2 = 1.098 (0.03197, 2.164, P3 = −18.52 (−31.64, −5.412, R-square: 0.99. Conclusions: Abdominal wall thickness of C point at L3 could be regarded as ICAWT. BMI could be a reliable predictor of ICAWT. In the light of "BMI-ICAWT" curve, we may conveniently predict ICAWT by BMI, resulting a better safety and feasibility for MASI.

  17. Automated CBED processing: Sample thickness estimation based on analysis of zone-axis CBED pattern

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, M., E-mail: klinger@post.cz; Němec, M.; Polívka, L.; Gärtnerová, V.; Jäger, A.

    2015-03-15

    An automated processing of convergent beam electron diffraction (CBED) patterns is presented. The proposed methods are used in an automated tool for estimating the thickness of transmission electron microscopy (TEM) samples by matching an experimental zone-axis CBED pattern with a series of patterns simulated for known thicknesses. The proposed tool detects CBED disks, localizes a pattern in detected disks and unifies the coordinate system of the experimental pattern with the simulated one. The experimental pattern is then compared disk-by-disk with a series of simulated patterns each corresponding to different known thicknesses. The thickness of the most similar simulated pattern is then taken as the thickness estimate. The tool was tested on [0 1 1] Si, [0 1 0] α-Ti and [0 1 1] α-Ti samples prepared using different techniques. Results of the presented approach were compared with thickness estimates based on analysis of CBED patterns in two beam conditions. The mean difference between these two methods was 4.1% for the FIB-prepared silicon samples, 5.2% for the electro-chemically polished titanium and 7.9% for Ar{sup +} ion-polished titanium. The proposed techniques can also be employed in other established CBED analyses. Apart from the thickness estimation, it can potentially be used to quantify lattice deformation, structure factors, symmetry, defects or extinction distance. - Highlights: • Automated TEM sample thickness estimation using zone-axis CBED is presented. • Computer vision and artificial intelligence are employed in CBED processing. • This approach reduces operator effort, analysis time and increases repeatability. • Individual parts can be employed in other analyses of CBED/diffraction pattern.

  18. Using optical remote sensing model to estimate oil slick thickness based on satellite image

    International Nuclear Information System (INIS)

    Lu, Y C; Tian, Q J; Lyu, C G; Fu, W X; Han, W C

    2014-01-01

    An optical remote sensing model has been established based on two-beam interference theory to estimate marine oil slick thickness. Extinction coefficient and normalized reflectance of oil are two important parts in this model. Extinction coefficient is an important inherent optical property and will not vary with the background reflectance changed. Normalized reflectance can be used to eliminate the background differences between in situ measured spectra and remotely sensing image. Therefore, marine oil slick thickness and area can be estimated and mapped based on optical remotely sensing image and extinction coefficient

  19. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  20. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    Directory of Open Access Journals (Sweden)

    Jessica F. Rose

    2016-01-01

    Full Text Available Background. While the benefits of using acellular dermal matrices (ADMs in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p<0.0001 and seroma and prolonged JP drainage (p=0.0004; radiated reconstructed breasts were more likely to suffer infections (p=0.0085, and elevated BMI is a significant predictor for increased infection rate (p=0.0037. Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information.

  1. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    International Nuclear Information System (INIS)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-01-01

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO 2 in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO 2 layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices

  2. Bicarbonate sensing in mouse cortical astrocytes during extracellular acid/base disturbances

    Science.gov (United States)

    Naoshin, Zinnia; Defren, Sabrina; Schmaelzle, Jana; Weber, Tobias; Schneider, Hans‐Peter

    2017-01-01

    Key points The present study suggests that the electrogenic sodium–bicarbonate cotransporter, NBCe1, supported by carbonic anhydrase II, CAII, provides an efficient mechanism of bicarbonate sensing in cortical astrocytes. This mechanism is proposed to play a major role in setting the pHi responses to extracellular acid/base challenges in astrocytes.A decrease in extracellular [HCO3 −] during isocapnic acidosis and isohydric hypocapnia, or an increase in intracellular [HCO3 −] during hypercapnic acidosis, was effectively sensed by NBCe1, which carried bicarbonate out of the cells under these conditions, and caused an acidification and sodium fall in WT astrocytes, but not in NBCe1‐knockout astrocytes.Isocapnic acidosis, hypercapnic acidosis and isohydric hypocapnia evoked inward currents in NBCe1‐ and CAII‐expressing Xenopus laevis oocytes, but not in native oocytes, suggesting that NBCe1 operates in the outwardly directed mode under these conditions consistent with our findings in astrocytes.We propose that bicarbonate sensing of astrocytes may have functional significance during extracellular acid/base disturbances in the brain, as it not only alters intracellular pH/[HCO3 −]‐dependent functions of astrocytes, but also modulates the extracellular pH/[HCO3 −] in brain tissue. Abstract Extracellular acid/base status of the mammalian brain undergoes dynamic changes during many physiological and pathological events. Although intracellular pH (pHi) of astrocytes responds to extracellular acid/base changes, the mechanisms mediating these changes have remained unresolved. We have previously shown that the electrogenic sodium–bicarbonate cotransporter, NBCe1, is a high‐affinity bicarbonate carrier in cortical astrocytes. In the present study, we investigated whether NBCe1 plays a role in bicarbonate sensing in astrocytes, and in determining the pHi responses to extracellular acid/base challenges. We measured changes in intracellular H+ and Na+ in

  3. Cortical thinning in cognitively normal elderly cohort of 60 to 89 year old from AIBL database and vulnerable brain areas

    Science.gov (United States)

    Lin, Zhongmin S.; Avinash, Gopal; Yan, Litao; McMillan, Kathryn

    2014-03-01

    Age-related cortical thinning has been studied by many researchers using quantitative MR images for the past three decades and vastly differing results have been reported. Although results have shown age-related cortical thickening in elderly cohort statistically in some brain regions under certain conditions, cortical thinning in elderly cohort requires further systematic investigation. This paper leverages our previously reported brain surface intensity model (BSIM)1 based technique to measure cortical thickness to study cortical changes due to normal aging. We measured cortical thickness of cognitively normal persons from 60 to 89 years old using Australian Imaging Biomarkers and Lifestyle Study (AIBL) data. MRI brains of 56 healthy people including 29 women and 27 men were selected. We measured average cortical thickness of each individual in eight brain regions: parietal, frontal, temporal, occipital, visual, sensory motor, medial frontal and medial parietal. Unlike the previous published studies, our results showed consistent age-related thinning of cerebral cortex in all brain regions. The parietal, medial frontal and medial parietal showed fastest thinning rates of 0.14, 0.12 and 0.10 mm/decade respectively while the visual region showed the slowest thinning rate of 0.05 mm/decade. In sensorimotor and parietal areas, women showed higher thinning (0.09 and 0.16 mm/decade) than men while in all other regions men showed higher thinning than women. We also created high resolution cortical thinning rate maps of the cohort and compared them to typical patterns of PET metabolic reduction of moderate AD and frontotemporal dementia (FTD). The results seemed to indicate vulnerable areas of cortical deterioration that may lead to brain dementia. These results validate our cortical thickness measurement technique by demonstrating the consistency of the cortical thinning and prediction of cortical deterioration trend with AIBL database.

  4. Electrical properties of thick-layer piezo resistors based on Bi2Ru2O7

    International Nuclear Information System (INIS)

    Golonka, L.; Tankiewicz, S.

    1997-01-01

    Piezoelectric effect and electrical properties of thick-layer resistors based on Bi 2 Ru 2 O 7 (on ceramic substrate) have been studied. The influence of selected technological parameters (sintering temperature, chemical composition, heat treatment) on system properties has been estimated. 4 refs, 7 figs

  5. Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Borregaard, Louise M.

    2012-01-01

    This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...

  6. Thickness optimization of the ZnO based TCO layer in a CZTSSe solar cell. Evolution of its performance with thickness when external temperature changes.

    Science.gov (United States)

    Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene

    2017-07-01

    The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.

  7. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    International Nuclear Information System (INIS)

    Vakiv, M; Hadzaman, I; Klym, H; Shpotyuk, O; Brunner, M

    2011-01-01

    Temperature sensitive thick films based on spinel-type NiMn 2 O 4 -CuMn 2 O 4 -MnCo 2 O 4 manganites with p- and p + -types of electrical conductivity and their multilayer p + -p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p + -conductive films. Some part of the p + -p structures were of high stability, the relative electrical drift being no more than 1 %.

  8. Thickness and clearance visualization based on distance field of 3D objects

    Directory of Open Access Journals (Sweden)

    Masatomo Inui

    2015-07-01

    Full Text Available This paper proposes a novel method for visualizing the thickness and clearance of 3D objects in a polyhedral representation. The proposed method uses the distance field of the objects in the visualization. A parallel algorithm is developed for constructing the distance field of polyhedral objects using the GPU. The distance between a voxel and the surface polygons of the model is computed many times in the distance field construction. Similar sets of polygons are usually selected as close polygons for close voxels. By using this spatial coherence, a parallel algorithm is designed to compute the distances between a cluster of close voxels and the polygons selected by the culling operation so that the fast shared memory mechanism of the GPU can be fully utilized. The thickness/clearance of the objects is visualized by distributing points on the visible surfaces of the objects and painting them with a unique color corresponding to the thickness/clearance values at those points. A modified ray casting method is developed for computing the thickness/clearance using the distance field of the objects. A system based on these algorithms can compute the distance field of complex objects within a few minutes for most cases. After the distance field construction, thickness/clearance visualization at a near interactive rate is achieved.

  9. A method of detection to the grinding wheel layer thickness based on computer vision

    Science.gov (United States)

    Ji, Yuchen; Fu, Luhua; Yang, Dujuan; Wang, Lei; Liu, Changjie; Wang, Zhong

    2018-01-01

    This paper proposed a method of detection to the grinding wheel layer thickness based on computer vision. A camera is used to capture images of grinding wheel layer on the whole circle. Forward lighting and back lighting are used to enables a clear image to be acquired. Image processing is then executed on the images captured, which consists of image preprocessing, binarization and subpixel subdivision. The aim of binarization is to help the location of a chord and the corresponding ring width. After subpixel subdivision, the thickness of the grinding layer can be calculated finally. Compared with methods usually used to detect grinding wheel wear, method in this paper can directly and quickly get the information of thickness. Also, the eccentric error and the error of pixel equivalent are discussed in this paper.

  10. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  11. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage...... yield of 98%. The robust fabrication process allowed a high pressure treatment of the screen printed PZT thick films prior to sintering. The high pressure treatment improved the PZT thick film performance and increased the harvester power output to 37.1 μW at 1 g root mean square acceleration. We also...... characterize the harvester performance when only one of the PZT layers is used while the other is left open or short circuit....

  12. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Lopez, S; Vigueras-Santiago, E [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA) Facultad de Quimica, Paseo Colon Esquina con Paseo Tollocan, s/n, CP 50000, Toluca (Mexico); Mayorga-Rojas, M; Reyes-Contreras, D, E-mail: eviguerass@uaemex.m [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. Av. Instituto Literario 100 Ote. C. P. 50000, Toluca (Mexico)

    2009-05-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30{mu}m, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T{sub g} of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T{sub g}, producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 mu m thickness sample the hysteresis loop was lost after four cycles.

  13. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An in silico agent-based model demonstrates Reelin function in directing lamination of neurons during cortical development.

    Science.gov (United States)

    Caffrey, James R; Hughes, Barry D; Britto, Joanne M; Landman, Kerry A

    2014-01-01

    The characteristic six-layered appearance of the neocortex arises from the correct positioning of pyramidal neurons during development and alterations in this process can cause intellectual disabilities and developmental delay. Malformations in cortical development arise when neurons either fail to migrate properly from the germinal zones or fail to cease migration in the correct laminar position within the cortical plate. The Reelin signalling pathway is vital for correct neuronal positioning as loss of Reelin leads to a partially inverted cortex. The precise biological function of Reelin remains controversial and debate surrounds its role as a chemoattractant or stop signal for migrating neurons. To investigate this further we developed an in silico agent-based model of cortical layer formation. Using this model we tested four biologically plausible hypotheses for neuron motility and four biologically plausible hypotheses for the loss of neuron motility (conversion from migration). A matrix of 16 combinations of motility and conversion rules was applied against the known structure of mouse cortical layers in the wild-type cortex, the Reelin-null mutant, the Dab1-null mutant and a conditional Dab1 mutant. Using this approach, many combinations of motility and conversion mechanisms can be rejected. For example, the model does not support Reelin acting as a repelling or as a stopping signal. In contrast, the study lends very strong support to the notion that the glycoprotein Reelin acts as a chemoattractant for neurons. Furthermore, the most viable proposition for the conversion mechanism is one in which conversion is affected by a motile neuron sensing in the near vicinity neurons that have already converted. Therefore, this model helps elucidate the function of Reelin during neuronal migration and cortical development.

  15. Assessment of MRI-Based Automated Fetal Cerebral Cortical Folding Measures in Prediction of Gestational Age in the Third Trimester.

    Science.gov (United States)

    Wu, J; Awate, S P; Licht, D J; Clouchoux, C; du Plessis, A J; Avants, B B; Vossough, A; Gee, J C; Limperopoulos, C

    2015-07-01

    Traditional methods of dating a pregnancy based on history or sonographic assessment have a large variation in the third trimester. We aimed to assess the ability of various quantitative measures of brain cortical folding on MR imaging in determining fetal gestational age in the third trimester. We evaluated 8 different quantitative cortical folding measures to predict gestational age in 33 healthy fetuses by using T2-weighted fetal MR imaging. We compared the accuracy of the prediction of gestational age by these cortical folding measures with the accuracy of prediction by brain volume measurement and by a previously reported semiquantitative visual scale of brain maturity. Regression models were constructed, and measurement biases and variances were determined via a cross-validation procedure. The cortical folding measures are accurate in the estimation and prediction of gestational age (mean of the absolute error, 0.43 ± 0.45 weeks) and perform better than (P = .024) brain volume (mean of the absolute error, 0.72 ± 0.61 weeks) or sonography measures (SDs approximately 1.5 weeks, as reported in literature). Prediction accuracy is comparable with that of the semiquantitative visual assessment score (mean, 0.57 ± 0.41 weeks). Quantitative cortical folding measures such as global average curvedness can be an accurate and reliable estimator of gestational age and brain maturity for healthy fetuses in the third trimester and have the potential to be an indicator of brain-growth delays for at-risk fetuses and preterm neonates. © 2015 by American Journal of Neuroradiology.

  16. An in silico agent-based model demonstrates Reelin function in directing lamination of neurons during cortical development.

    Directory of Open Access Journals (Sweden)

    James R Caffrey

    Full Text Available The characteristic six-layered appearance of the neocortex arises from the correct positioning of pyramidal neurons during development and alterations in this process can cause intellectual disabilities and developmental delay. Malformations in cortical development arise when neurons either fail to migrate properly from the germinal zones or fail to cease migration in the correct laminar position within the cortical plate. The Reelin signalling pathway is vital for correct neuronal positioning as loss of Reelin leads to a partially inverted cortex. The precise biological function of Reelin remains controversial and debate surrounds its role as a chemoattractant or stop signal for migrating neurons. To investigate this further we developed an in silico agent-based model of cortical layer formation. Using this model we tested four biologically plausible hypotheses for neuron motility and four biologically plausible hypotheses for the loss of neuron motility (conversion from migration. A matrix of 16 combinations of motility and conversion rules was applied against the known structure of mouse cortical layers in the wild-type cortex, the Reelin-null mutant, the Dab1-null mutant and a conditional Dab1 mutant. Using this approach, many combinations of motility and conversion mechanisms can be rejected. For example, the model does not support Reelin acting as a repelling or as a stopping signal. In contrast, the study lends very strong support to the notion that the glycoprotein Reelin acts as a chemoattractant for neurons. Furthermore, the most viable proposition for the conversion mechanism is one in which conversion is affected by a motile neuron sensing in the near vicinity neurons that have already converted. Therefore, this model helps elucidate the function of Reelin during neuronal migration and cortical development.

  17. Cortical and hippocampal correlates of deliberation during model-based decisions for rewards in humans.

    Directory of Open Access Journals (Sweden)

    Aaron M Bornstein

    Full Text Available How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward - such as when planning routes using a cognitive map or chess moves using predicted countermoves - and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to

  18. Relationship between soft stratum thickness and predominant frequency of ground based on microtremor observation data

    Science.gov (United States)

    Chia, Kenny; Lau, Tze Liang

    2017-07-01

    Despite categorized as low seismicity group, until being affected by distant earthquake ground motion from Sumatra and the recent 2015 Sabah Earthquake, Malaysia has come to realize that seismic hazard in the country is real and has the potential to threaten the public safety and welfare. The major concern in this paper is to study the effect of local site condition, where it could amplify the magnitude of ground vibration at sites. The aim for this study is to correlate the thickness of soft stratum with the predominant frequency of soil. Single point microtremor measurements were carried out at 24 selected points where the site investigation reports are available. Predominant period and frequency at each site are determined by Nakamura's method. The predominant period varies from 0.22 s to 0.98 s. Generally, the predominant period increases when getting closer to the shoreline which has thicker sediments. As far as the thickness of the soft stratum could influence the amplification of seismic wave, the advancement of micotremor observation to predict the thickness of soft stratum (h) from predominant frequency (fr) is of the concern. Thus an empirical relationship h =54.917 fr-1.314 is developed based on the microtremor observation data. The empirical relationship will be benefited in the prediction of thickness of soft stratum based on microtremor observation for seismic design with minimal cost compared to conventional boring method.

  19. Study on design procedure of three-dimensional building base isolation system using thick rubber bearing

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Matsuda, Akihiro

    2003-01-01

    In this study, design procedure on three-dimensional base isolation system is developed. Base isolation system proposed by CRIEPI uses thick rubber bearing and damper as isolation device. As for thick rubber bearings, design formula for evaluating vertical stiffness is proposed, and design conditions regarding size and vertical pressure are investigated. Figure-U type lead damper is proposed as three-dimensional damper and by loading tests its mechanical characteristics is evaluated. The concept of multi-layered interconnected rubber bearing, which is advantageous over large scale bearing in manufacturability, is proposed and its good performance is confirmed by the loading test. Through the response analyses, it is shown the rocking response of the proposed three-dimensional base isolation system is very small and not influential to the system, and the reduction of the vertical response is attained using the proposed isolation device. (author)

  20. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    Science.gov (United States)

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  1. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data

    NARCIS (Netherlands)

    Cho, Youngsang; Seong, Joon-Kyung; Jeong, Yong; Shin, Sung Yong; Saradha, A.; Abdi, Hervé; Abdulkadir, Ahmed; Acharya, Deepa; Achuthan, Anusha; Adluru, Nagesh; Aghajanian, Jania; Agrusti, Antonella; Agyemang, Alex; Ahdidan, Jamila; Ahmad, Duaa; Ahmed, Shiek; Aisen, Paul; Akhondi-Asl, Alireza; Aksu, Yaman; Alberca, Roman; Alcauter, Sarael; Alexander, Daniel; Alin, Aylin; Almeida, Fabio; Alvarez-Linera, Juan; Amlien, Inge; Anand, Shyam; Anderson, Dallas; Ang, Amma; Angersbach, Steve; Ansarian, Reza; Aoyama, Eiji; Appannah, Arti; Arfanakis, Konstantinos; Armor, Tom; Arrighi, Michael; Arumughababu, S. Vethanayaki; Arunagiri, Vidhya; Ashe-McNalley, Cody; Ashford, Wes; Le Page, Aurelie; Avants, Brian; Aviv, Richard; Awasthi, Sukrati; Ayache, Nicholas; Ayan-Oshodi, Mosun; Ayhan, Murat; Chen, Wei; Richard, Edo; Schmand, Ben

    2012-01-01

    Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification

  2. The effect of silver thickness on the enhancement of polymer based SERS substrates

    International Nuclear Information System (INIS)

    Schneidewind, H; Weber, K; Zeisberger, M; Hübner, U; Dellith, A; Cialla-May, D; Mattheis, R; Popp, J

    2014-01-01

    We investigated silver-covered polymer based nanogratings as substrates for surface-enhanced Raman spectroscopy (SERS), in particular with respect to the thickness of the plasmonically active silver film. In order to obtain accurate geometrical input data for the simulation process, we inspected cross sections of the gratings prepared by breaking at cryogenic temperature. We noticed a strong dependence of the simulation results on geometrical variations of the structures. Measurements revealed that an increasing silver film thickness on top of the nanogratings leads to a blue shift of the plasmonic resonance, as predicted by numerical simulations, as well as to an increased field enhancement for an excitation at 488 nm. We found a clear deviation of the experimental data compared to the simulated results for very thin silver films due to an island-like growth at a silver thickness below 20 nm. In order to investigate the SERS activity. we carried out measurements with crystal violet as a model analyte at an excitation wavelength of 488 nm. The SERS enhancement increases up to a silver thickness of about 30 nm, whereas it remains nearly constant for thicker silver films. (paper)

  3. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  4. Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses.

    Science.gov (United States)

    Noh, Chanho; Jung, Mina; Henkensmeier, Dirk; Nam, Suk Woo; Kwon, Yongchai

    2017-10-25

    15, 25, and 35 μm thick meta-polybenzimidazole (PBI) membranes are doped with H 2 SO 4 and tested in a vanadium redox flow battery (VRFB). Their performances are compared with those of Nafion membranes. Immersed in 2 M H 2 SO 4 , PBI absorbs about 2 mol of H 2 SO 4 per mole of repeat unit. This results in low conductivity and low voltage efficiency (VE). In ex-situ tests, meta-PBI shows a negligible crossover of V 3+ and V 4+ ions, much lower than that of Nafion. This is due to electrostatic repulsive forces between vanadium cations and positively charged protonated PBI backbones, and the molecular sieving effect of PBI's nanosized pores. It turns out that charge efficiency (CE) of VRFBs using meta-PBI-based membranes is unaffected by or slightly increases with decreasing membrane thickness. Thick meta-PBI membranes require about 100 mV larger potentials to achieve the same charging current as thin meta-PBI membranes. This additional potential may increase side reactions or enable more vanadium ions to overcome the electrostatic energy barrier and to enter the membrane. On this basis, H 2 SO 4 -doped meta-PBI membranes should be thin to achieve high VE and CE. The energy efficiency of 15 μm thick PBI reaches 92%, exceeding that of Nafion 212 and 117 (N212 and N117) at 40 mA cm -2 .

  5. Quantification of esophageal wall thickness in CT using atlas-based segmentation technique

    Science.gov (United States)

    Wang, Jiahui; Kang, Min Kyu; Kligerman, Seth; Lu, Wei

    2015-03-01

    Esophageal wall thickness is an important predictor of esophageal cancer response to therapy. In this study, we developed a computerized pipeline for quantification of esophageal wall thickness using computerized tomography (CT). We first segmented the esophagus using a multi-atlas-based segmentation scheme. The esophagus in each atlas CT was manually segmented to create a label map. Using image registration, all of the atlases were aligned to the imaging space of the target CT. The deformation field from the registration was applied to the label maps to warp them to the target space. A weighted majority-voting label fusion was employed to create the segmentation of esophagus. Finally, we excluded the lumen from the esophagus using a threshold of -600 HU and measured the esophageal wall thickness. The developed method was tested on a dataset of 30 CT scans, including 15 esophageal cancer patients and 15 normal controls. The mean Dice similarity coefficient (DSC) and mean absolute distance (MAD) between the segmented esophagus and the reference standard were employed to evaluate the segmentation results. Our method achieved a mean Dice coefficient of 65.55 ± 10.48% and mean MAD of 1.40 ± 1.31 mm for all the cases. The mean esophageal wall thickness of cancer patients and normal controls was 6.35 ± 1.19 mm and 6.03 ± 0.51 mm, respectively. We conclude that the proposed method can perform quantitative analysis of esophageal wall thickness and would be useful for tumor detection and tumor response evaluation of esophageal cancer.

  6. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study.

    Science.gov (United States)

    Holschneider, Daniel P; Wang, Zhuo; Pang, Raina D

    2014-01-01

    Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [(14)C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas-findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain

  7. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study

    Directory of Open Access Journals (Sweden)

    Daniel P Holschneider

    2014-06-01

    Full Text Available Rodent cortical midline structures (CMS are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [14C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas--findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways will not only critically inform future work at the microscopic (single neurons and synapses level, but also have translational value to advance our understanding of human brain

  8. Ice thickness estimations based on multi-temporal glacier inventories - potential and challenges

    Science.gov (United States)

    Helfricht, Kay; Huss, Matthias; Otto, Jan-Christoph

    2016-04-01

    The ongoing glacier retreat exposes a large number of surface depressions in the former glacier bed that can be filled with water or act as sediment traps. This has already been observed at various sites in Austria and in other mountain areas worldwide. The formation of glacial lakes can constitute an important environmental and socio-economic impact on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. In general, information on ice thickness distribution is the basis for simulating future glacier change. We used the approach proposed by Huss and Farinotti (2012) to model the ice thickness distribution and potential locations of subglacial depressions. The study is part of the FUTURELAKE project that seeks to model the formation of new glacier lakes and their possible future evolution in the Austria Alps. The required data on glacier extent, surface elevation and slope were taken from the Austrian Glacier Inventories GI1 from 1969, GI2 from 1998 and GI3 from2006 (Fischer et al., 2015). The different glacier outlines and surface elevations from the inventories enable us to evaluate (i) the robustness of the modelled bedrock depressions with respect to different glacier settings, (ii) the power of the model to simulate recently formed glacial lakes, (iii) the similarities in calculated ice thickness distributions across the inventories and (iv) the feasibility of simulating observed changes in ice thickness and glacier volume. In general, the modelled localization of large potential depressions was relatively stable using the observed glacier settings. A number of examples show that recently formed glacial lakes could be detected by the model based on previous glacier extents. The locations of maximum ice depths within different elevation zones appeared to be sensitive to changes in glacier width. However, observed ice thickness changes and, thus, volume changes between the inventories could

  9. R\\&D results on a CsI-coated triple thick GEM-based photodetector

    CERN Document Server

    Martinengo, P; Paic, G; Paras, D M; Di Mauro, A; van Hoorne, J; Molnar, L; Peskov, V; Breskin, A

    2011-01-01

    The very high momentum particle identification detector proposed for the ALICE upgrade is a focusing RICH using a C(4)F(10) gaseous radiator. For the detection of Cherenkov photons, one of the options currently under investigation is to use a CsI-coated triple thick GEM with metallic or resistive electrodes. We will present results from the laboratory studies as well as preliminary results of beam tests of a RICH detector prototype consisting of a CaF(2) radiator coupled to a 10 x 10 cm(2) CsI-coated triple thick GEM equipped with a pad readout and GASSIPLEX-based front-end electronics. With such a prototype the detection of Cherenkov photons simultaneously with minimum ionizing particles has been achieved for the first time in a stable operation mode. (C) 2010 Elsevier B.V. All rights reserved.

  10. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors

    International Nuclear Information System (INIS)

    Manjakkal, Libu; Djurdjic, Elvira; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Szwagierczak, Dorota

    2015-01-01

    The conductimetric interdigitated thick film pH sensors based on RuO 2 were fabricated and their electrochemical reactions with solutions of different pH values were studied by electrochemical impedance spectroscopy (EIS) technique. The microstructural properties and composition of the sensitive films were examined by scanning electron microscopy, X-ray energy dispersive spectroscopy and Raman spectroscopy. The EIS analysis of the sensor was carried out in the frequency range 10 mHz–2 MHz for pH values of test solutions 2–12. The electrical parameters of the sensor were found to vary with changing pH. The conductance and capacitance of the film were distinctly dependent on pH in the low frequency range. The Nyquist and Bode plots derived from the impedance data for the metal oxide thick film pH sensor provided information about the underlying electrochemical reactions

  11. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vakiv, M; Hadzaman, I; Klym, H; Shpotyuk, O [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Brunner, M, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Fachhochschule Koeln/University of Applied Sciences, 2 Betzdorfer str., Koeln, 50679 (Germany)

    2011-04-01

    Temperature sensitive thick films based on spinel-type NiMn{sub 2}O{sub 4}-CuMn{sub 2}O{sub 4}-MnCo{sub 2}O{sub 4} manganites with p- and p{sup +}-types of electrical conductivity and their multilayer p{sup +}-p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p{sup +}-conductive films. Some part of the p{sup +}-p structures were of high stability, the relative electrical drift being no more than 1 %.

  12. Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly.

    Science.gov (United States)

    Liem, Franziskus; Mérillat, Susan; Bezzola, Ladina; Hirsiger, Sarah; Philipp, Michel; Madhyastha, Tara; Jäncke, Lutz

    2015-03-01

    FreeSurfer is a tool to quantify cortical and subcortical brain anatomy automatically and noninvasively. Previous studies have reported reliability and statistical power analyses in relatively small samples or only selected one aspect of brain anatomy. Here, we investigated reliability and statistical power of cortical thickness, surface area, volume, and the volume of subcortical structures in a large sample (N=189) of healthy elderly subjects (64+ years). Reliability (intraclass correlation coefficient) of cortical and subcortical parameters is generally high (cortical: ICCs>0.87, subcortical: ICCs>0.95). Surface-based smoothing increases reliability of cortical thickness maps, while it decreases reliability of cortical surface area and volume. Nevertheless, statistical power of all measures benefits from smoothing. When aiming to detect a 10% difference between groups, the number of subjects required to test effects with sufficient power over the entire cortex varies between cortical measures (cortical thickness: N=39, surface area: N=21, volume: N=81; 10mm smoothing, power=0.8, α=0.05). For subcortical regions this number is between 16 and 76 subjects, depending on the region. We also demonstrate the advantage of within-subject designs over between-subject designs. Furthermore, we publicly provide a tool that allows researchers to perform a priori power analysis and sensitivity analysis to help evaluate previously published studies and to design future studies with sufficient statistical power. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Analysis of feature stability for laser-based determination of tissue thickness

    Science.gov (United States)

    Ernst, Floris; Schweikard, Achim; Stüber, Patrick; Bruder, Ralf; Wagner, Benjamin; Wissel, Tobias

    2015-03-01

    Localisation of the cranium is necessary for accurate stereotactic radiotherapy of malign lesions in the brain. This is achieved by immobilizing the patient's head (typically by using thermoplastic masks, bite blocks or combinations thereof) and x-ray imaging to determine the actual position of the patient with respect to the treatment device. In previous work we have developed a novel method for marker-less and non-invasive tracking of the skull using a combination of laser-based surface triangulation and the analysis of backscattered feature patterns of a tightly collimated NIR laser beam scanned over the patient's forehead. An HDR camera is coupled into the beam path of the laser scanning system to acquire one image per projected laser point. We have demonstrated that this setup is capable of accurately determining the tissue thickness for each triangulation point and consequently allows detecting the surface of the cranial bone with sub-millimetre accuracy. Typical clinical settings (treatment times of 15-90 min) require feature stability over time, since the determination of tissue thickness is achieved by machine learning methods trained on initial feature scans. We have collected initial scans of the forehead as well as long-term backscatter data (20 images per seconds over 30 min) from five subjects and extracted the relevant tissue features from the image streams. Based on the knowledge of the relationship between the tissue feature values and the tissue thickness, the analysis of the long-term data showed that the noise level is low enough to allow robust discrimination of tissue thicknesses of 0.5 mm.

  14. Processing parameters for ZnO-based thick film varistors obtained by screen printing

    Directory of Open Access Journals (Sweden)

    de la Rubia, M. A.

    2006-06-01

    Full Text Available Thick film varistors based on the ZnO-Bi2O3-Sb2O3 system have been prepared by screen printing on dense alumina substrates. Different processing parameters like the paste viscosity, burn out and sintering cycles, green and sintered thickness, have been studied to improve the processing of ZnO-based thick film varistors. Starting powders were pre-treated in two different ways in order to control both the Bi-rich liquid phase formation and the excessive volatilization of Bi2O3 during sintering due to the high area/volume ratio of the thick films. Significant changes have been observed in the electrical properties related to the different firing schedule and selection of the starting powders.

    Se han preparado varistores basados en el sistema ZnO-Bi2O3-Sb2O3 en forma de lámina gruesa sobre sustratos de alúmina densa. Diferentes parámetros del procesamiento como la viscosidad de la pasta, los ciclos de calcinación y sinterización y el espesor en verde y sinterizado han sido estudiados para mejorar el procesamiento de los varistores basados en ZnO preparados en forma de lámina gruesa. Los polvos de partida fueron pretratados de dos formas diferentes con el objetivo de controlar la formación de la fase líquida rica en bismuto y la excesiva volatilización de Bi2O3 durante la sinterización debida a la alta relación área-volumen de las láminas gruesas. Se han observado cambios significativos en las propiedades eléctricas relacionadas con los diferentes ciclos de calcinado y con la selección de los polvos de partida.

  15. Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach

    Science.gov (United States)

    Praher, Bernhard; Steinbichler, Georg

    2017-01-01

    Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.

  16. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    Science.gov (United States)

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  17. Thickness independent reduced forming voltage in oxygen engineered HfO{sub 2} based resistive switching memories

    Energy Technology Data Exchange (ETDEWEB)

    Sharath, S. U., E-mail: sharath@oxide.tu-darmstadt.de; Kurian, J.; Komissinskiy, P.; Hildebrandt, E.; Alff, L. [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Bertaud, T.; Walczyk, C.; Calka, P. [IHP, Im Technologiepark 25, 15236 Frankfurt Oder (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt Oder (Germany); Brandenburgische Technische Universität, Konrad-Zuse-Strasse 1, 03046 Cottbus (Germany)

    2014-08-18

    The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO{sub 2} surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.

  18. Abnormalities of cortical structures in adolescent-onset conduct disorder.

    Science.gov (United States)

    Jiang, Y; Guo, X; Zhang, J; Gao, J; Wang, X; Situ, W; Yi, J; Zhang, X; Zhu, X; Yao, S; Huang, B

    2015-12-01

    Converging evidence has revealed both functional and structural abnormalities in adolescents with early-onset conduct disorder (EO-CD). The neurological abnormalities underlying EO-CD may be different from that of adolescent-onset conduct disorder (AO-CD) patients. However, the cortical structure in AO-CD patients remains largely unknown. The aim of the present study was to investigate the cortical alterations in AO-CD patients. We investigated T1-weighted brain images from AO-CD patients and age-, gender- and intelligence quotient-matched controls. Cortical structures including thickness, folding and surface area were measured using the surface-based morphometric method. Furthermore, we assessed impulsivity and antisocial symptoms using the Barratt Impulsiveness Scale (BIS) and the Antisocial Process Screening Device (APSD). Compared with the controls, we found significant cortical thinning in the paralimbic system in AO-CD patients. For the first time, we observed cortical thinning in the precuneus/posterior cingulate cortex (PCC) in AO-CD patients which has not been reported in EO-CD patients. Prominent folding abnormalities were found in the paralimbic structures and frontal cortex while diminished surface areas were shown in the precentral and inferior temporal cortex. Furthermore, cortical thickness of the paralimbic structures was found to be negatively correlated with impulsivity and antisocial behaviors measured by the BIS and APSD, respectively. The present study indicates that AO-CD is characterized by cortical structural abnormalities in the paralimbic system, and, in particular, we highlight the potential role of deficient structures including the precuneus and PCC in the etiology of AO-CD.

  19. Response of cortical bone to antiresorptive treatment

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Jørgensen, J T; Sørensen, T K

    2001-01-01

    of the spine, hip, and forearm. Longitudinal changes in bone densitometry were compared with changes captured by DXR: BMD evaluated by DXR (BMDDXR), cortical thickness of the second metacarpal (CTMC2), and porosity of cortical bone. The expected annual postmenopausal reduction in BMD in the control group...... treatment regimens used in the prevention of osteoporosis....

  20. Cortical Structures Associated With Sports Participation in Children: A Population-Based Study.

    Science.gov (United States)

    López-Vicente, Mónica; Tiemeier, Henning; Wildeboer, Andrea; Muetzel, Ryan L; Verhulst, Frank C; Jaddoe, Vincent W V; Sunyer, Jordi; White, Tonya

    2017-01-01

    We studied cortical morphology in relation to sports participation and type of sport using a large sample of healthy children (n = 911). Sports participation data was collected through a parent-reported questionnaire. Magnetic resonance scans were acquired, and different morphological brain features were quantified. Global volumetric measures were not associated with sports participation. We observed thicker cortex in motor and premotor areas associated with sports participation. In boys, team sports participation, relative to individual sports, was related to thinner cortex in prefrontal brain areas involved in the regulation of behaviors. This study showed a relationship between sports participation and brain maturation.

  1. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data

    DEFF Research Database (Denmark)

    Greve, Douglas N; Svarer, Claus; Fisher, Patrick M

    2014-01-01

    Exploratory (i.e., voxelwise) spatial methods are commonly used in neuroimaging to identify areas that show an effect when a region-of-interest (ROI) analysis cannot be performed because no strong a priori anatomical hypothesis exists. However, noise at a single voxel is much higher than noise...... in a ROI making noise management critical to successful exploratory analysis. This work explores how preprocessing choices affect the bias and variability of voxelwise kinetic modeling analysis of brain positron emission tomography (PET) data. These choices include the use of volume- or cortical surface...

  2. Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants

    Directory of Open Access Journals (Sweden)

    Daniel Jogaib Fernandes

    2015-09-01

    Full Text Available The purpose of this work was to study the influence of screw length and bone thickness on the stability of temporary implants. A total of 96 self-drilling temporary screws with two different lengths were inserted into polyurethane blocks (n = 66, bovine femurs (n = 18 and rabbit tibia (n = 12 with different cortical thicknesses (1 to 8 mm. Screws insertion in polyurethane blocks was assisted by a universal testing machine, torque peaks were collected by a digital torquemeter and bone thickness was monitored by micro-CT. The results showed that the insertion torque was significantly increased with the thickness of cortical bone from polyurethane (p < 0.0001, bovine (p = 0.0035 and rabbit (p < 0.05 sources. Cancellous bone improved significantly the mechanical implant stability. Insertion torque and insertion strength was successfully moduled by equations, based on the cortical/cancellous bone behavior. Based on the results, insertion torque and bone strength can be estimate in order to prevent failure of the cortical layer during temporary screw placement. The stability provided by a cortical thickness of 2 or 1 mm coupled to cancellous bone was deemed sufficient for temporary implants stability.

  3. Elastic thickness determination based on Vening Meinesz-Moritz and flexural theories of isostasy

    Science.gov (United States)

    Eshagh, Mehdi

    2018-06-01

    Elastic thickness (Te) is one of mechanical properties of the Earth's lithosphere. The lithosphere is assumed to be a thin elastic shell, which is bended under the topographic, bathymetric and sediment loads on. The flexure of this elastic shell depends on its thickness or Te. Those shells having larger Te flex less. In this paper, a forward computational method is presented based on the Vening Meinesz-Moritz (VMM) and flexural theories of isostasy. Two Moho flexure models are determined using these theories, considering effects of surface and subsurface loads. Different values are selected for Te in the flexural method to see by which one, the closest Moho flexure to that of the VMM is achieved. The effects of topographic/bathymetric, sediments and crustal crystalline masses, and laterally variable upper mantle density, Young's modulus and Poisson's ratio are considered in whole computational process. Our mathematical derivations are based on spherical harmonics, which can be used to estimate Te at any single point, meaning that there is no edge effect in the method. However, the Te map needs to be filtered to remove noise at some points. A median filter with a window size of 5° × 5° and overlap of 4° works well for this purpose. The method is applied to estimate Te over South America using the data of CRUST1.0 and a global gravity model.

  4. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  5. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study.

    Directory of Open Access Journals (Sweden)

    Gayane Aghakhanyan

    Full Text Available Angelman syndrome (AS is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM method to investigate disease-related changes in the cortical/subcortical grey matter (GM structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM. Principal component analysis (PCA was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS.

  6. An analytical method for calculating stresses and strains of ATF cladding based on thick walled theory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Kim, Hak Sung [Hanyang University, Seoul (Korea, Republic of); Kim, Hyo Chan; Yang, Yong Sik; In, Wang kee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, an analytical method based on thick walled theory has been studied to calculate stress and strain of ATF cladding. In order to prescribe boundary conditions of the analytical method, two algorithms were employed which are called subroutine 'Cladf' and 'Couple' of FRACAS, respectively. To evaluate the developed method, equivalent model using finite element method was established and stress components of the method were compared with those of equivalent FE model. One of promising ATF concepts is the coated cladding, which take advantages such as high melting point, a high neutron economy, and low tritium permeation rate. To evaluate the mechanical behavior and performance of the coated cladding, we need to develop the specified model to simulate the ATF behaviors in the reactor. In particular, the model for simulation of stress and strain for the coated cladding should be developed because the previous model, which is 'FRACAS', is for one body model. The FRACAS module employs the analytical method based on thin walled theory. According to thin-walled theory, radial stress is defined as zero but this assumption is not suitable for ATF cladding because value of the radial stress is not negligible in the case of ATF cladding. Recently, a structural model for multi-layered ceramic cylinders based on thick-walled theory was developed. Also, FE-based numerical simulation such as BISON has been developed to evaluate fuel performance. An analytical method that calculates stress components of ATF cladding was developed in this study. Thick-walled theory was used to derive equations for calculating stress and strain. To solve for these equations, boundary and loading conditions were obtained by subroutine 'Cladf' and 'Couple' and applied to the analytical method. To evaluate the developed method, equivalent FE model was established and its results were compared to those of analytical model. Based on the

  7. Neural Mechanisms of Cortical Motion Computation Based on a Neuromorphic Sensory System

    Science.gov (United States)

    Abdul-Kreem, Luma Issa; Neumann, Heiko

    2015-01-01

    The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina) that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields). In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells. PMID:26554589

  8. Neural Mechanisms of Cortical Motion Computation Based on a Neuromorphic Sensory System.

    Directory of Open Access Journals (Sweden)

    Luma Issa Abdul-Kreem

    Full Text Available The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields. In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells.

  9. Automated estimation of choroidal thickness distribution and volume based on OCT images of posterior visual section.

    Science.gov (United States)

    Vupparaboina, Kiran Kumar; Nizampatnam, Srinath; Chhablani, Jay; Richhariya, Ashutosh; Jana, Soumya

    2015-12-01

    A variety of vision ailments are indicated by anomalies in the choroid layer of the posterior visual section. Consequently, choroidal thickness and volume measurements, usually performed by experts based on optical coherence tomography (OCT) images, have assumed diagnostic significance. Now, to save precious expert time, it has become imperative to develop automated methods. To this end, one requires choroid outer boundary (COB) detection as a crucial step, where difficulty arises as the COB divides the choroidal granularity and the scleral uniformity only notionally, without marked brightness variation. In this backdrop, we measure the structural dissimilarity between choroid and sclera by structural similarity (SSIM) index, and hence estimate the COB by thresholding. Subsequently, smooth COB estimates, mimicking manual delineation, are obtained using tensor voting. On five datasets, each consisting of 97 adult OCT B-scans, automated and manual segmentation results agree visually. We also demonstrate close statistical match (greater than 99.6% correlation) between choroidal thickness distributions obtained algorithmically and manually. Further, quantitative superiority of our method is established over existing results by respective factors of 27.67% and 76.04% in two quotient measures defined relative to observer repeatability. Finally, automated choroidal volume estimation, being attempted for the first time, also yields results in close agreement with that of manual methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Increased-resolution OCT thickness mapping of the human macula: a statistically based registration.

    Science.gov (United States)

    Bernardes, Rui; Santos, Torcato; Cunha-Vaz, José

    2008-05-01

    To describe the development of a technique that enhances spatial resolution of retinal thickness maps of the Stratus OCT (Carl Zeiss Meditec, Inc., Dublin, CA). A retinal thickness atlas (RT-atlas) template was calculated, and a macular coordinate system was established, to pursue this objective. The RT-atlas was developed from principal component analysis of retinal thickness analyzer (RTA) maps acquired from healthy volunteers. The Stratus OCT radial thickness measurements were registered on the RT-atlas, from which an improved macular thickness map was calculated. Thereafter, Stratus OCT circular scans were registered on the previously calculated map to enhance spatial resolution. The developed technique was applied to Stratus OCT thickness data from healthy volunteers and from patients with diabetic retinopathy (DR) or age-related macular degeneration (AMD). Results showed that for normal, or close to normal, macular thickness maps from healthy volunteers and patients with DR, this technique can be an important aid in determining retinal thickness. Efforts are under way to improve the registration of retinal thickness data in patients with AMD. The developed technique enhances the evaluation of data acquired by the Stratus OCT, helping the detection of early retinal thickness abnormalities. Moreover, a normative database of retinal thickness measurements gained from this technique, as referenced to the macular coordinate system, can be created without errors induced by missed fixation and eye tilt.

  11. Cortical morphology of adolescents with bipolar disorder and with schizophrenia.

    Science.gov (United States)

    Janssen, Joost; Alemán-Gómez, Yasser; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Inmaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2014-09-01

    Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification. This study analyzed cortical morphology using surface-based morphometry in 92 subjects (age range 11-18 years, 52 healthy controls and 40 adolescents with early-onset first-episode psychosis diagnosed with schizophrenia (n=20) or bipolar disorder with psychotic symptoms (n=20) based on a two year clinical follow up). Average lobar cortical thickness, surface area, gyrification index (GI) and sulcal width were compared between groups, and the relationship between the GI and sulcal width was assessed in the patient group. Both patients groups showed decreased cortical thickness and increased sulcal width in the frontal cortex when compared to healthy controls. The schizophrenia subgroup also had increased sulcal width in all other lobes. In the frontal cortex of the combined patient group sulcal width was negatively correlated (r=-0.58, padolescents with schizophrenia and bipolar disorder with psychotic symptoms there is cortical thinning, decreased GI and increased sulcal width of the frontal cortex present at the time of the first psychotic episode. Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area. These results suggest that abnormal growth (or more pronounced shrinkage during adolescence) of the frontal cortex represents a shared endophenotype for psychosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer.

    Science.gov (United States)

    Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang

    2018-04-20

    Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.

  13. [The effect of core veneer thickness ratio on the flexural strength of diatomite-based dental ceramic].

    Science.gov (United States)

    Jiang, Jie; Zhang, Xin; Gao, Mei-qin; Zhang, Fei-min; Lu, Xiao-li

    2015-06-01

    To evaluate the effect of different core veneer thickness ratios on the flexural strength and failure mode of bilayered diatomite-based dental ceramics. Diatomite-based dental ceramics blocks (16 mm×5.4 mm×1 mm) were sintered with different thickness of veneer porcelains: 0 mm (group A), 0.6 mm (group B), 0.8 mm (group C) and 1.0 mm (group D). Flexural strength was detected and scanning electron microscope was used to observe the interface microstructure. Statistical analysis was performed using SPSS 17.0 software package. With the increase of the thickness of the veneer porcelain, flexural strength of group C showed highest flexural strength up to (277.24±5.47) MPa. Different core veneer thickness ratios can significantly influence the flexural strength of bilayered diatomite-based dental ceramics. Supported by Science and Technology Projects of Nantong City (HS2013010).

  14. Thick-film processing of Pb5Ge3O11-based ferroelectric glass-ceramics

    International Nuclear Information System (INIS)

    Cornejo, I.A.; Haun, M.J.

    1996-01-01

    Processing techniques were investigated to produce c-axis orientation, or texture, of ferroelectric Pb 5 Ge 3 O 11 -based glass-ceramic compositions during crystallization of amorphous thick-film printed samples from the Pb 5 Ge 3 O 11 -PbTiO 3 (PG-PT) and Pb 5 Ge 3 O 11 -Pb(Zr 1/2 Ti 1/2 )O 3 (PG-PZT) systems. In these systems the PG crystallized into a ferroelectric phase, producing a multiple ferroelectric phase composite at low temperatures, PG-PT or PG-PZT. In this way the non-ferroelectric component of traditional ferroelectric glass-ceramics was eliminated

  15. Dielectric oil-based polymer actuator for improved thickness strain and breakdown voltage

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Min Sung; Yamamoto, Akio [Dept. of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo (Japan)

    2016-09-15

    Dielectric elastomer actuators (DEAs) have been increasingly investigated as alternative actuators to conventional ones. However, DEAs suffer from high rates of premature failure. Therefore, this study proposes a dielectric oil-based polymer actuator, also called a Dielectric liquid actuator (DLA), to compensate for the drawbacks of DEAs. DLA was experimentally compared with conventional DEAs. Results showed that DLA successfully prevented thermal runaway at defects in the electrode and excessive thinning of the film, resulting in increased breakdown voltage. Consequently, premature failure was inhibited, and the performance was improved. The breakdown voltages of DLA and DEA were 6000 and 2000 V, respectively, and their maximum thickness strains were 49.5% and 37.5%, respectively.

  16. Dielectric oil-based polymer actuator for improved thickness strain and breakdown voltage

    International Nuclear Information System (INIS)

    Cho, Min Sung; Yamamoto, Akio

    2016-01-01

    Dielectric elastomer actuators (DEAs) have been increasingly investigated as alternative actuators to conventional ones. However, DEAs suffer from high rates of premature failure. Therefore, this study proposes a dielectric oil-based polymer actuator, also called a Dielectric liquid actuator (DLA), to compensate for the drawbacks of DEAs. DLA was experimentally compared with conventional DEAs. Results showed that DLA successfully prevented thermal runaway at defects in the electrode and excessive thinning of the film, resulting in increased breakdown voltage. Consequently, premature failure was inhibited, and the performance was improved. The breakdown voltages of DLA and DEA were 6000 and 2000 V, respectively, and their maximum thickness strains were 49.5% and 37.5%, respectively

  17. The Hounsfield value for cortical bone geometry in the proximal humerus - an in vitro study

    International Nuclear Information System (INIS)

    Lim Fat, Daren; Kennedy, Jim; Galvin, Rose; O'Brien, Fergal; Mc Grath, Frank; Mullett, Hannan

    2012-01-01

    Fractures of the proximal humerus represent a major osteoporotic burden. Recent developments in CT imaging have emphasized the importance of cortical bone thickness distribution in the prevention and management of fragility fractures. We aimed to experimentally define the CT density of cortical bone in the proximal humerus for building cortical geometry maps. With ethical approval, we used ten fresh-frozen human proximal humeri. These were stripped of all soft tissue and high-resolution CT images were then taken. The humeral heads were then subsequently resected to allow access to the metaphyseal area. Using curettes, cancellous bone was removed down to hard cortical bone. Another set of CT images of the reamed specimen was then taken. Using CT imaging software and a CAD interface, we then compared cortical contours at different CT density thresholds to the reference inner cortical contour of our reamed specimens. Working with 3D model representations of these cortical maps, we were able to accurately make distance comparison analyses based on different CT thresholds. We could compute a single closest value at 700 HU. No difference was found in the HU-based contours generated along the 500-900 HU pixels (p = 1.000). The contours were significantly different from those generated at 300, 400, 1,000, and 1,100 HU. A Hounsfield range of 500-900 HU can accurately depict cortical bone geometry in the proximal humerus. Thresholding outside this range leads to statistically significant inaccuracies. Our results concur with a similar range reported in the literature for the proximal femur. Knowledge of regional variations in cortical bone thickness has direct implications for basic science studies on osteoporosis and its treatment, but is also important for the orthopedic surgeon since our decision for treatment options is often guided by local bone quality. (orig.)

  18. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism.

    Science.gov (United States)

    Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel

    2017-10-05

    The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Thin and thick layers of resin-based sealer cement bonded to root dentine compared: Adhesive behaviour.

    Science.gov (United States)

    Pane, Epita S; Palamara, Joseph E A; Messer, Harold H

    2015-12-01

    This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.

  20. Cortical thinning in type 2 diabetes mellitus and recovering effects of insulin therapy.

    Science.gov (United States)

    Chen, Zhiye; Sun, Jie; Yang, Yang; Lou, Xin; Wang, Yulin; Wang, Yan; Ma, Lin

    2015-02-01

    The purpose of this study was to explore the brain structural changes in type 2 diabetes and the effect of insulin on the brain using a surface-based cortical thickness analysis. High-resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI were obtained from 11 patients with type 2 diabetes before and after insulin therapy. The cortical thickness over the entire brain was calculated, and cross-sectional and longitudinal surface-based cortical thickness analyses were also performed. Regional cortical thinning was demonstrated in the middle temporal gyrus, posterior cingulate gyrus, precuneus, right lateral occipital gyrus and entorhinal cortex bilaterally for patients with type 2 diabetes mellitus compared with normal controls. Cortical thickening was seen in the middle temporal gyrus, entorhinal cortex and left inferior temporal gyrus bilaterally after patients underwent 1 year of insulin therapy. These findings suggest that insulin therapy may have recovering effects on the brain cortex in type 2 diabetes mellitus. The precise mechanism should be investigated further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    International Nuclear Information System (INIS)

    Rodenburg, C.; Viswanathan, P.; Jepson, M.A.E.; Liu, X.; Battaglia, G.

    2014-01-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated

  2. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Rodenburg, C., E-mail: c.rodenburg@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Viswanathan, P. [Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank Sheffield, Sheffield S10 2 TN (United Kingdom); Jepson, M.A.E. [Department of Materials, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Liu, X. [Carl Zeiss Microscopy GmbH, Carl-Zeiss-Strasse 22, 73447 Oberkochen (Germany); Battaglia, G. [Department of Chemistry University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); The MRC/UCL Centre for Medical Molecular Virology, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2014-04-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated.

  3. Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis

    Science.gov (United States)

    Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers. PMID:25206325

  4. Cyclic loading of thick vessels based on the Prager and Armstrong-Frederick kinematic hardening models

    International Nuclear Information System (INIS)

    Mahbadi, H.; Eslami, M.R.

    2006-01-01

    The aim of this paper is to relate the type of stress category in cyclic loading to ratcheting or shakedown behaviour of the structure. The kinematic hardening theory of plasticity based on the Prager and Armstrong-Frederick models is used to evaluate the cyclic loading behaviour of thick spherical and cylindrical vessels under load and deformation controlled stresses. It is concluded that kinematic hardening based on the Prager model under load and deformation controlled conditions, excluding creep, results in shakedown or reversed plasticity for spherical and cylindrical vessels with the isotropy assumption of the tension/compression curve. Under an anisotropy assumption of the tension/compression curve, this model predicts ratcheting. On the other hand, the Armstrong-Frederick model predicts ratcheting under load controlled cyclic loading and reversed plasticity for deformation controlled stress. The interesting conclusion is that the Armstrong-Frederick model is well capable to predict the experimental data under the assumed type of stresses, wherever experimental data are available

  5. The estimation of pork carcass primal cuts value based on backfat thickness

    Directory of Open Access Journals (Sweden)

    Kamil Duziński

    2015-03-01

    Full Text Available The aim of the present study was to determine the effect of pork carcass backfat thickness on the dissection efficiency of four primal cuts (ham, loin, shoulder, belly, including correlation coefficients. The research material consisted of 80 pork carcasses. Backfat thickness (mm was measured on cold half-carcasses using a vernier caliper at 6 points: at the first cervical vertebra (atlas, over shoulder at the thickest point, on the back, at the beginning, center, end of the gluteus medius muscle (CI, CII, CIII. On the basis of the average backfat thickness, measurements from 6 points were separated into two experimental groups: I (<25 mm; II (≥25 mm. Detailed dissection of the elements was performed to define mass (g: total, intermuscular fat, bones and lean meat. The significant effect of fat thickness on intermuscular fat content regardless of the cut was noted. Correlations between the average backfat thickness of 6 points and the total weight of the four main elements were calculated. In addition, the correlation coefficients were compared between the dissection elements and the average backfat thickness of 6 and 5 points. Higher backfat thickness determined the increase in the total mass of loin, shoulder and belly. A statistically proven correlation was shown between the average backfat thickness and the total mass of the analysed elements (r=0.293. When comparing the correlation coefficients of a different number of measurements a specific tendency was observed. Positive correlation coefficients were slightly higher for an average of 5 points of backfat thickness and negative correlation coefficients were slightly higher for an average of 6 points. Statistical differences between groups were recorded at the same level for the same parameters (P≤0.001 and 0.01thickness of 6 points can be used as an indicator of the amount and quality of pork carcass primal cuts, with no adverse effects compared to

  6. Juxtacortical Lesions and Cortical Thinning in Multiple Sclerosis.

    Science.gov (United States)

    Pareto, D; Sastre-Garriga, J; Auger, C; Vives-Gilabert, Y; Delgado, J; Tintoré, M; Montalban, X; Rovira, A

    2015-12-01

    The role of juxtacortical lesions in brain volume loss in multiple sclerosis has not been fully clarified. The aim of this study was to explore the role of juxtacortical lesions on cortical atrophy and to investigate whether the presence of juxtacortical lesions is related to local cortical thinning in the early stages of MS. A total of 131 patients with clinically isolated syndrome or with relapsing-remitting MS were scanned on a 3T system. Patients with clinically isolated syndrome were classified into 3 groups based on the presence and topography of brain lesions: no lesions (n = 24), only non-juxtacortical lesions (n = 33), and juxtacortical lesions and non-juxtacortical lesions (n = 34). Patients with relapsing-remitting MS were classified into 2 groups: only non-juxtacortical lesions (n = 10) and with non-juxtacortical lesions and juxtacortical lesions (n = 30). A juxtacortical lesion probability map was generated, and cortical thickness was measured by using FreeSurfer. Juxtacortical lesion volume in relapsing-remitting MS was double that of patients with clinically isolated syndrome. The insula showed the highest density of juxtacortical lesions, followed by the temporal, parietal, frontal, and occipital lobes. Patients with relapsing-remitting MS with juxtacortical lesions showed significantly thinner cortices overall and in the parietal and temporal lobes compared with those with clinically isolated syndrome with normal brain MR imaging. The volume of subcortical structures (thalamus, pallidum, putamen, and accumbens) was significantly decreased in relapsing-remitting MS with juxtacortical lesions compared with clinically isolated syndrome with normal brain MR imaging. The spatial distribution of juxtacortical lesions was not found to overlap with areas of cortical thinning. Cortical thinning and subcortical gray matter volume loss in patients with a clinically isolated syndrome or relapsing-remitting MS was related to the presence of juxtacortical

  7. Does high location and thickness of the Wrisberg ligament affect discoid lateral meniscus tear type based on peripheral detachment?

    Science.gov (United States)

    Ahn, Jin Hwan; Wang, Joon Ho; Kim, Dong Uk; Lee, Do Kyung; Kim, Jun Ho

    2017-12-01

    The aim of this study was to evaluate the relationship between discoid lateral meniscus (DLM) types based on peripheral detachment and anatomic features of Wrisberg ligament (WL) such as location and thickness based on magnetic resonance image (MRI). A total of 322 knees in 292 patients were reviewed. Patients were divided into four DLM types according to peripheral detachment: no shift (type 1), anterocentral shift (type 2), posterocentral shift (type 3) and central shift (type 4). We reviewed all MRI concentrating on the presence, location (high or low location), running angle, thickness of WL, and WL/posterior cruciate ligament (PCL) thickness ratio. The relationship between DLM types and anatomic features of WL were analyzed using one-way analysis of variance and chi-square test. According to DLM types based on peripheral detachment, 149 knees were type 1, 38 were type 2, 79 were type 3, and 56 were type 4. Among the 322 knees, 302 (93.8%) had WL on MRI. In DLM patients, type 3 showed a statistically significant (Plocation of WL. In addition, type 3 had significantly larger (Plocation and thick WL are related to posterocentral shift type of DLM based on peripheral detachment. Based on our results, the high location and thick WL might provide information to surgeons in predicting the direction of peripheral detachment in symptomatic DLM patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The designing principle and implementation of multi-channel intelligence isotope thickness gauge based on multifunction card PCI-1710

    International Nuclear Information System (INIS)

    Zhang Bin; Zhao Shujun; Guo Maotian; He Jintian

    2006-01-01

    The designing principle, the constitution of system and the implementation of multi-channel intelligence isotope thickness gauge are introduced in the paper in detail, which are based on multifunction card PCI-1710. The paper also discusses the primaryprinciple of isotope thickness gauge, correct factor in measurement and complication of calibration. In the following, the whole frame of multi-channel intelligence isotope thickness gauge is given. The functions, the characteristics and the usage of multifunction card PCI-1710 are described. Furthermore, the developing process and the function modules of software are presented. Finally, the real prototype of multi-channel intelligence isotope thickness gauge is introduced, using 241 Am as a radioactive element. (authors)

  9. The influence of thickness on memory characteristic based on nonvolatile tuning behavior in poly(N-vinylcarbazole) films

    International Nuclear Information System (INIS)

    Sun, Yanmei; Ai, Chunpeng; Lu, Junguo; Li, Lei; Wen, Dianzhong; Bai, Xuduo

    2016-01-01

    The memory characteristic based on nonvolatile tuning behavior in indium tin oxide/poly(N-vinylcarbazole)/aluminum (ITO/PVK/Al) was investigated, the different memory behaviors were first observed in PVK film as the film thickness changing. By control of PVK film thickness with different spinning speeds, the nonvolatile behavior of ITO/PVK/Al sandwich structure can be tuned in a controlled manner. Obviously different nonvolatile behaviors, such as (i) flash memory behavior and (ii) write-once-read-many times (WORM) memory behavior are from the current–voltage (I–V) characteristics of the PVK films. The results suggest that the film thickness plays a key part in determining the memory type of the PVK. - Highlights: • The different memory behaviors were observed in PVK film. • The nonvolatile behavior of ITO/PVK/Al sandwich structure can be tuned. • The film thickness plays a key part in determining the memory type of the PVK.

  10. Use of apparent thickness for preprocessing of low-frequency electromagnetic data in inversion-based multibarrier evaluation workflow

    Science.gov (United States)

    Omar, Saad; Omeragic, Dzevat

    2018-04-01

    The concept of apparent thicknesses is introduced for the inversion-based, multicasing evaluation interpretation workflow using multifrequency and multispacing electromagnetic measurements. A thickness value is assigned to each measurement, enabling the development of two new preprocessing algorithms to remove casing collar artifacts. First, long-spacing apparent thicknesses are used to remove, from the pipe sections, artifacts ("ghosts") caused by the transmitter crossing a casing collar or corrosion. Second, a collar identification, localization, and assignment algorithm is developed to enable robust inversion in collar sections. Last, casing eccentering can also be identified on the basis of opposite deviation of short-spacing phase and magnitude apparent thicknesses from the nominal value. The proposed workflow can handle an arbitrary number of nested casings and has been validated on synthetic and field data.

  11. AFM-based force spectroscopy on polystyrene brushes: effect of brush thickness on protein adsorption.

    Science.gov (United States)

    Hentschel, Carsten; Wagner, Hendrik; Smiatek, Jens; Heuer, Andreas; Fuchs, Harald; Zhang, Xi; Studer, Armido; Chi, Lifeng

    2013-02-12

    Herein we present a study on nonspecific binding of proteins at highly dense packed hydrophobic polystyrene brushes. In this context, an atomic force microscopy tip was functionalized with concanavalin A to perform single-molecule force spectroscopy measurements on polystyrene brushes with thicknesses of 10 and 60 nm, respectively. Polystyrene brushes with thickness of 10 nm show an almost two times stronger protein adsorption than brushes with a thickness of 60 nm: 72 pN for the thinner and 38 pN for the thicker layer, which is in qualitative agreement with protein adsorption studies conducted macroscopically by fluorescence microscopy.

  12. [Correlation between Goldmann and non-contact tonometry based on corneal thickness].

    Science.gov (United States)

    Schepens, G; Urier, N; Bechetoille, A; De Potter, P

    2001-01-01

    In this transversal study, we measure the intra ocular pressure by means of the Goldmann tonometer and a Non-Contact tonometer along with the central cornea thickness in 136 eyes of 73 patients. The statistical analysis of the collected data doesn't allow us to establish a correlation between the variation of the corneal thickness and the difference between the Goldmann tonometer and Non-Contact tonometer measures. The relative precision of the Non-Contact tonometer compared with the Goldmann tonometer doesn't seem influenced by the central cornea thickness.

  13. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  14. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  15. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    Science.gov (United States)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  16. Comparison between PET template-based method and MRI-based method for cortical quantification of florbetapir (AV-45) uptake in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Aubert, L.; Nemmi, F.; Peran, P. [Inserm, Imagerie Cerebrale et Handicaps neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Centre Hospitalier Universitaire de Toulouse, Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Toulouse (France); Barbeau, E.J. [Universite de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, France, CNRS, CerCo, Toulouse (France); Service de Neurologie, Pole Neurosciences, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Payoux, P. [Inserm, Imagerie Cerebrale et Handicaps neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Centre Hospitalier Universitaire de Toulouse, Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Toulouse (France); Service de Medecine Nucleaire, Pole Imagerie, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Chollet, F.; Pariente, J. [Inserm, Imagerie Cerebrale et Handicaps neurologiques UMR 825, Centre Hospitalier Universitaire de Toulouse, Toulouse (France); Centre Hospitalier Universitaire de Toulouse, Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques UMR 825, Toulouse (France); Service de Neurologie, Pole Neurosciences, Centre Hospitalier Universitaire de Toulouse, Toulouse (France)

    2014-05-15

    Florbetapir (AV-45) has been shown to be a reliable tool for assessing in vivo amyloid load in patients with Alzheimer's disease from the early stages. However, nonspecific white matter binding has been reported in healthy subjects as well as in patients with Alzheimer's disease. To avoid this issue, cortical quantification might increase the reliability of AV-45 PET analyses. In this study, we compared two quantification methods for AV-45 binding, a classical method relying on PET template registration (route 1), and a MRI-based method (route 2) for cortical quantification. We recruited 22 patients at the prodromal stage of Alzheimer's disease and 17 matched controls. AV-45 binding was assessed using both methods, and target-to-cerebellum mean global standard uptake values (SUVr) were obtained for each of them, together with SUVr in specific regions of interest. Quantification using the two routes was compared between the clinical groups (intragroup comparison), and between groups for each route (intergroup comparison). Discriminant analysis was performed. In the intragroup comparison, differences in uptake values were observed between route 1 and route 2 in both groups. In the intergroup comparison, AV-45 uptake was higher in patients than controls in all regions of interest using both methods, but the effect size of this difference was larger using route 2. In the discriminant analysis, route 2 showed a higher specificity (94.1 % versus 70.6 %), despite a lower sensitivity (77.3 % versus 86.4 %), and D-prime values were higher for route 2. These findings suggest that, although both quantification methods enabled patients at early stages of Alzheimer's disease to be well discriminated from controls, PET template-based quantification seems adequate for clinical use, while the MRI-based cortical quantification method led to greater intergroup differences and may be more suitable for use in current clinical research. (orig.)

  17. Gas hydrates stability zone thickness map of Indian deep offshore areas - A GIS based approach

    Digital Repository Service at National Institute of Oceanography (India)

    Rastogi, A.; Deka, B.; Bhattacharya, G.C.; Ramprasad, T.; KameshRaju, K.A.; Srinivas, K.; Murty, G.P.S.; Chaubey, A.K.; Ramana, M.V.; Subrahmanyam, V.; Sarma, K.V.L.N.S.; Desa, M.; Paropkari, A.L.; Menezes, A.A.A.; Murty, V.S.N.; Antony, M.K.; SubbaRaju, L.V.; Desa, E.; Veerayya, M.

    hydrate occurrence in offshore regions and around the Indian sub-continent. This was accomplished by estimating the gas hydrate stability zone (GHSZ) thickness from the saptial analysis of the physical parameters that control the formation and stability...

  18. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Biao Li

    2017-01-01

    Full Text Available Thermal barrier coatings (TBCs are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long operation durability, and low fabrication cost. This work developed a procedure for designing the TBCs thickness distribution for the gas turbine blade. Three-dimensional finite element models were built and analyzed, and weighted-sum approach was employed to solve the multiobjective optimization problem herein. Suitable multiregion top-coat thickness distribution scheme was designed with the considerations of manufacturing accuracy, productivity, and fabrication cost.

  19. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    OpenAIRE

    Li, Biao; Fan, Xueling; Li, Dingjun; Jiang, Peng

    2017-01-01

    Thermal barrier coatings (TBCs) are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long op...

  20. A new measurement method of coatings thickness based on lock-in thermography

    Science.gov (United States)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  1. MR-based three-dimensional presentation of cartilage thickness in the femoral head

    International Nuclear Information System (INIS)

    Nakanishi, Katsuyuki; Tanaka, Hisashi; Nakamura, Hironobu; Sato, Yoshinobu; Kubota, Tetsuya; Tamura, Shinichi; Ueguchi, Takashi

    2001-01-01

    The purpose of our study was to visualize the hyaline cartilage of the femoral head and to evaluate the distribution of the thickness by three-dimensional reconstruction of MRI data. The MRI was performed in 10 normal volunteers, 1 patient with osteonecrosis and 4 with advanced osteoarthritis. A fast 3D spoiled gradient-recalled acquisition in the steady state pulse sequence (TR 22 ms/TE 5.6 ms/no. of excitations 2) with fat suppression was used for data collection. Coronal and sagittal images were obtained with 3-mm effective slice thickness, 16-cm field of view (FOV) and 256 x 192 matrix. The MR images were reconstructed in three dimensions for evaluating the distribution of the cartilage thickness. In all normal volunteers, 1 patient with osteonecrosis and three advanced osteoarthritis, 3D reconstruction was successful, but in 1 case of osteoarthritis, 3D reconstruction failed because of the narrow joint space. In normal volunteers, the cartilage thickness is thickest in the central portion around the ligamentum teres (mean 2.8 mm). The medial portion and the lateral portion are almost of the same thickness (medial 1.3 mm, lateral 1.1 mm). In 3 cases of osteoarthritis, the cartilage became thinner in the lateral portions (<0.6 mm), but was unchanged in the central and medial portions. Three-dimensional reconstruction of MRI data is useful for evaluating the distribution of the cartilage thickness of the femoral head objectively. (orig.)

  2. Investigation of top electrode for PZT thick films based MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Kristiansen, Paw T.

    2010-01-01

    In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 mu m. Three test structures are used...... to investigate the optimal thickness of the top electrode, the degradation of the piezoelectric properties of the PZT film in absence of a diffusion barrier layer and finally how to fabricate electrical interconnects down the edge of the PZT thick film. The roughness of the PZT is found to have a strong...... influence on the conductance of the top electrode influencing the optimal top electrode thickness. A 100 nm thick top electrode on the PZT thick film with a surface roughness of 273 nm has a 4.5 times higher resistance compared to a similar wire on a planar SiO2 surface which has a surface roughness of less...

  3. MR-based three-dimensional presentation of cartilage thickness in the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Katsuyuki [Dept. of Radiology, Osaka Seamen' s Insurance Hospital (Japan); Tanaka, Hisashi; Nakamura, Hironobu [Osaka Univ. (Japan). Dept. of Radiology; Sugano, Nobuhiko [Dept. of Orthopedic Surgery, Osaka University Medical School (Japan); Sato, Yoshinobu; Kubota, Tetsuya; Tamura, Shinichi [Div. of Functional Imaging, Osaka University Medical School (Japan); Ueguchi, Takashi [Dept. of Radiology, Osaka University Medical Hospital (Japan)

    2001-11-01

    The purpose of our study was to visualize the hyaline cartilage of the femoral head and to evaluate the distribution of the thickness by three-dimensional reconstruction of MRI data. The MRI was performed in 10 normal volunteers, 1 patient with osteonecrosis and 4 with advanced osteoarthritis. A fast 3D spoiled gradient-recalled acquisition in the steady state pulse sequence (TR 22 ms/TE 5.6 ms/no. of excitations 2) with fat suppression was used for data collection. Coronal and sagittal images were obtained with 3-mm effective slice thickness, 16-cm field of view (FOV) and 256 x 192 matrix. The MR images were reconstructed in three dimensions for evaluating the distribution of the cartilage thickness. In all normal volunteers, 1 patient with osteonecrosis and three advanced osteoarthritis, 3D reconstruction was successful, but in 1 case of osteoarthritis, 3D reconstruction failed because of the narrow joint space. In normal volunteers, the cartilage thickness is thickest in the central portion around the ligamentum teres (mean 2.8 mm). The medial portion and the lateral portion are almost of the same thickness (medial 1.3 mm, lateral 1.1 mm). In 3 cases of osteoarthritis, the cartilage became thinner in the lateral portions (<0.6 mm), but was unchanged in the central and medial portions. Three-dimensional reconstruction of MRI data is useful for evaluating the distribution of the cartilage thickness of the femoral head objectively. (orig.)

  4. Thermoelectric Mixed Thick-/Thin Film Microgenerators Based on Constantan/Silver

    Directory of Open Access Journals (Sweden)

    Mirosław Gierczak

    2018-01-01

    Full Text Available This paper describes the design, manufacturing and characterization of newly developed mixed thick-/thin film thermoelectric microgenerators based on magnetron sputtered constantan (copper-nickel alloy and screen-printed silver layers. The thermoelectric microgenerator consists of sixteen thermocouples made on a 34.2 × 27.5 × 0.25 mm3 alumina substrate. One of thermocouple arms was made of magnetron-sputtered constantan (Cu-Ni alloy, the second was a Ag-based screen-printed film. The length of each thermocouple arm was equal to 27 mm, and their width 0.3 mm. The distance between the arms was equal to 0.3 mm. In the first step, a pattern mask with thermocouples was designed and fabricated. Then, a constantan layer was magnetron sputtered over the whole substrate, and a photolithography process was used to prepare the first thermocouple arms. The second arms were screen-printed onto the substrate using a low-temperature silver paste (Heraeus C8829A or ElectroScience Laboratories ESL 599-E. To avoid oxidation of constantan, they were fired in a belt furnace in a nitrogen atmosphere at 550/450 °C peak firing temperature. Thermoelectric and electrical measurements were performed using the self-made measuring system. Two pyrometers included into the system were used for temperature measurement of hot and cold junctions. The estimated Seebeck coefficient, α was from the range 35 − 41 µV/K, whereas the total internal resistances R were between 250 and 3200 ohms, depending on magnetron sputtering time and kind of silver ink (the resistance of a single thermocouple was between 15.5 and 200 ohms.

  5. Macroanatomical Landmarks Featuring Junctions of Major Sulci and Fissures and Scalp Landmarks Based on the International 10–10 System for Analyzing Lateral Cortical Development of Infants

    Directory of Open Access Journals (Sweden)

    Daisuke Tsuzuki

    2017-07-01

    Full Text Available The topographic relationships between the macroanatomical structure of the lateral cortex, including sulci and fissures, and anatomical landmarks on the external surface of the head are known to be consistent. This allows the coregistration of EEG electrodes or functional near-infrared spectroscopy over the scalp with underlying cortical regions. However, limited information is available as to whether the topographic relationships are maintained in rapidly developing infants, whose brains and heads exhibit drastic growth. We used MRIs of infants ranging in age from 3 to 22 months old, and identified 20 macroanatomical landmarks, featuring the junctions of major sulci and fissures, as well as cranial landmarks and virtually determined positions of the international 10-20 and 10-10 systems. A Procrustes analysis revealed developmental trends in changes of shape in both the cortex and head. An analysis of Euclidian distances between selected pairs of cortical landmarks at standard stereotactic coordinates showed anterior shifts of the relative positions of the premotor and parietal cortices with age. Finally, cortical landmark positions and their spatial variability were compared with 10-10 landmark positions. The results indicate that variability in the distribution of each macroanatomical landmark was much smaller than the pitch of the 10-10 landmarks. This study demonstrates that the scalp-based 10-10 system serves as a good frame of reference in infants not only for assessing the development of the macroanatomy of the lateral cortical structure, but also for functional studies of cortical development using transcranial modalities such as EEG and fNIRS.

  6. Antarctic ice sheet thickness estimation based on P-receiver function and waveform inversion

    Science.gov (United States)

    Yan, P.; Li, F.; LI, Z.; Li, J.; Yang, Y.; Hao, W.

    2016-12-01

    Antarctic ice sheet thickness is key parameter and boundary condition for ice sheet model construction, which has great significance for glacial isostatic adjustment, ice sheet mass balance and global change study. Ice thickness acquired utilizing seismological receiver function method can complement and verify with results obtained by radar echo sounding method. In this paper, P-receiver functions(PRFs) are extracted for stations deployed on Antarctic ice sheet, then Vp/Vs ratio and ice thickness are obtained using H-Kappa stacking. Comparisons are made between Bedmap2 dataset and the ice thickness from PRFs, most of the absolute value of the differences are less than 200 meters, only a few reach 600 meters. Taking into account of the intensity of Bedmap2 dataset survey lines and the uncertainty of radio echo sounding, as well as the inherit complexity of the internal ice structure beneath some stations, the ice thickness obtained from receiver function method is reliable. However limitation exists when using H-Kappa stacking method for stations where sediment squeezed between the ice and the bed rock layer. For better verifying the PRF result, a global optimizing method-Neighbourhood algotithm(NA) and spline interpolation are used to modeling PRFs assuming an isotropic layered ice sheet with depth varied densities and velocities beneath the stations. Then the velocity structure and ice sheet thickness are obtained through nonlinear searching by optimally fitting the real and the theoretical PRFs. The obtained ice sheet thickness beneath the stations agree well with the former H-Kappa method, but further detailed study are needed to constrain the inner ice velocity structure.

  7. Influence of emissive layer thickness on electrical characteristics of polyfluorene copolymer based polymer light emitting diodes

    International Nuclear Information System (INIS)

    Das, D; Gopikrishna, P; Singh, A; Dey, A; Iyer, P K

    2016-01-01

    Polymer light emitting diodes (PLEDs) with a device configuration of ITO/PEDOT:PSS/PFONPN01 [Poly [2,7-(9,9’-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)]/LiF/Al have been fabricated by varying the emissive layer (EML) thickness (40/65/80/130 nm) and the influence of EML thickness on the electrical characteristics of PLED has been studied. PLED can be modelled as a simple combination of resistors and capacitors. The impedance spectroscopy analysis showed that the devices with different EML thickness had different values of parallel resistance (R P ) and the parallel capacitance (C P ). The impedance of the devices is found to increase with increasing EML thickness resulting in an increase in the driving voltage. The device with an emissive layer thickness of 80nm, spin coated from a solution of concentration 15 mg/mL is found to give the best device performance with a maximum brightness value of 5226 cd/m 2 . (paper)

  8. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, A.B.; Rohde, C.A.; Ho, Cheng

    2001-01-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  9. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    Science.gov (United States)

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Detecting overweight and obesity among young Syrian boys based on skinfold thickness

    Directory of Open Access Journals (Sweden)

    Al-Bachir Mahfouz

    2016-03-01

    Full Text Available There is no data on the prevalence of overweight and obesity in young Syrian boys. Therefore, the present study aimed to provide baseline and reference data on the prevalence of overweight and obesity among young Syrian boys using skin-fold thickness measurements and deuterium dilution (DD as a reference method. The sample of 2470 healthy Syrian 18- to 19-year-old boys were enrolled in this study. SFTs were measured at the biceps (B, triceps (T, subscapular (SI and suprailiac locations (SS were done and validated using the DD technique as a reference method. Receiver operating characteristics (ROC curve was drawn to determine appropriate cut-off points of the Σ2 limb SFT (T+B, Σ2 trunk SFT (SI+SS, Σ4 SFT (T+B+SI+SS and Log Σ4 SFT for defining overweight and obesity. The overall prevalence of overweight and obesity in young Syrian boys, based on biceps SFT, triceps SFT, subscapular SFT, suprailiac SFT, Σ2 limb SFT, Σ2 trunk SFT, Σ4 SFT, logarithm Σ4 SFT, and DDT were 35.3%, 32%, 31.6%, 14.8%, 32.9%, 26.6%, 28.1%, 24.1%, 46.5%, respectively. Strongly positive correlation was found between SFT and total body fat in adolescents. For diagnosing overweight on the basis of Σ2 limb SFT, Σ2 trunk SFT, Σ4 SFT and logarithm Σ4 SFT, we propose the following cut-off points: 17.25 mm, 23.50 mm, 39.25 mm and 1.60, respectively. To predict obesity, Σ2 limb SFT, Σ2 trunk SFT, Σ4 SFT and logarithm Σ4 SFT threshold were increased to 23.25 mm, 32.50 mm, 55.25 and 1.75, respectively. Basing on SFT clearly leads to underestimates of the prevalence of weight problems among young boys. SFT measurement screen missed 11.2 to 31.7% of overall overweight and obesity cases.

  11. Homogeneity analysis of high yield manufacturing process of mems-based pzt thick film vibrational energy harvesters

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Pedersen, C.M.

    2011-01-01

    This work presents a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibrational energy harvesters aimed towards vibration sources with peak frequencies in the range of a few hundred Hz. By combining KOH etching with mechanical front side protection, SOI wafer...... to accurately define the thickness of the silicon part of the harvester and a silicon compatible PZT thick film screen-printing technique, we are able to fabricate energy harvesters on wafer scale with a yield higher than 90%. The characterization of the fabricated harvesters is focused towards the full wafer....../mass-production aspect; hence the analysis of uniformity in harvested power and resonant frequency....

  12. Aggrecan-based extracellular matrix shows unique cortical features and conserved subcortical principles of mammalian brain organization in the Madagascan lesser hedgehog tenrec (Echinops telfairi Martin, 1838).

    Science.gov (United States)

    Morawski, M; Brückner, G; Jäger, C; Seeger, G; Künzle, H; Arendt, T

    2010-02-03

    The Madagascan tenrecs (Afrotheria), an ancient mammalian clade, are characterized by unique brain anatomy. Striking features are an expanded paleocortex but a small and poorly differentiated neocortex devoid of a distinct granular layer IV. To investigate the organization of cortical areas we analyzed extracellular matrix components in perineuronal nets (PNs) using antibodies to aggrecan, lectin staining and hyaluronan-binding protein. Selected subcortical regions were studied to correlate the cortical patterns with features in evolutionary conserved systems. In the neocortex, paleocortex and hippocampus PNs were associated with nonpyramidal neurons. Quantitative analysis in the cerebral cortex revealed area-specific proportions and laminar distribution patterns of neurons ensheathed by PNs. Cortical PNs showed divergent structural phenotypes. Diffuse PNs forming a cotton wool-like perisomatic rim were characteristic of the paleocortex. These PNs were associated with a dense pericellular plexus of calretinin-immunoreactive fibres. Clearly contoured PNs were devoid of a calretinin-positive plexus and predominated in the neocortex and hippocampus. The organization of the extracellular matrix in subcortical nuclei followed the widely distributed mammalian type. We conclude that molecular properties of the aggrecan-based extracellular matrix are conserved during evolution of mammals; however, the matrix scaffold is adapted to specific wiring patterns of cortical and subcortical neuronal networks. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  14. Are Cortical Motor Maps Based on Body Parts or Coordinated Actions? Implications for Embodied Semantics

    Science.gov (United States)

    Fernandino, Leonardo; Iacoboni, Marco

    2010-01-01

    The embodied cognition approach to the study of the mind proposes that higher order mental processes such as concept formation and language are essentially based on perceptual and motor processes. Contrary to the classical approach in cognitive science, in which concepts are viewed as amodal, arbitrary symbols, embodied semantics argues that…

  15. Relation between film thickness and surface doping of MoS2 based field effect transistors

    Science.gov (United States)

    Lockhart de la Rosa, César J.; Arutchelvan, Goutham; Leonhardt, Alessandra; Huyghebaert, Cedric; Radu, Iuliana; Heyns, Marc; De Gendt, Stefan

    2018-05-01

    Ultra-thin MoS2 film doping through surface functionalization with physically adsorbed species is of great interest due to its ability to dope the film without reduction in the carrier mobility. However, there is a need for understanding how the thickness of the MoS2 film is related to the induced surface doping for improved electrical performance. In this work, we report on the relation of MoS2 film thickness with the doping effect induced by the n-dopant adsorbate poly(vinyl-alcohol). Field effect transistors built using MoS2 films of different thicknesses were electrically characterized, and it was observed that the ION/OFF ratio after doping in thin films is more than four orders of magnitudes greater when compared with thick films. Additionally, a semi-classical model tuned with the experimental devices was used to understand the spatial distribution of charge in the channel and explain the observed behavior. From the simulation results, it was revealed that the two-dimensional carrier density induced by the adsorbate is distributed rather uniformly along the complete channel for thin films (<5.2 nm) contrary to what happens for thicker films.

  16. Automated CBED processing: sample thickness estimation based on analysis of zone-axis CBED pattern

    Czech Academy of Sciences Publication Activity Database

    Klinger, Miloslav; Němec, Martin; Polívka, Leoš; Gärtnerová, Viera; Jäger, Aleš

    2015-01-01

    Roč. 150, Mar (2015), s. 88-95 ISSN 0304-3991 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : TEM * CBED * thickness estimation * zone axis * computer vision * automatization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.874, year: 2015

  17. E2CAV, Pavement layer thickness estimation system based on image texture operators

    Directory of Open Access Journals (Sweden)

    Brayan Barrios Arcila

    2017-01-01

    Full Text Available Context: Public roads are an essential part of economic progress in any country; they are fundamental for increasing the efficiency on transportation of goods and are a remarkable source of employment. For its part, Colombia has few statistics on the condition of its roads; according with INVIAS the state of the roads in Colombia can be classified as “Very Good” (21.1%, “Good” (34.7%, and “Regular” or “Bad” (43.46%. Thus, from the point of view of pavement rehabilitation, it is worth securing the quality of those roads classified as “Regular” or “Bad”. Objective: In this paper we propose a system to estimate the thickness of the pavement layer using image segmentation methods. The pavement thickness is currently estimated using radars of terrestrial penetration, extraction of cores or making pips; and it is part of structural parameters in the systems of evaluation of pavement. Method: The proposed system is composed of a vertical movement control unit, which introduces a video scope into a small hole in the pavement, then the images are obtained and unified in a laptop. Finally, this mosaic is processed through texture operators to estimate the thickness of the pavement. Users can select between the Otsu method and Gabor filters to process the image data. Results: The results include laboratory and field tests; these tests show errors of 5.03% and 11.3%, respectively, in the thickness of the pavement. Conclusion: The proposed system is an attractive option for local estimation of pavement thickness, with minimal structural damage and less impact on mobility and number of operators.

  18. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  19. Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection

    Directory of Open Access Journals (Sweden)

    Sanggyun Lee

    2016-08-01

    Full Text Available Satellite altimeters have been used to monitor Arctic sea ice thickness since the early 2000s. In order to estimate sea ice thickness from satellite altimeter data, leads (i.e., cracks between ice floes should first be identified for the calculation of sea ice freeboard. In this study, we proposed novel approaches for lead detection using two machine learning algorithms: decision trees and random forest. CryoSat-2 satellite data collected in March and April of 2011–2014 over the Arctic region were used to extract waveform parameters that show the characteristics of leads, ice floes and ocean, including stack standard deviation, stack skewness, stack kurtosis, pulse peakiness and backscatter sigma-0. The parameters were used to identify leads in the machine learning models. Results show that the proposed approaches, with overall accuracy >90%, produced much better performance than existing lead detection methods based on simple thresholding approaches. Sea ice thickness estimated based on the machine learning-detected leads was compared to the averaged Airborne Electromagnetic (AEM-bird data collected over two days during the CryoSat Validation experiment (CryoVex field campaign in April 2011. This comparison showed that the proposed machine learning methods had better performance (up to r = 0.83 and Root Mean Square Error (RMSE = 0.29 m compared to thickness estimation based on existing lead detection methods (RMSE = 0.86–0.93 m. Sea ice thickness based on the machine learning approaches showed a consistent decline from 2011–2013 and rebounded in 2014.

  20. Changes in Thickness and Surface Area of the Human Cortex and Their Relationship with Intelligence

    NARCIS (Netherlands)

    Schnack, H.G.; van Haren, N.E.M.; Brouwer, R.M.; Evans, A.; Durston, S.; Boomsma, D.I.; Kahn, R.S.; Hulshoff Pol, H.E.

    2015-01-01

    Changes in cortical thickness over time have been related to intelligence, but whether changes in cortical surface area are related to general cognitive functioning is unknown. We therefore examined the relationship between intelligence quotient (IQ) and changes in cortical thickness and surface

  1. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    Science.gov (United States)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-06-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  2. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    International Nuclear Information System (INIS)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-01-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component

  3. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, B. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, P.B. 65 00044 Frascati, Roma (Italy)]. E-mail: riccardi@frascati.enea.it; Montanari, R. [Dipartimento di Ingegneria Meccanica, Universita di Roma, Tor Vergata, 00133 Roma (Italy); Casadei, M. [Centro Sviluppo Materiali, 00100 Roma (Italy); Costanza, G. [Dipartimento di Ingegneria Meccanica, Universita di Roma, Tor Vergata, 00133 Roma (Italy); Filacchioni, G. [ENEA CR Casaccia, I-00060 S. M. di Galeria, Roma (Italy); Moriani, A. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, P.B. 65 00044 Frascati, Roma (Italy)

    2006-06-30

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  4. Influence of increment thickness on dentin bond strength and light transmission of composite base materials.

    Science.gov (United States)

    Omran, Tarek A; Garoushi, Sufyan; Abdulmajeed, Aous A; Lassila, Lippo V; Vallittu, Pekka K

    2017-06-01

    Bulk-fill resin composites (BFCs) are gaining popularity in restorative dentistry due to the reduced chair time and ease of application. This study aimed to evaluate the influence of increment thickness on dentin bond strength and light transmission of different BFCs and a new discontinuous fiber-reinforced composite. One hundred eighty extracted sound human molars were prepared for a shear bond strength (SBS) test. The teeth were divided into four groups (n = 45) according to the resin composite used: regular particulate filler resin composite: (1) G-ænial Anterior [GA] (control); bulk-fill resin composites: (2) Tetric EvoCeram Bulk Fill [TEBF] and (3) SDR; and discontinuous fiber-reinforced composite: (4) everX Posterior [EXP]. Each group was subdivided according to increment thickness (2, 4, and 6 mm). The irradiance power through the material of all groups/subgroups was quantified (MARC® Resin Calibrator; BlueLight Analytics Inc.). Data were analyzed using two-way ANOVA followed by Tukey's post hoc test. SBS and light irradiance decreased as the increment's height increased (p composite used. EXP presented the highest SBS in 2- and 4-mm-thick increments when compared to other composites, although the differences were not statistically significant (p > 0.05). Light irradiance mean values arranged in descending order were (p composites. Discontinuous fiber-reinforced composite showed the highest value of curing light transmission, which was also seen in improved bonding strength to the underlying dentin surface. Discontinuous fiber-reinforced composite can be applied safely in bulks of 4-mm increments same as other bulk-fill composites, although, in 2-mm thickness, the investigated composites showed better performance.

  5. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.

    Science.gov (United States)

    Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael

    2013-01-16

    One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.

  6. Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study.

    Science.gov (United States)

    Palaniyappan, Lena; Hodgson, Olha; Balain, Vijender; Iwabuchi, Sarina; Gowland, Penny; Liddle, Peter

    2018-05-06

    In patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation. Structural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework. Patients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls. Regional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional 'hub' regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.

  7. Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis

    Science.gov (United States)

    Degenhart, Alan D.; Hiremath, Shivayogi V.; Yang, Ying; Foldes, Stephen; Collinger, Jennifer L.; Boninger, Michael; Tyler-Kabara, Elizabeth C.; Wang, Wei

    2018-04-01

    Objective. Brain-computer interface (BCI) technology aims to provide individuals with paralysis a means to restore function. Electrocorticography (ECoG) uses disc electrodes placed on either the surface of the dura or the cortex to record field potential activity. ECoG has been proposed as a viable neural recording modality for BCI systems, potentially providing stable, long-term recordings of cortical activity with high spatial and temporal resolution. Previously we have demonstrated that a subject with spinal cord injury (SCI) could control an ECoG-based BCI system with up to three degrees of freedom (Wang et al 2013 PLoS One). Here, we expand upon these findings by including brain-control results from two additional subjects with upper-limb paralysis due to amyotrophic lateral sclerosis and brachial plexus injury, and investigate the potential of motor and somatosensory cortical areas to enable BCI control. Approach. Individuals were implanted with high-density ECoG electrode grids over sensorimotor cortical areas for less than 30 d. Subjects were trained to control a BCI by employing a somatotopic control strategy where high-gamma activity from attempted arm and hand movements drove the velocity of a cursor. Main results. Participants were capable of generating robust cortical modulation that was differentiable across attempted arm and hand movements of their paralyzed limb. Furthermore, all subjects were capable of voluntarily modulating this activity to control movement of a computer cursor with up to three degrees of freedom using the somatotopic control strategy. Additionally, for those subjects with electrode coverage of somatosensory cortex, we found that somatosensory cortex was capable of supporting ECoG-based BCI control. Significance. These results demonstrate the feasibility of ECoG-based BCI systems for individuals with paralysis as well as highlight some of the key challenges that must be overcome before such systems are translated to the clinical

  8. A low-cost photovoltaic cell process based on thick film techniques

    Science.gov (United States)

    Mardesich, N.; Pepe, A.; Bunyan, S.; Edwards, B.; Olson, C.

    1980-01-01

    The low-cost, easily automated processing for solar cell fabrication being developed at Spectrolab for the DOE LSA program is described. These processes include plasma-etching, spray-on diffusion sources and antireflective coating, thick film metallization, aluminum back contacts, laser scribing and ultrasonic soldering. The process sequence has been shown to produce solar cells having 15% conversion efficiency at AM1 which meet the cell fabrication budget required for the DOE 1986 cost goal of $0.70 per peak watt in 1980.

  9. Gene-Based Analysis of Regionally Enriched Cortical Genes in GWAS Data Sets of Cognitive Traits and Psychiatric Disorders

    DEFF Research Database (Denmark)

    Ersland, Kari M; Christoforou, Andrea; Stansberg, Christine

    2012-01-01

    the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n...

  10. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  11. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  12. Automatic, ECG-based detection of autonomic arousals and their association with cortical arousals, leg movements, and respiratory events in sleep

    DEFF Research Database (Denmark)

    Olsen, Mads; Schneider, Logan Douglas; Cheung, Joseph

    2018-01-01

    The current definition of sleep arousals neglects to address the diversity of arousals and their systemic cohesion. Autonomic arousals (AA) are autonomic activations often associated with cortical arousals (CA), but they may also occur in isolation in relation to a respiratory event, a leg movement...... event or spontaneously, without any other physiological associations. AA should be acknowledged as essential events to understand and explore the systemic implications of arousals. We developed an automatic AA detection algorithm based on intelligent feature selection and advanced machine learning using...... or respiratory events. This indicates that most FP constitute autonomic activations that are indistinguishable from those with cortical cohesion. The proposed algorithm provides an automatic system trained in a clinical environment, which can be utilized to analyse the systemic and clinical impacts of arousals....

  13. Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jian; Kang, Joohoon; Kang, Junmo; Jariwala, Deep; Wood, Joshua D.; Seo, Jung-Woo T.; Chen, Kan-Sheng; Marks, Tobin J.; Hersam, Mark C.

    2015-10-14

    Gate dielectrics directly affect the mobility, hysteresis, power consumption, and other critical device metrics in high-performance nanoelectronics. With atomically flat and dangling bond-free surfaces, hexagonal boron nitride (h-BN) has emerged as an ideal dielectric for graphene and related two-dimensional semiconductors. While high-quality, atomically thin h-BN has been realized via micromechanical cleavage and chemical vapor deposition, existing liquid exfoliation methods lack sufficient control over h-BN thickness and large-area film quality, thus limiting its use in solution-processed electronics. Here, we employ isopycnic density gradient ultracentrifugation for the preparation of monodisperse, thickness-sorted h-BN inks, which are subsequently layer-by-layer assembled into ultrathin dielectrics with low leakage currents of 3 × 10–9 A/cm2 at 2 MV/cm and high capacitances of 245 nF/cm2. The resulting solution-processed h-BN dielectric films enable the fabrication of graphene field-effect transistors with negligible hysteresis and high mobilities up to 7100 cm2 V–1 s–1 at room temperature. These h-BN inks can also be used as coatings on conventional dielectrics to minimize the effects of underlying traps, resulting in improvements in overall device performance. Overall, this approach for producing and assembling h-BN dielectric inks holds significant promise for translating the superlative performance of two-dimensional heterostructure devices to large-area, solution-processed nanoelectronics.

  14. Improving prediction of Alzheimer’s disease using patterns of cortical thinning and homogenizing images according to disease stage

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Coupé, Pierrick; García-Lorenzo, Daniel

    Predicting Alzheimer’s disease (AD) in individuals with some symptoms of cognitive decline may have great influence on treatment choice and guide subject selection in trials on disease modifying drugs. Structural MRI has the potential of revealing early signs of neurodegeneration in the human brain...... and may thus aid in predicting and diagnosing AD. Surface-based cortical thickness measurements from T1-weighted MRI have demonstrated high sensitivity to cortical gray matter changes. In this study, we investigated the possibility of using patterns of cortical thickness measurements for predicting AD...... of conversion from MCI to AD can be improved by learning the atrophy patterns that are specific to the different stages of disease progression. This has the potential to guide the further development of imaging biomarkers in AD....

  15. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  16. Thick Toenails

    Science.gov (United States)

    ... in individuals with nail fungus (onychomycosis), psoriasis and hypothyroidism. Those who have problems with the thickness of their toenails should consult a foot and ankle surgeon for proper diagnosis and treatment. Find an ACFAS Physician Search Search Tools Find ...

  17. The cortical signature of impaired gesturing: Findings from schizophrenia

    Directory of Open Access Journals (Sweden)

    Petra Verena Viher

    2018-01-01

    Full Text Available Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network.

  18. Sport-based physical activity recommendations and modifications in C-reactive protein and arterial thickness.

    Science.gov (United States)

    Cayres, Suziane Ungari; de Lira, Fabio Santos; Kemper, Han C G; Codogno, Jamile Sanches; Barbosa, Maurício Fregonesi; Fernandes, Romulo Araújo

    2018-04-01

    We analyzed the effects of 1 year of engagement in ≥ 300 min/week of organized sports on inflammatory levels and vascular structure in adolescents. The sample was composed of 89 adolescents (11.6 ± 0.7 years old [43 boys and 46 girls]), stratified according to engagement in ≥ 300 min/week of sport practice during at least 12 months of follow-up (n = 15, sport practice; n = 74, non-sport practice). Arterial thickness (carotid and femoral) was assessed by ultrasound scan, while high sensitive C-reactive protein levels were used to assess inflammatory status. Trunk fatness (densitometry scanner), biological maturation (age at peak height velocity), blood pressure, and skipping breakfast were treated as covariates. Independently of body fatness and biological maturation, the group engaged in sports presented a higher reduction in C-reactive protein (mean difference -1.559 mg/L [95%CI -2.539 to -0.579]) than the non-sport group (mean difference -0.414 mg/L [95%CI -0.846 to 0.017]) (p = 0.040). There was a significant relationship between changes in C-reactive protein and changes in femoral intima-media thickness in the non-sport group (r = 0.311 [95%CI 0.026 to 0.549]). Inflammation decreased in adolescents engaged in organized sports, independently of trunk fatness and biological maturation. Moreover, inflammation was related to arterial thickening only in adolescents not engaged in sports. What is Known: • Intima media thickness is a relevant marker of cardiovascular disease in pediatric groups, being affected by obesity and inflammation. • The importance of monitoring inflammatory markers from childhood is enhanced by the fact that alterations in these inflammatory markers in early life predict inflammation and alterations in carotid IMT in adulthood. What is New: • Anti-inflammatory properties related to physical exercise performed at moderate intensity, on inflammation and alterations in IMT are not clear in pediatric

  19. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    Science.gov (United States)

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  20. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode

    International Nuclear Information System (INIS)

    Tran, Binh; Oladeji, Isaiah O.; Wang, Zedong; Calderon, Jean; Chai, Guangyu; Atherton, David; Zhai, Lei

    2013-01-01

    We report the first fully compressed Li 4 Ti 5 O 12 electrode designed by an aqueous process. An adhesive, elastomeric, and lithium ion conductive PEG-based copolymer is used as a binder for the aqueous fabrication thick, flexible, and densely packed Li 4 Ti 5 O 12 (LTO) electrodes. Self-adherent cathode films exceeding 200 μm in thickness and withholding high active mass loadings of 28 mg/cm 2 deliver 4.2 mAh/cm 2 at C/2 rate. Structurally defect-free electrodes are fabricated by casting aqueous cathode slurries onto nickel foam, dried, and hard-calendared at 10 tons/cm 2 . As a multifunctional material, the binder is synthesized by the copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), methyl methacrylate (MMA), and isobutyl vinyl ether (IBVE) in optimal proportions. Furthermore, coordinating the binder with lithium salt is necessary for the electrode to function

  1. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film.

    Science.gov (United States)

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K Kirk

    2016-03-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d 33 = 270pC/N and k t = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  2. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Directory of Open Access Journals (Sweden)

    Benpeng Zhu

    2016-03-01

    Full Text Available Single-beam acoustic tweezers (SBAT, used in laboratory-on-a-chip (LOC device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51 was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9, demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  3. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Benpeng, E-mail: benpengzhu@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiong; Yang, Xiaofei [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Ying; Lee, Changyang; Zhou, Qifa; Shung, K. Kirk [Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089-1111 (United States); Wang, Tian; Xiong, Ke [Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072 (China); Shiiba, Michihisa; Takeuchi, Shinichi [Medical Engineering Course, Graduate School of Engineering, Toin University of Yokohama, Yokohama 225-8501 (Japan)

    2016-03-15

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d{sub 33} = 270 pC/N and k{sub t} = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50 MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  4. Cortical Thinning and Clinical Heterogeneity in Amyotrophic Lateral Sclerosis

    OpenAIRE

    Mezzapesa, Domenico Maria; D?Errico, Eustachio; Tortelli, Rosanna; Distaso, Eugenio; Cortese, Rosa; Tursi, Marianna; Federico, Francesco; Zoccolella, Stefano; Logroscino, Giancarlo; Dicuonzo, Franca; Simone, Isabella Laura

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients in...

  5. Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors

    International Nuclear Information System (INIS)

    Pike, G.E.; Seager, C.H.

    1977-01-01

    This paper presents an experimental study of the electrical conduction mechanisms in thick-film (cermet) resistor. The resistors were made from one custom and three commercially formulated inks with sheet resistivities ranging from 10 2 to 10 6 Ω/D 7 Alembertian in decade increments. Their microstructure and composition have been examined using optical and scanning electron microscopy, electron microprobe analysis, x-ray diffraction, and various chemical analyses. This portion of our study shows that the resistors are heterogeneous mixtures of metallic metal oxide particles (approx.4 x 10 -5 cm in diameter) and a lead silicate glass. The metal oxide particles are ruthenium containing pyrochlores, and are joined to form a continuous three-dimensional network of chain segments. The principal experimental work reported here is an extensive study of the electrical transport properties of the resistors. The temperature dependence of conductance has been measured from 1.2 to 400 K, and two features common to all resistors are found. There is a pronounced decrease in conductance at low temperatures and a shallow maximum at several hundred Kelvin. Within the same range of temperatures the reversible conductance as a function of electric field from 0 to 28 kV/cm has been studied. The resistors are non-Ohmic at all temperatures, but particularly at cryogenic temperatures for low fields. At higher fields the conductance shows a linear variation with electric field. The thick-film resistors are found to have a small dielectric constant and a (nearly) frequency-independent conductance from dc to 50 MHz. The magnetoresistance to 100 kG, the Hall mobility, and the Seebeck coefficient of most of the resistors have been measured and discovered to be quite small. Many of the electrical transport properties have also been determined for the metal oxide particles which were extracted from the fired resistors

  6. Brain cortical characteristics of lifetime cognitive ageing.

    Science.gov (United States)

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  7. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  8. Inattention Predicts Increased Thickness of Left Occipital Cortex in Men with Attention-Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Peter Sörös

    2017-09-01

    Full Text Available BackgroundAttention-deficit/hyperactivity disorder (ADHD in adulthood is a serious and frequent psychiatric disorder with the core symptoms inattention, impulsivity, and hyperactivity. The principal aim of this study was to investigate associations between brain morphology, i.e., cortical thickness and volumes of subcortical gray matter, and individual symptom severity in adult ADHD.MethodsSurface-based brain morphometry was performed in 35 women and 29 men with ADHD using FreeSurfer. Linear regressions were calculated between cortical thickness and the volumes of subcortical gray matter and the inattention, hyperactivity, and impulsivity subscales of the Conners Adult ADHD Rating Scales (CAARS. Two separate analyses were performed. For the first analysis, age was included as additional regressor. For the second analysis, both age and severity of depression were included as additional regressors. Study participants were recruited between June 2012 and January 2014.ResultsLinear regression identified an area in the left occipital cortex of men, covering parts of the middle occipital sulcus and gyrus, in which the score on the CAARS inattention subscale predicted increased mean cortical thickness [F(1,27 = 26.27, p < 0.001, adjusted R2 = 0.4744]. No significant associations were found between cortical thickness and the scores on CAARS subscales in women. No significant associations were found between the volumes of subcortical gray matter and the scores on CAARS subscales, neither in men nor in women. These results remained stable when severity of depression was included as additional regressor, together with age.ConclusionIncreased cortical thickness in the left occipital cortex may represent a mechanism to compensate for dysfunctional attentional networks in male adult ADHD patients.

  9. Discrepancy between perceived pain and cortical processing: A voxel-based morphometry and contact heat evoked potential study.

    Science.gov (United States)

    Kramer, J L K; Jutzeler, C R; Haefeli, J; Curt, A; Freund, P

    2016-01-01

    The purpose of this study was to determine if local gray and white matter volume variations between subjects could account for variability in responses to CHEP stimulation. Structural magnetic resonance imaging was used to perform voxel-based morphometry (VBM) of gray and white matter in 30 neurologically healthy subjects. Contact heat stimulation was performed on the dorsum of the right hand at the base of the thumb. Evoked potentials were acquired from a vertex-recording electrode referenced to linked ears. Controlling for age, total intracranial volume, and skull/scalp thickness, CHEP amplitude and pain rating were not significantly correlated between subjects. A VBM region of interest approach demonstrated a significant interaction between pain rating and N2 amplitude in the right insular cortex (ppain rating. This finding suggests that the discrepancy between pain ratings and the amplitude of evoked potentials is not solely related to measurement artifact, but rather attributable, in part, to anatomical differences between subjects. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Flow visualization over a thick blunt trailing-edge airfoil with base cavity at low Reynolds numbers using PIV technique.

    Science.gov (United States)

    Taherian, Gholamhossein; Nili-Ahmadabadi, Mahdi; Karimi, Mohammad Hassan; Tavakoli, Mohammad Reza

    2017-01-01

    In this study, the effect of cutting the end of a thick airfoil and adding a cavity on its flow pattern is studied experimentally using PIV technique. First, by cutting 30% chord length of the Riso airfoil, a thick blunt trialing-edge airfoil is generated. The velocity field around the original airfoil and the new airfoil is measured by PIV technique and compared with each other. Then, adding two parallel plates to the end of the new airfoil forms the desired cavity. Continuous measurement of unsteady flow velocity over the Riso airfoil with thick blunt trailing edge and base cavity is the most important innovation of this research. The results show that cutting off the end of the airfoil decreases the wake region behind the airfoil, when separation occurs. Moreover, adding a cavity to the end of the thickened airfoil causes an increase in momentum and a further decrease in the wake behind the trailing edge that leads to a drag reduction in comparison with the thickened airfoil without cavity. Furthermore, using cavity decreases the Strouhal number and vortex shedding frequency.

  11. Multi-layer thickness determination using differential-based enhanced Fourier transforms of X-ray reflectivity data

    Energy Technology Data Exchange (ETDEWEB)

    Poust, Benjamin [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States); Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sandhu, Rajinder [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Goorsky, Mark [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)

    2009-08-15

    Layer thickness determination of single and multi-layer structures is achieved using a new method for generating Fourier transforms (FTs) of X-ray reflectivity data. This enhanced Fourier analysis is compared to other techniques in the determination of AlN layer thickness deposited on sapphire. In addition to demonstrably improved results, the results also agree with thicknesses determined using simulations and TEM measurements. The effectiveness of the technique is further demonstrated using the more complicated metamorphic epitaxial multi-layer AlSb/InAs structures deposited on GaAs. The approach reported here is based upon differentiating the specular intensity with respect to the vertical reciprocal space coordinate Q{sub Z}. In general, differentiation is far more effective at removing the sloping background present in reflectivity scans than logarithmic compression alone, average subtraction alone, or other methods. When combined with any of the other enhancement techniques, however, differentiation yields distinguishable discrete Fourier transform (DFT) power spectrum peaks for even the weakest and most truncated of sloping oscillations that are present in many reflectivity scans from multi-layer structures. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    International Nuclear Information System (INIS)

    Hu, Lingzhi; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr.

    2014-01-01

    -enhanced images can be generated using a reduced sampled UTE sequence with no visible compromise in image quality and they preserved bone-to-air contrast with as low as a 25% sampling rate. Conclusions: This UTE strategy with angular undersampling preserves the image quality and contrast of cortical bone, while reducing the total scanning time by as much as 75%. The quantitative results of R2 ∗ and the water fraction of skull based on Dixon analysis of UTE images acquired at multiple echo times provide guidance for the clinical adoption and further parameter optimization of the UTE sequence when used for radiation therapy and MR-based PET attenuation correction

  13. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature.

    Science.gov (United States)

    Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M

    2017-10-21

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  14. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    Science.gov (United States)

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial

  15. Development of a novel gas sensor based on oxide thick films

    International Nuclear Information System (INIS)

    Arshak, K.; Gaidan, I.

    2005-01-01

    Zinc and iron oxide thick film gas sensors were fabricated using screen-printing technology on glass substrates that had silver interdigitated electrodes. The sensor was used to detect methanol, ethanol and propanol with a concentration range of 0-8000 ppm. Using the formula to calculate a change in resistance, ΔR = R gas - R air, resistance was seen to increase linearly alongside increasing concentrations of the gas vapours. The sensor showed the highest sensitivity to propanol followed by ethanol and methanol when the operating temperature was 25 deg. C. The sensitivities (slope of graphs) of methanol, ethanol and propanol changed from 0.07, 0.5, and 3.54 to 0.075, 0.115, and 0.5 Ω/ppm when the operating temperature was increased from 25 to 50 deg. C. The response/recovery times of the sensor for 4000 ppm at room temperature were, 10/10, 15/20 and 40/70 s for methanol, ethanol and propanol, respectively. X-ray diffraction (XRD) was used to examine the final composition of the film, while scanning electron microscopy (SEM) was used to examine the final composition of grain size. The final composition has two phases: ZnO and ZnFe 2 O 4

  16. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  17. Aggregation Strength Tuning in Difluorobenzoxadiazole-Based Polymeric Semiconductors for High-Performance Thick-Film Polymer Solar Cells.

    Science.gov (United States)

    Chen, Peng; Shi, Shengbin; Wang, Hang; Qiu, Fanglong; Wang, Yuxi; Tang, Yumin; Feng, Jian-Rui; Guo, Han; Cheng, Xing; Guo, Xugang

    2018-06-27

    High-performance polymer solar cells (PSCs) with thick active layers are essential for large-scale production. Polymer semiconductors exhibiting a temperature-dependent aggregation property offer great advantages toward this purpose. In this study, three difluorobenzoxadiazole (ffBX)-based donor polymers, PffBX-T, PffBX-TT, and PffBX-DTT, were synthesized, which contain thiophene (T), thieno[3,2- b]thiophene (TT), and dithieno[3,2- b:2',3'- d]thiophene (DTT) as the π-spacers, respectively. Temperature-dependent absorption spectra reveal that the aggregation strength increases in the order of PffBX-T, PffBX-TT, and PffBX-DTT as the π-spacer becomes larger. PffBX-TT with the intermediate aggregation strength enables well-controlled disorder-order transition in the casting process of blend film, thus leading to the best film morphology and the highest performance in PSCs. Thick-film PSCs with an average power conversion efficiency (PCE) of 8.91% and the maximum value of 9.10% are achieved using PffBX-TT:PC 71 BM active layer with a thickness of 250 nm. The neat film of PffBX-TT also shows a high hole mobility of 1.09 cm 2 V -1 s -1 in organic thin-film transistors. When PffBX-DTT and PffBX-T are incorporated into PSCs utilizing PC 71 BM acceptor, the average PCE decreases to 6.54 and 1.33%, respectively. The performance drop mainly comes from reduced short-circuit current, as a result of nonoptimal blend film morphology caused by a less well-controlled film formation process. A similar trend was also observed in nonfullerene type thick-film PSCs using IT-4F as the electron acceptor. These results show the significance of polymer aggregation strength tuning toward optimal bulk heterojunction film morphology using ffBX-based polymer model system. The study demonstrates that adjusting π-spacer is an effective method, in combination with other important approaches such as alkyl chain optimization, to generate high-performance thick-film PSCs which are critical for

  18. Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model

    International Nuclear Information System (INIS)

    Daouas, Naouel

    2016-01-01

    Highlights: • An efficient tool is proposed for a rigorous energy analysis of building envelope. • The longwave radiation has an important impact on the energy requirements. • Optimum insulation thickness for roofs is rigorously determined in a cost analysis. • The present method is more accurate than the sol–air degree hours method. • The proposed model is applicable to the study of the efficiency of cool roofs. - Abstract: In Tunisia, the building sector is considered as a major issue of energy consumption. A special attention should be drawn to improve the thermal quality of the building envelope with real consideration of the Tunisian climate specificity. One of the most effective measures is the roof insulation. Therefore, the present study is concerned with the determination of the optimum insulation thickness and the resulting energy savings and payback period for two typical roof structures and two types of insulation materials. An efficient analytical dynamic model based on the Complex Finite Fourier Transform (CFFT) is proposed and validated in order to handle the nonlinear longwave radiation (LWR) exchange with the sky. This model provides a short computational time solution of the transient heat transfer through multilayer roofs, which could be a good alternative to some numerical methods. Both heating and cooling annual loads are rigorously estimated and used as inputs to a life-cycle cost analysis. Among the studied cases, the most economical one is the hollow terracotta-based roof insulated with rock wool, where the optimum insulation thickness is estimated to be 7.9 cm, with a payback period of 6.06 years and energy savings up to 58.06% of the cost of energy consumed without insulation. The impact of the LWR exchange component is quantified and the results show its important effect on the annual transmission loads and, consequently, on optimum insulation thickness. A sensitivity analysis shows the efficiency of cool roofs in the Tunisian

  19. Validation of a model-based measurement of the minimum insert thickness of knee prostheses: a retrieval study.

    Science.gov (United States)

    van IJsseldijk, E A; Harman, M K; Luetzner, J; Valstar, E R; Stoel, B C; Nelissen, R G H H; Kaptein, B L

    2014-10-01

    Wear of polyethylene inserts plays an important role in failure of total knee replacement and can be monitored in vivo by measuring the minimum joint space width in anteroposterior radiographs. The objective of this retrospective cross-sectional study was to compare the accuracy and precision of a new model-based method with the conventional method by analysing the difference between the minimum joint space width measurements and the actual thickness of retrieved polyethylene tibial inserts. Before revision, the minimum joint space width values and their locations on the insert were measured in 15 fully weight-bearing radiographs. These measurements were compared with the actual minimum thickness values and locations of the retrieved tibial inserts after revision. The mean error in the model-based minimum joint space width measurement was significantly smaller than the conventional method for medial condyles (0.50 vs 0.94 mm, p model-based measurements was less than 10 mm in the medial direction in 12 cases and less in the lateral direction in 13 cases. The model-based minimum joint space width measurement method is more accurate than the conventional measurement with the same precision. Cite this article: Bone Joint Res 2014;3:289-96. ©2014 The British Editorial Society of Bone & Joint Surgery.

  20. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.

    Science.gov (United States)

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir

    2016-02-01

    Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased

  1. Effects of action observation therapy on hand dexterity and EEG-based cortical activation patterns in patients with post-stroke hemiparesis.

    Science.gov (United States)

    Kuk, Eun-Ju; Kim, Jong-Man; Oh, Duck-Won; Hwang, Han-Jeong

    2016-10-01

    Previous reports have suggested that action observation training (AOT) is beneficial in enhancing the early learning of new motor tasks; however, EEG-based investigation has received little attention for AOT. The purpose of this study was to illustrate the effects of AOT on hand dexterity and cortical activation in patients with post-stroke hemiparesis. Twenty patients with post-stroke hemiparesis were randomly divided into either the experimental group (EG) or control group (CG), with 10 patients in each group. Prior to the execution of motor tasks (carrying wooden blocks from one box to another), subjects in the EG and CG observed a video clip displaying the execution of the same motor task and pictures showing landscapes, respectively. Outcome measures included the box and block test (BBT) to evaluate hand dexterity and EEG-based brain mapping to detect changes in cortical activation. The BBT scores (EG: 20.50 ± 6.62 at pre-test and 24.40 ± 5.42 at post-test; CG: 20.20 ± 6.12 at pre-test and 20.60 ± 7.17 at post-test) revealed significant main effects for the time and group and significant time-by-group interactions (p < 0.05). For the subjects in the EG, topographical representations obtained with the EEG-based brain mapping system were different in each session of the AOT and remarkable changes occurred from the 2nd session of AOT. Furthermore, the middle frontal gyrus was less active at post-test than at pre-test. These findings support that AOT may be beneficial in altering cortical activation patterns and hand dexterity.

  2. Optical Coherence Tomography in the UK Biobank Study - Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies.

    Directory of Open Access Journals (Sweden)

    Pearse A Keane

    Full Text Available To describe an approach to the use of optical coherence tomography (OCT imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness.In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available "spectral domain" OCT device (3D OCT-1000, Topcon. Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL. This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion.67,321 participants (134,642 eyes in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days.We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging.

  3. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    Science.gov (United States)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  4. Intra- and inter-observer variation in histological criteria used in age at death determination based on femoral cortical bone

    DEFF Research Database (Denmark)

    Lynnerup, N; Thomsen, J L; Frohlich, B

    1998-01-01

    been carried out dealing with the intra- and inter-observer error. Furthermore, when such studies have been completed, the statistical tools for assessing variability have not been adequate. This study presents the results of applying simple quantitative statistics on several counts of microscopic...... elements as observed on photographic images of cortical bone, in order to assess intra- and inter-observer error. Overall, substantial error was present at the level of identifying and counting secondary osteons, osteon fragments and Haversian canals. Only secondary osteons can be reliably identified...

  5. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce; Song, Xin; Toppare, Levent; Baran, Derya; Gunbas, Gorkem

    2018-01-01

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm

  6. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    Science.gov (United States)

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce

    2018-02-05

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  8. Sensors and packages based on LTCC and thick-film technology for ...

    Indian Academy of Sciences (India)

    Reliable operation in harsh environments such as high temperatures, high pressures, aggressive media and space, poses special requirements for sensors and packages, which usually cannot be met using polymer-based technologies. Ceramic technologies, especially LTCC (Low-Temperature Cofired Ceramic), offer a ...

  9. Motor features in posterior cortical atrophy and their imaging correlates.

    Science.gov (United States)

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Motor features in posterior cortical atrophy and their imaging correlates☆

    Science.gov (United States)

    Ryan, Natalie S.; Shakespeare, Timothy J.; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M.; Leung, Kelvin K.; Fox, Nick C.; Crutch, Sebastian J.

    2014-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839

  11. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  12. Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder.

    Science.gov (United States)

    Sharda, Megha; Foster, Nicholas E V; Tryfon, Ana; Doyle-Thomas, Krissy A R; Ouimet, Tia; Anagnostou, Evdokia; Evans, Alan C; Zwaigenbaum, Lonnie; Lerch, Jason P; Lewis, John D; Hyde, Krista L

    2017-03-01

    There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Effect of Film Thickness and Physical Aging on “Intrinsic” Gas Permeation Properties of Microporous Ethanoanthracene-Based Polyimides

    KAUST Repository

    Ma, Xiaohua

    2018-01-31

    Two ethanoanthracene-based dianhydrides, 9,10-dimethylethanoanthracene-2,3,6,7-tetracarboxylic anhydride (EA-DA) and its more flexible dibenzodioxane-containing derivative (EAD-DA), were synthesized from the same starting material, 9,10-dimethyl-ethanoanthracene-2,3,6,7-tetraol, and used for the preparation of bicyclic intrinsically microporous polyimides (PIM-PIs) by one-pot polycondensation reaction with 3,3′-dimethylnaphthidine (DMN). The resulting organosoluble polyimides, EA-DMN and EAD-DMN, were thermally stable up to 300 °C and had good mechanical properties with tensile strength of 55 and 63 MPa and elongation at break of 15 and 30%, respectively. EA-DMN and EAD-DMN polyimides displayed Brunauer–Emmett–Teller (BET) surface areas of 720 and 800 m2 g–1, respectively. Fresh films showed promising gas separation performance with very high gas permeabilities and moderate gas-pair selectivities, which were both strongly dependent on film thickness. The results obtained in this study shed more light on the relative importance of film thickness and physical aging on faster attainment of the “intrinsic” gas transport properties of high free volume PIM-PIs.

  14. Machine Learning-based Individual Assessment of Cortical Atrophy Pattern in Alzheimer's Disease Spectrum: Development of the Classifier and Longitudinal Evaluation.

    Science.gov (United States)

    Lee, Jin San; Kim, Changsoo; Shin, Jeong-Hyeon; Cho, Hanna; Shin, Dae-Seock; Kim, Nakyoung; Kim, Hee Jin; Kim, Yeshin; Lockhart, Samuel N; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2018-03-07

    To develop a new method for measuring Alzheimer's disease (AD)-specific similarity of cortical atrophy patterns at the individual-level, we employed an individual-level machine learning algorithm. A total of 869 cognitively normal (CN) individuals and 473 patients with probable AD dementia who underwent high-resolution 3T brain MRI were included. We propose a machine learning-based method for measuring the similarity of an individual subject's cortical atrophy pattern with that of a representative AD patient cohort. In addition, we validated this similarity measure in two longitudinal cohorts consisting of 79 patients with amnestic-mild cognitive impairment (aMCI) and 27 patients with probable AD dementia. Surface-based morphometry classifier for discriminating AD from CN showed sensitivity and specificity values of 87.1% and 93.3%, respectively. In the longitudinal validation study, aMCI-converts had higher atrophy similarity at both baseline (p < 0.001) and first year visits (p < 0.001) relative to non-converters. Similarly, AD patients with faster decline had higher atrophy similarity than slower decliners at baseline (p = 0.042), first year (p = 0.028), and third year visits (p = 0.027). The AD-specific atrophy similarity measure is a novel approach for the prediction of dementia risk and for the evaluation of AD trajectories on an individual subject level.

  15. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  16. Impedance Based Characterization of a High-Coupled Screen Printed PZT Thick Film Unimorph Energy Harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, R.; Borregaard, L. M.

    2014-01-01

    The single degree of freedom mass-spring-damper system is the most common approach for deriving a full electromechanical model for the piezoelectric vibration energy harvester. In this paper, we revisit this standard electromechanical model by focusing on the impedance of the piezoelectric device...... parameters which, by means of the piezoelectric impedance expression, all can be determined accurately by electrical measurements. It is shown how four of five lumped parameters can be determined from a single impedance measurement scan, considerably reducing the characterization effort. The remaining...... parameter is determined from shaker measurements, and a highly accurate agreement is found between model and measurements on a unimorph MEMS-based screen printed PZT harvester. With a high coupling term K-2 Q similar or equal to 7, the harvester exhibits two optimum load points. The peak power performance...

  17. The effect of 18F-florbetapir dose reduction on region-based classification of cortical amyloid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, K.; Evans, R.; Anton-Rodriguez, J.; Hinz, R.; Matthews, J.C. [University of Manchester, Wolfson Molecular Imaging Centre and Manchester Academic Health Science Centre, Manchester, England (United Kingdom)

    2014-11-15

    There are specific dose recommendations for diagnostic amyloid PET imaging with 18F-florbetapir, but they may not apply to research studies using regional quantitative analysis. We, therefore, studied the effect of tracer dose reduction on the discriminative power of regional analysis. Using bootstrap resampling of list-mode data from 18F-florbetapir scans, a total of 800 images were reconstructed for four different dosage levels: 100, 50, 20, and 10 %. The effect of the injected dose on the variation of measured radiotracer uptake was determined in large cortical regions defined on co-registered and segmented magnetic resonance images. The impact of the observed variation on the discrimination between normal controls and patients with AD was then assessed using data in a cohort study described by Fleisher et al. (Arch Neurol 68(11):1404-1411, 2011). The coefficient of variance for the cortex to cerebellum uptake ratio increased from 0.9 % at full dose of 300 MBq to 2.5 % at 10 % of this dose, but was still small compared to biological variation. It, therefore, had very little impact on discrimination between AD and elderly controls. The original area under the ROC curve was 0.881, decreasing to 0.878 at 10 % of full dose. Original sensitivity for discrimination between AD and controls was 82.0 %, while specificity was 77.3 %; these decreased to 81.8 and 77.1 %, respectively, at the reduced dose. However, the number of subjects within the classification border zone between proven amyloid pathology and young healthy controls increased substantially by 7 to 14 %. A substantial reduction of tracer dose increases uncertainty at the classification border zone while still providing good discrimination between AD patients and controls when using activity data from cortical regions defined on co-registered and segmented MR scans. (orig.)

  18. Temperature dependent electrical characterization of organic Schottky diode based on thick MgPc films

    Science.gov (United States)

    Singh, J.; Sharma, R. K.; Sule, U. S.; Goutam, U. K.; Gupta, Jagannath; Gadkari, S. C.

    2017-07-01

    Magnesium phthalocyanine (MgPc) based Schottky diode on indium tin oxide (ITO) substrate was fabricated by thermal evaporation method. The dark current voltage characteristics of the prepared ITO-MgPc-Al heterojunction Schottky diode were measured at different temperatures. The diode showed the non-ideal rectification behavior under forward and reverse bias conditions with a rectification ratio (RR) of 56 at  ±1 V at room temperature. Under forward bias, thermionic emission and space charge limited conduction (SCLC) were found to be the dominant conduction mechanisms at low (below 0.6 V) and high voltages (above 0.6 V) respectively. Under reverse bias conditions, Poole-Frenkel (field assisted thermal detrapping of carriers) was the dominant conduction mechanism. Three different approaches namely, I-V plots, Norde and Cheung methods were used to determine the diode parameters including ideality factor (n), barrier height (Φb), series resistance (R s) and were compared. SCLC mechanism showed that the trap concentration is 5.52  ×  1022 m-3 and it lies at 0.46 eV above the valence band edge.

  19. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    Science.gov (United States)

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P girls, but active-fit girls had 6.1 % (P girls, which was likely due to their 6.7 % (P active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  20. Patterns of Neuropsychological Profile and Cortical Thinning in Parkinson's Disease with Punding.

    Directory of Open Access Journals (Sweden)

    Han Soo Yoo

    Full Text Available Punding, one of dopamine replacement treatment related complications, refers to aimless and stereotyped behaviors. To identify possible neural correlates of punding behavior in patients with Parkinson's disease (PD, we investigated the patterns of cognitive profiles and cortical thinning.Of the 186 subjects with PD screened during the study period, we prospectively enrolled 10 PD patients with punding and 43 without punding on the basis of a structured interview. We performed comprehensive neuropsychological tests and voxel-based and regions-of-interest (ROIs-based cortical thickness analysis between PD patients with and without punding.The prevalence of punding in patients with PD was 5.4%. Punding behaviors were closely related to previous occupations or hobbies and showed a temporal relationship to changes of levodopa-equivalent dose (LED. Significant predisposing factors were a long duration of PD and intake of medications of PD, high total daily LED, dyskinesia, and impulse control disorder. Punding severity was correlated with LED (p = 0.029. The neurocognitive assessment revealed that PD patients with punding showed more severe cognitive deficits in the color Stroop task than did those without punding (p = 0.022. Voxel-based analysis showed that PD-punders had significant cortical thinning in the dorsolateral prefrontal area relative to controls. Additionally, ROI-based analysis revealed that cortical thinning in PD-punders relative to PD-nonpunders was localized in the prefrontal cortices, extending into orbitofrontal area.We demonstrated that PD patients with punding performed poorly on cognitive tasks in frontal executive functions and showed severe cortical thinning in the dorsolateral prefrontal and orbitofrontal areas. These findings suggest that prefrontal modulation may be an essential component in the development of punding behavior in patients with PD.

  1. Structural plasticity of remote cortical brain regions is determined by connectivity to the primary lesion in subcortical stroke.

    Science.gov (United States)

    Cheng, Bastian; Schulz, Robert; Bönstrup, Marlene; Hummel, Friedhelm C; Sedlacik, Jan; Fiehler, Jens; Gerloff, Christian; Thomalla, Götz

    2015-09-01

    Cortical atrophy as demonstrated by measurement of cortical thickness (CT) is a hallmark of various neurodegenerative diseases. In the wake of an acute ischemic stroke, brain architecture undergoes dynamic changes that can be tracked by structural and functional magnetic resonance imaging studies as soon as 3 months after stroke. In this study, we measured changes of CT in cortical areas connected to subcortical stroke lesions in 12 patients with upper extremity paresis combining white-matter tractography and semi-automatic measurement of CT using the Freesurfer software. Three months after stroke, a significant decrease in CT of -2.6% (median, upper/lower boundary of 95% confidence interval -4.1%/-1.1%) was detected in areas connected to ischemic lesions, whereas CT in unconnected cortical areas remained largely unchanged. A cluster of significant cortical thinning was detected in the superior frontal gyrus of the stroke hemisphere using a surface-based general linear model correcting for multiple comparisons. There was no significant correlation of changes in CT with clinical outcome parameters. Our results show a specific impact of subcortical lesions on distant, yet connected cortical areas explainable by secondary neuro-axonal degeneration of distant areas.

  2. A new clinical unit for digital radiography based on a thick amorphous Selenium plate: Physical and psychophysical characterization

    International Nuclear Information System (INIS)

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Acchiappati, Domenico

    2011-01-01

    Purpose: Here, we present a physical and psychophysical characterization of a new clinical unit (named AcSelerate) for digital radiography based on a thick a-Se layer. We also compared images acquired with and without a software filter (named CRF) developed for reducing sharpness and noise of the images and making them similar to images coming from traditional computed radiography systems. Methods: The characterization was achieved in terms of physical figures of merit [modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE)], and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). We accomplished measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9. Results: The system shows an excellent MTF (about 50% at the Nyquist frequency). The DQE is about 55% at 0.5 lp/mm and above 20% at the Nyquist frequency and is almost independent from exposure. The contrast-detail curves are comparable to some of the best published data for other systems devoted to imaging in general radiography. The CRF filter influences both the MTF and NPS, but it does lead to very small changes on DQE. Also the visibility of CDRAD details is basically unaltered, when the filter is activated. Conclusions: As normally happens with detector based on direct conversion, the system presents an excellent MTF. The improved efficiency caused by the thick layer allows getting good noise characteristics and DQE results better (about 10% on average) than many of the computed radiography (CR) systems and comparable to those obtained by the best systems for digital radiography available on the market.

  3. Cortical electrophysiological network dynamics of feedback learning

    NARCIS (Netherlands)

    Cohen, M.X.; Wilmes, K.A.; van de Vijver, I.

    2011-01-01

    Understanding the neurophysiological mechanisms of learning is important for both fundamental and clinical neuroscience. We present a neurophysiologically inspired framework for understanding cortical mechanisms of feedback-guided learning. This framework is based on dynamic changes in systems-level

  4. Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye

    Science.gov (United States)

    Choi, Jongwan; Kim, Felix Sunjoo

    2018-03-01

    We studied the influence of photoanode thickness on the photovoltaic characteristics and impedance responses of the dye-sensitized solar cells based on a ruthenium dye containing a hexyloxyl-substituted carbazole unit (Ru-HCz). As the thickness of photoanode increases from 4.2 μm to 14.8 μm, the dye-loading amount and the efficiency increase. The device with thicker photoanode shows a decrease in the efficiency due to the higher probability of recombination of electron-hole pairs before charge extraction. We also analyzed the electron-transfer and recombination characteristics as a function of photoanode thickness through detailed electrochemical impedance spectroscopy analysis.

  5. Cortical correlates of affective syndrome in dementia due to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Thaís T. Hayata

    2015-07-01

    Full Text Available Neuropsychiatric symptoms in Alzheimer’s disease (AD are prevalent, however their relationship with patterns of cortical atrophy is not fully known. Objectives To compare cortical atrophy’s patterns between AD patients and healthy controls; to verify correlations between neuropsychiatric syndromes and cortical atrophy. Method 33 AD patients were examined by Neuropsychiatric Inventory (NPI. Patients and 29 controls underwent a 3T MRI scanning. We considered four NPI syndromes: affective, apathy, hyperactivity and psychosis. Correlations between structural imaging and neuropsychiatric scores were performed by Freesurfer. Results were significant with a p-value < 0.05, corrected for multiple comparisons. Results Patients exhibited atrophy in entorhinal cortices, left inferior and middle temporal gyri, and precuneus bilaterally. There was correlation between affective syndrome and cortical thickness in right frontal structures, insula and temporal pole. Conclusion Cortical thickness measures revealed atrophy in mild AD. Depression and anxiety symptoms were associated with atrophy of right frontal, temporal and insular cortices.

  6. Anatomical abnormalities in gray and white matter of the cortical surface in persons with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tiziano Colibazzi

    Full Text Available Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM and white matter (WM disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.

  7. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)

    2005-06-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  8. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Park, Kwang Suk; Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul; Lee, Dong Soo; Jeong, Jae Min

    2005-01-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1- 14 C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in any

  9. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    Science.gov (United States)

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  10. A Cortical Edge-integration Model of Object-Based Lightness Computation that Explains Effects of Spatial Context and Individual Differences

    Directory of Open Access Journals (Sweden)

    Michael E Rudd

    2014-08-01

    Full Text Available Previous work demonstrated that perceived surface reflectance (lightness can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatial integrates these steps along paths through the image to compute lightness (Rudd & Zemach, 2004, 2005, 2007. This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013 suggests that the human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010 further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer’s interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd & Zemach, 2005. Here, I show how the separate influences of grouping and attention on lightness can be together modeled by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013, and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  11. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences.

    Science.gov (United States)

    Rudd, Michael E

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  12. Skull Thickness Morphing for an Age and Sex Specific FE Model of the Skull.

    Science.gov (United States)

    Jones, Derek A; Urban, Jillian E; Lillie, Elizabeth M; Stitzel, Joel D

    2015-01-01

    Skull deformation is believed to be a contributing factor in traumatic brain injury (TBI). Furthermore, skull thickness is thought to be an important factor governing deformation of the skull and its susceptibility to fracture. Although many studies have been done to understand the mechanisms of brain injury and skull fracture, the majority of the cadaveric and finite element (FE) modeling efforts are comprised of older males and 50th percentile male skulls, respectively, which do not accurately represent the population as a whole. This study employed a set of skull table thickness regressions defined at homologous landmarks on the skull which were calculated from 123 pre-existing head CT scans (ages 20-100) using a cortical density-based algorithm. A method was developed to morph the Global Human Body Models Consortium (GHBMC) 50th percentile male skull model to age and gender specific geometries based on the full thickness regressions using a Thin Plate Spline algorithm. A quantitative measure of morphing error was devised and measured using the morphed and desired full thickness values at the homologous landmark locations. This methodology can be used to create gender and age-specific FE models of the skull and will ultimately be used to understand the relationship between cortical thickness, skull deformation, and head injury.

  13. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  14. Computational modeling of epidural cortical stimulation

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2008-12-01

    Epidural cortical stimulation (ECS) is a developing therapy to treat neurological disorders. However, it is not clear how the cortical anatomy or the polarity and position of the electrode affects current flow and neural activation in the cortex. We developed a 3D computational model simulating ECS over the precentral gyrus. With the electrode placed directly above the gyrus, about half of the stimulus current flowed through the crown of the gyrus while current density was low along the banks deep in the sulci. Beneath the electrode, neurons oriented perpendicular to the cortical surface were depolarized by anodic stimulation, and neurons oriented parallel to the boundary were depolarized by cathodic stimulation. Activation was localized to the crown of the gyrus, and neurons on the banks deep in the sulci were not polarized. During regulated voltage stimulation, the magnitude of the activating function was inversely proportional to the thickness of the CSF and dura. During regulated current stimulation, the activating function was not sensitive to the thickness of the dura but was slightly more sensitive than during regulated voltage stimulation to the thickness of the CSF. Varying the width of the gyrus and the position of the electrode altered the distribution of the activating function due to changes in the orientation of the neurons beneath the electrode. Bipolar stimulation, although often used in clinical practice, reduced spatial selectivity as well as selectivity for neuron orientation.

  15. Rational Design of QCM-D Virtual Sensor Arrays Based on Film Thickness, Viscoelasticity, and Harmonics for Vapor Discrimination.

    Science.gov (United States)

    Speller, Nicholas C; Siraj, Noureen; Regmi, Bishnu P; Marzoughi, Hassan; Neal, Courtney; Warner, Isiah M

    2015-01-01

    Herein, we demonstrate an alternative strategy for creating QCM-based sensor arrays by use of a single sensor to provide multiple responses per analyte. The sensor, which simulates a virtual sensor array (VSA), was developed by depositing a thin film of ionic liquid, either 1-octyl-3-methylimidazolium bromide ([OMIm][Br]) or 1-octyl-3-methylimidazolium thiocyanate ([OMIm][SCN]), onto the surface of a QCM-D transducer. The sensor was exposed to 18 different organic vapors (alcohols, hydrocarbons, chlorohydrocarbons, nitriles) belonging to the same or different homologous series. The resulting frequency shifts (Δf) were measured at multiple harmonics and evaluated using principal component analysis (PCA) and discriminant analysis (DA) which revealed that analytes can be classified with extremely high accuracy. In almost all cases, the accuracy for identification of a member of the same class, that is, intraclass discrimination, was 100% as determined by use of quadratic discriminant analysis (QDA). Impressively, some VSAs allowed classification of all 18 analytes tested with nearly 100% accuracy. Such results underscore the importance of utilizing lesser exploited properties that influence signal transduction. Overall, these results demonstrate excellent potential of the virtual sensor array strategy for detection and discrimination of vapor phase analytes utilizing the QCM. To the best of our knowledge, this is the first report on QCM VSAs, as well as an experimental sensor array, that is based primarily on viscoelasticity, film thickness, and harmonics.

  16. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

    International Nuclear Information System (INIS)

    Shin, Na-Young; Hong, Jinwoo; Yoon, Uicheul; Choi, Jun Yong; Lee, Seung-Koo; Lim, Soo Mee

    2017-01-01

    To identify brain cortical regions relevant to HIV-associated neurocognitive disorder (HAND) in HIV patients. HIV patients with HAND (n = 10), those with intact cognition (HIV-IC; n = 12), and age-matched, seronegative controls (n = 11) were recruited. All participants were male and underwent 3-dimensional T1-weighted imaging. Both vertex-wise and region of interest (ROI) analyses were performed to analyse cortical thickness. Compared to controls, both HIV-IC and HAND showed decreased cortical thickness mainly in the bilateral primary sensorimotor areas, extending to the prefrontal and parietal cortices. When directly comparing HIV-IC and HAND, HAND showed cortical thinning in the left retrosplenial cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, bilateral superior medial prefrontal cortices, right temporoparietal junction and left hippocampus, and cortical thickening in the left middle occipital cortex. Left retrosplenial cortical thinning showed significant correlation with slower information processing, declined verbal memory and executive function, and impaired fine motor skills. This study supports previous research suggesting the selective vulnerability of the primary sensorimotor cortices and associations between cortical thinning in the prefrontal and parietal cortices and cognitive impairment in HIV-infected patients. Furthermore, for the first time, we propose retrosplenial cortical thinning as a possible major contributor to HIV-associated cognitive impairment. (orig.)

  17. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

    Energy Technology Da