WorldWideScience

Sample records for based combined cycle

  1. Combined Cycle Fatigue Investigation Based on Energy Principle

    OpenAIRE

    Kalynenko Mykyta

    2016-01-01

    We present a modified energy-principle based model of fatigue damage accumulation in high temperature alloys usually used in gas turbine engine under combined high cycle fatigue and low cycle fatigue (LCF/HCF) loading conditions. Our model is based on the energy principle which includes a modified approximation formula that describes fatigue crack origin depending on the relative amplitude of stress intensity in the ranges of both high- and low-cycle fatigue under non-isothermal loading. Func...

  2. Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine

    Science.gov (United States)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  3. Combined Cycle Fatigue Investigation Based on Energy Principle

    Directory of Open Access Journals (Sweden)

    Kalynenko Mykyta

    2016-01-01

    Full Text Available We present a modified energy-principle based model of fatigue damage accumulation in high temperature alloys usually used in gas turbine engine under combined high cycle fatigue and low cycle fatigue (LCF/HCF loading conditions. Our model is based on the energy principle which includes a modified approximation formula that describes fatigue crack origin depending on the relative amplitude of stress intensity in the ranges of both high- and low-cycle fatigue under non-isothermal loading. Functional dependence that presents the influence of HCF mechanisms on a fatigue life of our structural material is gradual and it has not breaks of the curve that yields a possibility to rewrite the equation of the S-N curve with taking into account combined cycle fatigue loading. We used the same number of parameters as the initial model. Note, that new parameter interpretation gives clear physical picture. The proposed model is verified by comparing the computed results with the experimental data for one high temperature alloy GH4133.

  4. Integrated Turbine-Based Combined Cycle Dynamic Simulation Model

    Science.gov (United States)

    Haid, Daniel A.; Gamble, Eric J.

    2011-01-01

    A Turbine-Based Combined Cycle (TBCC) dynamic simulation model has been developed to demonstrate all modes of operation, including mode transition, for a turbine-based combined cycle propulsion system. The High Mach Transient Engine Cycle Code (HiTECC) is a highly integrated tool comprised of modules for modeling each of the TBCC systems whose interactions and controllability affect the TBCC propulsion system thrust and operability during its modes of operation. By structuring the simulation modeling tools around the major TBCC functional modes of operation (Dry Turbojet, Afterburning Turbojet, Transition, and Dual Mode Scramjet) the TBCC mode transition and all necessary intermediate events over its entire mission may be developed, modeled, and validated. The reported work details the use of the completed model to simulate a TBCC propulsion system as it accelerates from Mach 2.5, through mode transition, to Mach 7. The completion of this model and its subsequent use to simulate TBCC mode transition significantly extends the state-of-the-art for all TBCC modes of operation by providing a numerical simulation of the systems, interactions, and transient responses affecting the ability of the propulsion system to transition from turbine-based to ramjet/scramjet-based propulsion while maintaining constant thrust.

  5. Overview of the Turbine Based Combined Cycle Discipline

    Science.gov (United States)

    Thomas, Scott R.; Walker, James F.; Pittman, James L.

    2009-01-01

    The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode

  6. Rocket-Based Combined Cycle Engine Concept Development

    Science.gov (United States)

    Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.

  7. Energetic and Exergetic Performance Analyses of Solar Dish Based CO2 Combined Cycle

    OpenAIRE

    Mukhopadhyay, Soumitra; Ghosh, Sudip

    2014-01-01

    This paper presents a conceptual configuration of a solar dish based combined cycle power plant with a topping gas turbine block and a bottoming steam turbine cycle coupled through a heat recovery steam generator (HRSG). Carbon dioxide has been considered as the working fluid for the topping cycle and it has been considered in gaseous state all through the cycle. Two-stage compression has been proposed for the carbon dioxide cycle. The conventional GT combustion chamber is replaced by a high-...

  8. RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher

    Science.gov (United States)

    Balepin, Vladimir; Price, John; Filipenco, Victor

    1999-01-01

    This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.

  9. Performance Improvement of Combined Cycle Power Plant Based on the Optimization of the Bottom Cycle and Heat Recuperation

    Institute of Scientific and Technical Information of China (English)

    Wenguo XIANG; Yingying CHEN

    2007-01-01

    Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam generator (HRSG) is selected for study in this paper.In order to maximize the GTCC efficiency, the optimization of the HRSG operating parameters is performed. The operating parameters are determined by means of a thermodynamic analysis, i.e. the minimization of exergy losses. The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed. The result shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when it is over 590℃. Partial gas to gas recuperation in the topping cycle is studied. Joining HRSG optimization with the use of gas to gas heat recuperation, the combined plant efficiency can rise up to 59.05% at base load. In addition,the part load performance of the GTCC power plant gets much better. The efficiency is increased by 2.11% at 75% load and by 4.17% at 50% load.

  10. Combined life cycle and economic assessment of wood based bio fuels in Norway

    OpenAIRE

    Gryczon, Michal

    2008-01-01

    The increasing global demand for energy coupled with decreasing oil-supplies, and increasing risk of adverse climate change due to anthropogenic carbon emissions has created the need for combined economic and environmental assessment. This thesis attempt at devising such a framework based upon Life Cycle Assessment (LCA) and Life Cycle Costing (LCC). These methodologies represent two well established approaches for measuring environmental and economic performance of industrial projects and ...

  11. Thermodynamic optimization of solid oxide fuel cell based combined cycle cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Odukoya, A.; Reddy, B.V. [University of Ontario Inst. of Technology, Oshawa, ON (Canada). Dept. of Mechanical Engineering; Carretero, J.A. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    Although coal has the highest greenhouse gas emission of all fossil fuels it is the most abundant of all the fuels. Optimization of new and existing power plant designs will help increase the operational efficiency of power generation. In particular, there is a need to optimize the design and operating parameters of power plants using integrated gasification combined cycle cogeneration technology. This study investigated the optimal operating condition of a co-fired combined cycle cogeneration power plant with solid oxide fuel cell (SOFC) combination fuelled with coal and natural gas. It examined the macroscopic detail of the plant while optimizing the operating parameters of individual components such as the gasifier, the consumption of methane and carbon monoxide in the fuel cell and the consumption of fuel in the combustion chamber of the gas turbine. The optimization of the entire plant was used to determine the best mode of operating the plant for a set of conditions within suggested limits. The study also found efficient ways to perform iterative processes to find exit conditions from the gasifier, fuel cell, gas turbine combustion chamber and exit condition from the gas turbine. The maximum fuel cell net work output, combined cycle net work output, combined cycle thermal efficiency and cogeneration efficiency were determined. The optimal pressure ratio, temperature of operation of the SOFC and, gas turbine inlet temperature were determined using a sequential quadratic program solver based on the Quasi-Newton algorithm. 18 refs., 5 tabs., 2 figs.

  12. Analysis of a New Rocket-Based Combined-Cycle Engine Concept at Low Speed

    Science.gov (United States)

    Yungster, S.; Trefny, C. J.

    1999-01-01

    An analysis of the Independent Ramjet Stream (IRS) cycle is presented. The IRS cycle is a variation of the conventional ejector-Ramjet, and is used at low speed in a rocket-based combined-cycle (RBCC) propulsion system. In this new cycle, complete mixing between the rocket and ramjet streams is not required, and a single rocket chamber can be used without a long mixing duct. Furthermore, this concept allows flexibility in controlling the thermal choke process. The resulting propulsion system is intended to be simpler, more robust, and lighter than an ejector-ramjet. The performance characteristics of the IRS cycle are analyzed for a new single-stage-to-orbit (SSTO) launch vehicle concept, known as "Trailblazer." The study is based on a quasi-one-dimensional model of the rocket and air streams at speeds ranging from lift-off to Mach 3. The numerical formulation is described in detail. A performance comparison between the IRS and ejector-ramjet cycles is also presented.

  13. Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop. Volume 1: Executive summary

    Science.gov (United States)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket-Based Combined Cycle (RBCC) Propulsion Technology Workshop was to assess the RBCC propulsion system's viability for Earth-to-Orbit (ETO) transportation systems. This was accomplished by creating a forum (workshop) in which past work in the field of RBCC propulsion systems was reviewed, current technology status was evaluated, and future technology programs in the field of RBCC propulsion systems were postulated, discussed, and recommended.

  14. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

  15. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  16. Computational Analysis for Rocket-Based Combined-Cycle Systems During Rocket-Only Operation

    Science.gov (United States)

    Steffen, C. J., Jr.; Smith, T. D.; Yungster, S.; Keller, D. J.

    2000-01-01

    A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.

  17. A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery

    International Nuclear Information System (INIS)

    In this paper, a novel approach for exhaust heat recovery was proposed to improve IC (internal combustion) engine fuel efficiency and also to achieve the goal for direct usage of methanol as IC engine fuel. An open organic Rankine cycle system using methanol as working medium is coupled to IC engine exhaust pipe for exhaust heat recovery. In the bottom cycle, the working medium first undergoes dissociation and expansion processes, and is then directed back to IC engine as fuel. As the external bottom cycle and the IC engine main cycle are combined together, this scheme forms a combined thermodynamic cycle. Then, this concept was applied to a turbocharged engine, and the corresponding simulation models were built for both of the external bottom cycle and the IC engine main cycle. On this basis, the energy saving potential of this combined cycle was estimated by parametric analyses. Compared to the methanol vapor engine, IC engine in-cylinder efficiency has an increase of 1.4–2.1 percentage points under full load conditions, while the external bottom cycle can increase the fuel efficiency by 3.9–5.2 percentage points at the working pressure of 30 bar. The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points. - Highlights: • A combined thermodynamic cycle using methanol as working medium for IC engine exhaust heat recovery is proposed. • The external bottom cycle of exhaust heat recovery and IC engine working cycle are combined together. • IC engine fuel efficiency could be improved from both in-cylinder working cycle and external bottom cycle. • The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points at full load

  18. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    Science.gov (United States)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  19. H gas turbine combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Corman, J. [General Electric Co., Schenectady, NY (United States)

    1995-10-01

    A major step has been taken in the development of the Next Power Generation System - {open_quotes}H{close_quotes} Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1430 C (2600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The {open_quotes}H{close_quotes} Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

  20. Biomass Gasification Combined Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  1. Rocket-Based Combined-Cycle Propulsion Technology for Access-to-Space Applications

    Science.gov (United States)

    Hueter, Uwe

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. One of the main activities over the past three years has been on advancing the hydrogen fueled rocket-based combined cycle (RBCC) technologies. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet and Boeing-Rocketdyne designed, built and ground tested their RBCC engine concepts. In addition, ASTROX, Georgia Institute of Technology, McKinney Associates, Pennsylvania State University (PSU), and University of Alabama in Huntsville conducted supporting activities. The RBCC activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. Inlet testing was performed at the Lewis Research Center's 1 x 1 wind tunnel. All direct connect and free-jet engine testing were conducted at the GASL facilities on Long Island, New York. Testing spanned the Mach range from sea level static to Mach 8. Testing of the rocket-only mode, simulating the final phase of the ascent mission profile, was also performed. The originally planned work on these contracts was completed in 1999. Follow-on activities have been initiated for both hydrogen and hydrocarbon fueled RBCC concepts. Studies to better understand system level issues with the integration of RBCC propulsion with earth-to-orbit vehicles have also been conducted. This paper describes the status, progress and future plans of the RBCC activities funded by NASA/MSFC with a major focus on the benefits of utilizing air-breathing combined-cycle propulsion in access-to-space applications.

  2. Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application

    Science.gov (United States)

    DeBonis, J. R.; Yungster, S.

    1996-01-01

    A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on.

  3. An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory

    International Nuclear Information System (INIS)

    Highlights: • An optimization method for practical thermodynamic cycle is developed. • The entransy-based heat transfer analysis and thermodynamic analysis are combined. • Theoretical relation between system requirements and design parameters is derived. • The optimization problem can be converted into conditional extremum problem. • The proposed method provides several useful optimization criteria. - Abstract: A thermodynamic cycle usually consists of heat transfer processes in heat exchangers and heat-work conversion processes in compressors, expanders and/or turbines. This paper presents a new optimization method for effective improvement of thermodynamic cycle performance with the combination of entransy theory and thermodynamics. The heat transfer processes in a gas refrigeration cycle are analyzed by entransy theory and the heat-work conversion processes are analyzed by thermodynamics. The combination of these two analysis yields a mathematical relation directly connecting system requirements, e.g. cooling capacity rate and power consumption rate, with design parameters, e.g. heat transfer area of each heat exchanger and heat capacity rate of each working fluid, without introducing any intermediate variable. Based on this relation together with the conditional extremum method, we theoretically derive an optimization equation group. Simultaneously solving this equation group offers the optimal structural and operating parameters for every single gas refrigeration cycle and furthermore provides several useful optimization criteria for all the cycles. Finally, a practical gas refrigeration cycle is taken as an example to show the application and validity of the newly proposed optimization method

  4. Rocket-Based Combined-Cycle (RBCC) Propulsion Technology Workshop. Tutorial session

    Science.gov (United States)

    1992-01-01

    The goal of this workshop was to illuminate the nation's space transportation and propulsion engineering community on the potential of hypersonic combined cycle (airbreathing/rocket) propulsion systems for future space transportation applications. Four general topics were examined: (1) selections from the expansive advanced propulsion archival resource; (2) related propulsion systems technical backgrounds; (3) RBCC engine multimode operations related subsystem background; and (4) focused review of propulsion aspects of current related programs.

  5. HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles

    Directory of Open Access Journals (Sweden)

    José Carbia Carril

    2015-01-01

    Full Text Available In high temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR specifically designed to operate as power plant heat sources, efficiency enhancement at effective cost under safe conditions can be achieved. Mentioned improvements concern the implementation of two cycle structures: (a, a stand alone Brayton operating with helium and a stand alone Rankine cycle (RC with regeneration, operating with carbon dioxide at ultrasupercritical pressure as working fluid (WF, where condensation is carried out at quasicritical conditions, and (b, a combined cycle (CC, in which the topping closed Brayton cycle (CBC operates with helium as WF, while the bottoming RC is operated with one of the following WFs: carbon dioxide, xenon, ethane, ammonia, or water. In both cases, an intermediate heat exchanger (IHE is proposed to provide thermal energy to the closed Brayton or to the Rankine cycles. The results of the case study show that the thermal efficiency, through the use of a CC, is slightly improved (from 45.79% for BC and from 50.17% for RC to 53.63 for the proposed CC with He-H2O operating under safety standards.

  6. Experimental investigation of an ammonia-based combined power and cooling cycle

    Science.gov (United States)

    Tamm, Gunnar Olavi

    A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for

  7. Energy and environmental analysis of an innovative system based on municipal solid waste (msw) pyrolysis and combined cycle

    OpenAIRE

    Baggio, Paolo; Baratieri, Marco; Gasparella, Andrea; Longo, Giovanni A.

    2007-01-01

    Energy and environmental analysis of an innovative system based on municipal solid waste (msw) pyrolysis and combined cycle correspondence: Corresponding author. Tel.: +39 0444 998726; fax: +39 0444 998888. (Longo, Giovanni A.) (Longo, Giovanni A.) University of Trento, Dept. of Civil and Environmental Engineering - Via Mesiano 77--> , 38050 Trento--> - ITALY (Baggio, Paolo) University of Trento, Dept. ...

  8. Exergy Analysis of Gas Turbine – Fuel cell based combined Cycle Power Plant

    Directory of Open Access Journals (Sweden)

    M.Sreeramulu,

    2011-06-01

    Full Text Available The increase in demand for electrical energy leads to the newer power generation systems. Though it is not new, fuel cell technology is one of the promising systems for cleaner and competitive alternate power generation system. When the fuel cells are integrated with the Gas Turbines, the total thermal efficiency of the combined cycle is obtained greater than 60%. In this paper, thermodynamic analysis of SOFC-GT combined system (2.898MW has been carried out, exergy efficiency and exergy destruction of each component are calculated.The effect of compression ratio (rp, turbine inlet temperature (TIT and ambient temperature of air, on the performance of the system has been analyzed. Outcome of the system modeling reveals that SOFC andcombustion chamber are the main sources of exergy destruction. At the optimum compression ratio 9, the total thermal efficiency and exergy efficiency are found to be 63.3% and 60.85% respectively.

  9. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  10. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    Science.gov (United States)

    Mukherjee, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  11. Highlights of NASA's Special ETO Program Planning Workshop on rocket-based combined-cycle propulsion system technologies

    Science.gov (United States)

    Escher, W. J. D.

    1992-01-01

    A NASA workshop on rocket-based combined-cycle propulsion technologies is described emphasizing the development of a starting point for earth-to-orbit (ETO) rocket technologies. The tutorial is designed with attention given to the combined development of aeronautical airbreathing propulsion and space rocket propulsion. The format, agenda, and group deliberations for the tutorial are described, and group deliberations include: (1) mission and space transportation infrastructure; (2) vehicle-integrated propulsion systems; (3) development operations, facilities, and human resource needs; and (4) spaceflight fleet applications and operations. Although incomplete the workshop elevates the subject of combined-cycle hypersonic propulsion and develops a common set of priniciples regarding the development of these technologies.

  12. Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies.

    Science.gov (United States)

    Florent, Querini; Enrico, Benetto

    2015-02-01

    This article presents agent-based modeling (ABM) as a novel approach for consequential life cycle assessment (C-LCA) of large scale policies, more specifically mobility-related policies. The approach is validated at the Luxembourgish level (as a first case study). The agent-based model simulates the car market (sales, use, and dismantling) of the population of users in the period 2013-2020, following the implementation of different mobility policies and available electric vehicles. The resulting changes in the car fleet composition as well as the hourly uses of the vehicles are then used to derive consistent LCA results, representing the consequences of the policies. Policies will have significant environmental consequences: when using ReCiPe2008, we observe a decrease of global warming, fossil depletion, acidification, ozone depletion, and photochemical ozone formation and an increase of metal depletion, ionizing radiations, marine eutrophication, and particulate matter formation. The study clearly shows that the extrapolation of LCA results for the circulating fleet at national scale following the introduction of the policies from the LCAs of single vehicles by simple up-scaling (using hypothetical deployment scenarios) would be flawed. The inventory has to be directly conducted at full scale and to this aim, ABM is indeed a promising approach, as it allows identifying and quantifying emerging effects while modeling the Life Cycle Inventory of vehicles at microscale through the concept of agents. PMID:25587896

  13. Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines.

    Science.gov (United States)

    Zhu, Yunhua; Frey, H Christopher

    2006-12-01

    Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed.

  14. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship

    International Nuclear Information System (INIS)

    Highlights: • A novel electricity–cooling cogeneration system was used to recover waste heat aboard ships. • Performance of such RC–ARS system was investigated theoretically. • Optimal exergy output can be obtained when the vaporization pressure of RC is 300 kPa. • The exergy efficiency of cogeneration system is 5–12% higher than that of basic Rankine cycle only. - Abstract: In this paper, an electricity–cooling cogeneration system based on Rankine–absorption refrigeration combined cycle is proposed to recover the waste heat of the engine coolant and exhaust gas to generate electricity and cooling onboard ships. Water is selected as the working fluid of the Rankine cycle (RC), and a binary solution of ammonia–water is used as the working fluid of the absorption refrigeration cycle. The working fluid of RC is preheated by the engine coolant and then evaporated and superheated by the exhaust gas. The absorption cycle is powered by the heat of steam at the turbine outlet. Electricity output, cooling capacity, total exergy output, primary energy ratio (PER) and exergy efficiency are chosen as the objective functions. Results show that the amount of additional cooling output is up to 18 MW. Exergy output reaches the maximum 4.65 MW at the vaporization pressure of 300 kPa. The study reveals that the electricity–cooling cogeneration system has improved the exergy efficiency significantly: 5–12% increase compared with the basic Rankine cycle only. Primary energy ratio (PER) decreases as the vaporization pressure increases, varying from 0.47 to 0.40

  15. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine

    Science.gov (United States)

    Brown, T. M.; Smith, Norm

    1999-01-01

    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  16. Energy and exergy based performance analyses of a solid oxide fuel cell integrated combined cycle power plant

    International Nuclear Information System (INIS)

    Highlights: • Energy and exergy based performance of SOFC integrated combined cycle is presented. • The system utilize the GT exhaust for fuel preheating, air preheating and steam generation. • The study considers the effect of additional fuel burning in the combustion chamber. • Detail parametric analysis is presented to show the effect of various operating parameters. • System performance is compared with another system with air recuperator before fuel recuperator. - Abstract: This article provides the energy and exergy based performance analysis of a solid oxide fuel cell (SOFC) – gas turbine (GT) – steam turbine (ST) combined cycle power plant. The system utilizes the GT exhaust heat for fuel and air preheating subsequently in a fuel recuperator (FR) and an air recuperator (AR) before finally producing steam in a heat recovery steam generator (HRSG) coupled with the ST cycle. It considers 30% external reforming in a pre-reformer (PR) by steam extracted from the bottoming ST plant. The study considers the effect of additional fuel burning in the combustion chamber (CC) as a means for increasing the net GT and ST power output. A detailed parametric analysis based on variation of compressor pressure ratio (CPR), fuel flow rate (FFR), air flow rate (AFR), current density, single level boiler pressure and ST inlet temperature (STIT) is also provided. Results indicate improved system performance at higher CPR. The optimum single level boiler pressure is found to be 40 bar with 50% additional fuel burning. Burning of additional fuel improves the GT and ST power output, however with reduction in the plant’s overall efficiency. Further comparison of performance with a similar other system where the AR is placed head of the FR indicates slightly better performance of the proposed system with FR ahead of AR (FRAOAR)

  17. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  18. Parametric Data from a Wind Tunnel Test on a Rocket-Based Combined-Cycle Engine Inlet

    Science.gov (United States)

    Fernandez, Rene; Trefny, Charles J.; Thomas, Scott R.; Bulman, Mel J.

    2001-01-01

    A 40-percent scale model of the inlet to a rocket-based combined-cycle (RBCC) engine was tested in the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT). The full-scale RBCC engine is scheduled for test in the Hypersonic Tunnel Facility (HTF) at NASA Glenn's Plum Brook Station at Mach 5 and 6. This engine will incorporate the configuration of this inlet model which achieved the best performance during the present experiment. The inlet test was conducted at Mach numbers of 4.0, 5.0, 5.5, and 6.0. The fixed-geometry inlet consists of an 8 deg.. forebody compression plate, boundary layer diverter, and two compressive struts located within 2 parallel sidewalls. These struts extend through the inlet, dividing the flowpath into three channels. Test parameters investigated included strut geometry, boundary layer ingestion, and Reynolds number (Re). Inlet axial pressure distributions and cross-sectional Pitot-pressure surveys at the base of the struts were measured at varying back-pressures. Inlet performance and starting data are presented. The inlet chosen for the RBCC engine self-started at all Mach numbers from 4 to 6. Pitot-pressure contours showed large flow nonuniformity on the body-side of the inlet. The inlet provided adequate pressure recovery and flow quality for the RBCC cycle even with the flow separation.

  19. A Framework for Simulating Turbine-Based Combined-Cycle Inlet Mode-Transition

    Science.gov (United States)

    Le, Dzu K.; Vrnak, Daniel R.; Slater, John W.; Hessel, Emil O.

    2012-01-01

    A simulation framework based on the Memory-Mapped-Files technique was created to operate multiple numerical processes in locked time-steps and send I/O data synchronously across to one-another to simulate system-dynamics. This simulation scheme is currently used to study the complex interactions between inlet flow-dynamics, variable-geometry actuation mechanisms, and flow-controls in the transition from the supersonic to hypersonic conditions and vice-versa. A study of Mode-Transition Control for a high-speed inlet wind-tunnel model with this MMF-based framework is presented to illustrate this scheme and demonstrate its usefulness in simulating supersonic and hypersonic inlet dynamics and controls or other types of complex systems.

  20. Biomass integrated gasification combined cycle power generation with supplementary biomass firing: Energy and exergy based performance analysis

    International Nuclear Information System (INIS)

    A thermodynamic analysis of a Biomass Integrated Gasification Combined Cycle (BIGCC) plant has been performed based on energy and exergy balances in a proposed configuration. Combustion of supplementary biomass fuel is considered using the oxygen available in the gas turbine (GT) exhaust. The effects of pressure and temperature ratios of the GT system and the amount of fuel burned in the supplementary firing chamber on the thermal and exergetic efficiencies of the plant have been investigated. The plant efficiencies increase with the increase in both pressure and temperature ratios; however, the latter has a stronger influence than the former. Supplementary firing of biomass increases the plant efficiencies of a BIGCC plant till an optimum level of degree of firing. The other technical issues related to supplementary firing, like ash fusion in the furnace and exhaust heat loss maintaining a minimum pinch point temperature difference are accounted and finally a set of optimum plant operating parameters have been identified. The performance of a 50 MWe plant has been analyzed with the optimum operating parameters to find out equipment rating and biomass feed rates. Exergetic efficiencies of different plant equipments are evaluated to localize the major thermodynamic irreversibilities in the plant. -- Highlights: → A thermodynamic analysis of a Biomass Integrated Gasification Combined Cycle (BIGCC) plant has been performed based on energy and exergy balances across various plant components in a proposed configuration in order to optimize the operating parameters. → The effect of supplementary biomass firing in the BIGCC plant has been analyzed in detail to find out the optimum degree of firing for the best plant performance. → The equipment ratings and fuel feed rates are evaluated and the technical feasibility of the plant configuration has been analyzed. → Exergetic efficiencies of different plant equipments are evaluated to localize the major thermodynamic

  1. Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm

    International Nuclear Information System (INIS)

    Highlights: ► Comprehensive thermodynamic modeling of combined cycle power plant. ► Multiobjective optimization of a CCPP with genetic algorithm. ► To improve the system performance by using an optimization approach. ► To perform the sensitivity analysis. - Abstract: In this study, a comprehensive thermodynamic modeling of a dual pressure combined cycle power plant is modeled. Also, to ensure the developed code, results are compared with an actual data taken from one of the Iranian power plant. The combined cycle power plant is equipped with a duct burner. In second part, by considering number of decision variables, the objective function is optimized. To have a better understanding and optimal design of the system, an optimization is performed. In our multi-objective optimization, first objective function comprises a set of component costs, the fuel cost injected into the combustion chamber, duct burner cost and the cost of exergy destruction. Second objective function is cycle exergy efficiency. Therefore, multi-objective optimization of this cycle is carried out using a computer simulation code written by using the genetic algorithm approach. Finally, the effect of cycle key parameters on these two objective functions is investigated. The results show that gas turbine temperature, compressor pressure ratio and pinch point temperatures are significant design parameters. It means that any changes in these design parameters lead to a drastic change in objective functions.

  2. Combined cycles with gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Y.S.H.; Akyurt, M. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Mechanical Engineering Dept.)

    1994-03-01

    Simple cycle gas turbine engines suffer from limited efficiencies and consequential dominance of fuel prices on generation costs. Combined cycles, however. exploit the waste heat from exhaust gases to boost power output, resulting in overall efficiencies around 50%, which are significantly above those of steam power plants. This paper reviews various types of combined cycles, including repowering, integrated gasification and other advanced systems. (author)

  3. Energy and environmental analysis of an innovative system based on municipal solid waste (MSW) pyrolysis and combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Baggio, Paolo; Baratieri, Marco [University of Trento, Department of Civil and Environmental Engineering, Via Mesiano 77, 38050 Trento (Italy); Gasparella, Andrea [University of Padova, Department of Management and Engineering, Str.lla S.Nicola 3, 36100 Vicenza (Italy); Longo, Giovanni A. [University of Padova, Department of Management and Engineering, Str.lla S.Nicola 3, 36100 Vicenza (Italy)], E-mail: tony@gest.unipd.it

    2008-02-15

    This paper presents the energy and the environmental impact analysis of an innovative system based on the pyrolysis of MSW which produces solid (char), liquid (tar) and gas (syngas) fuels used in a combined cycle for electric power generation. The syngas, after filtration and compression, feeds two gas turbines. In turn, the exhaust from the gas turbines, after post-combustion with char and tar, drives a steam turbine power plant. Before being discharged, the flue gas is processed in a selective catalytic reduction (SCR) unit to reduce CO, VOC and NO{sub x} content and is filtered to remove particulate matter. This innovative approach to energy recovery from MSW combines high energy efficiency with a low level of polluting emissions. The estimated global efficiency of the plant, referred to the LHV of the MSW, is around 28-30%, a much higher value than ordinarily obtained in traditional waste incineration plants. The environmental analysis includes a study of the polluting emissions and the simulation of their concentration in the area surrounding the plant: the emissions of the plant have a negligible influence on the original polluting levels of the settlement area.

  4. Rocket-based combined-cycle (RBCC) powered spaceliner class vehicle can advantageously employ vertical takeoff and landing (VTOL)

    Science.gov (United States)

    Escher, William J. D.

    1995-01-01

    The subject is next generation orbital space transporation, taken to be fully reusable non-staged 'aircraft like' systems targeted for routine, affordable access to space. Specifically, the takeoff and landing approach to be selected for such systems is considered, mainly from a propulsion viewpoint. Conventional wisdom has it that any transatmospheric-class vehicle which uses high-speed airbreathing propulsion modes (e.g., scramjet) intrinsically must utilize horizontal takeoff and landing, HTOHL. Although this may be true for all-airbreathing propulsion (i.e., no rocket content as in turboramjet propulsion), that emerging class of powerplant which integrally combines airbreathing and rocket propulsion, referred to as rocket-based combined-cycle (RBCC) propulsion, is considerably more flexible with respect to selecting takeoff/landing modes. In fact, it is proposed that any of the modes of interest may potentially be selected: HTOHL, VTOHL, VTOVL. To illustrate this surmise, the case of a previously documented RBCC-powered 'Spaceliner' class space transport concept, which is designed for vertical takeoff and landing, is examined. The 'RBCC' and 'Spaceliner' categories are first described for background. Departing form an often presumed HTOHL baseline, the leading design and operational advantages of moving to VTOVL are then elucidated. Technical substantiation that the RBCC approach, in fact, enables this capability (but also that of HTOHL and VTOVL) is provided, with extensive reference to case-in-point supporting studies. The paper closes with a set of conditional surmises bearing on its set of conclusions, which point up the operational cost advantages associated with selecting the vertical takeoff and landing mode combination (VTOL), uniquely offered by RBCC propulsion.

  5. Rocket-based combined-cycle (RBCC) powered spaceliner class vehicle can advantageously employ vertical takeoff and landing (VTOL)

    Science.gov (United States)

    Escher, William J. D.

    The subject is next generation orbital space transporation, taken to be fully reusable non-staged 'aircraft like' systems targeted for routine, affordable access to space. Specifically, the takeoff and landing approach to be selected for such systems is considered, mainly from a propulsion viewpoint. Conventional wisdom has it that any transatmospheric-class vehicle which uses high-speed airbreathing propulsion modes (e.g., scramjet) intrinsically must utilize horizontal takeoff and landing, HTOHL. Although this may be true for all-airbreathing propulsion (i.e., no rocket content as in turboramjet propulsion), that emerging class of powerplant which integrally combines airbreathing and rocket propulsion, referred to as rocket-based combined-cycle (RBCC) propulsion, is considerably more flexible with respect to selecting takeoff/landing modes. In fact, it is proposed that any of the modes of interest may potentially be selected: HTOHL, VTOHL, VTOVL. To illustrate this surmise, the case of a previously documented RBCC-powered 'Spaceliner' class space transport concept, which is designed for vertical takeoff and landing, is examined. The 'RBCC' and 'Spaceliner' categories are first described for background. Departing form an often presumed HTOHL baseline, the leading design and operational advantages of moving to VTOVL are then elucidated. Technical substantiation that the RBCC approach, in fact, enables this capability (but also that of HTOHL and VTOVL) is provided, with extensive reference to case-in-point supporting studies. The paper closes with a set of conditional surmises bearing on its set of conclusions, which point up the operational cost advantages associated with selecting the vertical takeoff and landing mode combination (VTOL), uniquely offered by RBCC propulsion.

  6. Numerical analysis of flow features and operation characteristics of a rocket-based combined-cycle inlet in ejector mode

    Science.gov (United States)

    Shi, Lei; Liu, Xiaowei; He, Guoqiang; Qin, Fei; Wei, Xianggeng; Yang, Bin; Liu, Jie

    2016-10-01

    A ready-made central strut-based rocket-based combined-cycle (RBCC) engine was numerically investigated in the ejector mode. The flow features in the RBCC inlet and the matching characteristics between the inlet and the embedded rocket during different flight regimes were examined in detail. It was necessary to perform integrated numerical simulations in the ejector mode within considerable pressure far fields around the inlet/exhaust system. The observed flow features and operation characteristics in the RBCC inlet were strongly correlated with the flight conditions, inlet configuration, and operation of the embedded rocket. It was further found that the integrated function status of multiple factors significantly influenced the performance of the RBCC engine in the ejector mode. The two parameters that macroscopically affected the performance most were the air entrainment mass and the drag of the RBCC inlet. To improve these parameters, it is vital to employ an appropriate design of the RBCC inlet and establish the optimal flight trajectory of the flight vehicle.

  7. Numerical Investigation of Cowl Lip Adjustments for a Rocket-Based Combined-Cycle Inlet in Takeoff Regime

    Science.gov (United States)

    Shi, Lei; Liu, Xiaowei; He, Guoqiang; Qin, Fei; Wei, Xianggeng; Yang, Bing; Wu, Lele

    2016-09-01

    Numerical integration simulations were performed on a ready-made central strut-based rocket-based combined-cycle (RBCC) engine operating in the ejector mode during the takeoff regime. The effective principles of various cowl lip positions and shapes on the inlet operation and the overall performance of the entire engine were investigated in detail. Under the static condition, reverse cowl lip rotation in a certain range was found to contribute comprehensive improvement to the RBCC inlet and the entire engine. However, the reverse rotation of the cowl lip contributed very little enhancement of the RBCC inlet under the low subsonic flight regime and induced extremely negative impacts in the high subsonic flight regime, especially in terms of a significant increase in the drag of the inlet. Changes to the cowl lip shape provided little improvement to the overall performance of the RBCC engine, merely shifting the location of the leeward area inside the RBCC inlet, as well as the flow separation and eddy, but not relieving or eliminating those phenomena. The results of this study indicate that proper cowl lip rotation offers an efficient variable geometry scheme for a RBCC inlet in the takeoff regime.

  8. Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei

    2016-10-01

    This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.

  9. Computational Fluid Dynamics (CFD) Simulation of Hypersonic Turbine-Based Combined-Cycle (TBCC) Inlet Mode Transition

    Science.gov (United States)

    Slater, John W.; Saunders, John D.

    2010-01-01

    Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.

  10. Thermodynamic Analysis of Combined Cycle Power Plant

    Directory of Open Access Journals (Sweden)

    A.K.Tiwari,

    2010-04-01

    Full Text Available Air Bottoming Cycle (ABC can replace the heat recovery steam generator and the steam turbine of the conventionalcombined cycle plant. The exhaust energy of the topping gas turbine of existing combine cycle is sent to gas-air heat exchange, which heats the air in the secondary gas turbine cycle. In 1980’s the ABC was proposed as an alternative for the conventional steam bottoming cycle. In spite of the cost of reducing hardware installations it could achieve a thermal efficiency of 80%. The complete thermodynamic analysis of the system has been performed by using specially designed programme, enabling the variation of main independent variables. The result shows the gain in net work output as well as efficiency of combined cycle is 35% to 68%.

  11. Preliminary Sizing Completed for Single- Stage-To-Orbit Launch Vehicles Powered By Rocket-Based Combined Cycle Technology

    Science.gov (United States)

    Roche, Joseph M.

    2002-01-01

    Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The

  12. Corrosion behavior of Haynes {sup registered} 230 {sup registered} nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung [Institute for Advanced Engineering (IAE), Gyeonggi-do (Korea, Republic of). Plant Engineering Center; Kim, Min Jung [Sungkyunkwan Univ, Gyeonggi-do (Korea, Republic of). Advanced Materials Technology Research Center

    2015-07-01

    The corrosion behavior of commercially available Haynes {sup registered} 230 {sup registered} nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes {sup registered} 230 {sup registered} nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes {sup registered} 556 {sup registered}.

  13. Corrosion behavior of Haynes registered 230 registered nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    International Nuclear Information System (INIS)

    The corrosion behavior of commercially available Haynes registered 230 registered nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes registered 230 registered nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes registered 556 registered.

  14. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  15. Maximisation of Combined Cycle Power Plant Efficiency

    Directory of Open Access Journals (Sweden)

    Janusz Kotowicz

    2015-12-01

    Full Text Available The paper presents concepts for increasing the efficiency of a modern combined cycle power plant. Improvement of gas turbine performance indicators as well as recovering heat from the air cooling the gas turbine’s flow system enable reaching gross electrical efficiencies of around 65%. Analyses for a wide range of compressor pressure ratios were performed. Operating characteristics were developed for the analysed combined cycle plant, for different types of open air cooling arrangements of the gas turbine’s expander: convective, transpiration and film.

  16. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  17. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Techn., Stockholm (Sweden). Dept. of Energy Technology

    2001-10-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  18. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-02-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  19. Technical comparison between Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Pablo Andres Silva; Venturini, Osvaldo Jose; Lora, Electo Eduardo Silva [Federal University of Itajuba - UNIFEI, MG (Brazil). Excellence Group in Thermal Power and Distributed Generation - NEST], e-mails: osvaldo@unifei.edu.br, electo@unifei.edu.br

    2010-07-01

    Among the emerging clean coal technologies for power generation, Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) systems are receiving considerable attention as a potentially attractive option to reduce the emissions of greenhouse gases (GHG). The main reason is because these systems has high efficiency and low emissions in comparison with traditional power generation plants. Currently in IGCC and NGCC systems at demonstration stage is been considered to implement CCS technology. CO{sub 2} emissions can be avoided in a gasification-based power plant because by transferring almost all carbon compounds to CO{sub 2} through the water gas shift (WGS) reaction, then removing the CO{sub 2} before it is diluted in the combustion stage. The aim of this study is to compare the technical performance of an IGCC system that uses Brazilian coal and petroleum coke as fuel with a NGCC system, with the same fixed output power of 450 MW. The first section of this paper presents the plant configurations of IGCC systems. The following section presents an analysis of NGCC technology. (author)

  20. Combined-Brayton cycle, space nuclear power systems

    International Nuclear Information System (INIS)

    Because it is a widely recognized dynamic space conversion system, the Brayton cycle has been studied in France since several years, especially within the framework of a limited space program. A recuperated cycle of 20 to 30 kWe has been considered so far. However, possible applications could evolve and the need for an extended, diversified utilization of the Brayton cycle could appear. So, for Lunar or Mars bases which would accept large radiators and can benefit from a certain gravity level, combined cycle systems could be proposed. Following a reference to past works on space combined cycles, a possible association of a Brayton cycle with a thermoionic reactor is presented. The power level of a 'Topaz-2' type space nuclear system can be boosted from 8 kWe to around 36 to 53 kWe, at the expense of a large radiator of course. Furthermore, combined Brayton-Rankine, organic (toluene) or steam, cycles can pave the way to a simpler gas-cooled, particle bed reactor concept. A particular arrangement of HeXe heater and boiler or steam generator in series is proposed. It makes it possible to lower the reactor inlet temperature, which is quite adequate for the use of light water as moderator. Oustanding net efficiencies of 25.8 to 27.6 per cent, given the reactor temperature profile, are obtained. Consequences on the reactor design are mentioned

  1. Analysis and design of a calcium-based sulfur sorbent for applications in integrated gasification combined cycle energy systems

    Science.gov (United States)

    Hasler, David Johann Ludwig

    The reactivity of various Ca-based sorbent materials in pelletized form with H2S or CO2 was investigated at high temperatures (750--880°C). An extensive study was conducted to compare the performance of sorbent pellets derived from plaster of Paris and limestone. Multicycle absorption and regeneration tests showed that plaster-based pellets out performed the limestone-based pellets primarily due to a higher surface area and mesoporosity. The effect of pore-modifiers on the reactivity of limestone with H 2S was investigated by incorporating additives such as cornstarch, graphite and polyvinylalcohol (PVA) in the sorbent. Multicycle sulfidation and regeneration tests of the modified sorbent showed that starch did not improve the reactivity of the limestone, graphite reduced the reactivity, while PVA improved it. The effect of the chemical additives MgO and SrO on the performance of CaO-based sorbent pellets was investigated. The effect of MgO was tested by starting with materials that contained MgCO3 in a natural form, such as dolomite. The effect of SrO was tested by starting with SrCO 3 either co-precipitated with CaCO3 or by wet-mixing SrCO 3 with limestone in slurry form. The MgO was found to improve the thermal stability of the CaO-based sorbent but lowered the overall absorption capacity of the material when reacted with CO2 or H2S, while SrO decreased the thermal stability of the sorbent when it was reacted with CO2; no absorption tests were run with H2S. A study of the performance of pelletized CaO-based cores coated with a refractory material such as alumina and limestone or alumina and kaolin was conducted. The reactivity of the core and shell pellets with H2S was determined. The strength and durability of the pellets were determined by using crushing strength analysis and abrasion resistance tests. Pellets coated with either alumina and limestone or alumina and kaolin proved to be strong and adequate for use in industrial reactors. A semi

  2. Gasification combined cycle power generation - process alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Korhonen, M.

    1988-01-01

    Interest in Integrated Gasification Combined Cycle (IGCC) power plants has recently increased also in Finland. The IGCC systems offer the potential of superior efficiency and environmental performance over conventional pulverized coal or peat fired boilers. Potential applications are both large-scale electricity production from coal and medium-scale combined heat and electricity production. In the latter case, the gasification process should also be applicable to peat and wood. Several IGCC processes have been developed in USA and in Europe. These processes differ from each other in many respects. Nearest to commercialization are processes, which employ oxygen gasification and cold gas cleanup. The Cool Water plant, which was brought into operation in 1984 in USA, has demonstrated the feasibility of an IGCC system using Texaco entrained-bed gasifier. Several pressurized fluidized-bed and fixed-bed gasification processes have also reached a pilot or demonstration stage with a wide variety of coals from lignite to hard coal. Pressurized fluidized-bed gasification of peat (Rheinbraun-HTW-process) will also be demonstrated at the peat ammonia plant of Kemira Oy, which will be commissioned in 1988 in Oulu, Finland. Oxygen gasification and cold gas cleanup are, however, economically viable only in large-scale applications. Technology is being developed to simplify the IGCC system, in order to reduce its capital costs and increase its efficiency. Air gasification combined with ho gas cleanup seems to have a great potential of improving the competitiveness of the IGCC system.

  3. Biomass integrated CFB gasification combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Hirschfelder, H. (Lurgi Umwelt GmbH, Frankfurt am Main (Germany))

    1998-01-01

    This paper presents an overview on the Lurgi-Circulating Fluidized Bed technology (CFB). CFB units are state of the art and have proven their capability of converting biomass, waste or coal into power and/or steam. CFB reactors are in commercial operation for reduction processes and for combustion and gasification of solid fuels. In this paper reduction processes are not considered. The fact, that world-wide over 80 CFB combustion plants using Lurgi technology are commercially operating proves that this technology is well accepted. Lurgi's CFB gasification technology is at present applied in two industrial plants. It is the key process for the advanced biomass or waste utilisation plants. The paper focuses on CFB fuel gas production for combined cycle plants (IGCC) and for cofiring into existing boiler plants. 5 refs., 4 figs.

  4. Biomass integrated CFB gasification combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Hirschfelder, H. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany)

    1998-12-31

    This paper presents an overview on the Lurgi-Circulating Fluidized Bed technology (CFB). CFB units are state of the art and have proven their capability of converting biomass, waste or coal into power and/or steam. CFB reactors are in commercial operation for reduction processes and for combustion and gasification of solid fuels. In this paper reduction processes are not considered. The fact, that world-wide over 80 CFB combustion plants using Lurgi technology are commercially operating proves that this technology is well accepted. Lurgi`s CFB gasification technology is at present applied in two industrial plants. It is the key process for the advanced biomass or waste utilisation plants. The paper focuses on CFB fuel gas production for combined cycle plants (IGCC) and for cofiring into existing boiler plants. 5 refs., 4 figs.

  5. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  6. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MWe; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  7. A Humid Air Turbine–Organic Rankine Cycle combined cycle for distributed microgeneration

    International Nuclear Information System (INIS)

    Highlights: • Humid Air microTurbine and Organic Rankine Cycle models. • Micro combined cycle with optimized medium/low temperature heat recovery. • Thermodynamic analyses of different integrations, fluids and parameters. • Outstanding performance parameters in the distributed generation power range. • Economic analyses show the high viability of the proposed concept. - Abstract: This paper analyses the integration of Humid Air microturbine and an Organic Rankine Cycle in a combined cycle for distributed generation. This integration concept maximizes heat recovery at the exhaust of the micro gas turbine combining the capacities for medium temperature heat recovery of the Organic Rankine Cycle and low temperature heat recovery of the Humid Air Turbine. The integration analysis based on different sets of organic fluids and different recovery temperatures showed that the optimal combination was achieved using toluene and R245fa for medium and low temperature Organic Rankine Cycles respectively. Their combination with the low temperature heat recovery at the Humid Air Turbine saturator maximizes the heat recovery profile from the exhaust gases. The calculations carried out reveal a 25% improvement in net power output of the dual cycle compared to the standalone Humid Air microturbine. Such improvement also affects to global efficiency, increasing it up to 52% in the optimal configuration, above the 41% estimated for the standalone Humid Air Turbine and the 33% rated efficiency of the state of art microturbine Capstone C200. The economic analysis shows that these increases in efficiency and power values make the proposed concept highly competitive, with a 15% reduction in the Levelized Cost of Electricity compared with the standalone Humid Air Turbine and a reduction of 30% compared with the micro gas turbine base case. The presented results show this novel integration as a very promising solution for distributed generation applications at power range under

  8. Aerodynamic Design of a Dual-Flow Mach 7 Hypersonic Inlet System for a Turbine-Based Combined-Cycle Hypersonic Propulsion System

    Science.gov (United States)

    Sanders, Bobby W.; Weir, Lois J.

    2008-01-01

    A new hypersonic inlet for a turbine-based combined-cycle (TBCC) engine has been designed. This split-flow inlet is designed to provide flow to an over-under propulsion system with turbofan and dual-mode scramjet engines for flight from takeoff to Mach 7. It utilizes a variable-geometry ramp, high-speed cowl lip rotation, and a rotating low-speed cowl that serves as a splitter to divide the flow between the low-speed turbofan and the high-speed scramjet and to isolate the turbofan at high Mach numbers. The low-speed inlet was designed for Mach 4, the maximum mode transition Mach number. Integration of the Mach 4 inlet into the Mach 7 inlet imposed significant constraints on the low-speed inlet design, including a large amount of internal compression. The inlet design was used to develop mechanical designs for two inlet mode transition test models: small-scale (IMX) and large-scale (LIMX) research models. The large-scale model is designed to facilitate multi-phase testing including inlet mode transition and inlet performance assessment, controls development, and integrated systems testing with turbofan and scramjet engines.

  9. Benefits from incorporation of combined cycle propulsion

    Science.gov (United States)

    Czysz, Paul A.; Richards, Michael J.

    1999-09-01

    The X-33 program was initiated to develop a testbed for integrated RLV technologies that pave the way for a full scale development of a launch vehicle (Venture Star). Within the Nasa Future X Trailblazer program there is an Upgrade X-33 that focuses on materials and upgrades. The authors propose that the most significant gains can be realized by changing the propulsion cycle, not materials. The cycles examined are rocket cycles, with the combustion in the rocket motor. Specifically, these rocket cycles are: turbopump, topping, expander, air augmented, air augmented ram, LACE and deeply cooled. The vehicle size, volume, structural weight remain constant. The system and propellant tank weights vary with the propulsion system cycle. A reduction in dry weight, made possible by a reduced propellant tank volume, was converted into payload weight provided sufficient volume was made available by the propellant reduction. This analysis was extended to Venture Star for selected engine cycles. The results show that the X-33 test bed could carry a significant payload to LEO (10,000 Ib) and be a valuable test bed in developing a frequent flight to LEO capability. From X-33 published information the maximum speed is about 15,000 ft/sec. With a LACE rocket propulsion system Venture Star vehicle could be sized to a smaller vehicle with greater payload than the Venture Star baseline. Vehicle layout and characteristics were obtained from: http:// www.venturestar.com.

  10. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  11. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Sigthorsson, Oskar; Haglind, Fredrik

    2014-01-01

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus...... in the literature. In the present work we compare these cycles in a combined cycle application with a large marine two-stroke diesel engine. We present an evaluation of the efficiency and the environmental impact, safety concerns and practical aspects of each of the cycles. A previously validated numerical engine...... model is combined with a turbocharger model and bottoming cycle models written in Matlab. Genetic algorithm optimisation results suggest that the Kalina cycle possess no significant advantages compared to the ORC or the steam cycle. While contributing to very high efficiencies, the organic working...

  12. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Combined cycle performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2011-01-01

    The part-load performance of combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry gas turbines on the part-load efficiency for combined...... cycles used for ship propulsion. Moreover, the paper is aimed at developing methodologies and deriving models for part-load simulations suitable for energy system analysis of various components within combined cycle power plants. Two different gas turbine configurations are studied, a two-shaft aero......-derivative configuration and a single-shaft industrial configuration. The results suggest that by the use of variable geometry gas turbines, the combined cycle part-load performance can be improved. In order to minimise the voyage fuel consumption, a combined cycle featuring two-shaft gas turbines with VAN control...

  13. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling

    Science.gov (United States)

    Kobayashi, Genki; Irii, Yuta; Matsumoto, Futoshi; Ito, Atsushi; Ohsawa, Yasuhiko; Yamamoto, Shinji; Cui, Yitao; Son, Jin-Young; Sato, Yuichi

    2016-01-01

    Controlling a cathode/electrolyte interface by modifying the surface of a cathode material with metal oxides or phosphates is a concept being explored as a possible strategy for improving the electrochemical performance of such materials. This study therefore looks at the crystal structure and chemical bonding state from bulk to surface of Al2O3-coated Li[Li0.2Ni0.18Co0.03Mn0.58]O2 and explores the influence that surface modification has on the electrochemical performance. Investigation by X-ray diffraction, hard X-ray photoelectron spectroscopy (HAXPES) and galvanostatic charge/discharge reaction reveals that the surface-modification layer is composed of Li-Al oxides and Al oxides, with a LiM1-xAlxO2 (M = transition metal) interlayer formed between the modification layer and Li[Li0.2Ni0.18Co0.03Mn0.58]O2 particles. The cycling performance of the Li-rich layered oxide is enhanced by its surface modification with Al2O3, achieving a discharge capacity of more than 310 mA h-1 and excellent cycling stability at 50 °C when combined with a more gradual Li-insertion/de-insertion process (i.e., stepwise precycling treatment).

  14. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  15. A comparison of advanced heat recovery power cycles in a combined cycle for large ships

    International Nuclear Information System (INIS)

    Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus in the literature. In the present work we compare these cycles in a combined cycle application with a large marine two-stroke diesel engine. We present an evaluation of the efficiency and the environmental impact, safety concerns and practical aspects of each of the cycles. A previously validated numerical engine model is combined with a turbocharger model and bottoming cycle models written in Matlab. Genetic algorithm optimisation results suggest that the Kalina cycle possess no significant advantages compared to the ORC or the steam cycle. While contributing to very high efficiencies, the organic working fluids possess high global warming potentials and hazard levels. It is concluded that the ORC has the greatest potential for increasing the fuel efficiency, and the combined cycle offers very high thermal efficiency. While being less efficient, the steam cycle has the advantages of being well proven, harmless to the environment as well as being less hazardous in comparison. - Highlights: • We compare steam, ORC (organic Rankine cycle) and Kalina cycles for waste heat recovery in marine engines. • We evaluate the efficiency and important qualitative differences. • The Kalina cycle presents no apparent advantages. • The steam cycle is well known, harmless and has a high efficiency. • The ORC has the highest efficiency but also important drawbacks

  16. Hybrid Combined Cycles with Biomass and Waste Fired Bottoming Cycle - a Literature Study

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Miroslav P.

    2002-02-01

    Biomass is one of the main natural resources in Sweden. The present low-CO{sub 2} emission characteristics of the Swedish electricity production system (hydro and nuclear) can be retained only by expansion of biofuel applications for energy purposes. Domestic Swedish biomass resources are vast and renewable, but not infinite. They must be utilized as efficiently as possible, in order to make sure that they meet the conditions for sustainability in the future. Application of efficient power generation cycles at low costs is essential for meeting this challenge. This applies also to municipal solid waste incineration with energy extraction, which should be preferred to its dumping in landfills. Hybrid dual-fuel combined cycle units are a simple and affordable way to increase the electric efficiency of biofuel energy utilization, without big investments, uncertainties or loss of reliability arising from complicated technologies. Configurations of such power cycles are very flexible and reliable. Their potential for high electric efficiency in condensing mode, high total efficiency in combined heat and power mode and unrivalled load flexibility is explored in this project. The present report is a literature study that concentrates on certain biomass utilization technologies, in particular the design and performance of hybrid combined cycle power units of various configurations, with gas turbines and internal combustion engines as topping cycles. An overview of published literature and general development trends on the relevant topic is presented. The study is extended to encompass a short overview of biomass utilization as an energy source (focusing on Sweden), history of combined cycles development with reference especially to combined cycles with supplementary firing and coal-fired hybrid combined cycles, repowering of old steam units into hybrid ones and combined cycles for internal combustion engines. The hybrid combined cycle concept for municipal solid waste

  17. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zelong; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  18. The Development of Coke Carried—Heat Gasification Coal—Fired Combined Cycle

    Institute of Scientific and Technical Information of China (English)

    LiZhao; XiangdongXu

    1999-01-01

    Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department of Tsinghua University in 1992,The idea of the system comes from the situation that the efficiency of the power plants in china is much lower than that of the advanced countries,but the coal consumption is much higher,which brings about the waste of primary energy resources and the pollution of the environment.With the deep study of the gasification technology,Coke Carried-Heat Gasification Coal-Fired Combined Cycle,as the improved system,came into birth in 1996 based on the partial gasification one,At the end of 1997,a new cycle scheme similar to IGCC was created.This paper focuses on several classes combined cycle put forward by Tsinghua University,depending on the plant configuration and carbon conversion,making the solution a viable and attractive option for efficient coal utilization.

  19. Topping combined as turbine - nuclear reactor cycle technology

    International Nuclear Information System (INIS)

    The application of a combined gas cycle technology for operating nuclear power plants (NPPs) with light water reactors can extend plant lifetime, improve electric efficiency and plant economy and enhance nuclear safety. In previous Battelle publications the authors used a superheated steam, generated in a heat recovery steam generator (HRSG) of a gas turbine combined cycle. The steam was then mixed with saturated nuclear steam in a steam mixer. This technology is more applicable for a new NPP, because the nuclear steam turbine requires modification, which increases cost. In the present paper we focus on a topping combined cycle technology without the need for steam mixing for the re-powering of 'aging' operating plants. This application can extend plant lifetime and improve the plant economy without main turbine modification. (author)

  20. Performance assessment and optimization of a combined heat and power system based on compressed air energy storage system and humid air turbine cycle

    International Nuclear Information System (INIS)

    Highlights: • A combined heat and power system based on CAES and HAT is proposed. • The design and modeling of the CAES–HAT based CHP system are laid out. • The performance assessment of the proposed system is carried out. • The system optimization is conducted to decide the maximum conditions. - Abstract: Renewable energy based power sources have grown rapidly in the past few years owing to the dual constraint of climate change and pollution control. Compressed air energy storage (CAES), as a large-scale energy storage system (ESS) technology, has huge potential to manage the intermittent renewable energy based power sources effectively. However, the compression heat generated during charge and waste heat carried in turbine exhaust during discharge are not fully recuperated in current stage. A combined heat and power (CHP) system consisting of a CAES system and a humid air turbine (HAT) system is proposed to utilize the both types of heat energy. The proposed system can boost the power output, enhance performance and improve efficiency through a simultaneous supply of power and heat. The thermodynamic analysis shows that the expansion train power can be improved about 26% compared with the conventional CAES system. The parametric analysis reveals that the exergy efficiency increases with the turbine inlet temperature (TIT) of high pressure turbine (HPT) and inlet pressure of low pressure turbine (LPT), but decreases with the TIT of LPT, L/G ratio and dry air inlet temperature of saturator. Meanwhile, the system optimization is carried out via particle swarm optimization (PSO) to determine the maximum power and exergy efficiency conditions

  1. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa;

    2016-01-01

    Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary......Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study...

  2. Theoretical Study on CO2 Transcritical Cycle Combined Ejector Cycle Refrigeration System

    Institute of Scientific and Technical Information of China (English)

    卢苇; 马一太; 李敏霞; 查世彤

    2003-01-01

    Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO2 transcritical cycle with ejector cycle is proposed in this paper. The CO2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH3, H2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.

  3. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Science.gov (United States)

    2013-07-22

    ... of Availability Hydrogen Energy California's Integrated Gasification Combined Cycle Project... availability of the Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary... the Hydrogen Energy California's (HECA) Integrated Gasification Combined Cycle Project, which would...

  4. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  5. TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION

    Science.gov (United States)

    The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...

  6. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    Science.gov (United States)

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  7. Technical and financial analysis of combined cycle gas turbine

    Directory of Open Access Journals (Sweden)

    Khan Arshad Muhammad

    2013-01-01

    Full Text Available This paper presents technical and financial models which were developed in this study to predict the overall performance of combined cycle gas turbine plant in line with the needs of independent power producers in the liberalized market of power sector. Three similar sizes of combined cycle gas turbine power projects up to 200 Megawatt of independent power producers in Pakistan were selected in-order to develop and drive the basic assumptions for the inputs of the models in view of prevailing Government of Pakistan’s two components of electricity purchasing tariff that is energy purchase price and capacity purchase price at higher voltage grid station terminal from independent power producers. The levelized electricity purchasing tariff over life of plant on gaseous fuel at 60 percent plant load factor was 6.47 cent per kilowatt hour with energy purchase price and capacity purchase prices of 3.54 and 2.93 cents per kilowatt hour respectively. The outcome of technical models of gas turbine, steam turbine and combined cycle gas turbine power were found in close agreement with the projects under consideration and provides opportunity of evaluation of technical and financial aspects of combined cycle power plant in a more simplified manner with relatively accurate results. At 105 Celsius exit temperature of heat recovery steam generator flue gases the net efficiency of combined cycle gas turbine was 48.8 percent whereas at 125 Celsius exit temperature of heat recovery steam generator flue gases it was 48.0 percent. Sensitivity analysis of selected influential components of electricity tariff was also carried out.

  8. Combining Optimized Particle Morphology with a Niobium-Based Coating for Long Cycling-Life, High-Voltage Lithium-Ion Batteries.

    Science.gov (United States)

    Gabrielli, Giulio; Axmann, Peter; Diemant, Thomas; Behm, Rolf Jürgen; Wohlfahrt-Mehrens, Margret

    2016-07-01

    Morphologically optimized LiNi0.5 Mn1.5 O4 (LMNO-0) particles were treated with LiNbO3 to prepare a homogeneously coated material (LMNO-Nb) as cathode in batteries. Graphite/LMNO-Nb full cells present a twofold higher cycling life than cells assembled using uncoated LMNO-0 (graphite/LMNO-0 cell): Graphite/LMNO-0 cells achieve 80 % of the initial capacity after more than 300 cycles whereas for graphite/LMNO-Nb cells this is the case for more than 600 cycles. Impedance spectroscopy measurements reveal significantly lower film and charge-transfer resistances for graphite/LMNO-Nb cells than for graphite/LMNO-0 cells during cycling. Reduced resistances suggest slower aging related to film thickening and increase of charge-transfer resistances when using LMNO-Nb cathodes. Tests at 45 °C confirm the good electrochemical performance of the investigated graphite/LMNO cells while the cycling stability of full cells is considerably lowered under these conditions. PMID:27254109

  9. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  10. Optimization of the triple-pressure combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Alus Muammer

    2012-01-01

    Full Text Available The aim of this work was to develop a new system for optimization of parameters for combined cycle power plants (CCGTs with triple-pressure heat recovery steam generator (HRSG. Thermodynamic and thermoeconomic optimizations were carried out. The objective of the thermodynamic optimization is to enhance the efficiency of the CCGTs and to maximize the power production in the steam cycle (steam turbine gross power. Improvement of the efficiency of the CCGT plants is achieved through optimization of the operating parameters: temperature difference between the gas and steam (pinch point P.P. and the steam pressure in the HRSG. The objective of the thermoeconomic optimization is to minimize the production costs per unit of the generated electricity. Defining the optimal P.P. was the first step in the optimization procedure. Then, through the developed optimization process, other optimal operating parameters (steam pressure and condenser pressure were identified. The developed system was demonstrated for the case of a 282 MW CCGT power plant with a typical design for commercial combined cycle power plants. The optimized combined cycle was compared with the regular CCGT plant.

  11. Combination ultracapacitor-battery performance dependence on drive cycle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John M.; Deshpande, Uday [Maxwell Technologies, Inc., San Diego, CA (United States); Dougherty, Thomas J. [Monolith Engines, Inc., Waukesha, WI (United States); Bohn, Thedore P. [Argonne National Lab. (United States)

    2009-07-01

    Automotive performance and economy assessments are generally made using the UDDS, urban dynamometer drive schedule, to quantify vehicle attributes against a cycle representative of how individuals actually drive. But how does selection of drive cycle influence the sizing and efficiency of the ESS, energy storage system? In this paper three representative driving schedules are used to evaluate the energy storage system current demanded of the ultracapacitors in combination with the lithium-ion battery, but a simpler, more generic electric vehicle drive cycle is used to make the comparisons. The drive cycle current demand is then imposed on the hybridized battery to identify via multi-attribute characterization the trade-offs between ultracapacitor useable energy, voltage window and power electronic converter input current requirement. A value proposition is made that demonstrates that today, using the Maxwell Technologies dry electrode processing technique, Thi{sub c}kFLEX trademark, that energy optimized lithium-ion battery can be realized having substantial cost savings over conventional processing. This cost save in turn becomes the budget for the ultracapacitors and dc-dc converter used to decouple power and energy in the combination energy storage system. Our finding is the Maxwell electrode process enables the cost savings on lithium-ion needed to realize the combined ultracapacitor plus lithium-ion performance goals. (orig.)

  12. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Directory of Open Access Journals (Sweden)

    Zelong Zhang, Lingen Chen, Fengrui Sun

    2012-01-01

    Full Text Available This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  13. Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Luiz Felipe; Burbano, Juan Carlos [Laboratory of Environmental and Thermal Engineering, Polytechnic School - University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289 Cidade Universitaria, CEP: 05508-900, Sao Paulo, SP (Brazil); de Oliveira Junior, Silvio [Mechanical Engineering Faculty, Technological University of Pereira, Pereira (Colombia)

    2010-02-15

    Back in 1970s and 1980s, cogeneration plants in sugarcane mills were primarily designed to consume all bagasse, and produce steam and electricity to the process. The plants used medium pressure steam boilers (21 bar and 300 C) and backpressure steam turbines. Some plants needed also an additional fuel, as the boilers were very inefficient. In those times, sugarcane bagasse did not have an economic value, and it was considered a problem by most mills. During the 1990s and the beginning of the 2000s, sugarcane industry faced an open market perspective, thus, there was a great necessity to reduce costs in the production processes. In addition, the economic value of by-products (bagasse, molasses, etc.) increased, and there was a possibility of selling electricity to the grid. This new scenario led to a search for more advanced cogeneration systems, based mainly on higher steam parameters (40-80 bar and 400-500 C). In the future, some authors suggest that biomass integrated gasification combined cycles are the best alternative to cogeneration plants in sugarcane mills. These systems might attain 35-40% efficiency for the power conversion. However, supercritical steam cycles might also attain these efficiency values, what makes them an alternative to gasification-based systems. This paper presents a comparative thermoeconomic study of these systems for sugarcane mills. The configurations studied are based on real systems that could be adapted to biomass use. Different steam consumptions in the process are considered, in order to better integrate these configurations in the mill. (author)

  14. A review of findings of a study of rocket based combined cycle engines applied to extensively axisymmetric single stage to orbit vehicles

    Science.gov (United States)

    Foster, Richard W.

    1992-01-01

    Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.

  15. Combination of IVF and IVM in naturally cycling women

    DEFF Research Database (Denmark)

    Tang-Pedersen, Mikael; Westergaard, Lars Grabow; Erb, Karin;

    2012-01-01

    This study investigated the combination of an unstimulated IVF cycle with in-vitro maturation (IVM) of additional immature cumulus-oocyte-complexes (COC) from the same cycle collected at the same time as the spontaneous preovulatory follicle. This could potentially improve rates of embryo transfer...... and pregnancy/live births compared with conventional unstimulated IVF treatment and at the same time eliminate the risk of ovarian hyperstimulation syndrome. This prospective trial included 77 women with regular menstrual cycles. Age at inclusion was between 20 and 37 years. Results showed a retrieval rate...... between endometrial factors and IVM oocytes together with unknown competence of IVM embryos is suspected. For some time, there has been an increasing interest in mild approaches for fertility treatment, in particular IVF. In-vitro maturation (IVM) of immature eggs outside the ovaries followed by IVF...

  16. Combined cycles and cogeneration with natural gas and alternative fuels

    International Nuclear Information System (INIS)

    Since 1985 there has been a sharp increase world-wide in the sales of gas turbines. The main reasons for this are: the improved designs allowing better gas turbine and, thus, combined cycle efficiencies; the good fuel use indices in the the case of cogeneration; the versatility of the gas turbines even with poly-fuel plants; greatly limited exhaust emissions; and lower manufacturing costs and delivery times with respect to conventional plants. This paper after a brief discussion on the evolution in gas turbine applications in the world and in Italy, assesses their use and environmental impacts with fuels other than natural gas. The paper then reviews Italian efforts to develop power plants incorporating combined cycles and the gasification of coal, residual, and other low calorific value fuels

  17. Exergy Analysis of Combined Cycle Power Plant: NTPC Dadri, India

    Directory of Open Access Journals (Sweden)

    Arvind Kumar Tiwari

    2012-12-01

    Full Text Available The aim of the present paper is to exergy analysis of combined Brayton/Rankine power cycle of NTPC Dadri India. Theoretical exergy analysis is carried out for different components of dadri combined cycle power plant which consists of a gas turbine unit, heat recovery steam generator without extra fuel consumption and steam turbine unit. The results pinpoint that more exergy losses occurred in the gas turbine combustion chamber. Its reached 35% of the total exergy losses while the exergy losses in other plant components are between 7% -21% of the total exergy losses at 1400o C turbine inlet temperature and pressure ratio 10 .This paper also considered the effect of the pressure ratio, turbine inlet temperature, pressure drop in combustion chamber and heat recovery steam generator on the exergy losses in the plant, there are a clear effects in the exergy losses when changing pressure ratio, turbine inlet temperature.

  18. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Javad Abbasian

    2001-07-01

    The objective of this program is to develop and evaluate novel sorbents for the Siemens Westinghouse Power Company's (SWPC's) ''Ultra-Clean Gas Cleaning Process'' for reducing to near-zero levels the sulfur- and chlorine-containing gas emissions and fine particulate matter (PM2.5) caused by fuel bound constituents found in carbonaceous materials, which are processed in Integrated Gasification Combined Cycle (IGCC) technologies.

  19. Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)

    Science.gov (United States)

    Aleksandrov, V. F.

    2010-02-01

    The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power plant at the station site are described; the layout solutions for the main building and turbine building are presented, and a comparison of the retrofitted station with the Kolomenskoe and Vnukovo gas turbine-based power stations is given.

  20. Combined cycle plants: Yesterday, today, and tomorrow (review)

    Science.gov (United States)

    Ol'khovskii, G. G.

    2016-07-01

    Gas turbine plants (GTP) for a long time have been developed by means of increasing the initial gas temperature and improvement of the turbo-machines aerodynamics and the efficiency of the critical components air cooling within the framework of a simple thermodynamic cycle. The application of watercooling systems that were used in experimental turbines and studied approximately 50 years ago revealed the fundamental difficulties that prevented the practical implementation of such systems in the industrial GTPs. The steam cooling researches have developed more substantially. The 300 MW power GTPs with a closedloop steam cooling, connected in parallel with the intermediate steam heating line in the steam cycle of the combined cycle plant (CCP) have been built, tested, and put into operation. The designs and cycle arrangements of such GTPs and entire combined cycle steam plants have become substantially more complicated without significant economic benefits. As a result, the steam cooling of gas turbines has not become widespread. The cycles—complicated by the intermediate air cooling under compression and reheat of the combustion products under expansion and their heat recovery to raise the combustion chamber entry temperature of the air—were used, in particular, in the domestic power GTPs with a moderate (700-800°C) initial gas turbine entry temperature. At the temperatures being reached to date (1300-1450°C), only one company, Alstom, applies in their 240-300 MW GTPs the recycled fuel cycle under expansion of gases in the turbine. Although these GTPs are reliable, there are no significant advantages in terms of their economy. To make a forecast of the further improvement of power GTPs, a brief review and assessment of the water cooling and steam cooling of hot components and complication of the GTP cycle by the recycling of fuel under expansion of gases in the turbine has been made. It is quite likely in the long term to reach the efficiency for the

  1. Thermoeconomic Evaluation of Integrated Solar Combined Cycle Systems (ISCCS

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez Martín

    2014-07-01

    Full Text Available Three alternatives for integrating a solar field with the bottoming cycle of a combined cycle plant are modeled: parabolic troughs with oil at intermediate and low cycle pressures and Fresnel linear collectors at low cycle pressure. It is assumed that the plant will always operate at nominal conditions, using post-combustion during the hours of no solar resource. A thermoeconomic study of the operation of the plant throughout a year has been carried out. The energy and exergy efficiencies of the plant working in fuel only and hybrid modes are compared. The energy efficiencies obtained are very similar; slightly better for the fuel only mode. The exergy efficiencies are slightly better for hybrid operation than for fuel-only mode, due to the high exergy destruction associated with post-combustion. The values for solar electric efficiency are in line with those of similar studies. The economic study shows that the Fresnel hybridization alternative offers similar performance to the others at a significantly lower cost.

  2. The IVF Outcome Counseling Based on the Model Combining DHEAS and Age in Patients with Low AMH Prior to the First Cycle of GnRH Antagonist Protocol of Ovarian Stimulation

    Directory of Open Access Journals (Sweden)

    Miro Šimun Alebić

    2013-01-01

    Full Text Available Objective. To investigate the endocrine and/or clinical characteristics of women with low anti-Müllerian hormone (AMH that could improve the accuracy of IVF outcome prediction based on the female age alone prior to the first GnRH antagonist IVF cycle. Methods. Medical records of 129 patients with low AMH level (<6.5 pmol/L who underwent their first GnRH antagonist ovarian stimulation protocol for IVF/ICSI were retrospectively analyzed. The main outcome measure was the area under the ROC curve (AUC-ROC for the models combining age and other potential predictive factors for the clinical pregnancy. Results. Clinical pregnancy rate (CPR per initiated cycles was 11.6%. For the prediction of clinical pregnancy, DHEAS and age showed AUC-ROC of 0.726 (95%CI 0.641–0.801 and 0.662 (95%CI 0.573–0.743, respectively (. The predictive accuracy of the model combining age and DHEAS (AUC-ROC 0.796; 95%CI 0.716–0.862 was significantly higher compared to that of age alone (. In patients <37.5 years with DHEAS  pmol/L, 60% (9/15 of all pregnancies were achieved with CPR of 37.5%. Conclusions. DHEAS appears to be predictive for clinical pregnancy in younger women (<37.5 years with low AMH after the first GnRH antagonist IVF cycle. Therefore, DHEAS-age model could refine the pretreatment counseling on pregnancy prospects following IVF.

  3. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa;

    2016-01-01

    Organic Rankine cycle (ORC) power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging...... power output of 8.3% compared to the case when the turbine efficiency is assumed to be 80%. This work also demonstrates that this approach can support the plant designer in the selection of the optimal size of the organic Rankine cycle unit when multiple exhaust gas streams are available....... due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly...

  4. Combined glucose ingestion and mouth rinsing improves sprint cycling performance.

    Science.gov (United States)

    Chong, Edwin; Guelfi, Kym J; Fournier, Paul A

    2014-12-01

    This study investigated whether combined ingestion and mouth rinsing with a carbohydrate solution could improve maximal sprint cycling performance. Twelve competitive male cyclists ingested 100 ml of one of the following solutions 20 min before exercise in a randomized double-blinded counterbalanced order (a) 10% glucose solution, (b) 0.05% aspartame solution, (c) 9.0% maltodextrin solution, or (d) water as a control. Fifteen min after ingestion, repeated mouth rinsing was carried out with 11 × 15 ml bolus doses of the same solution at 30-s intervals. Each participant then performed a 45-s maximal sprint effort on a cycle ergometer. Peak power output was significantly higher in response to the glucose trial (1188 ± 166 W) compared with the water (1036 ± 177 W), aspartame (1088 ± 128 W) and maltodextrin (1024 ± 202 W) trials by 14.7 ± 10.6, 9.2 ± 4.6 and 16.0 ± 6.0% respectively (p glucose trial compared with maltodextrin (p Glucose and maltodextrin resulted in a similar increase in blood glucose, and the responses of blood lactate and pH to sprinting did not differ significantly between treatments (p > .05). These findings suggest that combining the ingestion of glucose with glucose mouth rinsing improves maximal sprint performance. This ergogenic effect is unlikely to be related to changes in blood glucose, sweetness, or energy sensing mechanisms in the gastrointestinal tract. PMID:24668608

  5. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  6. Comparison of performance of the integrated gas and steam cycle (IGSC) with the combined cycle (CC)

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Y.S.H. [Mechanical Engineering Department-Thermal, King Abdulaziz University, P.O. Box 9027, Jeddah 21413 (Saudi Arabia)

    1999-01-01

    The clear advantages of the gas turbine engine are making it the engine of the future in electric power generation. Some combined cycle power plants are breaking the 60% efficiency barrier. One of the key technologies for such high thermal efficiency is steam cooling.In the integrated gas and steam cycle (IGSC), part of the steam generated in the heat recovery boiler (HRB) is used in the gas turbine as the cooling medium instead of air, whereas the other part is used as process steam. In the analysis, the compressor pressure ratio r{sub c} and the turbine inlet temperature were considered the main variables. A computer program was specially tailored to carry out calculations and evaluate performance over a wide range of operating conditions including the design point.Performance results show that, when the cooling air is disregarded, the combined cycle (CC) produces 7% more power than IGSC, whereas the latter outperforms the CC by about 6% in SFC{sub ov} and 12% in {eta}{sub ov}.However, when 5% cooling air is considered, the IGSC outperforms the CC by 2%, 12% and 20%, respectively (in points).Moreover, considerable saving in capital cost is achieved by dispensing with the steam turbine, condenser and cooling tower needed by the CC. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Comparison of performance of the integrated gas and steam cycle (IGSC) with the combined cycle (CC)

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Y.S.H. [King Abdulaziz University, Jeddah (Saudi Arabia). Mechanical Engineering Dept.

    1999-01-01

    The clear advantages of the gas turbine engine are making it the engine of the future in electric power generation. Some combined cycle plants are breaking the 60% efficiency barrier. One of the key technologies for such high thermal efficiency is steam cooling. In the integrated gas and steam cycle (IGSC), part of the steam generated in the heat recovery boiler (HRB) is used in the gas turbine as the cooling medium instead of air, whereas the other part is used as process steam. In the analysis, the compressor pressure ratio r{sub c} and the turbine inlet temperature were considered the main variables. A computer program was specially tailored to carry out calculations and evaluate performance over a wide range of operating conditions including the design point. Performance results show that when the cooling air is disregarded, the combined cycle (CC) produces 7% more power than IGSC, whereas the latter outperforms the CC by about 6% in SFC{sub o{nu}} and 12% in {eta}{sub o{nu}}. However, when 5% cooling air is considered, the IGSC outperforms the CC by 2%, 12% and 20%, respectively (in points). Moreover, considerable saving in capital cost is achieved by dispensing with the steam turbine, condenser and cooling tower needed by the CC. (author)

  8. Thermoeconomic impact on combined cycle performance of advanced blade cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, Francesco; Traverso, Alberto; Massardo, Aristide Fausto [Thermochemical Power Group (TPG), Dipartimento di Macchine, Sistemi Energetici e Trasporti (DIMSET) - University of Genoa (Italy)

    2009-10-15

    In this work the thermoeconomic features of two different combined cycles using air ''open loop'' and steam ''closed loop'' cooled gas turbines are presented and compared in depth. In order to properly estimate both thermodynamic and thermoeconomic performance of the different combined cycles an analytical model of the blade cooling system has been developed in details and outlined in the paper. Internal Thermoeconomic functional analysis is not performed here, as only economic results are shown and discussed. The blade cooling detailed model, originally developed by TPG researchers, has been integrated into the web based modular code WTEMP, already validated for GT based cycles, developed in the last ten years by TPG. It is shown that the closed loop blade cooling configuration has the greatest potential in terms of thermodynamic efficiency and economic competitivity in the mid-term. (author)

  9. Economics and Performance Forecast of Gas Turbine Combined Cycle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaotao; SUGISHITA Hideaki; NI Weidou; LI Zheng

    2005-01-01

    Forecasts of the economics and performance of gas turbine combined cycle (GTCC) with various types of gas turbines will help power plant designers to select the best type of gas turbine for future Chinese powerplants. The cost and performance of various designs were estimated using the commercial software GT PRO. Improved GTCC output will increase the system efficiency which may induce total investment and will certainly increase the cumulative cash which then will induce the cost and the payback period. The relative annual fuel output increases almost in proportion to the relative GTCC output. China should select the gas turbine that provides the most economical output according to its specific conditions. The analysis shows that a GTCC power plant with a medium-sized 100 to 200 MW output gas turbine is the most suitable for Chinese investors.

  10. Parametric Simulation of Combined Cycle Power Pant: A Case Study

    Directory of Open Access Journals (Sweden)

    A. V. S. S. K. S. Gupta

    2011-02-01

    Full Text Available

    In this work a thermodynamic evaluation has been carried out on an existing actual combined cycle plant (LANCO power plant having a triple pressure heat recovery steam generator (HRSG. In this case study, an attempt has been made to improve the efficiency of the plant through a parametric study using a thermodynamic model. The compressor pressure ratio is evaluated from the terminal temperature difference at HRSG inlet instead of an initial regular fixation. The low pressure (LP and the intermediate pressure (IP in HRSG also evaluated from local flue gas temperatures with minimum temperature difference in heaters without initial fixation. The optimized results obtained at high pressures (HP of 90 and 200 bar are compared with the design results of the plant. The optimum pressures obtained for deaerator, LP and IP heaters at 200 bar of HP pressure are 3.7, 8.3 and 26.5 bar respectively.

  11. The ISO 9001 combined cycle gas turbine power station

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, C. [Enron Power Operations Ltd., Middlesborough (United Kingdom)

    2000-07-01

    Enron Power Operations Limited is believed to be one of the first organisations to achieve BS EN ISO9001: 1994 for an Operational Combined Cycle Gas Turbine Power Station. In 1997 the Power Station decided to re-create policies and procedures to fill in the unknown gaps in its array of policies and procedures. The creation of the Quality Management System was expected to take six months utilising limited resources and the experiences of operational staff. Initial checks and internal audits created a wealth of information and highlighted some significant short falls, once certification was gained further issues have been noted. This paper concerns the development, implementation and certification of the Quality Management System at Teesside Power Station showing some benefits noted during this period and the short period after certification. Any other improvements and benefits will come in the future during continued development of the system. (author)

  12. Gasification integrated to combined cycles; Gasificacion integrada a ciclos combinados

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez M, Manuel F; Alcaraz C, Agustin M [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2001-07-01

    The mineral coal is one of the most abundant fuels in the planet, but it has important amounts of sulfur and ashes that make difficult their use. On the other hand, many countries at the present time prevent to use the fuel oil as combustible with conventional technologies due to the metal and sulfur contents. Finally, in the new schemes of oil refinement it is anticipated to use the coking to take advantage of the barrel bottoms. The remainder product of this process, known as refinery coke, has a low commercial value, a high calorific power and high sulfur content and metals. The gasification has been developed in the last the two decades, in the highly industrialized countries, as an alternative for the efficient and clean generation of electricity from dirty fuels, as well as for obtaining certain fuels in places where access to petroleum is not available, but to the coal. This technology fulfills the strictest regulations of the world in what polluting emissions refers and it is the only solution, next to the fluidized beds, for the problems that present some fuels that are difficult to burn with conventional technologies, as the mineral coal, the petroleum coke and even the liquid remainders of the refinement. With base in the former, it is possible to think about the integration of this technology to a combined cycle plant for the generation of electricity or to a refinery generating steam, electrical energy, hydrogen and other consumables at a competitive cost, in such a way that the problems of handling and storage of the remainders are solved; on the other hand the use of the primary power resources in the country is maximized. [Spanish] El carbon mineral es uno de los combustibles mas abundantes en el planeta, pero posee cantidades importantes de azufre y cenizas que dificultan su utilizacion. Por otra parte, muchos paises en la actualidad impiden utilizar el combustoleo como combustible para tecnologias convencionales debido a los contenidos de azufre y

  13. Monitoring of the thermoeconomic performance in an actual combined cycle power plant bottoming cycle

    Energy Technology Data Exchange (ETDEWEB)

    Cafaro, S.; Napoli, L.; Traverso, A.; Massardo, A.F. [DIMSET (TPG), University of Genoa, Via Montallegro 1, 16145 Genoa (Italy)

    2010-02-15

    This paper presents a research project carried out by TPG (Thermochemical Power Group) of University of Genoa to develop innovative monitoring and diagnostics procedures and software tools for software-aided maintenance and customer support. This work is concerned with preliminary outcomes regarding the thermoeconomic monitoring of the bottoming cycle of a combined cycle power plant, using real historical data. The software is able to calculate functional exergy flows (y), their related costs (c) (using the plant functional diagram); after that non dimensional parameters for the characteristic exergonomic indexes ({delta}c, {delta}c*, {delta}k*) are determined. Through a plant optimization (not described here) the reference conditions of the plant at each operating condition can be determined. Then, non dimensional indexes related to each thermoeconomic parameter are defined, in order to depict a ''cost degradation'', and thus a significant rise in the production cost of the main products of the bottoming cycle (steam and power). The methodology developed has been successfully applied to historical logged data of an existing 400 MW power plant, showing the capabilities in estimating the ''cost degradation'' of the elements of the BC over the plant life, and trends in the thermoeconomic indexes. (author)

  14. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery

  15. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, R. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)]. E-mail: kannan@pmail.ntu.edu.sg; Leong, K.C. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)]. E-mail: mkcleong@ntu.edu.sg; Osman, Ramli [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ho, H.K. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tso, C.P. [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka (Malaysia)

    2005-08-15

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established.

  16. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  17. Parametric analysis for a new combined power and ejector-absorption refrigeration cycle

    International Nuclear Information System (INIS)

    A new combined power and ejector-absorption refrigeration cycle is proposed, which combines the Rankine cycle and the ejector-absorption refrigeration cycle, and could produce both power output and refrigeration output simultaneously. This combined cycle, which originates from the cycle proposed by authors previously, introduces an ejector between the rectifier and the condenser, and provides a performance improvement without greatly increasing the complexity of the system. A parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the cycle performance. It is shown that heat source temperature, condenser temperature, evaporator temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. It is evident that the ejector can improve the performance of the combined cycle proposed by authors previously.

  18. A novel combined cycle with synthetic utilization of coal and natural gas

    International Nuclear Information System (INIS)

    In this paper, a novel combined cycle with synthetic utilization of coal and natural gas is proposed, in which the burning of coal provides thermal energy to the methane/steam reforming reaction. The syngas fuel, generated by the reforming reaction, is directly provided to the gas turbine as fuel. The reforming process with coal firing has been investigated based on the concept of energy level, and the equations has been derived to disclosing the mechanism of the cascade utilization of chemical energy of natural gas and coal in the reforming process with coal firing. Through the synthetic utilization of natural gas and coal, the exergy destruction of the combustion of syngas is decreased obviously compared with the direct combustion of natural gas and coal. As a result, the overall thermal efficiency of the new cycle reaches 52.9%, as energy supply by methane is about twice as much as these of coal. With the same consumption of natural gas and coal the new cycle can generate about 6% more power than the reference cycles (the combined cycle and the steam power plant). The promising results obtained here provide a new way to utilize natural gas and coal more efficiently and economically by synthetic utilization

  19. Pre-Combustion Carbondioxide Capture in Integrated Gasification Combined Cycles

    Directory of Open Access Journals (Sweden)

    M. Zeki YILMAZOĞLU

    2010-02-01

    Full Text Available Thermal power plants have a significant place big proportion in the production of electric energy. Thermal power plants are the systems which converts heat energy to mechanical energy and also mechanical energy to electrical energy. Heat energy is obtained from combustion process and as a result of this, some harmful emissions, like CO2, which are the reason for global warming, are released to atmosphere. The contribution of carbondioxide to global warming has been exposed by the previous researchs. Due to this fact, clean energy technologies are growing rapidly all around the world. Coal is generally used in power plants and when compared to other fossil energy sources unit electricity production cost is less than others. When reserve rate is taken into account, coal may be converted to energy in a more efficient and cleaner way. The aim for using the clean coal technologies are to eradicate the harmful emissions of coal and to store the carbondioxide, orginated from combustion, in different forms. In line with this aim, carbondioxide may be captured by either pre-combustion, by O2/CO2 recycling combustion systems or by post combustion. The integrated gasification combined cycles (IGCC are available in pre-combustion capture systems, whereas in O2/CO2 recycling combustion systems there are ultrasuper critical boiler technologies and finally flue gas washing systems by amines exists in post combustion systems. In this study, a pre-combustion CO2 capture process via oxygen blown gasifiers is compared with a conventional power plant in terms of CO2 emissions. Captured carbondioxide quantity has been presented as a result of the calculations made throughout the study.

  20. Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms

    Science.gov (United States)

    Venkata Rao, R.; Patel, Vivek

    2012-08-01

    This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.

  1. Combined Cycle for Power Generation and Refrigeration Using Low Temperature Heat Sources

    OpenAIRE

    Vijay Chauhan; P. Anil Kishan; Sateesh Gedupudi

    2014-01-01

    A combined refrigeration and power cycle, which uses ammonia-water as the working fluid, is proposed by combining Rankine and vapour absorption cycles with an advantage of varying refrigeration capacity to power output ratio. The study investigates the usage of low temperature heat sources for the cycle operation. Results of parametric analysis are presented, which show the scope for optimization. Results of thermodynamic optimization of the cycle for second law efficiency performed using gen...

  2. Optimization of fog inlet air cooling system for combined cycle power plants using genetic algorithm

    International Nuclear Information System (INIS)

    In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year. - Highlights: • To model the combined cycle power plant equipped with fog inlet air cooling method. • To conduct both exergy and economic analyses for better understanding. • To conduct a complete optimization using a genetic algorithm to determine the optimal design parameters of the system

  3. COP Prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning

    OpenAIRE

    Nat Suvarnakuta; Nutthanun Keerlatiyadatanapat; Thanarath Sriveerakul

    2014-01-01

    This paper presents the COP prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning. Using computational fluid dynamics (CFD) technique, the performance of an ejector was analyzed in term of the entrainment ratio (Rm) and critical back pressure (CBP). The results from this study were compared with a previous study of combined ejector refrigeration system for automotive air conditioning application [1] which the entrainment ratio (R...

  4. AZEP Gas Turbine Combined Cycle Power Plants - Thermo-economic Analysis

    Directory of Open Access Journals (Sweden)

    Knut Ingvar Asen

    2006-03-01

    Full Text Available Conventional power plants based on fossil fuel without CO2 capture produced flue gas streams with concentrations of CO2 between 3% and 15%, contributing to the threat of increasing global warming. Existing capture technologies such as post-combustion flue gas treatments using chemical absorption, pre-combustion carbon removal or combustion in O2/CO2 atmospheres suffer from significant efficiency penalties as well as major increases in investment costs. A less energy intensive concept for oxygen production is a mixed conducting membrane (MCM reactor which produces pure oxygen from compressed air. The MCM reactor is best integrated into a conventional gas turbine combined cycle, called advanced zero emissions plant (AZEP, to provide an efficient and cost-effective power plant altogether. In this paper the economic performance of four different combined cycle alternatives in two different gas turbine sizes are evaluated; two of the combined cycles being based on the AZEP concept. The results show that the AZEP concept presents a more competitive system in terms of efficiency and economy compared to traditional capture systems.

  5. THERMODYNAMIC ANALYSIS AND SIMULATION OF A NEW COMBINED POWER AND REFRIGERATION CYCLE USING ARTIFICIAL NEURAL NETWORK

    OpenAIRE

    Hossein Rezvantalab; Seyyed Abdolreza Fazeli; Farshad Kowsary

    2011-01-01

    In this study, a new combined power and refrigeration cycle is proposed, which combines the Rankine and absorption refrigeration cycles. Using a binary ammonia-water mixture as the working fluid, this combined cycle produces both power and refrigeration output simultaneously by employing only one external heat source. In order to achieve the highest possible exergy efficiency, a secondary turbine is inserted to expand the hot weak solution leaving the boiler. Moreover, an artificial neural ne...

  6. The Disposition-Based Fraud Cycle

    OpenAIRE

    Vasant Raval

    2013-01-01

    This paper reviews the disposition-based fraud cycle (DFC) primarily from the perspective of financial frauds. It suggests that fraud as a human act represents an interaction between organism’s disposition and the circumstances he faces. The DFC model which maps financial fraud as a cycle driven by desire-belief connection is contrasted with the widely accepted paradigm called the Fraud Triangle (FT). A purpose of the analysis is to identify unique fraud-risk factors visible in the DFC mode...

  7. Economic optimization of the combined cycle integrated with multi-product gasification system

    Energy Technology Data Exchange (ETDEWEB)

    Liszka, M.; Ziebik, A. [Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Silesia (Poland)

    2009-02-15

    The system taken into consideration consists of the Corex unit, combined cycle power plant and air separation unit (ASU). The Corex process (trademark of Siemens-VAI) is one of technologies for cokeless hot metal production. Coal is gasified by oxygen in the hot metal environment. The excess gas can be used out of installation. It has been assumed that the Corex export gas is fired in combined cycle. The gas turbine (GT) structure was assumed as a fixed simple cycle while the heat recovery steam generator (HRSG) and steam turbine arrangements are free for optimization. The examples of independent variables selected for optimization are number of HRSG pressure levels, GT pressure ratio, minimal temperature differences in HRSG, flow rate of compressed air form GT compressor to ASU. Finally, 16 independent variables have been qualified for optimization. The synthesis optimization is based on the superstructure method. The economic net present value (NPV) has been chosen as the objective function. All power plant facilities have been modeled on the GateCycle software. The off-design models include, among others, the GT blade cooling and HRSG heat transfer coefficient analyses. Two optimization methods - genetic algorithm and Powells conjugate directions have been coupled in one hybrid procedure. The whole optimization analysis has been repeated several times for different price scenarios on the coal, iron and electricity markets. (author)

  8. Economic optimization of the combined cycle integrated with multi-product gasification system

    International Nuclear Information System (INIS)

    The system taken into consideration consists of the Corex unit, combined cycle power plant and air separation unit (ASU). The Corex process (trademark of Siemens-VAI) is one of technologies for cokeless hot metal production. Coal is gasified by oxygen in the hot metal environment. The excess gas can be used out of installation. It has been assumed that the Corex export gas is fired in combined cycle. The gas turbine (GT) structure was assumed as a fixed simple cycle while the heat recovery steam generator (HRSG) and steam turbine arrangements are free for optimization. The examples of independent variables selected for optimization are number of HRSG pressure levels, GT pressure ratio, minimal temperature differences in HRSG, flow rate of compressed air form GT compressor to ASU. Finally, 16 independent variables have been qualified for optimization. The synthesis optimization is based on the superstructure method. The economic net present value (NPV) has been chosen as the objective function. All power plant facilities have been modeled on the GateCycle software. The off-design models include, among others, the GT blade cooling and HRSG heat transfer coefficient analyses. Two optimization methods - genetic algorithm and Powells conjugate directions have been coupled in one hybrid procedure. The whole optimization analysis has been repeated several times for different price scenarios on the coal, iron and electricity markets

  9. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  10. Technical and economical analysis of biomass integrated gasifier/combined cycle power

    Energy Technology Data Exchange (ETDEWEB)

    Boloy, Ronney A. Mancebo; Silveira, Jose Luz; Tuna, Celso Eduardo [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)]. E-mails: mancebo@feg.unesp.br; joseluz@feg.unesp.br; celso.tuna@feg.unesp.br

    2008-07-01

    The obtained energy from the biomass is considered one of the main energy sources for the sustainable development, mainly for the developing countries. Its use in heat and electricity combined generation systems (cogeneration) or in thermoelectric plants operated via combined cycle, has been recommended in various applications due to the high levels of conversion efficiencies. In this case, the biomass must be gasified and cleaned to produce synthesis gas used in power systems such as gas turbines and steam turbines. Nowadays, the biomass is responsible for 10 to 14% of the world energy production. The biomass gasification is a process conversion of this energy source that brings many environment benefits, reducing pollutants emissions. The aim of this work is to design a Gasifier integrated into a combined cycle generation plant. The first combined cycle system consists a Gas Turbine PG5371 (26.300,00 MW) associated with a heat recovery steam generator without supplementary burning (SQS) supplying a Steam Turbine ALSTOM (ST-2) (10.000,00 MW). The second combined cycle system consists a TG-2500 (21.960,00 MW) associated with a heat recovery steam generator with supplementary burning supplying the same steam turbine. Based on gas turbine data, the fluidized bed gasifier was selected. Values of the mass and energy balance are presented. The lower heat value of the synthesis gas obtained was 5.565,45 kJ/Nm{sup 3}, which is within the range accepted by some authors (Lora and Nogueira, 2003) (4.000,00 - 6.000,00 kJ/Nm{sup 3}). The operation temperature of the synthesis gas is 800 deg C. The cold efficiency for SQS system is 79,34% and for CQS system is 65,37%. For combined cycle the efficiency value for SQS system was 49,29% and CQS system was 67,05%. In addition, the electricity production cost, expected annual revenue was determinate, considering the investments in emission technologies control, and the brazilian rural zones electricity price since 2007 ( 0,1078 US

  11. THERMODYNAMIC ANALYSIS AND SIMULATION OF A NEW COMBINED POWER AND REFRIGERATION CYCLE USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Hossein Rezvantalab

    2011-01-01

    Full Text Available In this study, a new combined power and refrigeration cycle is proposed, which combines the Rankine and absorption refrigeration cycles. Using a binary ammonia-water mixture as the working fluid, this combined cycle produces both power and refrigeration output simultaneously by employing only one external heat source. In order to achieve the highest possible exergy efficiency, a secondary turbine is inserted to expand the hot weak solution leaving the boiler. Moreover, an artificial neural network (ANN is used to simulate the thermodynamic properties and the relationship between the input thermodynamic variables on the cycle performance. It is shown that turbine inlet pressure, as well as heat source and refrigeration temperatures have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. In addition, the results of ANN are in excellent agreement with the mathematical simulation and cover a wider range for evaluation of cycle performance.

  12. Increasing of Manoeuvrability of Cogeneration Combined Cycle Power Plants Owing to the Usage of Electric Boilers

    Directory of Open Access Journals (Sweden)

    S. Kachan

    2013-01-01

    Full Text Available The paper contains the results of efficiency evaluation  of using the electric boilers to improve maneuver capabilities of the cogeneration combined cycle power plants (as an example, 230 MW combined cycle unit of Minsk CHP-3 in comparison with the traditional steam-turbine units of cogeneration power plants.

  13. A Thermodynamic Analysis of Two Competing Mid-Sized Oxyfuel Combustion Combined Cycles

    Directory of Open Access Journals (Sweden)

    Egill Thorbergsson

    2016-01-01

    Full Text Available A comparative analysis of two mid-sized oxyfuel combustion combined cycles is performed. The two cycles are the semiclosed oxyfuel combustion combined cycle (SCOC-CC and the Graz cycle. In addition, a reference cycle was established as the basis for the analysis of the oxyfuel combustion cycles. A parametric study was conducted where the pressure ratio and the turbine entry temperature were varied. The layout and the design of the SCOC-CC are considerably simpler than the Graz cycle while it achieves the same net efficiency as the Graz cycle. The fact that the efficiencies for the two cycles are close to identical differs from previously reported work. Earlier studies have reported around a 3% points advantage in efficiency for the Graz cycle, which is attributed to the use of a second bottoming cycle. This additional feature is omitted to make the two cycles more comparable in terms of complexity. The Graz cycle has substantially lower pressure ratio at the optimum efficiency and has much higher power density for the gas turbine than both the reference cycle and the SCOC-CC.

  14. Systems based on Maisotsenko cycle : Coolerado coolers

    OpenAIRE

    Gorshkov, Viacheslav

    2013-01-01

    A large part of the world's energy is consumed by ventilation and air-conditioning. One of the most energy-intensive processes in the ventilation and air-conditioning is the process of air cooling. Tradi-tional systems based on the compressor cycle consume a lot of energy. Refrigerants contained in com-pressor circuits are often very harmful to the environment. These factors led to the active development of evaporative coolers. And the former soviet scientist Valery Maisotsenko improved evapo...

  15. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  16. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    Science.gov (United States)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  17. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO2 captured, the specific CO2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH4 conversion and pre-combustion CO2 capture. ► The system thermodynamic performances have been investigated and compared

  18. Analysis of Superimposed Elementary Thermodynamic Cycles: from the Brayton-Joule to Advanced Mixed (Auto-Combined Cycles

    Directory of Open Access Journals (Sweden)

    Giovanni Manente

    2009-09-01

    Full Text Available

    The need for efficiency improvement in energy conversion systems leads to a stricter functional integration among system components. This results in structures of increasing complexity, the high performance of which are often difficult to be understood easily. To make the comprehension of these structures easier, a new approach is followed in this paper, consisting in their representation as partial or total superimposition of elementary thermodynamic cycles. Although system performance cannot, in general, be evaluated as the sum of the performance of the separate thermodynamic cycles, this kind of representation and analysis can be of great help in understanding directions of development followed in the literature for the construction of advanced energy systems, and could suggest new potential directions of work. The evolution from the simple Brayton-Joule cycle to the so called “mixed” cycles, in which heat at the turbine discharge is exploited using internal heat sinks only without using a separate bottoming section, is used to demonstrate the potentiality of the approach. Mixed cycles are named here "auto-combined cycles” to highlight the combination of different (gas and steam cycles within the same system components.

    • This paper is an updated version of a paper published in the ECOS'08 proceedings. 

  19. Thermodynamic analysis of gas – steam combined cycle with carbon dioxide (CO2 emissions saving

    Directory of Open Access Journals (Sweden)

    Alka Gupta, Om Prakash, S.K. Shukla

    2011-03-01

    Full Text Available In this paper, cogeneration or combined heat and power (CHP cycle has been analyzed in order to improve the efficiency of the gas – steam combined cycle and utilization of waste heat. The efficiency of the combined cycle is improved by decreasing the compressor inlet temperature (CIT and increasing the turbine inlet temperature (TIT. It is observed that the cycle offers the advantage of making efficient use of the energy available in the fuel and in turn, eliminate some portion of pollution associated with the power generation. The study also reveals that if this cycle is being employed for cogeneration, there is a significant saving (11.60% in the amount of Carbon dioxide (CO2 emitted by the coal-fired thermal power plants.

  20. Smart Operation of Gas Turbine Combined Cycle Plants: Prediction and Improvement of Thermal Efficiency at Part Load

    NARCIS (Netherlands)

    Boksteen, S.Z.

    2014-01-01

    This thesis investigates various operational aspects of Gas Turbine Combined Cycle Power Plants (GTCC). GTCC power plants are expected to play an increasingly important role in the balancing of supply and demand in the electricity grid. Although originally meant for predominantly base load operatio

  1. Waste-heat boiler application for the Vresova combined cycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Vicek, Z. [Energoprojekt Praha, Prague (Czechoslovakia)

    1995-12-01

    This report describes a project proposal and implementation of two combined-cycle units of the Vresova Fuel Complex (PKV) with 2 x 200 MWe and heat supply. Participation of ENERGOPROJECT Praha a.s., in this project.

  2. Specific Exergy Costs and Revenues in a Two-Pressure Combined Cycle Plant

    Directory of Open Access Journals (Sweden)

    Naroa Gonzales Zarraonandia

    2006-06-01

    Full Text Available Paulus and Tsatsaronis presented a method with which specific exergy revenues can be calculated, as opposed to specific exergy costs. In this paper, specific exergy revenues and costs are calculated for a hypothetical two-pressure combined cycle power plant. First, the plant-internal specific exergy revenues and associated exergoeconomic variables are calculated for the case when the product revenues are equal to the product costs. The exergoeconomic, revenue-based variables are then compared to those resulting from the traditional, cost-based methods. The good agreement of the exergoeconomic variables calculated by both methods provides evidence of the validity of the proposed auxiliary equations for calculating revenues. Then, a parametric study with varying product revenues is performed. The resulting exergoeconomic variables show that, for a fixed fuel input, increased capital investment is desired as the products become more valuable.

  3. Modelling of combined cycle power plants using biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, F.; Cano, A. [University of Jaen (Spain). Dept. of Electrical Engineering; Carpio, J. [Universidad Nacional de Educacion a Distancia, Madrid (Spain). Dept. of Electrical and Computer Engineering

    2003-04-01

    The olive tree in Spain can generate large quantities of by-product biomass suitable for gasification. Gasification technologies under development would enable these fuels to be used in gas turbines. Biomass conversion to a clean essentially ash-free form, usually by gasification and purification, is necessary to obtain high efficiency. This paper reports results of detailed full-load performance modelling of cogeneration systems based on gasifier/gas turbine technologies. (Author)

  4. 基于LCA方法的模糊综合评价模型在粪便处理中的应用%Comprehensive Analysis for Manure Treatment Based on Method of Life Cycle Assessment Combined with Fuzzy Mathematics

    Institute of Scientific and Technical Information of China (English)

    籍春蕾; 丁美; 王春梅; 赵言文

    2012-01-01

    In this study, life Cycle Assessment (LCA) methodology was used to establish inventory of resource consumption and pollutant emission, and comparative assessment of the life cycle environmental impacts were made for two kinds of manure treatment processes on scaled cattle farms. Based on the assessment results, and considering the weight of economic factors, environmental factors, technical and social factors, overall evaluation results of three processing system were obtained by the method of fuzzy mathematics. The results showed that the life cycle environmental impact index of anaerobic fermentation process and aerobic composting were 0.0216 and 0.0244 respectively. Considering the factors of economic, environment, technology and social, the overall fuzzy evaluation results of anaerobic fermentation process, aerobic composting process and untreated process were 95.41, 83.42, 67.58, respectively. And so the anaerobic fermentation process had the highest scores, which showed that anaerobic fermentation process was the best treatment approach for scaled cattle farms.%利用生命周期评价方法,对规模化养牛场粪便处理工艺进行生命周期资源消耗与污染物排放清单分析,之后对其进行生命周期对比评价,在评价结果的基础上利用模糊综合评价方法综合考虑经济因素、环境因素、技术因素和社会因素,得出三种处理方案的综合权重.结果表明,在处理牛粪的生命周期内,厌氧发酵的环境影响优于好氧堆肥,其环境影响综合指数分别为0.0216和0.0244;厌氧发酵、好氧堆肥、未处理方式对经济、环境、技术、社会因素的模糊综合评价结果分别为:95.41,83.42,67.58,可以看出厌氧发酵的分值最高,表明规模化养牛场畜禽粪便的处理最好采用厌氧发酵工艺.

  5. Exergetic Analysis of a Novel Solar Cooling System for Combined Cycle Power Plants

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2016-09-01

    Full Text Available This paper presents a detailed exergetic analysis of a novel high-temperature Solar Assisted Combined Cycle (SACC power plant. The system includes a solar field consisting of innovative high-temperature flat plate evacuated solar thermal collectors, a double stage LiBr-H2O absorption chiller, pumps, heat exchangers, storage tanks, mixers, diverters, controllers and a simple single-pressure Combined Cycle (CC power plant. Here, a high temperature solar cooling system is coupled with a conventional combined cycle, in order to pre-cool gas turbine inlet air in order to enhance system efficiency and electrical capacity. In this paper, the system is analyzed from an exergetic point of view, on the basis of an energy-economic model presented in a recent work, where the obtained main results show that SACC exhibits a higher electrical production and efficiency with respect to the conventional CC. The system performance is evaluated by a dynamic simulation, where detailed simulation models are implemented for all the components included in the system. In addition, for all the components and for the system as whole, energy and exergy balances are implemented in order to calculate the magnitude of the irreversibilities within the system. In fact, exergy analysis is used in order to assess: exergy destructions and exergetic efficiencies. Such parameters are used in order to evaluate the magnitude of the irreversibilities in the system and to identify the sources of such irreversibilities. Exergetic efficiencies and exergy destructions are dynamically calculated for the 1-year operation of the system. Similarly, exergetic results are also integrated on weekly and yearly bases in order to evaluate the corresponding irreversibilities. The results showed that the components of the Joule cycle (combustor, turbine and compressor are the major sources of irreversibilities. System overall exergetic efficiency was around 48%. Average weekly solar collector

  6. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potential for significant reductions in the plant cost-of-electricity, about 4.5% for the Current Standards case, and more than 7% for the Future Standards case. For Methanol Synthesis, the Novel Gas Cleaning process scheme again shows the potential for significant advantages over the conventional gas cleaning schemes. The plant generating capacity is increased more than 7% and there is a 2.3%-point gain in plant thermal efficiency. The Total Capital Requirement is reduced by about 13% and the cost-of-electricity is reduced by almost 9%. For both IGCC Methanol Synthesis cases, there are opportunities to combine some of the filter-reactor polishing stages to simplify the process further to reduce its cost. This evaluation has devised plausible humid-gas cleaning schemes for the Filter-Reactor Novel Gas Cleaning process that might be applied in IGCC and Methanol Synthesis applications.

  7. COP Prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning

    Directory of Open Access Journals (Sweden)

    Nat Suvarnakuta

    2014-03-01

    Full Text Available This paper presents the COP prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning. Using computational fluid dynamics (CFD technique, the performance of an ejector was analyzed in term of the entrainment ratio (Rm and critical back pressure (CBP. The results from this study were compared with a previous study of combined ejector refrigeration system for automotive air conditioning application [1] which the entrainment ratio (Rm were predicted from one-dimensional (1-D equation. The performance of an ejector (Rm and CBP from CFD and onedimensional method were analyzed and used as database for a mathematical modeling. In order to predict the COP of the combined system, a set of mathematical equations was developed using EES. The operating conditions are chosen accordingly as, intercooler temperature between 15 ๐ C and 25 ๐ C, condenser temperature equal to 35 ๐ C and evaporator temperature equal to 5 ๐ C. However, when generator temperatures are 80 ๐ C, 85 ๐ C and 90 ๐ C, the results showed average relative errors of the COP of an ejector refrigeration cycle (COPej, between CFD and 1-D are 44.64%, 50.47% and 59.68% respectively, and between CFD and 1-D NEW are 1.54%, 0.08% and 6.49% respectively.

  8. Power conversion systems based on Brayton cycles for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J.I., E-mail: linares@upcomillas.es [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain); Herranz, L.E. [Unit of Nuclear Safety Research. CIEMAT, Madrid (Spain); Moratilla, B.Y.; Serrano, I.P. [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain)

    2011-10-15

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO{sub 2} in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO{sub 2} cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO{sub 2}-H{sub 2}O cycle was set.

  9. Refrigeration Carnot-type cycle based on isothermal vapour compression

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, F. [Laboratoire du Froid EA 21, Cnam-IFFI, 292 rue Saint-Martin (France)

    2006-01-01

    A refrigeration Carnot-type cycle based on isothermal compression and two reversible expansions is proposed. Although ideal, this cycle is close to a realistic one which could be designed with existing hardware. (author)

  10. Ultrarelativistic laser systems based on coherent beam combining

    Science.gov (United States)

    Bagayev, S. N.; Trunov, V. I.; Pestryakov, E. V.; Frolov, S. A.; Leschenko, V. E.; Kirpichnikov, A. V.; Kokh, A. E.; Petrov, V. V.; Vasiliev, V. A.

    2012-07-01

    Conceptual design for femtosecond laser system of exawatt class, based on multi-channel amplifier and coherent field combining of petawatt amplifier channels with phase-frequency controlled radiation by optical clock are discussed. The scheme of start petawatt level few-cycle laser system with stable phase-frequency parameters determinated by the accuracy of the optical standard based on parametric amplification in big-size LBO crystals pumped by picosecond pulses is analyzed.

  11. New and advanced energy conversion technologies. Analysis of cogeneration, combined and integrated cycles

    Energy Technology Data Exchange (ETDEWEB)

    Korobitsyn, M.A.

    1998-04-03

    Advances within power cycles, integration of cycles, and combination of existing technologies are the possible ways to improve performance of small- and medium-scale power technology. Identification and development of new energy conversion technologies and systems for distributed power generation applications are the objectives of the New Energy Conversion Technologies (NECT) programme of the Netherlands Agency for Energy and Environment (Novem). The part of the programme, which is dedicated to the development of new and improved combinations of existing energy conversion technologies, defines the structure of this thesis. At the beginning, the basic thermodynamic cycles and their specific features are described. Because no single cycle can offer high efficiency due to the intrinsic limitations and the impossibility to operate within a broad temperature range, combined and advanced cycles are addressed. Combined cycles do not suffer from the drawbacks of the single cycles, since the heat rejected by the topping cycle is utilized by the bottoming one, and better performance can be obtained. The basic cycles are combined according to their temperature level: high-temperature cycles are good candidates for the topping application, and medium- or low-temperature cycles for bottoming. Of the combined cycles considered, each cycle is outlined and its schematic diagram is given. In addition to the combined cycles, improvements within a particular cycle are discussed. The scope of the NECT programme covers power and heat production, so industrial cogeneration is assessed in various configurations (steam boiler, gas turbine, heat pumps) and operating modes. Subsequently, several technologies, which are selected for further development within the NECT programme, are analyzed in detail. One of the configurations is the Joule/Joule combined cycle, which consists of an existing gas turbine and an air bottoming turbine. The bottoming cycle adds 20-30% to the power output, which

  12. Model predictive control system and method for integrated gasification combined cycle power generation

    Science.gov (United States)

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  13. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    International Nuclear Information System (INIS)

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  14. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    Science.gov (United States)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  15. Modelling and performance analysis of an integrated plasma gasification combined cycle (IPGCC) power plant

    International Nuclear Information System (INIS)

    The waste management is become a very crucial issue in many countries, due to the ever-increasing amount of waste material, both domiciliary and industrial, generated. The main strategies for the waste management are the increase of material recovery (MR) which can reduce the landfill disposal, the improvement of energy recovery (ER) from waste and the minimization of the environmental impact. Recent studies have focused on an innovative technology, the plasma gasification, that has been demonstrated as one of the most effective and environmentally friendly methods for solid waste treatment and energy utilization. In this paper, a plasma gasification process based on plasma torch technology has been investigated by developing a thermochemical model (EPJ, EquiPlasmaJet) able to estimate both the syngas composition and the energy required for the gasification reactions. The EPJ model has been employed to predict the syngas composition and the energy balance of a RDF (refuse derived fuel) plasma arc gasification reactor using air as plasma gas, and, in order to define the optimal operating conditions three different configurations have been investigated. Results show that, in the better plant solution, the plasma gasification efficiency is 69.1% (LHV) and the lower heating value of the syngas generated is about 9 MJ/kg. Furthermore in order to evaluate the suitability of this technology for energy recovery from solid wastes, the integration of the optimum plasma gasification system (PGS) with a gas turbine combined cycle (GTCC) has been analysed and the performance of the resulting integrated plasma gasification combined cycle (IPGCC) has been evaluated. The system efficiency (31% LHV) is very high in comparison with the efficiency of conventional technologies based on waste incineration (20%).

  16. Optimization of advenced liquid natural gas-fuelled combined cycle machinery systems for a high-speed ferry

    DEFF Research Database (Denmark)

    Tveitaskog, Kari Anne; Haglind, Fredrik

    2012-01-01

    . Furthermore, practical and operational aspects of using these three machinery systems for a high-speed ferry are discussed. Two scenarios are evaluated. The first scenario evaluates the combined cycles with a given power requirement, optimizing the combined cycle while operating the gas turbine at part load....... The second scenario evaluates the combined cycle with the gas turbine operated at full load. For the first scenario, the results suggest that the thermal efficiencies of the combined gas and steam cycles are 46.3 % and 48.2 % for the single pressure and dual pressure steam cycles, respectively. The gas ORC...... and gas ABC combined cycles obtained thermal efficiencies of 45.6 % and 41.9 %, respectively. For the second scenario, the results suggest that the thermal efficiencies of the combined gas and steam cycles are 53.5 % and 55.3 % for the single pressure and dual pressure steam cycles, respectively. The gas...

  17. Integrated Gasifier Combined Cycle Plant with Integrated CO2 – H2S Removal: Performance Analysis, Life Cycle Assessment and Exergetic Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Lidia Lombardi

    2002-03-01

    Full Text Available

    The aim of this study is to assess the possibility of reducing CO2 emissions from an Integrated Gasifier Combined Cycle plant, accounting for the entire life cycle.

    With respect to the basic scheme of a conventional Integrated Gasification Combined Cycle - which already includes H2S removal - a shift reaction section followed by CO2 chemical absorption have been added, before the syngas combustion, in order to obtain a clean and H2-rich synthesis gas.

    The proposed plant reaches 38.8 % efficiency vs. 46.4 % efficiency of the corresponding IGCC without CO2 removal. The main reason for the efficiency reduction is the complexity due to the addition of shift and CO2 removal sections and, hence, the related losses in the complex heat recovery process.

    From LCA results, a substantial decrease in the carbon dioxide total production, due to the applied removal technology, is highlighted. In fact, the CO2 equivalent production in the life cycle, per energy unit, is one order of magnitude lower with respect to the parent IGCC.

    Moreover, the major contribution to CO2 production comes from operation/maintenance phase; likely, in the case of Exergetic Life Cycle Assessment: the major exergy destruction - in term of MJ of destroyed exergy per functional unit - comes from operation/maintenance, which is two orders of magnitude greater than the contributions of the other phases.

    The whole cycle has been simulated by means of Aspen Plus 10.1-0.

  18. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study

    Directory of Open Access Journals (Sweden)

    Angelo La Seta

    2016-05-01

    Full Text Available Organic Rankine cycle (ORC power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded stages in supersonic flow regimes. Part A of this two-part paper has presented the implementation and validation of the simulation tool TURAX, which provides the optimal preliminary design of single-stage axial-flow turbines. The authors have also presented a sensitivity analysis on the decision variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational cost of the turbine optimization is tackled by building a model which gives the optimal preliminary design of an axial-flow turbine as a function of the cycle conditions. This allows for estimating the optimal expander performance for each operating condition of interest. The test case is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net power output of 8.3% compared to the case when the turbine efficiency is assumed to be 80%. This work also demonstrates that this approach can support the plant designer

  19. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  20. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Liese, E.; Zitney, S.

    2012-01-01

    The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  1. Smart Operation of Gas Turbine Combined Cycle Plants: Prediction and Improvement of Thermal Efficiency at Part Load

    OpenAIRE

    Boksteen, S.Z.

    2014-01-01

    This thesis investigates various operational aspects of Gas Turbine Combined Cycle Power Plants (GTCC). GTCC power plants are expected to play an increasingly important role in the balancing of supply and demand in the electricity grid. Although originally meant for predominantly base load operation with high efficiencies, market circumstances, namely the increasing supply of unpredictable wind and solar power, force these units to be operated frequently across a wide range of load settings. ...

  2. Assessing the Integrated Computerized Maintenance Management System of O&M Company for Combined Cycle Power Station

    OpenAIRE

    Rocel D. Gualberto

    2015-01-01

    This study sought to describe and assess the integrated Computerized Maintenance Management System applied by an Operation and Management (O&M) company to a Combined Cycle Power Station and come up with possible enhancement activities based on the results of the evaluation. The integrated Computerized Maintenance Management System is an electronic database which provides a powerful tool to deal with mechanical maintenance problems. It is a comprehensive approach that directs th...

  3. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    Science.gov (United States)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  4. Profit rate performance optimization for a generalized irreversible combined refrigeration cycle

    Indian Academy of Sciences (India)

    Kang Ma; Lingen Chen; Fengrui Sun

    2009-10-01

    Finite-time exergoeconomic performance of a Newtonian heat transfer law system generalized irreversible combined refrigeration cycle model with finite-rate heat transfer, heat leakage and internal irreversibility is presented in this paper. The operation of the generalized irreversible combined refrigeration cycle is viewed as a production process with exergy as its output. The performance optimization of the cycle is performed by taking profit as the objective. The optimal profit rate, optimal COP (coefficient of performance), as well as the relation between the optimal profit rate and COP of the cycle are derived. The focus of this paper is to obtain the compromise optimization between economics (profit rate) and the energy utilization factor (COP) for the cycle, by searching the optimum COP at maximum profit rate, which is termed as the finite time exergoeconomic performance bound. Moreover, the effects of various factors, including heat leakage, internal irreversibility and the price ratio, on the profit rate performance of the cycle are analysed by detailed numerical examples.

  5. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  6. Applying unit process life cycle inventory (UPLCI) methodology in product/packaging combinations

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; Toxopeuw, Marten E.; Overcash, Michael; Nee, Andrew Y.C.; Song, Bin; Ong, Soh-Khim

    2013-01-01

    This paper discusses how the UPLCI approach can be used for determining the inventory of the manufacturing phases of product/packaging combinations. The UPLCI approach can make the inventory of the manufacturing process of the product that is investigated more accurate. The life cycle of product/pac

  7. COMBINED CYCLE GAS TURBINE FOR THERMAL POWER STATIONS: EXPERIENCE IN DESIGNING AND OPERATION, PROSPECTS IN APPLICATION

    Directory of Open Access Journals (Sweden)

    N. V. Karnitsky

    2014-01-01

    Full Text Available The paper has reviewed main world tendencies in power consumption and power system structure. Main schemes of combined cycle gas turbines have been considered in the paper. The paper contains an operational analysis of CCGT blocks that are operating within the Belarusian energy system. The analysis results have been given in tables showing main operational indices of power blocks

  8. Energetic analysis and optimisation of an integrated coal gasification-combined cycle power plant

    NARCIS (Netherlands)

    Vlaswinkel, E.E.

    1992-01-01

    Methods are presented to analyse and optimise the energetic performance of integrated coal gasification-combined cycle (IGCC) power plants. The methods involve exergy analysis and pinch technology and can be used to identify key process parameters and to generate alternative design options for impro

  9. Combined Heat and Power: Coal-Fired Air Turbine (CAT)-Cycle Plant

    International Nuclear Information System (INIS)

    By combining an integrated system with a gas turbine, coal-fired air turbine cycle technology can produce energy at an efficiency rate of over 40%, with capital and operating costs below those of competing conventional systems. Read this fact sheet to discover the additional benefits of this exciting new technology

  10. Adaptation to Climate Change: The Case of A Combined Cycle Power Plant

    OpenAIRE

    Asian Development Bank (ADB)

    2012-01-01

    This report aims to demonstrate how a rapid climate change impact assessment can be used to identify the possible impacts of climate change on a thermal power investment project. For this demonstration, the O MON IV Combined Cycle Power Station Project in Southern Viet Nam is used for illustrative purposes.

  11. 75 FR 17397 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA...

    Science.gov (United States)

    2010-04-06

    ... Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA--Notice of... by Hydrogen Energy California LLC (HECA). DOE selected this project for an award of financial... produce synthesis gas (syngas), which would then be processed and purified to produce a hydrogen-rich...

  12. Analisa Efisiensi Combined Cycle 2-2-1 dan 1-1-1 PLTGU Block 1 Sicanang Belawan

    OpenAIRE

    Kurniawan, Rahmat

    2015-01-01

    In an era of increasingly require substantial electricity power, it is necessary to constantly strive to increase efficiency in everything, including the operating efficiency of power generation. Efforts to improve the efficiency of this operation is done in various ways, including by improving power plant (Open Cycle) to PLTGU (Combined Cycle). Combined cycle is a cycle that utilizes exhaust heat from the go turbine to water in a Heat Recovery Steam Generator (HRSG), then steam is used to...

  13. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik;

    2013-01-01

    A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced into a fi......A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced...... into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations...... of state). A genetic algorithm is employed to select the optimal working fluid and the maximum pressure for the bottoming cycle. Thermodynamic and physical properties, environmental impacts and hazard specifications are also considered in the screening process. The results suggest that efficiencies...

  14. Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Baghernejad, A., E-mail: abaghernezhad@gmail.co [Engineering School, Shiraz University, Shiraz (Iran, Islamic Republic of); Yaghoubi, M., E-mail: yaghoubi@shirazu.ac.i [Engineering School, Shiraz University, Shiraz (Iran, Islamic Republic of); Academy of Sciences (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} We applied thermoeconomic concept for optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm. {yields} Optimization process improves the total performance of the system in a way that the objective function is decreased by 10.98%, the exergetic efficiency of the system is increased from about 43.79% to 46.8% and the rate of fuel cost is decreased by 7.23%. {yields} Cost of electricity produced by steam turbine and gas turbine in the optimum design condition of the ISCCS are about 7.1% and 1.17% lower with respect to the base case. {yields} Increasing solar field operation periods from 1000 to 2000 hours per year reduces the unit cost of electricity produced by steam turbine about 14%. {yields} The unit cost of electricity has a linear and remarkable increase with fuel cost. Also by increasing the system construction period from 3 to 6 years, the unit cost of electricity produced by steam turbine increased about 13%. -- Abstract: In this study, thermoeconomic concept is applied using genetic algorithm for optimization of an Integrated Solar Combined Cycle System (ISCCS) that produces 400 MW of electricity. Attempt is made to minimize objective function including investment cost of equipments and cost of exergy destruction. Optimization process carried out by using exergoeconomic principles and genetic algorithm. The developed code first validated with a thermal system and good comparison is observed. Then the analysis is made for the ISCCS, and it shows that objective function for the optimum operation reduced by about 11%. Also cost of electricity produced by steam turbine and gas turbine in the optimum design of the ISCCS are about 7.1% and 1.17% lower with respect to the base case. These objectives are achieved with 13.3% increase in capital investment. Finally, sensitivity analysis is carried out to study the effect of changes in the unit cost of electricity for the system important parameters such

  15. Working cycles of devices based on bistable carbon nanotubes

    Science.gov (United States)

    Shklyaev, Oleg; Mockensturm, Eric; Crespi, Vincent; Carbon Nanotubes Collaboration

    2013-03-01

    Shape-changing nanotubes are an example of variable-shape sp2 carbon-based systems where the competition between strain and surface energies can be moderated by an externally controllable stimuli such as applied voltage, temperature, or pressure of gas encapsulated inside the tube. Using any of these stimuli one can transition a bistable carbon nanotube between the collapsed and inflated states and thus perform mechanical work. During the working cycle of such a device, energy from an electric or heat source is transferred to mechanical energy. Combinations of these stimuli allow the system to convert energy between different sources using the bistable shape-changing tube as a mediator. For example, coupling a bistable carbon nanotube to the heat and charge reservoirs can enable energy transfer between heat and electric forms. The developed theory can be extended to other nano-systems which change configurations in response to external stimuli.

  16. Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-01-01

    Full Text Available In the present work, the results are reported of the energy and exergy analyses of three biomass-related processes for electricity generation: the biomass gasification integrated externally fired combined cycle, the biomass gasification integrated dual-fuel combined cycle, and the biomass gasification integrated post-firing combined cycle. The energy efficiency for the biomass gasification integrated post-firing combined cycle is 3% to 6% points higher than for the other cycles. Although the efficiency of the externally fired biomass combined cycle is the lowest, it has an advantage in that it only uses biomass. The energy and exergy efficiencies are maximized for the three configurations at particular values of compressor pressure ratios, and increase with gas turbine inlet temperature. As pressure ratio increases, the mass of air per mass of steam decreases for the biomass gasification integrated post-firing combined cycle, but the pressure ratio has little influence on the ratio of mass of air per mass of steam for the other cycles. The gas turbine exergy efficiency is the highest for the three configurations. The combustion chamber for the dual-fuel cycle exhibits the highest exergy efficiency and that for the post-firing cycle the lowest. Another benefit of the biomass gasification integrated externally fired combined cycle is that it exhibits the highest air preheater and heat recovery steam generator exergy efficiencies.

  17. Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle

    Directory of Open Access Journals (Sweden)

    Hasan Sh. Majdi

    2016-03-01

    Full Text Available The objective of this work is to develop a computer simulation program to evaluate the performance of solar-assited combined ejector absorption (single-effect cooling system using LiBr/H2O as a working fluid and operating under steady-state conditions. The ejector possess no moving parts and is simple and reliable, which makes it attractive for combination with single-stage absorption cycle for further improvement to the system's performance. In this research, improvement to the system is achieved by utilizing the potential kinetic energy of the ejector to enhance refrigeration efficiency. The effects of the entrainment ratio of the ejector, operating temperature, on the thermal loads, and system performance have been investigated. The results showed that the evaporator and condenser loads, post-addition of the ejector, is found to be permanently higher than that in the basic cycle, which indicates a significant enhancement of the proposed cycle and the cooling capacity of the system increasing with the increase in evaporator temperature and entrainment ratio. The COP of the modified cycle is improved by up to 60 % compared with that of the basic cycle at the given condition. This process stabilizes the refrigeration system, enhanced its function, and enabled the system to work under higher condenser temperatures.

  18. DESIGN OF COMBINED CYCLE GENERATION SYSTEM WITH HIGH TEMPERATURE FUEL CELL AND STEAM TURBINE

    Institute of Scientific and Technical Information of China (English)

    Yu Lijun; Yuan Junqi; Cao Guangyi

    2003-01-01

    For environment protection and high efficiency, development of new concept power plant has been required in China. The fuel cell is expected to be used in a power plant as a centralized power station or distributed power plant. It is a chemical power generation device that converts the energy of a chemical reaction directly into electrical energy and not limited by Carnot cycle efficiency. The molten carbonate fuel cell (MCFC) power plant has several attractive features I.e. High efficiency and lower emission of Nox and Sox. A combined cycle generation system with MCFC and steam turbine is designed. Its net electrical efficiency LHV is about 55%.

  19. New concept of designing combined fuel for fast reactors with closing fuel cycle

    International Nuclear Information System (INIS)

    New type of metal base fuel element is suggested for fast reactors. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. According to new fuel element design a framework fuel element having a porous uranium alloy meat is filled with standard PuO2 powder of 2 powder. Framework fuel element having porous meat is fabricated by capillary impregnation method. Granules of (depleted U-Mo or U-Zr alloys) fuel and matrix (zirconium eutectic alloy) fill up fuel element cladding; fuel element is heated to a temperature 50 deg. C above the temperature of matrix melting. Matrix alloy melts down and under action of capillary forces moves into joints between fuel particles to form metallurgic bond. In this case inside the resultant framework fuel element controllable porosity (20 to 40%) is retained that subsequently accommodates Pu and MA dioxides. Zirconium matrix layer available at inner surface of fuel element cladding protects cladding from interaction with both fuel and fission products as well as from cesium induced corrosion. Properties of framework fuel element have been investigated [1]. New novel components are compatible with themselves and fuel element cladding at operating and higher temperatures. Preliminary in-pile tests of new components were carried out. As compared to MOX fuel the new one features high thermal conductivity, higher uranium content, hence, high conversion ratio, does not interact with fuel cladding and is more environmentally clean. Its principle advantage is a simple production process that is easily realized remotely, feasibility of involving high background Pu and MA isotopes into closed nuclear fuel cycle at the minimal influence on environment. Thus, new concept of designing fuel for fast reactors - minimization of process operations with Pu and employment of

  20. Feasibility analysis of co-fired combined-cycles using biomass-derived gas and natural gas

    International Nuclear Information System (INIS)

    This paper reports the feasibility analysis of co-fired combined cycles (biomass-derived gas + natural gas) based on the gasification of sugarcane residues (bagasse and trash). Performance results are based on simulation of co-fired combined cycles. Feasibility analysis is based on estimates of the capital costs and O and M costs for such cycles, taking into account current and middle term costs of BIG-CC technology (both considering scaling and learning effects). A deep reduction of the investments regarding the gasification island and auxiliaries is a key point to make BIG-CC competitive in the electricity market, and the required learning can be reached with co-fired BIG-CC systems. Besides alleviation of technical problems related to gas turbine operation with biomass-derived gas, co-fired BIG-CC units can operate with relative flexibility regarding the fuel mix. The construction of 10-15 short- to medium-size gasification islands would be enough to induce important cost reductions due to learning effects. As long as the investment on the gasification island is reduced, and depending on the price ratio of natural gas and biomass, pure BIG-CC plants could achieve a reasonable level of feasibility regarding other options of electricity production. In the short run there is no advantage for co-fired combined cycles regarding the costs of reduction of carbon dioxide emissions, but in the middle run both co-fired and pure BIG-CC power plants can be a better option than capture and storage of CO2

  1. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    International Nuclear Information System (INIS)

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO2 emissions by greater than 90% and limiting NOx emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today's conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated

  2. New Concept of Designing Combined Fuel for Fast Reactors with Closed Fuel Cycles

    International Nuclear Information System (INIS)

    New type of metal base fuel element is suggested for fast reactors. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. According to new fuel element design a framework fuel element having a porous uranium alloy meat is filled with standard PuO2 powder of 2 powder. Framework fuel element having porous meat is fabricated by capillary impregnation method with the use of Zr eutectic matrix alloys, which provides metallurgical bond between fuel and cladding and protects it from interaction. As compared to MOX fuel the new one features high thermal conductivity, higher uranium content, hence, high conversion ratio does not interact with fuel cladding and is more environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of combined fuel is demonstrated, which allows to separate uranium from plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. (author)

  3. Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance

    Directory of Open Access Journals (Sweden)

    Abdulrahman Almutairi

    2015-12-01

    Full Text Available Energetic and exergetic analyses are conducted using operating data for Sabiya, a combined cycle power plant (CCPP with an advanced triple pressure reheat heat recovery steam generator (HRSG. Furthermore, a sensitivity analysis is carried out on the HRSG using a recent approach to differentiate between the sources of irreversibility. The proposed system was modelled using the IPSEpro software and further validated by the manufacturer’s data. The performance of the Sabiya CCPP was examined for different climatic conditions, pressure ratios, pinch point temperatures, high-pressure steam, and condenser pressure values. The results confirmed that 60.9% of the total exergy destruction occurs in the combustion chamber, which constitutes the main source of irreversibilities within a system. The exergy destruction was significantly affected by both the pressure ratio and the high-pressure steam, where the relation between them was seen to be inversely proportional. The high-pressure stage contributes about 50% of the exergy destruction within the HRSG compared to other stages and the reheat system, due to the high temperature difference between the streams and the large number of components, which leads to high energy loss to the surroundings. Numerous possibilities for improving the CCPP’s performance are introduced, based on the obtained results.

  4. The effectiveness of combined-cycle power plants hot startups simulating

    Science.gov (United States)

    Radin, Yu. A.; Kontorovich, T. S.; Molchanov, K. A.

    2015-09-01

    Activities aimed at substantiating the maneuverability characteristics of power-generating equipment installed at district heating power plants (DHPP) and especially at combined-cycle power plants (CCPPs) are quite topical for the modern conditions and involve calculations of thermally stressed state and analysis of the cyclic strength of steam path critical elements at different loading rates. Until recently, such problems have been solved in two possible ways: based on the results of tests carried out on operating equipment and using the mathematical models of heavily stressed parts of CCPP equipment. In this article, preference is given to the second way. The results of mathematical modeling represented as time dependences of the temperature state of equipment critical parts were taken as initial data for calculating their thermally stressed state and for analyzing their damageability according to the criterion of the equivalent operating hours. This criterion is an integral indicator characterizing the extent of damage accumulated in equipment parts and can be used for elaborating equipment maintenance programs. A dependence of the equivalent operating hours on the initial temperature of the metal of the high-pressure steam superheater's outlet header, the component imposing the strongest limitations on the power unit loading rate, is obtained. It is shown that the number of equivalent operating hours of the CCPP steam circuit part equipment accumulated during hot startups does not have any essential effect on the equipment service life (heat-recovery steam generators, steam turbine, and steam lines).

  5. Analysis and Optimization of a Compressed Air Energy Storage—Combined Cycle System

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-06-01

    Full Text Available Compressed air energy storage (CAES is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. This study proposes a CAES-CC system, which is based on a conventional CAES combined with a steam turbine cycle by waste heat boiler. Simulation and thermodynamic analysis are carried out on the proposed CAES-CC system. The electricity and heating rates of the proposed CAES-CC system are lower than those of the conventional CAES by 0.127 kWh/kWh and 0.338 kWh/kWh, respectively, because the CAES-CC system recycles high-temperature turbine-exhausting air. The overall efficiency of the CAES-CC system is improved by approximately 10% compared with that of the conventional CAES. In the CAES-CC system, compressing intercooler heat can keep the steam turbine on hot standby, thus improving the flexibility of CAES-CC. This study brought about a new method for improving the efficiency of CAES and provided new thoughts for integrating CAES with other electricity-generating modes.

  6. Analysis of a Coal Fired Combined Cycle with Carried—Heat Gasification

    Institute of Scientific and Technical Information of China (English)

    XuXiangdong; F.N.Fett; 等

    1994-01-01

    In the research of a more effcient,less costly,more environmentally responsible and less technically difficult method for generating electrical power from coal.the Carried-heat Gasification combined Cycle (CGCC) is introduced by Tsinghua University.The high efficiency cycle includes carried-heat partial gasification,compressed air heating in a fluidized bed immersed air heater followed by a combustor and the heat recovery of gas turbine exhaust used as the combustion air for the differential-velocity atmospheric circulating fluidized bed(DFBC),Superheat steam is raised in the DFBC boiler,The comparison of results identifies the causes of performance difference between eight cases,Features of the cycle ensure a high coal conversion efficiency within current state of the art.

  7. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    Directory of Open Access Journals (Sweden)

    Saber Mohammadi

    2012-01-01

    Full Text Available This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were compared with each other. The material used is the PMN-25 PT single crystal that is a very interesting material in the framework of energy harvesting and sensor applications.

  8. CycleBase.org - a comprehensive multi-organism online database of cell-cycle experiments

    DEFF Research Database (Denmark)

    Gauthier, Nicholas Paul; Larsen, Malene Erup; Wernersson, Rasmus;

    2007-01-01

    The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase.......org, for viewing and downloading these data. The user interface facilitates searches for genes of interest as well as downloads of genome-wide results. Individual genes are displayed with graphs of expression profiles throughout the cell cycle from all available experiments. These expression profiles are...

  9. Cycle-Based Algorithm Used to Accelerate VHDL Simulation

    Institute of Scientific and Technical Information of China (English)

    杨勋; 刘明业

    2000-01-01

    Cycle-based algorithm has very high performance for the simula-tion of synchronous design, but it is confined to synchronous design and it is not as accurate as event-driven algorithm. In this paper, a revised cycle-based algorithm is proposed and implemented in VHDL simulator. Event-driven simulation engine and cycle-based simulation engine have been imbedded in the same simulation environ-ment and can be used to asynchronous design and synchronous design respectively. Thus the simulation performance is improved without losing the flexibility and ac-curacy of event-driven algorithm.

  10. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  11. Prediction of solar cycle based on the invariant

    Institute of Scientific and Technical Information of China (English)

    LIU Shijun; YU Xiaoding; CHEN Yongyi

    2003-01-01

    A new method of predicting solar activities has been introduced in this paper. The method can predict both the occurrence time and the maximum number of sunspot at the same time. By studying the variation of sunspot, we find that the combination of the several variables was nearly invariable during the entire solar cycles, as called invariant. And just only by determining the start time of a cycle, we can predict the occurrence time of cycle's peak value accurately. Furthermore, according to observational data of the sunspot cycles, it showed that the sunspot maximum number has correlation not only with the prophase variety of the number in the cycle but also with the anaphase of the previous period. So we can introduce an equivalent regression coefficient, which can dynamically self-adapt to different cycle lengths, and effectively solve the inconsistency between the accuracy and the lead-time of the forecast. It can guarantee the satisfied accuracy and effectively increases the lead-time of the forecast. This method can predict the maximum sunspot number for solar cycle at the approximate half rise of the period. This method predicts that the occurrence time of the maximum sunspot number for cycle 24 will be in January 2011.

  12. Integrated gasification combined-cycle research development and demonstration activities in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Ness, H.M.

    1994-12-31

    The United States Department of Energy (DOE) has selected seven integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D)program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  13. Modelling and Stability of a Single-Shaft Combined Cycle Power Plant

    Directory of Open Access Journals (Sweden)

    Costas Vournas

    2007-06-01

    Full Text Available The subject of this paper is the development of a dynamic model for a single-shaft combined cycle plant and the analysis of its response to electrical load and frequency transients. In particular the stability of the frequency control, as well as the implications of overheat control are investigated. The model is developed in the Simulink environment of Matlab as part of an educational and research simulation package for autonomous and interconnected systems.

  14. Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance

    OpenAIRE

    Abdulrahman Almutairi; Pericles Pilidis; Nawaf Al-Mutawa

    2015-01-01

    Energetic and exergetic analyses are conducted using operating data for Sabiya, a combined cycle power plant (CCPP) with an advanced triple pressure reheat heat recovery steam generator (HRSG). Furthermore, a sensitivity analysis is carried out on the HRSG using a recent approach to differentiate between the sources of irreversibility. The proposed system was modelled using the IPSEpro software and further validated by the manufacturer’s data. The performance of the Sabiya CCPP was examined f...

  15. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  16. Performance comparison of two low-CO2 emission solar/methanol hybrid combined cycle power systems

    International Nuclear Information System (INIS)

    Highlights: • Two novel solar hybrid combined cycle systems have been proposed and analyzed. • The power systems integrate solar-driven thermo-chemical conversion and CO2 capture. • Exergy efficiency of about 55% and specific CO2 emissions of 34 g/kW h are predicted. • Systems CO2 emissions are 36.8% lower compared to a combined cycle with CO2 capture. • The fossil fuel demand is ∼30% lower with a solar share of ∼20%. - Abstract: Two novel hybrid combined cycle power systems that use solar heat and methanol, and integrate CO2 capture, are proposed and analyzed, one based on solar-driven methanol decomposition and the other on solar-driven methanol reforming. The high methanol conversion rates at relatively low temperatures offer the advantage of using the solar heat at only 200–300 °C to drive the syngas production by endothermic methanol conversions and its conversion to chemical energy. Pre-combustion decarbonization is employed to produce CO2-free fuel from the fully converted syngas, which is then burned to produce heat at the high temperature for power generation in the proposed advanced combined cycle systems. To improve efficiency, the systems’ configurations were based on the principle of cascade use of multiple heat sources of different temperatures. The thermodynamic performance of the hybrid power systems at its design point is simulated and evaluated. The results show that the hybrid systems can attain an exergy efficiency of about 55%, and specific CO2 emissions as low as 34 g/kW h. Compared to a gas/steam combined cycle with flue gas CO2 capture, the proposed solar-assisted system CO2 emissions are 36.8% lower, and a fossil fuel saving ratio of ∼30% is achievable with a solar thermal share of ∼20%. The system integration predicts high efficiency conversion of solar heat and low-energy-penalty CO2 capture, with the additional advantage that solar heat is at relatively low temperature where its collection is cheaper and simpler

  17. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    Science.gov (United States)

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152

  18. Numerical analysis and field study of time dependent exergy-energy of a gas-steam combined cycle

    Directory of Open Access Journals (Sweden)

    Barari Bamdad

    2012-01-01

    Full Text Available In this study, time dependent exergy analysis of the Fars Combined Power Plant Cycle has been investigated. Exergy analysis has been used for investigating each part of actual combined cycle by considering irreversibility from Apr 2006 to Oct 2010. Performance analysis has been done for each part by evaluating exergy destruction in each month. By using of exergy analysis, aging of each part has been evaluated respect to time duration. In addition, the rate of lost work for each month has been calculated and variation of this parameter has been considered as a function of aging rate. Finally, effects of exergy destruction of each part have been investigated on exergy destruction of whole cycle. Entire analysis has been done for Unit 3 and 4 of gas turbine cycle which combined by Unit B of steam cycle in Fars Combined Power Plant Cycle located in Fars province in Iran.

  19. Combinational Services for NGN based IPTV

    NARCIS (Netherlands)

    Mikóczy, E.; Schumann, S.; Stokking, H.M.; Deventer, M.O. van; Niamut, O.A.

    2009-01-01

    This paper describes the general concept of combinational/blended services for IP-based Television (IPTV) services in next generation networks towards its service oriented architecture concept (SOA). Besides introducing general approaches of service reusability (SOA concepts), the service enables (e

  20. Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant

    Science.gov (United States)

    Ryzhkov, A. F.; Gordeev, S. I.; Bogatova, T. F.

    2015-11-01

    Introduction of a combined-cycle technology based on fuel gasification integrated in the process cycle (commonly known as integrated gasification combined cycle technology) is among avenues of development activities aimed at achieving more efficient operation of coal-fired power units at thermal power plants. The introduction of this technology is presently facing the following difficulties: IGCC installations are characterized by high capital intensity, low energy efficiency, and insufficient reliability and availability indicators. It was revealed from an analysis of literature sources that these drawbacks are typical for the gas turbine working fluid preparation system, the main component of which is a gasification plant. Different methods for improving the gasification plant chemical efficiency were compared, including blast air high-temperature heating, use of industrial oxygen, and a combination of these two methods implying limited use of oxygen and moderate heating of blast air. Calculated investigations aimed at estimating the influence of methods for achieving more efficient air gasification are carried out taking as an example the gasifier produced by the Mitsubishi Heavy Industries (MHI) with a thermal capacity of 500 MW. The investigation procedure was verified against the known experimental data. Modes have been determined in which the use of high-temperature heating of blast air for gasification and cycle air upstream of the gas turbine combustion chamber makes it possible to increase the working fluid preparation system efficiency to a level exceeding the efficiency of the oxygen process performed according to the Shell technology. For the gasification plant's configuration and the GTU working fluid preparation system be selected on a well-grounded basis, this work should be supplemented with technical-economic calculations.

  1. Ontology Based Feature Driven Development Life Cycle

    Directory of Open Access Journals (Sweden)

    Farheen Siddiqui

    2012-01-01

    Full Text Available The upcoming technology support for semantic web promises fresh directions for Software Engineering community. Also semantic web has its roots in knowledge engineering that provoke software engineers to look for application of ontology applications throughout the Software Engineering lifecycle. The internal components of a semantic web are "light weight", and may be of less quality standards than the externally visible modules. In fact the internal components are generated from external (ontological component. That's the reason agile development approaches such as feature driven development are suitable for applications internal component development. As yet there is no particular procedure that describes the role of ontology in FDD processes. Therefore we propose an ontology based feature driven development for semantic web application that can be used form application model development to feature design and implementation. Features are precisely defined in the OWL-based domain model. Transition from OWL based domain model to feature list is directly defined in transformation rules. On the other hand the ontology based overall model can be easily validated through automated tools. Advantages of ontology-based feature Driven development are also discussed.

  2. A life cycle assessment framework combining nutritional and environmental health impacts of diet: a case study on milk

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Heller, Martin C.; Fulgoni III, Victor L.;

    2016-01-01

    of less healthy foods (sugar-sweetened beverages). Further studies are needed to test whether this conclusion holds within a more comprehensive assessment of environmental and nutritional health impacts. Conclusions This case study provides the first quantitative epidemiology-based estimate......Purpose While there has been considerable effort to understand the environmental impact of a food or diet, nutritional effects are not usually included in food-related life cycle assessment (LCA). Methods We developed a novel Combined Nutritional and Environmental Life Cycle Assessment (CONE......-LCA) framework that evaluates and compares in parallel the environmental and nutritional effects of foods or diets. We applied this framework to assess human health impacts, expressed in Disability Adjusted Life Years (DALYs), in a proof-of conceptcase study that investigated the environmental and nutritional...

  3. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  4. Predicting cycle 24 using various dynamo-based tools

    Directory of Open Access Journals (Sweden)

    M. Dikpati

    2008-02-01

    Full Text Available Various dynamo-based techniques have been used to predict the mean solar cycle features, namely the amplitude and the timings of onset and peak. All methods use information from previous cycles, including particularly polar fields, drift-speed of the sunspot zone to the equator, and remnant magnetic flux from the decay of active regions. Polar fields predict a low cycle 24, while spot zone migration and remnant flux both lead to predictions of a high cycle 24. These methods both predict delayed onset for cycle 24. We will describe how each of these methods relates to dynamo processes. We will present the latest results from our flux-transport dynamo, including some sensitivity tests and how our model relates to polar fields and spot zone drift methods.

  5. HIGH CYCLE FATIGUE PROPERTIES OF NICKEL-BASE ALLOY 718

    Institute of Scientific and Technical Information of China (English)

    K.Kobayashi; K.Yamaguchi; M.Hayakawa; M.Kimura

    2004-01-01

    The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strengtn was 0.51 at 107 cycles. In contrast, the fatigue strength of the coarse-grain alloy was 0.32 at the same cycles, although the fatigue strengths in the range from 103to 105 cycles are the same for both alloys. The fracture appearances fatigued at around 106 cycles showed internal fractures originating from the flat facets of austenite grains for both alloys. The difference in fatigue strength at 107 cycles between the fine- and coarse-grain alloys could be explained in terms of the sizes of the facets from which the fractures originated.

  6. First law-based thermodynamic analysis on Kalina cycle

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the first law of thermodynamics,and adopting the Peng-Robinson equation (P-R equation) as the basic equation for the properties of ammonia-water mixtures,a thermodynamic analysis on a single-stage distillation Kalina cycle is presented.A program to calculate the thermodynamic properties of ammoniawater mixtures,and that for calculating the performance of Kalina cycles,were developed,with which the heatwork conversion particulars of Kalina cycles were theoretically calculated.The influences on the cycle performance of key parameters,such as the pressure and temperature at the inlet of the turbine,the back pressure of the turbine,the concentration of the working solution,the concentration of the basic solution and the cycle multiplication ratio,were analyzed.

  7. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    Science.gov (United States)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  8. Life cycle assessment and evaluation of sustainable product design strategies for combined cycle power plants; Lebenszyklusanalyse und Bestimmung von Einflussfaktoren zur nachhaltigen Produktgestaltung von GuD-Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Falko

    2010-03-26

    The growth of the national GDP on a worldwide level and the associated increasing demand for primary energy inevitably result in higher emissions levels. According to recent international scientific studies the energy sector (including electricity generation, industrial activities and traffic) contributes up to 83 % to the worldwide greenhouse gas emissions. Climate change and the projection of its impacts have been acknowledged also on the political level and concise measures are being considered. Since access to electricity and sustainable development are inseparable, the question arises whether and how adequate answers can be given within the coming years. Furthermore, the definite lifetime of the existing power plant fleet will result in a gap of up to 12.000 MWh in 2020, depending on the scenario. One part of the answer lies in the sustainable design of power plants. The main contribu-tion of this work is therefore the life cycle analysis of a combined cycle power plant from of a manufacturer's perspective. The visualisation of the entire product system and the re-sults of the impact assessment facilitate the determination of improvement potential. The system boundaries for this study include all relevant phases of the product life cycle (materials, manufacturing, transport, operation, service and end of life). The life cycle inventory consists of all bills of materials and energy consumption for all components and life cycle phases. The interpretation of the results of the impact assessment showed the expected significant contribution in kg CO{sub 2}e for the emission of the full load operation. Nevertheless, the results for all impact categories over the entire lifecycle are given. Various operation scenarios and configurations can now be analysed based on the elaborated modules, and can now serve as decision support already during product development. The visualisation of impacts of design decisions on the ecological footprint of the product system in

  9. Environmental Product Development Combining the Life Cycle Perspective with Chemical Hazard Information

    DEFF Research Database (Denmark)

    Askham, Cecilia

    Concerns regarding the short- and long-term detrimental effects of chemicals on human health and ecosystems have made the minimisation of chemical hazards a vitally important issue. If sustainable development is to be achieved, environmental efficient products (and product life cycles......) are essential. Many life cycle assessments of product systems are performed without the inclusion of toxicity data and indicators. Ecodesign processes for products are often based upon just one, or very few, environmental indicators. Regulatory issues are sometimes addressed in an ad hoc fashion, often late...... in the design or redesign process. This thesis concerns marrying the life cycle perspective with chemical hazard information, in order to advance the practice of environmental product development, and hence takes further steps towards sustainable development. The need to consider the full value chain...

  10. Life-Cycle Analysis and Inquiry-Based Learning in Chemistry Teaching

    Science.gov (United States)

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The purpose of this design research is to improve the quality of environmental literacy and sustainability education in chemistry teaching through combining a socio-scientific issue, life-cycle analysis (LCA), with inquiry-based learning (IBL). This first phase of the cyclic design research involved 20 inservice trained chemistry teachers from…

  11. Thermodynamic modelling and optimization of a dual pressure reheat combined power cycle

    Indian Academy of Sciences (India)

    T Srinivas

    2010-10-01

    Heat recovery steam generator (HRSG) plays a key role on performance of combined cycle (CC). In this work, attention was focused on a dual pressure reheat (DPRH) HRSG to maximize the heat recovery and hence performance of CC. Deaerator, an essential open feed water heater in steam bottoming cycle was located to enhance the efficiency and remove the dissolved gasses in feedwater. Each of the heating section in HRSG is solved from the local flue gas condition with an aim of getting minimum possible temperature difference. For high performance, better conditions for compressor, HRSG sections, steam reheater and deaerator are developed. The CC system is optimized at a gas turbine inlet temperature of 1400°C due to the present available technology of modern gas turbine blade cooling systems. The exergetic losses in CC system are compared with each other. The present DPRH HRSG model has been compared and validated with the plant and published data.

  12. Performance Analysis of Solar Combined Ejector-Vapor Compression Cycle Using Environmental Friendly Refrigerants

    OpenAIRE

    A. B. Kasaeian; S. Daviran

    2013-01-01

    In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω), compression ratio (rp) and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e) and R1234ze(z)....

  13. Thermal process development on integrated pyrolysis gasification combined cycle for waste to energy

    International Nuclear Information System (INIS)

    The thermal process of wastes with higher calorific value by pyrolysis is reviewed to recover the value added three by-products; a pyrolytic char, a pyrolytic oil, and a non-condensable gas. These by-products from pyrolysis of the waste is converted for electricity power and thermal energy thru gasification process as well as waste heat recovery process. The energy resource and several processes in the integrated pyrolysis gasification combined cycle for waste treatment are investigated with the conceptual design in using the obtained operation data from the pyrolysis pilot, demonstration and commercial plant.

  14. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez, Oliver

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  15. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liese, Eric [U.S. DOE; Zitney, Stephen E. [U.S. DOE

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

  16. Height estimations based on eye measurements throughout a gait cycle

    DEFF Research Database (Denmark)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine;

    2014-01-01

    provide a range for eye height estimates and may be readily implemented in forensic case work. It can be used as a reference in height estimates in cases with height measurements based on time of the gait cycle and based on the degree of head tilt from video material. Our data also provide descriptive...

  17. Gasification/combined-cycle power generation: environmental assessment of alternative systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report provides a basis for the comparative assessment of the potential performance capability, technological development, and economic and environmental impact associated with the operation of integrated low-Btu coal-gasification/combined-cycle power systems. Characterization of the integrated power system in terms of fuel processing, power production, and auxiliary systems is followed up with comparisons of alternative integrated-plant-design/fuel combinations with reference to the conventional coal-fired power plant, taking into account both economic and environmental factors. The report includes an assessment of the effects of recent regulatory changes on the prospects for integrated power systems and establishes a timetable for the probable commercial development of such systems by the utilities.

  18. Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC

    OpenAIRE

    Kalina, Jacek

    2011-01-01

    Abstract The paper theoretically investigates the performance of a distributed generation plant made up of gasifier, Internal Combustion Engine (ICE) and Organic Rankine Cycle (ORC) machine as a bottoming unit. The system can be used for maximization of electricity production from biomass in the case where there is no heat demand for cogeneration plant. To analyze the performance of the gasifier a model based on the thermodynamic equilibrium approach is used. Performance of the gas...

  19. Performance Analysis of Solar Combined Ejector-Vapor Compression Cycle Using Environmental Friendly Refrigerants

    Directory of Open Access Journals (Sweden)

    A. B. Kasaeian

    2013-04-01

    Full Text Available In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω, compression ratio (rp and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e and R1234ze(z. The results show that R114 and R1234ze(e yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e for all operating conditions. This paper also demonstrates that R1234ze(e will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω, nisbah mampatan (rp dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e dan R1234ze(z.Hasil kajian menunjukkan R114 dan R1234ze(e menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor

  20. Municipal solid wastes incineration with combined cycle: a case study from Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Cerda Balcazar, Juan Galvarino; Dias, Rubens Alves; Balestieri, Jose Antonio Perrella [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil)], E-mails: pos09007@feg.unesp.br, rubdias@feg.unesp.br

    2010-07-01

    Large urban centers have a huge demand for electricity, for the needs of its residents, and a growing problem of management of solid waste generated by it, that becomes an public administrative and great social problem. The correct disposal of solid waste generated by large urban centers is now one of the most complex engineering problems involving logistics, safety, environment, energy spent among other tools for sound management of municipal solid waste (MSW). This study was carried out a study of the use of incinerators and residue derived fuel and MSW with combined cycles, with the aim of producing thermal and mechanical energy (this later becomes electrical energy) and solid waste treatment in Sao Paulo. We used existing models and real plants in the European Union in this case, with the aim of making it the most viable and compatible with the current context of energy planning and resource today. A technical and economic feasibility study for a plant of this nature, using the scheme, is presented. It is expected a good attractiveness of using incinerators combined-cycle, due to its high efficiency and its ability to thermoelectric generation. (author)

  1. Mantle convection modeling of the supercontinent cycle:Introversion, extroversion, or a combination?

    Institute of Scientific and Technical Information of China (English)

    Masaki Yoshida; M. Santosh

    2014-01-01

    The periodic assembly and dispersal of continental fragments, referred to as the supercontinent cycle, bear close relation to the evolution of mantle convection and plate tectonics. Supercontinent formation involves complex processes of “introversion” (closure of interior oceans), “extroversion” (closure of exterior oceans), or a combination of these processes in uniting dispersed continental fragments. Recent developments in numerical modeling and advancements in computation techniques enable us to simulate Earth’s mantle convection with drifting continents under realistic convection vigor and rheology in Earth-like geometry (i.e., 3D spherical-shell). We report a numerical simulation of 3D mantle convection, incorporating drifting deformable continents, to evaluate supercontinent processes in a realistic mantle convection regime. Our results show that supercontinents are assembled by a combi-nation of introversion and extroversion processes. Small-scale thermal heterogeneity dominates deep mantle convection during the supercontinent cycle, although large-scale upwelling plumes intermit-tently originate under the drifting continents and/or the supercontinent.

  2. Prospective gas turbine and combined-cycle units for power engineering (a Review)

    Science.gov (United States)

    Ol'khovskii, G. G.

    2013-02-01

    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  3. Effective energy management by combining gas turbine cycles and forward osmosis desalination process

    International Nuclear Information System (INIS)

    Highlights: • Innovative gas turbine system and FO integrated system was proposed. • The feasibility of the integrated system was analyzed thermodynamically. • GOR of the FO–gas turbine system is 17% higher than those of MED and MSF. • Waste heat utilization of the suggested system is 85.7%. • Water production capacity of the suggested system is 3.5 times higher than the MSF–gas turbine system. - Abstract: In the recent years, attempts to improve the thermal efficiency of the gas turbine cycles have been made. In order to enhance the energy management of the gas turbine cycle, a new integration concept has been proposed; integration of gas turbine cycle and forward osmosis desalination process. The combination of the gas turbine cycle and the forward osmosis (FO) desalination process basically implies the coupling of the waste heat from the gas turbine cycle to the draw solute recovery system in the FO process which is the most energy consuming part of the whole FO process. By doing this, a strong system that is capable of producing water and electricity with very little waste heat can be achieved. The feasibility of this newly proposed system was analyzed using UNISIM program and the OLI property package. For the analysis, the thermolytic draw solutes which has been suggested by other research groups have been selected and studied. Sensitivity analysis was conducted on the integration system in order to understand and identify the key parameters of the integrated system. And the integrated system was further evaluated by comparing the gain output ratio (GOR) values with the conventional desalination technologies such as multi stage flash (MSF) and multi effect distillation (MED). The suggested integrated system was calculated to have a GOR of 14.8, while the MSF and MED when integrated to the gas turbine cycle showed GOR value of 12. It should also be noted that the energy utilization of the suggested integrated system is significantly higher by 27

  4. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants configu...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW.......Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...

  5. Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2010-01-01

    Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental

  6. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  7. Easiest paths for walking and cycling: Combining syntactic and geographic analyses in studying walking and cycling mobility

    OpenAIRE

    Nourian Ghadikolaee, P.; Van der Hoeven, F.D.; Rezvani, S.; Sariyildiz, I.S.

    2015-01-01

    We discuss fundamentals of a new computational approach to configurative analysis and synthesis and present a number of advancements we have made in the direction of computational analysis of walking and cycling mobility. We have scrutinized the notion of distance and addressed it in correspondence with the notion of geodesic or optimum path. We present a new all-inclusive pathfinding algorithm for walking and cycling and show how this pathfinding algorithm can be used as a new basis for a nu...

  8. Analysis of the Properties of Working Substances for the Organic Rankine Cycle based Database "REFPROP"

    Science.gov (United States)

    Galashov, Nikolay; Tsibulskiy, Svyatoslav; Serova, Tatiana

    2016-02-01

    The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base "REFPROP" and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base "REFPROP" describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the

  9. Reversible Circuit Synthesis Using a Cycle-Based Approach

    CERN Document Server

    Saeedi, Mehdi; Sedighi, Mehdi; Sasanian, Zahra

    2010-01-01

    Reversible logic has applications in various research areas including signal processing, cryptography and quantum computation. In this paper, direct NCT-based synthesis of a given $k$-cycle in a cycle-based synthesis scenario is examined. To this end, a set of seven building blocks is proposed that reveals the potential of direct synthesis of a given permutation to reduce both quantum cost and average runtime. To synthesize a given large cycle, we propose a decomposition algorithm to extract the suggested building blocks from the input specification. Then, a synthesis method is introduced which uses the building blocks and the decomposition algorithm. Finally, a hybrid synthesis framework is suggested which uses the proposed cycle-based synthesis method in conjunction with one of the recent NCT-based synthesis approaches which is based on Reed-Muller (RM) spectra. The time complexity and the effectiveness of the proposed synthesis approach are analyzed in detail. Our analyses show that the proposed hybrid fra...

  10. Evaluation of effects of groundwater withdrawals at the proposed Allen combined-cycle combustion turbine plant, Shelby County, Tennessee

    Science.gov (United States)

    Haugh, Connor J.

    2016-08-10

    The Mississippi Embayment Regional Aquifer Study groundwater-flow model was used to simulate the potential effects of future groundwater withdrawals at the proposed Allen combined-cycle combustion turbine plant in Shelby County, Tennessee. The scenario used in the simulation consisted of a 30-year average withdrawal period followed by a 30-day maximum withdrawal period. Effects of withdrawals at the Allen plant site on the Mississippi embayment aquifer system were evaluated by comparing the difference in simulated water levels in the aquifers at the end of the 30-year average withdrawal period and at the end of the scenario to a base case without the Allen combined-cycle combustion turbine plant withdrawals. Simulated potentiometric surface declines in the Memphis aquifer at the Allen plant site were about 7 feet at the end of the 30-year average withdrawal period and 11 feet at the end of the scenario. The affected area of the Memphis aquifer at the Allen plant site as delineated by the 4-foot potentiometric surface-decline contour was 2,590 acres at the end of the 30-year average withdrawal period and 11,380 acres at the end of the scenario. Simulated declines in the underlying Fort Pillow aquifer and overlying shallow aquifer were both less than 1 foot at the end of the 30-year average withdrawal period and the end of the scenario.

  11. ENSO and annual cycle interaction: the combination mode representation in CMIP5 models

    Science.gov (United States)

    Ren, Hong-Li; Zuo, Jinqing; Jin, Fei-Fei; Stuecker, Malte F.

    2016-06-01

    Recent research demonstrated the existence of a combination mode (C-mode) originating from the atmospheric nonlinear interaction between the El Niño-Southern Oscillation (ENSO) and the Pacific warm pool annual cycle. In this paper, we show that the majority of coupled climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are able to reproduce the observed spatial pattern of the C-mode in terms of surface wind anomalies reasonably well, and about half of the coupled models are able to reproduce spectral power at the combination tone periodicities of about 10 and/or 15 months. Compared to the CMIP5 historical simulations, the CMIP5 Atmospheric Model Intercomparison Project (AMIP) simulations can generally exhibit a more realistic simulation of the C-mode due to prescribed lower boundary forcing. Overall, the multi-model ensemble average of the CMIP5 models tends to capture the C-mode better than the individual models. Furthermore, the models with better performance in simulating the ENSO mode tend to also exhibit a more realistic C-mode with respect to its spatial pattern and amplitude, in both the CMIP5 historical and AMIP simulations. This study shows that the CMIP5 models are able to simulate the proposed combination mode mechanism to some degree, resulting from their reasonable performance in representing the ENSO mode. It is suggested that the main ENSO periods in the current climate models needs to be further improved for making the C-mode better.

  12. Correlation methods of base-level cycle based on wavelet neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The authors discussed the method of wavelet neural network (WNN) for correlation of base-level cycle. A new vectored method of well log data was proposed. Through the training with the known data set, the WNN can remenber the cycle pattern characteristic of the well log curves. By the trained WNN to identify the cycle pattern in the vectored log data, the ocrrelation process among the well cycles was completed. The application indicates that it is highly efficient and reliable in base-level cycle correlation.

  13. Durability of Lining Concrete of Subsea Tunnel under Combined Action of Freeze-thaw Cycle and Carbonation

    Institute of Scientific and Technical Information of China (English)

    TIAN Li; CHEN Jingru; ZHAO Tiejun

    2012-01-01

    Through the fast freeze-thaw cycle test,accelerated carbonation test,and natural carbonation test,the durability performance of lining concrete under combined action of freeze-thaw cycle and carbonation were studied.The experimental results indicate that freeze-thaw cycle apparently accelerates the process of concrete carbonation and carbonation deteriorates the freeze resistance of concrete.Under the combined action of freeze-thaw cycle and carbonation,the durability of lining concrete decreases.The carbonation depth of lining concrete at tunnel openings under freeze-thaw cycles and tunnel condition was predicted.For the high performance concrete with proposed mix ratio,the lining concrete tends to be unsafe because predicted carbonation depth exceeds the thickness of reinforced concrete protective coating.Adopting other measurements simultaneously to improve the durability of lining concrete at the tunnel openings is essential.

  14. Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping

    Directory of Open Access Journals (Sweden)

    Erans María

    2016-01-01

    Full Text Available Calcium looping (CaL is promising for large-scale CO2 capture in the power generation and industrial sectors due to the cheap sorbent used and the relatively low energy penalties achieved with this process. Because of the high operating temperatures the heat utilisation is a major advantage of the process, since a significant amount of power can be generated from it. However, this increases its complexity and capital costs. Therefore, not only the energy efficiency performance is important for these cycles, but also the capital costs must be taken into account, i.e. techno-economic analyses are required in order to determine which parameters and configurations are optimal to enhance technology viability in different integration scenarios. In this study the integration scenarios of CaL cycles and natural gas combined cycles (NGCC are explored. The process models of the NGCC and CaL capture plant are developed to explore the most promising scenarios for NGCC-CaL integration with regards to efficiency penalties. Two scenarios are analysed in detail, and show that the system with heat recovery steam generator (HRSG before and after the capture plant exhibited better performance of 49.1% efficiency compared with that of 45.7% when only one HRSG is located after the capture plant. However, the techno-economic analyses showed that the more energy efficient case, with two HRSGs, implies relatively higher cost of electricity (COE, 44.1€/MWh, when compared to that of the reference plant system (33.1€/MWh. The predicted cost of CO2 avoided for the case with two HRSGS is 29.3 €/ton CO2.

  15. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    Energy Technology Data Exchange (ETDEWEB)

    Annen, K.D.

    1981-08-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  16. Technetium chemistry in the fuel cycle: combining basic and applied studies.

    Science.gov (United States)

    Poineau, Frederic; Mausolf, Edward; Jarvinen, Gordon D; Sattelberger, Alfred P; Czerwinski, Kenneth R

    2013-04-01

    Technetium is intimately linked with nuclear reactions. The ultraminute natural levels in the environment are due to the spontaneous fission of uranium isotopes. The discovery of technetium was born from accelerator reactions, and its use and presence in the modern world are directly due to nuclear reactors. While occupying a central location in the periodic table, the chemistry of technetium is poorly explored, especially when compared to its neighboring elements, i.e., molybdenum, ruthenium, and rhenium. This state of affairs, which is tied to the small number of laboratories equipped to work with the long-lived (99)Tc isotope, provides a remarkable opportunity to combine basic studies with applications for the nuclear fuel cycle. An example is given through examination of the technetium halide compounds. Binary metal halides represent some of the most fundamental of inorganic compounds. The synthesis of new technetium halides demonstrates trends with structure, coordination number, and speciation that can be utilized in the nuclear fuel cycle. Examples are provided for technetium-zirconium alloys as waste forms and the formation of reduced technetium species in separations.

  17. Thermal Impact of Operating Conditions on the Performance of a Combined Cycle Gas Turbine

    Directory of Open Access Journals (Sweden)

    Thamir K. Ibrahim

    2012-08-01

    Full Text Available The combined cycle gas-turbine (CCGT power plant is a highly developed technology which generates electricalpower at high efficiencies. The first law of thermodynamics is used for energy analysis of the performance of theCCGT plant. The effects of varying the operating conditions (ambient temperature, compression ratio, turbine inlettemperature, isentropic compressor and turbine efficiencies, and mass flow rate of steam on the performance of theCCGT (overall efficiency and total output power were investigated. The programming of the performance model forCCGT was developed utilizing MATLAB software. The simulation results for CCGT show that the overall efficiencyincreases with increases in the compression ratio and turbine inlet temperature and with decreases in ambienttemperature. The total power output increases with increases in the compression ratio, ambient temperature, andturbine inlet temperature. The peak overall efficiency was reached with a higher compression ratio and low ambienttemperature. The overall efficiencies for CCGT were very high compared to the thermal efficiency of GT plants. Theoverall thermal efficiency of the CCGT quoted was around 57%; hence, the compression ratios, ambient temperature,turbine inlet temperature, isentropic compressor and turbine efficiencies, and mass flow rate of steam have a stronginfluence on the overall performance of the CCGT cycle.

  18. Study of the Intercrystalline Corrosion in Pipes of Stainless Steel in a Combined Cycle

    Directory of Open Access Journals (Sweden)

    Raúl Andrés Montejo Serrano

    2014-09-01

    Full Text Available The present work is carried out with the purpose of giving answer to the possible presence ofintercrystalline corrosion and its future consequences in the built tubes of stainless steel 304L anddedicated to the conduction from the water to the boilers of a combined cycle of electricity production.The plant is these in this moments in installation of process investor and assembly and this study wasrequested since during the trial of installation of the pipes of stainless steel that will drive the watertried to the steam generators, they were detected on the part of the operatives some imperfections inthe material, what generated the doubt about the possibility of presence of intercrystalline corrosion orof another type in the pipes. After the realized rehearsals according to international norms and alsousing rehearsals metallography you concludes that the material employee is not sensitive to this typeof corrosion.

  19. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    Science.gov (United States)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  20. CPC air-blown integrated gasification combined cycle project. Quarterly report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The overall project cost and schedule. The combustion turbine commercial operation date is scheduled for 7/1/95 with the combined cycle commercial operation date of 7/1/96. A two year demonstration period will commence after IGCC commercial operation. Details of costs on a total project and DOE Envelope basis along with detailed schedule components were covered. Major cost variances to date were discussed. The major variances this year relate to contracts which were anticipated to be finalized mid 1992 but which are not executed. These include GEESI, the ASU and key vessels. Some of these contracts are almost in place and others are scheduled for the first quarter 1993. Numerous project specifications, process flow diagrams, piping and instrument diagrams and other drawings have been reviewed and approved as part of the preliminary engineering process.

  1. Family Life Cycle and Deforestation in Amazonia: Combining Remotely Sensed Information with Primary Data

    Science.gov (United States)

    Caldas, M.; Walker, R. T.; Shirota, R.; Perz, S.; Skole, D.

    2003-01-01

    This paper examines the relationships between the socio-demographic characteristics of small settlers in the Brazilian Amazon and the life cycle hypothesis in the process of deforestation. The analysis was conducted combining remote sensing and geographic data with primary data of 153 small settlers along the TransAmazon Highway. Regression analyses and spatial autocorrelation tests were conducted. The results from the empirical model indicate that socio-demographic characteristics of households as well as institutional and market factors, affect the land use decision. Although remotely sensed information is not very popular among Brazilian social scientists, these results confirm that they can be very useful for this kind of study. Furthermore, the research presented by this paper strongly indicates that family and socio-demographic data, as well as market data, may result in misspecification problems. The same applies to models that do not incorporate spatial analysis.

  2. Dynamic modeling and control of integrated coal gasification combined cycle units. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Schoen, P.

    1993-09-28

    This thesis investigates the dynamic behavior and control of integrated coal gasification combined cycle units, operating in a load-following mode on the national grid. Startup, shutdown and accident related behavior are not considered. A conceptual 250 MW unit featuring an oxygen-blown pulverized coal gasifier according to the Shell Coal Gasification Process (SCGP) has been taken as the subject of a simulation study. An attempt at model validation has been made using experimental data from the SCGP demonstration unit in Deer Park, Texas. Using the concept of Model Predictive Control, sample constraints on gasifier conditions and syngas pressure profile were explicitly accounted for in the control algorithm. Whereas the former are found to be easily accommodated without any significant impact on load-following control, the latter inevitably lead to a deterioration in performance. Conclusions and recommendations on dynamic modeling and unit power control are provided.

  3. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    Science.gov (United States)

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  4. Valuing flexibility: The case of an Integrated Gasification Combined Cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, L.M.; Chamorro, J.M. [University of the Basque Country, Bilbao (Spain)

    2008-07-15

    In this paper we analyze the choice between two technologies for producing electricity. In particular, the firm has to decide whether and when to invest either in a Natural Gas Combined Cycle (NGCC) power plant or in an Integrated Gasification Combined Cycle (IGCC) power plant, which may burn either coal or natural gas. Instead of assuming that fuel prices follow standard geometric Brownian motions' here they are assumed to show mean reversion, specifically to follow an inhomogeneous geometric Brownian motion. First we consider the opportunity to invest in a NGCC power plant. We derive the optimal investment rule as a function of natural gas price and the remaining life of the right to invest. In addition, the analytical solution for a perpetual option to invest is obtained. Then we turn to the IGCC power plant. We analyse the valuation of an operating plant when there are switching costs between modes of operation, and the choice of the best operation mode. This serves as an input to evaluate the option to invest in this plant. Finally we derive the value of an opportunity to invest either in a NGCC or IGCC power plant, i.e. to choose between an inflexible and a flexible technology, respectively. Depending on the opportunity's time to maturity, we derive the pairs of coal and gas prices for which it is optimal to invest in NGCC, in IGCC, or simply not to invest. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for coal and gas prices. Basic parameter values are taken from an actual IGCC power plant currently in operation. sensitivity of some results with respect to the underlying stochastic process for fuel price is also checked.

  5. Easiest paths for walking and cycling: Combining syntactic and geographic analyses in studying walking and cycling mobility

    NARCIS (Netherlands)

    Nourian Ghadikolaee, P.; Van der Hoeven, F.D.; Rezvani, S.; Sariyildiz, I.S.

    2015-01-01

    We discuss fundamentals of a new computational approach to configurative analysis and synthesis and present a number of advancements we have made in the direction of computational analysis of walking and cycling mobility. We have scrutinized the notion of distance and addressed it in correspondence

  6. Combination of Potassium Pentagamavunon-0 and Doxorubicin Induces Apoptosis and Cell Cycle Arrest and Inhibits Metastasis in Breast Cancer Cells.

    Science.gov (United States)

    Putri, Herwandhani; Jenie, Riris Istighfari; Handayani, Sri; Kastian, Ria Fajarwati; Meiyanto, Edy

    2016-01-01

    A salt compound of a curcumin analogue, potassium pentagamavunon-0 (K PGV-0) has been synthesized to improve solubility of pentagamavunon-0 which has been proven to have anti-proliferative effects on several cancer cells. The purpose of this study was to investigate cytotoxic activity and metastasis inhibition by K PGV- 0 alone and in combination with achemotherapeutic agent, doxorubicin (dox), in breast cancer cells. Based on MTT assay analysis, K PGV-0 showed cytotoxic activity in T47D and 4T1 cell lines with IC50 values of 94.9 μM and 49.0±0.2 μM, respectively. In general, K PGV-0+dox demonstrated synergistic effects and decreased cell viability up to 84.7% in T47D cells and 62.6% in 4T1 cells. Cell cycle modulation and apoptosis induction were examined by flow cytometry. K PGV-0 and K PGV-0+dox caused cell accumulation in G2/M phase and apoptosis induction. Regarding cancer metastasis, while K PGV-0 alone did not show any inhibition of 4T1 cell migration, K PGV-0+dox exerted inhibition. K PGV-0 and its combination with dox inhibited the activity of MMP-9 which has a pivotal role in extracellular matrix degradation. These results show that a combination of K PGV-0 and doxorubicin inhibits cancer cell growth through cell cycling, apoptosis induction, and inhibition of cell migration and MMP-9 activity. Therefore, K PGV-0 may have potential for development as a co-chemotherapeutic agent. PMID:27268651

  7. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  8. 基于复合疲劳试验的涡轮叶片振动应力反推法%Inverse method for estimating the vibration stress of turbine blades based on combined high-and-low cycle fatigue tests

    Institute of Scientific and Technical Information of China (English)

    孙瑞杰; 闫晓军; 聂景旭

    2012-01-01

    提出了一种利用复合疲劳试验和外场故障数据反推涡轮叶片实际振动应力的方法.该方法针对与故障叶片同批次的叶片,开展数个振动应力水平下的单件试验和某一特定振动应力水平下的成组试验,利用极大似然法推导出叶片的概率-应力一寿命曲线(P—S—N);最后基于99.87%存活率下的概率-应力-寿命曲线(P99.87%-S—N),结合叶片的外场故障统计结果,反推出叶片实际工作中振动应力的范围和可能的最大振动应力.%An inverse method based on combined high-and-low cycle fatigue (HCF/ LCF) tests and the outfield practical failure data was developed to estimate the vibration stress of the turbine blade in working condition. All the test specimens of the turbine blades owned the same production procedures as the outfield failure blades. Two groups of HCF/ LCF tests were performed, one was median life test at six vibration stress levels, and the other was life dispersion test at a given vibration stress level. Then, P-S-N curves were extrapolated with the maximum likelihood method. Finally, vibration stress of the turbine blade in working condition was determined by the P99.87%-S-N curve combined with the statistical life of the outfield practical failure data.

  9. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  10. Formal TCA cycle description based on elementary actions

    Indian Academy of Sciences (India)

    Pierre Mazière; Nicolas Parisey; Marie Beurton-Aimar; Franck Molina

    2007-01-01

    Many databases propose their own structure and format to provide data describing biological processes. This heterogeneity contributes to the difficulty of large systematic and automatic functional comparisons. To overcome these problems, we have used the BioΨ formal description scheme which allows multi-level representations of biological process information. Applied to the description of the tricarboxylic acid cycle (TCA), we show that BioΨ allows the formal integration of functional information existing in current databases and make them available for further automated analysis. In addition such a formal TCA cycle process description leads to a more accurate biological process annotation which takes in account the biological context. This enables us to perform an automated comparison of the TCA cycles for seven different species based on processes rather than protein sequences. From current databases, BioΨ is able to unravel information that are already known by the biologists but are not available for automated analysis tools and simulation software, because of the lack of formal process descriptions. This use of the BioΨ description scheme to describe the TCA cycle was a key step of the MitoScop project that aims to describe and simulate mitochondrial metabolism in silico.

  11. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Nafey, A.S.; Sharaf, M.A. [Department of Engineering Science, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2010-11-15

    Organic Rankine cycles (ORC) have unique properties that are well suited to solar power generation. In this work design and performance calculations are performed using MatLab/SimuLink computational environment. The cycle consists of thermal solar collectors (Flat Plate Solar Collector (FPC), or Parabolic Trough Collector (PTC), or Compound Parabolic Concentrator (CPC)) for heat input, expansion turbine for work output, condenser unit for heat rejection, pump unit, and Reverse Osmosis (RO) unit. Reverse osmosis unit specifications used in this work is based on Sharm El-Shiekh RO desalination plant. Different working fluids such as: butane, isobutane, propane, R134a, R152a, R245ca, and R245fa are examined for FPC. R113, R123, hexane, and pentane are investigated for CPC. Dodecane, nonane, octane, and toluene are allocated for PTC. The proposed process units are modeled and show a good validity with literatures. Exergy and cost analysis are performed for saturation and superheated operating conditions. Exergy efficiency, total exergy destruction, thermal efficiency, and specific capital cost are evaluated for direct vapor generation (DVG) process. Toluene and Water achieved minimum results for total solar collector area, specific total cost and the rate of exergy destruction. (author)

  12. Research on development model of nuclear component based on life cycle management

    International Nuclear Information System (INIS)

    At present the development process of nuclear component, even nuclear component itself, is more and more supported by computer technology. This increasing utilization of the computer and software has led to the faster development of nuclear technology on one hand and also brought new problems on the other hand. Especially, the combination of hardware, software and humans has increased nuclear component system complexities to an unprecedented level. To solve this problem, Life Cycle Management technology is adopted in nuclear component system. Hence, an intensive discussion on the development process of a nuclear component is proposed. According to the characteristics of the nuclear component development, such as the complexities and strict safety requirements of the nuclear components, long-term design period, changeable design specifications and requirements, high capital investment, and satisfaction for engineering codes/standards, the development life-cycle model of nuclear component is presented. The development life-cycle model is classified at three levels, namely, component level development life-cycle, sub-component development life-cycle and component level verification/certification life-cycle. The purposes and outcomes of development processes are stated in detailed. A process framework for nuclear component based on system engineering and development environment of nuclear component is discussed for future research work. (authors)

  13. Sustainable renewable energy seawater desalination using combined-cycle solar and geothermal heat sources

    KAUST Repository

    Missimer, Thomas M.

    2013-01-01

    Key goals in the improvement of desalination technology are to reduce overall energy consumption, make the process "greener," and reduce the cost of the delivered water. Adsorption desalination (AD) is a promising new technology that has great potential to reduce the need for conventional power, to use solely renewable energy sources, and to reduce the overall cost of water treatment. This technology can desalt seawater or water of even higher salinity using waste heat, solar heat, or geothermal heat. An AD system can operate effectively at temperatures ranging from 55 to 80 °C with perhaps an optimal temperature of 80 °C. The generally low temperature requirement for the feedwater allows the system to operate quite efficiently using an alternative energy source, such as solar power. Solar power, particularly in warm dry regions, can generate a consistent water temperature of about 90 °C. Although this temperature is more than adequate to run the system, solar energy collection only can occur during daylight hours, thereby necessitating the use of heat storage during nighttime or very cloudy days. With increasing capacity, the need for extensive thermal storage may be problematic and could add substantial cost to the development of an AD system. However, in many parts of the world, there are subsurface geothermal energy sources that have not been extensively used. Combining a low to moderate geothermal energy recovery system to an AD system would provide a solution to the thermal storage issue. However, geothermal energy development from particularly Hot Dry Rock is limited by the magnitude of the heat flow required for the process and the thermal conductivity of the rock material forming the heat reservoir. Combining solar and geothermal energy using an alternating 12-h cycle would reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of renewable energy. © 2013 Desalination Publications.

  14. The effectiveness of community-based cycling promotion: findings from the Cycling Connecting Communities project in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Merom Dafna

    2010-01-01

    Full Text Available Abstract Background Encouraging cycling is an important way to increase physical activity in the community. The Cycling Connecting Communities (CCC Project is a community-based cycling promotion program that included a range of community engagement and social marketing activities, such as organised bike rides and events, cycling skills courses, the distribution of cycling maps of the area and coverage in the local press. The aim of the study was to assess the effectiveness of this program designed to encourage the use of newly completed off-road cycle paths through south west Sydney, Australia. Methods The evaluation used a quasi-experimental design that consisted of a pre- and post-intervention telephone survey (24 months apart of a cohort of residents (n = 909 in the intervention area (n = 520 (Fairfield and Liverpool and a socio-demographically similar comparison area (n = 389 (Bankstown. Both areas had similar bicycle infrastructure. Four bicycle counters were placed on the main bicycle paths in the intervention and comparison areas to monitor daily bicycle use before and after the intervention. Results The telephone survey results showed significantly greater awareness of the Cycling Connecting Communities project (13.5% vs 8.0%, p Conclusion Despite relatively modest resources, the Cycling Connecting Communities project achieved significant increases in bicycle path use, and increased cycling in some sub-groups. However, this community based intervention with limited funding had very limited reach into the community and did not increase population cycling levels.

  15. Energy and Exergy Analyses of a Combined Power Cycle Using the Organic Rankine Cycle and the Cold Energy of Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Ho Yong Lee

    2015-09-01

    Full Text Available In this work, energy and exergy analyses are carried out for a combined cycle consisting of an organic Rankine cycle (ORC and a liquefied natural gas (LNG Rankine cycle for the recovery of low-grade heat sources and LNG cold energy. The effects of the turbine inlet pressure and the working fluid on the system performance are theoretically investigated. A modified temperature-enthalpy diagram is proposed, which can be useful to see the characteristics of the combined cycle, as well as the temperature distributions in the heat exchangers. Results show that the thermal efficiency increases with an increasing turbine inlet pressure and critical temperature of the working fluid. However, the exergy efficiency has a peak value with respect to the turbine inlet pressure, and the maximum exergy efficiency and the corresponding optimum turbine inlet pressure are significantly influenced by the selection of the working fluid. The exergy destruction at the condenser is generally the greatest among the exergy destruction components of the system.

  16. Degradation of gas turbine blade materials in integrated coal-gasification combined cycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Wada, K.; Yan, L.; Takahashi, M.; Takaishi, K.; Furukawa, T. [Toshiba Corporation, Yokohama (Japan). Power & Industrial Systems Research & Development Center

    2001-07-01

    Interest in the integrated coal-gasification combined cycle plant (IGCC) has increased because of its high efficiency. However, degradation of gas turbine component materials has not been studied so far. Therefore, the purpose of this study is to investigate the corrosion behaviors of these materials in an actual coal gas combustion environment. The test facility was constructed near the coal-gasification test facility (CGT) at the Aioi works of Ishikawajima-Harima Heavy Industries Co., Ltd. Several superalloy (Rene80H and FSX414) and coating systems (CoCrAlY, CoNiCrAlY and TBC) were exposed in the coal gas combustion environment at 1123, 1223 and 1323 K up to 350 h. After these tests, the weight change of each specimen was measured. Morphologies of products and element distributions at their surfaces were observed with SEM and EPMA. It is concluded that not only high- temperature oxidation and sulfidation but also ash deposition has a remarkable influence on the degradation of gas turbine blade materials.

  17. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    Science.gov (United States)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  18. Combined cycle electric power plant with a steam turbine having an improved valve control system

    Energy Technology Data Exchange (ETDEWEB)

    Uram, R.; Marano, R.T.; Heiser, R.S.; Surh, J.Y.

    1977-03-22

    A combined cycle electric power plant includes two gas turbines, a steam turbine, and a digital control system with an analog or manual backup. Each of the gas turbines has an exhaust heat recovery steam generator connected to a common header from which the steam is supplied by one or both of the steam generators for operating the steam turbine. Both the digital and the analog systems provide a digital input to an interface for controlling the steam turbine valves. The analog system is controlled to operate a respective valve by an input to its interface which determines valve position in accordance with its duration. The digital system is controlled to operate a respective valve by an input to the interface in accordance with the repetitive duration of the signal. The analog system input and digital system input is applied to an interface for each valve. A plurality of the valves are operated singly through parallel connected interfaces in response to plant conditions, and a plurality of the valves are operated sequentially through respective individual disconnected interfaces in response to plant physical conditions.

  19. Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle

    International Nuclear Information System (INIS)

    In this paper, a waste-to-energy (WTE) system integrated with a gas fuelled combined cycle is considered. The plant is designed as a possible future option for thermal utilization of urban wastes in the northern part of the Turin Province, Italy. The plant should provide electricity (about 160 MW at maximum electric load) to the grid and heat to a district heating network (about 50 MW at maximum thermal load). This kind of plants is particularly interesting because of the high net electric efficiency (about 46%) that is possible to achieve, compared with the equivalent global efficiency of the separate plants (about +7% waste utilization efficiency with respect to conventional plants), and the complex design that is required. The initial plant design is improved through a thermoeconomic procedure. The optimal plant is characterized by -0.2% unit cost of electricity and +0.6 MW electricity production with respect to the initial design. An economic analysis is also performed. Economic indicators are estimated and used to complete the comparison between the conventional and the integrated solutions under different market conditions. With respect to a stand-alone waste-to-energy plant, the integrated plant is characterized by similar pay-back period and higher net benefit cost ratio. (author)

  20. Target recognition based on modified combination rule

    Institute of Scientific and Technical Information of China (English)

    Chen Tianlu; Que Peiwen

    2006-01-01

    Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target recognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable recognition results rapidly.

  1. ATR-FTIR study of water in Nafion membrane combined with proton conductivity measurements during hydration/dehydration cycle.

    Science.gov (United States)

    Kunimatsu, Keiji; Bae, Byungchan; Miyatake, Kenji; Uchida, Hiroyuki; Watanabe, Masahiro

    2011-04-21

    We have conducted combined time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) and proton conductivity measurements of Nafion NRE211 membrane during hydration/dehydration cycles at room temperature. Conductivity change was interpreted in terms of different states of water in the membrane based on its δ(HOH) vibrational spectra. It was found that hydration of a dry membrane leads first to complete dissociation of the sulfonic acid groups to liberate hydrated protons, which are isolated from each other and have δ(HOH) vibrational frequency around 1740 cm(-1). The initial hydration is not accompanied by a significant increase of the proton conductivity. Further hydration gives rise to a rapid increase of the conductivity in proportion to intensity of a new δ(HOH) band around 1630 cm(-1). This was interpreted in terms of formation of channels of weakly hydrogen-bonded water to combine the isolated hydrophilic domains containing hydrated protons and hydrated sulfonate ions produced during the initial stage of hydration. Upon dehydration, proton conductivity drops first very rapidly due to loss of the weakly hydrogen bonded water from the channels to leave hydrophilic domains isolated in the membrane. Dehydration of the protons proceeds very slowly after significant loss of the proton conductivity.

  2. Working fluids of a low-temperature geothermally-powered Rankine cycle for combined power and heat generation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The advantages of the novel combined power and heat generation system are free of using additional cooling water circling system for the power generation subsystem as well as maximizing the use of thermal energy in the low-temperature geothermal source. The main purpose is to identify suitable working fluids (wet, isentropic and dry flu-ids) which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Parameters under investigation were evaporating temperature, PPR value and QQR value. Results indicate that there exits an optimum evaporating temperature to maximize the PPR value and minimize the QQR value at the same time for individual fluid. And dry fluids show higher PPR values but lower QQR values. NH3 and R152a outstand among wet fluids. R134a out-stands among isentropic fluids. R236ea, R245ca, R245fa, R600 and R600a outstand among dry fluids. R236ea shows the highest PPR value among the recommended fluids.

  3. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  4. Comparing of letrozole versus clomiphene citrate combined with gonadotropins in intrauterine insemination cycles

    Directory of Open Access Journals (Sweden)

    Fatemeh Ayazi Roozbahani

    2012-01-01

    Full Text Available Background: Clomiphene citrate (CC an agonist and antagonist of estrogen, is the first line treatment in ovarian stimulation. Anti-estrogenic effect of CC in endometrial thickness and cervical mucus has negative effect on pregnancy rate. Letrozole is an Aromatase Inhibitor has been seen that has acceptable pregnancy rate compared to CC.Objective: The aim of this study was to compare the efficacy of letrozole and clomiphene citrate (CC with gonadotropins for ovarian stimulation in women candidate for intrauterine insemination (IUI.Materials and Methods: One hundred sixty patients eligible to IUI therapy enrolled in this study. Patients randomized to two groups: group A (received letrozole-gonadotropin and group B (received CC-gonadotropin. In group A (n=80 letrozole was given on days 3-7 of the menstrual cycles. In group B clomiphen citrate was given like letrozole combined with human menopausal gonadotropin (hMG administered every day starting on day 8. Ovulation was triggered with urinary HCG when the leading follicle (s reached 18 mm in diameter. A single IUI was performed 36-40 hours later. The ovarian stimulation response (E2 levels and number of follicles, clinical pregnancy and endometrial thickness was primary outcome.Results: Both groups were similar in demographic characteristics. There was a significantly lower peak serum E2 level in the letrozole group compared with CC. (236±86 Vs. 283±106 pg/mL, respectively; p18 mm preovulatory follicles was significantly higher in CC group than letrozole group (2.2±.68 Vs. 2.02±0.63 respectively; p=0.025. Endometrial thickness measured at the time of hCG administration was significantly higher in letrozole group. (9.08±1.2 mm Vs. 8.1±1.9 mm; p=0.0001. The clinical pregnancy rate was comparable between two groups.Conclusion: Letrozole is a good and cost-effective alternative to CC in IUI cycles

  5. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh [Lummus Technology Inc., Bloomfield, NJ (United States); Hess, Fernando [Lummus Technology Inc., Bloomfield, NJ (United States); Horzen, Wessel van [Lummus Technology Inc., Bloomfield, NJ (United States); Williams, Daniel [Lummus Technology Inc., Bloomfield, NJ (United States); Peevor, Andy [JM Davy, London (United Kingdom); Dyer, Andy [JM Davy, London (United Kingdom); Frankel, Louis [Canonsburgh, PA (United States)

    2016-06-01

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and

  6. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van; Williams, Daniel; Peevor, Andy; Dyer, Andy; Dyer, Andy; Frankel, Louis

    2016-03-31

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam in the

  7. Ground-based photometric measurements. [In sunspot cycle

    Energy Technology Data Exchange (ETDEWEB)

    Labonte, B.J.

    1987-01-01

    Resolution in space, time, magnetic field strength, intensity variance, and wavelength all are used to isolate the signals from sunspots, plage, network, and nonmagnetic areas. Ground data has demonstrated the dominance of sunspots in causing irradiance variance on time scales of hours to months, the near balance of spot deficit and facular excess emission, and the low level of irradiance variation caused by nonmagnetic regions. Present techniques limit the accuracy of comparison with direct irradiance measures, and improvements should be made. Goals for ground-based photometry for the next cycle are suggested. 59 references.

  8. Ground-based photometric measurements. [in sunspot cycle

    Science.gov (United States)

    Labonte, Barry J.

    1987-01-01

    Resolution in space, time, magnetic field strength, intensity variance, and wavelength all are used to isolate the signals from sunspots, plage, network, and nonmagnetic areas. Ground data has demonstrated the dominance of sunspots in causing irradiance variance on time scales of hours to months, the near balance of spot deficit and facular excess emission, and the low level of irradiance variation caused by nonmagnetic regions. Present techniques limit the accuracy of comparison with direct irradiance measures, and improvements should be made. Goals for ground-based photometry for the next cycle are suggested.

  9. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    Science.gov (United States)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  10. Determination of Fuel Consumption Indexes of Co-generation Combined Cycle Steam and Gas Units with unfired waste heat boilers

    OpenAIRE

    S. A. Kachan; V. I. Filazafovich; A. N. Dubravenski

    2010-01-01

    The paper presents the developed methodology and the results of determination of fuel consumption indexes of co-generation combined cycle steam and gas units (PGU) with unfired waste heat boilers apply to PGU-230 of 3-d co-generation power plant ofMinsk. 

  11. Determination of Fuel Consumption Indexes of Co-generation Combined Cycle Steam and Gas Units with unfired waste heat boilers

    Directory of Open Access Journals (Sweden)

    S. A. Kachan

    2010-01-01

    Full Text Available The paper presents the developed methodology and the results of determination of fuel consumption indexes of co-generation combined cycle steam and gas units (PGU with unfired waste heat boilers apply to PGU-230 of 3-d co-generation power plant ofMinsk. 

  12. Simulation of a solar assisted combined heat pump – Organic rankine cycle system

    International Nuclear Information System (INIS)

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Reverse operation of the scroll compressor in ORC mode. • Annual simulations for application in a single-family house at three locations. • By introducing the ORC the net electricity demand is reduced by 1–9%. • Over the lifetime of the system savings can cover additional investments. - Abstract: A novel solar thermal and ground source heat pump system that harnesses the excess heat of the collectors during summer by an Organic Rankine Cycle (ORC) is simulated. For the ORC the heat pump process is reversed. In this case the scroll compressor of the heat pump runs as a scroll expander and the working fluid is condensed in the ground heat exchanger. Compared to a conventional solar thermal system the only additional investments for the combined system are a pump, valves and upgraded controls. The goal of the study is to simulate and optimize such a system. A brief overview of the applied models and the evolutionary algorithm for the optimization is given. A system with 12 m2 of flat plate collectors installed in a single family house is simulated for the locations Ankara, Denver and Bochum. The ORC benefits add up to 20–140 kW h/a, which reduces the net electricity demand of the system by 1–9%. Overall 180–520 € are saved over a period of 20 years, which can be enough to cover the additional investments

  13. Influence of system integration options on the performance of an integrated gasification combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Jun; Kim, Young Sik; Cha, Kyu Sang [Graduate School, Inha University, Incheon 402-751 (Korea); Kim, Tong Seop [Dept. of Mechanical Engineering, Inha University, Incheon 402-751 (Korea); Sohn, Jeong L. [School of Aerospace and Mechanical Engineering, Seoul National University, Seoul 151-741 (Korea); Joo, Yong Jin [IGCC Group, Korea Electric Power Research Institute, Daejeon 305-760 (Korea)

    2009-09-15

    An IGCC (integrated gasification combined cycle) plant consists of a power block and a gasifier block, and a smooth integration of these two parts is important. This work has analyzed the influences of the major design options on the performance of an IGCC plant. These options include the method of integrating a gas turbine with an air separation unit and the degree of nitrogen supply from the ASU to the gas turbine combustor. Research focus was given to the effect of each option on the gas turbine operating condition along with plant performance. Initially, an analysis adopting an existing gas turbine without any modifications of its components was performed to examine the influence of two design options on the operability of the gas turbine and performance of the entire IGCC plant. It is shown that a high integration degree, where much of the air required at the air separation unit is supplied by the gas turbine compressor, can be a better option considering both the system performance and operation limitation of the gas turbine. The nitrogen supply enhances system performance, but a high supply ratio can only be acceptable in high integration degree designs. Secondly, the modifications of gas turbine components to resume the operating surge margin, such as increasing the maximum compressor pressure ratio by adding a couple of stages and increasing turbine swallowing capacity, were simulated and their effects on system performance were examined. Modification can be a good option when a low integration degree is to be adopted, as it provides a considerable power increase. (author)

  14. A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem

    Science.gov (United States)

    Jäger, Gerold; Zhang, Weixiong

    The Hamiltonian cycle problem (HCP) is an important combinatorial problem with applications in many areas. While thorough theoretical and experimental analyses have been made on the HCP in undirected graphs, little is known for the HCP in directed graphs (DHCP). The contribution of this work is an effective algorithm for the DHCP. Our algorithm explores and exploits the close relationship between the DHCP and the Assignment Problem (AP) and utilizes a technique based on Boolean satisfiability (SAT). By combining effective algorithms for the AP and SAT, our algorithm significantly outperforms previous exact DHCP algorithms including an algorithm based on the award-winning Concorde TSP algorithm.

  15. Potential of Atkinson cycle combined with EGR for pollutant control in a HD diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Benajes, J.; Serrano, J.R.; Molina, S.; Novella, R. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-01-15

    An experimental investigation has been performed on the potential of the Atkinson cycle and reducing intake oxygen concentration for pollutant control in a heavy-duty diesel engine. In this study the Atkinson cycle has been reproduced advancing the intake valve closing angle towards the intake stroke. In addition, the intake oxygen concentration has been reduced introducing exhaust gas recirculation. This research has been carried out at low engine load (25%), where the Atkinson cycle is known to improve the efficiency of the spark-ignition engines. The main interest of this investigation has been the comparison between the Atkinson cycle and the conventional diesel cycle at the same oxygen concentration in the intake gas. This analysis has been focused on in-cylinder gas thermodynamic conditions, combustion process, exhaust emissions and engine efficiency. In compression ignition engines, the Atkinson cycle basically promotes the premixed combustion, but in the range of these tests, a complete premixed combustion was not attained. Regarding exhaust emissions, the Atkinson cycle reduces notably the nitrous oxides but increases soot emissions. Finally, better global results have been found reducing intake oxygen concentration by the recirculation of exhaust gas than by the operation of an Atkinson cycle. (author)

  16. Cycle-based protection for survivable WDM networks design

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhenrong; Yin Hongxi

    2009-01-01

    A new integer linear program (ILP) formulation was developed to solve the problem of shared cycles design for optical networks with and without wavelength conversion. Numerical studies show that the shared cycles design requires much lower redundancy compared with p-cycle design when the maximum number of spans allowed in the cycles is relatively small, but the difference in the redundancy between the two designs becomes smaller or disappears as the maximum number of spans allowed in the cycles increases.

  17. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  18. Fuzzy Activity Based Life Cycle Costing For Repairable Equipment

    Directory of Open Access Journals (Sweden)

    Mulubrhan Freselam

    2016-01-01

    Full Text Available Life-cycle cost (LCC is the much known method used for decision making that considers all costs in the life of a system or equipment. Predicting LCCs is fraught with potential errors, owing to the uncertainty in future events, future costs, interest rates, and even hidden costs. These uncertainties have a direct impact on the decision making. Activity based LCC is used to identify the activities and cost drivers in acquisition, operation and maintenance phase. This activity based LCC is integrated with fuzzy set theory and interval mathematics to model these uncertainties. Day–Stout–Warren (DSW algorithm and the vertex method are then used to evaluate competing alternatives. A case of two pumps (Pump A and Pump B are taken and their LCC is analysed using the developed model. The equivalent annual cost of Pump B is greater than Pump A, which leads the decision maker to choose Pump A over Pump B.

  19. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [Senior Lecturer at the School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [Professor at the School of Mechanical and Nuclear Engineering, North West University (South Africa)

    2014-05-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of {sup 232}Th is compared to that of {sup 238}U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of {sup 232}Th/{sup 233}U fuel cycles is denaturisation of the {sup 233}U in the spent fuel by {sup 232}U, for which the highly radioactive decay chain potentially poses a large

  20. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    International Nuclear Information System (INIS)

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of 232Th is compared to that of 238U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of 232Th/233U fuel cycles is denaturisation of the 233U in the spent fuel by 232U, for which the highly radioactive decay chain potentially poses a large radiation as well as a detection risk

  1. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Simona [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Ranzato, Elia, E-mail: ranzato@unipmn.it [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Parodi, Monica [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); DI.ME.S., Università degli Studi di Genova, Via L. Alberti 2, 16132 Genova (Italy); Vitale, Massimo [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); Burlando, Bruno [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy)

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  2. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    OpenAIRE

    Eileen Tortora; Franco Rispoli; Domenico Borello; Alessandro Corsini

    2013-01-01

    The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP) Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting tran...

  3. Techno-economic evaluation of a solar assisted combined heat pump – Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Highlights: • Addition of an ORC to a solar thermal and ground source heat pump system. • Additional investments comprise only 400 € for a single-family house unit. • Recharging the ground during ORC has negligible impact on the COP of the HP. • Economics studied for application in Bochum, Denver and Ankara; only small benefits. • Use of isobutane instead of R134a would increase the profit of the ORC system. - Abstract: The economic feasibility of the addition of an ORC to a combined solar system coupled to a ground-source heat pump is discussed. The ORC prevents the stagnation of the solar loop and reverses the heat pump cycle. The working fluid is evaporated in the condenser of the heat pump, expanded in the scroll compressor, which becomes a scroll expander, and condensed in the brine heat exchanger. The only additional investments for the ORC system comprise a pump, valves and upgraded controls and are estimated to be 400 € for a single-family-house unit. Flat-plate collectors are the preferred collector type as the higher collector efficiency of evacuated tube collectors does not outweigh the higher costs. The thermal recharging of the ground during ORC has a negligible impact on the COP of the heat pump. However, the recharging leads to less deep boreholes compared to a conventional system. Because of the low investments for the ORC, even small reductions in borehole depth make a significant contribution to the economic feasibility of the system. The addition of the ORC overall generates a small profit of 155 € at Ankara and 74 € at Denver for a rocky soil and a thermally enhanced grout. On the contrary, the conventional solar combisystem coupled to a ground source heat pump was found to be economically unreasonable at all locations. The working fluid isobutane is interesting for future applications because of the lower global warming potential and the smaller saturation pressures compared to R134a. The latter allow for the installation of a

  4. Optimization of thermoelectric topping combined steam turbine cycles for energy economy

    OpenAIRE

    Yazawa, Kazuaki; Koh, Yee Rui; Shakouri, Ali

    2013-01-01

    A mismatch between the fuel combustion temperature similar to 2250 K (adiabatic) and the high pressure steam temperature up to 900 K, results in a large amount of thermodynamic losses in steam turbine (ST) cycles. A solid-state thermoelectric (TE) placed on top of a ST cycle will produce additional electrical power. By selecting the right materials for the TE generator for high temperature operation, the energy production from the same fuel consumption will increase. Recent nano-structured en...

  5. An Agent-Based Model of Institutional Life-Cycles

    Directory of Open Access Journals (Sweden)

    Manuel Wäckerle

    2014-08-01

    Full Text Available We use an agent-based model to investigate the interdependent dynamics between individual agency and emergent socioeconomic structure, leading to institutional change in a generic way. Our model simulates the emergence and exit of institutional units, understood as generic governed social structures. We show how endogenized trust and exogenously given leader authority influences institutional change, i.e., diversity in institutional life-cycles. It turns out that these governed institutions (destructure in cyclical patterns dependent on the overall evolution of trust in the artificial society, while at the same time, influencing this evolution by supporting social learning. Simulation results indicate three scenarios of institutional life-cycles. Institutions may, (1 build up very fast and freeze the artificial society in a stable but fearful pattern (ordered system; (2 exist only for a short time, leading to a very trusty society (highly fluctuating system; and (3 structure in cyclical patterns over time and support social learning due to cumulative causation of societal trust (complex system.

  6. The U.S. Department of Energy`s integrated gasification combined cycle research, development and demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    Brdar, R.D.; Cicero, D.C.

    1996-07-01

    Historically, coal has played a major role as a fuel source for power generation both domestically and abroad. Despite increasingly stringent environmental constraints and affordable natural gas, coal will remain one of the primary fuels for producing electricity. This is due to its abundance throughout the world, low price, ease of transport an export, decreasing capital cost for coal-based systems, and the need to maintain fuel diversity. Recognizing the role coal will continue to play, the US Department of Energy (DOE) is working in partnership with industry to develop ways to use this abundant fuel resource in a manner that is more economical, more efficient and environmentally superior to conventional means to burn coal. The most promising of these technologies is integrated gasification combined cycle (IGCC) systems. Although IGCC systems offer many advantages, there are still several hurdles that must be overcome before the technology achieves widespread commercial acceptance. The major hurdles to commercialization include reducing capital and operating costs, reducing technical risk, demonstrating environmental and technical performance at commercial scale, and demonstrating system reliability and operability. Overcoming these hurdles, as well as continued progress in improving system efficiency, are the goals of the DOE IGCC research, development and demonstrate (RD and D) program. This paper provides an overview of this integrated RD and D program and describes fundamental areas of technology development, key research projects and their related demonstration scale activities.

  7. Exergy Analysis of a Syngas-Fueled Combined Cycle with Chemical-Looping Combustion and CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Álvaro Urdiales Montesino

    2016-08-01

    Full Text Available Fossil fuels are still widely used for power generation. Nevertheless, it is possible to attain a short- and medium-term substantial reduction of greenhouse gas emissions to the atmosphere through a sequestration of the CO2 produced in fuels’ oxidation. The chemical-looping combustion (CLC technique is based on a chemical intermediate agent, which gets oxidized in an air reactor and is then conducted to a separated fuel reactor, where it oxidizes the fuel in turn. Thus, the oxidation products CO2 and H2O are obtained in an output flow in which the only non-condensable gas is CO2, allowing the subsequent sequestration of CO2 without an energy penalty. Furthermore, with shrewd configurations, a lower exergy destruction in the combustion chemical transformation can be achieved. This paper focus on a second law analysis of a CLC combined cycle power plant with CO2 sequestration using syngas from coal and biomass gasification as fuel. The key thermodynamic parameters are optimized via the exergy method. The proposed power plant configuration is compared with a similar gas turbine system with a conventional combustion, finding a notable increase of the power plant efficiency. Furthermore, the influence of syngas composition on the results is investigated by considering different H2-content fuels.

  8. Performances of the Chemical Gas Turbine System and Comparison with Other Gas Turbine Based Cycles

    Directory of Open Access Journals (Sweden)

    Norio Arai

    2000-12-01

    Full Text Available

    This paper describes a novel combined cycle based on a “Chemical Gas Turbine” system. The system consists of fuel-rich and fuel-lean combustors with their gas turbines, recuperators, and a steam bottoming cycle. Important features of this system are the gas turbine with C/C composites blades and the fuel-rich combustion techniques. These techniques result in no cooling of turbine blades and much higher turbine inlet temperature, therefore, much higher thermal efficiency. This paper analyzes the energy, exergy, and heat exchanger sizes of the proposed system. Furthermore, optimizations from pressure ratio aspects are discussed. All results are compared with a simple gas turbine system and a conventional combined cycle. The following results were obtained: the chemical gas turbine system achieves a thermal efficiency of 64%, and low exergy loss in the combustion processes. In addition, characteristics of the system are similar to the simple gas turbine system.

    •  This paper was presented at the ECOS'00 Conference in Enschede, July 5-7, 2000

  9. A Preisach-Based Nonequilibrium Methodology for Simulating Performance of Hysteretic Magnetic Refrigeration Cycles

    Science.gov (United States)

    Brown, Timothy D.; Bruno, Nickolaus M.; Chen, Jing-Han; Karaman, Ibrahim; Ross, Joseph H.; Shamberger, Patrick J.

    2015-09-01

    In giant magnetocaloric effect (GMCE) materials a large entropy change couples to a magnetostructural first-order phase transition, potentially providing a basis for magnetic refrigeration cycles. However, hysteresis loss greatly reduces the availability of refrigeration work in such cycles. Here, we present a methodology combining a Preisach model for rate-independent hysteresis with a thermodynamic analysis of nonequilibrium phase transformations which, for GMCE materials exhibiting hysteresis, allows an evaluation of refrigeration work and efficiency terms for an arbitrary cycle. Using simplified but physically meaningful descriptors for the magnetic and thermal properties of a Ni45Co5Mn36.6In13.4 at.% single-crystal alloy, we relate these work/efficiency terms to fundamental material properties, demonstrating the method's use as a materials design tool. Following a simple two-parameter model for the alloy's hysteresis properties, we compute and interpret the effect of each parameter on the cyclic refrigeration work and efficiency terms. We show that hysteresis loss is a critical concern in cycles based on GMCE systems, since the resultant lost work can reduce the refrigeration work to zero; however, we also find that the lost work may be mitigated by modifying other aspects of the transition, such as the width over which the one-way transformation occurs.

  10. Variable geometry gas turbines for improving the part-load performance of marine combined cycles - Gas turbine performance

    DEFF Research Database (Denmark)

    Haglind, Fredrik

    2010-01-01

    The part-load performance of gas and steam turbine combined cycles intended for naval use is of great importance, and it is influenced by the gas turbine configuration and load control strategy. This paper is aimed at quantifying the effects of variable geometry on the gas turbine part......-load performance. Subsequently, in another paper, the effects of variable geometry on the part-load performance for combined cycles used for ship propulsion will be presented. Moreover, this paper is aimed at developing methodologies and deriving models for part-load simulations suitable for energy system analysis...... of various components within gas turbines. Two different gas turbine configurations are studied, a two-shaft aero-derivative configuration and a single-shaft industrial configuration. When both gas turbine configurations are running in part-load using fuel flow control, the results indicate better part...

  11. Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor.

    Science.gov (United States)

    Jacqmin, Hermance; Jullien, Aurélie; Mercier, Brigitte; Hanna, Marc; Druon, Frédéric; Papadopoulos, Dimitrios; Lopez-Martens, Rodrigo

    2015-03-01

    We demonstrate a simple and robust passive coherent combining technique for temporal compression of millijoule energy laser pulses down to few-cycle duration in a gas-filled hollow fiber. High combining efficiency is achieved by using carefully oriented calcite plates for temporal pulse division and recombination. Carrier-envelope phase (CEP)-stable, 6-fs, 800-nm pulses with more than 0.6 mJ energy are routinely generated. This method could aid in the energy scaling of CEP-stable hollow-fiber compressor systems. PMID:25723413

  12. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling

    Directory of Open Access Journals (Sweden)

    D. S. Goll

    2012-09-01

    Full Text Available Terrestrial carbon (C cycle models applied for climate projections simulate a strong increase in net primary productivity (NPP due to elevated atmospheric CO2 concentration during the 21st century. These models usually neglect the limited availability of nitrogen (N and phosphorus (P, nutrients that commonly limit plant growth and soil carbon turnover. To investigate how the projected C sequestration is altered when stoichiometric constraints on C cycling are considered, we incorporated a P cycle into the land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg, which already includes representations of coupled C and N cycles.

    The model reveals a distinct geographic pattern of P and N limitation. Under the SRES (Special Report on Emissions Scenarios A1B scenario, the accumulated land C uptake between 1860 and 2100 is 13% (particularly at high latitudes and 16% (particularly at low latitudes lower in simulations with N and P cycling, respectively, than in simulations without nutrient cycles. The combined effect of both nutrients reduces land C uptake by 25% compared to simulations without N or P cycling. Nutrient limitation in general may be biased by the model simplicity, but the ranking of limitations is robust against the parameterization and the inflexibility of stoichiometry. After 2100, increased temperature and high CO2 concentration cause a shift from N to P limitation at high latitudes, while nutrient limitation in the tropics declines. The increase in P limitation at high-latitudes is induced by a strong increase in NPP and the low P sorption capacity of soils, while a decline in tropical NPP due to high autotrophic respiration rates alleviates N and P limitations. The quantification of P limitation remains challenging. The poorly constrained processes of soil P sorption and biochemical mineralization are identified as the main uncertainties in the strength of P limitation

  13. Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators

    NARCIS (Netherlands)

    Hermann, B.G.; Kroeze, C.; Jawjit, W.

    2007-01-01

    We present a new analytical tool, called COMPLIMENT, which can be used to provide detailed information on the overall environmental impact of a business. COMPLIMENT integrates parts of tools such as life cycle assessment, multi-criteria analysis and environmental performance indicators. It avoids di

  14. Sounding stellar cycles with Kepler - II. Ground-based observations

    CERN Document Server

    Karoff, C; Chaplin, W J; Frandsen, S; Grundahl, F; Kjeldsen, H; Christensen-Dalsgaard, J; Nielsen, M B; Frimann, S; Thygesen, A O; Arentoft, T; Amby, T M; Sousa, S G; Buzasi, D L

    2013-01-01

    We have monitored 20 Sun-like stars in the Kepler field-of-view for excess flux with the FIES spectrograph on the Nordic Optical Telescope since the launch of Kepler spacecraft in 2009. These 20 stars were selected based on their asteroseismic properties to sample the parameter space (effective temperature, surface gravity, activity level etc.) around the Sun. Though the ultimate goal is to improve stellar dynamo models, we focus the present paper on the combination of space-based and ground-based observations can be used to test the age-rotation-activity relations. In this paper we describe the considerations behind the selection of these 20 Sun-like stars and present an initial asteroseismic analysis, which includes stellar age estimates. We also describe the observations from the Nordic Optical Telescope and present mean values of measured excess fluxes. These measurements are combined with estimates of the rotation periods obtained from a simple analysis of the modulation in photometric observations from ...

  15. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    Science.gov (United States)

    Chattopadhyay, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (rp) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.

  16. Minor and Minimum Cycle Bases of a 3-connected Planar Graph

    Institute of Scientific and Technical Information of China (English)

    Deng Ju MA; Han REN

    2009-01-01

    In this paper, we prove that if any set of |E(G)| - |V(G)| + 1 facial cycles of a 3-connected planar graph G embedded in the plane doesn't form a minimum cycle base of G, then any minimum cycle base of G contains a separating cycle, and G has a minor isomorphic to T6, where T6 is the graph obtained from the complete graph Kg by deleting a path with four edges.

  17. Cycle accurate and cycle reproducible memory for an FPGA based hardware accelerator

    Science.gov (United States)

    Asaad, Sameh W.; Kapur, Mohit

    2016-03-15

    A method, system and computer program product are disclosed for using a Field Programmable Gate Array (FPGA) to simulate operations of a device under test (DUT). The DUT includes a device memory having a number of input ports, and the FPGA is associated with a target memory having a second number of input ports, the second number being less than the first number. In one embodiment, a given set of inputs is applied to the device memory at a frequency Fd and in a defined cycle of time, and the given set of inputs is applied to the target memory at a frequency Ft. Ft is greater than Fd and cycle accuracy is maintained between the device memory and the target memory. In an embodiment, a cycle accurate model of the DUT memory is created by separating the DUT memory interface protocol from the target memory storage array.

  18. The Martian Water Cycle Based on 3-D Modeling

    Science.gov (United States)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  19. A novel PPGA-based clustering analysis method for business cycle indicator selection

    Institute of Scientific and Technical Information of China (English)

    Dabin ZHANG; Lean YU; Shouyang WANG; Yingwen SONG

    2009-01-01

    A new clustering analysis method based on the pseudo parallel genetic algorithm (PPGA) is proposed for business cycle indicator selection. In the proposed method,the category of each indicator is coded by real numbers,and some illegal chromosomes are repaired by the identi-fication arid restoration of empty class. Two mutation op-erators, namely the discrete random mutation operator andthe optimal direction mutation operator, are designed to bal-ance the local convergence speed and the global convergence performance, which are then combined with migration strat-egy and insertion strategy. For the purpose of verification and illustration, the proposed method is compared with the K-means clustering algorithm and the standard genetic algo-rithms via a numerical simulation experiment. The experi-mental result shows the feasibility and effectiveness of the new PPGA-based clustering analysis algorithm. Meanwhile,the proposed clustering analysis algorithm is also applied to select the business cycle indicators to examine the status of the macro economy. Empirical results demonstrate that the proposed method can effectively and correctly select some leading indicators, coincident indicators, and lagging indi-cators to reflect the business cycle, which is extremely op-erational for some macro economy administrative managers and business decision-makers.

  20. Hydrogen production by water decomposition using a combined electrolytic-thermochemical cycle

    Science.gov (United States)

    Farbman, G. H.; Brecher, L. E.

    1976-01-01

    A proposed dual-purpose power plant generating nuclear power to provide energy for driving a water decomposition system is described. The entire system, dubbed Sulfur Cycle Water Decomposition System, works on sulfur compounds (sulfuric acid feedstock, sulfur oxides) in a hybrid electrolytic-thermochemical cycle; performance superior to either all-electrolysis systems or presently known all-thermochemical systems is claimed. The 3345 MW(th) graphite-moderated helium-cooled reactor (VHTR - Very High Temperature Reactor) generates both high-temperature heat and electric power for the process; the gas stream at core exit is heated to 1850 F. Reactor operation is described and reactor innards are illustrated. A cost assessment for on-stream performance in the 1990's is optimistic.

  1. Steam-water chemistry in combined cycle power stations - requirements and experience; Dampf-Wasserchemie im Kombikraftwerk - Erfordernisse und Erfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Liebig, E.; Svoboda, R.; Hehs, H.; Sandmann, H. [ALSTOM Power AG, Baden (Switzerland)

    2000-07-01

    Combined cycle power stations have unique chemical boundary conditions, e.g. very low feedwater temperatures and vacuum degassing inside the condenser. Combined cycle power stations usually have unfired drum boilers with or without intermediate superheating and with one, two or three pressure stages. Two or even three waste heat boilers supply one steam turbine. Depending on the pressure and boiler type, different chemical requirements may require parallel application of different boiler water conditioning methods. On the basis of these specific constructional features, an innovative waste heat boiler concept is presented which comprises a low-pressure drum boiler combined with a high-pressure forced circulation boiler and water/steam cycle. The use of water chemicals is limited. Preliminary results of the new technology are presented, including conditioning of the water/steam cycle and the use of a high-pressure separator for removal of impurities. [German] Aus der Spezifik des Wasser-/Dampf-Kreislaufes eines Kombikraftwerkes im Vergleich zu konventionellen direktgefeuerten Dampfkraftwerken leiten sich eigene chemische Randbedingungen ab. Z.B. sind moderne Kraftwerke ohne Speisewasservorwaermung konzipiert, was zur Beherrschung sehr niedriger Speisewassertemperaturen und zur Vakuumentgasung im Kondensator zwingt. Bis heute sind Kombikraftwerke mit gewoehnlich ungefeuerten Ein-, Zwei- oder Dreidruck-Trommel-Kesseln mit oder ohne Zwischenueberhitzung ausgeruestet. Haeufig arbeiten zwei, in Sonderfaellen drei Abhitzekessel (AHK) auf eine Dampfturbine. Abhaengig vom Druck und Kesseltyp koennen verschiedene chemische Anforderungen zur parallelen Anwendung verschiedener Konditionierungsmethoden fuer das Kesselwasser fuehren. Auf Basis dieser speziellen Konstruktionsmerkmale wird ein innovatives AHK-Konzept bestehend aus der Kombination eines Niederdruck-Trommelkessels mit einem Hochdruck-Zwangsdurchlaufkessel und dem zugehoerigen Wasser-/Dampf-Kreislauf vorgestellt. Die

  2. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  3. Analysis of the Properties of Working Substances for the Organic Rankine Cycle based Database “REFPROP”

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base “REFPROP” and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base “REFPROP” describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature

  4. Advanced Information Technology in Simulation Based Life Cycle Design

    Science.gov (United States)

    Renaud, John E.

    2003-01-01

    In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.

  5. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  6. Economic scales for first-generation biomass-gasifier/gas turbine combined cycles fueled from energy plantations

    International Nuclear Information System (INIS)

    This paper assesses the scales at which commercial, first-generation biomass integrated-gasifier/gas turbine combined cycle (BIG/GTCC) technology is likely to be most economic when fueled by plantation-derived biomass. First-generation BIG/GTCC systems are likely to be commercially offered by vendors beginning around 2000 and will be based on either pressurized or atmospheric-pressure gasification. Both plant configurations are considered here, with estimates of capital and operating costs drawn from published and other sources. Prospective costs of a farm-grown energy crop (switchgrass) delivered to a power plant are developed with the aid of a geographic information system (GIS) for agricultural regions in the North Central and Southeast US in the year 2000 and 2020. A simplified approach is applied to estimate the cost of delivering chipped eucalyptus from an existing plantation in Northeast Brazil. The optimum capacity (MWopt), defined as that which yields the minimum calculated cost of electricity (COEm), varies by geographic region due to differences in delivered biomass costs. With pressurized BIG/GTCC plants, MWopt is in the range of 230--320 MWe for the sites considered, assuming most of the land around the power plant is farmed for energy crop production. For atmospheric-pressure BIG/GTCC plants, MWopt ranges from 110 to 142 MWe. When a lower fraction of the land around a plant is used for energy farming, values for MWopt are smaller than these. In all cases, the cost of electricity is relatively insensitive to plant capacity over a wide range around MWopt

  7. CHAOS-BASED FEEDFORWARD OUTPUT FUNCTIONS FOR COMBINING KEYSTREAM GENERATORS

    Institute of Scientific and Technical Information of China (English)

    Sang Tao; Wang Ruli; Yan Yixun

    2001-01-01

    The chaos-based feedforward output functions for combining keystream generators are proposed according to chaotic dynamic theory. The generated binary signals are independently and identically distributed, and have predictable periods. All experiments correspond to the theoretical prediction very well.

  8. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

    2006-10-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

  9. Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2011-01-01

    Integrated gasification combined cycle (IGCC) plants are a promising technology option for power generation with carbon dioxide (CO2) capture in view of their efficiency and environmental advantages over conventional coal utilization technologies. This paper presents a three-phase, top-down, optimization-based approach for designing an IGCC plant with precombustion CO2 capture in a process simulator environment. In the first design phase, important global design decisions are made on the basis of plant-wide optimization studies with the aim of increasing IGCC thermal efficiency and thereby making better use of coal resources and reducing CO2 emissions. For the design of an IGCC plant with 90% CO2 capture, the optimal combination of the extent of carbon monoxide (CO) conversion in the water-gas shift (WGS) reactors and the extent of CO2 capture in the SELEXOL process, using dimethylether of polyethylene glycol as the solvent, is determined in the first phase. In the second design phase, the impact of local design decisions is explored considering the optimum values of the decision variables from the first phase as additional constraints. Two decisions are made focusing on the SELEXOL and Claus unit. In the third design phase, the operating conditions are optimized considering the optimum values of the decision variables from the first and second phases as additional constraints. The operational flexibility of the plant must be taken into account before taking final design decisions. Two studies on the operational flexibility of the WGS reactors and one study focusing on the operational flexibility of the sour water stripper (SWS) are presented. At the end of the first iteration, after executing all the phases once, the net plant efficiency (HHV basis) increases to 34.1% compared to 32.5% in a previously published study (DOE/NETL-2007/1281; National Energy Technology Laboratory, 2007). The study shows that the three-phase, top-down design approach presented is very

  10. The effectiveness of community-based cycling promotion: findings from the Cycling Connecting Communities project in Sydney, Australia

    OpenAIRE

    Merom Dafna; Wen Li; New Carolyn; Rissel Chris E; Bauman Adrian E; Garrard Jan

    2010-01-01

    Abstract Background Encouraging cycling is an important way to increase physical activity in the community. The Cycling Connecting Communities (CCC) Project is a community-based cycling promotion program that included a range of community engagement and social marketing activities, such as organised bike rides and events, cycling skills courses, the distribution of cycling maps of the area and coverage in the local press. The aim of the study was to assess the effectiveness of this program de...

  11. Environmental control implications of generating electric power from coal. Appendix C. Gasification/combined-cycle power generation: comparison of alternative systems. 1977 technology status report. [246 references w. abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    The technical, economic, and environmental aspects of low-Btu gasification/combined-cycle power-generation (LBG/CCPG) plants are assessed, using available published data. Six base-case plants, based on three different gasifiers and two different coals, are investigated. A representative combined power cycle is selected for analysis, and material and energy balances for the six systems are developed. Emissions of various air pollutants, including sulfur dioxide and nitrogen oxides, and discharge rates of aqueous effluents are also calculated. The costs of electricity produced are derived for the six systems, using estimated plant-investment and operating costs. These costs and the emissions of various pollutants are compared with those for a conventional 500-MWe coal-based power plant using flue-gas cleaning and in compliance with the federal New Source Performance Standards. Finally, the commercialization potential of coal-based combined-cycle plants, based on the technical feasibility of building a first plant in the 1985 period and on economic viability, is evaluated. This evaluation is based on the current status of research and development programs for various components of the combined-cycle plant, such as gas turbines and fuel-gas-cleaning systems, and on the status of the demonstration plant.

  12. Limit Cycle Prediction Based on Evolutionary Multiobjective Formulation

    Directory of Open Access Journals (Sweden)

    M. Katebi

    2009-01-01

    In the second part, SIDF is extended to the class of nonlinear multiinput multioutput (MIMO systems containing separable nonlinear elements of any general form. In both cases linearized harmonic balance equations are derived and the search for a limit cycle is formulated as a multiobjective problem. Multiobjective genetic algorithm (MOGA is utilized to search the space of parameters of theoretically possible limit cycle operations. Case studies are presented to demonstrate the effectiveness of the proposed approach.

  13. Determining Reliability Parameters for a Closed-Cycle Small Combined Heat and Power Plant

    Science.gov (United States)

    Vysokomorny, Vladimir S.; Vysokomornaya, Olga V.; Piskunov, Maxim V.

    2016-02-01

    The paper provides numerical values of the reliability parameters for independent power sources within the ambient temperature and output power range corresponding to the operation under the climatic conditions of Eastern Siberia and the Far East of the Russian Federation. We have determined the optimal values of the parameters necessary for the reliable operation of small CHP plants (combined heat and power plants) providing electricity for isolated facilities.

  14. Combined Refrigeration Cycle for Thermal Power Plant Using Low Grade Waste Steam

    OpenAIRE

    Satish Maurya*,; Dharmendra Patel

    2014-01-01

    Now a days, In most of the thermal power plant, where low-pressure steam is being exhausted to the atmosphere as a waste steam. This waste heat could be use to operate many small preheating or cooling equipments or small scale plants. There are many refrigeration systems present for refrigeration and air condition purpose. Such as air refrigeration, vapour compression, vapour absorption etc. In this paper we have presented the concept of combined vapour absorption and vapour compression refri...

  15. Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hongjin Wang

    2015-09-01

    Full Text Available To efficiently recover the waste heat from a diesel engine exhaust, a regenerative organic Rankine cycle (RORC system was employed, and butane, R124, R416A, and R134a were used as the working fluids. The resulting diesel engine-RORC combined system was defined and the relevant evaluation indexes were proposed. First, the variation tendency of the exhaust energy rate under various diesel engine operating conditions was analyzed using experimental data. The thermodynamic model of the RORC system was established based on the first and second laws of thermodynamics, and the net power output and exergy destruction rate of the RORC system were selected as the objective functions. A particle swarm optimization (PSO algorithm was used to optimize the operating parameters of the RORC system, including evaporating pressure, intermediate pressure, and degree of superheat. The operating performances of the RORC system and diesel engine-RORC combined system were studied for the four selected working fluids under various operating conditions of the diesel engine. The results show that the operating performances of the RORC system and the combined system using butane are optimal on the basis of optimizing the operating parameters; when the engine speed is 2200 r/min and engine torque is 1215 N·m, the net power output of the RORC system using butane is 36.57 kW, and the power output increasing ratio (POIR of the combined system using butane is 11.56%.

  16. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    International Nuclear Information System (INIS)

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25 kWh−1 electricity and $0.03 kWh−1 thermal, for a system with a life cycle global warming potential of ∼80 gCO2eq kWh−1 of electricity and ∼10 gCO2eq kWh−1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40 m−3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40–$1.90 m−3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions. (letter)

  17. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    Science.gov (United States)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  18. Optimization Study for Integrated Solar Combined Cycle System%太阳能燃气联合循环系统集成优化研究

    Institute of Scientific and Technical Information of China (English)

    李元媛; 袁晶; 杨勇平

    2014-01-01

    Integrated Solar Combined Cycle System,which integrates parabolic trough solar technology with combined cycle power plant,is an efficient way to make full use of solar energy,improve system thermal efficiency,save the fossil fuels and reduce CO2 emission.Based on an Integrated Solar Combined Cycle consisting of a Direct Steam Generation parabolic trough field,this paper analyzes how and where solar energy is input into ISCC system would have impact on the solar and system overall efficiencies.A preliminary economic assessment is also carried out,showing that the optimal system performance can be achieved when the solar heat input is 75% of the total latent heat required for water evaporation.%太阳能燃气联合循环系统(ISCC)将槽式太阳能与燃气轮机联合循环相结合,充分利用太阳能作为中低温加热热源,是提高太阳能发电效率,降低太阳能发电成本,并减少系统CO2排放的有效途径.本文针对太阳能直接蒸汽发生系统(DSG)与燃气轮机联合循环(CCGT)集成的系统,研究了太阳能蒸发给水份额对系统性能的影响,寻求最佳的系统集成模式,并对其经济性能做了初步的探讨.结果表明,太阳能蒸发给水份额为75%时,系统性能最优.

  19. Hydrogen or Fossil Combustion Nuclear Combined Cycle Systems for Baseload and Peak Load Electricity Production. Annex X

    International Nuclear Information System (INIS)

    A combined cycle power plant is described that uses: (i) heat from a high temperature nuclear reactor to meet baseload electrical demands; and (ii) heat from the same high temperature reactor and burning natural gas, jet fuel or hydrogen to meet peak load electrical demands. For baseload electricity production, fresh air is compressed, then flows through a heat exchanger, where it is heated to between 700 and 900oC by using heat provided by a high temperature nuclear reactor via an intermediate heat transport loop, and finally exits through a high temperature gas turbine to produce electricity. The hot exhaust from the Brayton cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high temperature reactor. Natural gas, jet fuel or hydrogen is then injected into the hot air in a combustion chamber, combusts and heats the air to 1300oC - the operating conditions for a standard natural gas fired combined cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until required. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electrical grid can vary from zero (i.e. when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. As nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil fired turbines) to meet spinning reserve requirements and stabilize the electrical grid. This combined cycle uses

  20. The ecological validity of laboratory cycling: Does body size explain the difference between laboratory- and field-based cycling performance?

    Science.gov (United States)

    Jobson, S A; Nevill, A M; Palmer, G S; Jeukendrup, A E; Doherty, M; Atkinson, G

    2007-01-01

    Previous researchers have identified significant differences between laboratory and road cycling performances. To establish the ecological validity of laboratory time-trial cycling performances, the causes of such differences should be understood. Hence, the purpose of the present study was to quantify differences between laboratory- and road-based time-trial cycling and to establish to what extent body size [mass (m) and height (h)] may help to explain such differences. Twenty-three male competitive, but non-elite, cyclists completed two 25 mile time-trials, one in the laboratory using an air-braked ergometer (Kingcycle) and the other outdoors on a local road course over relatively flat terrain. Although laboratory speed was a reasonably strong predictor of road speed (R2 = 69.3%), a significant 4% difference (P cycling speed was identified (laboratory vs. road speed: 40.4 +/- 3.02 vs. 38.7 +/- 3.55 km x h(-1); mean +/- s). When linear regression was used to predict these differences (Diff) in cycling speeds, the following equation was obtained: Diff (km x h(-1)) = 24.9 - 0.0969 x m - 10.7 x h, R2 = 52.1% and the standard deviation of residuals about the fitted regression line = 1.428 (km . h-1). The difference between road and laboratory cycling speeds (km x h(-1)) was found to be minimal for small individuals (mass = 65 kg and height = 1.738 m) but larger riders would appear to benefit from the fixed resistance in the laboratory compared with the progressively increasing drag due to increased body size that would be experienced in the field. This difference was found to be proportional to the cyclists' body surface area that we speculate might be associated with the cyclists' frontal surface area.

  1. Angiogenesis inhibition and cell cycle arrest induced by treatment with Pseudolarix acid B alone or combined with 5-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jingtao Liu; Wei Guo; Bo Xu; Fuxiang Ran; Mingming Chu; Hongzheng Fu; Jingrong Cui

    2012-01-01

    Angiogenesis inhibitors combined with chemotherapeutic drugs have significant efficacy in the treatment of a variety of cancers.Pseudolarix acid B (PAB) is a traditional pregnancy-terminating agent,which has previously been shown to reduce tumor growth and angiogenesis.In this study,we used the high content screening assay to examine the effects of PAB on human umbilical vein endothelial cells (HUVECs).Two hepatocarcinoma 22-transplanted mouse models were used to determine PAB efficacy in combination with 5-fluorouracil (5-Fu).Our results suggested that PAB (0.156-1.250 μM) inhibited HUVECs motility in a concentration-dependent manner without obvious cytotoxicity in vitro.In vivo,PAB (25 mg/kg/day) promoted the anti-tumor efficacy of 5-Fu (5 mg/kg/2 days) in combination therapy,resulting in significantly higher tumor inhibition rates,lower microvessel density values,and prolonged survival times.It was also demonstrated that PAB acted by blocking the cell cycle at both the G1/S boundary and M phase,down-regulation of vascular endothelial growth factor,hypoxia-inducible factor 1α and cyclin E expression,and up-regulation of cdc2 expression.These observations provide the first evidence that PAB in combination with 5-Fu may be useful in cancer treatment.

  2. {WiFi GPS} based Combined positioning Algorithm

    OpenAIRE

    Zirari, Soumaya; Canalda, Philippe; Spies, François

    2010-01-01

    International audience If nowadays, positioning becomes more and more accurate, and covers better and better a territory (indoor and outdoor), it remains territories where traditional (and basic) positioning system (GPS, gsm or WiFi) and hybrid ones (GPS-gsm, GPS-WiFi, GPS-WiFi-gsm,...) are insufficient and requires research investment treating combined positioning. In this paper we propose a GPS-WiFi combined positioning algorithm, based on trilateration technique. Real experiments and ot...

  3. Alternative analysis to increase the power in combined-cycle power plants; Analisis de alternativas para el incremento de potencia en plantas termoelectricas de Ciclo Combinado

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco Cruz, Hector; Arriola Medellin, Alejandro M. [Gerencia de Procesos Termicos, Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: hpacheco@iie.org.mx; aarriola@iie.org.mx

    2010-11-15

    The electricity industry traditionally had two thermodynamic cycles for power generation: conventional steam turbine (Rankine cycle) used to supply a base load during the day, and gas turbines (Brayton cycle), for its speed response, normally used to cover peak loads. However, to provide variable peak loads, the gas turbine, as a volumetric machine is affected by the change in air density by changing the combustion temperature. This paper shows the scheme of integration of both systems, that it's known as combined cycle and the different options that would have these power plants, to maintain or increase their power in variable ambient conditions. It analyzes different options, such as: 1. Supplementary fire in the stove. 2. Air cooling intake in the gas turbine (evaporation system or mechanical system). 3. Steam injection in the combustion chamber. [Spanish] La industria electrica tradicionalmente a contado con dos ciclos termodinamicos para generacion electrica: las turbinas convencionales de vapor (ciclo de Rankine) se utilizan para suministrar una carga base durante el dia, y las turbinas de gas (ciclo de Brayton), por su rapidez de respuesta, se utilizan normalmente para cubrir las cargas pico. Sin embargo, para suministrar las cargas variables pico, la turbina a gas, por ser una maquina volumetrica, se ve afectada por el cambio de la densidad del aire de combustion al cambiar la temperatura ambiente. En este trabajo se muestra el esquema de integracion de ambos sistemas, en lo que se conoce como ciclo combinado y las diferentes opciones que tendrian estas plantas de generacion electrica para mantener o incrementar su potencia en condiciones ambiente variable. Para ello se analizan diferentes opciones, tales como: 1.- Combustion suplementaria en el recuperador de calor. 2.- Enfriamiento del aire de admision a la turbina de gas (mediante un sistema de evaporacion o mediante un sistema mecanico). 3.- Inyeccion de vapor a la camara de combustion. Palabras

  4. Combined Refrigeration Cycle for Thermal Power Plant Using Low Grade Waste Steam

    Directory of Open Access Journals (Sweden)

    Satish Maurya*,

    2014-02-01

    Full Text Available Now a days, In most of the thermal power plant, where low-pressure steam is being exhausted to the atmosphere as a waste steam. This waste heat could be use to operate many small preheating or cooling equipments or small scale plants. There are many refrigeration systems present for refrigeration and air condition purpose. Such as air refrigeration, vapour compression, vapour absorption etc. In this paper we have presented the concept of combined vapour absorption and vapour compression refrigeration system. We present about the idea discuss here that how a vapour absorption and vapour compression can be used together as one complete working refrigeration plant. By using such concept of refrigeration we can improve the co-efficient of performance of whole plant by minimizing the input. We can also named the system as waste heat recovery refrigeration system.

  5. A strategy for selective detection based on interferent depleting and redox cycling using the plane-recessed microdisk array electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Feng [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Yan Jiawei, E-mail: jwyan@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Lu Miao [Pen-Tung Sah Micro-Nano Technology Research Center, Xiamen University, Xiamen, Fujian 361005 (China); Zhou Yongliang; Yang Yang; Mao Bingwei [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2011-10-01

    Highlights: > A novel strategy based on a combination of interferent depleting and redox cycling is proposed for the plane-recessed microdisk array electrodes. > The strategy break up the restriction of selectively detecting a species that exhibits reversible reaction in a mixture with one that exhibits an irreversible reaction. > The electrodes enhance the current signal by redox cycling. > The electrodes can work regardless of the reversibility of interfering species. - Abstract: The fabrication, characterization and application of the plane-recessed microdisk array electrodes for selective detection are demonstrated. The electrodes, fabricated by lithographic microfabrication technology, are composed of a planar film electrode and a 32 x 32 recessed microdisk array electrode. Different from commonly used redox cycling operating mode for array configurations such as interdigitated array electrodes, a novel strategy based on a combination of interferent depleting and redox cycling is proposed for the electrodes with an appropriate configuration. The planar film electrode (the plane electrode) is used to deplete the interferent in the diffusion layer. The recessed microdisk array electrode (the microdisk array), locating within the diffusion layer of the plane electrode, works for detecting the target analyte in the interferent-depleted diffusion layer. In addition, the microdisk array overcomes the disadvantage of low current signal for a single microelectrode. Moreover, the current signal of the target analyte that undergoes reversible electron transfer can be enhanced due to the redox cycling between the plane electrode and the microdisk array. Based on the above working principle, the plane-recessed microdisk array electrodes break up the restriction of selectively detecting a species that exhibits reversible reaction in a mixture with one that exhibits an irreversible reaction, which is a limitation of single redox cycling operating mode. The advantages of the

  6. The Simulation Cycle: Combining Games, Simulations, Engineering and Science Using StarLogo TNG

    Science.gov (United States)

    Klopfer, Eric; Scheintaub, Hal; Huang, Wendy; Wendel, Daniel; Roque, Ricarose

    2009-01-01

    StarLogo The Next Generation (TNG) enables secondary school students and teachers to model decentralized systems through agent-based programming. TNG's inclusion of a three-dimensional graphical environment provides the capacity to create games and simulation models with a first-person perspective. The authors theorize that student learning of…

  7. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO{sub 2}-capture

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Mathias

    2014-04-17

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  8. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    Electricity consumption is often the hotspot of life cycle assessment (LCA) of products, industrial activities, or services. The objective of this paper is to provide a consistent, scientific, region-specific electricity-supply-based inventory of electricity generation technology for national...... and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional supply grids; these are arguably equally or less integrated. Meanwhile, it is also a country with internal...... Grids, and the China Southern Power Grid. The approach combines information from the Chinese national plans on for capacity changes in both production and distribution grids, and knowledge of resource availability. The results show that nationally, marginal technology is coal-fired electricity...

  9. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  10. Optimizing Waste Heat Recovery for Class A Biosolids Production from a Combined Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Soroushian, Fred

    2003-07-01

    The City of Corona serves a rapidly growing area of Southern California, The City operates three wastewater treatment plants (WWTPs) that produce reclaimed water for unrestricted reuse. The sludge from the three WWTPs is transported to a central sludge treatment facility located at WWTP No. 1. The sludge treatment facility consists of sludge receiving, thickening, anaerobic digestion, and dewatering. In the year 2000, the City was faced with two crises. First, the California power shortage and escalating cost of power severely impacted the industry and businesses. Second, bans on Class B biosolids land application and the shutdown of a local privatized composting facility where the bulk of the City's biosolids were processed or reused forced the City to transport bulk waste a much greater distance. To cost-effectively respond to these crises, the City decided to start generating and supplying power to its constituents by constructing a nominal 30-megawatt (MW) power plant. The feasibility study proved that locating the power plant at the City's largest WWTP produced significant synergies. The reclaimed water from the WWTP could be used for power plant cooling, the waste heat from the power plant could be recovered and used in Class A biosolids processes, the digester gas could be used for supplementing the fuel needs of the sludge dryer, and the combined facilities operation was more efficient than physically separate facilities. This paper presents the results of this analysis as well as the construction and operational aspects of the project. (author)

  11. Model-based efficiency evaluation of combine harvester traction drives

    Directory of Open Access Journals (Sweden)

    Steffen Häberle

    2015-08-01

    Full Text Available As part of the research the drive train of the combine harvesters is investigated in detail. The focus on load and power distribution, energy consumption and usage distribution are explicitly explored on two test machines. Based on the lessons learned during field operations, model-based studies of energy saving potential in the traction train of combine harvesters can now be quantified. Beyond that the virtual machine trial provides an opportunity to compare innovative drivetrain architectures and control solutions under reproducible conditions. As a result, an evaluation method is presented and generically used to draw comparisons under local representative operating conditions.

  12. Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kunlei; Chen, Liangyong; Zhang, Yi; Richburg, Lisa; Simpson, James; White, Jay; Rossi, Gianalfredo

    2013-12-31

    The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

  13. Power plant design with a combined cycle and double concentrated solar thermal power sources

    OpenAIRE

    Vidal i Parreu, Arnau

    2010-01-01

    The electricity has become an indispensable element of today’s society. Demand is growing continuously and the production is still based on limited sources of energy such as coal and petroleum derivate products. Environmental issues, such as global warming, and the uncertainty about the quantity of the conventional fossil fuels are forcing suppliers to find new solutions for the near future. In this assignment, concentrated solar thermal technologies for electricity generation could pla...

  14. Comparative analysis of CO2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle using low-temperature geothermal source

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A detailed thermodynamic and techno-economic comparison is presented for a CO2-based transcritical Rankine cycle and a subcritical organic Rankine cycle (ORC) using HFC245fa (1,1,1,3,3-pentafluoro-propane) as the working fluid driven by the low-temperature geothermal source,in order to determine the configuration that presents the maximum net power output with a minimum investment.The evaluations of both Rankine cycles have been performed based on equal thermodynamic mean heat rejection temperature by varying certain system operating parameters to achieve each Rankine cycle’s optimum design at various geothermal source temperature levels ranging from 80oC to 120oC.The results obtained show that the optimum ther-modynamic mean heat injection temperatures of both Rankine cycles are distributed in the scope of 55% to 65% of a given geothermal source temperature level,and that the CO2-based transcritical Rankine cycle presents 3% to 7% higher net power output,84% reduction of turbine inlet volume flow rate,47% reduction of expansion ratio and 1.68 times higher total heat transfer capacity compared with the HFC245fa-based subcritical ORC.It is also indicated that using the CO2-based transcritical system can reduce the dimension of turbine design.However,it requires larger heat transfer areas with higher strength heat exchanger materials because of the higher system pressure.

  15. Performance of air breathing combined cycle engines with a turbofan; Leistungsverhalten luftatmender Kombinationstriebwerke mit Zweistrom-Turboteil

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, H.

    2003-07-01

    In this paper the influence of the design and control parameters on the performance characteristic of a combined cycle engine consisting of a turbofan engine with a reheat system and a convergent-divergent nozzle is investigated. The studies are not based on a special mission but the two sections of a mission dominating the fuel consumption of the propulsion system - the acceleration flight and the cruise segment - are considered seperately. By that it is shown which design of the turbo engine is suitable for each section of the mission and how far these designs differ from each other. The studies start with the so-called baseline engine. Applying a performance calculation program the performance characteristic of the engine is calculated for given flight conditions and engine control parameter settings. The particularly for high speed propulsion systems important interaction between the engine and the aircraft is considered, iteratively adjusting the angle of attack of the aircraft given for the performance calculation to the one fulfilling the equations of motion of the aircraft. Based on the results of the baseline engine the design parameters of the turbo engine, namely (a) the turbine inlet temperature T{sub t4,A}, (b) the overall pressure ratio {pi}{sub tV,A} and (c) the bypass ratio {mu}{sub A} are varied systematically and the effect of these changes on the performance of the engine along the flight Mach Number is investigated. First the studies are carried out for the acceleration flight and afterwards they are being extended to the cruise flight segment. The valuation criteria for the engine performance in the acceleration section is the so-called acceleration efficiency. This efficiency is defined as the ratio of the potential and kinetic energy rise and the therefore needed fuel energy. In the cruise section the engine performance is valuated using a so-called cruise number which considers the quality of the conversion of fuel energy into propulsive

  16. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties

    Science.gov (United States)

    Laha, K.; Saroja, S.; Moitra, A.; Sandhya, R.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2013-08-01

    Effects of tungsten and tantalum contents on impact, tensile, low cycle fatigue and creep properties of Reduced Activation Ferritic-Martensitic (RAFM) steel were studied to develop India-specific RAFM steel. Four heats of the steel have been melted with tungsten and tantalum contents in the ranges 1-2 wt.% and 0.06-0.14 wt.% respectively. Increase in tungsten content increased the ductile-to-brittle transition temperature (DBTT), low cycle fatigue and creep strength of the steel, whereas the tensile strength was not changed significantly. Increase in tantalum content increased the DBTT and low cycle fatigue strength of the steel whereas the tensile and creep strength decreased. Detailed TEM investigations revealed enhanced microstructural stability of the steel against creep exposure on tungsten addition. The RAFM steel having 1.4 wt.% tungsten with 0.06 wt.% tantalum was found to possess optimum combination of impact, tensile, low cycle fatigue and creep properties and is considered for Indian-specific RAFM steel. Low temperature impact energy of the RAFM steel is quite sensitive to the contents of tungsten and tantalum. The DBTT increased with both the tungsten and tantalum contents. Tungsten and tantalum contents in the investigated ranges had no appreciable effect on the tensile properties of the RAFM steel. Low cycle fatigue life of the RAFM steel increased with the increase in tungsten and tantalum contents. The softening rate with cyclic exposure was lowest for tungsten content of 1.4 wt.%, further increase in tungsten led to an increase in softening rate. Creep deformation and rupture strength of the RAFM steel were found to be quite sensitive to the tungsten and tantalum contents. Creep strength of the steel increased with increase in tungsten content and decreased with increase in tantalum content. Based on the study, the chemical composition of India-specific RAFM steel has been established as 9Cr-1.4W-0.06Ta-V, having optimum combination of strength and

  17. Edgeworth Price Cycles, Cost-based Pricing and Sticky Pricing in Retail Gasoline Markets

    OpenAIRE

    Noel, Michael

    2004-01-01

    This paper examines dynamic pricing behavior in retail gasoline markets for 19 Canadian cities over 574 weeks. I find three distinct retail pricing patterns: 1. cost-based pricing, 2. sticky pricing, and 3. steep, asymmetric retail price cycles that, while seldom documented empirically, resemble those of Maskin & Tirole[1988]. Using a Markov switching regression, I estimate the prevalence of patterns and the structural characteristics of the cycles. Retail price cycles prevail in over 40% of ...

  18. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  19. Performance evaluation of atmospheric biomass integrated gasifier combined cycle systems under different strategies for the use of low calorific gases

    International Nuclear Information System (INIS)

    This work aims at a performance evaluation of atmospheric BIGCC (biomass integrated gasifier combined cycle) systems operating under different strategies for the use of low calorific fuel in gas turbines. The fuel is a synthetic gas derived from gasification of sugar cane residues. Two analysed strategies for surge control on gas turbines originally designed for operation on natural gas are de-rating and air extraction from the compressor. Another strategy for use of biomass derived gas is the retrofit of a gas turbine through modification of the expander geometry. Three generic gas turbines, whose main parameters have been taken from off the shelf machines, are proposed as representative of certain classes of gas turbines. Results are compared to the hypothetical situation in which it is possible to accept any increase in gas turbine pressure ratio. According to the results, de-rating is the worst surge control strategy, both from the point of view of power production and thermal efficiency. Conversely, results showed considerable gains that can be obtained on cycle power production when the gas turbine expander is modified. Additionally, an overview of issues concerning the suitability of sugar cane residues (bagasse and trash) for the production of gasified gas and its use in BIGCC plants is presented

  20. Economic assessment of combined cycle gas turbines in Australia Some effects of microeconomic reform and technological change

    International Nuclear Information System (INIS)

    Australian electricity markets and natural gas markets are undergoing rapid reform. Choosing among electricity generation modes is a key issue. Such choices are affected by expectations about the future structure of these markets and future technologies, and how they affect costs and emissions. In the research reported in this paper, the MARKAL model of the Australian energy system is used to evaluate the competitive position of natural gas fired combined cycle gas turbines (CCGTs) in the energy sector as a whole. Competing in the sector are large-scale electricity generation technologies such as refurbished existing coal fired stations and advanced forms of coal fired generation. The modelling incorporates new data on electricity supply technologies and options

  1. Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy

    Directory of Open Access Journals (Sweden)

    Mehri Akbari

    2014-04-01

    Full Text Available A new combined cogeneration system for producing electrical power and pure water is proposed and analyzed from the viewpoints of thermodynamics and economics. The system uses geothermal energy as a heat source and consists of a Kalina cycle, a LiBr/H2O heat transformer and a water purification system. A parametric study is carried out in order to investigate the effects on system performance of the turbine inlet pressure and the evaporator exit temperature. For the proposed system, the first and second law efficiencies are found to be in the ranges of 16%–18.2% and 61.9%–69.1%, respectively. For a geothermal water stream with a mass flow rate of 89 kg/s and a temperature of 124 °C, the maximum production rate for pure water is found to be 0.367 kg/s.

  2. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  3. An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics

    International Nuclear Information System (INIS)

    The organic Rankine cycle has been one of the essential heat-work conversion technologies nowadays. Lots of effectual optimization methods are focused on the promotion of the system efficiency, which are mainly relied on engineering experience and numerical simulations rather than theoretical analysis. A theoretical integrated optimization method was established based on the entransy theory and thermodynamics, with the ratio of the net power output to the ratio of the total thermal conductance to the thermal conductance in the condenser as the objective function. The system parameters besides the optimal pinch point temperature difference were obtained. The results show that the mass flow rate of the working fluid is inversely proportional to the evaporating temperature. An optimal evaporating temperature maximizes the net power output, and the maximal net power output corresponds to the maximal entransy loss and the change points of the heat source outlet temperature and the change rates for the entropy generation and the entransy dissipation. Moreover, the net power output and the total thermal conductance are inversely proportional to the pinch point temperature difference, contradicting with each other. Under the specified condition, the optimal operating parameters are ascertained, with the optimal pinch point temperature difference of 5 K. - Highlights: • We establish an integrated optimization model for organic Rankine cycle. • The model combines the entransy theory with thermodynamics. • The maximal net power output corresponds to the maximal entransy loss. • The pinch point temperature difference is optimized to be 5 K

  4. Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat

    International Nuclear Information System (INIS)

    Highlights: • Three ORC-based combined systems for ICE exhaust waste heat recovery are studied. • A parametric investigation is conducted under several typical engine conditions. • Performance is evaluated considering six thermodynamic, techno-economic indexes. • DORC distinguishes among other solutions for its highest energy recovery capacity. • TEG–ORC system becomes attractive when exhaust temperature is relatively low. - Abstract: In this paper, various combined power systems which regard organic Rankine cycle (ORC) as bottoming cycle to recover engine’s high temperature exhaust heat are proposed. The topping recovery cycle includes steam Rankine cycle (RC), Brayton cycle (BC) and thermoelectric generator (TEG). Comprehensive evaluations are conducted under five typical engine conditions, ranging from high load to low load, and system performance is assessed in terms of many thermodynamic indexes, such as net output power, thermal efficiency, recovery efficiency and exergy efficiency. Besides that, the irreversibility of each component is also discussed in detail. R123, R245fa and R600a for ORC system are considered to analyze the influence of working fluids. Considering the system techno-economy, the turbine size parameter (SP) and heat transfer capacity (UA) are chosen as key indicators. The results show that compared with the other two investigated approaches, dual-loop ORC (DORC) possesses the highest energy exploitation capacity under the whole operating region, with a 5.57% increase of fuel economy under the rated condition, but its values of SP and UA are large as well. TEG–ORC becomes appealing while under the relatively low load

  5. Advanced Monitoring to Improve Combustion Turbine/Combined Cycle Reliability, Availability & Maintainability

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Angello

    2005-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established Operation and Maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that, in real time, interpret data to assess the 'total health' of combustion turbines. The 'Combustion Turbine Health Management System' (CTHMS) will consist of a series of 'Dynamic Link Library' (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. CTHMS interprets sensor and instrument outputs, correlates them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, the CTHMS enables real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  6. An Effective Combined Feature For Web Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    H.M.R.B Herath

    2015-08-01

    Full Text Available Abstract Technology advances as well as the emergence of large scale multimedia applications and the revolution of the World Wide Web has changed the world into a digital age. Anybody can use their mobile phone to take a photo at any time anywhere and upload that image to ever growing image databases. Development of effective techniques for visual and multimedia retrieval systems is one of the most challenging and important directions of the future research. This paper proposes an effective combined feature for web based image retrieval. Frequently used colour and texture features are explored in order to develop a combined feature for this purpose. Widely used three colour features Colour moments Colour coherence vector and Colour Correlogram and three texture features Grey Level Co-occurrence matrix Tamura features and Gabor filter were analyzed for their performance. Precision and Recall were used to evaluate the performance of each of these techniques. By comparing precision and recall values the methods that performed best were taken and combined to form a hybrid feature. The developed combined feature was evaluated by developing a web based CBIR system. A web crawler was used to first crawl through Web sites and images found in those sites are downloaded and the combined feature representation technique was used to extract image features. The test results indicated that this web system can be used to index web images with the combined feature representation schema and to find similar images. Random image retrievals using the web system shows that the combined feature can be used to retrieve images belonging to the general image domain. Accuracy of the retrieval can be noted high for natural images like outdoor scenes images of flowers etc. Also images which have a similar colour and texture distribution were retrieved as similar even though the images were belonging to deferent semantic categories. This can be ideal for an artist who wants

  7. Life Cycle Tests on a Hollow Cathode Based Plasma Contactor

    Science.gov (United States)

    Vaughn, Jason A.; Schneider, Todd A.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster with a mission duration of 12 days. A 5-km conductive tether is attached to the Delta II second stage and collects current from the low Earth orbit (LEO) plasma, and a Hollow Cathode Plasma Contactor (HCPC) emits the collected electrons from the Delta II, completing the electrical circuit to the ambient plasma. The HCPC for the ProSEDS mission have made it necessary to turn off the HCPC once a minute throughout the entire mission. Because of the unusual operating requirements by the ProSEDS mission, an engineering development unit of the HCPC was built to demonstrate the HCPC design would start reliably for the life of the ProSEDS mission. During the life test the engineering unit cycled for over 10,000 on/off cycles without missing a single start, and during that same test the HCPC unit demonstrated the capability to emit 0 to 5 A electron emission current. The performance of the HCPC unit during this life test will be discussed.

  8. LIFE CYCLE ASSESSMENT FOR OIL PALM BASED PLYWOOD: A GATE-TO-GATE CASE STUDY

    OpenAIRE

    M. Shamim Ahmad; Vijaya Subramaniam; Halimah Mohammad; Anis Mokhtar; Ismail, B. S.

    2014-01-01

    Life Cycle Assessment (LCA) is an important tool for identifying potential environmental impacts associated with the production of palm based plywood. This study is to make available the life cycle inventory for gate-to-gate data so that the environmental impact posed by oil palm based plywood production can be assessed. Conducting an LCA on the palm based plywood that are derived from the wastes of the oil palm industry is a first step towards performing green environmental product. Therefor...

  9. Combining ability of elephant grass based on nutritional characters

    Directory of Open Access Journals (Sweden)

    Vanessa Quitete Ribeiro da Silva

    2014-03-01

    Full Text Available The objective of the work was to evaluate the effects of general combining ability (CGC of the parents and specific combining ability (CEC in the elephant grass hybrids by diallel analysis adapted to partial diallel crosses based on nutritional characters. Sixteen hybrids and eight parents in a randomized block design with three replications were evaluated. The study considered percentage of dry matter (%DM, ash (%ASH, crude protein (%CP and neutral detergent fiber (NDF. There were significant differences among genotypes for the traits evaluated, with a predominance of dominance gene effect. Based on CGC, the best parents were Taiwan A-144, Vruckwona Africana e Taiwan A-146. The best intersections based on CEC were Taiwan A-144 x Taiwan A-146, Vruckwona Africana x Taiwan A-146, Vruckwona Africana x Mercker S.E.A., Vruckwona Africana x Napier nº2 e Pusa Napier nº2 x Mercker Santa Rita.

  10. Selecting supplier combination based on fuzzy multicriteria analysis

    Science.gov (United States)

    Han, Zhi-Qiu; Luo, Xin-Xing; Chen, Xiao-Hong; Yang, Wu-E.

    2015-07-01

    Existing multicriteria analysis (MCA) methods are probably ineffective in selecting a supplier combination. Thus, an MCA-based fuzzy 0-1 programming method is introduced. The programming relates to a simple MCA matrix that is used to select a single supplier. By solving the programming, the most feasible combination of suppliers is selected. Importantly, this result differs from selecting suppliers one by one according to a single-selection order, which is used to rank sole suppliers in existing MCA methods. An example highlights such difference and illustrates the proposed method.

  11. Environmental correlates of cycling: Evaluating urban form and location effects based on Danish micro-data

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Olafsson, Anton Stahl; Carstensen, Trine Agervig;

    2013-01-01

    The paper analyses the environmental correlates of cycling based on Danish transportation and urban form micro-data. The results show that established walkability factors such as density, connectivity and diversity are related to cycling, but access to retail concentrations/centres, public transp...

  12. Focusing transform-based direction-of-arrival method exploiting multi-cycle frequencies

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhitao; JIANG Wenli; ZHOU Yiyu

    2005-01-01

    When single cycle frequency is employed, the existing spectral correlation-signal subspace fitting (SC-SSF) algorithms usually contain two disadvantages: those single-cycle estimators cannot reach the best performance; it is inconvenient to be applied in practice since the right cycle frequency has to be selected. Based on the Jacobi-Anger expansion and the idea of focusing transform, a new approach exploiting multi-cycle frequencies of cyclostationary signal is discussed in this paper. Simulation results demonstrate the effectiveness of the new method.

  13. Evaluation of deriving fire cycle of forested landscape based on time-since-fire distribution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Quan-fa; Kurt S. Pregitzer; JIANG Ming-xi; CHEN Wen-jun

    2006-01-01

    Estimation of fire cycle has been conducted by using the negative exponential function as an approximation of time-since-fire distribution of a landscape assumed .to be homogeneous with respect to fire spread processes. The authors imposed predefined fire cycles on a virtual landscape of 100 cell ×100 cell, and obtained a mosaic composing of patches with different stand ages (i.e. time since fire). Graphical and statistical methods (Van Wagner 1978; Reed et al. 1998) were employed to derive fire cycle from the virtual landscape. By comparing the predefined and the derived fire cycles, the two methods and tested the effects of sample size and hazard of burning (i.e., stand's susceptibility to fire in relation to its stand age) were evaluated on fire cycle deviation. The simulation results indicated a minimum sample size of 10 times of the annual burnt area would be required for partitioning time-since-fire distribution into homogeneous epochs indicating temporal change in fire cycle. Statistically, there was significant difference among the imposed and the derived fire cycle, regardless of sample sizes with or without consideration of hazard of burning. Both methods underestimated the more recent fire cycle without significant difference between them. The results imply that deviation of fire cycle based on time-since-fire distribution warrants cautious interpretation, especially when a landscape is spatially partitioned into small units and temporal changes in fire cycle are involved.

  14. Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes - A life cycle assessment.

    Science.gov (United States)

    Ten Hoeve, Marieke; Gómez-Muñoz, Beatriz; Jensen, Lars S; Bruun, Sander

    2016-10-01

    Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used to investigate the environmental effects of slurry acidification and separation, and whether there were synergetic environmental benefits to combining these technologies. Furthermore, an analysis was undertaken into the effect of implementing regulations restricting the P application rate to soils on the environmental impacts of the technologies. The impact categories analysed were climate change, terrestrial, marine and freshwater eutrophication, fossil resource depletion and toxicity potential. In-house slurry acidification appeared to be the most beneficial scenario under both N and P regulations. Slurry separation led to a lower freshwater eutrophication potential than the other scenarios in which N regulations alone were in force, while these environmental benefits disappeared after implementation of stricter P regulations. With N regulations alone, there was a synergetic positive effect of combining in-house acidification and separation on marine eutrophication potential compared to these technologies individually. The model was sensitive to the chosen ammonia emission coefficients and to the choice of inclusion of indirect nitrous oxide emissions, since scenarios changed ranking for certain impact categories. PMID:27566935

  15. 新型双重热化学吸附制冷热力循环研究%Study on an Innovative Combined Double-Way Thermochemical Sorption Refrigeration Cycle

    Institute of Scientific and Technical Information of China (English)

    李廷贤; 王如竹; 陈恒; 王丽伟

    2011-01-01

    本文提出了一种全新的基于吸附-再吸附技术的双重热化学吸附制冷热力循环.实验研究表明该新型双重热化学吸附制冷热力循环用于制冷空调领域是完全可行的,在每次循环过程中仅从外界热源输入一次高温解吸热,就可以实现吸附制冷和再吸附制冷两次制冷过程;相对传统热化学再吸附制冷循环和吸附制冷循环,双重热化学吸附制冷热力循环可显著提高吸附制冷系统的工作性能,在相同制冷剂循环量下,双重热化学吸附制冷循环可将制冷系数COPi分别提高60%和167%.%In this paper, an innovative combined double-way thermochemical sorption refrigeration cycle based on adsorption and resorption processes is proposed. Experimental results showed that the presented combined double-way sorption cycle is feasible for refrigeration application, and two cold productions (adsorption refrigeration and resorption refrigeration) can be obtained during one cycle at the expense of only one heat input from an external heat source. In comparison with conventional thermochemical resorption cycle or adsorption cycle, the double-way sorption cycle has a distinct advantage of higher Coefficient of Performance (COP). At the same cycled mass of refrigerant, the ideal COP can be improved by 60% and 167% when compared with conventional resorption cycle and adsorption cycle, respectively.

  16. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    International Nuclear Information System (INIS)

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the 'UREX+3c fuel cycle' and the 'Alternative Fuel Cycle' (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the

  17. Low Cycle Fatigue Behavior and Life Prediction of a Cast Cobalt-Based Superalloy

    Science.gov (United States)

    Yang, Ho-Young; Kim, Jae-Hoon; Yoo, Keun-Bong

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

  18. The Study of Nuclear Fuel Cycle Options Based On PWR and CANDU Reactors

    International Nuclear Information System (INIS)

    The study of nuclear fuel cycle options based on PWR and CANDU type reactors have been carried out. There are 5 cycle options based on PWR and CANDU reactors, i.e.: PWR-OT, PWR-OT, PWR-MOX, CANDU-OT, DUPIC, and PWR-CANDU-OT options. While parameters which assessed in this study are fuel requirement, generating waste and plutonium from each cycle options. From the study found that the amount of fuel in the DUPIC option needs relatively small compared the other options. From the view of total radioactive waste generated from the cycles, PWR-MOX generate the smallest amount of waste, but produce twice of high level waste than DUPIC option. For total plutonium generated from the cycle, PWR-MOX option generates smallest quantity, but for fissile plutonium, DUPIC options produce the smallest one. It means that the DUPIC option has some benefits in plutonium consumption aspects. (author)

  19. Iris Recognition Based on LBP and Combined LVQ Classifier

    CERN Document Server

    Shams, M Y; Nomir, O; El-Awady, R M; 10.5121/ijcsit.2011.3506

    2011-01-01

    Iris recognition is considered as one of the best biometric methods used for human identification and verification, this is because of its unique features that differ from one person to another, and its importance in the security field. This paper proposes an algorithm for iris recognition and classification using a system based on Local Binary Pattern and histogram properties as a statistical approaches for feature extraction, and Combined Learning Vector Quantization Classifier as Neural Network approach for classification, in order to build a hybrid model depends on both features. The localization and segmentation techniques are presented using both Canny edge detection and Hough Circular Transform in order to isolate an iris from the whole eye image and for noise detection .Feature vectors results from LBP is applied to a Combined LVQ classifier with different classes to determine the minimum acceptable performance, and the result is based on majority voting among several LVQ classifier. Different iris da...

  20. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  1. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  2. Durability of Concrete Subjected to the Combined Actions of Flexural Stress,Freeze-thaw Cycles and Bittern Solutions

    Institute of Scientific and Technical Information of China (English)

    YU Hongfa; SUN Wei; ZHANG Yunsheng; GUO Liping; LI Meidan

    2008-01-01

    Freeze-thaw durabilities of three types of concretes-normal portland cement concrete (OPC),high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC)were systemically investigated under the attacks of chemical solution,and combination of external flexural stress and chemical solution.Four kinds of bitterns from salt lakes in Sinkiang,Qinghai,Inner Mongolia and Tibet provinces of China were used as chemical attack solutions.The relative dynamic modulus (RDM) was used as an index for evaluating the damage degree during the course of chemical attack and stress corrosion.The experimental results show that the freeze-thaw durability of concrete is visibly reduced in the present of the flexural stress,i e,stress accelerates the damage process.In order to quantify the stress accelerated effect,a stress accelerating coefficient was proposed.The stress accelerating coefficient is closely related with the types of bitterns and the numbers of freeze-thaw cycles is.The more numbers of freeze-thaw cycles is,the greater the stress accelerating coefficient for various concretes will be.In addition,there also exists a critical ratio of external stress to the maximum flexural stress.If the stress ratio exceeds the critical one,the freeze-thaw durability of various concretes will be greatly decreased compared to the responding concretes without applied stress.The critical stress ratio of OPC,HSC and SFRHSC is 0.30,0.40 and 0.40,respectively,indicating that HSC and SFRHSC have advantages over OPC and are suitable to use in the bittern erosion regions.

  3. Using life cycle based environmental assessment in developing innovative multi-functional glass-polymer windows

    OpenAIRE

    ALLACKER KAREN JOSEE; CALERO PASTOR MARIA; MATHIEUX FABRICE; BALDASSARRI CATIA; Roderick, Ya

    2013-01-01

    The HarWin (Harvesting solar energy with multifunctional glass-polymer windows) FP7 project focuses on the development of innovative windows and their integration in buildings. These innovative windows aim at improving significantly the energy efficiency of windows and buildings and performing environmentally well on a life cycle base. The improvements are based on reduced material usage and weight, reduced thermal conductivity and energy consumption and hence, reduced environmental life cycl...

  4. Adaptive Digital Image Watermarking Based on Combination of HVS Models

    Directory of Open Access Journals (Sweden)

    P. Foris

    2009-09-01

    Full Text Available In this paper two new blind adaptive digital watermarking methods of color images are presented. The adaptability is based on perceptual watermarking which exploits Human Visual System (HVS models. The first method performs watermark embedding in transform domain of DCT and the second method is based on DWT. Watermark is embedded into transform domain of a chosen color image component in a selected color space. Both methods use a combination of HVS models to select perceptually significant transform coefficients and at the same time to determine the bounds of modification of selected coefficients. The final HVS model consists of three parts. The first part is the HVS model in DCT (DWT domain. The second part is the HVS model based on Region of Interest and finally the third part is the HVS model based on Noise Visibility Function. Watermark has a form of a real number sequence with normal distribution.

  5. Performance of ammonia–water based cycles for power generation from low enthalpy heat sources

    International Nuclear Information System (INIS)

    Cost efficient power generation from low temperature heat sources requires an optimal usage of the available heat. In addition to the ORC (Organic Rankine Cycles), cycles with ammonia and water as working fluid show promising results regarding efficiency. Due to their non-isothermal phase change, mixtures can adapt well to a liquid heat source temperature profile and reduce the exergetic losses. In this analysis thermodynamic calculations on the layouts of two existing ammonia–water cycles are compared: a geothermal power plant based on a Siemens’ patent and a modified lab plant based on a patent invented by Kalina (KCS-34). The difference between the two cycles is the position of the internal heat recovery. Cycle simulations were carried out at defined boundary conditions in order to identify optimal operation parameters. For the selected heat source of 393.15 K (hot water) the ammonia mass fraction between 80% and 90% results in the best performance in both configurations. In general, the layout of Siemens achieves a slightly better efficiency compared to the KCS-34. Compared to an ORC using R245fa as working fluid, the exergetic efficiency can be increased by the ammonia/water based cycles by approximately 25%. - Highlights: • Two NH3/H2O based cycles based on existing plants are analyzed and compared. • A simple KCS-34 focuses on a high enthalpy difference at the turbine. • The Kalina cycle of a Siemens patent KC SG1 runs on a high vapor mass flow. • The layout of the KC SG1 shows slightly better results compared to the KCS-34. • NH3/H2O cycles show an efficiency increase compared to a regular ORC with R245fa

  6. A study of combined evaluation of suppliers based on correlation

    Directory of Open Access Journals (Sweden)

    Heting Qiu

    2013-03-01

    Full Text Available Purpose: The Selection of logistics service providers is an important issue in supply chain management. But different evaluation methods may lead to different results, which could cause inconsistent conclusions. This paper makes use of a new perspective to combine with a variety of methods to eliminate the deviation of different single evaluation methods. Design/methodology/approach: This paper expounds the application of the combined evaluation method based on correlation. Entropy method, factor analysis, grey colligation evaluation and AHP have been used for research. Findings: According to the evaluate result, the ranking of suppliers obtained by each method have obvious differences. The result shows that combined evaluation method can eliminate the deviation of different single evaluation methods. Originality/value: The combined evaluation method makes up for the defects of single evaluation methods and obtains a result that is more stable and creditable with smaller deviation. This study can provide the enterprise leaders with more scientific method to select their cooperative companies. 

  7. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  8. Simulación de Plantas de Cogeneración de Ciclo Combinado usando ASPEN® Simulation of Combined Cycle Cogeneration Plants using ASPEN®

    Directory of Open Access Journals (Sweden)

    S.G. Guerra

    2005-01-01

    Full Text Available El objetivo de este trabajo fue generar una estrategia para el diseño de plantas de cogeneración de ciclo combinado, basada en el uso del simulador ASPEN®. La estrategia comprende la simulación, así como la definición de todas las variables clave del proceso. Como caso de estudio, se consideró satisfacer la demanda real de vapor y electricidad en una refinería usando un esquema de cogeneración de ciclo combinado. Aspectos relevantes de la situación actual de esta tecnología tal como el cálculo del punto de rocío ácido, para restringir la temperatura de los gases de salida, fueron considerados en el modelo. Se revisaron tres esquemas para determinar la mejor opción para el caso de estudio. Se concluye que la estrategia aplicada en este análisis puede generalizarse a otros casos y podría ser aplicada en el diseño futuro de plantas de cogeneración en MéxicoThe objective of this work was to generate a strategy for combined cycle cogeneration plant design based on the ASPEN® process simulator. The approach included process simulation as well as definition of all key variables. Satisfaction of real vapor and electricity demands in a refinery was considered as a case study, using a scheme of combined cycle cogeneration. Considered in the model were the outstanding aspects of the state of the art for this technology, such as the calculation of the dew acid point to restrict the temperature of exhaust gases. Three schemes were analyzed to determine the best option for the case under study. It was concluded that this approach could be extended to other cases and could be applied to the future design of cogeneration plants in Mexico.

  9. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    Energy Technology Data Exchange (ETDEWEB)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  10. Reliability-Based Full-Life Cycle Optimum Design of Offshore Jacket Platform

    Institute of Scientific and Technical Information of China (English)

    王立成; 宋玉普

    2004-01-01

    Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.

  11. Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-05-01

    Full Text Available To achieve energy saving and emission reduction for vehicle diesel engines, the organic Rankine cycle (ORC was employed to recover waste heat from vehicle diesel engines, R245fa was used as ORC working fluid, and the resulting vehicle diesel engine-ORC combined system was presented. The variation law of engine exhaust energy rate under various operating conditions was obtained, and the running performances of the screw expander were introduced. Based on thermodynamic models and theoretical calculations, the running performance of the vehicle diesel engine-ORC combined system was analyzed under various engine operating condition scenarios. Four evaluation indexes were defined: engine thermal efficiency increasing ratio (ETEIR, waste heat recovery efficiency (WHRE, brake specific fuel consumption (BSFC of the combined system, and improvement ratio of BSFC (IRBSFC. Results showed that when the diesel engine speed is 2200 r/min and diesel engine torque is 1200 N·m, the power output of the combined system reaches its maximum of approximately 308.6 kW, which is 28.6 kW higher than that of the diesel engine. ETEIR, WHRE, and IRBSFC all reach their maxima at 10.25%, 9.90%, and 9.30%, respectively. Compared with that of the diesel engine, the BSFC of the combined system is obviously improved under various engine operating conditions.

  12. Life cycle impact assessment of bio-based plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, I.; Faaij, A. P C; Lundquist, L.; Schenker, U.; Briois, J. F.; Patel, M. K.

    2015-01-01

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol w

  13. Coordinated control of a combined cycle thermoelectric central; Control coordinado de una central termoelectrica de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Parra, Marino; Castelo Cuevas, Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-03-01

    In this paper the coordinated control (CC) of the Distributed Control System (Sistema de Control Distribuido) (SICODI) of the Combined Cycle Central of Gomez Palacio, Durango, is presented. The description of the control scheme and its realization in software is made. From the scheme the operation strategies and automation, supervision and control are described in detail. The software components of the programming are described, the program structure and control data and its implementation in working stations VAX 3100 under the operating system VMS (Virtual Memory System), are described. [Espanol] En este articulo se presenta el control coordinado (CC) del Sistema de Control Distribuido (Sicodi) de la central de ciclo combinado Gomez Palacio, Durango. Se describe el esquema de control y su realizacion en software. Del esquema se detallan las estrategias de operacion y automatizacion, supervision y control. Del software se describen los componentes de la programacion, la estructura de programas y datos del control y su implementacion en estaciones de trabajo VAX 3100 bajo el sistema operativo VMS (Virtual Memory System).

  14. Life cycle assessment of energy generation of biogas fed combined heat and power plants: environmental impact of different agricultural substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, Jens; Mueller, Joachim [Universitaet Hohenheim, Institute of Agricultural Engineering, Stuttgart (Germany)

    2012-06-15

    The utilization of agricultural biomass for anaerobic digestion is increasing in Germany since the first version of the Renewable Energies Sources Act (EEG) in 2000. Main products of this conversion process are biogas and digestate, whereby the biogas is mainly used for generation of heat and electricity in combined heat and power plants (CHP). This study investigated the potential environmental impact of anaerobic digestion processes with different agricultural substrates by the life cycle assessment (LCA) method. It focuses on liquid manure and energy crops as feedstock on the one hand and a comparison of four virtual model plants on the other hand. Besides global warming potential (GWP), the impact categories eutrophication potential (EP) and acidification potential (AP) are presented in this work. The results show that greenhouse gas emissions can be reduced with anaerobic digestion of liquid manure as well as energy crops, particularly when digestate storage tanks are gas-tight. When energy crops are fermented together with liquid manure, the biggest credit for the avoidance of greenhouse gas emissions was given for the generation of electricity. The results differ from those of GWP when looking at the AP and the EP. These impact categories show similar results with a reduction of emissions for liquid manure in mono-digestion but increasing emissions for digestion of energy crops together with 0-35% liquid manure. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  15. High power density, 60 Hz, single flow steam turbine with 42 inch titanium last row blade for advanced combined cycle applications

    Energy Technology Data Exchange (ETDEWEB)

    Zabrecky, J.S.; Bezugly, J.A.; Brown, M.K.; Martin, H.F.

    1999-07-01

    Highly efficient, yet economical steam turbines with large exhaust areas and increased inlet pressure and temperature capability are required to complement the growth in combustion turbine power ratings and address the pursuit of higher combined cycle plant efficiencies. This paper discussed the design of a 130--190MW, 60 Hz steam turbine which addresses these requirements for 2 x 1F, 1 x 1G and Advanced Turbine Study (ATS) combined cycle plants. Features of interest include a compact, two casing, axial exhaust, single flow design with a two piece, welded IP-LP rotor and 42 inch titanium last row blade.

  16. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  17. Identifying and Analyzing Strong Components of an Industrial Network Based on Cycle Degree

    Directory of Open Access Journals (Sweden)

    Zhiying Zhang

    2016-01-01

    Full Text Available In the era of big data and cloud computing, data research focuses not only on describing the individual characteristics but also on depicting the relationships among individuals. Studying dependence and constraint relationships among industries has aroused significant interest in the academic field. From the network perspective, this paper tries to analyze industrial relational structures based on cycle degree. The cycle degree of a vertex, that is, the number of cycles through a vertex in an industrial network, can describe the roles of the vertices of strong components in industrial circulation. In most cases, different vertices in a strong component have different cycle degrees, and the one with a larger cycle degree plays more important roles. However, the concept of cycle degree does not involve the lengths of the cycles, which are also important for circulations. The more indirect the relationship between two industries is, the weaker it is. In order to analyze strong components thoroughly, this paper proposes the concept of circular centrality taking into consideration the influence by two factors: the lengths and the numbers of cycles through a vertex. Exemplification indicates that a profound analysis of strong components in an industrial network can reveal the features of an economy.

  18. Plastic Optical Fiber Displacement Sensor Based on Dual Cycling Bending

    Directory of Open Access Journals (Sweden)

    Yung-Chuan Chen

    2010-11-01

    Full Text Available In this study, a high sensitivity and easy fabricated plastic optical fiber (POF displacement sensor is proposed. A POF specimen subjected to dual cyclic bending is used to improve the sensitivity of the POF displacement sensor. The effects of interval between rollers, relative displacement and number of rollers on the sensitivity of the displacement sensor are analyzed both experimentally and numerically. A good agreement between the experimental measurements and numerical calculations is obtained. The results show that the interval between rollers affects sensitivity most significantly than the other design parameters. Based on the experimental data, a linear equation is derived to estimate the relationship between the power loss and the relative displacement. The difference between the estimated results and the experimental results is found to be less than 8%. The results also show that the proposed POF displacement sensor based on dual cyclic bending can be used to detect displacement accurately.

  19. Knowledge IT-based Cycle and Territorial Digital Patterns Influence

    OpenAIRE

    Tiago, Maria Teresa Borges; Tiago, Flávio Borges

    2011-01-01

    Knowledge management, competitive intelligence, data mining are all buzzwords in a more digital and complex world. Nowadays, digital information and IT-based knowledge creation and application are present in most successful business initiatives. Unveil the surrounding factors of these successes is critical and therefore, this article discusses the relationship of digital patterns to knowledge management creation and application. It argues that some of the enablers and inhibitors come from fir...

  20. Code Combining Based Cooperative LEACH Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Asaduzzaman; Kong, Hyung-Yun

    This letter proposes a simple modification of LEACH protocol to exploit its multi-hop scenario for user cooperation. Instead of a single cluster-head we propose M cluster-heads in each cluster to obtain the diversity of order M. All cluster-heads gather data from all sensor nodes within the cluster using the same technique as LEACH. Cluster-heads transmit gathered data cooperatively towards the destination or higher order cluster-head. We propose a code combining based cooperative protocol. We also develop the upper bounds on frame error rate (FER) for our proposal. Simulation and analysis show that our proposal can significantly prolong the system lifetime.

  1. Optimizing Combination of Units Commitment Based on Improved Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    LAI Yifei; ZHANG Qianhua; JIA Junping

    2007-01-01

    GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms, such as natural selection, genetic recombination and survival of the fittest. By use of coding betterment, the dynamic changes of the mutation rate and the crossover probability, the dynamic choice of subsistence, the reservation of the optimal fitness value, a modified genetic algorithm for optimizing combination of units in thermal power plants is proposed.And through taking examples, test result are analyzed and compared with results of some different algorithms. Numerical results show available value for the unit commitment problem with examples.

  2. Predicting amplitude of solar cycle 24 based on a new precursor method

    OpenAIRE

    Yoshida, A.; Yamagishi, H

    2010-01-01

    It is shown that the monthly smoothed sunspot number (SSN) or its rate of decrease during the final years of a solar cycle is correlated with the amplitude of the succeeding cycle. Based on this relationship, the amplitude of solar cycle 24 is predicted to be 84.5±23.9, assuming that the monthly smoothed SSN reached its minimum in December 2008. It is further shown that the monthly SSN in the three-year period from 2006 through 2008 is well correlated with the monthly average of th...

  3. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    Science.gov (United States)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  4. Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

    Science.gov (United States)

    Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.

    2016-02-01

    The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.

  5. Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C.; Riley, W.J.

    2009-11-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical system in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling

  6. [Prediction method of rural landscape pattern evolution based on life cycle: a case study of Jinjing Town, Hunan Province, China].

    Science.gov (United States)

    Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing

    2014-11-01

    Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.

  7. Combining Unsteady Blade Pressure Measurements and a Free-Wake Vortex Model to Investigate the Cycle-to-Cycle Variations in Wind Turbine Aerodynamic Blade Loads in Yaw

    Directory of Open Access Journals (Sweden)

    Moutaz Elgammi

    2016-06-01

    Full Text Available Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different blade sections over multiple rotor rotations and three different yaw angles. Through the adopted approach it was possible to investigate how the rotor self-induced aerodynamic load fluctuations influence the unsteady variations in the blade angles of attack and induced velocities. The hysteresis loops for the normal and tangential load coefficients plotted against the angle of attack were plotted over multiple rotor revolutions. Although cycle-to-cycle variations in the angles of attack at the different blade radial locations and azimuth positions are found to be relatively small, the corresponding variations in the normal and tangential load coefficients may be significant. Following a statistical analysis, it was concluded that the load coefficients follow a normal distribution at the majority of blade azimuth angles and radial locations. The results of this study provide further insight on how existing engineering models for dynamic stall may be improved through

  8. Life Cycle Assessment on Cement Treated Recycling Base (CTRB Construction

    Directory of Open Access Journals (Sweden)

    Sudarno Sudarno

    2014-08-01

    Full Text Available LCA is one of the few environmental management techniques that are used to perform a risk assessment, environmental performance evaluation, environmental auditing, and environmental impact assessment and must be applied to the construction CTRB. The purpose of this study was to determine the amount of energy consumption is used and determine the amount of emissions (CO2 in the implementation of the Foundation Layer Top (base course with the former asphalt pavement aggregate blended cement / Recycling Cement Treated Base (CTRB. This study uses: (i Compilation and data inventory of relevant inputs and outputs of a product system; (ii Evaluating the potential environmental impacts associated with the data input and output; (iii Interpret the results of the inventory analysis and impact assessment in relation to the research objectives. The results showed that Energy consumption in the implementation of recycling pavement (CTRB is 225.46 MJ / km of roads and the resulting GHG emissions 17,43Ton CO2 / km of roads. Previous researchers to calculate the energy consumption of road works on the implementation of conventional (hotmix is 383.46 MJ / km of roads and the resulting GHG emissions 28.24 Ton CO2 / km of roads. If the calculated difference between a job and Hotmix CTRB and then a comparison is made CTRB energy consumption is 158 MJ / km of road, this happens 70.07% savings and GHG emissions resulting difference is 10.81 tons of CO2 / km of road, resulting in a decrease in 62,02%.

  9. High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner

    Science.gov (United States)

    Zhou, Xuanfeng; Chen, Zilun; Wang, Zefeng; Hou, Jing; Xu, Xiaojun

    2016-05-01

    We report an experiment of incoherent beam combining based on a 7×1 all-fiber signal combiner with output power up to 6.08 kW. Properties of transmission efficiency and beam quality are analyzed by beam propagation method. Based on the calculative results, a 7×1 all-fiber signal combiner is fabricated. The handle power capacity is tested with average transmission efficiency of 98.9% and beam quality of M2≈10.

  10. Gemcitabine Based Combination Regimens for Treatment of Refractory Advanced Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    CHE Li; DI Li-jun; SONG Guo-hong; JIA Jun; YU Jing; WANG Xiao-li; ZHU Yu-lin; JIANG Han-fang; LIANG Xu

    2008-01-01

    Objective:Anthracycline and taxane are the standard agents in combined chemotherapy of advanced breast cancer.However,when these agents based chemotherapy is failure,the selection of salvage regimen is still of problem.Gemcitabine,an active agent in both lung cancer and pancreas cancer,is demonstrated effective in breast caner.But there have been relatively less data of gemcitabine in anthracycline and/or taxane-resistant breast cancer.Therefore we employe this study to explore the efficacy and safety of gemcitabine based combination regimen in this population.Methods:From May 2002 to March 2006,28 patients with measurable lesion of advanced metastatic breast cancer who were resistant to prior anthracycline and taxane based chemotherapy were enrolled.Patients were treated with gemcitabine based combination chemotherapy with a median cycles of 3(range 2-6).Results:The overall response rate was 28.6%(8/28),with 1 CR(Complete response 3.5%)and 7 PRs(Partial response 25%).Stable disease was seen in 8 patients(28.6%)while disease progressed in 12 patiens(42.8%).The median time to progression was 4.5 m(range,2-23 m).The main toxicity included bone marrow depression,alopecia,mucositis and peripheral neurotoxicity.The grade 3 to 4 clinical adverse effect was leukopenia in 5 cases(17.9%)and thrombocytopenia in 8 cases(30%).Conclusion:Gemcitabine based combination regimens is feasible in anthracycline and taxane-resistant advanced breast cancer.The clinical response and TTP is acceptable with limited toxicity pattern.

  11. Education Knowledge System Combination Model Based on the Components

    Institute of Scientific and Technical Information of China (English)

    CHEN Lei; LI Dehua; LI Xiaojian; WU Chunxiang

    2007-01-01

    Resources are the base and core of education information, but current web education resources have no structure and it is still difficult to reuse them and make them can be self assembled and developed continually. According to the knowledge structure of course and text, the relation among knowledge points, knowledge units from three levels of media material, we can build education resource components, and build TKCM (Teaching Knowledge Combination Model) based on resource components. Builders can build and assemble knowledge system structure and make knowledge units can be self assembled, thus we can develop and consummate them continually. Users can make knowledge units can be self assembled and renewed, and build education knowledge system to satisfy users' demand under the form of education knowledge system.

  12. Life Cycle GHG of NG-Based Fuel and Electric Vehicle in China

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2013-05-01

    Full Text Available This paper compares the greenhouse gas (GHG emissions of natural gas (NG- based fuels to the GHG emissions of electric vehicles (EVs powered with NG-to-electricity in China. A life-cycle model is used to account for full fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing. The reduction of life-cycle GHG emissions of EVs charged by electricity generated from NG, without utilizing carbon dioxide capture and storage (CCS technology can be 36%–47% when compared to gasoline vehicles. The large range change in emissions reduction potential is driven by the different generation technologies that could in the future be used to generate electricity in China. When CCS is employed in power plants, the GHG emission reductions increase to about 71%–73% compared to gasoline vehicles. It is found that compressed NG (CNG and liquefied NG (LNG fuels can save about 10% of carbon as compared to gasoline vehicles. However, gas-to-liquid (GTL fuel made through the Fischer-Tropsch method will likely lead to a life-cycle GHG emissions increase, potentially 3%–15% higher than gasoline, but roughly equal to petroleum-based diesel. When CCS is utilized, the GTL fueled vehicles emit roughly equal GHG emissions to petroleum-based diesel fuel high-efficient hybrid electric vehicle from the life-cycle perspective.

  13. Symbolic Processing Combined with Model-Based Reasoning

    Science.gov (United States)

    James, Mark

    2009-01-01

    A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.

  14. ``Turbo-KWK `99``. Combined-cycle power stations with gas turbines. Technical meeting; Turbo-KWK `99. Kraft-Waerme-Kopplung mit Gasturbinen. Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    This conference report comprises 18 contributions on the technological success of gas turbines in power generation, e.g.: Maximum power generation efficiency of combined cycle systems, flexibility of power generation, reduction of air pollution, hot gas production for drying processes and environment-friendly cold generation in the pharmaceutical and printing industries. The final contribution presents an outlook to the future.

  15. Biogeochemical Cycles for Combining Chemical Knowledge and ESD Issues in Greek Secondary Schools Part II: Assessing the Impact of the Intervention

    Science.gov (United States)

    Koutalidi, Sophia; Psallidas, Vassilis; Scoullos, Michael

    2016-01-01

    In searching for effective ways to combine science/chemical education with EE/ESD, new didactic materials were designed and produced focussing on biogeochemical cycles and their connection to sustainable development. The materials were experimentally applied in 16 Greek schools under the newly introduced compulsory "school project" which…

  16. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH4, N2O, NOx, SO2, PM10 and corn-based E10 can has more emissions of CH4, N2O, NOx, SO, PM10.

  17. Life cycle costs for the domestic reactor-based plutonium disposition option

    International Nuclear Information System (INIS)

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission

  18. Life cycle costs for the domestic reactor-based plutonium disposition option

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.A.

    1999-10-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  19. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951

    Energy Technology Data Exchange (ETDEWEB)

    Chu Zhaokuang [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China)], E-mail: zkchu@imr.ac.cn; Yu Jinjiang; Sun Xiaofeng; Guan Hengrong; Hu Zhuangqi [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2008-08-15

    Total strain-controlled low cycle fatigue (LCF) tests were performed at a temperature range from 700 to 900 deg. C in ambient air condition on a directionally solidified Ni-base superalloy DZ951. The fatigue life of DZ951 alloy does not monotonously decrease with increasing temperature, but exhibits a strong dependence on the total strain range. The dislocation characteristics and failed surface observation were evaluated through transmission electron microscopy and scanning electron microscopy. The alloy exhibits cyclic hardening, softening or cyclic stability as a whole, which is dependent on the testing temperature and total strain range. At 700 deg. C, the cyclic plastic deformation process is the main cause of fatigue failure. At 900 deg. C, the failure mostly results from combined fatigue and creep damage under total strain range from 0.6 to 1.2% and the reduction in fatigue life can be taken as the cause of oxidation, creep and cyclic plastic deformation under total strain range of 0.5%.

  20. Ignition of deuterium based fuel cycles in a high beta system

    International Nuclear Information System (INIS)

    A steady state self-consistent plasma modeling applied to a system having close to unity, such as FRC or like, is found to be quite effective in solving the problems independently of any anomalous process and proves the existence of ignited state of deuterium based fuel cycles. The temperature ranges that the plasma falls into ignited state are obtained as a function of relative feeding rates of tritium and 3He to deuterium's. We find pure DD cycle will not ignite so that 3He or/and tritium must be added as catalyzer to achieve ignition. Standing on the points to construct a cleaner system yielding smaller amount of 14 MeV neutrons and to burn the fuel in steady state for long periods of time, we have confirmed superiority of the complex composed of the master reactor of 3He-Cat.D cycle (catalyzed DD cycle reinjecting only fusion produced 3He) and the satellite reactor of 3He enriched D3He cycle. In case storage of tritium for 3He by β- decay is turned out not to be allowed environmentally, we may utilize conventional catalyzed DD cycle although 14 MeV neutron yields will be increased by 35 % over the complex. It is demonstrated that advanced fuel cycle reactors can be very simple in constructions and compact in size such that the field strength and the plasma volume of the order of JT-60's may be enough for 1000 MW power plant. (author)

  1. Biogeochemical Cycles for Combining Chemical Knowledge and ESD Issues in Greek Secondary Schools Part I: Designing the Didactic Materials

    Science.gov (United States)

    Koutalidi, Sophia; Scoullos, Michael

    2016-01-01

    Biogeochemical cycles support all anthropogenic activities and are affected by them, therefore they are intricately interlinked with global environmental and socioeconomic issues. Elements of these cycles that are already included in the science/chemical curriculum and textbooks intended for formal education in Greek secondary schools were…

  2. The prevalence and influence of luteinizing hormone surges in stimulated cycles combined with intrauterine insemination during a prospective cohort study

    NARCIS (Netherlands)

    Cantineau, Astrid E. P.; Cohlen, Bernard J.

    2007-01-01

    Objective: To reveal the prevalence of premature LH surges in an IUI prog ram. Furthermore, to investigate whether these LH surges influence treatment outcome and whether the prevalence of LH surges differs between cycles stimulated with clomiphene citrate (CC) and cycles stimulated, with recombinan

  3. Energy and exergy performance investigation of transcritical CO2-based Rankine cycle powered by solar energy

    Institute of Scientific and Technical Information of China (English)

    ZHANG XinRong; LI XiaoJuan

    2012-01-01

    A comprehensive performance evaluation of a solar assisted transcritical CO2-based Rankine cycle system is made with exergy analysis method.The actual thermal data taken from the all-day experiment of the system are utilized to determine energy transfer and the exergy destructions in each component of the system.In addition,a hypothetical carbon dioxide expansion turbine is introduced,then two thermodynamic models for solar transcritical carbon dioxide Rankine cycles with a throttling valve (experiment) and with an expansion turbine have been established with exergy analysis method.The obtained results clearly show that solar collector contributes the largest share to system irreversibility and entropy generation in the all-day working state,and the exergy improvement potential of solar collector is the maximum in the working state.So this component should be the optimization design focus to improve system exergy effectiveness.For the cycle with the turbine,the energy efficiency and the entropy generation are not much higher than the cycle with throttling valve,but the exergy efficiency of the cycle with turbine is twice of the cycle with throttling valve.It provides more guidance when the transcritical CO2-based Rankine system is in a large-scale solar application.

  4. New energy-based low cycle fatigue model for reactor steels

    International Nuclear Information System (INIS)

    Highlights: • A novel low cycle fatigue model based on stored energy is proposed using an additional parameter to describe the plastic energy balance. • Low cycle fatigue tests were performed to validate the model, and its accuracy was demonstrated. - Abstract: A new low cycle fatigue criterion is presented based on the stored energy, which accumulates in the material’s microstructure during fatigue loading. The new damage parameters are based on the assumption that only the stored part of the introduced energy causes the changes in the microstructure, while the other part does not contribute to the fatigue process. Moreover the dissipated part may depends on the fatigue conditions, especially on the strain rate, which could affect the lifetime prediction accuracy of the applied models. To demonstrate the prediction capability of the proposed model a comprehensive experimental work were conducted on two types of reactor pressure vessel structural material. Investigation on the fraction of plastic work dissipated to heat was carried out to provide information on thermo-mechanical behavior on the tested materials, which can be used as input parameters of the new model. Furthermore isothermal and thermo-mechanical low cycle fatigue tests were performed with in-service loading conditions. The result is higher prediction accuracy than by the classical strain amplitude and strain energy based approaches. The developed model may provide a useful analytical tool for the low cycle fatigue evaluation of reactor components

  5. Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature

    International Nuclear Information System (INIS)

    For many years, high-strength nickel-base superalloys have been used to manufacture turbine blades because of their excellent performance at high temperatures. The prediction of fatigue life of superalloys is important for improving the efficiency of the turbine blades. In this study, low cycle fatigue tests are performed for different values of total strain and temperature. The relations between strain energy density and number of cycles before failure occurs are examined in order to predict the low cycle fatigue life of IN738LC super alloy. The results of low cycle fatigue lives predicted by strain energy methods are found to coincide with experimental data and with the results obtained by the Coffin-Manson method

  6. Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kwon Tae; Kim, Jae Hoon [Chungnam National University, Daejeon (Korea, Republic of); Yoo, Keun Bong; Lee, Han Sang [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Yoo, Young Soo [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2010-10-15

    For many years, high-strength nickel-base superalloys have been used to manufacture turbine blades because of their excellent performance at high temperatures. The prediction of fatigue life of superalloys is important for improving the efficiency of the turbine blades. In this study, low cycle fatigue tests are performed for different values of total strain and temperature. The relations between strain energy density and number of cycles before failure occurs are examined in order to predict the low cycle fatigue life of IN738LC super alloy. The results of low cycle fatigue lives predicted by strain energy methods are found to coincide with experimental data and with the results obtained by the Coffin-Manson method.

  7. Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D,; Turton, R.; Zitney, S.

    2012-01-01

    Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas

  8. Technical evaluation of biomass gasification technology integrated with combined cycle using bagasse as fuel; Avaliacao tecnica da tecnologia de gaseificacao de biomassa integrada a ciclos combinados utilizando bagaco como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Pablo Silva; Venturini, Osvaldo Jose; Lora, Electo Silva [Universidade Federal de Itajuba (NEST/UNIFEI), MG (Brazil). Nucleo de Excelencia em Geracao Termeletrica e Distribuida], email: pablo.silvaortiz@gmail.com; Campo, Andres Perez [Universidade Automona de Bucaramanga (UNAB) (Colombia). Fac. de Engenharia Fisico- Mecanica, Engenharia em Energia

    2010-07-01

    Biomass Integrated Gasification Combined Cycle (BIGCC) was identified as an advanced technology with potential to be competitive for electricity generation. The BIGCC technology uses biomass and the sub products of some industrial sectors processing, like sugar cane, as feedstock. The current Brazilian energy matrix is mainly based on renewable generation sources, making it important to assess these gasification technologies in the production of sugar, ethanol and electricity. In this work, a technical evaluation of the technologies incorporated in BIGCC power plants is done: the gasification process and the combined cycle power plant. On the other hand, the generated costs of these systems are analyzed, and the potential for implementation in Brazil plants from sugar cane bagasse is studied, in which a 10% increase in efficiency is obtained. (author)

  9. Using Satellite Based Techniques to Combine Volcanic Ash Detection Methods

    Science.gov (United States)

    Hendrickson, B. T.; Kessinger, C.; Herzegh, P.; Blackburn, G.; Cowie, J.; Williams, E.

    2006-12-01

    Volcanic ash poses a serious threat to aircraft avionics due to the corrosive nature of the silicate particles. Aircraft encounters with ash have resulted in millions of dollars in damage and loss of power to aircraft engines. Accurate detection of volcanic ash for the purpose of avoiding these hazardous areas is of the utmost importance to ensure aviation safety as well as to minimize economic loss. Satellite-based detection of volcanic ash has been used extensively to warn the aviation community of its presence through the use of multi-band detection algorithms. However, these algorithms are generally used individually rather than in combination and require the intervention of a human analyst. Automation of the detection and warning of the presence of volcanic ash for the aviation community is a long term goal of the Federal Aviation Administration Oceanic Weather Product Development Team. We are exploring the use of data fusion techniques within a fuzzy logic framework to perform a weighted combination of several multi-band detection algorithms. Our purpose is to improve the overall performance of volcanic ash detection and to test whether automation is feasible. Our initial focus is on deep, stratospheric eruptions.

  10. 3D measurement method based on combined temporal encoding structured light

    Science.gov (United States)

    Yu, Xiaoyang; Wang, Yang; Yu, Shuang; Cheng, Hao; Sun, Xiaoming; Yu, Shuchun; Chen, Deyun

    2013-10-01

    Three-dimensional (3D) vision measurement technology based on encoding structured light plays an important role and has become the main development trend in the field of 3D non-contact measurement. However, how to synthetically improve measurement speed, accuracy and sampling density is still a difficult problem. Thus in the present work, a novel 3D measurement method based on temporal encoding structured light by combining trapezoidal phase-shifting pattern and cyclic code pattern is proposed. Due to trapezoidal phase-shifting has the advantages of high sampling density and high-speed, the proposed method can maintain these advantages by using cyclic code to expand the range of trapezoidal phase-shifting. In addition, the correction scheme is designed to solve the problem of cycle dislocation. Finally, simulation experimental platform is built with 3ds max and MATLAB. Experimental analyses and results show that, the maximal error is less than 3 mm in the range from 400 mm to 1100 mm, cycle dislocation correction has a good effect.

  11. Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery

    International Nuclear Information System (INIS)

    For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%∼9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW. - Highlights: • A theoretical analysis of Organic Rankine Cycle for engine exhaust heat recovery is proposed. • Mixtures based on hydrocarbons as working fluids have been suggested. • Effects of the IHE (internal heat exchanger) on ORC system are investigated. • OMR (Optimal mixture ratio) changes with the evaporation temperature. • Using the system, maximum thermal efficiency can achieve 16.7%

  12. Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine

    International Nuclear Information System (INIS)

    Highlights: • Integrated modeling of the ORC based on radial inflow turbine is conducted. • Constant turbine efficiency is replaced by dynamic efficiency that obtained by losses. • Ratio of cycle net power output to turbine size is maximized using DIRECT method. • Dynamic turbine efficiency approach predicted maximum difference of 6.13% between R245fa and isobutane. • Maximum objective function of 0.5748 (kW/mm) was achieved by isobutane from optimization. - Abstract: In most of the organic Rankine cycle (ORC) studies, constant expander efficiency is considered for a wide range of cycle operating conditions and for various working fluids. This study presents an optimized modelling approach for the ORC based on radial inflow turbine, where the constant expander efficiency is replaced by dynamic efficiency that is unique for each set of cycle operating conditions and working fluid properties. Considering the size and performance of the ORC, the model was used to identify the key input variables that have significant effects on the turbine overall size and the cycle net electric power output. These parameters were then included in the optimization process using the DIRECT algorithm to maximize the ratio of cycle net electric power output to the turbine overall size (objective function) for six organic fluids. Results showed that, dynamic efficiency approach predicted considerable differences in the turbine efficiencies of various working fluids. The maximum difference of 6.13% between the turbine efficiencies of R245fa and isobutane was predicted. Also the optimization results showed that, the maximum objective function of 0.5748 kW/mm was achieved by isobutane with the cycle net electric power output and the turbine overall size of 90.3 kW and 157.2 mm respectively. Such results are better than the other studies and highlight the potential of the optimization technique to further improve the performance and reduce the size of the ORC based on small

  13. Predicting amplitude of solar cycle 24 based on a new precursor method

    Directory of Open Access Journals (Sweden)

    A. Yoshida

    2010-02-01

    Full Text Available It is shown that the monthly smoothed sunspot number (SSN or its rate of decrease during the final years of a solar cycle is correlated with the amplitude of the succeeding cycle. Based on this relationship, the amplitude of solar cycle 24 is predicted to be 84.5±23.9, assuming that the monthly smoothed SSN reached its minimum in December 2008. It is further shown that the monthly SSN in the three-year period from 2006 through 2008 is well correlated with the monthly average of the intensity of the interplanetary magnetic field (IMF. This correlation indicates that the SSN in the final years of a solar cycle is a good proxy for the IMF, which is understood to reflect the magnetic field in the corona of the sun, and the IMF is expected to be smallest at the solar minimum. We believe that this finding illuminates a physical meaning underlying the well-known precursor method for forecasting the amplitude of the next solar cycle using the aa index at the solar minimum or its average value in the decaying phase of the solar cycle (e.g. Ohl, 1966, since it is known that the geomagnetic disturbance depends strongly on the intensity of the IMF. That is, the old empirical method is considered to be based on the fact that the intensity of the coronal magnetic field decreases in the late phase of a solar cycle in parallel with the SSN. It seems that the precursor method proposed by Schatten et al. (1978 and Svalgaard et al. (2005, which uses the intensity of the polar magnetic field of the sun several years before a solar minimum, is also based on the same physical phenomenon, but seen from a different angle.

  14. Dynamic Analysis of Nuclear Waste Generation Based on Nuclear Fuel Cycle Transition Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    According to the recommendations submitted by the Public Engagement Commission on Spent Nuclear Fuel Management (PECOS), the government was advised to pick the site for an underground laboratory and interim storage facilities before the end of 2020 followed by the related research for permanent and underground disposal of spent fuel after 10 years. In the middle of the main issues, the factors of environmentally friendly and safe way to handle nuclear waste are inextricable from nuclear power generating nation to ensure the sustainability of nuclear power. For this purposes, the closed nuclear fuel cycle has been developed regarding deep geological disposal, pyroprocessing, and burner type sodium-cooled fast reactors (SFRs) in Korea. Among two methods of an equilibrium model and a dynamic model generally used for screening nuclear fuel cycle system, the dynamic model is more appropriate to envisage country-specific environment with the transition phase in the long term and significant to estimate meaningful impacts based on the timedependent behavior of harmful wastes. This study aims at analyzing the spent nuclear fuel generation based on the long-term nuclear fuel cycle transition scenarios considered at up-to-date country specific conditions and comparing long term advantages of the developed nuclear fuel cycle option between once-through cycle and Pyro-SFR cycle. In this study, a dynamic analysis was carried out to estimate the long-term projection of nuclear electricity generation, installed capacity, spent nuclear fuel arising in different fuel cycle scenarios based on the up-to-date national energy plans.

  15. Fuel reactivity and release of pollutants and alkali vapours in pressurized combustion for combined cycle power generation

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J.; Paakkinen, K.; Rantanen, J. [VTT Energy, Jyvaeskylae (Finland); Hernberg, R.; Haeyrinen, V.; Joutsenoja, T. [Tampere Univ. of Technology (Finland). Lab. of Plasma Technology

    1996-12-01

    This project forms a part of the overall Pressurized Power Coal Combustion Project Area (PPFC) which aims at an assessment of the viability and technical merits of pressurized pulverized coal combustion, in an atmosphere of recycled flue gas and oxygen in a coordinated and harmonized programme. The objective of the research at Technical Research Centre of Finland (VTT) and Tampere University of Technology (TUT) is aimed at determining the consequences of solid fuel burning in a mixture of oxygen and recycled flue gases. Combustion conditions of a pressurized entrained flow of pulverized coal and char particles in PEFR are determined with high precision. The effects of experimental parameters on the formation of nitrogen oxides (N{sub 2}O, NO and NO{sub 2}) and gaseous alkali compounds (indicated as NaX(g) and KX(g)) are studied. An effective on-line analysis method for vaporised Na and K compounds was developed. The dependency between particle temperatures and the vaporisation of Na and K was measured with three coals. The results show that alkali removal before gas turbines is always necessary with these coals if combusted in combined cycles. Pressure decreases the formation of NO and has usually no clear effect on the formation of N{sub 2}O. The order of NO/N{sub 2}O ratios correspond to fuel-O/fuel-N ratios. Increase of PO{sub 2} (oxygen concentration) of combustion gas increases the formation of NO{sub 2}. Remarkable concentrations of NO{sub 2} were often measured at high PO{sub 2} at 800-850 deg C. Therefore, NO{sub 2} should be measured from pressurized fluidized bed reactors. Some trends of the formation of NO{sub 2} with coal differ clearly from those with its parent char: N{sub 2}O formation is not strongly temperature dependent with char, and the concentrations of N{sub 2}O formed from char are much lower than those of coal. PO{sub 2} does not effect on the formation of NO from char in the studied range

  16. An approach for IC engine coolant energy recovery based on low-temperature organic Rankine cycle

    Institute of Scientific and Technical Information of China (English)

    付建勤; 刘敬平; 徐政欣; 邓帮林; 刘琦

    2015-01-01

    To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle (ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%. All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.

  17. Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios

    International Nuclear Information System (INIS)

    Highlights: • The environmental impacts of two energy policy scenarios in Luxembourg are assessed. • Computable General Equilibrium (CGE) and Partial Equilibrium (PE) models are used. • Results from coupling of CGE and PE are integrated in hybrid Life Cycle Assessment. • Impacts due to energy related production and imports are likely to grow over time. • Carbon mitigation policies seem to not substantially decrease the impacts’ trend. - Abstract: Nowadays, many countries adopt an active agenda to mitigate the impact of greenhouse gas emissions by moving towards less polluting energy generation technologies. The environmental costs, directly or indirectly generated to achieve such a challenging objective, remain however largely underexplored. Until now, research has focused either on pure economic approaches such as Computable General Equilibrium (CGE) and partial equilibrium (PE) models, or on (physical) energy supply scenarios. These latter could be used to evaluate the environmental impacts of various energy saving or cleaner technologies via Life Cycle Assessment (LCA) methodology. These modelling efforts have, however, been pursued in isolation, without exploring the possible complementarities and synergies. In this study, we have undertaken a practical combination of these approaches into a common framework: on the one hand, by coupling a CGE with a PE model, and, on the other hand, by linking the outcomes from the coupling with a hybrid input–output−process based life cycle inventory. The methodological framework aimed at assessing the environmental consequences of two energy policy scenarios in Luxembourg between 2010 and 2025. The study highlights the potential of coupling CGE and PE models but also the related methodological difficulties (e.g. small number of available technologies in Luxembourg, intrinsic limitations of the two approaches, etc.). The assessment shows both environmental synergies and trade-offs due to the implementation of

  18. Conceptual design study of small long-life PWR based on thorium cycle fuel

    Energy Technology Data Exchange (ETDEWEB)

    Subkhi, M. Nurul [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) and Physics Dept., Faculty of Science and Technology, State Islamic University of Sunan Gunung (Indonesia); Su' ud, Zaki; Waris, Abdul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung) (Indonesia)

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  19. Parametric and exergetic analysis of a two-stage transcritical combined organic Rankine cycle used for multiple grades waste heat recovery of diesel engine

    Science.gov (United States)

    Tian, H.; Zhang, J.; Xu, X. F.; Shu, G. Q.; Wei, H. Q.

    2013-12-01

    Diesel engine has multiple grades of waste heat with different ratios of combustion heat, exhaust is 400 °C with the ratio of 21% and coolant is 90 °C with 19%. Few previous publications investigate the recovery of multiple grades waste heat together. In this paper, a two-stage transcritical combined organic rankine cycle (CORC) is presented and analyzed. In the combined system, the high and low temperature stages transcritical cycle recover the high grades waste heat, and medium to low grades waste heat respectively, and being combined efficiently. Meanwhile, the suitable working fluids for high stage are chosen and analyzed. The cycle parameters, including thermal efficiency (ηth), net power output (Pnet), energy efficiency (ηexg) and global thermal efficiency of DE-CORC(ηglo) have also been analyzed and optimized. The results indicate that this combined system could recover all the waste heat with a high recovery ratio (above 90%) and obtain a maximum power output of 37kW for a DE of 243kW. The global thermal efficiency of DE-CORC can get a max value of 46.2% compared with 40% for single DE. The results also indicate that all the energy conversion process have a high exergy efficiency.

  20. Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles

    International Nuclear Information System (INIS)

    In the small to medium power range the main technologies for the conversion of biomass sources into electricity are based either on reciprocating internal combustion or organic Rankine cycle engines. Relatively low energy conversion efficiencies are obtained in both systems due to the thermodynamic losses in the conversion of biomass into syngas in the former, and to the high temperature difference in the heat transfer between combustion gases and working fluid in the latter. The aim of this paper is to demonstrate that higher efficiencies in the conversion of biomass sources into electricity can be obtained using systems based on the supercritical closed CO2 Brayton cycles (s-CO2). The s-CO2 system analysed here includes two cascaded supercritical CO2 cycles which enable to overcome the intrinsic limitation of the single cycle in the effective utilization of the whole heat available from flue gases. Both part-flow and simple supercritical CO2 cycle configurations are considered and four boiler arrangements are investigated to explore the thermodynamic performance of such systems. These power plant configurations, which were never explored in the literature for biomass conversion into electricity, are demonstrated here to be viable options to increase the energy conversion efficiency of small-to-medium biomass fired power plants. Results of the optimization procedure show that a maximum biomass to electricity conversion efficiency of 36% can be achieved using the cascaded configuration including a part flow topping cycle, which is approximately 10%-points higher than that of the existing biomass power plants in the small to medium power range. - Highlights: • Supercritical CO2 cycles are proposed for biomass to electricity conversion. • Four boiler design options are considered. • High total system efficiency is due to the part-flow cascaded configuration. • The efficiency is higher than that of other small/medium size alternative systems

  1. The Impact of a Participant-Based Accounting Cycle Course on Student Performance in Intermediate Financial Accounting I

    Science.gov (United States)

    Siagian, Ferdinand T.; Khan, Mohammad

    2016-01-01

    The authors investigated whether students in an Intermediate Financial Accounting I course who took a 1-credit, participant-based accounting cycle course performed better than students who did not take the accounting cycle course. Results indicate a higher likelihood of earning a better grade for students who took the accounting cycle course even…

  2. SU-E-J-186: Using 4DCT-Based Motion Modeling to Predict Motion and Duty Cycle On Successive Days of Gated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J [Brigham and Women’s Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumor motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to

  3. SU-E-J-186: Using 4DCT-Based Motion Modeling to Predict Motion and Duty Cycle On Successive Days of Gated Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumor motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to

  4. MotifCombinator: a web-based tool to search for combinations of cis-regulatory motifs

    Directory of Open Access Journals (Sweden)

    Tsunoda Tatsuhiko

    2007-03-01

    Full Text Available Abstract Background A combination of multiple types of transcription factors and cis-regulatory elements is often required for gene expression in eukaryotes, and the combinatorial regulation confers specific gene expression to tissues or environments. To reveal the combinatorial regulation, computational methods are developed that efficiently infer combinations of cis-regulatory motifs that are important for gene expression as measured by DNA microarrays. One promising type of computational method is to utilize regression analysis between expression levels and scores of motifs in input sequences. This type takes full advantage of information on expression levels because it does not require that the expression level of each gene be dichotomized according to whether or not it reaches a certain threshold level. However, there is no web-based tool that employs regression methods to systematically search for motif combinations and that practically handles combinations of more than two or three motifs. Results We here introduced MotifCombinator, an online tool with a user-friendly interface, to systematically search for combinations composed of any number of motifs based on regression methods. The tool utilizes well-known regression methods (the multivariate linear regression, the multivariate adaptive regression spline or MARS, and the multivariate logistic regression method for this purpose, and uses the genetic algorithm to search for combinations composed of any desired number of motifs. The visualization systems in this tool help users to intuitively grasp the process of the combination search, and the backup system allows users to easily stop and restart calculations that are expected to require large computational time. This tool also provides preparatory steps needed for systematic combination search – i.e., selecting single motifs to constitute combinations and cutting out redundant similar motifs based on clustering analysis. Conclusion

  5. Comparison of SelexolTM and Rectisol® Technologies in an Integrated Gasification Combined Cycle (IGCC Plant for Clean Energy Production

    Directory of Open Access Journals (Sweden)

    Isah Yakub Mohammed

    2014-12-01

    Full Text Available In this study, a comparison of SelexolTM and Rectisol® technologies in an Integrated Gasification Combined Cycle (IGCC plant for Clean Energy production was carried out .The overall plant efficiency, individual solvent performance, the operating conditions and the energy requirements, the capital and operating cost were analyzed as well as the safety and environmental impacts. The result revealed that both the SelexolTM and Rectisol® reduce the overall plant efficiency by approximately 9% and 10% respectively. Rectisol® process showed ability to recover more carbon dioxide and sulfur than the SelexolTM process. It was also found that SelexolTM solvent gives good absorption at room temperature while Rectisol® solvent works better at reduced temperature which increases the power cost. The capital cost for constructing a carbon capture plant was found to be higher when using Rectisol® due to the process complexity. Finally, based on economical trade-offs it is recommendation to use SelexolTM technology in the IGCC plant for clean energy production.

  6. A risk-based approach to life-cycle impact assessment

    NARCIS (Netherlands)

    Assies, JA

    1998-01-01

    This paper suggests an approach to life-cycle impact assessment which is based on the comparison of predicted exploitation or pollution levels with critical levels; the latter representing the carrying capacity of the commodity-supplying or pollutant-receiving environment. The incremental pressure i

  7. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    Science.gov (United States)

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  8. Stochastic Real-World Drive Cycle Generation Based on a Two Stage Markov Chain Approach

    NARCIS (Netherlands)

    Balau, A.E.; Kooijman, D.; Vazquez Rodarte, I.; Ligterink, N.

    2015-01-01

    This paper presents a methodology and tool that stochastically generates drive cycles based on measured data, with the purpose of testing and benchmarking light duty vehicles in a simulation environment or on a test-bench. The WLTP database, containing real world driving measurements, was used as in

  9. Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle

    International Nuclear Information System (INIS)

    Highlights: • A new cogeneration cycle is proposed, which combines a GT and an ORC through a HRSG. • Thermodynamic, exergo-economic and environmental impacts are assessed. • A lower value of f suggests that the cost rate of exergy destruction is dominant. - Abstract: Organic Rankine cycles (ORCs) are appropriate technology for the conversion of low quality thermal energy to electrical power. Meanwhile the waste heat from the exhaust gases of the top cycle of the energy conversion systems to the environment is prevented. The aim of this work is thermodynamic, exergo-economic and environmental assessment of a cogeneration of heat and power cycle (CHP), considering the three objective functions of first and second law efficiencies and the total cost rates of the system. The proposed combined heat and power cycle combines a gas turbine (GT) and an ORC through a single-pressure heat recovery steam generator (HRSG). In this regard, after the thermodynamic simulation of the cycle, validations of the results of top and bottom cycles are evaluated using the works available in the literature. The results show that the most exergy destruction rate takes place in the combustion chamber, and after that in heat recovery steam generator and gas turbine, respectively. The exergo-economic factor for the whole cycle is 10.59% indicating that the exergy destruction cost rate is more than capital investment cost rate. In order to assess the effects of design parameters on the objective functions, a parametric study is conducted. The results reveal that the increase in pressure ratio and isentropic efficiency of air compressor and gas turbine efficiency improves thermodynamic performance of the system, however, the more increase of these parameters deteriorates the total cost rates. Furthermore, the increase in air preheater exiting temperature will be useful for the system both in terms of thermodynamic and exergo-economic. The increase in the condensation temperature and pinch

  10. Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.

    Science.gov (United States)

    Spatari, Sabrina; MacLean, Heather L

    2010-11-15

    Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO₂ flux from land use change and N₂O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.

  11. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-03-01

    Full Text Available In recent years, there has been an increasing interest in Life Cycle Assessment (LCA applied to estimate the cradle-to-grave environmental impact of agricultural products or processes. Furthermore, including in the analysis an economic evaluation, from the perspective of an integrated life cycle approach, appears nowadays as a fundamental improvement. In particular, Life Cycle Costing (LCC, is a method that could integrate financial data and cost information with metrics of life cycle approaches. In this study, LCA in conjunction with LCC methods were used, with the aim to evaluate the main cost drivers—environmental and economic—of five widely diffused and market-valued agricultural productions (organic tomato and pear, integrated wheat, apple and chicory and to combine the results in order to understand the long-term externalities impacts of agricultural productions. Data obtained in local assessment show a wide margin of improvement of resources management at farms level in the short-term, but also allow for the investigation of future effects of environmental impacts not expressed in product price on the market. Reaching a real sustainable model for agriculture could be a value added approach firstly for farmers, but also for all the people who live in rural areas or use agricultural products.

  12. Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G. [Canada Research Chair Professor, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street, Oshawa, Ontario L1H 7K4 (Canada); Suppiah, S. [Manager, Hydrogen Isotopes Technology Branch, AECL, Chalk River, Ontario K0J 1J0 (Canada); Lewis, M. [Chemist, Chemical Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Gabriel, K. [Associate Provost, Research, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Dincer, I.; Rosen, M.A. [Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Fowler, M. [Assistant Professor of Chemical Engineering, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1 (Canada); Rizvi, G. [Assistant Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Easton, E.B. [Assistant Professor of Chemistry, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Ikeda, B.M.; Pioro, I. [Associate Professor, Faculty of Energy Systems and Nuclear Science, UOIT, 2000 Simcoe St., Oshawa, ON L1H 7K4 (Canada); Kaye, M.H.; Lu, L. [Assistant Professor, Faculty of Energy Systems and Nuclear Science, UOIT, 2000 Simcoe Street, Oshawa, Ontario L1H 7K4 (Canada); Spekkens, P. [Vice President of Science and Technology Development, Ontario Power Generation, 889 Brock Road, Pickering, Ontario (Canada); Tremaine, P. [Professor of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Canada); Mostaghimi, J. [Canada Research Chair Professor, Mechanical Engineering, University of Toronto, Toronto, Ontario M5S 3E5 (Canada); Avsec, J. [Assistant Professor, Faculty of Energy Technology, Univ. of Maribor, Hocevarjev trg 1, 8270 Krsko (Slovenia); Jiang, J. [Professor and NSERC/UNENE Senior Industrial Research Chair, Electrical and Computer Engineering, Univ. of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2009-04-15

    This paper presents recent Canadian advances in nuclear-based production of hydrogen by electrolysis and the thermochemical copper-chlorine (Cu-Cl) cycle. This includes individual process and reactor developments within the Cu-Cl cycle, thermochemical properties, advanced materials, controls, safety, reliability, economic analysis of electrolysis at off-peak hours, and integrating hydrogen plants with Canada's nuclear power plants. These enabling technologies are being developed by a Canadian consortium, as part of the Generation IV International Forum (GIF) for hydrogen production from the next generation of nuclear reactors. (author)

  13. Six versus fewer planned cycles of first-line platinum-based chemotherapy for non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Rossi, Antonio; Chiodini, Paolo; Sun, Jong-Mu;

    2014-01-01

    BACKGROUND: Platinum-based chemotherapy is the standard first-line treatment for patients with advanced non-small-cell lung cancer. However, the optimum number of treatment cycles remains controversial. Therefore, we did a systematic review and meta-analysis of individual patient data to compare...... the efficacy of six versus fewer planned cycles of platinum-based chemotherapy. METHODS: All randomised trials comparing six versus fewer planned cycles of first-line platinum-based chemotherapy for patients with advanced non-small-cell lung cancer were eligible for inclusion in this systematic review and meta...... included 1139 patients-568 of whom were assigned to six cycles, and 571 to three cycles (two trials) or four cycles (two trials). Patients received cisplatin (two trials) or carboplatin (two trials). No evidence indicated a benefit of six cycles of chemotherapy on overall survival (median 9·54 months [95...

  14. Extending the erosion-corrosion service life of the tube system of heat-recovery boilers used as part of combined-cycle plants

    Science.gov (United States)

    Tomarov, G. V.; Mikhailov, A. V.; Velichko, E. V.; Budanov, V. A.

    2010-01-01

    We present the results from an analysis of damageability and determination of dominating mechanisms through which thinning occurs to the metal of elements used in the tube system of heat recovery boilers used as part of combined-cycle plants during operation and during their outages. Results obtained from putting in use a technology for making the tubes of such boilers more resistant to erosion-corrosion wear with the aid of film-forming amines are also presented. Measures are proposed on extending the service life of the tube system of heat recovery boilers used as part of combined-cycle plants and operating under the conditions of single- and two-phase flows.

  15. Degradation of Artemisinin-Based Combination Therapies under Tropical Conditions

    Science.gov (United States)

    Hall, Zoe; Allan, Elizabeth Louise; van Schalkwyk, Donelly Andrew; van Wyk, Albert; Kaur, Harparkash

    2016-01-01

    Poor quality antimalarials, including falsified, substandard, and degraded drugs, are a serious health concern in malaria-endemic countries. Guidelines are lacking on how to distinguish between substandard and degraded drugs. “Forced degradation” in an oven was carried out on three common artemisinin-based combination therapy (ACT) brands to detect products of degradation using liquid chromatography mass spectrometry and help facilitate classification of degraded drugs. “Natural aging” of 2,880 tablets each of ACTs artemether/lumefantrine and artesunate/amodiaquine was undertaken to evaluate their long-term stability in tropical climates. Samples were aged in the presence and absence of light on-site in Ghana and in a stability chamber (London), removed at regular intervals, and analyzed to determine loss of the active pharmaceutical ingredients (APIs) over time and detect products of degradation. Loss of APIs in naturally aged tablets (both in Ghana and the pharmaceutical stability chamber) was 0–7% over 3 years (∼12 months beyond expiry) with low levels of degradation products detected. Using this developed methodology, it was found that a quarter of ACTs purchased in Enugu, Nigeria (concurrent study), that would have been classified as substandard, were in fact degraded. Presence of degradation products together with evidence of insufficient APIs can be used to classify drugs as degraded. PMID:26951346

  16. Fast Edge Detection Based on the Combination of Fuzzy Subsets

    Institute of Scientific and Technical Information of China (English)

    TuChengyuan; ZengYanjun; PeiWei; XieJian

    2005-01-01

    A fast edge detection method basing on the combination of fuzzy subsets is developed, in which the detection of an edge as a classification problem will be considered, partitioning the image into two portions: the edge portion and the non-edge portion. The latter one, as the main constituent of an image, consists of the object and its background. Removing the non-edge portion from an image, the remainder is nothing but the edge of this image. As far as the fuzziness of the edge of an image is concerned, some fuzzy operations can be made. In this paper, the gray level histogram is partitioned into several sub-regions, and some operations are performed with the associated fuzzy subsets corresponding to those sub-edges in the sub-regions on the gray-level-square-difference histogrmn, and the edge of this image is finally obtained. Practical examples in this paper illustrate that, the described method is simple and effective to achieve an ideal edge image.

  17. Degradation of Artemisinin-Based Combination Therapies Under Tropical Conditions.

    Science.gov (United States)

    Hall, Zoe; Allan, Elizabeth Louise; van Schalkwyk, Donelly Andrew; van Wyk, Albert; Kaur, Harparkash

    2016-05-01

    Poor quality antimalarials, including falsified, substandard, and degraded drugs, are a serious health concern in malaria-endemic countries. Guidelines are lacking on how to distinguish between substandard and degraded drugs. "Forced degradation" in an oven was carried out on three common artemisinin-based combination therapy (ACT) brands to detect products of degradation using liquid chromatography mass spectrometry and help facilitate classification of degraded drugs. "Natural aging" of 2,880 tablets each of ACTs artemether/lumefantrine and artesunate/amodiaquine was undertaken to evaluate their long-term stability in tropical climates. Samples were aged in the presence and absence of light on-site in Ghana and in a stability chamber (London), removed at regular intervals, and analyzed to determine loss of the active pharmaceutical ingredients (APIs) over time and detect products of degradation. Loss of APIs in naturally aged tablets (both in Ghana and the pharmaceutical stability chamber) was 0-7% over 3 years (∼12 months beyond expiry) with low levels of degradation products detected. Using this developed methodology, it was found that a quarter of ACTs purchased in Enugu, Nigeria (concurrent study), that would have been classified as substandard, were in fact degraded. Presence of degradation products together with evidence of insufficient APIs can be used to classify drugs as degraded.

  18. Degradation of Artemisinin-Based Combination Therapies Under Tropical Conditions.

    Science.gov (United States)

    Hall, Zoe; Allan, Elizabeth Louise; van Schalkwyk, Donelly Andrew; van Wyk, Albert; Kaur, Harparkash

    2016-05-01

    Poor quality antimalarials, including falsified, substandard, and degraded drugs, are a serious health concern in malaria-endemic countries. Guidelines are lacking on how to distinguish between substandard and degraded drugs. "Forced degradation" in an oven was carried out on three common artemisinin-based combination therapy (ACT) brands to detect products of degradation using liquid chromatography mass spectrometry and help facilitate classification of degraded drugs. "Natural aging" of 2,880 tablets each of ACTs artemether/lumefantrine and artesunate/amodiaquine was undertaken to evaluate their long-term stability in tropical climates. Samples were aged in the presence and absence of light on-site in Ghana and in a stability chamber (London), removed at regular intervals, and analyzed to determine loss of the active pharmaceutical ingredients (APIs) over time and detect products of degradation. Loss of APIs in naturally aged tablets (both in Ghana and the pharmaceutical stability chamber) was 0-7% over 3 years (∼12 months beyond expiry) with low levels of degradation products detected. Using this developed methodology, it was found that a quarter of ACTs purchased in Enugu, Nigeria (concurrent study), that would have been classified as substandard, were in fact degraded. Presence of degradation products together with evidence of insufficient APIs can be used to classify drugs as degraded. PMID:26951346

  19. Phases of inquiry-based learning: definitions and the inquiry cycle

    OpenAIRE

    Pedaste, Margus; Mäeots, Mario; Siiman, Leo A.; Jong, de, P.F.; Riesen, van, S.A.N.; Kamp, E.T.; Manoli, Constantinos C.; Zacharia, Zacharias C.; Tsourlidaki, Eleftheria

    2015-01-01

    Inquiry-based learning is gaining popularity in science curricula, international research and development projects as well as teaching. One of the underlying reasons is that its success can be significantly improved due to the recent technical developments that allow the inquiry process to be supported by electronic learning environments. Inquiry-based learning is often organized into inquiry phases that together form an inquiry cycle. However, different variations on what is called the inqui...

  20. Phases of inquiry-based learning: definitions and the inquiry cycle

    OpenAIRE

    Manoli, Constantinos,; Pedaste, Margus; Mäeots, Mario; Siiman, Leo; De Jong, Ton; Van Riesen, Siswa A. N.; Kamp, Ellen T.; Zacharia, Zacharias C.; Tsourlidaki, Eleftheria

    2015-01-01

    Inquiry-based learning is gaining popularity in science curricula, international research anddevelopment projects as well as teaching. One of the underlying reasons is that its successcan be significantly improved due to the recent technical developments that allow the inquiryprocess to be supported by electronic learning environments. Inquiry-based learning is oftenorganized into inquiry phases that together form an inquiry cycle. However, different variationson what is called the inquiry cy...

  1. Decision Support System for sustainable forest management based on Life Cycle Assessment

    OpenAIRE

    Sala, S.; Castellani, V.

    2010-01-01

    The valorisation of biomass resources is recognized as a new frontier of economically sustainable and environmentally friendly processes; nevertheless, it is not possible to assume a positive comprehensive balance in term of sustainability of products based only on the fact that they are bio-based, but it is necessary to perform exhaustive studies in a life cycle perspective, considering also site-specific characteristics (e.g. the local availability of raw material and the distance from the ...

  2. Using life cycle based environmental assessment in developing innovative multi-functional glass-polymer windows

    OpenAIRE

    ALLACKER, Karen; Calero, Maria; Mathieux, Fabrice; Baldassarri, Catia; Roderick, Ya

    2013-01-01

    The HarWin (Harvesting solar energy with multifunctional glass-polymer windows)FP7 project focuses on the development of innovative windows and their integration in buildings. These innovative windows aim at improving significantly the energy efficiency of windows and buildings and performing environmentally well on a life cycle base. The improvements are based on reduced material usage and weight, reduced thermal conductivity and energy consumption and hence, reduced environmental life...

  3. Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2014-01-01

    Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.

  4. Combined paclitaxel, cisplatin and fluorouracil therapy enhances ionizing radiation effects, inhibits migration and induces G0/G1 cell cycle arrest and apoptosis in oral carcinoma cell lines

    OpenAIRE

    Elias, Silvia Taveira; BORGES, GABRIEL ALVARES; RÊGO, DANIELA FORTUNATO; E SILVA, LUIS FELIPE OLIVEIRA; AVELINO, SAMUEL; DE MATOS NETO, JOÃO NUNES; Simeoni, Luiz Alberto; GUERRA, ELIETE NEVES SILVA

    2015-01-01

    Although taxels (in particular paclitaxel), cisplatin and fluorouracil (TPF) chemotherapy has been approved for use in the treatment of head and neck squamous cell carcinoma (HNSCC), little is known with regard to the cellular mechanisms of this novel drug association. In order to investigate the reaction of cells to this novel treatment, the present study aimed to examine the cytotoxic effect of TPF in HNSCC cell lines in combination with irradiation, to analyze its effect on cell cycle prog...

  5. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs)

    OpenAIRE

    Daniel Maraver; Sylvain Quoilin; Javier Royo

    2014-01-01

    This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs), coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP) generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling deman...

  6. Shakedown based model for high-cycle fatigue of shape memory alloys

    Science.gov (United States)

    Gu, Xiaojun; Moumni, Ziad; Zaki, Wael; Zhang, Weihong

    2016-11-01

    The paper presents a high-cycle fatigue criterion for shape memory alloys (SMAs) based on shakedown analysis. The analysis accounts for phase transformation as well as reorientation of martensite variants as possible sources of fatigue damage. In the case of high-cycle fatigue, once the structure has reached an asymptotic state, damage is assumed to become confined at the mesoscopic scale, or the scale of the grain, with no discernable inelasticity at the macroscopic scale. Using a multiscale approach, a high-cycle fatigue criterion analogous to the Dang Van model (Dang Van 1973) for elastoplastic metals is derived for SMAs obeying the Zaki–Moumni model for SMAs (Zaki and Moumni 2007a). For these alloys, a safe domain is established in stress deviator space, consisting of a hypercylinder with axis parallel to the direction of martensite orientation at the mesoscopic scale. Safety with regard to high-cycle fatigue, upon elastic shakedown, is conditioned by the persistence of the macroscopic stress path at every material point within the hypercylinder, whose size depends on the volume fraction of martensite. The proposed criterion computes a fatigue factor at each material point, indicating its degree of safeness with respect to high cycle fatigue.

  7. Development of facile property calculation model for adsorption chillers based on equilibrium adsorption cycle

    Science.gov (United States)

    Yano, Masato; Hirose, Kenji; Yoshikawa, Minoru; Thermal management technology Team

    Facile property calculation model for adsorption chillers was developed based on equilibrium adsorption cycles. Adsorption chillers are one of promising systems that can use heat energy efficiently because adsorption chillers can generate cooling energy using relatively low temperature heat energy. Properties of adsorption chillers are determined by heat source temperatures, adsorption/desorption properties of adsorbent, and kinetics such as heat transfer rate and adsorption/desorption rate etc. In our model, dependence of adsorption chiller properties on heat source temperatures was represented using approximated equilibrium adsorption cycles instead of solving conventional time-dependent differential equations for temperature changes. In addition to equilibrium cycle calculations, we calculated time constants for temperature changes as functions of heat source temperatures, which represent differences between equilibrium cycles and real cycles that stemmed from kinetic adsorption processes. We found that the present approximated equilibrium model could calculate properties of adsorption chillers (driving energies, cooling energies, and COP etc.) under various driving conditions quickly and accurately within average errors of 6% compared to experimental data.

  8. A new high-performance AC/DC power factor correction switching converter based on one-cycle control technology and active floating-charge technology

    Institute of Scientific and Technical Information of China (English)

    GAO Chao

    2008-01-01

    A new family of converters, high-performance AC/DC power factor correction (PFC) switching converters with one-cycle control technology and active floating-charge technology, was derived and experimentally verified. The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed. Its operating prniciples and control methods were expounded. Based on these, a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein. The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.

  9. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  10. Sulforaphene-Carboplatin Combination Synergistically Enhances Apoptosis by Disruption of Mitochondrial Membrane Potential and Cell Cycle Arrest in Human Non-Small Cell Lung Carcinoma.

    Science.gov (United States)

    Chatterjee, Saswata; Rhee, Yun-Hee; Ahn, Jin-Chul

    2016-09-01

    Worldwide non-small cell lung cancer (NSCLC) causes substantial morbidity and mortality among human populations. Due to the severe side effects and low survival rate of patients with the conventional drugs, implementation of new combination therapies is much needed. The aim of this study was to evaluate the efficacy of a combination therapy with a conventional drug and a natural medicine. We compared the combination of chemotherapy drug carboplatin and the radish-derived isothiocyanate compound sulforaphene, which synergistically induces higher apoptosis and growth inhibition in A549, to the drug alone in human NSCLC cells. We found that this combination group significantly induced higher depolarization of mitochondrial membrane potential (MMP) and intracellular reactive oxygen species generation than the single drug dose, followed by cell cycle arrest at the G0/G1 phase after 24 h of incubation. In addition to that, the Western blot assays showed that combination treatment inhibited the expression of Bcl-2 and successively upregulated the expression of Bax, cytochrome C, apoptosis-inducing factor, caspase-9 and -3, and cleaved poly ADP ribose polymerase. It also modulated the expression of PI3K, p-extracellular signal-regulated kinase (1/2), and p-c-Jun N-terminal kinase indicating the involvement of antiproliferative properties. Further pretreatment with pan-caspase inhibitor Z-VAD-fmk was carried out to confirm the effect of caspases in the combination therapy-induced apoptosis. To summarize, this is the first report that sulforaphene-carboplatin combination treatment synergistically promotes enhanced apoptosis and antiproliferative effect over single drug treatment against A549, human NSCLC cells through caspase activation, MMP disruption, and cell cycle arrest. This study demonstrates that the duel character of this combination therapy may be an effective replacement for conventional therapy alone against NSCLC. PMID:27467015

  11. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines.

    Science.gov (United States)

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer.

  12. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  13. Conventional and intelligent generalized supervisory control for combined cycle generating power stations.; Control supervisiorio generalizado convencional e inteligente para centrales de generacion de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, Miguel A; Sanchez P, Marino [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Gonzalez Rubio S, Jose L [Cento Nacional de Investigacion y Desarrollo Tecnologico (Cenidet), Cuernavaca, Morelos (Mexico)

    2005-07-01

    Under the expectations of expansion of electric power generation in Mexico, this work exposes the development of a conventional and intelligent generalized supervisory control (CSG) for a combined cycle generation power plant. This one allows to obtain the optimal operation of the power plant through the automatic starting of the generating units and to obtain the maximum possible amount of electrical power in automatic and safe form. For the development of the CSG a control loop by temperature was implemented for the gas turbine system and a control loop by strangled pressure for the gas turbine and a control loop by strangled pressure for the steam turbine. The design of these supervisory systems was made with base in the critical limits on the involved variables of the process: blading average temperature, for the gas turbine (GT) and strangled pressure for the steam turbine (ST) [Spanish] Bajo estas expectativas de expansion de generacion de energia en Mexico, este trabajo expone el desarrollo de un control supervisorio generalizado (CSG) para una central generacion de ciclo combinado. Este permite lograr la operacion optima de la planta a traves del arranque automatico de las unidades generadoras y obtener la maxima cantidad posible de potencia electrica en forma automatica y segura. Para el desarrollo del CSG se implanto un lazo de control por temperatura para el sistema de turbina de gas y un lazo de control por presion estrangulada para la turbina de gas y un lazo de control por presion estrangulada para la turbina de vapor. El diseno de estos sistemas supervisorio se realizo con base en los limites criticos de las variables del proceso involucradas: temperatura promedio de empaletado para la turbina de gas (TG) y presion estrangulada para la turbina de vapor (TV)

  14. Decision-making of biomass ethanol fuel policy based on life cycle 3E assessment

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; DAI Du; CHEN Xiao-jun; WANG Cheng-tao

    2005-01-01

    To evaluate the environmental, economic, energy performance of biomass ethanol fuel in China and tosupport the decision-making of biomass ethanol energy policy, an assessment method of life cycle 3E (economy, en vironment, energy) was applied to the three biomass ethanol fuel cycle alternatives, which includes cassava-based, corn-based and wheat-based ethanol fuel. The assessments provide a comparison of the economical performance, energy efficiency and environmental impacts of the three alternatives. And the development potential of the three alternatives in China was examined. The results are very useful for the Chinese government to make decisions on the biomass ethanol energy policy, and some advises for the decision-making of Chinese government were given.

  15. Sounding stellar cycles with Kepler - preliminary results from ground-based chromospheric activity measurements

    CERN Document Server

    Karoff, C; Chaplin, W J; Frandsen, S; Grundahl, F; Kjeldsen, H; Buzasi, D; Arentoft, T; Christensen-Dalsgaard, J

    2009-01-01

    Due to its unique long-term coverage and high photometric precision, observations from the Kepler asteroseismic investigation will provide us with the possibility to sound stellar cycles in a number of solar-type stars with asteroseismology. By comparing these measurements with conventional ground-based chromospheric activity measurements we might be able to increase our understanding of the relation between the chromospheric changes and the changes in the eigenmodes. In parallel with the Kepler observations we have therefore started a programme at the Nordic Optical Telescope to observe and monitor chromospheric activity in the stars that are most likely to be selected for observations for the whole satellite mission. The ground-based observations presented here can be used both to guide the selection of the special Kepler targets and as the first step in a monitoring programme for stellar cycles. Also, the chromospheric activity measurements obtained from the ground-based observations can be compared with s...

  16. Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC

    International Nuclear Information System (INIS)

    Past investigations have shown that the current type-approval test cycles are not representative for real-world vehicle usage. Consequently, the emissions and fuel consumption of the vehicles are underestimated. Therefore, a new cycle is being developed in the UNECE framework (World-harmonised Light-duty Test Procedure, WLTP), aiming at a more dynamic and worldwide harmonised test cycle. To provide recommendations for the new cycle, we have analysed the noxious emission results of a test programme of seven vehicles on the test cycles NEDC (New European Driving Cycle) and CADC (Common Artemis Driving Cycles). This paper presents the results of that analysis to show the zones of the cycle that are causing the highest emissions, using two different approaches. Both approaches show that the zones with the highest emissions of modern vehicles differ from vehicle to vehicle. Consequently, a representative test cycle has to contain as many combinations of vehicle speed and acceleration that occur in real-world traffic as possible to prevent that a vehicle does not perform well for certain combinations because they are not included in the test cycle. Furthermore, the paper demonstrates that it is important to include a cold start to ensure rapid warm up of the catalysts. - Highlights: ► Vehicle emissions on the NEDC and CADC type-approval cycles are analysed. ► The zones within the cycles that produce the highest emissions are investigated. ► It is shown that these zones can differ significantly from one vehicle to another. ► The WLTP cycle should contain as many of the real-world driving zones as possible.

  17. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mohammad H.

    2014-03-30

    of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

  18. Combination of designed immune based classifiers for ERP assessment in a P300-based GKT

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Moradi

    2012-08-01

    Full Text Available Constructing a precise classifier is an important issue in pattern recognition task. Combination the decision of several competing classifiers to achieve improved classification accuracy has become interested in many research areas. In this study, Artificial Immune system (AIS as an effective artificial intelligence technique was used for designing of several efficient classifiers. Combination of multiple immune based classifiers was tested on ERP assessment in a P300-based GKT (Guilty Knowledge Test. Experiment results showed that the proposed classifier named Compact Artificial Immune System (CAIS was a successful classification method and could be competitive to other classifiers such as K-nearest neighbourhood (KNN, Linear Discriminant Analysis (LDA and Support Vector Machine (SVM. Also, in the experiments, it was observed that using the decision fusion techniques for multiple classifier combination lead to better recognition results. The best rate of recognition by CAIS was 80.90% that has been improved in compare to other applied classification methods in our study.

  19. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.

  20. Graphene and maghemite composites based supercapacitors delivering high volumetric capacitance and extraordinary cycling stability

    International Nuclear Information System (INIS)

    Metal oxides (like MnO2, Fe2O3, and Co3O4, etc) based supercapacitors have disadvantages, such as low volumetric capacitance for thick-film electrodes, or short cycling life because a Faradaic process involves chemical changes of state of the reactant species. In the present work, we report that supercapacitors based on reduced graphene oxide and maghemite (γ-Fe2O3) composites (GγM) exhibit superior performance. GγM electrodes with average electrode thickness up to ∼60 μm have a high volumetric capacitance of 230 F cm−3, together with an outstanding electrode package density of 1.44 g cm−3. Particularly, the GγM electrodes have excellent cycling performance of ∼90% capacitance retention over 100,000 galvanostatic charge–discharge cycles or voltage floating at 0.9 V for 300 h. No detectable change in phase and an effective inhibition of γ-Fe2O3 refinement after cycle-life test are confirmed by X-ray diffraction and transmission electron microscopy

  1. Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    T.-Y. He

    2012-05-01

    Full Text Available A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic LIDAR, operating at 1064 nm. In addition, PM10 concentrations of particles, NOx concentrations and meteorological data were continuously monitored within the LIDAR scanning region. Based on the data we collected, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and found an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased LIDAR returns, which are associated with the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily plateau at around 17:00 Central European Time. We also found that horizontal atmospheric extinction at the height of 200 m, averaged in limited region with a radius of 300 m directly above the ground-based measuring site, was linearly correlated to the PM10 concentration with a correlation coefficient of 0.84. When considering the average of the horizontal atmospheric extinction over the entire scanning region, a strong dependence on traffic conditions (concentration of NOx in the vicinity of the ground-based measuring site was observed.

  2. Prioritization of Bioethanol Production Pathways in China based on Life Cycle Sustainability Assessment and Multi-Criteria Decision-Making

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna;

    2015-01-01

    Purpose The study objectives are two-fold: (i) combining the life cycle sustainability assessment (LCSA) framework and the multi-criteria decision-making (MCDM) methodology for sustainability assessment; (ii) determining the most sustainable scenario for bioethanol production in China according...... to the preferences of the decision-makers/stakeholders. Methods Life cycle assessment (LCA), life cycle costing (LCC) and social life cycle assessment (SLCA) are combined to collect the corresponding criteria data on environmental, economic and social aspects, respectively. The study develops a novel SLCA method...... for quantifying the social criteria. The decision-makers/stakeholders can use linguistic terms to assess these criteria and fuzzy theory is used to transform the linguistic variables into real numbers. Once the sustainability assessment criteria are determined, the study develops a MCDM method that combines...

  3. Research on Chinese life cycle-based wind power plant environmental influence prevention measures.

    Science.gov (United States)

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-08-19

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.

  4. 一个新的吸收-喷射复合制冷循环%A NOVEL COMBINED EJECTOR-ABSORPTION REFRIGERATION CYCLE

    Institute of Scientific and Technical Information of China (English)

    洪大良; 唐黎明; 邹云霞; 何一坚; 陈光明

    2011-01-01

    提出了一个新的吸收-喷射复合制冷循环.在新循环中,部分冷凝器出口的饱和液态制冷剂被冷剂泵加压到制冷剂在发生温度下对应的饱和压力,这股高压制冷剂液体在一个沸腾器里被加热成饱和高压蒸气后将预热器出口的过热制冷剂蒸气引射到冷凝压力.由于在新循环中发生压力可以比冷凝压力低,因此该系统可以利用较低品位的热量制取低温下的冷量.研究结果表明:新循环可以利用比传统两级吸收式制冷循环温度更低的热源,制取同一温度下的冷量.此外,在蒸发温度或发生温度较低时,新循环的COP比单效循环高得多;当发生温度或蒸发温度较高时,新循环和传统单效循环的COP相同.%To make refrigeration at low temperature with low-grade heat source, a novel combined ejector-absorption refrigeration cycle was proposed in this paper. In the new cycle, part of saturated liquid refrigerant from the condenser was pumped to saturated pressure of the refrigerant at generation temperature. This stream was heated into saturated vapor in a boiler and injected the superheating refrigerant vapor from a preheater to condenser pressure. Since the generation pressure is lower than condenser pressure in the new cycle, the system can make refrigeration at low temperature with low-grade heat source. The research results show that the generation temperature of the new cycle is even lower than that of the conventional two-stage absorption refrigeration cycle to make refrigeration at the same low temperature. In addition, the COP of the new cycle is much higher than that of single-effect cycle at the low refrigeration temperature and generation temperature. If the refrigeration temperature or the temperature of heat source is high enough, the COP of the new cycle is the same as that of the conventional single-effect cycle.

  5. Evaluating the effects of caffeine and sodium bicarbonate, ingested individually or in combination, and a taste-matched placebo on high-intensity cycling capacity in healthy males.

    Science.gov (United States)

    Higgins, Matthew F; Wilson, Susie; Hill, Cameron; Price, Mike J; Duncan, Mike; Tallis, Jason

    2016-04-01

    This study evaluated the effects of ingesting sodium bicarbonate (NaHCO3) or caffeine individually or in combination on high-intensity cycling capacity. In a counterbalanced, crossover design, 13 healthy, noncycling trained males (age: 21 ± 3 years, height: 178 ± 6 cm, body mass: 76 ± 12 kg, peak power output (Wpeak): 230 ± 34 W, peak oxygen uptake: 46 ± 8 mL·kg(-1)·min(-1)) performed a graded incremental exercise test, 2 familiarisation trials, and 4 experimental trials. Trials consisted of cycling to volitional exhaustion at 100% Wpeak (TLIM) 60 min after ingesting a solution containing either (i) 0.3 g·kg(-1) body mass sodium bicarbonate (BIC), (ii) 5 mg·kg(-1) body mass caffeine plus 0.1 g·kg(-1) body mass sodium chloride (CAF), (iii) 0.3 g·kg(-1) body mass sodium bicarbonate plus 5 mg·kg(-1) body mass caffeine (BIC-CAF), or (iv) 0.1 g·kg(-1) body mass sodium chloride (PLA). Experimental solutions were administered double-blind. Pre-exercise, at the end of exercise, and 5-min postexercise blood pH, base excess, and bicarbonate ion concentration ([HCO3(-)]) were significantly elevated for BIC and BIC-CAF compared with CAF and PLA. TLIM (median; interquartile range) was significantly greater for CAF (399; 350-415 s; P = 0.039; r = 0.6) and BIC-CAF (367; 333-402 s; P = 0.028; r = 0.6) compared with BIC (313: 284-448 s) although not compared with PLA (358; 290-433 s; P = 0.249, r = 0.3 and P = 0.099 and r = 0.5, respectively). There were no differences between PLA and BIC (P = 0.196; r = 0.4) or between CAF and BIC-CAF (P = 0.753; r = 0.1). Relatively large inter- and intra-individual variation was observed when comparing treatments and therefore an individual approach to supplementation appears warranted. PMID:26988768

  6. THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.; Bathke, Charles G.; Ebbinghaus, Bartley B.; Hase, Kevin R.; Sleaford, Brad W.; Robel, Martin; Smith, Brian W.

    2011-07-17

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies required to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.

  7. Bayesian-based Wavelet Shrinkage for SAR Image Despeckling Using Cycle Spinning

    Institute of Scientific and Technical Information of China (English)

    ZHANG De-xiang; GAO Qing-wei; CHEN Jun-ning

    2006-01-01

    A novel and efficient speckle noise reduction algorithm based on Bayesian wavelet shrinkage using cycle spinning is proposed. First, the sub-band decompositions of non-logarithmically transformed SAR images are shown. Then, a Bayesian wavelet shrinkage factor is applied to the decomposed data to estimate noise-free wavelet coefficients. The method is based on the Mixture Gaussian Distributed (MGD) modeling of sub-band coefficients. Finally, multi-resolution wavelet coefficients are reconstructed by wavelet-threshold using cycle spinning. Experimental results show that the proposed despeckling algorithm is possible to achieve an excellent balance between suppresses speckle effectively and preserves as many image details and sharpness as possible. The new method indicated its higher performance than the other speckle noise reduction techniques and minimizing the effect of pseudo-Gibbs phenomena.

  8. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

    Science.gov (United States)

    Collins, Beatrice S. L.; Kistemaker, Jos C. M.; Otten, Edwin; Feringa, Ben L.

    2016-09-01

    The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

  9. Study of CANDU thorium-based fuel cycles by deterministic and Monte Carlo methods

    International Nuclear Information System (INIS)

    In the framework of the Generation IV forum, there is a renewal of interest in self-sustainable thorium fuel cycles applied to various concepts such as Molten Salt Reactors [1, 2] or High Temperature Reactors [3, 4]. Precise evaluations of the U-233 production potential relying on existing reactors such as PWRs [5] or CANDUs [6] are hence necessary. As a consequence of its design (online refueling and D2O moderator in a thermal spectrum), the CANDU reactor has moreover an excellent neutron economy and consequently a high fissile conversion ratio [7]. For these reasons, we try here, with a shorter term view, to re-evaluate the economic competitiveness of once-through thorium-based fuel cycles in CANDU [8]. Two simulation tools are used: the deterministic Canadian cell code DRAGON [9] and MURE [10], a C++ tool for reactor evolution calculations based on the Monte Carlo code MCNP [11]. (authors)

  10. Ant-cycle based on Metropolis rules for the traveling salesman problem

    Institute of Scientific and Technical Information of China (English)

    Gong Qu; He Xian-yang

    2005-01-01

    In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) and AC for the traveling salesman problem (TSP). The Metropolis rules in SA were applied to AC and turned out an improved AC. The computational results obtained from the case study indicated that the improved AC algorithm has advantages over the sheer SA or unmixed AC.

  11. Differential Cyclic Voltammetry - a Novel Technique for Selective and Simultaneous Detection using Redox Cycling Based Sensors

    OpenAIRE

    Odijk, M.; Wiedemair, J.; Megen, M.J.J; Olthuis, W.; Van den Berg, A.

    2010-01-01

    Redox cycling (RC) is an effect that is used to amplify electrochemical signals. However, traditional techniques such as cyclic voltammetry (CV) do not provide clear insight for a mixture of multiple redox couples while RC is applied. Thus, we have developed a new measurement technique which delivers electrochemical spectra of all reversible redox couples present based on concentrations and standard potentials. This technique has been named differential cyclic voltammetry (DCV). We have fabri...

  12. Development of substance flow based Life Cycle Assessment tool for sewage sludge treatment and disposal

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Clavreul, Julie; Scheutz, Charlotte;

    Life Cycle Assessment (LCA) is a method to quantify environmental impacts of products or systems. It is often done by correlating material and energy demands with certain input characteristics. An attempt was made to evaluate the robustness of the substance flow based LCA for wastewater and sludge...... treatment processes correlate sufficiently with the solids content of wastewater influent, while energy use correlates with the total input volume. However, the correlations appeared to be stronger when individual treatment processes were separately analysed....

  13. An Evolutionary Agent-based simulation model for the industry life cycle

    OpenAIRE

    Lehmann-Waffenschmidt, B. Cornelia

    2008-01-01

    In contrast to the usual approach taken in the literature, in which an Industry Life Cycle (ILC) is reproduced by aggregate functions, the model of this paper generates a self-organizing ILC. A general evolutionary agent-based simulation model is developed that can be adapted for specific branches of industry. The results enable conclusions to be drawn for competition policy with regard to the workability of competition in the various phases of the ILC.

  14. HIGH-TEMPERATURE LOW CYCLE FATIGUE BEHAVIOR OFNICKEL BASE SUPERALLOY GH536

    Institute of Scientific and Technical Information of China (English)

    M. Zhao; L.Y. Xu; K.S. Zhang; B.Y. Yang

    2001-01-01

    Low cycle fatigue tests on nickel base superalloy GH536 were performed at 600. 700and 800°C. The strain-life and cyclic stress-strain relationship were given at various temperatures. The change in fatigue life behavior and fatigue parameters with temperature increasing was discussed. At low and intermediate total strain amplitudes,the fatigue life was found to decrease with increasing temperature.``

  15. Pseudo-Cycle-Based Multicast Routing in Wormhole-Routed Networks

    Institute of Scientific and Technical Information of China (English)

    SONG JianPing (宋建平); HOU ZiFeng (侯紫峰); XU Ming (许铭)

    2003-01-01

    This paper addresses the problem of fault-tolerant multicast routing in wormholerouted multicomputers. A new pseudo-cycle-based routing method is presented for constructing deadlock-free multicast routing algorithms. With at most two virtual channels this technique can be applied to any connected networks with arbitrary topologies. Simulation results show that this technique results in negligible performance degradation even in the presence of a large number of faulty nodes.

  16. Life Cycle Assessment of Soybean-Based Biodiesel in Argentina for Export

    OpenAIRE

    Panichelli, Luis; Dauriat, Arnaud; Gnansounou, Edgard

    2009-01-01

    Background, aim and scope. Regional specificities are a key factor when analyzing the environmental impact of a biofuel pathway through a life cycle assessment (LCA). Due to different energy mixes, transport distances, agricultural practices and land use changes, results can significantly vary from one country to another. The Republic of Argentina is the first exporter of soybean oil and meal and the third largest soybean producer in the world, and therefore, soybean-based biodiesel producti...

  17. Muscle Strength Enhancement Following Home-Based Virtual Cycling Training in Ambulatory Children with Cerebral Palsy

    Science.gov (United States)

    Chen, Chia-Ling; Hong, Wei-Hsien; Cheng, Hsin-Yi Kathy; Liaw, Mei-Yun; Chung, Chia-Ying; Chen, Chung-Yao

    2012-01-01

    This study is the first well-designed randomized controlled trial to assess the effects of a novel home-based virtual cycling training (hVCT) program for improving muscle strength in children with spastic cerebral palsy (CP). Twenty-eight ambulatory children with spastic CP aged 6-12 years were randomly assigned to an hVCT group (n = 13) or a…

  18. Thorium-based fuel cycles: reassessment of fuel economics andproliferation risk

    OpenAIRE

    Serfontein, Dawid E.; Mulder, Eben J.

    2014-01-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all coun...

  19. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties

    International Nuclear Information System (INIS)

    Effects of tungsten and tantalum contents on impact, tensile, low cycle fatigue and creep properties of Reduced Activation Ferritic–Martensitic (RAFM) steel were studied to develop India-specific RAFM steel. Four heats of the steel have been melted with tungsten and tantalum contents in the ranges 1–2 wt.% and 0.06–0.14 wt.% respectively. Increase in tungsten content increased the ductile-to-brittle transition temperature (DBTT), low cycle fatigue and creep strength of the steel, whereas the tensile strength was not changed significantly. Increase in tantalum content increased the DBTT and low cycle fatigue strength of the steel whereas the tensile and creep strength decreased. Detailed TEM investigations revealed enhanced microstructural stability of the steel against creep exposure on tungsten addition. The RAFM steel having 1.4 wt.% tungsten with 0.06 wt.% tantalum was found to possess optimum combination of impact, tensile, low cycle fatigue and creep properties and is considered for Indian-specific RAFM steel

  20. ID-based authentication scheme combined with identity-based encryption with fingerprint hashing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Current identity-based (ID) cryptosystem lacks the mechanisms of two-party authentication and user's private key distribution. Some ID-based signcryption schemes and ID-based authenticated key agreement protocols have been presented, but they cannot solve the problem completely. A novel ID-based authentication scheme based on ID-based encryption (IBE) and fingerprint hashing method is proposed to solve the difficulties in the IBE scheme, which includes message receiver authenticating the sender, the trusted authority (TA) authenticating the users and transmitting the private key to them. Furthermore, the scheme extends the application of fingerprint authentication from terminal to network and protects against fingerprint data fabrication. The fingerprint authentication method consists of two factors. This method combines a token key, for example, the USB key, with the user's fingerprint hash by mixing a pseudo-random number with the fingerprint feature. The security and experimental efficiency meet the requirements of practical applications.

  1. A continuous spectrophotometric method based on enzymatic cycling for determining L-glutamate.

    Science.gov (United States)

    Valero, E; Garcia-Carmona, F

    1998-06-01

    A continuous spectrophotometric assay for determining low levels of L-glutamate is described. The assay, which involves the enzymes L-glutamate oxidase and glutamic-pyruvic transaminase, is based on the recycling of L-glutamate into alpha-ketoglutarate, with the concomitant appearance of one molecule of hydrogen peroxide in each turn of the cycle. This is subsequently reduced by means of a peroxidase-coupled reaction, using 2, 2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) as substrate. In this way the interference observed in the cyclic assay using glutamic-oxalacetic transaminase, which is due to the fact that L-aspartate is also a substrate of L-glutamate oxidase, is eliminated. A kinetic study of the system is presented, with the accumulation of chromophore being seen to undergo a transient phase, which is dependent both on the cycling rate and on the auxiliary enzyme concentration. The kinetic parameters characterizing the system have been determined, making it possible to optimize costs with respect to the enzymes involved in the cycle, since the minimum amount needed for a given rate constant of the cycle can be calculated.

  2. Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer

    Directory of Open Access Journals (Sweden)

    Ling Li

    2015-04-01

    Full Text Available Inhibition of glycolysis using 2-deoxy-d-glucose (2DG, 20 mM, 24–48 h combined with inhibition of the pentose cycle using dehydroepiandrosterone (DHEA, 300 µM, 24–48 h increased clonogenic cell killing in both human prostate (PC-3 and DU145 and human breast (MDA-MB231 cancer cells via a mechanism involving thiol-mediated oxidative stress. Surprisingly, when 2DG+DHEA treatment was combined with an inhibitor of glutathione (GSH synthesis (l-buthionine sulfoximine; BSO, 1 mM that depleted GSH>90% of control, no further increase in cell killing was observed during 48 h exposures. In contrast, when an inhibitor of thioredoxin reductase (TrxR activity (Auranofin; Au, 1 µM, was combined with 2DG+DHEA or DHEA-alone for 24 h, clonogenic cell killing was significantly increased in all three human cancer cell lines. Furthermore, enhanced clonogenic cell killing seen with the combination of DHEA+Au was nearly completely inhibited using the thiol antioxidant, N-acetylcysteine (NAC, 20 mM. Redox Western blot analysis of PC-3 cells also supported the conclusion that thioredoxin-1 (Trx-1 oxidation was enhanced by treatment DHEA+Au and inhibited by NAC. Importantly, normal human mammary epithelial cells (HMEC were not as sensitive to 2DG, DHEA, and Au combinations as their cancer cell counterparts (MDA-MB-231. Overall, these results support the hypothesis that inhibition of glycolysis and pentose cycle activity, combined with inhibition of Trx metabolism, may provide a promising strategy for selectively sensitizing human cancer cells to oxidative stress-induced cell killing.

  3. Diffuse control of gas turbines in power stations of combined cycle; Contral difuso de turbinas de gas en centrales de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez P, Marino; Garduno R, Raul; De Lara J, Salvadror; Castelo C, Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2001-07-01

    In this article the application of the technology of the fuzzy logic to the control of gas turbines is presented in order to evaluate it in one of the most difficult processes and with stricter control requirements that exist in the electrical generation industry. For being important for the generation electrical sector, given their use in Comision Federal de Electricidad (CFE), the first selected prototype was the gas turbines model W501 of Westinghouse, installed in the of combined cycle power stations of Dos Bocas, Veracruz, Gomez Palacio, Durango and Tula, Hidalgo, Mexico. The second selected prototype was the one of the turbo gas units type 5001 (that applies to the GE 5001 models and Westinghouse of series 191 and 251). Based on the analysis of the performance of the system of conventional control previously made, the controllers of speed and generation of electrical power were selected to be replaced by diffuse controllers. [Spanish] En este articulo se presenta la aplicacion de la tecnologia de la logica difusa al control de turbinas de gas con el proposito de evaluarla en uno de los procesos mas dificiles y con requerimientos mas estrictos de control que existen en la industria de generacion electrica. Por ser importantes para el sector electrico de generacion, dada su utilizacion en Comision Federal de Electricidad (CFE), el primer prototipo seleccionado fueron las turbinas de gas modelo W501 de Westinghouse, instaladas en la central de ciclo combinado de Dos Bocas, Veracruz, Gomez Palacio, Durango y Tula, Hidalgo, Mexico. El segundo prototipo seleccionado fue el de unidades turbogas tipo 5001 (que aplica a los modelos GE 5001 y Westinghouse de la serie 191 y 251). Basados en el analisis del desempeno del sistema de control convencional realizado previamente, los controladores de velocidad y de generacion de potencia electrica fueron seleccionados para ser sustituidos por controladores difusos.

  4. Thruster Injector Faceplate Testing in Support of the Aerojet Rocket-Based Combined Cycle (RBCC) Concept

    Science.gov (United States)

    Fazah, M. M.; Cramer, J. M.

    1998-01-01

    To satisfy RBCC rocket thruster requirements of high performance and a minimum amount of free hydrogen at plume boundary, a new impinging injector element using gaseous hydrogen and gaseous oxygen as the propellants has been designed. Analysis has shown that this injector design has potential to provide a high specific impulse (Isp) while minimizing the amount of free hydrogen that is available to be burned with incoming secondary flow. Past studies and test programs have shown that gas/gas-impinging elements typically result in high injector face temperatures due to combustion occurring close to the face. Since this design is new, there is no hot fire experience with this element. Objectives of this test program were to gain experience and hot fire test data on this new rocket thruster element design and injector faceplate pattern. Twenty-two hot fire tests were run with maximum mixture ratio (MR) and chamber pressure (Pc) obtained at 7.25 and 1,822 psia, respectively. Post-test scanning microscope (SEM) images show only slight faceplate erosion during testing. This injector element design performed well and can be operated at design conditions: (1) Pc of 2,000 psia and MR of 7.0 and (2) Pc of 1,000 psia and MR of 5.0.

  5. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon

    2012-09-01

    Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energy systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.

  6. Plastic Behavior of a Nickel-Based Alloy under Monotonic-Tension and Low-Cycle-Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Huang, E-Wen [ORNL; Barabash, Rozaliya [ORNL; Wang, Yandong [ORNL; Clausen, Bjorn [ORNL; Li, Li [ORNL; Liaw, Peter K [University of Tennessee, Knoxville (UTK); Ice, Gene E [ORNL; Yang, Dr Ren [Argonne National Laboratory (ANL); Choo, Hahn [ORNL; Pike, Lee M [ORNL; Klarstrom, Dwaine L [ORNL

    2008-01-01

    The plasticity behavior of the annealed HASTELLOY C-22HSTM alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by the in-situ neutron-diffraction experiments at room temperature. Monotonic-tension and low-cycle-fatigue experiments were conducted to observe the plastic behavior of the alloy. The tension straining and cyclic-loading deformation were studied as a function of the stress. The plastic behaviors during the deformation are discussed in the light of the relationship between the stress and dislocation-density evolutions. The calculated dislocation-density evolutions within the alloys reflect the strain hardening and cyclic hardening/softening. Experimental lattice strains are compared to verify the hardening mechanism at the selected stress levels for tension and cyclic loadings. Combining with the calculations of the dislocation densities, the neutron-diffraction experiments give an evidence of the strain and cyclic hardening of the alloy.

  7. Simulation of a new combined absorption-compression refrigeration cycle%一种新型吸收-压缩复合制冷循环模拟

    Institute of Scientific and Technical Information of China (English)

    唐鹏武; 陈光明; 唐黎明; 刘利华

    2011-01-01

    A program compiled by Visual Basic language was used to simulate a new combined absorption-compression refrigeration cycle for performance research, including the effect of generation temperature , evaporation temperature, condensation temperature, heat flux and refrigeration capacity on system performance which was compared with a conventional vapour compression refrigeration cycle. Simulation results show that when generation temperature increases, the coefficient of performance ( COP) of new cycle increases first and then decreases. When evaporation temperature or heat flux increases, the COP of new cycle increases. When condensation temperature or refrigeration capacity increases, the COP of new cycle decreases. Under most simulation conditions, the COP of new cycle can be 10% higher than that of conventional vapour compression refrigeration cycle. The new cycle can not only reduce air conditioning load greatly, but also provide the possibility of efficient utilization of low grade energy such as solar energy.%为了对一种新型吸收-压缩复合制冷循环的性能进行模拟,使用Visual Basic语言自行编制了一个程序.该程序模拟了发生温度、蒸发温度、冷凝温度、加热量、制冷量对系统性能的影响,并将其性能与传统蒸气压缩式制冷循环作了对比.模拟结果表明:当发生温度升高时,新循环的制冷系数先增大后减小;当蒸发温度升高或加热量增大时,新循环的制冷系数增大;当冷凝温度升高或制冷量增大时,新循环的制冷系数减小.在大部分假定工况下,新循环的制冷系数比传统蒸气压缩式循环的高10%以上.新循环的提出不仅能够大幅度减少空调电力负荷,还为太阳能等低品位能源的高效利用提供了可能.

  8. Modeling Of Combinational Circuits Based On Ternary Multiplexer Using VHDL

    Directory of Open Access Journals (Sweden)

    A.Sathish kumar,

    2010-08-01

    Full Text Available This paper presents a novel method for defining, analyzing, testing and implementing the basic combinational circuitry with VHDL Simulator. This paper shows the potential of VHDL modeling and simulation that can be applied to Ternary switching circuits to verify its functionality and timing specifications. A novel method is brought out for implementing the basic combinational circuitry with minimum number of multiplexers. It also includes 1-bit and 2-bit position shifter and Barrel shifter. Method of coding is illustrated with respect to block diagram. An intention is to show how proposed simulator can be used to simulate MVL circuits and to evaluate systemperformance.

  9. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation

    DEFF Research Database (Denmark)

    Lemming, Gitte; Chambon, Julie Claire Claudia; Binning, Philip John;

    2012-01-01

    A comparative life cycle assessment is presented for four different management options for a trichloroethene-contaminated site with a contaminant source zone located in a fractured clay till. The compared options are (i) long-term monitoring (ii) in-situ enhanced reductive dechlorination (ERD...... impacts due to contaminant leaching into groundwater that is used for drinking water, whereas the secondary environmental impacts are related to remediation activities such as monitoring, drilling and construction of wells and use of remedial amendments. The primary impacts for the compared scenarios were...... determined by a numerical risk assessment and remedial performance model, which predicted the contaminant mass discharge over time at a point of compliance in the aquifer and at the waterworks. The combined assessment of risk reduction and life cycle impacts showed that all management options result...

  10. Base-Level Cycles and Episodic Coal Accumulation——Case Study of Dongsheng Coalfield in Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    YANG Ren-chao; HAN Zuo-zhen; LI Zeng-xue; FAN Ai-ping

    2006-01-01

    The advantage of high-resolution sequence stratigraphy, which takes base-levels as reference, is that it can be applied to continental depositional basins controlled by multiple factors and can effectively improve the accuracy and resolution of sequential stratigraphic analysis. Moreover, the principles of base-level cycles are also suitable for analyzing sequential stratigraphy in continental coal-bearing basins because of their accuracy in forecasting distribution of coal measures. By taking the Dongsheng coalfield in the Ordos basin as an example, the extensive application of base-level cycles in exploration and exploitation of coal is analyzed. The result shows that the Yan'an formation in the Dongsheng area is a long-term base-level cycle which is bordered by nonconformities and made up of five mid-term cycles and 13 short-term cycles. The long-term cycle and the mid-term cycles are obvious in comparison with a transverse profile. The episodic coal accumulation in the Mesozoic Ordos basin means that the deposition of primary matter (peat bogs) of coalification is discontinuous, periodical and cyclical in the evolution of the basin. The episodic accumulation of coal measures in the Yan'an stage is controlled by ascending-descending changes of a long-term cycle and middle-term cycles. Coal measures formed during the early and late periods of the long-term cycle are characterized by multiple layers, big cumulative thickness and poor continuity. Coal measures formed in the mid-term of the long cycle are dominated by good continuity, fewer layers and a small additive thickness, which is favorable for the accumulation of thick and continuous coal measures in the transition stage of mid term base-level cycles.

  11. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    Directory of Open Access Journals (Sweden)

    Chen Bei

    2015-06-01

    Full Text Available The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC system is analyzed based on the field synergy principle. The field synergy angle (β is the intersection angle between the velocity vector and the temperature gradient. When the absolute values of velocity and temperature gradient are constant and β < 90°, heat transfer enhancement can be achieved with the decrease of the β. When the absolute values of velocity and temperature gradient are constant and β >90°, heat transfer enhancement can be achieved with the increase of the β. Subsequently, the influence of the evaporator of the ORC system on diesel engine performance is studied. A simulation model of the diesel engine is built by using GT–Power software under various operating conditions, and the variation tendency of engine power, torque, and brake specific fuel consumption (BSFC are obtained. The variation tendency of the power output and BSFC of diesel engine–ORC combined system are obtained when the evaporation pressure ranges from 1.0 MPa to 3.5 MPa. Results show that the field synergy effect for the areas among the tube bundles of the evaporator main body and the field synergy effect for the areas among the fins on the windward side are satisfactory. However, the field synergy effect in the areas among the fins on the leeward side is weak. As a result of the pressure drop caused by the evaporator of the ORC system, the diesel engine power and torque decreases slightly, whereas the BSFC increases slightly with the increase of exhaust back

  12. Study on Combined Method Based on 3-D ESPI

    Institute of Scientific and Technical Information of China (English)

    Sun Ping; Zhang Xi; Wang Haifeng

    2002-01-01

    The finite element method (FEM),whether the calculation is accurate or not,depends closely on object boundary condition.If the three dimensional displacement of the object obtained in experiment is regarded as its boundary condition,a new method combining the results of experiment and calculation,called combined method (CM),is formed.The combined method possess advantages of experiment and calculation.It can correct calculation and improve the accuracy of FEM.Accordingly it has more practicability.In this paper,the three dimensional displacement fields of a typical beam loaded at three points are tested by using 3-D electric speckle pattern interferometry (ESPI).Using the experimental results as boundary condition the whole three-dimensional displacement fields can be calculated by FEM.The beam′s three-dimensional displacement fields obtained by FEM agree very well with those obtained by experiment.This proves that the combined method is effective and practicable.

  13. Performance analysis of exhaust waste heat recovery system for stationary CNG engine based on organic Rankine cycle

    International Nuclear Information System (INIS)

    In order to improve the electric efficiency of a stationary compressed natural gas (CNG) engine, a set of organic Rankine cycle (ORC) system with internal heat exchanger (IHE) is designed to recover exhaust energy that is used to generate electricity. R416A is selected as the working fluid for the waste heat recovery system. According to the first and second laws of thermodynamics, the performances of the ORC system for waste heat recovery are discussed based on the analysis of engine exhaust waste heat characteristics. Subsequently, the stationary CNG engine-ORC with IHE combined system is presented. The electric efficiency and the brake specific fuel consumption (BSFC) are introduced to evaluate the operating performances of the combined system. The results show that, when the evaporation pressure is 3.5 MPa and the engine is operating at the rated condition, the net power output and the thermal efficiency of the ORC system with IHE can reach up to 62.7 kW and 12.5%, respectively. Compared with the stationary CNG engine, the electric efficiency of the combined system can be increased by a maximum 6.0%, while the BSFC can be reduced by a maximum 5.0%. - Highlights: • The characteristics of exhaust energy for the stationary CNG engine are investigated. • The ORC system with IHE is designed to recover the exhaust energy from engine. • Zeotropic mixture R416A is used as the working fluid of the ORC system. • The electric efficiency of combined system is defined and investigated. • BSFC of combined system is studied under various operating conditions of engine

  14. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  15. An investigation and characterization on alginate hydogel dressing loaded with metronidazole prepared by combined inotropic gelation and freeze-thawing cycles for controlled release.

    Science.gov (United States)

    Sarheed, Omar; Rasool, Bazigha K Abdul; Abu-Gharbieh, Eman; Aziz, Uday Sajad

    2015-06-01

    The purpose of this study was to investigate the effect of combined Ca(2+) cross-linking and freeze-thawing cycle method on metronidazole (model drug) drug release and prepare a wound film dressing with improved swelling property. The hydrogel films were prepared with sodium alginate (SA) using the freeze-thawing method alone or in combination with ionotropic gelation with CaCl2. The gel properties such as morphology, swelling, film thickness, and content uniformity and in vitro dissolution profiles using Franz diffusion cell were investigated. The cross-linking process was confirmed by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. In vitro protein adsorption test, in vivo wound-healing test, and histopathology were also performed. The hydrogel (F2) composed of 6% sodium alginate and 1% metronidazole prepared by combined Ca(2+) cross-linking and freeze-thawing cycles showed good swelling. This will help to provide moist environment at the wound site. With the in vivo wound-healing and histological studies, F2 was found to improve the wound-healing effect compared with the hydrogel without the drug, and the conventional product.

  16. Life cycle and performance based seismic design of major bridges in China

    Institute of Scientific and Technical Information of China (English)

    FAN Lichu

    2007-01-01

    The idea of life cycle and performance based seismic design of major bridges is introduced.Based on the key components and non-key components of a bridge and the consideration of the inspectability,replaceability,reparability,controllability and retrofitability of the bridge components,different seismic design levels and expected performance objectives are suggested for the major bridges in China.The vulnerability analysis and progressive collapse analysis,as well as risk assessment,are also proposed to be the important issues to study in order to guide the seismic design of major bridges in the future.

  17. Feature Based Machining Process Planning Modeling and Integration for Life Cycle Engineering

    Institute of Scientific and Technical Information of China (English)

    LIU Changyi

    2006-01-01

    Machining process data is the core of computer aided process planning application systems. It is also provides essential content for product life cycle engineering. The character of CAPP that supports product LCE and virtual manufacturing is analyzed. The structure and content of machining process data concerning green manufacturing is also examined. A logic model of Machining Process Data has been built based on an object oriented approach, using UML technology and a physical model of machining process data that utilizes XML technology. To realize the integration of design and process, an approach based on graph-based volume decomposition was apposed. Instead, to solve the problem of generation in the machining process, case-based reasoning and rule-based reasoning have been applied synthetically. Finally, the integration framework and interface that deal with the CAPP integration with CAD, CAM, PDM, and ERP are discussed.

  18. Thermal analysis of the heat recuperator of a combined cycle thermoelectric central; Analisis termico del recuperador de calor de una central termoelectrica de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, Hernando; Sanchez, I.; Lazcano, L. C.; Ambriz, Juan Jose; Alvarez, M. [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico); Gonzalez, O. [Comision Federal de Electricidad, Tula (Mexico)

    1996-12-31

    The thermoelectric centrals of the combined cycle type (Brayton Cycle and Rankine Cycle) present a series of opportunities to increase the efficiency of the combined cycle or of the generated power. This paper shows the methodology for the performance of energy balances in a heat recuperator (H. R.), typically employed in the combined cycle stations operating in Mexico, for the assessment of the energy harnessing in the different sections conforming a H. R. The effect of the installation of evaporative coolers and/or an absorption cooling system at the gas turbine compressor intake on the steam generation in the heat recuperator, is evaluated. This extra generation of steam is quantified for its potential use in the same absorption refrigeration system. From the assessment, it follows up that the steam generation in the H.R. is inversely proportional to the ambient temperature and that, although the increased amount of steam generated can not be harnessed in total by the steam turbine, the remaining fraction is good enough to cover the heat demand for the operation of the refrigeration system. [Espanol] Las centrales termoelectricas del tipo ciclo combinado (ciclo Brayton y ciclo Rankine) presentan un conjunto de oportunidades para incrementar la eficiencia del ciclo combinado o bien la potencia generada. En el presente trabajo se expone la metodologia para realizar los balances de energia en un recuperador de calor (R.C.) tipicamente utilizado en las Centrales de Ciclo Combinado (CCC) que operan en Mexico, para evaluar el aprovechamiento de la energia en las diferentes secciones que conforman un R.C. Se evalua el efecto que tiene la instalacion de enfriadores evaporativos y/o un sistema de enfriamiento por absorcion en la succion del compresor de la turbina de gas sobre la generacion de vapor en el recuperador de calor. Se cuantifica esta generacion extra de vapor para su posible utilizacion en el mismo sistema de refrigeracion por absorcion. De la evaluacion se

  19. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  20. Thorium-Based Fuel Cycles in the Modular High Temperature Reactor

    Institute of Scientific and Technical Information of China (English)

    CHANG Hong; YANG Yongwei; JING Xingqing; XU Yunlin

    2006-01-01

    Large stockpiles of civil-grade as well as weapons-grade plutonium have been accumulated in the world from nuclear power or other programs of different countries. One alternative for the management of the plutonium is to incinerate it in the high temperature reactor (HTR). The thorium-based fuel cycle was studied in the modular HTR to reduce weapons-grade plutonium stockpiles, while producing no additional plutonium or other transuranic elements. Three thorium-uranium fuel cycles were also investigated. The thorium absorption cross sections of the resolved and unresolved resonances were generated using the ZUT-DGL code based on existing resonance data. The equilibrium core of the modular HTR was calculated and analyzed by means of the code VSOP'94. The results show that the modular HTR can incinerate most of the initially loaded plutonium amounting to about 95.3% net 239Pu for weapons-grade plutonium and can effectively utilize the uranium and thorium in the thorium-uranium fuel cycles.