WorldWideScience

Sample records for based classification model

  1. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases...... the accuracy at the same time. The test example is classified using simpler and smaller model. The training examples in a particular cluster share the common vocabulary. At the time of clustering, we do not take into account the labels of the training examples. After the clusters have been created......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...

  2. Text document classification based on mixture models

    Czech Academy of Sciences Publication Activity Database

    Novovičová, Jana; Malík, Antonín

    2004-01-01

    Roč. 40, č. 3 (2004), s. 293-304 ISSN 0023-5954 R&D Projects: GA AV ČR IAA2075302; GA ČR GA102/03/0049; GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : text classification * text categorization * multinomial mixture model Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.224, year: 2004

  3. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  4. Sparse Representation Based Binary Hypothesis Model for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Yidong Tang

    2016-01-01

    Full Text Available The sparse representation based classifier (SRC and its kernel version (KSRC have been employed for hyperspectral image (HSI classification. However, the state-of-the-art SRC often aims at extended surface objects with linear mixture in smooth scene and assumes that the number of classes is given. Considering the small target with complex background, a sparse representation based binary hypothesis (SRBBH model is established in this paper. In this model, a query pixel is represented in two ways, which are, respectively, by background dictionary and by union dictionary. The background dictionary is composed of samples selected from the local dual concentric window centered at the query pixel. Thus, for each pixel the classification issue becomes an adaptive multiclass classification problem, where only the number of desired classes is required. Furthermore, the kernel method is employed to improve the interclass separability. In kernel space, the coding vector is obtained by using kernel-based orthogonal matching pursuit (KOMP algorithm. Then the query pixel can be labeled by the characteristics of the coding vectors. Instead of directly using the reconstruction residuals, the different impacts the background dictionary and union dictionary have on reconstruction are used for validation and classification. It enhances the discrimination and hence improves the performance.

  5. A strategy learning model for autonomous agents based on classification

    Directory of Open Access Journals (Sweden)

    Śnieżyński Bartłomiej

    2015-09-01

    Full Text Available In this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement learning using the farmer-pest domain and configurations of various complexity. In complex environments, supervised learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process

  6. Group-Based Active Learning of Classification Models.

    Science.gov (United States)

    Luo, Zhipeng; Hauskrecht, Milos

    2017-05-01

    Learning of classification models from real-world data often requires additional human expert effort to annotate the data. However, this process can be rather costly and finding ways of reducing the human annotation effort is critical for this task. The objective of this paper is to develop and study new ways of providing human feedback for efficient learning of classification models by labeling groups of examples. Briefly, unlike traditional active learning methods that seek feedback on individual examples, we develop a new group-based active learning framework that solicits label information on groups of multiple examples. In order to describe groups in a user-friendly way, conjunctive patterns are used to compactly represent groups. Our empirical study on 12 UCI data sets demonstrates the advantages and superiority of our approach over both classic instance-based active learning work, as well as existing group-based active-learning methods.

  7. TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    N. Li

    2016-06-01

    Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  8. MODEL-BASED CLUSTERING FOR CLASSIFICATION OF AQUATIC SYSTEMS AND DIAGNOSIS OF ECOLOGICAL STRESS

    Science.gov (United States)

    Clustering approaches were developed using the classification likelihood, the mixture likelihood, and also using a randomization approach with a model index. Using a clustering approach based on the mixture and classification likelihoods, we have developed an algorithm that...

  9. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  10. Proposing a Hybrid Model Based on Robson's Classification for Better Impact on Trends of Cesarean Deliveries.

    Science.gov (United States)

    Hans, Punit; Rohatgi, Renu

    2017-06-01

    To construct a hybrid model classification for cesarean section (CS) deliveries based on the woman-characteristics (Robson's classification with additional layers of indications for CS, keeping in view low-resource settings available in India). This is a cross-sectional study conducted at Nalanda Medical College, Patna. All the women delivered from January 2016 to May 2016 in the labor ward were included. Results obtained were compared with the values obtained for India, from secondary analysis of WHO multi-country survey (2010-2011) by Joshua Vogel and colleagues' study published in "The Lancet Global Health." The three classifications (indication-based, Robson's and hybrid model) applied for categorization of the cesarean deliveries from the same sample of data and a semiqualitative evaluations done, considering the main characteristics, strengths and weaknesses of each classification system. The total number of women delivered during study period was 1462, out of which CS deliveries were 471. Overall, CS rate calculated for NMCH, hospital in this specified period, was 32.21% ( p  = 0.001). Hybrid model scored 23/23, and scores of Robson classification and indication-based classification were 21/23 and 10/23, respectively. Single-study centre and referral bias are the limitations of the study. Given the flexibility of the classifications, we constructed a hybrid model based on the woman-characteristics system with additional layers of other classification. Indication-based classification answers why, Robson classification answers on whom, while through our hybrid model we get to know why and on whom cesarean deliveries are being performed.

  11. Model-based segmentation and classification of trajectories (Extended abstract)

    NARCIS (Netherlands)

    Alewijnse, S.P.A.; Buchin, K.; Buchin, M.; Sijben, S.; Westenberg, M.A.

    2014-01-01

    We present efficient algorithms for segmenting and classifying a trajectory based on a parameterized movement model like the Brownian bridge movement model. Segmentation is the problem of subdividing a trajectory into parts such that each art is homogeneous in its movement characteristics. We

  12. AN ADABOOST OPTIMIZED CCFIS BASED CLASSIFICATION MODEL FOR BREAST CANCER DETECTION

    Directory of Open Access Journals (Sweden)

    CHANDRASEKAR RAVI

    2017-06-01

    Full Text Available Classification is a Data Mining technique used for building a prototype of the data behaviour, using which an unseen data can be classified into one of the defined classes. Several researchers have proposed classification techniques but most of them did not emphasis much on the misclassified instances and storage space. In this paper, a classification model is proposed that takes into account the misclassified instances and storage space. The classification model is efficiently developed using a tree structure for reducing the storage complexity and uses single scan of the dataset. During the training phase, Class-based Closed Frequent ItemSets (CCFIS were mined from the training dataset in the form of a tree structure. The classification model has been developed using the CCFIS and a similarity measure based on Longest Common Subsequence (LCS. Further, the Particle Swarm Optimization algorithm is applied on the generated CCFIS, which assigns weights to the itemsets and their associated classes. Most of the classifiers are correctly classifying the common instances but they misclassify the rare instances. In view of that, AdaBoost algorithm has been used to boost the weights of the misclassified instances in the previous round so as to include them in the training phase to classify the rare instances. This improves the accuracy of the classification model. During the testing phase, the classification model is used to classify the instances of the test dataset. Breast Cancer dataset from UCI repository is used for experiment. Experimental analysis shows that the accuracy of the proposed classification model outperforms the PSOAdaBoost-Sequence classifier by 7% superior to other approaches like Naïve Bayes Classifier, Support Vector Machine Classifier, Instance Based Classifier, ID3 Classifier, J48 Classifier, etc.

  13. A classification model of Hyperion image base on SAM combined decision tree

    Science.gov (United States)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model

  14. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models

    DEFF Research Database (Denmark)

    Kheir, Rania Bou; Greve, Mogens Humlekrog; Bøcher, Peder Klith

    2010-01-01

    the geographic distribution of SOC across Denmark using remote sensing (RS), geographic information systems (GISs) and decision-tree modeling (un-pruned and pruned classification trees). Seventeen parameters, i.e. parent material, soil type, landscape type, elevation, slope gradient, slope aspect, mean curvature...... field measurements in the area of interest (Denmark). A large number of tree-based classification models (588) were developed using (i) all of the parameters, (ii) all Digital Elevation Model (DEM) parameters only, (iii) the primary DEM parameters only, (iv), the remote sensing (RS) indices only, (v......) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME...

  15. Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices

    OpenAIRE

    Munteanu, Cristian Robert

    2014-01-01

    Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)

  16. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.

    Directory of Open Access Journals (Sweden)

    Jennifer Howcroft

    Full Text Available Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521. Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.

  17. Model-based object classification using unification grammars and abstract representations

    Science.gov (United States)

    Liburdy, Kathleen A.; Schalkoff, Robert J.

    1993-04-01

    The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.

  18. SVM classification model in depression recognition based on mutation PSO parameter optimization

    Directory of Open Access Journals (Sweden)

    Zhang Ming

    2017-01-01

    Full Text Available At present, the clinical diagnosis of depression is mainly through structured interviews by psychiatrists, which is lack of objective diagnostic methods, so it causes the higher rate of misdiagnosis. In this paper, a method of depression recognition based on SVM and particle swarm optimization algorithm mutation is proposed. To address on the problem that particle swarm optimization (PSO algorithm easily trap in local optima, we propose a feedback mutation PSO algorithm (FBPSO to balance the local search and global exploration ability, so that the parameters of the classification model is optimal. We compared different PSO mutation algorithms about classification accuracy for depression, and found the classification accuracy of support vector machine (SVM classifier based on feedback mutation PSO algorithm is the highest. Our study promotes important reference value for establishing auxiliary diagnostic used in depression recognition of clinical diagnosis.

  19. Latent classification models

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2005-01-01

    parametric family ofdistributions.  In this paper we propose a new set of models forclassification in continuous domains, termed latent classificationmodels. The latent classification model can roughly be seen ascombining the \\NB model with a mixture of factor analyzers,thereby relaxing the assumptions...... classification model, and wedemonstrate empirically that the accuracy of the proposed model issignificantly higher than the accuracy of other probabilisticclassifiers....

  20. Application of a niche-based model for forest cover classification

    Directory of Open Access Journals (Sweden)

    Amici V

    2012-05-01

    Full Text Available In recent years, a surge of interest in biodiversity conservation have led to the development of new approaches to facilitate ecologically-based conservation policies and management plans. In particular, image classification and predictive distribution modeling applied to forest habitats, constitute a crucial issue as forests constitute the most widespread vegetation type and play a key role for ecosystem functioning. Then, the general purpose of this study is to develop a framework that in the absence of large amounts of field data for large areas may allow to select the most appropriate classification. In some cases, a hard division of classes is required, especially as support to environmental policies; despite this it is necessary to take into account problems which derive from a crisp view of ecological entities being mapped, since habitats are expected to be structurally complex and continuously vary within a landscape. In this paper, a niche model (MaxEnt, generally used to estimate species/habitat distribution, has been applied to classify forest cover in a complex Mediterranean area and to estimate the probability distribution of four forest types, producing continuous maps of forest cover. The use of the obtained models as validation of model for crisp classifications, highlighted that crisp classification, which is being continuously used in landscape research and planning, is not free from drawbacks as it is showing a high degree of inner variability. The modeling approach followed by this study, taking into account the uncertainty proper of the natural ecosystems and the use of environmental variables in land cover classification, may represent an useful approach to making more efficient and effective field inventories and to developing effective forest conservation policies.

  1. A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification

    Science.gov (United States)

    Liu, Tao; Im, Jungho; Quackenbush, Lindi J.

    2015-12-01

    This study provides a novel approach to individual tree crown delineation (ITCD) using airborne Light Detection and Ranging (LiDAR) data in dense natural forests using two main steps: crown boundary refinement based on a proposed Fishing Net Dragging (FiND) method, and segment merging based on boundary classification. FiND starts with approximate tree crown boundaries derived using a traditional watershed method with Gaussian filtering and refines these boundaries using an algorithm that mimics how a fisherman drags a fishing net. Random forest machine learning is then used to classify boundary segments into two classes: boundaries between trees and boundaries between branches that belong to a single tree. Three groups of LiDAR-derived features-two from the pseudo waveform generated along with crown boundaries and one from a canopy height model (CHM)-were used in the classification. The proposed ITCD approach was tested using LiDAR data collected over a mountainous region in the Adirondack Park, NY, USA. Overall accuracy of boundary classification was 82.4%. Features derived from the CHM were generally more important in the classification than the features extracted from the pseudo waveform. A comprehensive accuracy assessment scheme for ITCD was also introduced by considering both area of crown overlap and crown centroids. Accuracy assessment using this new scheme shows the proposed ITCD achieved 74% and 78% as overall accuracy, respectively, for deciduous and mixed forest.

  2. Design of a hybrid model for cardiac arrhythmia classification based on Daubechies wavelet transform.

    Science.gov (United States)

    Rajagopal, Rekha; Ranganathan, Vidhyapriya

    2018-06-05

    Automation in cardiac arrhythmia classification helps medical professionals make accurate decisions about the patient's health. The aim of this work was to design a hybrid classification model to classify cardiac arrhythmias. The design phase of the classification model comprises the following stages: preprocessing of the cardiac signal by eliminating detail coefficients that contain noise, feature extraction through Daubechies wavelet transform, and arrhythmia classification using a collaborative decision from the K nearest neighbor classifier (KNN) and a support vector machine (SVM). The proposed model is able to classify 5 arrhythmia classes as per the ANSI/AAMI EC57: 1998 classification standard. Level 1 of the proposed model involves classification using the KNN and the classifier is trained with examples from all classes. Level 2 involves classification using an SVM and is trained specifically to classify overlapped classes. The final classification of a test heartbeat pertaining to a particular class is done using the proposed KNN/SVM hybrid model. The experimental results demonstrated that the average sensitivity of the proposed model was 92.56%, the average specificity 99.35%, the average positive predictive value 98.13%, the average F-score 94.5%, and the average accuracy 99.78%. The results obtained using the proposed model were compared with the results of discriminant, tree, and KNN classifiers. The proposed model is able to achieve a high classification accuracy.

  3. Generative embedding for model-based classification of fMRI data.

    Directory of Open Access Journals (Sweden)

    Kay H Brodersen

    2011-06-01

    Full Text Available Decoding models, such as those underlying multivariate classification algorithms, have been increasingly used to infer cognitive or clinical brain states from measures of brain activity obtained by functional magnetic resonance imaging (fMRI. The practicality of current classifiers, however, is restricted by two major challenges. First, due to the high data dimensionality and low sample size, algorithms struggle to separate informative from uninformative features, resulting in poor generalization performance. Second, popular discriminative methods such as support vector machines (SVMs rarely afford mechanistic interpretability. In this paper, we address these issues by proposing a novel generative-embedding approach that incorporates neurobiologically interpretable generative models into discriminative classifiers. Our approach extends previous work on trial-by-trial classification for electrophysiological recordings to subject-by-subject classification for fMRI and offers two key advantages over conventional methods: it may provide more accurate predictions by exploiting discriminative information encoded in 'hidden' physiological quantities such as synaptic connection strengths; and it affords mechanistic interpretability of clinical classifications. Here, we introduce generative embedding for fMRI using a combination of dynamic causal models (DCMs and SVMs. We propose a general procedure of DCM-based generative embedding for subject-wise classification, provide a concrete implementation, and suggest good-practice guidelines for unbiased application of generative embedding in the context of fMRI. We illustrate the utility of our approach by a clinical example in which we classify moderately aphasic patients and healthy controls using a DCM of thalamo-temporal regions during speech processing. Generative embedding achieves a near-perfect balanced classification accuracy of 98% and significantly outperforms conventional activation-based and

  4. SVM Based Descriptor Selection and Classification of Neurodegenerative Disease Drugs for Pharmacological Modeling.

    Science.gov (United States)

    Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin

    2013-03-01

    Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Research on evaluating water resource resilience based on projection pursuit classification model

    Science.gov (United States)

    Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen

    2016-03-01

    Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.

  6. Video event classification and image segmentation based on noncausal multidimensional hidden Markov models.

    Science.gov (United States)

    Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A

    2009-06-01

    In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.

  7. Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI.

    Science.gov (United States)

    Tan, Ping; Tan, Guan-Zheng; Cai, Zi-Xing; Sa, Wei-Ping; Zou, Yi-Qun

    2017-01-01

    Extreme learning machine (ELM) is an effective machine learning technique with simple theory and fast implementation, which has gained increasing interest from various research fields recently. A new method that combines ELM with probabilistic model method is proposed in this paper to classify the electroencephalography (EEG) signals in synchronous brain-computer interface (BCI) system. In the proposed method, the softmax function is used to convert the ELM output to classification probability. The Chernoff error bound, deduced from the Bayesian probabilistic model in the training process, is adopted as the weight to take the discriminant process. Since the proposed method makes use of the knowledge from all preceding training datasets, its discriminating performance improves accumulatively. In the test experiments based on the datasets from BCI competitions, the proposed method is compared with other classification methods, including the linear discriminant analysis, support vector machine, ELM and weighted probabilistic model methods. For comparison, the mutual information, classification accuracy and information transfer rate are considered as the evaluation indicators for these classifiers. The results demonstrate that our method shows competitive performance against other methods.

  8. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre

    as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...

  9. Classification of human cancers based on DNA copy number amplification modeling

    Directory of Open Access Journals (Sweden)

    Knuutila Sakari

    2008-05-01

    Full Text Available Abstract Background DNA amplifications alter gene dosage in cancer genomes by multiplying the gene copy number. Amplifications are quintessential in a considerable number of advanced cancers of various anatomical locations. The aims of this study were to classify human cancers based on their amplification patterns, explore the biological and clinical fundamentals behind their amplification-pattern based classification, and understand the characteristics in human genomic architecture that associate with amplification mechanisms. Methods We applied a machine learning approach to model DNA copy number amplifications using a data set of binary amplification records at chromosome sub-band resolution from 4400 cases that represent 82 cancer types. Amplification data was fused with background data: clinical, histological and biological classifications, and cytogenetic annotations. Statistical hypothesis testing was used to mine associations between the data sets. Results Probabilistic clustering of each chromosome identified 111 amplification models and divided the cancer cases into clusters. The distribution of classification terms in the amplification-model based clustering of cancer cases revealed cancer classes that were associated with specific DNA copy number amplification models. Amplification patterns – finite or bounded descriptions of the ranges of the amplifications in the chromosome – were extracted from the clustered data and expressed according to the original cytogenetic nomenclature. This was achieved by maximal frequent itemset mining using the cluster-specific data sets. The boundaries of amplification patterns were shown to be enriched with fragile sites, telomeres, centromeres, and light chromosome bands. Conclusions Our results demonstrate that amplifications are non-random chromosomal changes and specifically selected in tumor tissue microenvironment. Furthermore, statistical evidence showed that specific chromosomal features

  10. SAR Imagery Simulation of Ship Based on Electromagnetic Calculations and Sea Clutter Modelling for Classification Applications

    International Nuclear Information System (INIS)

    Ji, K F; Zhao, Z; Xing, X W; Zou, H X; Zhou, S L

    2014-01-01

    Ship detection and classification with space-borne SAR has many potential applications within the maritime surveillance, fishery activity management, monitoring ship traffic, and military security. While ship detection techniques with SAR imagery are well established, ship classification is still an open issue. One of the main reasons may be ascribed to the difficulties on acquiring the required quantities of real data of vessels under different observation and environmental conditions with precise ground truth. Therefore, simulation of SAR images with high scenario flexibility and reasonable computation costs is compulsory for ship classification algorithms development. However, the simulation of SAR imagery of ship over sea surface is challenging. Though great efforts have been devoted to tackle this difficult problem, it is far from being conquered. This paper proposes a novel scheme for SAR imagery simulation of ship over sea surface. The simulation is implemented based on high frequency electromagnetic calculations methods of PO, MEC, PTD and GO. SAR imagery of sea clutter is modelled by the representative K-distribution clutter model. Then, the simulated SAR imagery of ship can be produced by inserting the simulated SAR imagery chips of ship into the SAR imagery of sea clutter. The proposed scheme has been validated with canonical and complex ship targets over a typical sea scene

  11. Ligand and structure-based classification models for Prediction of P-glycoprotein inhibitors

    DEFF Research Database (Denmark)

    Klepsch, Freya; Poongavanam, Vasanthanathan; Ecker, Gerhard Franz

    2014-01-01

    an algorithm based on Euclidean distance. Results show that random forest and SVM performed best for classification of P-gp inhibitors and non-inhibitors, correctly predicting 73/75 % of the external test set compounds. Classification based on the docking experiments using the scoring function Chem...

  12. A physiologically-inspired model of numerical classification based on graded stimulus coding

    Directory of Open Access Journals (Sweden)

    John Pearson

    2010-01-01

    Full Text Available In most natural decision contexts, the process of selecting among competing actions takes place in the presence of informative, but potentially ambiguous, stimuli. Decisions about magnitudes—quantities like time, length, and brightness that are linearly ordered—constitute an important subclass of such decisions. It has long been known that perceptual judgments about such quantities obey Weber’s Law, wherein the just-noticeable difference in a magnitude is proportional to the magnitude itself. Current physiologically inspired models of numerical classification assume discriminations are made via a labeled line code of neurons selectively tuned for numerosity, a pattern observed in the firing rates of neurons in the ventral intraparietal area (VIP of the macaque. By contrast, neurons in the contiguous lateral intraparietal area (LIP signal numerosity in a graded fashion, suggesting the possibility that numerical classification could be achieved in the absence of neurons tuned for number. Here, we consider the performance of a decision model based on this analog coding scheme in a paradigmatic discrimination task—numerosity bisection. We demonstrate that a basic two-neuron classifier model, derived from experimentally measured monotonic responses of LIP neurons, is sufficient to reproduce the numerosity bisection behavior of monkeys, and that the threshold of the classifier can be set by reward maximization via a simple learning rule. In addition, our model predicts deviations from Weber Law scaling of choice behavior at high numerosity. Together, these results suggest both a generic neuronal framework for magnitude-based decisions and a role for reward contingency in the classification of such stimuli.

  13. A stylistic classification of Russian-language texts based on the random walk model

    Science.gov (United States)

    Kramarenko, A. A.; Nekrasov, K. A.; Filimonov, V. V.; Zhivoderov, A. A.; Amieva, A. A.

    2017-09-01

    A formal approach to text analysis is suggested that is based on the random walk model. The frequencies and reciprocal positions of the vowel letters are matched up by a process of quasi-particle migration. Statistically significant difference in the migration parameters for the texts of different functional styles is found. Thus, a possibility of classification of texts using the suggested method is demonstrated. Five groups of the texts are singled out that can be distinguished from one another by the parameters of the quasi-particle migration process.

  14. A Classification Model and an Open E-Learning System Based on Intuitionistic Fuzzy Sets for Instructional Design Concepts

    Science.gov (United States)

    Güyer, Tolga; Aydogdu, Seyhmus

    2016-01-01

    This study suggests a classification model and an e-learning system based on this model for all instructional theories, approaches, models, strategies, methods, and technics being used in the process of instructional design that constitutes a direct or indirect resource for educational technology based on the theory of intuitionistic fuzzy sets…

  15. Prospective identification of adolescent suicide ideation using classification tree analysis: Models for community-based screening.

    Science.gov (United States)

    Hill, Ryan M; Oosterhoff, Benjamin; Kaplow, Julie B

    2017-07-01

    Although a large number of risk markers for suicide ideation have been identified, little guidance has been provided to prospectively identify adolescents at risk for suicide ideation within community settings. The current study addressed this gap in the literature by utilizing classification tree analysis (CTA) to provide a decision-making model for screening adolescents at risk for suicide ideation. Participants were N = 4,799 youth (Mage = 16.15 years, SD = 1.63) who completed both Waves 1 and 2 of the National Longitudinal Study of Adolescent to Adult Health. CTA was used to generate a series of decision rules for identifying adolescents at risk for reporting suicide ideation at Wave 2. Findings revealed 3 distinct solutions with varying sensitivity and specificity for identifying adolescents who reported suicide ideation. Sensitivity of the classification trees ranged from 44.6% to 77.6%. The tree with greatest specificity and lowest sensitivity was based on a history of suicide ideation. The tree with moderate sensitivity and high specificity was based on depressive symptoms, suicide attempts or suicide among family and friends, and social support. The most sensitive but least specific tree utilized these factors and gender, ethnicity, hours of sleep, school-related factors, and future orientation. These classification trees offer community organizations options for instituting large-scale screenings for suicide ideation risk depending on the available resources and modality of services to be provided. This study provides a theoretically and empirically driven model for prospectively identifying adolescents at risk for suicide ideation and has implications for preventive interventions among at-risk youth. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Site effect classification based on microtremor data analysis using a concentration-area fractal model

    Science.gov (United States)

    Adib, A.; Afzal, P.; Heydarzadeh, K.

    2015-01-01

    The aim of this study is to classify the site effect using concentration-area (C-A) fractal model in Meybod city, central Iran, based on microtremor data analysis. Log-log plots of the frequency, amplification and vulnerability index (k-g) indicate a multifractal nature for the parameters in the area. The results obtained from the C-A fractal modelling reveal that proper soil types are located around the central city. The results derived via the fractal modelling were utilized to improve the Nogoshi and Igarashi (1970, 1971) classification results in the Meybod city. The resulting categories are: (1) hard soil and weak rock with frequency of 6.2 to 8 Hz, (2) stiff soil with frequency of about 4.9 to 6.2 Hz, (3) moderately soft soil with the frequency of 2.4 to 4.9 Hz, and (4) soft soil with the frequency lower than 2.4 Hz.

  17. Site effect classification based on microtremor data analysis using concentration-area fractal model

    Science.gov (United States)

    Adib, A.; Afzal, P.; Heydarzadeh, K.

    2014-07-01

    The aim of this study is to classify the site effect using concentration-area (C-A) fractal model in Meybod city, Central Iran, based on microtremor data analysis. Log-log plots of the frequency, amplification and vulnerability index (k-g) indicate a multifractal nature for the parameters in the area. The results obtained from the C-A fractal modeling reveal that proper soil types are located around the central city. The results derived via the fractal modeling were utilized to improve the Nogoshi's classification results in the Meybod city. The resulted categories are: (1) hard soil and weak rock with frequency of 6.2 to 8 Hz, (2) stiff soil with frequency of about 4.9 to 6.2 Hz, (3) moderately soft soil with the frequency of 2.4 to 4.9 Hz, and (4) soft soil with the frequency lower than 2.4 Hz.

  18. Approach for Text Classification Based on the Similarity Measurement between Normal Cloud Models

    Directory of Open Access Journals (Sweden)

    Jin Dai

    2014-01-01

    Full Text Available The similarity between objects is the core research area of data mining. In order to reduce the interference of the uncertainty of nature language, a similarity measurement between normal cloud models is adopted to text classification research. On this basis, a novel text classifier based on cloud concept jumping up (CCJU-TC is proposed. It can efficiently accomplish conversion between qualitative concept and quantitative data. Through the conversion from text set to text information table based on VSM model, the text qualitative concept, which is extraction from the same category, is jumping up as a whole category concept. According to the cloud similarity between the test text and each category concept, the test text is assigned to the most similar category. By the comparison among different text classifiers in different feature selection set, it fully proves that not only does CCJU-TC have a strong ability to adapt to the different text features, but also the classification performance is also better than the traditional classifiers.

  19. Model for Detection and Classification of DDoS Traffic Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    D. Peraković

    2017-06-01

    Full Text Available Detection of DDoS (Distributed Denial of Service traffic is of great importance for the availability protection of services and other information and communication resources. The research presented in this paper shows the application of artificial neural networks in the development of detection and classification model for three types of DDoS attacks and legitimate network traffic. Simulation results of developed model showed accuracy of 95.6% in classification of pre-defined classes of traffic.

  20. Granular loess classification based

    International Nuclear Information System (INIS)

    Browzin, B.S.

    1985-01-01

    This paper discusses how loess might be identified by two index properties: the granulometric composition and the dry unit weight. These two indices are necessary but not always sufficient for identification of loess. On the basis of analyses of samples from three continents, it was concluded that the 0.01-0.5-mm fraction deserves the name loessial fraction. Based on the loessial fraction concept, a granulometric classification of loess is proposed. A triangular chart is used to classify loess

  1. Model-based Clustering of Categorical Time Series with Multinomial Logit Classification

    Science.gov (United States)

    Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea

    2010-09-01

    A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.

  2. Generalized outcome-based strategy classification: comparing deterministic and probabilistic choice models.

    Science.gov (United States)

    Hilbig, Benjamin E; Moshagen, Morten

    2014-12-01

    Model comparisons are a vital tool for disentangling which of several strategies a decision maker may have used--that is, which cognitive processes may have governed observable choice behavior. However, previous methodological approaches have been limited to models (i.e., decision strategies) with deterministic choice rules. As such, psychologically plausible choice models--such as evidence-accumulation and connectionist models--that entail probabilistic choice predictions could not be considered appropriately. To overcome this limitation, we propose a generalization of Bröder and Schiffer's (Journal of Behavioral Decision Making, 19, 361-380, 2003) choice-based classification method, relying on (1) parametric order constraints in the multinomial processing tree framework to implement probabilistic models and (2) minimum description length for model comparison. The advantages of the generalized approach are demonstrated through recovery simulations and an experiment. In explaining previous methods and our generalization, we maintain a nontechnical focus--so as to provide a practical guide for comparing both deterministic and probabilistic choice models.

  3. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    Directory of Open Access Journals (Sweden)

    C. Fernandez-Lozano

    2013-01-01

    Full Text Available Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM. Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA, the most representative variables for a specific classification problem can be selected.

  4. Prototype-based Models for the Supervised Learning of Classification Schemes

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2017-06-01

    An introduction is given to the use of prototype-based models in supervised machine learning. The main concept of the framework is to represent previously observed data in terms of so-called prototypes, which reflect typical properties of the data. Together with a suitable, discriminative distance or dissimilarity measure, prototypes can be used for the classification of complex, possibly high-dimensional data. We illustrate the framework in terms of the popular Learning Vector Quantization (LVQ). Most frequently, standard Euclidean distance is employed as a distance measure. We discuss how LVQ can be equipped with more general dissimilarites. Moreover, we introduce relevance learning as a tool for the data-driven optimization of parameterized distances.

  5. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    Science.gov (United States)

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  6. A unified model for context-based behavioural modelling and classification.

    CSIR Research Space (South Africa)

    Dabrowski, JJ

    2015-11-01

    Full Text Available the continuous dynamics of a entity and incorporating various contextual elements that influence behaviour. The entity is classified according to its behaviour. Classification is expressed as a conditional probability of the entity class given its tracked...

  7. Churn classification model for local telecommunication company ...

    African Journals Online (AJOL)

    ... model based on the Rough Set Theory to classify customer churn. The results of the study show that the proposed Rough Set classification model outperforms the existing models and contributes to significant accuracy improvement. Keywords: customer churn; classification model; telecommunication industry; data mining;

  8. Assimilation of a knowledge base and physical models to reduce errors in passive-microwave classifications of sea ice

    Science.gov (United States)

    Maslanik, J. A.; Key, J.

    1992-01-01

    An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.

  9. An application to pulmonary emphysema classification based on model of texton learning by sparse representation

    Science.gov (United States)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryojiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2012-03-01

    We aim at using a new texton based texture classification method in the classification of pulmonary emphysema in computed tomography (CT) images of the lungs. Different from conventional computer-aided diagnosis (CAD) pulmonary emphysema classification methods, in this paper, firstly, the dictionary of texton is learned via applying sparse representation(SR) to image patches in the training dataset. Then the SR coefficients of the test images over the dictionary are used to construct the histograms for texture presentations. Finally, classification is performed by using a nearest neighbor classifier with a histogram dissimilarity measure as distance. The proposed approach is tested on 3840 annotated regions of interest consisting of normal tissue and mild, moderate and severe pulmonary emphysema of three subtypes. The performance of the proposed system, with an accuracy of about 88%, is comparably higher than state of the art method based on the basic rotation invariant local binary pattern histograms and the texture classification method based on texton learning by k-means, which performs almost the best among other approaches in the literature.

  10. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    Science.gov (United States)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  11. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data.

    Science.gov (United States)

    Guo, Yang; Liu, Shuhui; Li, Zhanhuai; Shang, Xuequn

    2018-04-11

    The classification of cancer subtypes is of great importance to cancer disease diagnosis and therapy. Many supervised learning approaches have been applied to cancer subtype classification in the past few years, especially of deep learning based approaches. Recently, the deep forest model has been proposed as an alternative of deep neural networks to learn hyper-representations by using cascade ensemble decision trees. It has been proved that the deep forest model has competitive or even better performance than deep neural networks in some extent. However, the standard deep forest model may face overfitting and ensemble diversity challenges when dealing with small sample size and high-dimensional biology data. In this paper, we propose a deep learning model, so-called BCDForest, to address cancer subtype classification on small-scale biology datasets, which can be viewed as a modification of the standard deep forest model. The BCDForest distinguishes from the standard deep forest model with the following two main contributions: First, a named multi-class-grained scanning method is proposed to train multiple binary classifiers to encourage diversity of ensemble. Meanwhile, the fitting quality of each classifier is considered in representation learning. Second, we propose a boosting strategy to emphasize more important features in cascade forests, thus to propagate the benefits of discriminative features among cascade layers to improve the classification performance. Systematic comparison experiments on both microarray and RNA-Seq gene expression datasets demonstrate that our method consistently outperforms the state-of-the-art methods in application of cancer subtype classification. The multi-class-grained scanning and boosting strategy in our model provide an effective solution to ease the overfitting challenge and improve the robustness of deep forest model working on small-scale data. Our model provides a useful approach to the classification of cancer subtypes

  12. Classification of forensic autopsy reports through conceptual graph-based document representation model.

    Science.gov (United States)

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2018-06-01

    Text categorization has been used extensively in recent years to classify plain-text clinical reports. This study employs text categorization techniques for the classification of open narrative forensic autopsy reports. One of the key steps in text classification is document representation. In document representation, a clinical report is transformed into a format that is suitable for classification. The traditional document representation technique for text categorization is the bag-of-words (BoW) technique. In this study, the traditional BoW technique is ineffective in classifying forensic autopsy reports because it merely extracts frequent but discriminative features from clinical reports. Moreover, this technique fails to capture word inversion, as well as word-level synonymy and polysemy, when classifying autopsy reports. Hence, the BoW technique suffers from low accuracy and low robustness unless it is improved with contextual and application-specific information. To overcome the aforementioned limitations of the BoW technique, this research aims to develop an effective conceptual graph-based document representation (CGDR) technique to classify 1500 forensic autopsy reports from four (4) manners of death (MoD) and sixteen (16) causes of death (CoD). Term-based and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) based conceptual features were extracted and represented through graphs. These features were then used to train a two-level text classifier. The first level classifier was responsible for predicting MoD. In addition, the second level classifier was responsible for predicting CoD using the proposed conceptual graph-based document representation technique. To demonstrate the significance of the proposed technique, its results were compared with those of six (6) state-of-the-art document representation techniques. Lastly, this study compared the effects of one-level classification and two-level classification on the experimental results

  13. BClass: A Bayesian Approach Based on Mixture Models for Clustering and Classification of Heterogeneous Biological Data

    Directory of Open Access Journals (Sweden)

    Arturo Medrano-Soto

    2004-12-01

    Full Text Available Based on mixture models, we present a Bayesian method (called BClass to classify biological entities (e.g. genes when variables of quite heterogeneous nature are analyzed. Various statistical distributions are used to model the continuous/categorical data commonly produced by genetic experiments and large-scale genomic projects. We calculate the posterior probability of each entry to belong to each element (group in the mixture. In this way, an original set of heterogeneous variables is transformed into a set of purely homogeneous characteristics represented by the probabilities of each entry to belong to the groups. The number of groups in the analysis is controlled dynamically by rendering the groups as 'alive' and 'dormant' depending upon the number of entities classified within them. Using standard Metropolis-Hastings and Gibbs sampling algorithms, we constructed a sampler to approximate posterior moments and grouping probabilities. Since this method does not require the definition of similarity measures, it is especially suitable for data mining and knowledge discovery in biological databases. We applied BClass to classify genes in RegulonDB, a database specialized in information about the transcriptional regulation of gene expression in the bacterium Escherichia coli. The classification obtained is consistent with current knowledge and allowed prediction of missing values for a number of genes. BClass is object-oriented and fully programmed in Lisp-Stat. The output grouping probabilities are analyzed and interpreted using graphical (dynamically linked plots and query-based approaches. We discuss the advantages of using Lisp-Stat as a programming language as well as the problems we faced when the data volume increased exponentially due to the ever-growing number of genomic projects.

  14. Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short Term Solar PV Power Forecasting

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-12-01

    Full Text Available Accurate solar photovoltaic (PV power forecasting is an essential tool for mitigating the negative effects caused by the uncertainty of PV output power in systems with high penetration levels of solar PV generation. Weather classification based modeling is an effective way to increase the accuracy of day-ahead short-term (DAST solar PV power forecasting because PV output power is strongly dependent on the specific weather conditions in a given time period. However, the accuracy of daily weather classification relies on both the applied classifiers and the training data. This paper aims to reveal how these two factors impact the classification performance and to delineate the relation between classification accuracy and sample dataset scale. Two commonly used classification methods, K-nearest neighbors (KNN and support vector machines (SVM are applied to classify the daily local weather types for DAST solar PV power forecasting using the operation data from a grid-connected PV plant in Hohhot, Inner Mongolia, China. We assessed the performance of SVM and KNN approaches, and then investigated the influences of sample scale, the number of categories, and the data distribution in different categories on the daily weather classification results. The simulation results illustrate that SVM performs well with small sample scale, while KNN is more sensitive to the length of the training dataset and can achieve higher accuracy than SVM with sufficient samples.

  15. Statistical Fractal Models Based on GND-PCA and Its Application on Classification of Liver Diseases

    Directory of Open Access Journals (Sweden)

    Huiyan Jiang

    2013-01-01

    Full Text Available A new method is proposed to establish the statistical fractal model for liver diseases classification. Firstly, the fractal theory is used to construct the high-order tensor, and then Generalized -dimensional Principal Component Analysis (GND-PCA is used to establish the statistical fractal model and select the feature from the region of liver; at the same time different features have different weights, and finally, Support Vector Machine Optimized Ant Colony (ACO-SVM algorithm is used to establish the classifier for the recognition of liver disease. In order to verify the effectiveness of the proposed method, PCA eigenface method and normal SVM method are chosen as the contrast methods. The experimental results show that the proposed method can reconstruct liver volume better and improve the classification accuracy of liver diseases.

  16. Latent class models for classification

    NARCIS (Netherlands)

    Vermunt, J.K.; Magidson, J.

    2003-01-01

    An overview is provided of recent developments in the use of latent class (LC) and other types of finite mixture models for classification purposes. Several extensions of existing models are presented. Two basic types of LC models for classification are defined: supervised and unsupervised

  17. Object based classification of high resolution data in urban areas considering digital surface models

    OpenAIRE

    Oczipka, Martin Eckhard

    2010-01-01

    Over the last couple of years more and more analogue airborne cameras were replaced by digital cameras. Digitally recorded image data have significant advantages to film based data. Digital aerial photographs have a much better radiometric resolution. Image information can be acquired in shaded areas too. This information is essential for a stable and continuous classification, because no data or unclassified areas should be as small as possible. Considering this technological progress, on...

  18. In Vivo Mouse Intervertebral Disc Degeneration Model Based on a New Histological Classification.

    Directory of Open Access Journals (Sweden)

    Takashi Ohnishi

    Full Text Available Although human intervertebral disc degeneration can lead to several spinal diseases, its pathogenesis remains unclear. This study aimed to create a new histological classification applicable to an in vivo mouse intervertebral disc degeneration model induced by needle puncture. One hundred six mice were operated and the L4/5 intervertebral disc was punctured with a 35- or 33-gauge needle. Micro-computed tomography scanning was performed, and the punctured region was confirmed. Evaluation was performed by using magnetic resonance imaging and histology by employing our classification scoring system. Our histological classification scores correlated well with the findings of magnetic resonance imaging and could detect degenerative progression, irrespective of the punctured region. However, the magnetic resonance imaging analysis revealed that there was no significant degenerative intervertebral disc change between the ventrally punctured and non-punctured control groups. To induce significant degeneration in the lumbar intervertebral discs, the central or dorsal region should be punctured instead of the ventral region.

  19. Pulmonary emphysema classification based on an improved texton learning model by sparse representation

    Science.gov (United States)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2013-03-01

    In this paper, we present a texture classification method based on texton learned via sparse representation (SR) with new feature histogram maps in the classification of emphysema. First, an overcomplete dictionary of textons is learned via KSVD learning on every class image patches in the training dataset. In this stage, high-pass filter is introduced to exclude patches in smooth area to speed up the dictionary learning process. Second, 3D joint-SR coefficients and intensity histograms of the test images are used for characterizing regions of interest (ROIs) instead of conventional feature histograms constructed from SR coefficients of the test images over the dictionary. Classification is then performed using a classifier with distance as a histogram dissimilarity measure. Four hundreds and seventy annotated ROIs extracted from 14 test subjects, including 6 paraseptal emphysema (PSE) subjects, 5 centrilobular emphysema (CLE) subjects and 3 panlobular emphysema (PLE) subjects, are used to evaluate the effectiveness and robustness of the proposed method. The proposed method is tested on 167 PSE, 240 CLE and 63 PLE ROIs consisting of mild, moderate and severe pulmonary emphysema. The accuracy of the proposed system is around 74%, 88% and 89% for PSE, CLE and PLE, respectively.

  20. Modeling Wood Fibre Length in Black Spruce (Picea mariana (Mill. BSP Based on Ecological Land Classification

    Directory of Open Access Journals (Sweden)

    Elisha Townshend

    2015-09-01

    Full Text Available Effective planning to optimize the forest value chain requires accurate and detailed information about the resource; however, estimates of the distribution of fibre properties on the landscape are largely unavailable prior to harvest. Our objective was to fit a model of the tree-level average fibre length related to ecosite classification and other forest inventory variables depicted at the landscape scale. A series of black spruce increment cores were collected at breast height from trees in nine different ecosite groups within the boreal forest of northeastern Ontario, and processed using standard techniques for maceration and fibre length measurement. Regression tree analysis and random forests were used to fit hierarchical classification models and find the most important predictor variables for the response variable area-weighted mean stem-level fibre length. Ecosite group was the best predictor in the regression tree. Longer mean fibre-length was associated with more productive ecosites that supported faster growth. The explanatory power of the model of fitted data was good; however, random forests simulations indicated poor generalizability. These results suggest the potential to develop localized models linking wood fibre length in black spruce to landscape-level attributes, and improve the sustainability of forest management by identifying ideal locations to harvest wood that has desirable fibre characteristics.

  1. Persistent pulmonary subsolid nodules: model-based iterative reconstruction for nodule classification and measurement variability on low-dose CT

    International Nuclear Information System (INIS)

    Kim, Hyungjin; Kim, Seong Ho; Lee, Sang Min; Lee, Kyung Hee; Park, Chang Min; Park, Sang Joon; Goo, Jin Mo

    2014-01-01

    To compare the pulmonary subsolid nodule (SSN) classification agreement and measurement variability between filtered back projection (FBP) and model-based iterative reconstruction (MBIR). Low-dose CTs were reconstructed using FBP and MBIR for 47 patients with 47 SSNs. Two readers independently classified SSNs into pure or part-solid ground-glass nodules, and measured the size of the whole nodule and solid portion twice on both reconstruction algorithms. Nodule classification agreement was analyzed using Cohen's kappa and compared between reconstruction algorithms using McNemar's test. Measurement variability was investigated using Bland-Altman analysis and compared with the paired t-test. Cohen's kappa for inter-reader SSN classification agreement was 0.541-0.662 on FBP and 0.778-0.866 on MBIR. Between the two readers, nodule classification was consistent in 79.8 % (75/94) with FBP and 91.5 % (86/94) with MBIR (p = 0.027). Inter-reader measurement variability range was -5.0-2.1 mm on FBP and -3.3-1.8 mm on MBIR for whole nodule size, and was -6.5-0.9 mm on FBP and -5.5-1.5 mm on MBIR for solid portion size. Inter-reader measurement differences were significantly smaller on MBIR (p = 0.027, whole nodule; p = 0.011, solid portion). MBIR significantly improved SSN classification agreement and reduced measurement variability of both whole nodules and solid portions between readers. (orig.)

  2. A unified model for context-based behavioural modelling and classification

    CSIR Research Space (South Africa)

    Dabrowski, JJ

    2015-11-01

    Full Text Available maritime environment. The simulated data is produced from a generative statistical model that is discussed in (Dabrowski and de Villiers, 2015). The simulation provides tracked coordinates of maritime vessels over a specified region. Sailing conditions over...

  3. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    Science.gov (United States)

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  4. A New Classification Approach Based on Multiple Classification Rules

    OpenAIRE

    Zhongmei Zhou

    2014-01-01

    A good classifier can correctly predict new data for which the class label is unknown, so it is important to construct a high accuracy classifier. Hence, classification techniques are much useful in ubiquitous computing. Associative classification achieves higher classification accuracy than some traditional rule-based classification approaches. However, the approach also has two major deficiencies. First, it generates a very large number of association classification rules, especially when t...

  5. Persistent pulmonary subsolid nodules: model-based iterative reconstruction for nodule classification and measurement variability on low-dose CT.

    Science.gov (United States)

    Kim, Hyungjin; Park, Chang Min; Kim, Seong Ho; Lee, Sang Min; Park, Sang Joon; Lee, Kyung Hee; Goo, Jin Mo

    2014-11-01

    To compare the pulmonary subsolid nodule (SSN) classification agreement and measurement variability between filtered back projection (FBP) and model-based iterative reconstruction (MBIR). Low-dose CTs were reconstructed using FBP and MBIR for 47 patients with 47 SSNs. Two readers independently classified SSNs into pure or part-solid ground-glass nodules, and measured the size of the whole nodule and solid portion twice on both reconstruction algorithms. Nodule classification agreement was analyzed using Cohen's kappa and compared between reconstruction algorithms using McNemar's test. Measurement variability was investigated using Bland-Altman analysis and compared with the paired t-test. Cohen's kappa for inter-reader SSN classification agreement was 0.541-0.662 on FBP and 0.778-0.866 on MBIR. Between the two readers, nodule classification was consistent in 79.8 % (75/94) with FBP and 91.5 % (86/94) with MBIR (p = 0.027). Inter-reader measurement variability range was -5.0-2.1 mm on FBP and -3.3-1.8 mm on MBIR for whole nodule size, and was -6.5-0.9 mm on FBP and -5.5-1.5 mm on MBIR for solid portion size. Inter-reader measurement differences were significantly smaller on MBIR (p = 0.027, whole nodule; p = 0.011, solid portion). MBIR significantly improved SSN classification agreement and reduced measurement variability of both whole nodules and solid portions between readers. • Low-dose CT using MBIR algorithm improves reproducibility in the classification of SSNs. • MBIR would enable more confident clinical planning according to the SSN type. • Reduced measurement variability on MBIR allows earlier detection of potentially malignant nodules.

  6. Deep learning-based fine-grained car make/model classification for visual surveillance

    Science.gov (United States)

    Gundogdu, Erhan; Parıldı, Enes Sinan; Solmaz, Berkan; Yücesoy, Veysel; Koç, Aykut

    2017-10-01

    Fine-grained object recognition is a potential computer vision problem that has been recently addressed by utilizing deep Convolutional Neural Networks (CNNs). Nevertheless, the main disadvantage of classification methods relying on deep CNN models is the need for considerably large amount of data. In addition, there exists relatively less amount of annotated data for a real world application, such as the recognition of car models in a traffic surveillance system. To this end, we mainly concentrate on the classification of fine-grained car make and/or models for visual scenarios by the help of two different domains. First, a large-scale dataset including approximately 900K images is constructed from a website which includes fine-grained car models. According to their labels, a state-of-the-art CNN model is trained on the constructed dataset. The second domain that is dealt with is the set of images collected from a camera integrated to a traffic surveillance system. These images, which are over 260K, are gathered by a special license plate detection method on top of a motion detection algorithm. An appropriately selected size of the image is cropped from the region of interest provided by the detected license plate location. These sets of images and their provided labels for more than 30 classes are employed to fine-tune the CNN model which is already trained on the large scale dataset described above. To fine-tune the network, the last two fully-connected layers are randomly initialized and the remaining layers are fine-tuned in the second dataset. In this work, the transfer of a learned model on a large dataset to a smaller one has been successfully performed by utilizing both the limited annotated data of the traffic field and a large scale dataset with available annotations. Our experimental results both in the validation dataset and the real field show that the proposed methodology performs favorably against the training of the CNN model from scratch.

  7. Emotion models for textual emotion classification

    Science.gov (United States)

    Bruna, O.; Avetisyan, H.; Holub, J.

    2016-11-01

    This paper deals with textual emotion classification which gained attention in recent years. Emotion classification is used in user experience, product evaluation, national security, and tutoring applications. It attempts to detect the emotional content in the input text and based on different approaches establish what kind of emotional content is present, if any. Textual emotion classification is the most difficult to handle, since it relies mainly on linguistic resources and it introduces many challenges to assignment of text to emotion represented by a proper model. A crucial part of each emotion detector is emotion model. Focus of this paper is to introduce emotion models used for classification. Categorical and dimensional models of emotion are explained and some more advanced approaches are mentioned.

  8. Fuzzy One-Class Classification Model Using Contamination Neighborhoods

    Directory of Open Access Journals (Sweden)

    Lev V. Utkin

    2012-01-01

    Full Text Available A fuzzy classification model is studied in the paper. It is based on the contaminated (robust model which produces fuzzy expected risk measures characterizing classification errors. Optimal classification parameters of the models are derived by minimizing the fuzzy expected risk. It is shown that an algorithm for computing the classification parameters is reduced to a set of standard support vector machine tasks with weighted data points. Experimental results with synthetic data illustrate the proposed fuzzy model.

  9. Structure based classification for bile salt export pump (BSEP) inhibitors using comparative structural modeling of human BSEP

    Science.gov (United States)

    Jain, Sankalp; Grandits, Melanie; Richter, Lars; Ecker, Gerhard F.

    2017-06-01

    The bile salt export pump (BSEP) actively transports conjugated monovalent bile acids from the hepatocytes into the bile. This facilitates the formation of micelles and promotes digestion and absorption of dietary fat. Inhibition of BSEP leads to decreased bile flow and accumulation of cytotoxic bile salts in the liver. A number of compounds have been identified to interact with BSEP, which results in drug-induced cholestasis or liver injury. Therefore, in silico approaches for flagging compounds as potential BSEP inhibitors would be of high value in the early stage of the drug discovery pipeline. Up to now, due to the lack of a high-resolution X-ray structure of BSEP, in silico based identification of BSEP inhibitors focused on ligand-based approaches. In this study, we provide a homology model for BSEP, developed using the corrected mouse P-glycoprotein structure (PDB ID: 4M1M). Subsequently, the model was used for docking-based classification of a set of 1212 compounds (405 BSEP inhibitors, 807 non-inhibitors). Using the scoring function ChemScore, a prediction accuracy of 81% on the training set and 73% on two external test sets could be obtained. In addition, the applicability domain of the models was assessed based on Euclidean distance. Further, analysis of the protein-ligand interaction fingerprints revealed certain functional group-amino acid residue interactions that could play a key role for ligand binding. Though ligand-based models, due to their high speed and accuracy, remain the method of choice for classification of BSEP inhibitors, structure-assisted docking models demonstrate reasonably good prediction accuracies while additionally providing information about putative protein-ligand interactions.

  10. Clear-sky classification procedures and models using a world-wide data-base

    International Nuclear Information System (INIS)

    Younes, S.; Muneer, T.

    2007-01-01

    Clear-sky data need to be extracted from all-sky measured solar-irradiance dataset, often by using algorithms that rely on other measured meteorological parameters. Current procedures for clear-sky data extraction have been examined and compared with each other to determine their reliability and location dependency. New clear-sky determination algorithms are proposed that are based on a combination of clearness index, diffuse ratio, cloud cover and Linke's turbidity limits. Various researchers have proposed clear-sky irradiance models that rely on synoptic parameters; four of these models, MRM, PRM, YRM and REST2 have been compared for six world-wide-locations. Based on a previously-developed comprehensive accuracy scoring method, the models MRM, REST2 and YRM were found to be of satisfactory performance in decreasing order. The so-called Page radiation model (PRM) was found to underestimate solar radiation, even though local turbidity data were provided for its operation

  11. A new in silico classification model for ready biodegradability, based on molecular fragments.

    Science.gov (United States)

    Lombardo, Anna; Pizzo, Fabiola; Benfenati, Emilio; Manganaro, Alberto; Ferrari, Thomas; Gini, Giuseppina

    2014-08-01

    Regulations such as the European REACH (Registration, Evaluation, Authorization and restriction of Chemicals) often require chemicals to be evaluated for ready biodegradability, to assess the potential risk for environmental and human health. Because not all chemicals can be tested, there is an increasing demand for tools for quick and inexpensive biodegradability screening, such as computer-based (in silico) theoretical models. We developed an in silico model starting from a dataset of 728 chemicals with ready biodegradability data (MITI-test Ministry of International Trade and Industry). We used the novel software SARpy to automatically extract, through a structural fragmentation process, a set of substructures statistically related to ready biodegradability. Then, we analysed these substructures in order to build some general rules. The model consists of a rule-set made up of the combination of the statistically relevant fragments and of the expert-based rules. The model gives good statistical performance with 92%, 82% and 76% accuracy on the training, test and external set respectively. These results are comparable with other in silico models like BIOWIN developed by the United States Environmental Protection Agency (EPA); moreover this new model includes an easily understandable explanation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mean – Variance parametric Model for the Classification based on Cries of Babies

    OpenAIRE

    Khalid Nazim S. A; Dr. M.B Sanjay Pande

    2010-01-01

    Cry is a feature which makes a individual to take certain care about the infant which has initiated it. It is also equally understood that cry makes a person to take certain steps. In the present work, we have tried to implement a mathematical model which can classify the cry into its cluster or group based on certain parameters based on which a cry is classified into a normal or abnormal. To corroborate the methodology we taken 17 distinguished features of cry. The implemented mathematical m...

  13. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.

    Science.gov (United States)

    Yildirim, Özal

    2018-05-01

    Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. THE LOW BACKSCATTERING OBJECTS CLASSIFICATION IN POLSAR IMAGE BASED ON BAG OF WORDS MODEL USING SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    L. Yang

    2018-04-01

    Full Text Available Due to the forward scattering and block of radar signal, the water, bare soil, shadow, named low backscattering objects (LBOs, often present low backscattering intensity in polarimetric synthetic aperture radar (PolSAR image. Because the LBOs rise similar backscattering intensity and polarimetric responses, the spectral-based classifiers are inefficient to deal with LBO classification, such as Wishart method. Although some polarimetric features had been exploited to relieve the confusion phenomenon, the backscattering features are still found unstable when the system noise floor varies in the range direction. This paper will introduce a simple but effective scene classification method based on Bag of Words (BoW model using Support Vector Machine (SVM to discriminate the LBOs, without relying on any polarimetric features. In the proposed approach, square windows are firstly opened around the LBOs adaptively to determine the scene images, and then the Scale-Invariant Feature Transform (SIFT points are detected in training and test scenes. The several SIFT features detected are clustered using K-means to obtain certain cluster centers as the visual word lists and scene images are represented using word frequency. At last, the SVM is selected for training and predicting new scenes as some kind of LBOs. The proposed method is executed over two AIRSAR data sets at C band and L band, including water, bare soil and shadow scenes. The experimental results illustrate the effectiveness of the scene method in distinguishing LBOs.

  15. Rough set classification based on quantum logic

    Science.gov (United States)

    Hassan, Yasser F.

    2017-11-01

    By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.

  16. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer.

    Science.gov (United States)

    Rogiers, Bart; Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain

    2017-01-01

    Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.

  17. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer.

    Directory of Open Access Journals (Sweden)

    Bart Rogiers

    Full Text Available Cone penetration testing (CPT is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.

  18. Deep learning based classification for head and neck cancer detection with hyperspectral imaging in an animal model

    Science.gov (United States)

    Ma, Ling; Lu, Guolan; Wang, Dongsheng; Wang, Xu; Chen, Zhuo Georgia; Muller, Susan; Chen, Amy; Fei, Baowei

    2017-03-01

    Hyperspectral imaging (HSI) is an emerging imaging modality that can provide a noninvasive tool for cancer detection and image-guided surgery. HSI acquires high-resolution images at hundreds of spectral bands, providing big data to differentiating different types of tissue. We proposed a deep learning based method for the detection of head and neck cancer with hyperspectral images. Since the deep learning algorithm can learn the feature hierarchically, the learned features are more discriminative and concise than the handcrafted features. In this study, we adopt convolutional neural networks (CNN) to learn the deep feature of pixels for classifying each pixel into tumor or normal tissue. We evaluated our proposed classification method on the dataset containing hyperspectral images from 12 tumor-bearing mice. Experimental results show that our method achieved an average accuracy of 91.36%. The preliminary study demonstrated that our deep learning method can be applied to hyperspectral images for detecting head and neck tumors in animal models.

  19. The attractor recurrent neural network based on fuzzy functions: An effective model for the classification of lung abnormalities.

    Science.gov (United States)

    Khodabakhshi, Mohammad Bagher; Moradi, Mohammad Hassan

    2017-05-01

    The respiratory system dynamic is of high significance when it comes to the detection of lung abnormalities, which highlights the importance of presenting a reliable model for it. In this paper, we introduce a novel dynamic modelling method for the characterization of the lung sounds (LS), based on the attractor recurrent neural network (ARNN). The ARNN structure allows the development of an effective LS model. Additionally, it has the capability to reproduce the distinctive features of the lung sounds using its formed attractors. Furthermore, a novel ARNN topology based on fuzzy functions (FFs-ARNN) is developed. Given the utility of the recurrent quantification analysis (RQA) as a tool to assess the nature of complex systems, it was used to evaluate the performance of both the ARNN and the FFs-ARNN models. The experimental results demonstrate the effectiveness of the proposed approaches for multichannel LS analysis. In particular, a classification accuracy of 91% was achieved using FFs-ARNN with sequences of RQA features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prediction of passive blood-brain partitioning: straightforward and effective classification models based on in silico derived physicochemical descriptors.

    Science.gov (United States)

    Vilar, Santiago; Chakrabarti, Mayukh; Costanzi, Stefano

    2010-06-01

    The distribution of compounds between blood and brain is a very important consideration for new candidate drug molecules. In this paper, we describe the derivation of two linear discriminant analysis (LDA) models for the prediction of passive blood-brain partitioning, expressed in terms of logBB values. The models are based on computationally derived physicochemical descriptors, namely the octanol/water partition coefficient (logP), the topological polar surface area (TPSA) and the total number of acidic and basic atoms, and were obtained using a homogeneous training set of 307 compounds, for all of which the published experimental logBB data had been determined in vivo. In particular, since molecules with logBB>0.3 cross the blood-brain barrier (BBB) readily while molecules with logBB<-1 are poorly distributed to the brain, on the basis of these thresholds we derived two distinct models, both of which show a percentage of good classification of about 80%. Notably, the predictive power of our models was confirmed by the analysis of a large external dataset of compounds with reported activity on the central nervous system (CNS) or lack thereof. The calculation of straightforward physicochemical descriptors is the only requirement for the prediction of the logBB of novel compounds through our models, which can be conveniently applied in conjunction with drug design and virtual screenings. Published by Elsevier Inc.

  1. Voice based gender classification using machine learning

    Science.gov (United States)

    Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.

    2017-11-01

    Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.

  2. Quality prediction modeling for multistage manufacturing based on classification and association rule mining

    Directory of Open Access Journals (Sweden)

    Kao Hung-An

    2017-01-01

    Full Text Available For manufacturing enterprises, product quality is a key factor to assess production capability and increase their core competence. To reduce external failure cost, many research and methodology have been introduced in order to improve process yield rate, such as TQC/TQM, Shewhart CycleDeming's 14 Points, etc. Nowadays, impressive progress has been made in process monitoring and industrial data analysis because of the Industry 4.0 trend. Industries start to utilize quality control (QC methodology to lower inspection overhead and internal failure cost. Currently, the focus of QC is mostly in the inspection of single workstation and final product, however, for multistage manufacturing, many factors (like equipment, operators, parameters, etc. can have cumulative and interactive effects to the final quality. When failure occurs, it is difficult to resume the original settings for cause analysis. To address these problems, this research proposes a combination of principal components analysis (PCA with classification and association rule mining algorithms to extract features representing relationship of multiple workstations, predict final product quality, and analyze the root-cause of product defect. The method is demonstrated on a semiconductor data set.

  3. Sentiment classification technology based on Markov logic networks

    Science.gov (United States)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  4. Predicting student satisfaction with courses based on log data from a virtual learning environment – a neural network and classification tree model

    Directory of Open Access Journals (Sweden)

    Ivana Đurđević Babić

    2015-03-01

    Full Text Available Student satisfaction with courses in academic institutions is an important issue and is recognized as a form of support in ensuring effective and quality education, as well as enhancing student course experience. This paper investigates whether there is a connection between student satisfaction with courses and log data on student courses in a virtual learning environment. Furthermore, it explores whether a successful classification model for predicting student satisfaction with course can be developed based on course log data and compares the results obtained from implemented methods. The research was conducted at the Faculty of Education in Osijek and included analysis of log data and course satisfaction on a sample of third and fourth year students. Multilayer Perceptron (MLP with different activation functions and Radial Basis Function (RBF neural networks as well as classification tree models were developed, trained and tested in order to classify students into one of two categories of course satisfaction. Type I and type II errors, and input variable importance were used for model comparison and classification accuracy. The results indicate that a successful classification model using tested methods can be created. The MLP model provides the highest average classification accuracy and the lowest preference in misclassification of students with a low level of course satisfaction, although a t-test for the difference in proportions showed that the difference in performance between the compared models is not statistically significant. Student involvement in forum discussions is recognized as a valuable predictor of student satisfaction with courses in all observed models.

  5. Beyond dysfunction and threshold-based classification: a multidimensional model of personality disorder diagnosis.

    Science.gov (United States)

    Bornstein, Robert F; Huprich, Steven K

    2011-06-01

    An alternative dimensional model of personality disorder (PD) diagnosis that addresses several difficulties inherent in the current DSM conceptualization of PDs (excessive PD overlap and comorbidity, use of arbitrary thresholds to distinguish normal from pathological personality functioning, failure to capture variations in the adaptative value of PD symptoms, and inattention to the impact of situational influences on PD-related behaviors) is outlined. The model uses a set of diagnostician-friendly strategies to render PD diagnosis in three steps: (1) the diagnostician assigns every patient a single dimensional rating of overall level of personality dysfunction on a 50-point continuum; (2) the diagnostician assigns separate intensity and impairment ratings for each PD dimension (e.g., narcissism, avoidance, dependency); and (3) the diagnostician lists any personality traits-including PD-related traits-that enhance adaptation and functioning (e.g., histrionic theatricality, obsessive attention to detail). Advantages of the proposed model for clinicians and clinical researchers are discussed.

  6. SQL based cardiovascular ultrasound image classification.

    Science.gov (United States)

    Nandagopalan, S; Suryanarayana, Adiga B; Sudarshan, T S B; Chandrashekar, Dhanalakshmi; Manjunath, C N

    2013-01-01

    This paper proposes a novel method to analyze and classify the cardiovascular ultrasound echocardiographic images using Naïve-Bayesian model via database OLAP-SQL. Efficient data mining algorithms based on tightly-coupled model is used to extract features. Three algorithms are proposed for classification namely Naïve-Bayesian Classifier for Discrete variables (NBCD) with SQL, NBCD with OLAP-SQL, and Naïve-Bayesian Classifier for Continuous variables (NBCC) using OLAP-SQL. The proposed model is trained with 207 patient images containing normal and abnormal categories. Out of the three proposed algorithms, a high classification accuracy of 96.59% was achieved from NBCC which is better than the earlier methods.

  7. Rapid Identification of Asteraceae Plants with Improved RBF-ANN Classification Models Based on MOS Sensor E-Nose

    Directory of Open Access Journals (Sweden)

    Hui-Qin Zou

    2014-01-01

    Full Text Available Plants from Asteraceae family are widely used as herbal medicines and food ingredients, especially in Asian area. Therefore, authentication and quality control of these different Asteraceae plants are important for ensuring consumers’ safety and efficacy. In recent decades, electronic nose (E-nose has been studied as an alternative approach. In this paper, we aim to develop a novel discriminative model by improving radial basis function artificial neural network (RBF-ANN classification model. Feature selection algorithms, including principal component analysis (PCA and BestFirst + CfsSubsetEval (BC, were applied in the improvement of RBF-ANN models. Results illustrate that in the improved RBF-ANN models with lower dimension data classification accuracies (100% remained the same as in the original model with higher-dimension data. It is the first time to introduce feature selection methods to get valuable information on how to attribute more relevant MOS sensors; namely, in this case, S1, S3, S4, S6, and S7 show better capability to distinguish these Asteraceae plants. This paper also gives insights to further research in this area, for instance, sensor array optimization and performance improvement of classification model.

  8. Classification of research reactors and discussion of thinking of safety regulation based on the classification

    International Nuclear Information System (INIS)

    Song Chenxiu; Zhu Lixin

    2013-01-01

    Research reactors have different characteristics in the fields of reactor type, use, power level, design principle, operation model and safety performance, etc, and also have significant discrepancy in the aspect of nuclear safety regulation. This paper introduces classification of research reactors and discusses thinking of safety regulation based on the classification of research reactors. (authors)

  9. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  10. CT-based injury classification

    International Nuclear Information System (INIS)

    Mirvis, S.E.; Whitley, N.O.; Vainright, J.; Gens, D.

    1988-01-01

    Review of preoperative abdominal CT scans obtained in adults after blunt trauma during a 2.5-year period demonstrated isolated or predominant liver injury in 35 patients and splenic injury in 33 patients. CT-based injury scores, consisting of five levels of hepatic injury and four levels of splenic injury, were correlated with clinical outcome and surgical findings. Hepatic injury grades I-III, present in 33 of 35 patients, were associated with successful nonsurgical management in 27 (82%) or with findings at celiotomy not requiring surgical intervention in four (12%). Higher grades of splenic injury generally required early operative intervention, but eight (36%) of 22 patients with initial grade III or IV injury were managed without surgery, while four (36%) of 11 patients with grade I or II injury required delayed celiotomy and splenectomy (three patients) or emergent rehospitalization (one patient). CT-based injury classification is useful in guiding the nonoperative management of blunt hepatic injury in hemodynamically stable adults but appears to be less reliable in predicting the outcome of blunt splenic injury

  11. Nonlinear Inertia Classification Model and Application

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2014-01-01

    Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.

  12. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  13. Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils.

    Science.gov (United States)

    Devos, Olivier; Downey, Gerard; Duponchel, Ludovic

    2014-04-01

    Classification is an important task in chemometrics. For several years now, support vector machines (SVMs) have proven to be powerful for infrared spectral data classification. However such methods require optimisation of parameters in order to control the risk of overfitting and the complexity of the boundary. Furthermore, it is established that the prediction ability of classification models can be improved using pre-processing in order to remove unwanted variance in the spectra. In this paper we propose a new methodology based on genetic algorithm (GA) for the simultaneous optimisation of SVM parameters and pre-processing (GENOPT-SVM). The method has been tested for the discrimination of the geographical origin of Italian olive oil (Ligurian and non-Ligurian) on the basis of near infrared (NIR) or mid infrared (FTIR) spectra. Different classification models (PLS-DA, SVM with mean centre data, GENOPT-SVM) have been tested and statistically compared using McNemar's statistical test. For the two datasets, SVM with optimised pre-processing give models with higher accuracy than the one obtained with PLS-DA on pre-processed data. In the case of the NIR dataset, most of this accuracy improvement (86.3% compared with 82.8% for PLS-DA) occurred using only a single pre-processing step. For the FTIR dataset, three optimised pre-processing steps are required to obtain SVM model with significant accuracy improvement (82.2%) compared to the one obtained with PLS-DA (78.6%). Furthermore, this study demonstrates that even SVM models have to be developed on the basis of well-corrected spectral data in order to obtain higher classification rates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Computerized Classification Testing with the Rasch Model

    Science.gov (United States)

    Eggen, Theo J. H. M.

    2011-01-01

    If classification in a limited number of categories is the purpose of testing, computerized adaptive tests (CATs) with algorithms based on sequential statistical testing perform better than estimation-based CATs (e.g., Eggen & Straetmans, 2000). In these computerized classification tests (CCTs), the Sequential Probability Ratio Test (SPRT) (Wald,…

  15. Using DRG to analyze hospital production: a re-classification model based on a linear tree-network topology

    Directory of Open Access Journals (Sweden)

    Achille Lanzarini

    2014-09-01

    Full Text Available Background: Hospital discharge records are widely classified through the Diagnosis Related Group (DRG system; the version currently used in Italy counts 538 different codes, including thousands of diagnosis and procedures. These numbers reflect the considerable effort of simplification, yet the current classification system is of little use to evaluate hospital production and performance.Methods: As the case-mix of a given Hospital Unit (HU is driven by its physicians’ specializations, a grouping of DRGs into a specialization-driven classification system has been conceived through the analysis of HUs discharging and the ICD-9-CM codes. We propose a three-folded classification, based on the analysis of 1,670,755 Hospital Discharge Cards (HDCs produced by Lombardy Hospitals in 2010; it consists of 32 specializations (e.g. Neurosurgery, 124 sub-specialization (e.g. skull surgery and 337 sub-sub-specialization (e.g. craniotomy.Results: We give a practical application of the three-layered approach, based on the production of a Neurosurgical HU; we observe synthetically the profile of production (1,305 hospital discharges for 79 different DRG codes of 16 different MDC are grouped in few groups of homogeneous DRG codes, a more informative production comparison (through process-specific comparisons, rather than crude or case-mix standardized comparisons and a potentially more adequate production planning (considering the Neurosurgical HUs of the same city, those produce a limited quote of the whole neurosurgical production, because the same activity can be realized by non-Neurosugical HUs.Conclusion: Our work may help to evaluate the hospital production for a rational planning of available resources, blunting information asymmetries between physicians and managers. 

  16. Classification hierarchies for product data modelling

    NARCIS (Netherlands)

    Pels, H.J.

    2006-01-01

    Abstraction is an essential element in data modelling that appears mainly in one of the following forms: generalisation, classification or aggregation. In the design of complex products classification hierarchies can be found product families that are viewed as classes of product types, while

  17. An enhanced forest classification scheme for modeling vegetation-climate interactions based on national forest inventory data

    Science.gov (United States)

    Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.

    2018-01-01

    Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.

  18. Comparative analysis of tree classification models for detecting fusarium oxysporum f. sp cubense (TR4) based on multi soil sensor parameters

    Science.gov (United States)

    Estuar, Maria Regina Justina; Victorino, John Noel; Coronel, Andrei; Co, Jerelyn; Tiausas, Francis; Señires, Chiara Veronica

    2017-09-01

    Use of wireless sensor networks and smartphone integration design to monitor environmental parameters surrounding plantations is made possible because of readily available and affordable sensors. Providing low cost monitoring devices would be beneficial, especially to small farm owners, in a developing country like the Philippines, where agriculture covers a significant amount of the labor market. This study discusses the integration of wireless soil sensor devices and smartphones to create an application that will use multidimensional analysis to detect the presence or absence of plant disease. Specifically, soil sensors are designed to collect soil quality parameters in a sink node from which the smartphone collects data from via Bluetooth. Given these, there is a need to develop a classification model on the mobile phone that will report infection status of a soil. Though tree classification is the most appropriate approach for continuous parameter-based datasets, there is a need to determine whether tree models will result to coherent results or not. Soil sensor data that resides on the phone is modeled using several variations of decision tree, namely: decision tree (DT), best-fit (BF) decision tree, functional tree (FT), Naive Bayes (NB) decision tree, J48, J48graft and LAD tree, where decision tree approaches the problem by considering all sensor nodes as one. Results show that there are significant differences among soil sensor parameters indicating that there are variances in scores between the infected and uninfected sites. Furthermore, analysis of variance in accuracy, recall, precision and F1 measure scores from tree classification models homogeneity among NBTree, J48graft and J48 tree classification models.

  19. Cloud field classification based on textural features

    Science.gov (United States)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes

  20. Hot complaint intelligent classification based on text mining

    Directory of Open Access Journals (Sweden)

    XIA Haifeng

    2013-10-01

    Full Text Available The complaint recognizer system plays an important role in making sure the correct classification of the hot complaint,improving the service quantity of telecommunications industry.The customers’ complaint in telecommunications industry has its special particularity which should be done in limited time,which cause the error in classification of hot complaint.The paper presents a model of complaint hot intelligent classification based on text mining,which can classify the hot complaint in the correct level of the complaint navigation.The examples show that the model can be efficient to classify the text of the complaint.

  1. Use of topographic and climatological models in a geographical data base to improve Landsat MSS classification for Olympic National Park

    Science.gov (United States)

    Cibula, William G.; Nyquist, Maurice O.

    1987-01-01

    An unsupervised computer classification of vegetation/landcover of Olympic National Park and surrounding environs was initially carried out using four bands of Landsat MSS data. The primary objective of the project was to derive a level of landcover classifications useful for park management applications while maintaining an acceptably high level of classification accuracy. Initially, nine generalized vegetation/landcover classes were derived. Overall classification accuracy was 91.7 percent. In an attempt to refine the level of classification, a geographic information system (GIS) approach was employed. Topographic data and watershed boundaries (inferred precipitation/temperature) data were registered with the Landsat MSS data. The resultant boolean operations yielded 21 vegetation/landcover classes while maintaining the same level of classification accuracy. The final classification provided much better identification and location of the major forest types within the park at the same high level of accuracy, and these met the project objective. This classification could now become inputs into a GIS system to help provide answers to park management coupled with other ancillary data programs such as fire management.

  2. A Comparison of Computer-Based Classification Testing Approaches Using Mixed-Format Tests with the Generalized Partial Credit Model

    Science.gov (United States)

    Kim, Jiseon

    2010-01-01

    Classification testing has been widely used to make categorical decisions by determining whether an examinee has a certain degree of ability required by established standards. As computer technologies have developed, classification testing has become more computerized. Several approaches have been proposed and investigated in the context of…

  3. Knowledge discovery from patients' behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services.

    Science.gov (United States)

    Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi

    2016-01-01

    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers.

  4. Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

    Science.gov (United States)

    Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi

    2016-01-01

    The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers. PMID:27610177

  5. An Authentication Technique Based on Classification

    Institute of Scientific and Technical Information of China (English)

    李钢; 杨杰

    2004-01-01

    We present a novel watermarking approach based on classification for authentication, in which a watermark is embedded into the host image. When the marked image is modified, the extracted watermark is also different to the original watermark, and different kinds of modification lead to different extracted watermarks. In this paper, different kinds of modification are considered as classes, and we used classification algorithm to recognize the modifications with high probability. Simulation results show that the proposed method is potential and effective.

  6. Classification of brain tumors using texture based analysis of T1-post contrast MR scans in a preclinical model

    Science.gov (United States)

    Tang, Tien T.; Zawaski, Janice A.; Francis, Kathleen N.; Qutub, Amina A.; Gaber, M. Waleed

    2018-02-01

    Accurate diagnosis of tumor type is vital for effective treatment planning. Diagnosis relies heavily on tumor biopsies and other clinical factors. However, biopsies do not fully capture the tumor's heterogeneity due to sampling bias and are only performed if the tumor is accessible. An alternative approach is to use features derived from routine diagnostic imaging such as magnetic resonance (MR) imaging. In this study we aim to establish the use of quantitative image features to classify brain tumors and extend the use of MR images beyond tumor detection and localization. To control for interscanner, acquisition and reconstruction protocol variations, the established workflow was performed in a preclinical model. Using glioma (U87 and GL261) and medulloblastoma (Daoy) models, T1-weighted post contrast scans were acquired at different time points post-implant. The tumor regions at the center, middle, and peripheral were analyzed using in-house software to extract 32 different image features consisting of first and second order features. The extracted features were used to construct a decision tree, which could predict tumor type with 10-fold cross-validation. Results from the final classification model demonstrated that middle tumor region had the highest overall accuracy at 79%, while the AUC accuracy was over 90% for GL261 and U87 tumors. Our analysis further identified image features that were unique to certain tumor region, although GL261 tumors were more homogenous with no significant differences between the central and peripheral tumor regions. In conclusion our study shows that texture features derived from MR scans can be used to classify tumor type with high success rates. Furthermore, the algorithm we have developed can be implemented with any imaging datasets and may be applicable to multiple tumor types to determine diagnosis.

  7. hERG classification model based on a combination of support vector machine method and GRIND descriptors

    DEFF Research Database (Denmark)

    Li, Qiyuan; Jorgensen, Flemming Steen; Oprea, Tudor

    2008-01-01

    and diverse library of 495 compounds. The models combine pharmacophore-based GRIND descriptors with a support vector machine (SVM) classifier in order to discriminate between hERG blockers and nonblockers. Our models were applied at different thresholds from 1 to 40 mu m and achieved an overall accuracy up...

  8. The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model

    International Nuclear Information System (INIS)

    Djokic, D.; Piet, S.; Pincock, L.; Soelberg, N.

    2013-01-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

  9. EMG finger movement classification based on ANFIS

    Science.gov (United States)

    Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.

    2018-04-01

    An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

  10. Key-phrase based classification of public health web pages.

    Science.gov (United States)

    Dolamic, Ljiljana; Boyer, Célia

    2013-01-01

    This paper describes and evaluates the public health web pages classification model based on key phrase extraction and matching. Easily extendible both in terms of new classes as well as the new language this method proves to be a good solution for text classification faced with the total lack of training data. To evaluate the proposed solution we have used a small collection of public health related web pages created by a double blind manual classification. Our experiments have shown that by choosing the adequate threshold value the desired value for either precision or recall can be achieved.

  11. Inventory classification based on decoupling points

    Directory of Open Access Journals (Sweden)

    Joakim Wikner

    2015-01-01

    Full Text Available The ideal state of continuous one-piece flow may never be achieved. Still the logistics manager can improve the flow by carefully positioning inventory to buffer against variations. Strategies such as lean, postponement, mass customization, and outsourcing all rely on strategic positioning of decoupling points to separate forecast-driven from customer-order-driven flows. Planning and scheduling of the flow are also based on classification of decoupling points as master scheduled or not. A comprehensive classification scheme for these types of decoupling points is introduced. The approach rests on identification of flows as being either demand based or supply based. The demand or supply is then combined with exogenous factors, classified as independent, or endogenous factors, classified as dependent. As a result, eight types of strategic as well as tactical decoupling points are identified resulting in a process-based framework for inventory classification that can be used for flow design.

  12. Iris Image Classification Based on Hierarchical Visual Codebook.

    Science.gov (United States)

    Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang

    2014-06-01

    Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.

  13. SU-G-BRC-13: Model Based Classification for Optimal Position Selection for Left-Sided Breast Radiotherapy: Free Breathing, DIBH, Or Prone

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H; Liu, T; Xu, X [Rensselaer Polytechnic Institute, Troy, NY (United States); Shi, C [Saint Vincent Medical Center, Bridgeport, CT (United States); Petillion, S; Kindts, I [University Hospitals Leuven, Leuven, Vlaams-Brabant (Belgium); Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States)

    2016-06-15

    Purpose: There are clinical decision challenges to select optimal treatment positions for left-sided breast cancer patients—supine free breathing (FB), supine Deep Inspiration Breath Hold (DIBH) and prone free breathing (prone). Physicians often make the decision based on experiences and trials, which might not always result optimal OAR doses. We herein propose a mathematical model to predict the lowest OAR doses among these three positions, providing a quantitative tool for corresponding clinical decision. Methods: Patients were scanned in FB, DIBH, and prone positions under an IRB approved protocol. Tangential beam plans were generated for each position, and OAR doses were calculated. The position with least OAR doses is defined as the optimal position. The following features were extracted from each scan to build the model: heart, ipsilateral lung, breast volume, in-field heart, ipsilateral lung volume, distance between heart and target, laterality of heart, and dose to heart and ipsilateral lung. Principal Components Analysis (PCA) was applied to remove the co-linearity of the input data and also to lower the data dimensionality. Feature selection, another method to reduce dimensionality, was applied as a comparison. Support Vector Machine (SVM) was then used for classification. Thirtyseven patient data were acquired; up to now, five patient plans were available. K-fold cross validation was used to validate the accuracy of the classifier model with small training size. Results: The classification results and K-fold cross validation demonstrated the model is capable of predicting the optimal position for patients. The accuracy of K-fold cross validations has reached 80%. Compared to PCA, feature selection allows causal features of dose to be determined. This provides more clinical insights. Conclusion: The proposed classification system appeared to be feasible. We are generating plans for the rest of the 37 patient images, and more statistically significant

  14. Classification of tumor based on magnetic resonance (MR) brain images using wavelet energy feature and neuro-fuzzy model

    Science.gov (United States)

    Damayanti, A.; Werdiningsih, I.

    2018-03-01

    The brain is the organ that coordinates all the activities that occur in our bodies. Small abnormalities in the brain will affect body activity. Tumor of the brain is a mass formed a result of cell growth not normal and unbridled in the brain. MRI is a non-invasive medical test that is useful for doctors in diagnosing and treating medical conditions. The process of classification of brain tumor can provide the right decision and correct treatment and right on the process of treatment of brain tumor. In this study, the classification process performed to determine the type of brain tumor disease, namely Alzheimer’s, Glioma, Carcinoma and normal, using energy coefficient and ANFIS. Process stages in the classification of images of MR brain are the extraction of a feature, reduction of a feature, and process of classification. The result of feature extraction is a vector approximation of each wavelet decomposition level. The feature reduction is a process of reducing the feature by using the energy coefficients of the vector approximation. The feature reduction result for energy coefficient of 100 per feature is 1 x 52 pixels. This vector will be the input on the classification using ANFIS with Fuzzy C-Means and FLVQ clustering process and LM back-propagation. Percentage of success rate of MR brain images recognition using ANFIS-FLVQ, ANFIS, and LM back-propagation was obtained at 100%.

  15. Global Optimization Ensemble Model for Classification Methods

    Science.gov (United States)

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  16. Global Optimization Ensemble Model for Classification Methods

    Directory of Open Access Journals (Sweden)

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  17. The Importance of Classification to Business Model Research

    OpenAIRE

    Susan Lambert

    2015-01-01

    Purpose: To bring to the fore the scientific significance of classification and its role in business model theory building. To propose a method by which existing classifications of business models can be analyzed and new ones developed. Design/Methodology/Approach: A review of the scholarly literature relevant to classifications of business models is presented along with a brief overview of classification theory applicable to business model research. Existing business model classification...

  18. Robustness analysis of a green chemistry-based model for the classification of silver nanoparticles synthesis processes

    Science.gov (United States)

    This paper proposes a robustness analysis based on Multiple Criteria Decision Aiding (MCDA). The ensuing model was used to assess the implementation of green chemistry principles in the synthesis of silver nanoparticles. Its recommendations were also compared to an earlier develo...

  19. Classification using Hierarchical Naive Bayes models

    DEFF Research Database (Denmark)

    Langseth, Helge; Dyhre Nielsen, Thomas

    2006-01-01

    Classification problems have a long history in the machine learning literature. One of the simplest, and yet most consistently well-performing set of classifiers is the Naïve Bayes models. However, an inherent problem with these classifiers is the assumption that all attributes used to describe......, termed Hierarchical Naïve Bayes models. Hierarchical Naïve Bayes models extend the modeling flexibility of Naïve Bayes models by introducing latent variables to relax some of the independence statements in these models. We propose a simple algorithm for learning Hierarchical Naïve Bayes models...

  20. Acute leukemia classification by ensemble particle swarm model selection.

    Science.gov (United States)

    Escalante, Hugo Jair; Montes-y-Gómez, Manuel; González, Jesús A; Gómez-Gil, Pilar; Altamirano, Leopoldo; Reyes, Carlos A; Reta, Carolina; Rosales, Alejandro

    2012-07-01

    Acute leukemia is a malignant disease that affects a large proportion of the world population. Different types and subtypes of acute leukemia require different treatments. In order to assign the correct treatment, a physician must identify the leukemia type or subtype. Advanced and precise methods are available for identifying leukemia types, but they are very expensive and not available in most hospitals in developing countries. Thus, alternative methods have been proposed. An option explored in this paper is based on the morphological properties of bone marrow images, where features are extracted from medical images and standard machine learning techniques are used to build leukemia type classifiers. This paper studies the use of ensemble particle swarm model selection (EPSMS), which is an automated tool for the selection of classification models, in the context of acute leukemia classification. EPSMS is the application of particle swarm optimization to the exploration of the search space of ensembles that can be formed by heterogeneous classification models in a machine learning toolbox. EPSMS does not require prior domain knowledge and it is able to select highly accurate classification models without user intervention. Furthermore, specific models can be used for different classification tasks. We report experimental results for acute leukemia classification with real data and show that EPSMS outperformed the best results obtained using manually designed classifiers with the same data. The highest performance using EPSMS was of 97.68% for two-type classification problems and of 94.21% for more than two types problems. To the best of our knowledge, these are the best results reported for this data set. Compared with previous studies, these improvements were consistent among different type/subtype classification tasks, different features extracted from images, and different feature extraction regions. The performance improvements were statistically significant

  1. A Robust Geometric Model for Argument Classification

    Science.gov (United States)

    Giannone, Cristina; Croce, Danilo; Basili, Roberto; de Cao, Diego

    Argument classification is the task of assigning semantic roles to syntactic structures in natural language sentences. Supervised learning techniques for frame semantics have been recently shown to benefit from rich sets of syntactic features. However argument classification is also highly dependent on the semantics of the involved lexicals. Empirical studies have shown that domain dependence of lexical information causes large performance drops in outside domain tests. In this paper a distributional approach is proposed to improve the robustness of the learning model against out-of-domain lexical phenomena.

  2. Risk-based classification system of nanomaterials

    International Nuclear Information System (INIS)

    Tervonen, Tommi; Linkov, Igor; Figueira, Jose Rui; Steevens, Jeffery; Chappell, Mark; Merad, Myriam

    2009-01-01

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  3. Structure-Based Algorithms for Microvessel Classification

    KAUST Repository

    Smith, Amy F.

    2015-02-01

    © 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.

  4. Risk-based classification system of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tervonen, Tommi, E-mail: t.p.tervonen@rug.n [University of Groningen, Faculty of Economics and Business (Netherlands); Linkov, Igor, E-mail: igor.linkov@usace.army.mi [US Army Research and Development Center (United States); Figueira, Jose Rui, E-mail: figueira@ist.utl.p [Technical University of Lisbon, CEG-IST, Centre for Management Studies, Instituto Superior Tecnico (Portugal); Steevens, Jeffery, E-mail: jeffery.a.steevens@usace.army.mil; Chappell, Mark, E-mail: mark.a.chappell@usace.army.mi [US Army Research and Development Center (United States); Merad, Myriam, E-mail: myriam.merad@ineris.f [INERIS BP 2, Societal Management of Risks Unit/Accidental Risks Division (France)

    2009-05-15

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  5. Chinese Sentence Classification Based on Convolutional Neural Network

    Science.gov (United States)

    Gu, Chengwei; Wu, Ming; Zhang, Chuang

    2017-10-01

    Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.

  6. Lean waste classification model to support the sustainable operational practice

    Science.gov (United States)

    Sutrisno, A.; Vanany, I.; Gunawan, I.; Asjad, M.

    2018-04-01

    Driven by growing pressure for a more sustainable operational practice, improvement on the classification of non-value added (waste) is one of the prerequisites to realize sustainability of a firm. While the use of the 7 (seven) types of the Ohno model now becoming a versatile tool to reveal the lean waste occurrence. In many recent investigations, the use of the Seven Waste model of Ohno is insufficient to cope with the types of waste occurred in industrial practices at various application levels. Intended to a narrowing down this limitation, this paper presented an improved waste classification model based on survey to recent studies discussing on waste at various operational stages. Implications on the waste classification model to the body of knowledge and industrial practices are provided.

  7. Music genre classification via likelihood fusion from multiple feature models

    Science.gov (United States)

    Shiu, Yu; Kuo, C.-C. J.

    2005-01-01

    Music genre provides an efficient way to index songs in a music database, and can be used as an effective means to retrieval music of a similar type, i.e. content-based music retrieval. A new two-stage scheme for music genre classification is proposed in this work. At the first stage, we examine a couple of different features, construct their corresponding parametric models (e.g. GMM and HMM) and compute their likelihood functions to yield soft classification results. In particular, the timbre, rhythm and temporal variation features are considered. Then, at the second stage, these soft classification results are integrated to result in a hard decision for final music genre classification. Experimental results are given to demonstrate the performance of the proposed scheme.

  8. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    Science.gov (United States)

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  9. Failure diagnosis using deep belief learning based health state classification

    International Nuclear Information System (INIS)

    Tamilselvan, Prasanna; Wang, Pingfeng

    2013-01-01

    Effective health diagnosis provides multifarious benefits such as improved safety, improved reliability and reduced costs for operation and maintenance of complex engineered systems. This paper presents a novel multi-sensor health diagnosis method using deep belief network (DBN). DBN has recently become a popular approach in machine learning for its promised advantages such as fast inference and the ability to encode richer and higher order network structures. The DBN employs a hierarchical structure with multiple stacked restricted Boltzmann machines and works through a layer by layer successive learning process. The proposed multi-sensor health diagnosis methodology using DBN based state classification can be structured in three consecutive stages: first, defining health states and preprocessing sensory data for DBN training and testing; second, developing DBN based classification models for diagnosis of predefined health states; third, validating DBN classification models with testing sensory dataset. Health diagnosis using DBN based health state classification technique is compared with four existing diagnosis techniques. Benchmark classification problems and two engineering health diagnosis applications: aircraft engine health diagnosis and electric power transformer health diagnosis are employed to demonstrate the efficacy of the proposed approach

  10. Geomorphology Classification of Shandong Province Based on Digital Elevation Model in the 1 Arc-second Format of Shuttle Radar Topography Mission Data

    Science.gov (United States)

    Fu, Jundong; Zhang, Guangcheng; Wang, Lei; Xia, Nuan

    2018-01-01

    Based on gigital elevation model in the 1 arc-second format of shuttle radar topography mission data, using the window analysis and mean change point analysis of geographic information system (GIS) technology, programmed with python modules this, automatically extracted and calculated geomorphic elements of Shandong province. The best access to quantitatively study area relief amplitude of statistical area. According to Chinese landscape classification standard, the landscape type in Shandong province was divided into 8 types: low altitude plain, medium altitude plain, low altitude platform, medium altitude platform, low altitude hills, medium altitude hills, low relief mountain, medium relief mountain and the percentages of Shandong province’s total area are as follows: 12.72%, 0.01%, 36.38%, 0.24%, 17.26%, 15.64%, 11.1%, 6.65%. The results of landforms are basically the same as the overall terrain of Shandong Province, Shandong province’s total area, and the study can quantitatively and scientifically provide reference for the classification of landforms in Shandong province.

  11. Visualization of Nonlinear Classification Models in Neuroimaging - Signed Sensitivity Maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Schmah, Tanya; Madsen, Kristoffer Hougaard

    2012-01-01

    Classification models are becoming increasing popular tools in the analysis of neuroimaging data sets. Besides obtaining good prediction accuracy, a competing goal is to interpret how the classifier works. From a neuroscientific perspective, we are interested in the brain pattern reflecting...... the underlying neural encoding of an experiment defining multiple brain states. In this relation there is a great desire for the researcher to generate brain maps, that highlight brain locations of importance to the classifiers decisions. Based on sensitivity analysis, we develop further procedures for model...... direction the individual locations influence the classification. We illustrate the visualization procedure on a real data from a simple functional magnetic resonance imaging experiment....

  12. Structural classification and a binary structure model for superconductors

    Institute of Scientific and Technical Information of China (English)

    Dong Cheng

    2006-01-01

    Based on structural and bonding features, a new classification scheme of superconductors is proposed to classify conductors can be partitioned into two parts, a superconducting active component and a supplementary component.Partially metallic covalent bonding is found to be a common feature in all superconducting active components, and the electron states of the atoms in the active components usually make a dominant contribution to the energy band near the Fermi surface. Possible directions to explore new superconductors are discussed based on the structural classification and the binary structure model.

  13. Identification of candidate categories of the International Classification of Functioning Disability and Health (ICF for a Generic ICF Core Set based on regression modelling

    Directory of Open Access Journals (Sweden)

    Üstün Bedirhan T

    2006-07-01

    Full Text Available Abstract Background The International Classification of Functioning, Disability and Health (ICF is the framework developed by WHO to describe functioning and disability at both the individual and population levels. While condition-specific ICF Core Sets are useful, a Generic ICF Core Set is needed to describe and compare problems in functioning across health conditions. Methods The aims of the multi-centre, cross-sectional study presented here were: a to propose a method to select ICF categories when a large amount of ICF-based data have to be handled, and b to identify candidate ICF categories for a Generic ICF Core Set by examining their explanatory power in relation to item one of the SF-36. The data were collected from 1039 patients using the ICF checklist, the SF-36 and a Comorbidity Questionnaire. ICF categories to be entered in an initial regression model were selected following systematic steps in accordance with the ICF structure. Based on an initial regression model, additional models were designed by systematically substituting the ICF categories included in it with ICF categories with which they were highly correlated. Results Fourteen different regression models were performed. The variance the performed models account for ranged from 22.27% to 24.0%. The ICF category that explained the highest amount of variance in all the models was sensation of pain. In total, thirteen candidate ICF categories for a Generic ICF Core Set were proposed. Conclusion The selection strategy based on the ICF structure and the examination of the best possible alternative models does not provide a final answer about which ICF categories must be considered, but leads to a selection of suitable candidates which needs further consideration and comparison with the results of other selection strategies in developing a Generic ICF Core Set.

  14. Robust Seismic Normal Modes Computation in Radial Earth Models and A Novel Classification Based on Intersection Points of Waveguides

    Science.gov (United States)

    Ye, J.; Shi, J.; De Hoop, M. V.

    2017-12-01

    We develop a robust algorithm to compute seismic normal modes in a spherically symmetric, non-rotating Earth. A well-known problem is the cross-contamination of modes near "intersections" of dispersion curves for separate waveguides. Our novel computational approach completely avoids artificial degeneracies by guaranteeing orthonormality among the eigenfunctions. We extend Wiggins' and Buland's work, and reformulate the Sturm-Liouville problem as a generalized eigenvalue problem with the Rayleigh-Ritz Galerkin method. A special projection operator incorporating the gravity terms proposed by de Hoop and a displacement/pressure formulation are utilized in the fluid outer core to project out the essential spectrum. Moreover, the weak variational form enables us to achieve high accuracy across the solid-fluid boundary, especially for Stoneley modes, which have exponentially decaying behavior. We also employ the mixed finite element technique to avoid spurious pressure modes arising from discretization schemes and a numerical inf-sup test is performed following Bathe's work. In addition, the self-gravitation terms are reformulated to avoid computations outside the Earth, thanks to the domain decomposition technique. Our package enables us to study the physical properties of intersection points of waveguides. According to Okal's classification theory, the group velocities should be continuous within a branch of the same mode family. However, we have found that there will be a small "bump" near intersection points, which is consistent with Miropol'sky's observation. In fact, we can loosely regard Earth's surface and the CMB as independent waveguides. For those modes that are far from the intersection points, their eigenfunctions are localized in the corresponding waveguides. However, those that are close to intersection points will have physical features of both waveguides, which means they cannot be classified in either family. Our results improve on Okal

  15. Analysis of composition-based metagenomic classification.

    Science.gov (United States)

    Higashi, Susan; Barreto, André da Motta Salles; Cantão, Maurício Egidio; de Vasconcelos, Ana Tereza Ribeiro

    2012-01-01

    An essential step of a metagenomic study is the taxonomic classification, that is, the identification of the taxonomic lineage of the organisms in a given sample. The taxonomic classification process involves a series of decisions. Currently, in the context of metagenomics, such decisions are usually based on empirical studies that consider one specific type of classifier. In this study we propose a general framework for analyzing the impact that several decisions can have on the classification problem. Instead of focusing on any specific classifier, we define a generic score function that provides a measure of the difficulty of the classification task. Using this framework, we analyze the impact of the following parameters on the taxonomic classification problem: (i) the length of n-mers used to encode the metagenomic sequences, (ii) the similarity measure used to compare sequences, and (iii) the type of taxonomic classification, which can be conventional or hierarchical, depending on whether the classification process occurs in a single shot or in several steps according to the taxonomic tree. We defined a score function that measures the degree of separability of the taxonomic classes under a given configuration induced by the parameters above. We conducted an extensive computational experiment and found out that reasonable values for the parameters of interest could be (i) intermediate values of n, the length of the n-mers; (ii) any similarity measure, because all of them resulted in similar scores; and (iii) the hierarchical strategy, which performed better in all of the cases. As expected, short n-mers generate lower configuration scores because they give rise to frequency vectors that represent distinct sequences in a similar way. On the other hand, large values for n result in sparse frequency vectors that represent differently metagenomic fragments that are in fact similar, also leading to low configuration scores. Regarding the similarity measure, in

  16. A new circulation type classification based upon Lagrangian air trajectories

    Directory of Open Access Journals (Sweden)

    Alexandre M. Ramos

    2014-10-01

    Full Text Available A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories. The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification.A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  17. Mechanism-based drug exposure classification in pharmacoepidemiological studies

    NARCIS (Netherlands)

    Verdel, B.M.

    2010-01-01

    Mechanism-based classification of drug exposure in pharmacoepidemiological studies In pharmacoepidemiology and pharmacovigilance, the relation between drug exposure and clinical outcomes is crucial. Exposure classification in pharmacoepidemiological studies is traditionally based on

  18. Atmospheric circulation classification comparison based on wildfires in Portugal

    Science.gov (United States)

    Pereira, M. G.; Trigo, R. M.

    2009-04-01

    Atmospheric circulation classifications are not a simple description of atmospheric states but a tool to understand and interpret the atmospheric processes and to model the relation between atmospheric circulation and surface climate and other related variables (Radan Huth et al., 2008). Classifications were initially developed with weather forecasting purposes, however with the progress in computer processing capability, new and more robust objective methods were developed and applied to large datasets prompting atmospheric circulation classification methods to one of the most important fields in synoptic and statistical climatology. Classification studies have been extensively used in climate change studies (e.g. reconstructed past climates, recent observed changes and future climates), in bioclimatological research (e.g. relating human mortality to climatic factors) and in a wide variety of synoptic climatological applications (e.g. comparison between datasets, air pollution, snow avalanches, wine quality, fish captures and forest fires). Likewise, atmospheric circulation classifications are important for the study of the role of weather in wildfire occurrence in Portugal because the daily synoptic variability is the most important driver of local weather conditions (Pereira et al., 2005). In particular, the objective classification scheme developed by Trigo and DaCamara (2000) to classify the atmospheric circulation affecting Portugal have proved to be quite useful in discriminating the occurrence and development of wildfires as well as the distribution over Portugal of surface climatic variables with impact in wildfire activity such as maximum and minimum temperature and precipitation. This work aims to present: (i) an overview the existing circulation classification for the Iberian Peninsula, and (ii) the results of a comparison study between these atmospheric circulation classifications based on its relation with wildfires and relevant meteorological

  19. ICF-based classification and measurement of functioning.

    Science.gov (United States)

    Stucki, G; Kostanjsek, N; Ustün, B; Cieza, A

    2008-09-01

    If we aim towards a comprehensive understanding of human functioning and the development of comprehensive programs to optimize functioning of individuals and populations we need to develop suitable measures. The approval of the International Classification, Disability and Health (ICF) in 2001 by the 54th World Health Assembly as the first universally shared model and classification of functioning, disability and health marks, therefore an important step in the development of measurement instruments and ultimately for our understanding of functioning, disability and health. The acceptance and use of the ICF as a reference framework and classification has been facilitated by its development in a worldwide, comprehensive consensus process and the increasing evidence regarding its validity. However, the broad acceptance and use of the ICF as a reference framework and classification will also depend on the resolution of conceptual and methodological challenges relevant for the classification and measurement of functioning. This paper therefore describes first how the ICF categories can serve as building blocks for the measurement of functioning and then the current state of the development of ICF based practical tools and international standards such as the ICF Core Sets. Finally it illustrates how to map the world of measures to the ICF and vice versa and the methodological principles relevant for the transformation of information obtained with a clinical test or a patient-oriented instrument to the ICF as well as the development of ICF-based clinical and self-reported measurement instruments.

  20. A multifactorial likelihood model for MMR gene variant classification incorporating probabilities based on sequence bioinformatics and tumor characteristics: a report from the Colon Cancer Family Registry.

    Science.gov (United States)

    Thompson, Bryony A; Goldgar, David E; Paterson, Carol; Clendenning, Mark; Walters, Rhiannon; Arnold, Sven; Parsons, Michael T; Michael D, Walsh; Gallinger, Steven; Haile, Robert W; Hopper, John L; Jenkins, Mark A; Lemarchand, Loic; Lindor, Noralane M; Newcomb, Polly A; Thibodeau, Stephen N; Young, Joanne P; Buchanan, Daniel D; Tavtigian, Sean V; Spurdle, Amanda B

    2013-01-01

    Mismatch repair (MMR) gene sequence variants of uncertain clinical significance are often identified in suspected Lynch syndrome families, and this constitutes a challenge for both researchers and clinicians. Multifactorial likelihood model approaches provide a quantitative measure of MMR variant pathogenicity, but first require input of likelihood ratios (LRs) for different MMR variation-associated characteristics from appropriate, well-characterized reference datasets. Microsatellite instability (MSI) and somatic BRAF tumor data for unselected colorectal cancer probands of known pathogenic variant status were used to derive LRs for tumor characteristics using the Colon Cancer Family Registry (CFR) resource. These tumor LRs were combined with variant segregation within families, and estimates of prior probability of pathogenicity based on sequence conservation and position, to analyze 44 unclassified variants identified initially in Australasian Colon CFR families. In addition, in vitro splicing analyses were conducted on the subset of variants based on bioinformatic splicing predictions. The LR in favor of pathogenicity was estimated to be ~12-fold for a colorectal tumor with a BRAF mutation-negative MSI-H phenotype. For 31 of the 44 variants, the posterior probabilities of pathogenicity were such that altered clinical management would be indicated. Our findings provide a working multifactorial likelihood model for classification that carefully considers mode of ascertainment for gene testing. © 2012 Wiley Periodicals, Inc.

  1. 4D-Fingerprint Categorical QSAR Models for Skin Sensitization Based on Classification Local Lymph Node Assay Measures

    Science.gov (United States)

    Li, Yi; Tseng, Yufeng J.; Pan, Dahua; Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Hopfinger, Anton J.

    2008-01-01

    Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the Local Lymph Node Assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, eg. Quantitative Structure-Activity Relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR), and partial least square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, χHL2, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, while that of PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0%-86.7%, while that of PLS-logistic regression models ranges from 73.3%-80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors and negatively partially charged atoms. PMID:17226934

  2. Reducing Spatial Data Complexity for Classification Models

    International Nuclear Information System (INIS)

    Ruta, Dymitr; Gabrys, Bogdan

    2007-01-01

    Intelligent data analytics gradually becomes a day-to-day reality of today's businesses. However, despite rapidly increasing storage and computational power current state-of-the-art predictive models still can not handle massive and noisy corporate data warehouses. What is more adaptive and real-time operational environment requires multiple models to be frequently retrained which further hinders their use. Various data reduction techniques ranging from data sampling up to density retention models attempt to address this challenge by capturing a summarised data structure, yet they either do not account for labelled data or degrade the classification performance of the model trained on the condensed dataset. Our response is a proposition of a new general framework for reducing the complexity of labelled data by means of controlled spatial redistribution of class densities in the input space. On the example of Parzen Labelled Data Compressor (PLDC) we demonstrate a simulatory data condensation process directly inspired by the electrostatic field interaction where the data are moved and merged following the attracting and repelling interactions with the other labelled data. The process is controlled by the class density function built on the original data that acts as a class-sensitive potential field ensuring preservation of the original class density distributions, yet allowing data to rearrange and merge joining together their soft class partitions. As a result we achieved a model that reduces the labelled datasets much further than any competitive approaches yet with the maximum retention of the original class densities and hence the classification performance. PLDC leaves the reduced dataset with the soft accumulative class weights allowing for efficient online updates and as shown in a series of experiments if coupled with Parzen Density Classifier (PDC) significantly outperforms competitive data condensation methods in terms of classification performance at the

  3. Reducing Spatial Data Complexity for Classification Models

    Science.gov (United States)

    Ruta, Dymitr; Gabrys, Bogdan

    2007-11-01

    Intelligent data analytics gradually becomes a day-to-day reality of today's businesses. However, despite rapidly increasing storage and computational power current state-of-the-art predictive models still can not handle massive and noisy corporate data warehouses. What is more adaptive and real-time operational environment requires multiple models to be frequently retrained which further hinders their use. Various data reduction techniques ranging from data sampling up to density retention models attempt to address this challenge by capturing a summarised data structure, yet they either do not account for labelled data or degrade the classification performance of the model trained on the condensed dataset. Our response is a proposition of a new general framework for reducing the complexity of labelled data by means of controlled spatial redistribution of class densities in the input space. On the example of Parzen Labelled Data Compressor (PLDC) we demonstrate a simulatory data condensation process directly inspired by the electrostatic field interaction where the data are moved and merged following the attracting and repelling interactions with the other labelled data. The process is controlled by the class density function built on the original data that acts as a class-sensitive potential field ensuring preservation of the original class density distributions, yet allowing data to rearrange and merge joining together their soft class partitions. As a result we achieved a model that reduces the labelled datasets much further than any competitive approaches yet with the maximum retention of the original class densities and hence the classification performance. PLDC leaves the reduced dataset with the soft accumulative class weights allowing for efficient online updates and as shown in a series of experiments if coupled with Parzen Density Classifier (PDC) significantly outperforms competitive data condensation methods in terms of classification performance at the

  4. NIM: A Node Influence Based Method for Cancer Classification

    Directory of Open Access Journals (Sweden)

    Yiwen Wang

    2014-01-01

    Full Text Available The classification of different cancer types owns great significance in the medical field. However, the great majority of existing cancer classification methods are clinical-based and have relatively weak diagnostic ability. With the rapid development of gene expression technology, it is able to classify different kinds of cancers using DNA microarray. Our main idea is to confront the problem of cancer classification using gene expression data from a graph-based view. Based on a new node influence model we proposed, this paper presents a novel high accuracy method for cancer classification, which is composed of four parts: the first is to calculate the similarity matrix of all samples, the second is to compute the node influence of training samples, the third is to obtain the similarity between every test sample and each class using weighted sum of node influence and similarity matrix, and the last is to classify each test sample based on its similarity between every class. The data sets used in our experiments are breast cancer, central nervous system, colon tumor, prostate cancer, acute lymphoblastic leukemia, and lung cancer. experimental results showed that our node influence based method (NIM is more efficient and robust than the support vector machine, K-nearest neighbor, C4.5, naive Bayes, and CART.

  5. Remote Sensing Image Classification Based on Stacked Denoising Autoencoder

    Directory of Open Access Journals (Sweden)

    Peng Liang

    2017-12-01

    Full Text Available Focused on the issue that conventional remote sensing image classification methods have run into the bottlenecks in accuracy, a new remote sensing image classification method inspired by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input, the unsupervised Greedy layer-wise training algorithm is used to train each layer in turn for more robust expressing, characteristics are obtained in supervised learning by Back Propagation (BP neural network, and the whole network is optimized by error back propagation. Finally, Gaofen-1 satellite (GF-1 remote sensing data are used for evaluation, and the total accuracy and kappa accuracy reach 95.7% and 0.955, respectively, which are higher than that of the Support Vector Machine and Back Propagation neural network. The experiment results show that the proposed method can effectively improve the accuracy of remote sensing image classification.

  6. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer

    OpenAIRE

    Rogiers, Bart; Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain

    2017-01-01

    Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT...

  7. Discriminative Analysis of Different Grades of Gaharu (Aquilaria malaccensis Lamk. via 1H-NMR-Based Metabolomics Using PLS-DA and Random Forests Classification Models

    Directory of Open Access Journals (Sweden)

    Siti Nazirah Ismail

    2017-09-01

    Full Text Available Gaharu (agarwood, Aquilaria malaccensis Lamk. is a valuable tropical rainforest product traded internationally for its distinctive fragrance. It is not only popular as incense and in perfumery, but also favored in traditional medicine due to its sedative, carminative, cardioprotective and analgesic effects. The current study addresses the chemical differences and similarities between gaharu samples of different grades, obtained commercially, using 1H-NMR-based metabolomics. Two classification models: partial least squares-discriminant analysis (PLS-DA and Random Forests were developed to classify the gaharu samples on the basis of their chemical constituents. The gaharu samples could be reclassified into a ‘high grade’ group (samples A, B and D, characterized by high contents of kusunol, jinkohol, and 10-epi-γ-eudesmol; an ‘intermediate grade’ group (samples C, F and G, dominated by fatty acid and vanillic acid; and a ‘low grade’ group (sample E and H, which had higher contents of aquilarone derivatives and phenylethyl chromones. The results showed that 1H- NMR-based metabolomics can be a potential method to grade the quality of gaharu samples on the basis of their chemical constituents.

  8. Development of models for classification of action between heat-clearing herbs and blood-activating stasis-resolving herbs based on theory of traditional Chinese medicine.

    Science.gov (United States)

    Chen, Zhao; Cao, Yanfeng; He, Shuaibing; Qiao, Yanjiang

    2018-01-01

    Action (" gongxiao " in Chinese) of traditional Chinese medicine (TCM) is the high recapitulation for therapeutic and health-preserving effects under the guidance of TCM theory. TCM-defined herbal properties (" yaoxing " in Chinese) had been used in this research. TCM herbal property (TCM-HP) is the high generalization and summary for actions, both of which come from long-term effective clinical practice in two thousands of years in China. However, the specific relationship between TCM-HP and action of TCM is complex and unclear from a scientific perspective. The research about this is conducive to expound the connotation of TCM-HP theory and is of important significance for the development of the TCM-HP theory. One hundred and thirty-three herbs including 88 heat-clearing herbs (HCHs) and 45 blood-activating stasis-resolving herbs (BAHRHs) were collected from reputable TCM literatures, and their corresponding TCM-HPs/actions information were collected from Chinese pharmacopoeia (2015 edition). The Kennard-Stone (K-S) algorithm was used to split 133 herbs into 100 calibration samples and 33 validation samples. Then, machine learning methods including supported vector machine (SVM), k-nearest neighbor (kNN) and deep learning methods including deep belief network (DBN), convolutional neutral network (CNN) were adopted to develop action classification models based on TCM-HP theory, respectively. In order to ensure robustness, these four classification methods were evaluated by using the method of tenfold cross validation and 20 external validation samples for prediction. As results, 72.7-100% of 33 validation samples including 17 HCHs and 16 BASRHs were correctly predicted by these four types of methods. Both of the DBN and CNN methods gave out the best results and their sensitivity, specificity, precision, accuracy were all 100.00%. Especially, the predicted results of external validation set showed that the performance of deep learning methods (DBN, CNN) were better

  9. Energy-efficiency based classification of the manufacturing workstation

    Science.gov (United States)

    Frumuşanu, G.; Afteni, C.; Badea, N.; Epureanu, A.

    2017-08-01

    EU Directive 92/75/EC established for the first time an energy consumption labelling scheme, further implemented by several other directives. As consequence, nowadays many products (e.g. home appliances, tyres, light bulbs, houses) have an EU Energy Label when offered for sale or rent. Several energy consumption models of manufacturing equipments have been also developed. This paper proposes an energy efficiency - based classification of the manufacturing workstation, aiming to characterize its energetic behaviour. The concept of energy efficiency of the manufacturing workstation is defined. On this base, a classification methodology has been developed. It refers to specific criteria and their evaluation modalities, together to the definition & delimitation of energy efficiency classes. The energy class position is defined after the amount of energy needed by the workstation in the middle point of its operating domain, while its extension is determined by the value of the first coefficient from the Taylor series that approximates the dependence between the energy consume and the chosen parameter of the working regime. The main domain of interest for this classification looks to be the optimization of the manufacturing activities planning and programming. A case-study regarding an actual lathe classification from energy efficiency point of view, based on two different approaches (analytical and numerical) is also included.

  10. Research on Classification of Chinese Text Data Based on SVM

    Science.gov (United States)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  11. A Sieving ANN for Emotion-Based Movie Clip Classification

    Science.gov (United States)

    Watanapa, Saowaluk C.; Thipakorn, Bundit; Charoenkitkarn, Nipon

    Effective classification and analysis of semantic contents are very important for the content-based indexing and retrieval of video database. Our research attempts to classify movie clips into three groups of commonly elicited emotions, namely excitement, joy and sadness, based on a set of abstract-level semantic features extracted from the film sequence. In particular, these features consist of six visual and audio measures grounded on the artistic film theories. A unique sieving-structured neural network is proposed to be the classifying model due to its robustness. The performance of the proposed model is tested with 101 movie clips excerpted from 24 award-winning and well-known Hollywood feature films. The experimental result of 97.8% correct classification rate, measured against the collected human-judges, indicates the great potential of using abstract-level semantic features as an engineered tool for the application of video-content retrieval/indexing.

  12. Classification of archaeological pieces into their respective stratum by a chemometric model based on the soil concentration of 25 selected elements

    International Nuclear Information System (INIS)

    Carrero, J.A.; Goienaga, N.; Fdez-Ortiz de Vallejuelo, S.; Arana, G.; Madariaga, J.M.

    2010-01-01

    The aim of this work was to demonstrate that an archaeological ceramic piece has remained buried underground in the same stratum for centuries without being removed. For this purpose, a chemometric model based on Principal Component Analysis, Soft Independent Modelling of Class Analogy and Linear Discriminant Analysis classification techniques was created with the concentration of some selected elements of both soil of the stratum and soil adhered to the ceramic piece. Some ceramic pieces from four different stratigraphic units, coming from a roman archaeological site in Alava (North of Spain), and its respective stratum soils were collected. The soil adhered to the ceramic pieces was removed and treated in the same way as the soil from its respective stratum. The digestion was carried out following the US Environmental Pollution Agency EPA 3051A method. A total of 54 elements were determined in the extracts by a rapid screening inductively coupled plasma mass spectrometry method. After rejecting the major elements and those which could have changed from the original composition of the soils (migration or retention from/to the buried objects), the following elements (25) were finally taken into account to construct the model: Li, V, Co, As, Y, Nb, Sn, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Au, Th and U. A total of 33 subsamples were treated from 10 soils belonging to 4 different stratigraphic units. The final model groups and discriminate them in four groups, according to the stratigraphic unit, having both the stratum and soils adhered to the pieces falling down in the same group.

  13. Histological image classification using biologically interpretable shape-based features

    International Nuclear Information System (INIS)

    Kothari, Sonal; Phan, John H; Young, Andrew N; Wang, May D

    2013-01-01

    Automatic cancer diagnostic systems based on histological image classification are important for improving therapeutic decisions. Previous studies propose textural and morphological features for such systems. These features capture patterns in histological images that are useful for both cancer grading and subtyping. However, because many of these features lack a clear biological interpretation, pathologists may be reluctant to adopt these features for clinical diagnosis. We examine the utility of biologically interpretable shape-based features for classification of histological renal tumor images. Using Fourier shape descriptors, we extract shape-based features that capture the distribution of stain-enhanced cellular and tissue structures in each image and evaluate these features using a multi-class prediction model. We compare the predictive performance of the shape-based diagnostic model to that of traditional models, i.e., using textural, morphological and topological features. The shape-based model, with an average accuracy of 77%, outperforms or complements traditional models. We identify the most informative shapes for each renal tumor subtype from the top-selected features. Results suggest that these shapes are not only accurate diagnostic features, but also correlate with known biological characteristics of renal tumors. Shape-based analysis of histological renal tumor images accurately classifies disease subtypes and reveals biologically insightful discriminatory features. This method for shape-based analysis can be extended to other histological datasets to aid pathologists in diagnostic and therapeutic decisions

  14. Contextual segment-based classification of airborne laser scanner data

    NARCIS (Netherlands)

    Vosselman, George; Coenen, Maximilian; Rottensteiner, Franz

    2017-01-01

    Classification of point clouds is needed as a first step in the extraction of various types of geo-information from point clouds. We present a new approach to contextual classification of segmented airborne laser scanning data. Potential advantages of segment-based classification are easily offset

  15. The classification of lung cancers and their degree of malignancy by FTIR, PCA-LDA analysis, and a physics-based computational model.

    Science.gov (United States)

    Kaznowska, E; Depciuch, J; Łach, K; Kołodziej, M; Koziorowska, A; Vongsvivut, J; Zawlik, I; Cholewa, M; Cebulski, J

    2018-08-15

    Lung cancer has the highest mortality rate of all malignant tumours. The current effects of cancer treatment, as well as its diagnostics, are unsatisfactory. Therefore it is very important to introduce modern diagnostic tools, which will allow for rapid classification of lung cancers and their degree of malignancy. For this purpose, the authors propose the use of Fourier Transform InfraRed (FTIR) spectroscopy combined with Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) and a physics-based computational model. The results obtained for lung cancer tissues, adenocarcinoma and squamous cell carcinoma FTIR spectra, show a shift in wavenumbers compared to control tissue FTIR spectra. Furthermore, in the FTIR spectra of adenocarcinoma there are no peaks corresponding to glutamate or phospholipid functional groups. Moreover, in the case of G2 and G3 malignancy of adenocarcinoma lung cancer, the absence of an OH groups peak was noticed. Thus, it seems that FTIR spectroscopy is a valuable tool to classify lung cancer and to determine the degree of its malignancy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    Science.gov (United States)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  17. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    Science.gov (United States)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  18. Vessel-guided airway segmentation based on voxel classification

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem

    2008-01-01

    This paper presents a method for improving airway tree segmentation using vessel orientation information. We use the fact that an airway branch is always accompanied by an artery, with both structures having similar orientations. This work is based on a  voxel classification airway segmentation...... method proposed previously. The probability of a voxel belonging to the airway, from the voxel classification method, is augmented with an orientation similarity measure as a criterion for region growing. The orientation similarity measure of a voxel indicates how similar is the orientation...... of the surroundings of a voxel, estimated based on a tube model, is to that of a neighboring vessel. The proposed method is tested on 20 CT images from different subjects selected randomly from a lung cancer screening study. Length of the airway branches from the results of the proposed method are significantly...

  19. Classification of customer lifetime value models using Markov chain

    Science.gov (United States)

    Permana, Dony; Pasaribu, Udjianna S.; Indratno, Sapto W.; Suprayogi

    2017-10-01

    A firm’s potential reward in future time from a customer can be determined by customer lifetime value (CLV). There are some mathematic methods to calculate it. One method is using Markov chain stochastic model. Here, a customer is assumed through some states. Transition inter the states follow Markovian properties. If we are given some states for a customer and the relationships inter states, then we can make some Markov models to describe the properties of the customer. As Markov models, CLV is defined as a vector contains CLV for a customer in the first state. In this paper we make a classification of Markov Models to calculate CLV. Start from two states of customer model, we make develop in many states models. The development a model is based on weaknesses in previous model. Some last models can be expected to describe how real characters of customers in a firm.

  20. Soil classification basing on the spectral characteristics of topsoil samples

    Science.gov (United States)

    Liu, Huanjun; Zhang, Xiaokang; Zhang, Xinle

    2016-04-01

    Soil taxonomy plays an important role in soil utility and management, but China has only course soil map created based on 1980s data. New technology, e.g. spectroscopy, could simplify soil classification. The study try to classify soils basing on the spectral characteristics of topsoil samples. 148 topsoil samples of typical soils, including Black soil, Chernozem, Blown soil and Meadow soil, were collected from Songnen plain, Northeast China, and the room spectral reflectance in the visible and near infrared region (400-2500 nm) were processed with weighted moving average, resampling technique, and continuum removal. Spectral indices were extracted from soil spectral characteristics, including the second absorption positions of spectral curve, the first absorption vale's area, and slope of spectral curve at 500-600 nm and 1340-1360 nm. Then K-means clustering and decision tree were used respectively to build soil classification model. The results indicated that 1) the second absorption positions of Black soil and Chernozem were located at 610 nm and 650 nm respectively; 2) the spectral curve of the meadow is similar to its adjacent soil, which could be due to soil erosion; 3) decision tree model showed higher classification accuracy, and accuracy of Black soil, Chernozem, Blown soil and Meadow are 100%, 88%, 97%, 50% respectively, and the accuracy of Blown soil could be increased to 100% by adding one more spectral index (the first two vole's area) to the model, which showed that the model could be used for soil classification and soil map in near future.

  1. Density Based Support Vector Machines for Classification

    OpenAIRE

    Zahra Nazari; Dongshik Kang

    2015-01-01

    Support Vector Machines (SVM) is the most successful algorithm for classification problems. SVM learns the decision boundary from two classes (for Binary Classification) of training points. However, sometimes there are some less meaningful samples amongst training points, which are corrupted by noises or misplaced in wrong side, called outliers. These outliers are affecting on margin and classification performance, and machine should better to discard them. SVM as a popular and widely used cl...

  2. Overfitting Reduction of Text Classification Based on AdaBELM

    Directory of Open Access Journals (Sweden)

    Xiaoyue Feng

    2017-07-01

    Full Text Available Overfitting is an important problem in machine learning. Several algorithms, such as the extreme learning machine (ELM, suffer from this issue when facing high-dimensional sparse data, e.g., in text classification. One common issue is that the extent of overfitting is not well quantified. In this paper, we propose a quantitative measure of overfitting referred to as the rate of overfitting (RO and a novel model, named AdaBELM, to reduce the overfitting. With RO, the overfitting problem can be quantitatively measured and identified. The newly proposed model can achieve high performance on multi-class text classification. To evaluate the generalizability of the new model, we designed experiments based on three datasets, i.e., the 20 Newsgroups, Reuters-21578, and BioMed corpora, which represent balanced, unbalanced, and real application data, respectively. Experiment results demonstrate that AdaBELM can reduce overfitting and outperform classical ELM, decision tree, random forests, and AdaBoost on all three text-classification datasets; for example, it can achieve 62.2% higher accuracy than ELM. Therefore, the proposed model has a good generalizability.

  3. A classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopy

    Science.gov (United States)

    Yan, Jie; Yu, Yang; Kang, Jeon Woong; Tam, Zhi Yang; Xu, Shuoyu; Fong, Eliza Li Shan; Singh, Surya Pratap; Song, Ziwei; Tucker Kellogg, Lisa; So, Peter; Yu, Hanry

    2017-07-01

    We combined Raman micro-spectroscopy and machine learning techniques to develop a classification model based on a well-established non-alcoholic steatohepatitis (NASH) mouse model, using spectrum pre-processing, biochemical component analysis (BCA) and logistic regression.

  4. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment betw...

  5. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment...

  6. Interactive classification and content-based retrieval of tissue images

    Science.gov (United States)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  7. Structure-based classification and ontology in chemistry

    Directory of Open Access Journals (Sweden)

    Hastings Janna

    2012-04-01

    Full Text Available Abstract Background Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures, while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. Results We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. Conclusion Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational

  8. Bearing Fault Classification Based on Conditional Random Field

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2013-01-01

    Full Text Available Condition monitoring of rolling element bearing is paramount for predicting the lifetime and performing effective maintenance of the mechanical equipment. To overcome the drawbacks of the hidden Markov model (HMM and improve the diagnosis accuracy, conditional random field (CRF model based classifier is proposed. In this model, the feature vectors sequences and the fault categories are linked by an undirected graphical model in which their relationship is represented by a global conditional probability distribution. In comparison with the HMM, the main advantage of the CRF model is that it can depict the temporal dynamic information between the observation sequences and state sequences without assuming the independence of the input feature vectors. Therefore, the interrelationship between the adjacent observation vectors can also be depicted and integrated into the model, which makes the classifier more robust and accurate than the HMM. To evaluate the effectiveness of the proposed method, four kinds of bearing vibration signals which correspond to normal, inner race pit, outer race pit and roller pit respectively are collected from the test rig. And the CRF and HMM models are built respectively to perform fault classification by taking the sub band energy features of wavelet packet decomposition (WPD as the observation sequences. Moreover, K-fold cross validation method is adopted to improve the evaluation accuracy of the classifier. The analysis and comparison under different fold times show that the accuracy rate of classification using the CRF model is higher than the HMM. This method brings some new lights on the accurate classification of the bearing faults.

  9. Model sparsity and brain pattern interpretation of classification models in neuroimaging

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Churchill, Nathan W

    2012-01-01

    Interest is increasing in applying discriminative multivariate analysis techniques to the analysis of functional neuroimaging data. Model interpretation is of great importance in the neuroimaging context, and is conventionally based on a ‘brain map’ derived from the classification model. In this ...

  10. Model of high-tech businesses management under the trends of explicit and implicit knowledge markets: classification and business model

    OpenAIRE

    Guzel Isayevna Gumerova; Elmira Shamilevna Shaimieva

    2015-01-01

    Objective to define the notion of ldquohightech businessrdquo to elaborate classification of hightech businesses to elaborate the business model for hightech business management. Methods general scientific methods of theoretical and empirical cognition. Results the research presents a business model of hightech businesses management basing on the trends of explicit and explicit knowledge market with the dominating implicit knowledge market classification of hightech business...

  11. Tongue Images Classification Based on Constrained High Dispersal Network

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2017-01-01

    Full Text Available Computer aided tongue diagnosis has a great potential to play important roles in traditional Chinese medicine (TCM. However, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by deep convolutional neural network (CNN, we propose a novel feature extraction framework called constrained high dispersal neural networks (CHDNet to extract unbiased features and reduce human labor for tongue diagnosis in TCM. Previous CNN models have mostly focused on learning convolutional filters and adapting weights between them, but these models have two major issues: redundancy and insufficient capability in handling unbalanced sample distribution. We introduce high dispersal and local response normalization operation to address the issue of redundancy. We also add multiscale feature analysis to avoid the problem of sensitivity to deformation. Our proposed CHDNet learns high-level features and provides more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed method on a set of 267 gastritis patients and a control group of 48 healthy volunteers. Test results show that CHDNet is a promising method in tongue image classification for the TCM study.

  12. KNN BASED CLASSIFICATION OF DIGITAL MODULATED SIGNALS

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmed Ghauri

    2016-11-01

    Full Text Available Demodulation process without the knowledge of modulation scheme requires Automatic Modulation Classification (AMC. When receiver has limited information about received signal then AMC become essential process. AMC finds important place in the field many civil and military fields such as modern electronic warfare, interfering source recognition, frequency management, link adaptation etc. In this paper we explore the use of K-nearest neighbor (KNN for modulation classification with different distance measurement methods. Five modulation schemes are used for classification purpose which is Binary Phase Shift Keying (BPSK, Quadrature Phase Shift Keying (QPSK, Quadrature Amplitude Modulation (QAM, 16-QAM and 64-QAM. Higher order cummulants (HOC are used as an input feature set to the classifier. Simulation results shows that proposed classification method provides better results for the considered modulation formats.

  13. The high-density lipoprotein-adjusted SCORE model worsens SCORE-based risk classification in a contemporary population of 30 824 Europeans

    DEFF Research Database (Denmark)

    Mortensen, Martin B; Afzal, Shoaib; Nordestgaard, Børge G

    2015-01-01

    .8 years of follow-up, 339 individuals died of CVD. In the SCORE target population (age 40-65; n = 30,824), fewer individuals were at baseline categorized as high risk (≥5% 10-year risk of fatal CVD) using SCORE-HDL compared with SCORE (10 vs. 17% in men, 1 vs. 3% in women). SCORE-HDL did not improve...... with SCORE, but deteriorated risk classification based on NRI. Future guidelines should consider lower decision thresholds and prioritize CVD morbidity and people above age 65....

  14. Integrating Globality and Locality for Robust Representation Based Classification

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2014-01-01

    Full Text Available The representation based classification method (RBCM has shown huge potential for face recognition since it first emerged. Linear regression classification (LRC method and collaborative representation classification (CRC method are two well-known RBCMs. LRC and CRC exploit training samples of each class and all the training samples to represent the testing sample, respectively, and subsequently conduct classification on the basis of the representation residual. LRC method can be viewed as a “locality representation” method because it just uses the training samples of each class to represent the testing sample and it cannot embody the effectiveness of the “globality representation.” On the contrary, it seems that CRC method cannot own the benefit of locality of the general RBCM. Thus we propose to integrate CRC and LRC to perform more robust representation based classification. The experimental results on benchmark face databases substantially demonstrate that the proposed method achieves high classification accuracy.

  15. Applications of Diagnostic Classification Models: A Literature Review and Critical Commentary

    Science.gov (United States)

    Sessoms, John; Henson, Robert A.

    2018-01-01

    Diagnostic classification models (DCMs) classify examinees based on the skills they have mastered given their test performance. This classification enables targeted feedback that can inform remedial instruction. Unfortunately, applications of DCMs have been criticized (e.g., no validity support). Generally, these evaluations have been brief and…

  16. Joint Probability-Based Neuronal Spike Train Classification

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2009-01-01

    Full Text Available Neuronal spike trains are used by the nervous system to encode and transmit information. Euclidean distance-based methods (EDBMs have been applied to quantify the similarity between temporally-discretized spike trains and model responses. In this study, using the same discretization procedure, we developed and applied a joint probability-based method (JPBM to classify individual spike trains of slowly adapting pulmonary stretch receptors (SARs. The activity of individual SARs was recorded in anaesthetized, paralysed adult male rabbits, which were artificially-ventilated at constant rate and one of three different volumes. Two-thirds of the responses to the 600 stimuli presented at each volume were used to construct three response models (one for each stimulus volume consisting of a series of time bins, each with spike probabilities. The remaining one-third of the responses where used as test responses to be classified into one of the three model responses. This was done by computing the joint probability of observing the same series of events (spikes or no spikes, dictated by the test response in a given model and determining which probability of the three was highest. The JPBM generally produced better classification accuracy than the EDBM, and both performed well above chance. Both methods were similarly affected by variations in discretization parameters, response epoch duration, and two different response alignment strategies. Increasing bin widths increased classification accuracy, which also improved with increased observation time, but primarily during periods of increasing lung inflation. Thus, the JPBM is a simple and effective method performing spike train classification.

  17. Inter Genre Similarity Modelling For Automatic Music Genre Classification

    OpenAIRE

    Bagci, Ulas; Erzin, Engin

    2009-01-01

    Music genre classification is an essential tool for music information retrieval systems and it has been finding critical applications in various media platforms. Two important problems of the automatic music genre classification are feature extraction and classifier design. This paper investigates inter-genre similarity modelling (IGS) to improve the performance of automatic music genre classification. Inter-genre similarity information is extracted over the mis-classified feature population....

  18. Quality-Oriented Classification of Aircraft Material Based on SVM

    Directory of Open Access Journals (Sweden)

    Hongxia Cai

    2014-01-01

    Full Text Available The existing material classification is proposed to improve the inventory management. However, different materials have the different quality-related attributes, especially in the aircraft industry. In order to reduce the cost without sacrificing the quality, we propose a quality-oriented material classification system considering the material quality character, Quality cost, and Quality influence. Analytic Hierarchy Process helps to make feature selection and classification decision. We use the improved Kraljic Portfolio Matrix to establish the three-dimensional classification model. The aircraft materials can be divided into eight types, including general type, key type, risk type, and leveraged type. Aiming to improve the classification accuracy of various materials, the algorithm of Support Vector Machine is introduced. Finally, we compare the SVM and BP neural network in the application. The results prove that the SVM algorithm is more efficient and accurate and the quality-oriented material classification is valuable.

  19. Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions

    KAUST Repository

    Najibi, Seyed Morteza

    2017-02-08

    Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.

  20. Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions

    KAUST Repository

    Najibi, Seyed Morteza; Maadooliat, Mehdi; Zhou, Lan; Huang, Jianhua Z.; Gao, Xin

    2017-01-01

    Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.

  1. Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.

    Science.gov (United States)

    Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel

    2017-06-01

    Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.

  2. Bayesian outcome-based strategy classification.

    Science.gov (United States)

    Lee, Michael D

    2016-03-01

    Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014) recently developed a method for making inferences about the decision processes people use in multi-attribute forced choice tasks. Their paper makes a number of worthwhile theoretical and methodological contributions. Theoretically, they provide an insightful psychological motivation for a probabilistic extension of the widely-used "weighted additive" (WADD) model, and show how this model, as well as other important models like "take-the-best" (TTB), can and should be expressed in terms of meaningful priors. Methodologically, they develop an inference approach based on the Minimum Description Length (MDL) principles that balances both the goodness-of-fit and complexity of the decision models they consider. This paper aims to preserve these useful contributions, but provide a complementary Bayesian approach with some theoretical and methodological advantages. We develop a simple graphical model, implemented in JAGS, that allows for fully Bayesian inferences about which models people use to make decisions. To demonstrate the Bayesian approach, we apply it to the models and data considered by Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014), showing how a prior predictive analysis of the models, and posterior inferences about which models people use and the parameter settings at which they use them, can contribute to our understanding of human decision making.

  3. Preliminary Research on Grassland Fine-classification Based on MODIS

    International Nuclear Information System (INIS)

    Hu, Z W; Zhang, S; Yu, X Y; Wang, X S

    2014-01-01

    Grassland ecosystem is important for climatic regulation, maintaining the soil and water. Research on the grassland monitoring method could provide effective reference for grassland resource investigation. In this study, we used the vegetation index method for grassland classification. There are several types of climate in China. Therefore, we need to use China's Main Climate Zone Maps and divide the study region into four climate zones. Based on grassland classification system of the first nation-wide grass resource survey in China, we established a new grassland classification system which is only suitable for this research. We used MODIS images as the basic data resources, and use the expert classifier method to perform grassland classification. Based on the 1:1,000,000 Grassland Resource Map of China, we obtained the basic distribution of all the grassland types and selected 20 samples evenly distributed in each type, then used NDVI/EVI product to summarize different spectral features of different grassland types. Finally, we introduced other classification auxiliary data, such as elevation, accumulate temperature (AT), humidity index (HI) and rainfall. China's nation-wide grassland classification map is resulted by merging the grassland in different climate zone. The overall classification accuracy is 60.4%. The result indicated that expert classifier is proper for national wide grassland classification, but the classification accuracy need to be improved

  4. Best Practices in Academic Management. Study Programs Classification Model

    Directory of Open Access Journals (Sweden)

    Ofelia Ema Aleca

    2016-05-01

    Full Text Available This article proposes and tests a set of performance indicators for the assessment of Bachelor and Master studies, from two perspectives: the study programs and the disciplines. The academic performance at the level of a study program shall be calculated based on success and efficiency rates, and at discipline level, on the basis of rates of efficiency, success and absenteeism. This research proposes a model of classification of the study programs within a Bachelor and Master cycle based on the education performance and efficiency. What recommends this model as a best practice model in academic management is the possibility of grouping a study program or a discipline in a particular category of efficiency

  5. Hierarchical structure for audio-video based semantic classification of sports video sequences

    Science.gov (United States)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  6. Point Based Emotion Classification Using SVM

    OpenAIRE

    Swinkels, Wout

    2016-01-01

    The detection of emotions is a hot topic in the area of computer vision. Emotions are based on subtle changes in the face that are intuitively detected and interpreted by humans. Detecting these subtle changes, based on mathematical models, is a great challenge in the area of computer vision. In this thesis a new method is proposed to achieve state-of-the-art emotion detection performance. This method is based on facial feature points to monitor subtle changes in the face. Therefore the c...

  7. A proposed data base system for detection, classification and ...

    African Journals Online (AJOL)

    A proposed data base system for detection, classification and location of fault on electricity company of Ghana electrical distribution system. Isaac Owusu-Nyarko, Mensah-Ananoo Eugine. Abstract. No Abstract. Keywords: database, classification of fault, power, distribution system, SCADA, ECG. Full Text: EMAIL FULL TEXT ...

  8. AN OBJECT-BASED METHOD FOR CHINESE LANDFORM TYPES CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. Ding

    2016-06-01

    Full Text Available Landform classification is a necessary task for various fields of landscape and regional planning, for example for landscape evaluation, erosion studies, hazard prediction, et al. This study proposes an improved object-based classification for Chinese landform types using the factor importance analysis of random forest and the gray-level co-occurrence matrix (GLCM. In this research, based on 1km DEM of China, the combination of the terrain factors extracted from DEM are selected by correlation analysis and Sheffield's entropy method. Random forest classification tree is applied to evaluate the importance of the terrain factors, which are used as multi-scale segmentation thresholds. Then the GLCM is conducted for the knowledge base of classification. The classification result was checked by using the 1:4,000,000 Chinese Geomorphological Map as reference. And the overall classification accuracy of the proposed method is 5.7% higher than ISODATA unsupervised classification, and 15.7% higher than the traditional object-based classification method.

  9. Calibration of a Plastic Classification System with the Ccw Model

    International Nuclear Information System (INIS)

    Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Navarrete Marin, J. J.; Oller Gonzalez, J. C.

    2003-01-01

    This document describes the calibration of a plastic Classification system with the Ccw model (Classification by Quantum's built with Wavelet Coefficients). The method is applied to spectra of plastics usually present in domestic wastes. Obtained results are showed. (Author) 16 refs

  10. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    Science.gov (United States)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  11. A Novel Imbalanced Data Classification Approach Based on Logistic Regression and Fisher Discriminant

    Directory of Open Access Journals (Sweden)

    Baofeng Shi

    2015-01-01

    Full Text Available We introduce an imbalanced data classification approach based on logistic regression significant discriminant and Fisher discriminant. First of all, a key indicators extraction model based on logistic regression significant discriminant and correlation analysis is derived to extract features for customer classification. Secondly, on the basis of the linear weighted utilizing Fisher discriminant, a customer scoring model is established. And then, a customer rating model where the customer number of all ratings follows normal distribution is constructed. The performance of the proposed model and the classical SVM classification method are evaluated in terms of their ability to correctly classify consumers as default customer or nondefault customer. Empirical results using the data of 2157 customers in financial engineering suggest that the proposed approach better performance than the SVM model in dealing with imbalanced data classification. Moreover, our approach contributes to locating the qualified customers for the banks and the bond investors.

  12. ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Na Li

    2018-03-01

    Full Text Available The diverse density (DD algorithm was proposed to handle the problem of low classification accuracy when training samples contain interference such as mixed pixels. The DD algorithm can learn a feature vector from training bags, which comprise instances (pixels. However, the feature vector learned by the DD algorithm cannot always effectively represent one type of ground cover. To handle this problem, an instance space-based diverse density (ISBDD model that employs a novel training strategy is proposed in this paper. In the ISBDD model, DD values of each pixel are computed instead of learning a feature vector, and as a result, the pixel can be classified according to its DD values. Airborne hyperspectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS sensor and the Push-broom Hyperspectral Imager (PHI are applied to evaluate the performance of the proposed model. Results show that the overall classification accuracy of ISBDD model on the AVIRIS and PHI images is up to 97.65% and 89.02%, respectively, while the kappa coefficient is up to 0.97 and 0.88, respectively.

  13. Deep neural network and noise classification-based speech enhancement

    Science.gov (United States)

    Shi, Wenhua; Zhang, Xiongwei; Zou, Xia; Han, Wei

    2017-07-01

    In this paper, a speech enhancement method using noise classification and Deep Neural Network (DNN) was proposed. Gaussian mixture model (GMM) was employed to determine the noise type in speech-absent frames. DNN was used to model the relationship between noisy observation and clean speech. Once the noise type was determined, the corresponding DNN model was applied to enhance the noisy speech. GMM was trained with mel-frequency cepstrum coefficients (MFCC) and the parameters were estimated with an iterative expectation-maximization (EM) algorithm. Noise type was updated by spectrum entropy-based voice activity detection (VAD). Experimental results demonstrate that the proposed method could achieve better objective speech quality and smaller distortion under stationary and non-stationary conditions.

  14. Chemometric classification of casework arson samples based on gasoline content.

    Science.gov (United States)

    Sinkov, Nikolai A; Sandercock, P Mark L; Harynuk, James J

    2014-02-01

    Detection and identification of ignitable liquids (ILs) in arson debris is a critical part of arson investigations. The challenge of this task is due to the complex and unpredictable chemical nature of arson debris, which also contains pyrolysis products from the fire. ILs, most commonly gasoline, are complex chemical mixtures containing hundreds of compounds that will be consumed or otherwise weathered by the fire to varying extents depending on factors such as temperature, air flow, the surface on which IL was placed, etc. While methods such as ASTM E-1618 are effective, data interpretation can be a costly bottleneck in the analytical process for some laboratories. In this study, we address this issue through the application of chemometric tools. Prior to the application of chemometric tools such as PLS-DA and SIMCA, issues of chromatographic alignment and variable selection need to be addressed. Here we use an alignment strategy based on a ladder consisting of perdeuterated n-alkanes. Variable selection and model optimization was automated using a hybrid backward elimination (BE) and forward selection (FS) approach guided by the cluster resolution (CR) metric. In this work, we demonstrate the automated construction, optimization, and application of chemometric tools to casework arson data. The resulting PLS-DA and SIMCA classification models, trained with 165 training set samples, have provided classification of 55 validation set samples based on gasoline content with 100% specificity and sensitivity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-08-01

    Full Text Available Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.

  16. Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

    Science.gov (United States)

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V.; Robles, Montserrat; Aparici, F.; Martí-Bonmatí, L.; García-Gómez, Juan M.

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. PMID:25978453

  17. Compensatory neurofuzzy model for discrete data classification in biomedical

    Science.gov (United States)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  18. A Classification-based Review Recommender

    Science.gov (United States)

    O'Mahony, Michael P.; Smyth, Barry

    Many online stores encourage their users to submit product/service reviews in order to guide future purchasing decisions. These reviews are often listed alongside product recommendations but, to date, limited attention has been paid as to how best to present these reviews to the end-user. In this paper, we describe a supervised classification approach that is designed to identify and recommend the most helpful product reviews. Using the TripAdvisor service as a case study, we compare the performance of several classification techniques using a range of features derived from hotel reviews. We then describe how these classifiers can be used as the basis for a practical recommender that automatically suggests the mosthelpful contrasting reviews to end-users. We present an empirical evaluation which shows that our approach achieves a statistically significant improvement over alternative review ranking schemes.

  19. Classification

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is…

  20. Classification rates: non‐parametric verses parametric models using ...

    African Journals Online (AJOL)

    This research sought to establish if non parametric modeling achieves a higher correct classification ratio than a parametric model. The local likelihood technique was used to model fit the data sets. The same sets of data were modeled using parametric logit and the abilities of the two models to correctly predict the binary ...

  1. A NEW WASTE CLASSIFYING MODEL: HOW WASTE CLASSIFICATION CAN BECOME MORE OBJECTIVE?

    Directory of Open Access Journals (Sweden)

    Burcea Stefan Gabriel

    2015-07-01

    Full Text Available The waste management specialist must be able to identify and analyze waste generation sources and to propose proper solutions to prevent the waste generation and encurage the waste minimisation. In certain situations like implementing an integrated waste management sustem and configure the waste collection methods and capacities, practitioners can face the challenge to classify the generated waste. This will tend to be the more demanding as the literature does not provide a coherent system of criteria required for an objective waste classification process. The waste incineration will determine no doubt a different waste classification than waste composting or mechanical and biological treatment. In this case the main question is what are the proper classification criteria witch can be used to realise an objective waste classification? The article provide a short critical literature review of the existing waste classification criteria and suggests the conclusion that the literature can not provide unitary waste classification system which is unanimously accepted and assumed by ideologists and practitioners. There are various classification criteria and more interesting perspectives in the literature regarding the waste classification, but the most common criteria based on which specialists classify waste into several classes, categories and types are the generation source, physical and chemical features, aggregation state, origin or derivation, hazardous degree etc. The traditional classification criteria divided waste into various categories, subcategories and types; such an approach is a conjectural one because is inevitable that according to the context in which the waste classification is required the used criteria to differ significantly; hence the need to uniformizating the waste classification systems. For the first part of the article it has been used indirect observation research method by analyzing the literature and the various

  2. Learning classification models with soft-label information.

    Science.gov (United States)

    Nguyen, Quang; Valizadegan, Hamed; Hauskrecht, Milos

    2014-01-01

    Learning of classification models in medicine often relies on data labeled by a human expert. Since labeling of clinical data may be time-consuming, finding ways of alleviating the labeling costs is critical for our ability to automatically learn such models. In this paper we propose a new machine learning approach that is able to learn improved binary classification models more efficiently by refining the binary class information in the training phase with soft labels that reflect how strongly the human expert feels about the original class labels. Two types of methods that can learn improved binary classification models from soft labels are proposed. The first relies on probabilistic/numeric labels, the other on ordinal categorical labels. We study and demonstrate the benefits of these methods for learning an alerting model for heparin induced thrombocytopenia. The experiments are conducted on the data of 377 patient instances labeled by three different human experts. The methods are compared using the area under the receiver operating characteristic curve (AUC) score. Our AUC results show that the new approach is capable of learning classification models more efficiently compared to traditional learning methods. The improvement in AUC is most remarkable when the number of examples we learn from is small. A new classification learning framework that lets us learn from auxiliary soft-label information provided by a human expert is a promising new direction for learning classification models from expert labels, reducing the time and cost needed to label data.

  3. Models of parallel computation :a survey and classification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunquan; CHEN Guoliang; SUN Guangzhong; MIAO Qiankun

    2007-01-01

    In this paper,the state-of-the-art parallel computational model research is reviewed.We will introduce various models that were developed during the past decades.According to their targeting architecture features,especially memory organization,we classify these parallel computational models into three generations.These models and their characteristics are discussed based on three generations classification.We believe that with the ever increasing speed gap between the CPU and memory systems,incorporating non-uniform memory hierarchy into computational models will become unavoidable.With the emergence of multi-core CPUs,the parallelism hierarchy of current computing platforms becomes more and more complicated.Describing this complicated parallelism hierarchy in future computational models becomes more and more important.A semi-automatic toolkit that can extract model parameters and their values on real computers can reduce the model analysis complexity,thus allowing more complicated models with more parameters to be adopted.Hierarchical memory and hierarchical parallelism will be two very important features that should be considered in future model design and research.

  4. Neighborhood Hypergraph Based Classification Algorithm for Incomplete Information System

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2015-01-01

    Full Text Available The problem of classification in incomplete information system is a hot issue in intelligent information processing. Hypergraph is a new intelligent method for machine learning. However, it is hard to process the incomplete information system by the traditional hypergraph, which is due to two reasons: (1 the hyperedges are generated randomly in traditional hypergraph model; (2 the existing methods are unsuitable to deal with incomplete information system, for the sake of missing values in incomplete information system. In this paper, we propose a novel classification algorithm for incomplete information system based on hypergraph model and rough set theory. Firstly, we initialize the hypergraph. Second, we classify the training set by neighborhood hypergraph. Third, under the guidance of rough set, we replace the poor hyperedges. After that, we can obtain a good classifier. The proposed approach is tested on 15 data sets from UCI machine learning repository. Furthermore, it is compared with some existing methods, such as C4.5, SVM, NavieBayes, and KNN. The experimental results show that the proposed algorithm has better performance via Precision, Recall, AUC, and F-measure.

  5. Customer classification in banking system of Iran based on the credit risk model using multi-criteria decision-making models

    Directory of Open Access Journals (Sweden)

    Khalil Khalili

    2015-11-01

    Full Text Available One of the most important factors of survival of financial institutes and banks in the current competitive markets is to create balance and equality among resources and consumptions as well as to keep the health of money circulation in these institutes. According to the experiences obtained from recent financial crises in the world. The lack of appropriate management of the demands of banks and financial institutions can be considered as one of the main factors of occurrence of this crisis. The objective of the present study is to identify and classify customers according to credit risk and decisions of predictive models. The present research is a survey research employing field study in terms of the data collection method. The method of collecting theoretical framework was library research and the data were collected by two ways of data of a questionnaire and real customers’ financial data. To analyze the data of the questionnaire, analytical hierarchy process and to analyze real customers’ financial data, the TOPSIS method were employed. The population of the study included files of real customers in one of the branches of RefahKargaran Bank in city of Tabriz, Iran. From among 800 files, 140 files were completed and using Morgan’s table, 103 files were investigated. The final model was presented and with 95% of probability, if the next customer’s data is entered the model, it will capable of identifying accurately the degree of customer risk.

  6. Improving Generalization Based on l1-Norm Regularization for EEG-Based Motor Imagery Classification

    Directory of Open Access Journals (Sweden)

    Yuwei Zhao

    2018-05-01

    Full Text Available Multichannel electroencephalography (EEG is widely used in typical brain-computer interface (BCI systems. In general, a number of parameters are essential for a EEG classification algorithm due to redundant features involved in EEG signals. However, the generalization of the EEG method is often adversely affected by the model complexity, considerably coherent with its number of undetermined parameters, further leading to heavy overfitting. To decrease the complexity and improve the generalization of EEG method, we present a novel l1-norm-based approach to combine the decision value obtained from each EEG channel directly. By extracting the information from different channels on independent frequency bands (FB with l1-norm regularization, the method proposed fits the training data with much less parameters compared to common spatial pattern (CSP methods in order to reduce overfitting. Moreover, an effective and efficient solution to minimize the optimization object is proposed. The experimental results on dataset IVa of BCI competition III and dataset I of BCI competition IV show that, the proposed method contributes to high classification accuracy and increases generalization performance for the classification of MI EEG. As the training set ratio decreases from 80 to 20%, the average classification accuracy on the two datasets changes from 85.86 and 86.13% to 84.81 and 76.59%, respectively. The classification performance and generalization of the proposed method contribute to the practical application of MI based BCI systems.

  7. Classification

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    This article presents and discusses definitions of the term “classification” and the related concepts “Concept/conceptualization,”“categorization,” “ordering,” “taxonomy” and “typology.” It further presents and discusses theories of classification including the influences of Aristotle...... and Wittgenstein. It presents different views on forming classes, including logical division, numerical taxonomy, historical classification, hermeneutical and pragmatic/critical views. Finally, issues related to artificial versus natural classification and taxonomic monism versus taxonomic pluralism are briefly...

  8. Formalization of the classification pattern: survey of classification modeling in information systems engineering.

    Science.gov (United States)

    Partridge, Chris; de Cesare, Sergio; Mitchell, Andrew; Odell, James

    2018-01-01

    Formalization is becoming more common in all stages of the development of information systems, as a better understanding of its benefits emerges. Classification systems are ubiquitous, no more so than in domain modeling. The classification pattern that underlies these systems provides a good case study of the move toward formalization in part because it illustrates some of the barriers to formalization, including the formal complexity of the pattern and the ontological issues surrounding the "one and the many." Powersets are a way of characterizing the (complex) formal structure of the classification pattern, and their formalization has been extensively studied in mathematics since Cantor's work in the late nineteenth century. One can use this formalization to develop a useful benchmark. There are various communities within information systems engineering (ISE) that are gradually working toward a formalization of the classification pattern. However, for most of these communities, this work is incomplete, in that they have not yet arrived at a solution with the expressiveness of the powerset benchmark. This contrasts with the early smooth adoption of powerset by other information systems communities to, for example, formalize relations. One way of understanding the varying rates of adoption is recognizing that the different communities have different historical baggage. Many conceptual modeling communities emerged from work done on database design, and this creates hurdles to the adoption of the high level of expressiveness of powersets. Another relevant factor is that these communities also often feel, particularly in the case of domain modeling, a responsibility to explain the semantics of whatever formal structures they adopt. This paper aims to make sense of the formalization of the classification pattern in ISE and surveys its history through the literature, starting from the relevant theoretical works of the mathematical literature and gradually shifting focus

  9. AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION

    OpenAIRE

    Krzyśko, Mirosław; Smaga, Łukasz

    2017-01-01

    In this paper, the scale response functional multivariate regression model is considered. By using the basis functions representation of functional predictors and regression coefficients, this model is rewritten as a multivariate regression model. This representation of the functional multivariate regression model is used for multiclass classification for multivariate functional data. Computational experiments performed on real labelled data sets demonstrate the effectiveness of the proposed ...

  10. Classification of proteins: available structural space for molecular modeling.

    Science.gov (United States)

    Andreeva, Antonina

    2012-01-01

    The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.

  11. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    Science.gov (United States)

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  12. Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.

    Directory of Open Access Journals (Sweden)

    Kezi Yu

    Full Text Available In this paper, we propose an application of non-parametric Bayesian (NPB models for classification of fetal heart rate (FHR recordings. More specifically, we propose models that are used to differentiate between FHR recordings that are from fetuses with or without adverse outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP and the Chinese restaurant process with finite capacity (CRFC. Two mixture models were inferred from real recordings, one that represents healthy and another, non-healthy fetuses. The models were then used to classify new recordings and provide the probability of the fetus being healthy. First, we compared the classification performance of the HDP models with that of support vector machines on real data and concluded that the HDP models achieved better performance. Then we demonstrated the use of mixture models based on CRFC for dynamic classification of the performance of (FHR recordings in a real-time setting.

  13. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture.

    Science.gov (United States)

    Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.

  14. Vertebrae classification models - Validating classification models that use morphometrics to identify ancient salmonid (Oncorhynchus spp.) vertebrae to species

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Using morphometric characteristics of modern salmonid (Oncorhynchus spp.) vertebrae, we have developed classification models to identify salmonid vertebrae to the...

  15. Ebolavirus Classification Based on Natural Vectors

    Science.gov (United States)

    Zheng, Hui; Yin, Changchuan; Hoang, Tung; He, Rong Lucy; Yang, Jie

    2015-01-01

    According to the WHO, ebolaviruses have resulted in 8818 human deaths in West Africa as of January 2015. To better understand the evolutionary relationship of the ebolaviruses and infer virulence from the relationship, we applied the alignment-free natural vector method to classify the newest ebolaviruses. The dataset includes three new Guinea viruses as well as 99 viruses from Sierra Leone. For the viruses of the family of Filoviridae, both genus label classification and species label classification achieve an accuracy rate of 100%. We represented the relationships among Filoviridae viruses by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) phylogenetic trees and found that the filoviruses can be separated well by three genera. We performed the phylogenetic analysis on the relationship among different species of Ebolavirus by their coding-complete genomes and seven viral protein genes (glycoprotein [GP], nucleoprotein [NP], VP24, VP30, VP35, VP40, and RNA polymerase [L]). The topology of the phylogenetic tree by the viral protein VP24 shows consistency with the variations of virulence of ebolaviruses. The result suggests that VP24 be a pharmaceutical target for treating or preventing ebolaviruses. PMID:25803489

  16. Bone Turnover Status: Classification Model and Clinical Implications

    Science.gov (United States)

    Fisher, Alexander; Fisher, Leon; Srikusalanukul, Wichat; Smith, Paul N

    2018-01-01

    Aim: To develop a practical model for classification bone turnover status and evaluate its clinical usefulness. Methods: Our classification of bone turnover status is based on internationally recommended biomarkers of both bone formation (N-terminal propeptide of type1 procollagen, P1NP) and bone resorption (beta C-terminal cross-linked telopeptide of type I collagen, bCTX), using the cutoffs proposed as therapeutic targets. The relationships between turnover subtypes and clinical characteristic were assessed in1223 hospitalised orthogeriatric patients (846 women, 377 men; mean age 78.1±9.50 years): 451(36.9%) subjects with hip fracture (HF), 396(32.4%) with other non-vertebral (non-HF) fractures (HF) and 376 (30.7%) patients without fractures. Resalts: Six subtypes of bone turnover status were identified: 1 - normal turnover (P1NP>32 μg/L, bCTX≤0.250 μg/L and P1NP/bCTX>100.0[(median value]); 2- low bone formation (P1NP ≤32 μg/L), normal bone resorption (bCTX≤0.250 μg/L) and P1NP/bCTX>100.0 (subtype2A) or P1NP/bCTX0.250 μg/L) and P1NP/bCTXturnover (both markers elevated ) and P1NP/bCTX>100.0 (subtype 4A) or P1NP/bCTX75 years and hyperparathyroidism. Hypoalbuminaemia and not using osteoporotic therapy were two independent indicators common for subtypes 3, 4A and 4B; these three subtypes were associated with in-hospital mortality. Subtype 3 was associated with fractures (OR 1.7, for HF OR 2.4), age>75 years, chronic heart failure (CHF), anaemia, and history of malignancy, and predicted post-operative myocardial injury, high inflammatory response and length of hospital stay (LOS) above10 days. Subtype 4A was associated with chronic kidney disease (CKD), anaemia, history of malignancy and walking aids use and predicted LOS>20 days, but was not discriminative for fractures. Subtype 4B was associated with fractures (OR 2.1, for HF OR 2.5), age>75 years, CKD and indicated risks of myocardial injury, high inflammatory response and LOS>10 days. Conclusions: We

  17. A Soft Intelligent Risk Evaluation Model for Credit Scoring Classification

    Directory of Open Access Journals (Sweden)

    Mehdi Khashei

    2015-09-01

    Full Text Available Risk management is one of the most important branches of business and finance. Classification models are the most popular and widely used analytical group of data mining approaches that can greatly help financial decision makers and managers to tackle credit risk problems. However, the literature clearly indicates that, despite proposing numerous classification models, credit scoring is often a difficult task. On the other hand, there is no universal credit-scoring model in the literature that can be accurately and explanatorily used in all circumstances. Therefore, the research for improving the efficiency of credit-scoring models has never stopped. In this paper, a hybrid soft intelligent classification model is proposed for credit-scoring problems. In the proposed model, the unique advantages of the soft computing techniques are used in order to modify the performance of the traditional artificial neural networks in credit scoring. Empirical results of Australian credit card data classifications indicate that the proposed hybrid model outperforms its components, and also other classification models presented for credit scoring. Therefore, the proposed model can be considered as an appropriate alternative tool for binary decision making in business and finance, especially in high uncertainty conditions.

  18. Radar Target Classification using Recursive Knowledge-Based Methods

    DEFF Research Database (Denmark)

    Jochumsen, Lars Wurtz

    The topic of this thesis is target classification of radar tracks from a 2D mechanically scanning coastal surveillance radar. The measurements provided by the radar are position data and therefore the classification is mainly based on kinematic data, which is deduced from the position. The target...... been terminated. Therefore, an update of the classification results must be made for each measurement of the target. The data for this work are collected throughout the PhD and are both collected from radars and other sensors such as GPS....

  19. Tweet-based Target Market Classification Using Ensemble Method

    Directory of Open Access Journals (Sweden)

    Muhammad Adi Khairul Anshary

    2016-09-01

    Full Text Available Target market classification is aimed at focusing marketing activities on the right targets. Classification of target markets can be done through data mining and by utilizing data from social media, e.g. Twitter. The end result of data mining are learning models that can classify new data. Ensemble methods can improve the accuracy of the models and therefore provide better results. In this study, classification of target markets was conducted on a dataset of 3000 tweets in order to extract features. Classification models were constructed to manipulate the training data using two ensemble methods (bagging and boosting. To investigate the effectiveness of the ensemble methods, this study used the CART (classification and regression tree algorithm for comparison. Three categories of consumer goods (computers, mobile phones and cameras and three categories of sentiments (positive, negative and neutral were classified towards three target-market categories. Machine learning was performed using Weka 3.6.9. The results of the test data showed that the bagging method improved the accuracy of CART with 1.9% (to 85.20%. On the other hand, for sentiment classification, the ensemble methods were not successful in increasing the accuracy of CART. The results of this study may be taken into consideration by companies who approach their customers through social media, especially Twitter.

  20. Active Learning of Classification Models with Likert-Scale Feedback.

    Science.gov (United States)

    Xue, Yanbing; Hauskrecht, Milos

    2017-01-01

    Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone.

  1. Signal classification using global dynamical models, Part I: Theory

    International Nuclear Information System (INIS)

    Kadtke, J.; Kremliovsky, M.

    1996-01-01

    Detection and classification of signals is one of the principal areas of signal processing, and the utilization of nonlinear information has long been considered as a way of improving performance beyond standard linear (e.g. spectral) techniques. Here, we develop a method for using global models of chaotic dynamical systems theory to define a signal classification processing chain, which is sensitive to nonlinear correlations in the data. We use it to demonstrate classification in high noise regimes (negative SNR), and argue that classification probabilities can be directly computed from ensemble statistics in the model coefficient space. We also develop a modification for non-stationary signals (i.e. transients) using non-autonomous ODEs. In Part II of this paper, we demonstrate the analysis on actual open ocean acoustic data from marine biologics. copyright 1996 American Institute of Physics

  2. Empirical Studies On Machine Learning Based Text Classification Algorithms

    OpenAIRE

    Shweta C. Dharmadhikari; Maya Ingle; Parag Kulkarni

    2011-01-01

    Automatic classification of text documents has become an important research issue now days. Properclassification of text documents requires information retrieval, machine learning and Natural languageprocessing (NLP) techniques. Our aim is to focus on important approaches to automatic textclassification based on machine learning techniques viz. supervised, unsupervised and semi supervised.In this paper we present a review of various text classification approaches under machine learningparadig...

  3. Desert plains classification based on Geomorphometrical parameters (Case study: Aghda, Yazd)

    Science.gov (United States)

    Tazeh, mahdi; Kalantari, Saeideh

    2013-04-01

    This research focuses on plains. There are several tremendous methods and classification which presented for plain classification. One of The natural resource based classification which is mostly using in Iran, classified plains into three types, Erosional Pediment, Denudation Pediment Aggradational Piedmont. The qualitative and quantitative factors to differentiate them from each other are also used appropriately. In this study effective Geomorphometrical parameters in differentiate landforms were applied for plain. Geomorphometrical parameters are calculable and can be extracted using mathematical equations and the corresponding relations on digital elevation model. Geomorphometrical parameters used in this study included Percent of Slope, Plan Curvature, Profile Curvature, Minimum Curvature, the Maximum Curvature, Cross sectional Curvature, Longitudinal Curvature and Gaussian Curvature. The results indicated that the most important affecting Geomorphometrical parameters for plain and desert classifications includes: Percent of Slope, Minimum Curvature, Profile Curvature, and Longitudinal Curvature. Key Words: Plain, Geomorphometry, Classification, Biophysical, Yazd Khezarabad.

  4. Co-occurrence Models in Music Genre Classification

    DEFF Research Database (Denmark)

    Ahrendt, Peter; Goutte, Cyril; Larsen, Jan

    2005-01-01

    Music genre classification has been investigated using many different methods, but most of them build on probabilistic models of feature vectors x\\_r which only represent the short time segment with index r of the song. Here, three different co-occurrence models are proposed which instead consider...... genre data set with a variety of modern music. The basis was a so-called AR feature representation of the music. Besides the benefit of having proper probabilistic models of the whole song, the lowest classification test errors were found using one of the proposed models....

  5. Semantic Document Image Classification Based on Valuable Text Pattern

    Directory of Open Access Journals (Sweden)

    Hossein Pourghassem

    2011-01-01

    Full Text Available Knowledge extraction from detected document image is a complex problem in the field of information technology. This problem becomes more intricate when we know, a negligible percentage of the detected document images are valuable. In this paper, a segmentation-based classification algorithm is used to analysis the document image. In this algorithm, using a two-stage segmentation approach, regions of the image are detected, and then classified to document and non-document (pure region regions in the hierarchical classification. In this paper, a novel valuable definition is proposed to classify document image in to valuable or invaluable categories. The proposed algorithm is evaluated on a database consisting of the document and non-document image that provide from Internet. Experimental results show the efficiency of the proposed algorithm in the semantic document image classification. The proposed algorithm provides accuracy rate of 98.8% for valuable and invaluable document image classification problem.

  6. Video based object representation and classification using multiple covariance matrices.

    Science.gov (United States)

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  7. Classification of types of stuttering symptoms based on brain activity.

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    Full Text Available Among the non-fluencies seen in speech, some are more typical (MT of stuttering speakers, whereas others are less typical (LT and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT whole-word repetitions (WWR should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type.

  8. Classification of Types of Stuttering Symptoms Based on Brain Activity

    Science.gov (United States)

    Jiang, Jing; Lu, Chunming; Peng, Danling; Zhu, Chaozhe; Howell, Peter

    2012-01-01

    Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type. PMID:22761887

  9. Pathological Bases for a Robust Application of Cancer Molecular Classification

    Directory of Open Access Journals (Sweden)

    Salvador J. Diaz-Cano

    2015-04-01

    Full Text Available Any robust classification system depends on its purpose and must refer to accepted standards, its strength relying on predictive values and a careful consideration of known factors that can affect its reliability. In this context, a molecular classification of human cancer must refer to the current gold standard (histological classification and try to improve it with key prognosticators for metastatic potential, staging and grading. Although organ-specific examples have been published based on proteomics, transcriptomics and genomics evaluations, the most popular approach uses gene expression analysis as a direct correlate of cellular differentiation, which represents the key feature of the histological classification. RNA is a labile molecule that varies significantly according with the preservation protocol, its transcription reflect the adaptation of the tumor cells to the microenvironment, it can be passed through mechanisms of intercellular transference of genetic information (exosomes, and it is exposed to epigenetic modifications. More robust classifications should be based on stable molecules, at the genetic level represented by DNA to improve reliability, and its analysis must deal with the concept of intratumoral heterogeneity, which is at the origin of tumor progression and is the byproduct of the selection process during the clonal expansion and progression of neoplasms. The simultaneous analysis of multiple DNA targets and next generation sequencing offer the best practical approach for an analytical genomic classification of tumors.

  10. Classification of BCI Users Based on Cognition

    Directory of Open Access Journals (Sweden)

    N. Firat Ozkan

    2018-01-01

    Full Text Available Brain-Computer Interfaces (BCI are systems originally developed to assist paralyzed patients allowing for commands to the computer with brain activities. This study aims to examine cognitive state with an objective, easy-to-use, and easy-to-interpret method utilizing Brain-Computer Interface systems. Seventy healthy participants completed six tasks using a Brain-Computer Interface system and participants’ pupil dilation, blink rate, and Galvanic Skin Response (GSR data were collected simultaneously. Participants filled Nasa-TLX forms following each task and task performances of participants were also measured. Cognitive state clusters were created from the data collected using the K-means method. Taking these clusters and task performances into account, the general cognitive state of each participant was classified as low risk or high risk. Logistic Regression, Decision Tree, and Neural Networks were also used to classify the same data in order to measure the consistency of this classification with other techniques and the method provided a consistency between 87.1% and 100% with other techniques.

  11. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    Science.gov (United States)

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.

  12. Conceptualising Business Models: Definitions, Frameworks and Classifications

    OpenAIRE

    Erwin Fielt

    2013-01-01

    The business model concept is gaining traction in different disciplines but is still criticized for being fuzzy and vague and lacking consensus on its definition and compositional elements. In this paper we set out to advance our understanding of the business model concept by addressing three areas of foundational research: business model definitions, business model elements, and business model archetypes. We define a business model as a representation of the value logic of an organization in...

  13. Twitter classification model: the ABC of two million fitness tweets.

    Science.gov (United States)

    Vickey, Theodore A; Ginis, Kathleen Martin; Dabrowski, Maciej

    2013-09-01

    The purpose of this project was to design and test data collection and management tools that can be used to study the use of mobile fitness applications and social networking within the context of physical activity. This project was conducted over a 6-month period and involved collecting publically shared Twitter data from five mobile fitness apps (Nike+, RunKeeper, MyFitnessPal, Endomondo, and dailymile). During that time, over 2.8 million tweets were collected, processed, and categorized using an online tweet collection application and a customized JavaScript. Using the grounded theory, a classification model was developed to categorize and understand the types of information being shared by application users. Our data show that by tracking mobile fitness app hashtags, a wealth of information can be gathered to include but not limited to daily use patterns, exercise frequency, location-based workouts, and overall workout sentiment.

  14. The Study of Land Use Classification Based on SPOT6 High Resolution Data

    OpenAIRE

    Wu Song; Jiang Qigang

    2016-01-01

    A method is carried out to quick classification extract of the type of land use in agricultural areas, which is based on the spot6 high resolution remote sensing classification data and used of the good nonlinear classification ability of support vector machine. The results show that the spot6 high resolution remote sensing classification data can realize land classification efficiently, the overall classification accuracy reached 88.79% and Kappa factor is 0.8632 which means that the classif...

  15. Conceptualising Business Models: Definitions, Frameworks and Classifications

    Directory of Open Access Journals (Sweden)

    Erwin Fielt

    2013-12-01

    Full Text Available The business model concept is gaining traction in different disciplines but is still criticized for being fuzzy and vague and lacking consensus on its definition and compositional elements. In this paper we set out to advance our understanding of the business model concept by addressing three areas of foundational research: business model definitions, business model elements, and business model archetypes. We define a business model as a representation of the value logic of an organization in terms of how it creates and captures customer value. This abstract and generic definition is made more specific and operational by the compositional elements that need to address the customer, value proposition, organizational architecture (firm and network level and economics dimensions. Business model archetypes complement the definition and elements by providing a more concrete and empirical understanding of the business model concept. The main contributions of this paper are (1 explicitly including the customer value concept in the business model definition and focussing on value creation, (2 presenting four core dimensions that business model elements need to cover, (3 arguing for flexibility by adapting and extending business model elements to cater for different purposes and contexts (e.g. technology, innovation, strategy (4 stressing a more systematic approach to business model archetypes by using business model elements for their description, and (5 suggesting to use business model archetype research for the empirical exploration and testing of business model elements and their relationships.

  16. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam; Amy, Gary L.

    2013-01-01

    . In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1

  17. SEMIPARAMETRIC VERSUS PARAMETRIC CLASSIFICATION MODELS - AN APPLICATION TO DIRECT MARKETING

    NARCIS (Netherlands)

    BULT, [No Value

    In this paper we are concerned with estimation of a classification model using semiparametric and parametric methods. Benefits and limitations of semiparametric models in general, and of Manski's maximum score method in particular, are discussed. The maximum score method yields consistent estimates

  18. Latent Partially Ordered Classification Models and Normal Mixtures

    Science.gov (United States)

    Tatsuoka, Curtis; Varadi, Ferenc; Jaeger, Judith

    2013-01-01

    Latent partially ordered sets (posets) can be employed in modeling cognitive functioning, such as in the analysis of neuropsychological (NP) and educational test data. Posets are cognitively diagnostic in the sense that classification states in these models are associated with detailed profiles of cognitive functioning. These profiles allow for…

  19. A classification of open string models

    International Nuclear Information System (INIS)

    Nahm, W.

    1985-12-01

    Open string models are classified using modular invariance. No good candidates for new models are found, though the existence of an E 8 invariant model in Rsup(17,1), a similar one in Rsup(5,1) and of a supersymmetric model in Rsup(2,1) cannot be excluded by this technique. An intriguing relation between the left moving and right moving sectors of the heterotic string emerges. (orig.)

  20. Latent Classification Models for Binary Data

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2009-01-01

    One of the simplest, and yet most consistently well-performing set of classifiers is the naive Bayes models (a special class of Bayesian network models). However, these models rely on the (naive) assumption that all the attributes used to describe an instance are conditionally independent given t...

  1. Classification of consumers based on perceptions

    DEFF Research Database (Denmark)

    Høg, Esben; Juhl, Hans Jørn; Poulsen, Carsten Stig

    1999-01-01

    This paper reports some results from a recent Danish study of fish consumption. One major purpose of the study was to identify consumer segments according to their perceptions of fish in comparison with other food categories. We present a model which has the capabilities to determine the number...... of segments and putting in order of priority the alternatives examined. Data consist of paiwise comparisons per respondent. The model allows for ties, i.e. the consumer´s expression of no preference among alternatives. All the parameters in the model are estimated simultaneously by the method of maximum...

  2. Classification of consumers based on perceptions

    DEFF Research Database (Denmark)

    Høg, Esben; Juhl, Hans Jørn; Poulsen, Carsten Stig

    1999-01-01

    This paper reports some results from a recent Danish study of fish consumption. One purpose of the study was to identify consumer segments according to their perceptions of fish in comparison with other food categories. We present a model, which has the capabilities to determine the number...... of segments and putting in order of priority the alternatives examined. The model allows for ties, i.e. the consumer's expression of no preference among alternatives. The parameters in the model are estimated simultaneously by the method of maximum likelihood. The approach is illustrated using data from...

  3. Uav-Based Crops Classification with Joint Features from Orthoimage and Dsm Data

    Science.gov (United States)

    Liu, B.; Shi, Y.; Duan, Y.; Wu, W.

    2018-04-01

    Accurate crops classification remains a challenging task due to the same crop with different spectra and different crops with same spectrum phenomenon. Recently, UAV-based remote sensing approach gains popularity not only for its high spatial and temporal resolution, but also for its ability to obtain spectraand spatial data at the same time. This paper focus on how to take full advantages of spatial and spectrum features to improve crops classification accuracy, based on an UAV platform equipped with a general digital camera. Texture and spatial features extracted from the RGB orthoimage and the digital surface model of the monitoring area are analysed and integrated within a SVM classification framework. Extensive experiences results indicate that the overall classification accuracy is drastically improved from 72.9 % to 94.5 % when the spatial features are combined together, which verified the feasibility and effectiveness of the proposed method.

  4. Classification of NLO operators for composite Higgs models

    Science.gov (United States)

    Alanne, Tommi; Bizot, Nicolas; Cacciapaglia, Giacomo; Sannino, Francesco

    2018-04-01

    We provide a general classification of template operators, up to next-to-leading order, that appear in chiral perturbation theories based on the two flavor patterns of spontaneous symmetry breaking SU (NF)/Sp (NF) and SU (NF)/SO (NF). All possible explicit-breaking sources parametrized by spurions transforming in the fundamental and in the two-index representations of the flavor symmetry are included. While our general framework can be applied to any model of strong dynamics, we specialize to composite-Higgs models, where the main explicit breaking sources are a current mass, the gauging of flavor symmetries, and the Yukawa couplings (for the top). For the top, we consider both bilinear couplings and linear ones à la partial compositeness. Our templates provide a basis for lattice calculations in specific models. As a special example, we consider the SU (4 )/Sp (4 )≅SO (6 )/SO (5 ) pattern which corresponds to the minimal fundamental composite-Higgs model. We further revisit issues related to the misalignment of the vacuum. In particular, we shed light on the physical properties of the singlet η , showing that it cannot develop a vacuum expectation value without explicit C P violation in the underlying theory.

  5. Data Stream Classification Based on the Gamma Classifier

    Directory of Open Access Journals (Sweden)

    Abril Valeria Uriarte-Arcia

    2015-01-01

    Full Text Available The ever increasing data generation confronts us with the problem of handling online massive amounts of information. One of the biggest challenges is how to extract valuable information from these massive continuous data streams during single scanning. In a data stream context, data arrive continuously at high speed; therefore the algorithms developed to address this context must be efficient regarding memory and time management and capable of detecting changes over time in the underlying distribution that generated the data. This work describes a novel method for the task of pattern classification over a continuous data stream based on an associative model. The proposed method is based on the Gamma classifier, which is inspired by the Alpha-Beta associative memories, which are both supervised pattern recognition models. The proposed method is capable of handling the space and time constrain inherent to data stream scenarios. The Data Streaming Gamma classifier (DS-Gamma classifier implements a sliding window approach to provide concept drift detection and a forgetting mechanism. In order to test the classifier, several experiments were performed using different data stream scenarios with real and synthetic data streams. The experimental results show that the method exhibits competitive performance when compared to other state-of-the-art algorithms.

  6. Estimation of Compaction Parameters Based on Soil Classification

    Science.gov (United States)

    Lubis, A. S.; Muis, Z. A.; Hastuty, I. P.; Siregar, I. M.

    2018-02-01

    Factors that must be considered in compaction of the soil works were the type of soil material, field control, maintenance and availability of funds. Those problems then raised the idea of how to estimate the density of the soil with a proper implementation system, fast, and economical. This study aims to estimate the compaction parameter i.e. the maximum dry unit weight (γ dmax) and optimum water content (Wopt) based on soil classification. Each of 30 samples were being tested for its properties index and compaction test. All of the data’s from the laboratory test results, were used to estimate the compaction parameter values by using linear regression and Goswami Model. From the research result, the soil types were A4, A-6, and A-7 according to AASHTO and SC, SC-SM, and CL based on USCS. By linear regression, the equation for estimation of the maximum dry unit weight (γdmax *)=1,862-0,005*FINES- 0,003*LL and estimation of the optimum water content (wopt *)=- 0,607+0,362*FINES+0,161*LL. By Goswami Model (with equation Y=mLogG+k), for estimation of the maximum dry unit weight (γdmax *) with m=-0,376 and k=2,482, for estimation of the optimum water content (wopt *) with m=21,265 and k=-32,421. For both of these equations a 95% confidence interval was obtained.

  7. Superpixel-based classification of gastric chromoendoscopy images

    Science.gov (United States)

    Boschetto, Davide; Grisan, Enrico

    2017-03-01

    Chromoendoscopy (CH) is a gastroenterology imaging modality that involves the staining of tissues with methylene blue, which reacts with the internal walls of the gastrointestinal tract, improving the visual contrast in mucosal surfaces and thus enhancing a doctor's ability to screen precancerous lesions or early cancer. This technique helps identify areas that can be targeted for biopsy or treatment and in this work we will focus on gastric cancer detection. Gastric chromoendoscopy for cancer detection has several taxonomies available, one of which classifies CH images into three classes (normal, metaplasia, dysplasia) based on color, shape and regularity of pit patterns. Computer-assisted diagnosis is desirable to help us improve the reliability of the tissue classification and abnormalities detection. However, traditional computer vision methodologies, mainly segmentation, do not translate well to the specific visual characteristics of a gastroenterology imaging scenario. We propose the exploitation of a first unsupervised segmentation via superpixel, which groups pixels into perceptually meaningful atomic regions, used to replace the rigid structure of the pixel grid. For each superpixel, a set of features is extracted and then fed to a random forest based classifier, which computes a model used to predict the class of each superpixel. The average general accuracy of our model is 92.05% in the pixel domain (86.62% in the superpixel domain), while detection accuracies on the normal and abnormal class are respectively 85.71% and 95%. Eventually, the whole image class can be predicted image through a majority vote on each superpixel's predicted class.

  8. A Dirichlet process mixture model for brain MRI tissue classification.

    Science.gov (United States)

    Ferreira da Silva, Adelino R

    2007-04-01

    Accurate classification of magnetic resonance images according to tissue type or region of interest has become a critical requirement in diagnosis, treatment planning, and cognitive neuroscience. Several authors have shown that finite mixture models give excellent results in the automated segmentation of MR images of the human normal brain. However, performance and robustness of finite mixture models deteriorate when the models have to deal with a variety of anatomical structures. In this paper, we propose a nonparametric Bayesian model for tissue classification of MR images of the brain. The model, known as Dirichlet process mixture model, uses Dirichlet process priors to overcome the limitations of current parametric finite mixture models. To validate the accuracy and robustness of our method we present the results of experiments carried out on simulated MR brain scans, as well as on real MR image data. The results are compared with similar results from other well-known MRI segmentation methods.

  9. Object-oriented classification of drumlins from digital elevation models

    Science.gov (United States)

    Saha, Kakoli

    Drumlins are common elements of glaciated landscapes which are easily identified by their distinct morphometric characteristics including shape, length/width ratio, elongation ratio, and uniform direction. To date, most researchers have mapped drumlins by tracing contours on maps, or through on-screen digitization directly on top of hillshaded digital elevation models (DEMs). This paper seeks to utilize the unique morphometric characteristics of drumlins and investigates automated extraction of the landforms as objects from DEMs by Definiens Developer software (V.7), using the 30 m United States Geological Survey National Elevation Dataset DEM as input. The Chautauqua drumlin field in Pennsylvania and upstate New York, USA was chosen as a study area. As the study area is huge (approximately covers 2500 sq.km. of area), small test areas were selected for initial testing of the method. Individual polygons representing the drumlins were extracted from the elevation data set by automated recognition, using Definiens' Multiresolution Segmentation tool, followed by rule-based classification. Subsequently parameters such as length, width and length-width ratio, perimeter and area were measured automatically. To test the accuracy of the method, a second base map was produced by manual on-screen digitization of drumlins from topographic maps and the same morphometric parameters were extracted from the mapped landforms using Definiens Developer. Statistical comparison showed a high agreement between the two methods confirming that object-oriented classification for extraction of drumlins can be used for mapping these landforms. The proposed method represents an attempt to solve the problem by providing a generalized rule-set for mass extraction of drumlins. To check that the automated extraction process was next applied to a larger area. Results showed that the proposed method is as successful for the bigger area as it was for the smaller test areas.

  10. A Classification of PLC Models and Applications

    NARCIS (Netherlands)

    Mader, Angelika H.; Boel, R.; Stremersch, G.

    In the past years there is an increasing interest in analysing PLC applications with formal methods. The first step to this end is to get formal models of PLC applications. Meanwhile, various models for PLCs have already been introduced in the literature. In our paper we discuss several

  11. Partial imputation to improve predictive modelling in insurance risk classification using a hybrid positive selection algorithm and correlation-based feature selection

    CSIR Research Space (South Africa)

    Duma, M

    2013-09-01

    Full Text Available of missing data, with a decline in performance as the amount of missing data increases. Wagner et al.18 presented a study aimed at constructing a multimodal, ensemble of classifiers for emotion recog- nition with missing values in one or multiple... classification accuracies of 55%, which includes certain generic fusion schemes and emotion adapted strategies like arousal, valence and cross-axis. There are four kinds of missing data mechanisms found in the literature, namely missing at random (MAR), miss...

  12. Credit Risk Evaluation Using a C-Variable Least Squares Support Vector Classification Model

    Science.gov (United States)

    Yu, Lean; Wang, Shouyang; Lai, K. K.

    Credit risk evaluation is one of the most important issues in financial risk management. In this paper, a C-variable least squares support vector classification (C-VLSSVC) model is proposed for credit risk analysis. The main idea of this model is based on the prior knowledge that different classes may have different importance for modeling and more weights should be given to those classes with more importance. The C-VLSSVC model can be constructed by a simple modification of the regularization parameter in LSSVC, whereby more weights are given to the lease squares classification errors with important classes than the lease squares classification errors with unimportant classes while keeping the regularized terms in its original form. For illustration purpose, a real-world credit dataset is used to test the effectiveness of the C-VLSSVC model.

  13. Some improved classification-based ridge parameter of Hoerl and ...

    African Journals Online (AJOL)

    Some improved classification-based ridge parameter of Hoerl and Kennard estimation techniques. ... This assumption is often violated and Ridge Regression estimator introduced by [2]has been identified to be more efficient than ordinary least square (OLS) in handling it. However, it requires a ridge parameter, K, of which ...

  14. Classification and Target Group Selection Based Upon Frequent Patterns

    NARCIS (Netherlands)

    W.H.L.M. Pijls (Wim); R. Potharst (Rob)

    2000-01-01

    textabstractIn this technical report , two new algorithms based upon frequent patterns are proposed. One algorithm is a classification method. The other one is an algorithm for target group selection. In both algorithms, first of all, the collection of frequent patterns in the training set is

  15. Habitat classification modelling with incomplete data: Pushing the habitat envelope

    Science.gov (United States)

    Phoebe L. Zarnetske; Thomas C. Edwards; Gretchen G. Moisen

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical...

  16. Modeling and evaluating repeatability and reproducibility of ordinal classifications

    NARCIS (Netherlands)

    de Mast, J.; van Wieringen, W.N.

    2010-01-01

    This paper argues that currently available methods for the assessment of the repeatability and reproducibility of ordinal classifications are not satisfactory. The paper aims to study whether we can modify a class of models from Item Response Theory, well established for the study of the reliability

  17. Torrent classification - Base of rational management of erosive regions

    International Nuclear Information System (INIS)

    Gavrilovic, Zoran; Stefanovic, Milutin; Milovanovic, Irina; Cotric, Jelena; Milojevic, Mileta

    2008-01-01

    A complex methodology for torrents and erosion and the associated calculations was developed during the second half of the twentieth century in Serbia. It was the 'Erosion Potential Method'. One of the modules of that complex method was focused on torrent classification. The module enables the identification of hydro graphic, climate and erosion characteristics. The method makes it possible for each torrent, regardless of its magnitude, to be simply and recognizably described by the 'Formula of torrentially'. The above torrent classification is the base on which a set of optimisation calculations is developed for the required scope of erosion-control works and measures, the application of which enables the management of significantly larger erosion and torrential regions compared to the previous period. This paper will present the procedure and the method of torrent classification.

  18. Classification of scintigrams on the base of an automatic analysis

    International Nuclear Information System (INIS)

    Vidyukov, V.I.; Kasatkin, Yu.N.; Kal'nitskaya, E.F.; Mironov, S.P.; Rotenberg, E.M.

    1980-01-01

    The stages of drawing a discriminative system based on self-education for an automatic analysis of scintigrams have been considered. The results of the classification of 240 scintigrams of the liver into ''normal'', ''diffuse lesions'', ''focal lesions'' have been evaluated by medical experts and computer. The accuracy of the computerized classification was 91.7%, that of the experts-85%. The automatic analysis methods of scintigrams of the liver have been realized using the specialized MDS system of data processing. The quality of the discriminative system has been assessed on 125 scintigrams. The accuracy of the classification is equal to 89.6%. The employment of the self-education; methods permitted one to single out two subclasses depending on the severity of diffuse lesions

  19. Hyperspectral image classification based on local binary patterns and PCANet

    Science.gov (United States)

    Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang

    2018-04-01

    Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.

  20. Torrent classification - Base of rational management of erosive regions

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilovic, Zoran; Stefanovic, Milutin; Milovanovic, Irina; Cotric, Jelena; Milojevic, Mileta [Institute for the Development of Water Resources ' Jaroslav Cerni' , 11226 Beograd (Pinosava), Jaroslava Cernog 80 (Serbia)], E-mail: gavrilovicz@sbb.rs

    2008-11-01

    A complex methodology for torrents and erosion and the associated calculations was developed during the second half of the twentieth century in Serbia. It was the 'Erosion Potential Method'. One of the modules of that complex method was focused on torrent classification. The module enables the identification of hydro graphic, climate and erosion characteristics. The method makes it possible for each torrent, regardless of its magnitude, to be simply and recognizably described by the 'Formula of torrentially'. The above torrent classification is the base on which a set of optimisation calculations is developed for the required scope of erosion-control works and measures, the application of which enables the management of significantly larger erosion and torrential regions compared to the previous period. This paper will present the procedure and the method of torrent classification.

  1. Sequential Classification of Palm Gestures Based on A* Algorithm and MLP Neural Network for Quadrocopter Control

    Directory of Open Access Journals (Sweden)

    Wodziński Marek

    2017-06-01

    Full Text Available This paper presents an alternative approach to the sequential data classification, based on traditional machine learning algorithms (neural networks, principal component analysis, multivariate Gaussian anomaly detector and finding the shortest path in a directed acyclic graph, using A* algorithm with a regression-based heuristic. Palm gestures were used as an example of the sequential data and a quadrocopter was the controlled object. The study includes creation of a conceptual model and practical construction of a system using the GPU to ensure the realtime operation. The results present the classification accuracy of chosen gestures and comparison of the computation time between the CPU- and GPU-based solutions.

  2. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    Science.gov (United States)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  3. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  4. Age group classification and gender detection based on forced expiratory spirometry.

    Science.gov (United States)

    Cosgun, Sema; Ozbek, I Yucel

    2015-08-01

    This paper investigates the utility of forced expiratory spirometry (FES) test with efficient machine learning algorithms for the purpose of gender detection and age group classification. The proposed method has three main stages: feature extraction, training of the models and detection. In the first stage, some features are extracted from volume-time curve and expiratory flow-volume loop obtained from FES test. In the second stage, the probabilistic models for each gender and age group are constructed by training Gaussian mixture models (GMMs) and Support vector machine (SVM) algorithm. In the final stage, the gender (or age group) of test subject is estimated by using the trained GMM (or SVM) model. Experiments have been evaluated on a large database from 4571 subjects. The experimental results show that average correct classification rate performance of both GMM and SVM methods based on the FES test is more than 99.3 % and 96.8 % for gender and age group classification, respectively.

  5. A fingerprint classification algorithm based on combination of local and global information

    Science.gov (United States)

    Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu

    2011-12-01

    Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.

  6. Deep learning for EEG-Based preference classification

    Science.gov (United States)

    Teo, Jason; Hou, Chew Lin; Mountstephens, James

    2017-10-01

    Electroencephalogram (EEG)-based emotion classification is rapidly becoming one of the most intensely studied areas of brain-computer interfacing (BCI). The ability to passively identify yet accurately correlate brainwaves with our immediate emotions opens up truly meaningful and previously unattainable human-computer interactions such as in forensic neuroscience, rehabilitative medicine, affective entertainment and neuro-marketing. One particularly useful yet rarely explored areas of EEG-based emotion classification is preference recognition [1], which is simply the detection of like versus dislike. Within the limited investigations into preference classification, all reported studies were based on musically-induced stimuli except for a single study which used 2D images. The main objective of this study is to apply deep learning, which has been shown to produce state-of-the-art results in diverse hard problems such as in computer vision, natural language processing and audio recognition, to 3D object preference classification over a larger group of test subjects. A cohort of 16 users was shown 60 bracelet-like objects as rotating visual stimuli on a computer display while their preferences and EEGs were recorded. After training a variety of machine learning approaches which included deep neural networks, we then attempted to classify the users' preferences for the 3D visual stimuli based on their EEGs. Here, we show that that deep learning outperforms a variety of other machine learning classifiers for this EEG-based preference classification task particularly in a highly challenging dataset with large inter- and intra-subject variability.

  7. Hardware Accelerators Targeting a Novel Group Based Packet Classification Algorithm

    Directory of Open Access Journals (Sweden)

    O. Ahmed

    2013-01-01

    Full Text Available Packet classification is a ubiquitous and key building block for many critical network devices. However, it remains as one of the main bottlenecks faced when designing fast network devices. In this paper, we propose a novel Group Based Search packet classification Algorithm (GBSA that is scalable, fast, and efficient. GBSA consumes an average of 0.4 megabytes of memory for a 10 k rule set. The worst-case classification time per packet is 2 microseconds, and the preprocessing speed is 3 M rules/second based on an Xeon processor operating at 3.4 GHz. When compared with other state-of-the-art classification techniques, the results showed that GBSA outperforms the competition with respect to speed, memory usage, and processing time. Moreover, GBSA is amenable to implementation in hardware. Three different hardware implementations are also presented in this paper including an Application Specific Instruction Set Processor (ASIP implementation and two pure Register-Transfer Level (RTL implementations based on Impulse-C and Handel-C flows, respectively. Speedups achieved with these hardware accelerators ranged from 9x to 18x compared with a pure software implementation running on an Xeon processor.

  8. Knowledge-based approach to video content classification

    Science.gov (United States)

    Chen, Yu; Wong, Edward K.

    2001-01-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  9. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification.

    Science.gov (United States)

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-03

    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.

  10. A Classification System for Hospital-Based Infection Outbreaks

    Directory of Open Access Journals (Sweden)

    Paul S. Ganney

    2010-01-01

    Full Text Available Outbreaks of infection within semi-closed environments such as hospitals, whether inherent in the environment (such as Clostridium difficile (C.Diff or Methicillinresistant Staphylococcus aureus (MRSA or imported from the wider community (such as Norwalk-like viruses (NLVs, are difficult to manage. As part of our work on modelling such outbreaks, we have developed a classification system to describe the impact of a particular outbreak upon an organization. This classification system may then be used in comparing appropriate computer models to real outbreaks, as well as in comparing different real outbreaks in, for example, the comparison of differing management and containment techniques and strategies. Data from NLV outbreaks in the Hull and East Yorkshire Hospitals NHS Trust (the Trust over several previous years are analysed and classified, both for infection within staff (where the end of infection date may not be known and within patients (where it generally is known. A classification system consisting of seven elements is described, along with a goodness-of-fit method for comparing a new classification to previously known ones, for use in evaluating a simulation against history and thereby determining how ‘realistic’ (or otherwise it is.

  11. A classification system for hospital-based infection outbreaks.

    Science.gov (United States)

    Ganney, Paul S; Madeo, Maurice; Phillips, Roger

    2010-12-01

    Outbreaks of infection within semi-closed environments such as hospitals, whether inherent in the environment (such as Clostridium difficile (C.Diff) or Methicillin-resistant Staphylococcus aureus (MRSA) or imported from the wider community (such as Norwalk-like viruses (NLVs)), are difficult to manage. As part of our work on modelling such outbreaks, we have developed a classification system to describe the impact of a particular outbreak upon an organization. This classification system may then be used in comparing appropriate computer models to real outbreaks, as well as in comparing different real outbreaks in, for example, the comparison of differing management and containment techniques and strategies. Data from NLV outbreaks in the Hull and East Yorkshire Hospitals NHS Trust (the Trust) over several previous years are analysed and classified, both for infection within staff (where the end of infection date may not be known) and within patients (where it generally is known). A classification system consisting of seven elements is described, along with a goodness-of-fit method for comparing a new classification to previously known ones, for use in evaluating a simulation against history and thereby determining how 'realistic' (or otherwise) it is.

  12. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam

    2013-03-01

    Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (kOH and kO3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1 and 0.04 to 18 * (109) M-1 s-1, respectively. Several molecular descriptors which potentially influence O3 and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r2 (>0.75). The models were validated by internal and external validation along with residual plots. © 2012 Elsevier Ltd.

  13. Optical beam classification using deep learning: a comparison with rule- and feature-based classification

    Science.gov (United States)

    Alom, Md. Zahangir; Awwal, Abdul A. S.; Lowe-Webb, Roger; Taha, Tarek M.

    2017-08-01

    Vector Machine (SVM). The experimental results show around 96% classification accuracy using CNN; the CNN approach also provides comparable recognition results compared to the present feature-based off-normal detection. The feature-based solution was developed to capture the expertise of a human expert in classifying the images. The misclassified results are further studied to explain the differences and discover any discrepancies or inconsistencies in current classification.

  14. A Chinese text classification system based on Naive Bayes algorithm

    Directory of Open Access Journals (Sweden)

    Cui Wei

    2016-01-01

    Full Text Available In this paper, aiming at the characteristics of Chinese text classification, using the ICTCLAS(Chinese lexical analysis system of Chinese academy of sciences for document segmentation, and for data cleaning and filtering the Stop words, using the information gain and document frequency feature selection algorithm to document feature selection. Based on this, based on the Naive Bayesian algorithm implemented text classifier , and use Chinese corpus of Fudan University has carried on the experiment and analysis on the system.

  15. ALADDIN: a neural model for event classification in dynamic processes

    International Nuclear Information System (INIS)

    Roverso, Davide

    1998-02-01

    ALADDIN is a prototype system which combines fuzzy clustering techniques and artificial neural network (ANN) models in a novel approach to the problem of classifying events in dynamic processes. The main motivation for the development of such a system derived originally from the problem of finding new principled methods to perform alarm structuring/suppression in a nuclear power plant (NPP) alarm system. One such method consists in basing the alarm structuring/suppression on a fast recognition of the event generating the alarms, so that a subset of alarms sufficient to efficiently handle the current fault can be selected to be presented to the operator, minimizing in this way the operator's workload in a potentially stressful situation. The scope of application of a system like ALADDIN goes however beyond alarm handling, to include diagnostic tasks in general. The eventual application of the system to domains other than NPPs was also taken into special consideration during the design phase. In this document we report on the first phase of the ALADDIN project which consisted mainly in a comparative study of a series of ANN-based approaches to event classification, and on the proposal of a first system prototype which is to undergo further tests and, eventually, be integrated in existing alarm, diagnosis, and accident management systems such as CASH, IDS, and CAMS. (author)

  16. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs

    Science.gov (United States)

    Haaf, Ezra; Barthel, Roland

    2016-04-01

    When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes

  17. Estimating Classification Errors under Edit Restrictions in Composite Survey-Register Data Using Multiple Imputation Latent Class Modelling (MILC)

    NARCIS (Netherlands)

    Boeschoten, Laura; Oberski, Daniel; De Waal, Ton

    2017-01-01

    Both registers and surveys can contain classification errors. These errors can be estimated by making use of a composite data set. We propose a new method based on latent class modelling to estimate the number of classification errors across several sources while taking into account impossible

  18. GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting

    Directory of Open Access Journals (Sweden)

    Lintao Yang

    2018-01-01

    Full Text Available With the development of smart power grids, communication network technology and sensor technology, there has been an exponential growth in complex electricity load data. Irregular electricity load fluctuations caused by the weather and holiday factors disrupt the daily operation of the power companies. To deal with these challenges, this paper investigates a day-ahead electricity peak load interval forecasting problem. It transforms the conventional continuous forecasting problem into a novel interval forecasting problem, and then further converts the interval forecasting problem into the classification forecasting problem. In addition, an indicator system influencing the electricity load is established from three dimensions, namely the load series, calendar data, and weather data. A semi-supervised feature selection algorithm is proposed to address an electricity load classification forecasting issue based on the group method of data handling (GMDH technology. The proposed algorithm consists of three main stages: (1 training the basic classifier; (2 selectively marking the most suitable samples from the unclassified label data, and adding them to an initial training set; and (3 training the classification models on the final training set and classifying the test samples. An empirical analysis of electricity load dataset from four Chinese cities is conducted. Results show that the proposed model can address the electricity load classification forecasting problem more efficiently and effectively than the FW-Semi FS (forward semi-supervised feature selection and GMDH-U (GMDH-based semi-supervised feature selection for customer classification models.

  19. Multiple Sclerosis and Employment: A Research Review Based on the International Classification of Function

    Science.gov (United States)

    Frain, Michael P.; Bishop, Malachy; Rumrill, Phillip D., Jr.; Chan, Fong; Tansey, Timothy N.; Strauser, David; Chiu, Chung-Yi

    2015-01-01

    Multiple sclerosis (MS) is an unpredictable, sometimes progressive chronic illness affecting people in the prime of their working lives. This article reviews the effects of MS on employment based on the World Health Organization's International Classification of Functioning, Disability and Health model. Correlations between employment and…

  20. Classification of Hearing Loss Disorders Using Teoae-Based Descriptors

    Science.gov (United States)

    Hatzopoulos, Stavros Dimitris

    Transiently Evoked Otoacoustic Emissions (TEOAE) are signals produced by the cochlea upon stimulation by an acoustic click. Within the context of this dissertation, it was hypothesized that the relationship between the TEOAEs and the functional status of the OHCs provided an opportunity for designing a TEOAE-based clinical procedure that could be used to assess cochlear function. To understand the nature of the TEOAE signals in the time and the frequency domain several different analyses were performed. Using normative Input-Output (IO) curves, short-time FFT analyses and cochlear computer simulations, it was found that for optimization of the hearing loss classification it is necessary to use a complete 20 ms TEOAE segment. It was also determined that various 2-D filtering methods (median and averaging filtering masks, LP-FFT) used to enhance of the TEOAE S/N offered minimal improvement (less than 6 dB per stimulus level). Higher S/N improvements resulted in TEOAE sequences that were over-smoothed. The final classification algorithm was based on a statistical analysis of raw FFT data and when applied to a sample set of clinically obtained TEOAE recordings (from 56 normal and 66 hearing-loss subjects) correctly identified 94.3% of the normal and 90% of the hearing loss subjects, at the 80 dB SPL stimulus level. To enhance the discrimination between the conductive and the sensorineural populations, data from the 68 dB SPL stimulus level were used, which yielded a normal classification of 90.2%, a hearing loss classification of 87.5% and a conductive-sensorineural classification of 87%. Among the hearing-loss populations the best discrimination was obtained in the group of otosclerosis and the worst in the group of acute acoustic trauma.

  1. Music Genre Classification using an Auditory Memory Model

    DEFF Research Database (Denmark)

    Jensen, Kristoffer

    2011-01-01

    Audio feature estimation is potentially improved by including higher- level models. One such model is the Auditory Short Term Memory (STM) model. A new paradigm of audio feature estimation is obtained by adding the influence of notes in the STM. These notes are identified when the perceptual...... results, and an initial experiment with sensory dissonance has been undertaken with good results. The parameters obtained form the auditory memory model, along with the dissonance measure, are shown here to be of interest in genre classification....

  2. Comparison Of Power Quality Disturbances Classification Based On Neural Network

    Directory of Open Access Journals (Sweden)

    Nway Nway Kyaw Win

    2015-07-01

    Full Text Available Abstract Power quality disturbances PQDs result serious problems in the reliability safety and economy of power system network. In order to improve electric power quality events the detection and classification of PQDs must be made type of transient fault. Software analysis of wavelet transform with multiresolution analysis MRA algorithm and feed forward neural network probabilistic and multilayer feed forward neural network based methodology for automatic classification of eight types of PQ signals flicker harmonics sag swell impulse fluctuation notch and oscillatory will be presented. The wavelet family Db4 is chosen in this system to calculate the values of detailed energy distributions as input features for classification because it can perform well in detecting and localizing various types of PQ disturbances. This technique classifies the types of PQDs problem sevents.The classifiers classify and identify the disturbance type according to the energy distribution. The results show that the PNN can analyze different power disturbance types efficiently. Therefore it can be seen that PNN has better classification accuracy than MLFF.

  3. A Classification Methodology and Retrieval Model to Support Software Reuse

    Science.gov (United States)

    1988-01-01

    Dewey Decimal Classification ( DDC 18), an enumerative scheme, occupies 40 pages [Buchanan 19791. Langridge [19731 states that the facets listed in the...sense of historical importance or wide spread use. The schemes are: Dewey Decimal Classification ( DDC ), Universal Decimal Classification (UDC...Classification Systems ..... ..... 2.3.3 Library Classification__- .52 23.3.1 Dewey Decimal Classification -53 2.33.2 Universal Decimal Classification 55 2333

  4. Real-time classification of humans versus animals using profiling sensors and hidden Markov tree model

    Science.gov (United States)

    Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant

    2015-07-01

    Linear pyroelectric array sensors have enabled useful classifications of objects such as humans and animals to be performed with relatively low-cost hardware in border and perimeter security applications. Ongoing research has sought to improve the performance of these sensors through signal processing algorithms. In the research presented here, we introduce the use of hidden Markov tree (HMT) models for object recognition in images generated by linear pyroelectric sensors. HMTs are trained to statistically model the wavelet features of individual objects through an expectation-maximization learning process. Human versus animal classification for a test object is made by evaluating its wavelet features against the trained HMTs using the maximum-likelihood criterion. The classification performance of this approach is compared to two other techniques; a texture, shape, and spectral component features (TSSF) based classifier and a speeded-up robust feature (SURF) classifier. The evaluation indicates that among the three techniques, the wavelet-based HMT model works well, is robust, and has improved classification performance compared to a SURF-based algorithm in equivalent computation time. When compared to the TSSF-based classifier, the HMT model has a slightly degraded performance but almost an order of magnitude improvement in computation time enabling real-time implementation.

  5. Three-Class Mammogram Classification Based on Descriptive CNN Features

    Directory of Open Access Journals (Sweden)

    M. Mohsin Jadoon

    2017-01-01

    Full Text Available In this paper, a novel classification technique for large data set of mammograms using a deep learning method is proposed. The proposed model targets a three-class classification study (normal, malignant, and benign cases. In our model we have presented two methods, namely, convolutional neural network-discrete wavelet (CNN-DW and convolutional neural network-curvelet transform (CNN-CT. An augmented data set is generated by using mammogram patches. To enhance the contrast of mammogram images, the data set is filtered by contrast limited adaptive histogram equalization (CLAHE. In the CNN-DW method, enhanced mammogram images are decomposed as its four subbands by means of two-dimensional discrete wavelet transform (2D-DWT, while in the second method discrete curvelet transform (DCT is used. In both methods, dense scale invariant feature (DSIFT for all subbands is extracted. Input data matrix containing these subband features of all the mammogram patches is created that is processed as input to convolutional neural network (CNN. Softmax layer and support vector machine (SVM layer are used to train CNN for classification. Proposed methods have been compared with existing methods in terms of accuracy rate, error rate, and various validation assessment measures. CNN-DW and CNN-CT have achieved accuracy rate of 81.83% and 83.74%, respectively. Simulation results clearly validate the significance and impact of our proposed model as compared to other well-known existing techniques.

  6. Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site

    Science.gov (United States)

    Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.

    2018-02-01

    The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.

  7. A Pruning Neural Network Model in Credit Classification Analysis

    Directory of Open Access Journals (Sweden)

    Yajiao Tang

    2018-01-01

    Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.

  8. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    Science.gov (United States)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  9. Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2012-09-01

    Full Text Available We present a novel and innovative automated processing environment for the derivation of land cover (LC and land use (LU information. This processing framework named TWOPAC (TWinned Object and Pixel based Automated classification Chain enables the standardized, independent, user-friendly, and comparable derivation of LC and LU information, with minimized manual classification labor. TWOPAC allows classification of multi-spectral and multi-temporal remote sensing imagery from different sensor types. TWOPAC enables not only pixel-based classification, but also allows classification based on object-based characteristics. Classification is based on a Decision Tree approach (DT for which the well-known C5.0 code has been implemented, which builds decision trees based on the concept of information entropy. TWOPAC enables automatic generation of the decision tree classifier based on a C5.0-retrieved ascii-file, as well as fully automatic validation of the classification output via sample based accuracy assessment.Envisaging the automated generation of standardized land cover products, as well as area-wide classification of large amounts of data in preferably a short processing time, standardized interfaces for process control, Web Processing Services (WPS, as introduced by the Open Geospatial Consortium (OGC, are utilized. TWOPAC’s functionality to process geospatial raster or vector data via web resources (server, network enables TWOPAC’s usability independent of any commercial client or desktop software and allows for large scale data processing on servers. Furthermore, the components of TWOPAC were built-up using open source code components and are implemented as a plug-in for Quantum GIS software for easy handling of the classification process from the user’s perspective.

  10. Zone-specific logistic regression models improve classification of prostate cancer on multi-parametric MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dikaios, Nikolaos; Halligan, Steve; Taylor, Stuart; Atkinson, David; Punwani, Shonit [University College London, Centre for Medical Imaging, London (United Kingdom); University College London Hospital, Departments of Radiology, London (United Kingdom); Alkalbani, Jokha; Sidhu, Harbir Singh [University College London, Centre for Medical Imaging, London (United Kingdom); Abd-Alazeez, Mohamed; Ahmed, Hashim U.; Emberton, Mark [University College London, Research Department of Urology, Division of Surgery and Interventional Science, London (United Kingdom); Kirkham, Alex [University College London Hospital, Departments of Radiology, London (United Kingdom); Freeman, Alex [University College London Hospital, Department of Histopathology, London (United Kingdom)

    2015-09-15

    To assess the interchangeability of zone-specific (peripheral-zone (PZ) and transition-zone (TZ)) multiparametric-MRI (mp-MRI) logistic-regression (LR) models for classification of prostate cancer. Two hundred and thirty-one patients (70 TZ training-cohort; 76 PZ training-cohort; 85 TZ temporal validation-cohort) underwent mp-MRI and transperineal-template-prostate-mapping biopsy. PZ and TZ uni/multi-variate mp-MRI LR-models for classification of significant cancer (any cancer-core-length (CCL) with Gleason > 3 + 3 or any grade with CCL ≥ 4 mm) were derived from the respective cohorts and validated within the same zone by leave-one-out analysis. Inter-zonal performance was tested by applying TZ models to the PZ training-cohort and vice-versa. Classification performance of TZ models for TZ cancer was further assessed in the TZ validation-cohort. ROC area-under-curve (ROC-AUC) analysis was used to compare models. The univariate parameters with the best classification performance were the normalised T2 signal (T2nSI) within the TZ (ROC-AUC = 0.77) and normalized early contrast-enhanced T1 signal (DCE-nSI) within the PZ (ROC-AUC = 0.79). Performance was not significantly improved by bi-variate/tri-variate modelling. PZ models that contained DCE-nSI performed poorly in classification of TZ cancer. The TZ model based solely on maximum-enhancement poorly classified PZ cancer. LR-models dependent on DCE-MRI parameters alone are not interchangeable between prostatic zones; however, models based exclusively on T2 and/or ADC are more robust for inter-zonal application. (orig.)

  11. A Novel Computer Virus Propagation Model under Security Classification

    Directory of Open Access Journals (Sweden)

    Qingyi Zhu

    2017-01-01

    Full Text Available In reality, some computers have specific security classification. For the sake of safety and cost, the security level of computers will be upgraded with increasing of threats in networks. Here we assume that there exists a threshold value which determines when countermeasures should be taken to level up the security of a fraction of computers with low security level. And in some specific realistic environments the propagation network can be regarded as fully interconnected. Inspired by these facts, this paper presents a novel computer virus dynamics model considering the impact brought by security classification in full interconnection network. By using the theory of dynamic stability, the existence of equilibria and stability conditions is analysed and proved. And the above optimal threshold value is given analytically. Then, some numerical experiments are made to justify the model. Besides, some discussions and antivirus measures are given.

  12. Classification of e-government documents based on cooperative expression of word vectors

    Science.gov (United States)

    Fu, Qianqian; Liu, Hao; Wei, Zhiqiang

    2017-03-01

    The effective document classification is a powerful technique to deal with the huge amount of e-government documents automatically instead of accomplishing them manually. The word-to-vector (word2vec) model, which converts semantic word into low-dimensional vectors, could be successfully employed to classify the e-government documents. In this paper, we propose the cooperative expressions of word vector (Co-word-vector), whose multi-granularity of integration explores the possibility of modeling documents in the semantic space. Meanwhile, we also aim to improve the weighted continuous bag of words model based on word2vec model and distributed representation of topic-words based on LDA model. Furthermore, combining the two levels of word representation, performance result shows that our proposed method on the e-government document classification outperform than the traditional method.

  13. Yarn-dyed fabric defect classification based on convolutional neural network

    Science.gov (United States)

    Jing, Junfeng; Dong, Amei; Li, Pengfei; Zhang, Kaibing

    2017-09-01

    Considering that manual inspection of the yarn-dyed fabric can be time consuming and inefficient, we propose a yarn-dyed fabric defect classification method by using a convolutional neural network (CNN) based on a modified AlexNet. CNN shows powerful ability in performing feature extraction and fusion by simulating the learning mechanism of human brain. The local response normalization layers in AlexNet are replaced by the batch normalization layers, which can enhance both the computational efficiency and classification accuracy. In the training process of the network, the characteristics of the defect are extracted step by step and the essential features of the image can be obtained from the fusion of the edge details with several convolution operations. Then the max-pooling layers, the dropout layers, and the fully connected layers are employed in the classification model to reduce the computation cost and extract more precise features of the defective fabric. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show promising performance with an acceptable average classification rate and strong robustness on yarn-dyed fabric defect classification.

  14. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    Science.gov (United States)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  15. A new gammagraphic and functional-based classification for hyperthyroidism

    International Nuclear Information System (INIS)

    Sanchez, J.; Lamata, F.; Cerdan, R.; Agilella, V.; Gastaminza, R.; Abusada, R.; Gonzales, M.; Martinez, M.

    2000-01-01

    The absence of an universal classification for hyperthyroidism's (HT), give rise to inadequate interpretation of series and trials, and prevents decision making. We offer a tentative classification based on gammagraphic and functional findings. Clinical records from patients who underwent thyroidectomy in our Department since 1967 to 1997 were reviewed. Those with functional measurements of hyperthyroidism were considered. All were managed according to the same preestablished guidelines. HT was the surgical indication in 694 (27,1%) of the 2559 thyroidectomy. Based on gammagraphic studies, we classified HTs in: parenchymatous increased-uptake, which could be diffuse, diffuse with cold nodules or diffuse with at least one nodule, and nodular increased-uptake (Autonomous Functioning Thyroid Nodes-AFTN), divided into solitary AFTN or toxic adenoma and multiple AFTN o toxic multi-nodular goiter. This gammagraphic-based classification in useful and has high sensitivity to detect these nodules assessing their activity, allowing us to make therapeutic decision making and, in some cases, to choose surgical technique. (authors)

  16. Various forms of indexing HDMR for modelling multivariate classification problems

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, Çağrı [Bahçeşehir University, Information Technologies Master Program, Beşiktaş, 34349 İstanbul (Turkey); Tunga, M. Alper [Bahçeşehir University, Software Engineering Department, Beşiktaş, 34349 İstanbul (Turkey)

    2014-12-10

    The Indexing HDMR method was recently developed for modelling multivariate interpolation problems. The method uses the Plain HDMR philosophy in partitioning the given multivariate data set into less variate data sets and then constructing an analytical structure through these partitioned data sets to represent the given multidimensional problem. Indexing HDMR makes HDMR be applicable to classification problems having real world data. Mostly, we do not know all possible class values in the domain of the given problem, that is, we have a non-orthogonal data structure. However, Plain HDMR needs an orthogonal data structure in the given problem to be modelled. In this sense, the main idea of this work is to offer various forms of Indexing HDMR to successfully model these real life classification problems. To test these different forms, several well-known multivariate classification problems given in UCI Machine Learning Repository were used and it was observed that the accuracy results lie between 80% and 95% which are very satisfactory.

  17. A Feature Selection Method for Large-Scale Network Traffic Classification Based on Spark

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2016-02-01

    Full Text Available Currently, with the rapid increasing of data scales in network traffic classifications, how to select traffic features efficiently is becoming a big challenge. Although a number of traditional feature selection methods using the Hadoop-MapReduce framework have been proposed, the execution time was still unsatisfactory with numeral iterative computations during the processing. To address this issue, an efficient feature selection method for network traffic based on a new parallel computing framework called Spark is proposed in this paper. In our approach, the complete feature set is firstly preprocessed based on Fisher score, and a sequential forward search strategy is employed for subsets. The optimal feature subset is then selected using the continuous iterations of the Spark computing framework. The implementation demonstrates that, on the precondition of keeping the classification accuracy, our method reduces the time cost of modeling and classification, and improves the execution efficiency of feature selection significantly.

  18. Object-Based Classification as an Alternative Approach to the Traditional Pixel-Based Classification to Identify Potential Habitat of the Grasshopper Sparrow

    Science.gov (United States)

    Jobin, Benoît; Labrecque, Sandra; Grenier, Marcelle; Falardeau, Gilles

    2008-01-01

    The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.

  19. From the harmonic oscillator to the A-D-E classification of conformal models

    International Nuclear Information System (INIS)

    Itzykson, C.

    1988-01-01

    Arithmetical aspects of the solution of systems involving dimensional statistical models and conformal field theory. From this perspective, the analysis of the harmonic oscillator, the free particle in a box, the rational billards is effectuated. Moreover, the description of the classification of minimal conformal models and Weiss-Lumino-Witten models, based on the simplest affine algebra is also given. Attempts to interpret and justify the appearance of A-D-E classification of algebra in W-Z-W model are made. Extensions of W-Z-W model, based on SU(N) level one, and the ways to deal with rank two Lie groups, using the arithmetics of quadratic intergers, are described

  20. Changing Histopathological Diagnostics by Genome-Based Tumor Classification

    Directory of Open Access Journals (Sweden)

    Michael Kloth

    2014-05-01

    Full Text Available Traditionally, tumors are classified by histopathological criteria, i.e., based on their specific morphological appearances. Consequently, current therapeutic decisions in oncology are strongly influenced by histology rather than underlying molecular or genomic aberrations. The increase of information on molecular changes however, enabled by the Human Genome Project and the International Cancer Genome Consortium as well as the manifold advances in molecular biology and high-throughput sequencing techniques, inaugurated the integration of genomic information into disease classification. Furthermore, in some cases it became evident that former classifications needed major revision and adaption. Such adaptations are often required by understanding the pathogenesis of a disease from a specific molecular alteration, using this molecular driver for targeted and highly effective therapies. Altogether, reclassifications should lead to higher information content of the underlying diagnoses, reflecting their molecular pathogenesis and resulting in optimized and individual therapeutic decisions. The objective of this article is to summarize some particularly important examples of genome-based classification approaches and associated therapeutic concepts. In addition to reviewing disease specific markers, we focus on potentially therapeutic or predictive markers and the relevance of molecular diagnostics in disease monitoring.

  1. Design and implementation based on the classification protection vulnerability scanning system

    International Nuclear Information System (INIS)

    Wang Chao; Lu Zhigang; Liu Baoxu

    2010-01-01

    With the application and spread of the classification protection, Network Security Vulnerability Scanning should consider the efficiency and the function expansion. It proposes a kind of a system vulnerability from classification protection, and elaborates the design and implementation of a vulnerability scanning system based on vulnerability classification plug-in technology and oriented classification protection. According to the experiment, the application of classification protection has good adaptability and salability with the system, and it also approves the efficiency of scanning. (authors)

  2. Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales

    Directory of Open Access Journals (Sweden)

    Jihoon Oh

    2017-09-01

    Full Text Available Classification and prediction of suicide attempts in high-risk groups is important for preventing suicide. The purpose of this study was to investigate whether the information from multiple clinical scales has classification power for identifying actual suicide attempts. Patients with depression and anxiety disorders (N = 573 were included, and each participant completed 31 self-report psychiatric scales and questionnaires about their history of suicide attempts. We then trained an artificial neural network classifier with 41 variables (31 psychiatric scales and 10 sociodemographic elements and ranked the contribution of each variable for the classification of suicide attempts. To evaluate the clinical applicability of our model, we measured classification performance with top-ranked predictors. Our model had an overall accuracy of 93.7% in 1-month, 90.8% in 1-year, and 87.4% in lifetime suicide attempts detection. The area under the receiver operating characteristic curve (AUROC was the highest for 1-month suicide attempts detection (0.93, followed by lifetime (0.89, and 1-year detection (0.87. Among all variables, the Emotion Regulation Questionnaire had the highest contribution, and the positive and negative characteristics of the scales similarly contributed to classification performance. Performance on suicide attempts classification was largely maintained when we only used the top five ranked variables for training (AUROC; 1-month, 0.75, 1-year, 0.85, lifetime suicide attempts detection, 0.87. Our findings indicate that information from self-report clinical scales can be useful for the classification of suicide attempts. Based on the reliable performance of the top five predictors alone, this machine learning approach could help clinicians identify high-risk patients in clinical settings.

  3. Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales.

    Science.gov (United States)

    Oh, Jihoon; Yun, Kyongsik; Hwang, Ji-Hyun; Chae, Jeong-Ho

    2017-01-01

    Classification and prediction of suicide attempts in high-risk groups is important for preventing suicide. The purpose of this study was to investigate whether the information from multiple clinical scales has classification power for identifying actual suicide attempts. Patients with depression and anxiety disorders ( N  = 573) were included, and each participant completed 31 self-report psychiatric scales and questionnaires about their history of suicide attempts. We then trained an artificial neural network classifier with 41 variables (31 psychiatric scales and 10 sociodemographic elements) and ranked the contribution of each variable for the classification of suicide attempts. To evaluate the clinical applicability of our model, we measured classification performance with top-ranked predictors. Our model had an overall accuracy of 93.7% in 1-month, 90.8% in 1-year, and 87.4% in lifetime suicide attempts detection. The area under the receiver operating characteristic curve (AUROC) was the highest for 1-month suicide attempts detection (0.93), followed by lifetime (0.89), and 1-year detection (0.87). Among all variables, the Emotion Regulation Questionnaire had the highest contribution, and the positive and negative characteristics of the scales similarly contributed to classification performance. Performance on suicide attempts classification was largely maintained when we only used the top five ranked variables for training (AUROC; 1-month, 0.75, 1-year, 0.85, lifetime suicide attempts detection, 0.87). Our findings indicate that information from self-report clinical scales can be useful for the classification of suicide attempts. Based on the reliable performance of the top five predictors alone, this machine learning approach could help clinicians identify high-risk patients in clinical settings.

  4. [Severity classification of chronic obstructive pulmonary disease based on deep learning].

    Science.gov (United States)

    Ying, Jun; Yang, Ceyuan; Li, Quanzheng; Xue, Wanguo; Li, Tanshi; Cao, Wenzhe

    2017-12-01

    In this paper, a deep learning method has been raised to build an automatic classification algorithm of severity of chronic obstructive pulmonary disease. Large sample clinical data as input feature were analyzed for their weights in classification. Through feature selection, model training, parameter optimization and model testing, a classification prediction model based on deep belief network was built to predict severity classification criteria raised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We get accuracy over 90% in prediction for two different standardized versions of severity criteria raised in 2007 and 2011 respectively. Moreover, we also got the contribution ranking of different input features through analyzing the model coefficient matrix and confirmed that there was a certain degree of agreement between the more contributive input features and the clinical diagnostic knowledge. The validity of the deep belief network model was proved by this result. This study provides an effective solution for the application of deep learning method in automatic diagnostic decision making.

  5. Task-Driven Dictionary Learning Based on Mutual Information for Medical Image Classification.

    Science.gov (United States)

    Diamant, Idit; Klang, Eyal; Amitai, Michal; Konen, Eli; Goldberger, Jacob; Greenspan, Hayit

    2017-06-01

    We present a novel variant of the bag-of-visual-words (BoVW) method for automated medical image classification. Our approach improves the BoVW model by learning a task-driven dictionary of the most relevant visual words per task using a mutual information-based criterion. Additionally, we generate relevance maps to visualize and localize the decision of the automatic classification algorithm. These maps demonstrate how the algorithm works and show the spatial layout of the most relevant words. We applied our algorithm to three different tasks: chest x-ray pathology identification (of four pathologies: cardiomegaly, enlarged mediastinum, right consolidation, and left consolidation), liver lesion classification into four categories in computed tomography (CT) images and benign/malignant clusters of microcalcifications (MCs) classification in breast mammograms. Validation was conducted on three datasets: 443 chest x-rays, 118 portal phase CT images of liver lesions, and 260 mammography MCs. The proposed method improves the classical BoVW method for all tested applications. For chest x-ray, area under curve of 0.876 was obtained for enlarged mediastinum identification compared to 0.855 using classical BoVW (with p-value 0.01). For MC classification, a significant improvement of 4% was achieved using our new approach (with p-value = 0.03). For liver lesion classification, an improvement of 6% in sensitivity and 2% in specificity were obtained (with p-value 0.001). We demonstrated that classification based on informative selected set of words results in significant improvement. Our new BoVW approach shows promising results in clinically important domains. Additionally, it can discover relevant parts of images for the task at hand without explicit annotations for training data. This can provide computer-aided support for medical experts in challenging image analysis tasks.

  6. Building an asynchronous web-based tool for machine learning classification.

    Science.gov (United States)

    Weber, Griffin; Vinterbo, Staal; Ohno-Machado, Lucila

    2002-01-01

    Various unsupervised and supervised learning methods including support vector machines, classification trees, linear discriminant analysis and nearest neighbor classifiers have been used to classify high-throughput gene expression data. Simpler and more widely accepted statistical tools have not yet been used for this purpose, hence proper comparisons between classification methods have not been conducted. We developed free software that implements logistic regression with stepwise variable selection as a quick and simple method for initial exploration of important genetic markers in disease classification. To implement the algorithm and allow our collaborators in remote locations to evaluate and compare its results against those of other methods, we developed a user-friendly asynchronous web-based application with a minimal amount of programming using free, downloadable software tools. With this program, we show that classification using logistic regression can perform as well as other more sophisticated algorithms, and it has the advantages of being easy to interpret and reproduce. By making the tool freely and easily available, we hope to promote the comparison of classification methods. In addition, we believe our web application can be used as a model for other bioinformatics laboratories that need to develop web-based analysis tools in a short amount of time and on a limited budget.

  7. Feasibility Study of Land Cover Classification Based on Normalized Difference Vegetation Index for Landslide Risk Assessment

    Directory of Open Access Journals (Sweden)

    Thilanki Dahigamuwa

    2016-10-01

    Full Text Available Unfavorable land cover leads to excessive damage from landslides and other natural hazards, whereas the presence of vegetation is expected to mitigate rainfall-induced landslide potential. Hence, unexpected and rapid changes in land cover due to deforestation would be detrimental in landslide-prone areas. Also, vegetation cover is subject to phenological variations and therefore, timely classification of land cover is an essential step in effective evaluation of landslide hazard potential. The work presented here investigates methods that can be used for land cover classification based on the Normalized Difference Vegetation Index (NDVI, derived from up-to-date satellite images, and the feasibility of application in landslide risk prediction. A major benefit of this method would be the eventual ability to employ NDVI as a stand-alone parameter for accurate assessment of the impact of land cover in landslide hazard evaluation. An added benefit would be the timely detection of undesirable practices such as deforestation using satellite imagery. A landslide-prone region in Oregon, USA is used as a model for the application of the classification method. Five selected classification techniques—k-nearest neighbor, Gaussian support vector machine (GSVM, artificial neural network, decision tree and quadratic discriminant analysis support the viability of the NDVI-based land cover classification. Finally, its application in landslide risk evaluation is demonstrated.

  8. Radiographic classification for fractures of the fifth metatarsal base

    International Nuclear Information System (INIS)

    Mehlhorn, Alexander T.; Zwingmann, Joern; Hirschmueller, Anja; Suedkamp, Norbert P.; Schmal, Hagen

    2014-01-01

    Avulsion fractures of the fifth metatarsal base (MTB5) are common fore foot injuries. Based on a radiomorphometric analysis reflecting the risk for a secondary displacement, a new classification was developed. A cohort of 95 healthy, sportive, and young patients (age ≤ 50 years) with avulsion fractures of the MTB5 was included in the study and divided into groups with non-displaced, primary-displaced, and secondary-displaced fractures. Radiomorphometric data obtained using standard oblique and dorso-plantar views were analyzed in association with secondary displacement. Based on this, a classification was developed and checked for reproducibility. Fractures with a longer distance between the lateral edge of the styloid process and the lateral fracture step-off and fractures with a more medial joint entry of the fracture line at the MTB5 are at higher risk to displace secondarily. Based on these findings, all fractures were divided into three types: type I with a fracture entry in the lateral third; type II in the middle third; and type III in the medial third of the MTB5. Additionally, the three types were subdivided into an A-type with a fracture displacement <2 mm and a B-type with a fracture displacement ≥ 2 mm. A substantial level of interobserver agreement was found in the assignment of all 95 fractures to the six fracture types (κ = 0.72). The secondary displacement of fractures was confirmed by all examiners in 100 %. Radiomorphometric data may identify fractures at risk for secondary displacement of the MTB5. Based on this, a reliable classification was developed. (orig.)

  9. Radiographic classification for fractures of the fifth metatarsal base

    Energy Technology Data Exchange (ETDEWEB)

    Mehlhorn, Alexander T.; Zwingmann, Joern; Hirschmueller, Anja; Suedkamp, Norbert P.; Schmal, Hagen [University of Freiburg Medical Center, Department of Orthopaedic Surgery, Freiburg (Germany)

    2014-04-15

    Avulsion fractures of the fifth metatarsal base (MTB5) are common fore foot injuries. Based on a radiomorphometric analysis reflecting the risk for a secondary displacement, a new classification was developed. A cohort of 95 healthy, sportive, and young patients (age ≤ 50 years) with avulsion fractures of the MTB5 was included in the study and divided into groups with non-displaced, primary-displaced, and secondary-displaced fractures. Radiomorphometric data obtained using standard oblique and dorso-plantar views were analyzed in association with secondary displacement. Based on this, a classification was developed and checked for reproducibility. Fractures with a longer distance between the lateral edge of the styloid process and the lateral fracture step-off and fractures with a more medial joint entry of the fracture line at the MTB5 are at higher risk to displace secondarily. Based on these findings, all fractures were divided into three types: type I with a fracture entry in the lateral third; type II in the middle third; and type III in the medial third of the MTB5. Additionally, the three types were subdivided into an A-type with a fracture displacement <2 mm and a B-type with a fracture displacement ≥ 2 mm. A substantial level of interobserver agreement was found in the assignment of all 95 fractures to the six fracture types (κ = 0.72). The secondary displacement of fractures was confirmed by all examiners in 100 %. Radiomorphometric data may identify fractures at risk for secondary displacement of the MTB5. Based on this, a reliable classification was developed. (orig.)

  10. A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data

    Science.gov (United States)

    Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna

    2013-04-01

    A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to

  11. Risk Classification and Risk-based Safety and Mission Assurance

    Science.gov (United States)

    Leitner, Jesse A.

    2014-01-01

    Recent activities to revamp and emphasize the need to streamline processes and activities for Class D missions across the agency have led to various interpretations of Class D, including the lumping of a variety of low-cost projects into Class D. Sometimes terms such as Class D minus are used. In this presentation, mission risk classifications will be traced to official requirements and definitions as a measure to ensure that projects and programs align with the guidance and requirements that are commensurate for their defined risk posture. As part of this, the full suite of risk classifications, formal and informal will be defined, followed by an introduction to the new GPR 8705.4 that is currently under review.GPR 8705.4 lays out guidance for the mission success activities performed at the Classes A-D for NPR 7120.5 projects as well as for projects not under NPR 7120.5. Furthermore, the trends in stepping from Class A into higher risk posture classifications will be discussed. The talk will conclude with a discussion about risk-based safety and mission assuranceat GSFC.

  12. Image Classification Based on Convolutional Denoising Sparse Autoencoder

    Directory of Open Access Journals (Sweden)

    Shuangshuang Chen

    2017-01-01

    Full Text Available Image classification aims to group images into corresponding semantic categories. Due to the difficulties of interclass similarity and intraclass variability, it is a challenging issue in computer vision. In this paper, an unsupervised feature learning approach called convolutional denoising sparse autoencoder (CDSAE is proposed based on the theory of visual attention mechanism and deep learning methods. Firstly, saliency detection method is utilized to get training samples for unsupervised feature learning. Next, these samples are sent to the denoising sparse autoencoder (DSAE, followed by convolutional layer and local contrast normalization layer. Generally, prior in a specific task is helpful for the task solution. Therefore, a new pooling strategy—spatial pyramid pooling (SPP fused with center-bias prior—is introduced into our approach. Experimental results on the common two image datasets (STL-10 and CIFAR-10 demonstrate that our approach is effective in image classification. They also demonstrate that none of these three components: local contrast normalization, SPP fused with center-prior, and l2 vector normalization can be excluded from our proposed approach. They jointly improve image representation and classification performance.

  13. An Approach for Leukemia Classification Based on Cooperative Game Theory

    Directory of Open Access Journals (Sweden)

    Atefeh Torkaman

    2011-01-01

    Full Text Available Hematological malignancies are the types of cancer that affect blood, bone marrow and lymph nodes. As these tissues are naturally connected through the immune system, a disease affecting one of them will often affect the others as well. The hematological malignancies include; Leukemia, Lymphoma, Multiple myeloma. Among them, leukemia is a serious malignancy that starts in blood tissues especially the bone marrow, where the blood is made. Researches show, leukemia is one of the common cancers in the world. So, the emphasis on diagnostic techniques and best treatments would be able to provide better prognosis and survival for patients. In this paper, an automatic diagnosis recommender system for classifying leukemia based on cooperative game is presented. Through out this research, we analyze the flow cytometry data toward the classification of leukemia into eight classes. We work on real data set from different types of leukemia that have been collected at Iran Blood Transfusion Organization (IBTO. Generally, the data set contains 400 samples taken from human leukemic bone marrow. This study deals with cooperative game used for classification according to different weights assigned to the markers. The proposed method is versatile as there are no constraints to what the input or output represent. This means that it can be used to classify a population according to their contributions. In other words, it applies equally to other groups of data. The experimental results show the accuracy rate of 93.12%, for classification and compared to decision tree (C4.5 with (90.16% in accuracy. The result demonstrates that cooperative game is very promising to be used directly for classification of leukemia as a part of Active Medical decision support system for interpretation of flow cytometry readout. This system could assist clinical hematologists to properly recognize different kinds of leukemia by preparing suggestions and this could improve the treatment

  14. An approach for leukemia classification based on cooperative game theory.

    Science.gov (United States)

    Torkaman, Atefeh; Charkari, Nasrollah Moghaddam; Aghaeipour, Mahnaz

    2011-01-01

    Hematological malignancies are the types of cancer that affect blood, bone marrow and lymph nodes. As these tissues are naturally connected through the immune system, a disease affecting one of them will often affect the others as well. The hematological malignancies include; Leukemia, Lymphoma, Multiple myeloma. Among them, leukemia is a serious malignancy that starts in blood tissues especially the bone marrow, where the blood is made. Researches show, leukemia is one of the common cancers in the world. So, the emphasis on diagnostic techniques and best treatments would be able to provide better prognosis and survival for patients. In this paper, an automatic diagnosis recommender system for classifying leukemia based on cooperative game is presented. Through out this research, we analyze the flow cytometry data toward the classification of leukemia into eight classes. We work on real data set from different types of leukemia that have been collected at Iran Blood Transfusion Organization (IBTO). Generally, the data set contains 400 samples taken from human leukemic bone marrow. This study deals with cooperative game used for classification according to different weights assigned to the markers. The proposed method is versatile as there are no constraints to what the input or output represent. This means that it can be used to classify a population according to their contributions. In other words, it applies equally to other groups of data. The experimental results show the accuracy rate of 93.12%, for classification and compared to decision tree (C4.5) with (90.16%) in accuracy. The result demonstrates that cooperative game is very promising to be used directly for classification of leukemia as a part of Active Medical decision support system for interpretation of flow cytometry readout. This system could assist clinical hematologists to properly recognize different kinds of leukemia by preparing suggestions and this could improve the treatment of leukemic

  15. Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf

    Science.gov (United States)

    Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.

    2012-08-01

    A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  16. CLASSIFICATION OF ACTIVE MICROWAVE AND PASSIVE OPTICAL DATA BASED ON BAYESIAN THEORY AND MRF

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-08-01

    Full Text Available A classifier based on Bayesian theory and Markov random field (MRF is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  17. Classification of EEG signals using a genetic-based machine learning classifier.

    Science.gov (United States)

    Skinner, B T; Nguyen, H T; Liu, D K

    2007-01-01

    This paper investigates the efficacy of the genetic-based learning classifier system XCS, for the classification of noisy, artefact-inclusive human electroencephalogram (EEG) signals represented using large condition strings (108bits). EEG signals from three participants were recorded while they performed four mental tasks designed to elicit hemispheric responses. Autoregressive (AR) models and Fast Fourier Transform (FFT) methods were used to form feature vectors with which mental tasks can be discriminated. XCS achieved a maximum classification accuracy of 99.3% and a best average of 88.9%. The relative classification performance of XCS was then compared against four non-evolutionary classifier systems originating from different learning techniques. The experimental results will be used as part of our larger research effort investigating the feasibility of using EEG signals as an interface to allow paralysed persons to control a powered wheelchair or other devices.

  18. Texture-based classification of different gastric tumors at contrast-enhanced CT

    Energy Technology Data Exchange (ETDEWEB)

    Ba-Ssalamah, Ahmed, E-mail: ahmed.ba-ssalamah@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Muin, Dina; Schernthaner, Ruediger; Kulinna-Cosentini, Christiana; Bastati, Nina [Department of Radiology, Medical University of Vienna (Austria); Stift, Judith [Department of Pathology, Medical University of Vienna (Austria); Gore, Richard [Department of Radiology, University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Mayerhoefer, Marius E. [Department of Radiology, Medical University of Vienna (Austria)

    2013-10-01

    Purpose: To determine the feasibility of texture analysis for the classification of gastric adenocarcinoma, lymphoma, and gastrointestinal stromal tumors on contrast-enhanced hydrodynamic-MDCT images. Materials and methods: The arterial phase scans of 47 patients with adenocarcinoma (AC) and a histologic tumor grade of [AC-G1, n = 4, G1, n = 4; AC-G2, n = 7; AC-G3, n = 16]; GIST, n = 15; and lymphoma, n = 5, and the venous phase scans of 48 patients with AC-G1, n = 3; AC-G2, n = 6; AC-G3, n = 14; GIST, n = 17; lymphoma, n = 8, were retrospectively reviewed. Based on regions of interest, texture analysis was performed, and features derived from the gray-level histogram, run-length and co-occurrence matrix, absolute gradient, autoregressive model, and wavelet transform were calculated. Fisher coefficients, probability of classification error, average correlation coefficients, and mutual information coefficients were used to create combinations of texture features that were optimized for tumor differentiation. Linear discriminant analysis in combination with a k-nearest neighbor classifier was used for tumor classification. Results: On arterial-phase scans, texture-based lesion classification was highly successful in differentiating between AC and lymphoma, and GIST and lymphoma, with misclassification rates of 3.1% and 0%, respectively. On venous-phase scans, texture-based classification was slightly less successful for AC vs. lymphoma (9.7% misclassification) and GIST vs. lymphoma (8% misclassification), but enabled the differentiation between AC and GIST (10% misclassification), and between the different grades of AC (4.4% misclassification). No texture feature combination was able to adequately distinguish between all three tumor types. Conclusion: Classification of different gastric tumors based on textural information may aid radiologists in establishing the correct diagnosis, at least in cases where the differential diagnosis can be narrowed down to two

  19. Texture-based classification of different gastric tumors at contrast-enhanced CT

    International Nuclear Information System (INIS)

    Ba-Ssalamah, Ahmed; Muin, Dina; Schernthaner, Ruediger; Kulinna-Cosentini, Christiana; Bastati, Nina; Stift, Judith; Gore, Richard; Mayerhoefer, Marius E.

    2013-01-01

    Purpose: To determine the feasibility of texture analysis for the classification of gastric adenocarcinoma, lymphoma, and gastrointestinal stromal tumors on contrast-enhanced hydrodynamic-MDCT images. Materials and methods: The arterial phase scans of 47 patients with adenocarcinoma (AC) and a histologic tumor grade of [AC-G1, n = 4, G1, n = 4; AC-G2, n = 7; AC-G3, n = 16]; GIST, n = 15; and lymphoma, n = 5, and the venous phase scans of 48 patients with AC-G1, n = 3; AC-G2, n = 6; AC-G3, n = 14; GIST, n = 17; lymphoma, n = 8, were retrospectively reviewed. Based on regions of interest, texture analysis was performed, and features derived from the gray-level histogram, run-length and co-occurrence matrix, absolute gradient, autoregressive model, and wavelet transform were calculated. Fisher coefficients, probability of classification error, average correlation coefficients, and mutual information coefficients were used to create combinations of texture features that were optimized for tumor differentiation. Linear discriminant analysis in combination with a k-nearest neighbor classifier was used for tumor classification. Results: On arterial-phase scans, texture-based lesion classification was highly successful in differentiating between AC and lymphoma, and GIST and lymphoma, with misclassification rates of 3.1% and 0%, respectively. On venous-phase scans, texture-based classification was slightly less successful for AC vs. lymphoma (9.7% misclassification) and GIST vs. lymphoma (8% misclassification), but enabled the differentiation between AC and GIST (10% misclassification), and between the different grades of AC (4.4% misclassification). No texture feature combination was able to adequately distinguish between all three tumor types. Conclusion: Classification of different gastric tumors based on textural information may aid radiologists in establishing the correct diagnosis, at least in cases where the differential diagnosis can be narrowed down to two

  20. Fuzzy classification of phantom parent groups in an animal model

    Directory of Open Access Journals (Sweden)

    Fikse Freddy

    2009-09-01

    Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy-classification

  1. Classification of Noisy Data: An Approach Based on Genetic Algorithms and Voronoi Tessellation

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Knudsen, Torben

    Classification is one of the major constituents of the data-mining toolkit. The well-known methods for classification are built on either the principle of logic or statistical/mathematical reasoning for classification. In this article we propose: (1) a different strategy, which is based on the po......Classification is one of the major constituents of the data-mining toolkit. The well-known methods for classification are built on either the principle of logic or statistical/mathematical reasoning for classification. In this article we propose: (1) a different strategy, which is based...

  2. Contaminant classification using cosine distances based on multiple conventional sensors.

    Science.gov (United States)

    Liu, Shuming; Che, Han; Smith, Kate; Chang, Tian

    2015-02-01

    Emergent contamination events have a significant impact on water systems. After contamination detection, it is important to classify the type of contaminant quickly to provide support for remediation attempts. Conventional methods generally either rely on laboratory-based analysis, which requires a long analysis time, or on multivariable-based geometry analysis and sequence analysis, which is prone to being affected by the contaminant concentration. This paper proposes a new contaminant classification method, which discriminates contaminants in a real time manner independent of the contaminant concentration. The proposed method quantifies the similarities or dissimilarities between sensors' responses to different types of contaminants. The performance of the proposed method was evaluated using data from contaminant injection experiments in a laboratory and compared with a Euclidean distance-based method. The robustness of the proposed method was evaluated using an uncertainty analysis. The results show that the proposed method performed better in identifying the type of contaminant than the Euclidean distance based method and that it could classify the type of contaminant in minutes without significantly compromising the correct classification rate (CCR).

  3. Application of Bayesian Classification to Content-Based Data Management

    Science.gov (United States)

    Lynnes, Christopher; Berrick, S.; Gopalan, A.; Hua, X.; Shen, S.; Smith, P.; Yang, K-Y.; Wheeler, K.; Curry, C.

    2004-01-01

    The high volume of Earth Observing System data has proven to be challenging to manage for data centers and users alike. At the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC), about 1 TB of new data are archived each day. Distribution to users is also about 1 TB/day. A substantial portion of this distribution is MODIS calibrated radiance data, which has a wide variety of uses. However, much of the data is not useful for a particular user's needs: for example, ocean color users typically need oceanic pixels that are free of cloud and sun-glint. The GES DAAC is using a simple Bayesian classification scheme to rapidly classify each pixel in the scene in order to support several experimental content-based data services for near-real-time MODIS calibrated radiance products (from Direct Readout stations). Content-based subsetting would allow distribution of, say, only clear pixels to the user if desired. Content-based subscriptions would distribute data to users only when they fit the user's usability criteria in their area of interest within the scene. Content-based cache management would retain more useful data on disk for easy online access. The classification may even be exploited in an automated quality assessment of the geolocation product. Though initially to be demonstrated at the GES DAAC, these techniques have applicability in other resource-limited environments, such as spaceborne data systems.

  4. Object-based Dimensionality Reduction in Land Surface Phenology Classification

    Directory of Open Access Journals (Sweden)

    Brian E. Bunker

    2016-11-01

    Full Text Available Unsupervised classification or clustering of multi-decadal land surface phenology provides a spatio-temporal synopsis of natural and agricultural vegetation response to environmental variability and anthropogenic activities. Notwithstanding the detailed temporal information available in calibrated bi-monthly normalized difference vegetation index (NDVI and comparable time series, typical pre-classification workflows average a pixel’s bi-monthly index within the larger multi-decadal time series. While this process is one practical way to reduce the dimensionality of time series with many hundreds of image epochs, it effectively dampens temporal variation from both intra and inter-annual observations related to land surface phenology. Through a novel application of object-based segmentation aimed at spatial (not temporal dimensionality reduction, all 294 image epochs from a Moderate Resolution Imaging Spectroradiometer (MODIS bi-monthly NDVI time series covering the northern Fertile Crescent were retained (in homogenous landscape units as unsupervised classification inputs. Given the inherent challenges of in situ or manual image interpretation of land surface phenology classes, a cluster validation approach based on transformed divergence enabled comparison between traditional and novel techniques. Improved intra-annual contrast was clearly manifest in rain-fed agriculture and inter-annual trajectories showed increased cluster cohesion, reducing the overall number of classes identified in the Fertile Crescent study area from 24 to 10. Given careful segmentation parameters, this spatial dimensionality reduction technique augments the value of unsupervised learning to generate homogeneous land surface phenology units. By combining recent scalable computational approaches to image segmentation, future work can pursue new global land surface phenology products based on the high temporal resolution signatures of vegetation index time series.

  5. Hydrophobicity classification of polymeric materials based on fractal dimension

    Directory of Open Access Journals (Sweden)

    Daniel Thomazini

    2008-12-01

    Full Text Available This study proposes a new method to obtain hydrophobicity classification (HC in high voltage polymer insulators. In the method mentioned, the HC was analyzed by fractal dimension (fd and its processing time was evaluated having as a goal the application in mobile devices. Texture images were created from spraying solutions produced of mixtures of isopropyl alcohol and distilled water in proportions, which ranged from 0 to 100% volume of alcohol (%AIA. Based on these solutions, the contact angles of the drops were measured and the textures were used as patterns for fractal dimension calculations.

  6. Parametric classification of handvein patterns based on texture features

    Science.gov (United States)

    Al Mahafzah, Harbi; Imran, Mohammad; Supreetha Gowda H., D.

    2018-04-01

    In this paper, we have developed Biometric recognition system adopting hand based modality Handvein,which has the unique pattern for each individual and it is impossible to counterfeit and fabricate as it is an internal feature. We have opted in choosing feature extraction algorithms such as LBP-visual descriptor, LPQ-blur insensitive texture operator, Log-Gabor-Texture descriptor. We have chosen well known classifiers such as KNN and SVM for classification. We have experimented and tabulated results of single algorithm recognition rate for Handvein under different distance measures and kernel options. The feature level fusion is carried out which increased the performance level.

  7. Learning Supervised Topic Models for Classification and Regression from Crowds.

    Science.gov (United States)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C

    2017-12-01

    The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.

  8. A minimum spanning forest based classification method for dedicated breast CT images

    International Nuclear Information System (INIS)

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei

    2015-01-01

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging

  9. Forest Classification Based on Forest texture in Northwest Yunnan Province

    Science.gov (United States)

    Wang, Jinliang; Gao, Yan; Wang, Xiaohua; Fu, Lei

    2014-03-01

    Forest texture is an intrinsic characteristic and an important visual feature of a forest ecological system. Full utilization of forest texture will be a great help in increasing the accuracy of forest classification based on remote sensed data. Taking Shangri-La as a study area, forest classification has been based on the texture. The results show that: (1) From the texture abundance, texture boundary, entropy as well as visual interpretation, the combination of Grayscale-gradient co-occurrence matrix and wavelet transformation is much better than either one of both ways of forest texture information extraction; (2) During the forest texture information extraction, the size of the texture-suitable window determined by the semi-variogram method depends on the forest type (evergreen broadleaf forest is 3×3, deciduous broadleaf forest is 5×5, etc.). (3)While classifying forest based on forest texture information, the texture factor assembly differs among forests: Variance Heterogeneity and Correlation should be selected when the window is between 3×3 and 5×5 Mean, Correlation, and Entropy should be used when the window in the range of 7×7 to 19×19 and Correlation, Second Moment, and Variance should be used when the range is larger than 21×21.

  10. Forest Classification Based on Forest texture in Northwest Yunnan Province

    International Nuclear Information System (INIS)

    Wang, Jinliang; Gao, Yan; Fu, Lei; Wang, Xiaohua

    2014-01-01

    Forest texture is an intrinsic characteristic and an important visual feature of a forest ecological system. Full utilization of forest texture will be a great help in increasing the accuracy of forest classification based on remote sensed data. Taking Shangri-La as a study area, forest classification has been based on the texture. The results show that: (1) From the texture abundance, texture boundary, entropy as well as visual interpretation, the combination of Grayscale-gradient co-occurrence matrix and wavelet transformation is much better than either one of both ways of forest texture information extraction; (2) During the forest texture information extraction, the size of the texture-suitable window determined by the semi-variogram method depends on the forest type (evergreen broadleaf forest is 3×3, deciduous broadleaf forest is 5×5, etc.). (3)While classifying forest based on forest texture information, the texture factor assembly differs among forests: Variance Heterogeneity and Correlation should be selected when the window is between 3×3 and 5×5; Mean, Correlation, and Entropy should be used when the window in the range of 7×7 to 19×19; and Correlation, Second Moment, and Variance should be used when the range is larger than 21×21

  11. Task Classification Based Energy-Aware Consolidation in Clouds

    Directory of Open Access Journals (Sweden)

    HeeSeok Choi

    2016-01-01

    Full Text Available We consider a cloud data center, in which the service provider supplies virtual machines (VMs on hosts or physical machines (PMs to its subscribers for computation in an on-demand fashion. For the cloud data center, we propose a task consolidation algorithm based on task classification (i.e., computation-intensive and data-intensive and resource utilization (e.g., CPU and RAM. Furthermore, we design a VM consolidation algorithm to balance task execution time and energy consumption without violating a predefined service level agreement (SLA. Unlike the existing research on VM consolidation or scheduling that applies none or single threshold schemes, we focus on a double threshold (upper and lower scheme, which is used for VM consolidation. More specifically, when a host operates with resource utilization below the lower threshold, all the VMs on the host will be scheduled to be migrated to other hosts and then the host will be powered down, while when a host operates with resource utilization above the upper threshold, a VM will be migrated to avoid using 100% of resource utilization. Based on experimental performance evaluations with real-world traces, we prove that our task classification based energy-aware consolidation algorithm (TCEA achieves a significant energy reduction without incurring predefined SLA violations.

  12. Feature selection gait-based gender classification under different circumstances

    Science.gov (United States)

    Sabir, Azhin; Al-Jawad, Naseer; Jassim, Sabah

    2014-05-01

    This paper proposes a gender classification based on human gait features and investigates the problem of two variations: clothing (wearing coats) and carrying bag condition as addition to the normal gait sequence. The feature vectors in the proposed system are constructed after applying wavelet transform. Three different sets of feature are proposed in this method. First, Spatio-temporal distance that is dealing with the distance of different parts of the human body (like feet, knees, hand, Human Height and shoulder) during one gait cycle. The second and third feature sets are constructed from approximation and non-approximation coefficient of human body respectively. To extract these two sets of feature we divided the human body into two parts, upper and lower body part, based on the golden ratio proportion. In this paper, we have adopted a statistical method for constructing the feature vector from the above sets. The dimension of the constructed feature vector is reduced based on the Fisher score as a feature selection method to optimize their discriminating significance. Finally k-Nearest Neighbor is applied as a classification method. Experimental results demonstrate that our approach is providing more realistic scenario and relatively better performance compared with the existing approaches.

  13. A Categorical Framework for Model Classification in the Geosciences

    Science.gov (United States)

    Hauhs, Michael; Trancón y Widemann, Baltasar; Lange, Holger

    2016-04-01

    Models have a mixed record of success in the geosciences. In meteorology, model development and implementation has been among the first and most successful examples of triggering computer technology in science. On the other hand, notorious problems such as the 'equifinality issue' in hydrology lead to a rather mixed reputation of models in other areas. The most successful models in geosciences are applications of dynamic systems theory to non-living systems or phenomena. Thus, we start from the hypothesis that the success of model applications relates to the influence of life on the phenomenon under study. We thus focus on the (formal) representation of life in models. The aim is to investigate whether disappointment in model performance is due to system properties such as heterogeneity and historicity of ecosystems, or rather reflects an abstraction and formalisation problem at a fundamental level. As a formal framework for this investigation, we use category theory as applied in computer science to specify behaviour at an interface. Its methods have been developed for translating and comparing formal structures among different application areas and seems highly suited for a classification of the current "model zoo" in the geosciences. The approach is rather abstract, with a high degree of generality but a low level of expressibility. Here, category theory will be employed to check the consistency of assumptions about life in different models. It will be shown that it is sufficient to distinguish just four logical cases to check for consistency of model content. All four cases can be formalised as variants of coalgebra-algebra homomorphisms. It can be demonstrated that transitions between the four variants affect the relevant observations (time series or spatial maps), the formalisms used (equations, decision trees) and the test criteria of success (prediction, classification) of the resulting model types. We will present examples from hydrology and ecology in

  14. Learning Supervised Topic Models for Classification and Regression from Crowds

    DEFF Research Database (Denmark)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete

    2017-01-01

    problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages...... annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression...

  15. Likelihood ratio model for classification of forensic evidence

    Energy Technology Data Exchange (ETDEWEB)

    Zadora, G., E-mail: gzadora@ies.krakow.pl [Institute of Forensic Research, Westerplatte 9, 31-033 Krakow (Poland); Neocleous, T., E-mail: tereza@stats.gla.ac.uk [University of Glasgow, Department of Statistics, 15 University Gardens, Glasgow G12 8QW (United Kingdom)

    2009-05-29

    One of the problems of analysis of forensic evidence such as glass fragments, is the determination of their use-type category, e.g. does a glass fragment originate from an unknown window or container? Very small glass fragments arise during various accidents and criminal offences, and could be carried on the clothes, shoes and hair of participants. It is therefore necessary to obtain information on their physicochemical composition in order to solve the classification problem. Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectrometer and the Glass Refractive Index Measurement method are routinely used in many forensic institutes for the investigation of glass. A natural form of glass evidence evaluation for forensic purposes is the likelihood ratio-LR = p(E|H{sub 1})/p(E|H{sub 2}). The main aim of this paper was to study the performance of LR models for glass object classification which considered one or two sources of data variability, i.e. between-glass-object variability and(or) within-glass-object variability. Within the proposed model a multivariate kernel density approach was adopted for modelling the between-object distribution and a multivariate normal distribution was adopted for modelling within-object distributions. Moreover, a graphical method of estimating the dependence structure was employed to reduce the highly multivariate problem to several lower-dimensional problems. The performed analysis showed that the best likelihood model was the one which allows to include information about between and within-object variability, and with variables derived from elemental compositions measured by SEM-EDX, and refractive values determined before (RI{sub b}) and after (RI{sub a}) the annealing process, in the form of dRI = log{sub 10}|RI{sub a} - RI{sub b}|. This model gave better results than the model with only between-object variability considered. In addition, when dRI and variables derived from elemental compositions were used, this

  16. Likelihood ratio model for classification of forensic evidence

    International Nuclear Information System (INIS)

    Zadora, G.; Neocleous, T.

    2009-01-01

    One of the problems of analysis of forensic evidence such as glass fragments, is the determination of their use-type category, e.g. does a glass fragment originate from an unknown window or container? Very small glass fragments arise during various accidents and criminal offences, and could be carried on the clothes, shoes and hair of participants. It is therefore necessary to obtain information on their physicochemical composition in order to solve the classification problem. Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectrometer and the Glass Refractive Index Measurement method are routinely used in many forensic institutes for the investigation of glass. A natural form of glass evidence evaluation for forensic purposes is the likelihood ratio-LR = p(E|H 1 )/p(E|H 2 ). The main aim of this paper was to study the performance of LR models for glass object classification which considered one or two sources of data variability, i.e. between-glass-object variability and(or) within-glass-object variability. Within the proposed model a multivariate kernel density approach was adopted for modelling the between-object distribution and a multivariate normal distribution was adopted for modelling within-object distributions. Moreover, a graphical method of estimating the dependence structure was employed to reduce the highly multivariate problem to several lower-dimensional problems. The performed analysis showed that the best likelihood model was the one which allows to include information about between and within-object variability, and with variables derived from elemental compositions measured by SEM-EDX, and refractive values determined before (RI b ) and after (RI a ) the annealing process, in the form of dRI = log 10 |RI a - RI b |. This model gave better results than the model with only between-object variability considered. In addition, when dRI and variables derived from elemental compositions were used, this model outperformed two other

  17. Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2015-01-01

    Full Text Available Identification of crop species is an important issue in agricultural management. In recent years, many studies have explored this topic using multi-spectral and hyperspectral remote sensing data. In this study, we perform dedicated research to propose a framework for mapping crop species by combining hyperspectral and Light Detection and Ranging (LiDAR data in an object-based image analysis (OBIA paradigm. The aims of this work were the following: (i to understand the performances of different spectral dimension-reduced features from hyperspectral data and their combination with LiDAR derived height information in image segmentation; (ii to understand what classification accuracies of crop species can be achieved by combining hyperspectral and LiDAR data in an OBIA paradigm, especially in regions that have fragmented agricultural landscape and complicated crop planting structure; and (iii to understand the contributions of the crop height that is derived from LiDAR data, as well as the geometric and textural features of image objects, to the crop species’ separabilities. The study region was an irrigated agricultural area in the central Heihe river basin, which is characterized by many crop species, complicated crop planting structures, and fragmented landscape. The airborne hyperspectral data acquired by the Compact Airborne Spectrographic Imager (CASI with a 1 m spatial resolution and the Canopy Height Model (CHM data derived from the LiDAR data acquired by the airborne Leica ALS70 LiDAR system were used for this study. The image segmentation accuracies of different feature combination schemes (very high-resolution imagery (VHR, VHR/CHM, and minimum noise fractional transformed data (MNF/CHM were evaluated and analyzed. The results showed that VHR/CHM outperformed the other two combination schemes with a segmentation accuracy of 84.8%. The object-based crop species classification results of different feature integrations indicated that

  18. A model to facilitate implementation of the International Classification of Functioning, Disability and Health into prosthetics and orthotics.

    Science.gov (United States)

    Jarl, Gustav; Ramstrand, Nerrolyn

    2017-09-01

    The International Classification of Functioning, Disability and Health is a classification of human functioning and disability and is based on a biopsychosocial model of health. As such, International Classification of Functioning, Disability and Health seems suitable as a basis for constructing models defining the clinical P&O process. The aim was to use International Classification of Functioning, Disability and Health to facilitate development of such a model. Proposed model: A model, the Prosthetic and Orthotic Process (POP) model, is proposed. The Prosthetic and Orthotic Process model is based on the concepts of the International Classification of Functioning, Disability and Health and comprises four steps in a cycle: (1) Assessment, including the medical history and physical examination of the patient. (2) Goals, specified on four levels including those related to participation, activity, body functions and structures and technical requirements of the device. (3) Intervention, in which the appropriate course of action is determined based on the specified goal and evidence-based practice. (4) Evaluation of outcomes, where the outcomes are assessed and compared to the corresponding goals. After the evaluation of goal fulfilment, the first cycle in the process is complete, and a broad evaluation is now made including overriding questions about the patient's satisfaction with the outcomes and the process. This evaluation will determine if the process should be ended or if another cycle in the process should be initiated. The Prosthetic and Orthotic Process model can provide a common understanding of the P&O process. Concepts of International Classification of Functioning, Disability and Health have been incorporated into the model to facilitate communication with other rehabilitation professionals and encourage a holistic and patient-centred approach in clinical practice. Clinical relevance The Prosthetic and Orthotic Process model can support the implementation

  19. Soft computing based feature selection for environmental sound classification

    NARCIS (Netherlands)

    Shakoor, A.; May, T.M.; Van Schijndel, N.H.

    2010-01-01

    Environmental sound classification has a wide range of applications,like hearing aids, mobile communication devices, portable media players, and auditory protection devices. Sound classification systemstypically extract features from the input sound. Using too many features increases complexity

  20. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning

    Directory of Open Access Journals (Sweden)

    Victoria Plaza-Leiva

    2017-03-01

    Full Text Available Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM, Gaussian processes (GP, and Gaussian mixture models (GMM. A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl. Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  1. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning.

    Science.gov (United States)

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-03-15

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  2. Use of Ecohydraulic-Based Mesohabitat Classification and Fish Species Traits for Stream Restoration Design

    Directory of Open Access Journals (Sweden)

    John S. Schwartz

    2016-11-01

    Full Text Available Stream restoration practice typically relies on a geomorphological design approach in which the integration of ecological criteria is limited and generally qualitative, although the most commonly stated project objective is to restore biological integrity by enhancing habitat and water quality. Restoration has achieved mixed results in terms of ecological successes and it is evident that improved methodologies for assessment and design are needed. A design approach is suggested for mesohabitat restoration based on a review and integration of fundamental processes associated with: (1 lotic ecological concepts; (2 applied geomorphic processes for mesohabitat self-maintenance; (3 multidimensional hydraulics and habitat suitability modeling; (4 species functional traits correlated with fish mesohabitat use; and (5 multi-stage ecohydraulics-based mesohabitat classification. Classification of mesohabitat units demonstrated in this article were based on fish preferences specifically linked to functional trait strategies (i.e., feeding resting, evasion, spawning, and flow refugia, recognizing that habitat preferences shift by season and flow stage. A multi-stage classification scheme developed under this premise provides the basic “building blocks” for ecological design criteria for stream restoration. The scheme was developed for Midwest US prairie streams, but the conceptual framework for mesohabitat classification and functional traits analysis can be applied to other ecoregions.

  3. Drunk driving detection based on classification of multivariate time series.

    Science.gov (United States)

    Li, Zhenlong; Jin, Xue; Zhao, Xiaohua

    2015-09-01

    This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  4. Multiple kernel boosting framework based on information measure for classification

    International Nuclear Information System (INIS)

    Qi, Chengming; Wang, Yuping; Tian, Wenjie; Wang, Qun

    2016-01-01

    The performance of kernel-based method, such as support vector machine (SVM), is greatly affected by the choice of kernel function. Multiple kernel learning (MKL) is a promising family of machine learning algorithms and has attracted many attentions in recent years. MKL combines multiple sub-kernels to seek better results compared to single kernel learning. In order to improve the efficiency of SVM and MKL, in this paper, the Kullback–Leibler kernel function is derived to develop SVM. The proposed method employs an improved ensemble learning framework, named KLMKB, which applies Adaboost to learning multiple kernel-based classifier. In the experiment for hyperspectral remote sensing image classification, we employ feature selected through Optional Index Factor (OIF) to classify the satellite image. We extensively examine the performance of our approach in comparison to some relevant and state-of-the-art algorithms on a number of benchmark classification data sets and hyperspectral remote sensing image data set. Experimental results show that our method has a stable behavior and a noticeable accuracy for different data set.

  5. [Galaxy/quasar classification based on nearest neighbor method].

    Science.gov (United States)

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  6. Style-based classification of Chinese ink and wash paintings

    Science.gov (United States)

    Sheng, Jiachuan; Jiang, Jianmin

    2013-09-01

    Following the fact that a large collection of ink and wash paintings (IWP) is being digitized and made available on the Internet, their automated content description, analysis, and management are attracting attention across research communities. While existing research in relevant areas is primarily focused on image processing approaches, a style-based algorithm is proposed to classify IWPs automatically by their authors. As IWPs do not have colors or even tones, the proposed algorithm applies edge detection to locate the local region and detect painting strokes to enable histogram-based feature extraction and capture of important cues to reflect the styles of different artists. Such features are then applied to drive a number of neural networks in parallel to complete the classification, and an information entropy balanced fusion is proposed to make an integrated decision for the multiple neural network classification results in which the entropy is used as a pointer to combine the global and local features. Evaluations via experiments support that the proposed algorithm achieves good performances, providing excellent potential for computerized analysis and management of IWPs.

  7. On the Feature Selection and Classification Based on Information Gain for Document Sentiment Analysis

    Directory of Open Access Journals (Sweden)

    Asriyanti Indah Pratiwi

    2018-01-01

    Full Text Available Sentiment analysis in a movie review is the needs of today lifestyle. Unfortunately, enormous features make the sentiment of analysis slow and less sensitive. Finding the optimum feature selection and classification is still a challenge. In order to handle an enormous number of features and provide better sentiment classification, an information-based feature selection and classification are proposed. The proposed method reduces more than 90% unnecessary features while the proposed classification scheme achieves 96% accuracy of sentiment classification. From the experimental results, it can be concluded that the combination of proposed feature selection and classification achieves the best performance so far.

  8. A drone detection with aircraft classification based on a camera array

    Science.gov (United States)

    Liu, Hao; Qu, Fangchao; Liu, Yingjian; Zhao, Wei; Chen, Yitong

    2018-03-01

    In recent years, because of the rapid popularity of drones, many people have begun to operate drones, bringing a range of security issues to sensitive areas such as airports and military locus. It is one of the important ways to solve these problems by realizing fine-grained classification and providing the fast and accurate detection of different models of drone. The main challenges of fine-grained classification are that: (1) there are various types of drones, and the models are more complex and diverse. (2) the recognition test is fast and accurate, in addition, the existing methods are not efficient. In this paper, we propose a fine-grained drone detection system based on the high resolution camera array. The system can quickly and accurately recognize the detection of fine grained drone based on hd camera.

  9. A CNN Based Approach for Garments Texture Design Classification

    Directory of Open Access Journals (Sweden)

    S.M. Sofiqul Islam

    2017-05-01

    Full Text Available Identifying garments texture design automatically for recommending the fashion trends is important nowadays because of the rapid growth of online shopping. By learning the properties of images efficiently, a machine can give better accuracy of classification. Several Hand-Engineered feature coding exists for identifying garments design classes. Recently, Deep Convolutional Neural Networks (CNNs have shown better performances for different object recognition. Deep CNN uses multiple levels of representation and abstraction that helps a machine to understand the types of data more accurately. In this paper, a CNN model for identifying garments design classes has been proposed. Experimental results on two different datasets show better results than existing two well-known CNN models (AlexNet and VGGNet and some state-of-the-art Hand-Engineered feature extraction methods.

  10. Cluster Validity Classification Approaches Based on Geometric Probability and Application in the Classification of Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    LI Jian-Wei

    2014-08-01

    Full Text Available On the basis of the cluster validity function based on geometric probability in literature [1, 2], propose a cluster analysis method based on geometric probability to process large amount of data in rectangular area. The basic idea is top-down stepwise refinement, firstly categories then subcategories. On all clustering levels, use the cluster validity function based on geometric probability firstly, determine clusters and the gathering direction, then determine the center of clustering and the border of clusters. Through TM remote sensing image classification examples, compare with the supervision and unsupervised classification in ERDAS and the cluster analysis method based on geometric probability in two-dimensional square which is proposed in literature 2. Results show that the proposed method can significantly improve the classification accuracy.

  11. Development of a definition, classification system, and model for cultural geology

    Science.gov (United States)

    Mitchell, Lloyd W., III

    The concept for this study is based upon a personal interest by the author, an American Indian, in promoting cultural perspectives in undergraduate college teaching and learning environments. Most academicians recognize that merged fields can enhance undergraduate curricula. However, conflict may occur when instructors attempt to merge social science fields such as history or philosophy with geoscience fields such as mining and geomorphology. For example, ideologies of Earth structures derived from scientific methodologies may conflict with historical and spiritual understandings of Earth structures held by American Indians. Specifically, this study addresses the problem of how to combine cultural studies with the geosciences into a new merged academic discipline called cultural geology. This study further attempts to develop the merged field of cultural geology using an approach consisting of three research foci: a definition, a classification system, and a model. Literature reviews were conducted for all three foci. Additionally, to better understand merged fields, a literature review was conducted specifically for academic fields that merged social and physical sciences. Methodologies concentrated on the three research foci: definition, classification system, and model. The definition was derived via a two-step process. The first step, developing keyword hierarchical ranking structures, was followed by creating and analyzing semantic word meaning lists. The classification system was developed by reviewing 102 classification systems and incorporating selected components into a system framework. The cultural geology model was created also utilizing a two-step process. A literature review of scientific models was conducted. Then, the definition and classification system were incorporated into a model felt to reflect the realm of cultural geology. A course syllabus was then developed that incorporated the resulting definition, classification system, and model. This

  12. OmniGA: Optimized Omnivariate Decision Trees for Generalizable Classification Models

    KAUST Repository

    Magana-Mora, Arturo

    2017-06-14

    Classification problems from different domains vary in complexity, size, and imbalance of the number of samples from different classes. Although several classification models have been proposed, selecting the right model and parameters for a given classification task to achieve good performance is not trivial. Therefore, there is a constant interest in developing novel robust and efficient models suitable for a great variety of data. Here, we propose OmniGA, a framework for the optimization of omnivariate decision trees based on a parallel genetic algorithm, coupled with deep learning structure and ensemble learning methods. The performance of the OmniGA framework is evaluated on 12 different datasets taken mainly from biomedical problems and compared with the results obtained by several robust and commonly used machine-learning models with optimized parameters. The results show that OmniGA systematically outperformed these models for all the considered datasets, reducing the F score error in the range from 100% to 2.25%, compared to the best performing model. This demonstrates that OmniGA produces robust models with improved performance. OmniGA code and datasets are available at www.cbrc.kaust.edu.sa/omniga/.

  13. OmniGA: Optimized Omnivariate Decision Trees for Generalizable Classification Models

    KAUST Repository

    Magana-Mora, Arturo; Bajic, Vladimir B.

    2017-01-01

    Classification problems from different domains vary in complexity, size, and imbalance of the number of samples from different classes. Although several classification models have been proposed, selecting the right model and parameters for a given classification task to achieve good performance is not trivial. Therefore, there is a constant interest in developing novel robust and efficient models suitable for a great variety of data. Here, we propose OmniGA, a framework for the optimization of omnivariate decision trees based on a parallel genetic algorithm, coupled with deep learning structure and ensemble learning methods. The performance of the OmniGA framework is evaluated on 12 different datasets taken mainly from biomedical problems and compared with the results obtained by several robust and commonly used machine-learning models with optimized parameters. The results show that OmniGA systematically outperformed these models for all the considered datasets, reducing the F score error in the range from 100% to 2.25%, compared to the best performing model. This demonstrates that OmniGA produces robust models with improved performance. OmniGA code and datasets are available at www.cbrc.kaust.edu.sa/omniga/.

  14. How Transferable are CNN-based Features for Age and Gender Classification?

    OpenAIRE

    Özbulak, Gökhan; Aytar, Yusuf; Ekenel, Hazım Kemal

    2016-01-01

    Age and gender are complementary soft biometric traits for face recognition. Successful estimation of age and gender from facial images taken under real-world conditions can contribute improving the identification results in the wild. In this study, in order to achieve robust age and gender classification in the wild, we have benefited from Deep Convolutional Neural Networks based representation. We have explored transferability of existing deep convolutional neural network (CNN) models for a...

  15. A novel method for human age group classification based on

    Directory of Open Access Journals (Sweden)

    Anuradha Yarlagadda

    2015-10-01

    Full Text Available In the computer vision community, easy categorization of a person’s facial image into various age groups is often quite precise and is not pursued effectively. To address this problem, which is an important area of research, the present paper proposes an innovative method of age group classification system based on the Correlation Fractal Dimension of complex facial image. Wrinkles appear on the face with aging thereby changing the facial edges of the image. The proposed method is rotation and poses invariant. The present paper concentrates on developing an innovative technique that classifies facial images into four categories i.e. child image (0–15, young adult image (15–30, middle-aged adult image (31–50, and senior adult image (>50 based on correlation FD value of a facial edge image.

  16. Automatic classification of visual evoked potentials based on wavelet decomposition

    Science.gov (United States)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  17. Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features.

    Science.gov (United States)

    Drover, Dylan; Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2017-06-07

    Faller classification in elderly populations can facilitate preventative care before a fall occurs. A novel wearable-sensor based faller classification method for the elderly was developed using accelerometer-based features from straight walking and turns. Seventy-six older individuals (74.15 ± 7.0 years), categorized as prospective fallers and non-fallers, completed a six-minute walk test with accelerometers attached to their lower legs and pelvis. After segmenting straight and turn sections, cross validation tests were conducted on straight and turn walking features to assess classification performance. The best "classifier model-feature selector" combination used turn data, random forest classifier, and select-5-best feature selector (73.4% accuracy, 60.5% sensitivity, 82.0% specificity, and 0.44 Matthew's Correlation Coefficient (MCC)). Using only the most frequently occurring features, a feature subset (minimum of anterior-posterior ratio of even/odd harmonics for right shank, standard deviation (SD) of anterior left shank acceleration SD, SD of mean anterior left shank acceleration, maximum of medial-lateral first quartile of Fourier transform (FQFFT) for lower back, maximum of anterior-posterior FQFFT for lower back) achieved better classification results, with 77.3% accuracy, 66.1% sensitivity, 84.7% specificity, and 0.52 MCC score. All classification performance metrics improved when turn data was used for faller classification, compared to straight walking data. Combining turn and straight walking features decreased performance metrics compared to turn features for similar classifier model-feature selector combinations.

  18. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    Science.gov (United States)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  19. Comparison Effectiveness of Pixel Based Classification and Object Based Classification Using High Resolution Image In Floristic Composition Mapping (Study Case: Gunung Tidar Magelang City)

    Science.gov (United States)

    Ardha Aryaguna, Prama; Danoedoro, Projo

    2016-11-01

    Developments of analysis remote sensing have same way with development of technology especially in sensor and plane. Now, a lot of image have high spatial and radiometric resolution, that's why a lot information. Vegetation object analysis such floristic composition got a lot advantage of that development. Floristic composition can be interpreted using a lot of method such pixel based classification and object based classification. The problems for pixel based method on high spatial resolution image are salt and paper who appear in result of classification. The purpose of this research are compare effectiveness between pixel based classification and object based classification for composition vegetation mapping on high resolution image Worldview-2. The results show that pixel based classification using majority 5×5 kernel windows give the highest accuracy between another classifications. The highest accuracy is 73.32% from image Worldview-2 are being radiometric corrected level surface reflectance, but for overall accuracy in every class, object based are the best between another methods. Reviewed from effectiveness aspect, pixel based are more effective then object based for vegetation composition mapping in Tidar forest.

  20. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    Science.gov (United States)

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    Science.gov (United States)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  2. Image-based fall detection and classification of a user with a walking support system

    Science.gov (United States)

    Taghvaei, Sajjad; Kosuge, Kazuhiro

    2017-10-01

    The classification of visual human action is important in the development of systems that interact with humans. This study investigates an image-based classification of the human state while using a walking support system to improve the safety and dependability of these systems.We categorize the possible human behavior while utilizing a walker robot into eight states (i.e., sitting, standing, walking, and five falling types), and propose two different methods, namely, normal distribution and hidden Markov models (HMMs), to detect and recognize these states. The visual feature for the state classification is the centroid position of the upper body, which is extracted from the user's depth images. The first method shows that the centroid position follows a normal distribution while walking, which can be adopted to detect any non-walking state. The second method implements HMMs to detect and recognize these states. We then measure and compare the performance of both methods. The classification results are employed to control the motion of a passive-type walker (called "RT Walker") by activating its brakes in non-walking states. Thus, the system can be used for sit/stand support and fall prevention. The experiments are performed with four subjects, including an experienced physiotherapist. Results show that the algorithm can be adapted to the new user's motion pattern within 40 s, with a fall detection rate of 96.25% and state classification rate of 81.0%. The proposed method can be implemented to other abnormality detection/classification applications that employ depth image-sensing devices.

  3. Radiological classification of renal angiomyolipomas based on 127 tumors

    Directory of Open Access Journals (Sweden)

    Prando Adilson

    2003-01-01

    Full Text Available PURPOSE: Demonstrate radiological findings of 127 angiomyolipomas (AMLs and propose a classification based on the radiological evidence of fat. MATERIALS AND METHODS: The imaging findings of 85 consecutive patients with AMLs: isolated (n = 73, multiple without tuberous sclerosis (TS (n = 4 and multiple with TS (n = 8, were retrospectively reviewed. Eighteen AMLs (14% presented with hemorrhage. All patients were submitted to a dedicated helical CT or magnetic resonance studies. All hemorrhagic and non-hemorrhagic lesions were grouped together since our objective was to analyze the presence of detectable fat. Out of 85 patients, 53 were monitored and 32 were treated surgically due to large perirenal component (n = 13, hemorrhage (n = 11 and impossibility of an adequate preoperative characterization (n = 8. There was not a case of renal cell carcinoma (RCC with fat component in this group of patients. RESULTS: Based on the presence and amount of detectable fat within the lesion, AMLs were classified in 4 distinct radiological patterns: Pattern-I, predominantly fatty (usually less than 2 cm in diameter and intrarenal: 54%; Pattern-II, partially fatty (intrarenal or exophytic: 29%; Pattern-III, minimally fatty (most exophytic and perirenal: 11%; and Pattern-IV, without fat (most exophytic and perirenal: 6%. CONCLUSIONS: This proposed classification might be useful to understand the imaging manifestations of AMLs, their differential diagnosis and determine when further radiological evaluation would be necessary. Small (< 1.5 cm, pattern-I AMLs tend to be intra-renal, homogeneous and predominantly fatty. As they grow they tend to be partially or completely exophytic and heterogeneous (patterns II and III. The rare pattern-IV AMLs, however, can be small or large, intra-renal or exophytic but are always homogeneous and hyperdense mass. Since no renal cell carcinoma was found in our series, from an evidence-based practice, all renal mass with detectable

  4. [Hyperspectral remote sensing image classification based on SVM optimized by clonal selection].

    Science.gov (United States)

    Liu, Qing-Jie; Jing, Lin-Hai; Wang, Meng-Fei; Lin, Qi-Zhong

    2013-03-01

    Model selection for support vector machine (SVM) involving kernel and the margin parameter values selection is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyperspectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, artificial immune clonal selection algorithm is introduced to the optimal selection of SVM (CSSVM) kernel parameter a and margin parameter C to improve the training efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for testing the novel CSSVM, as well as a traditional SVM classifier with general Grid Searching cross-validation method (GSSVM) for comparison. And then, evaluation indexes including SVM model training time, classification overall accuracy (OA) and Kappa index of both CSSVM and GSSVM were all analyzed quantitatively. It is demonstrated that OA of CSSVM on test samples and whole image are 85.1% and 81.58, the differences from that of GSSVM are both within 0.08% respectively; And Kappa indexes reach 0.8213 and 0.7728, the differences from that of GSSVM are both within 0.001; While the ratio of model training time of CSSVM and GSSVM is between 1/6 and 1/10. Therefore, CSSVM is fast and accurate algorithm for hyperspectral image classification and is superior to GSSVM.

  5. Automatic earthquake detection and classification with continuous hidden Markov models: a possible tool for monitoring Las Canadas caldera in Tenerife

    Energy Technology Data Exchange (ETDEWEB)

    Beyreuther, Moritz; Wassermann, Joachim [Department of Earth and Environmental Sciences (Geophys. Observatory), Ludwig Maximilians Universitaet Muenchen, D-80333 (Germany); Carniel, Roberto [Dipartimento di Georisorse e Territorio Universitat Degli Studi di Udine, I-33100 (Italy)], E-mail: roberto.carniel@uniud.it

    2008-10-01

    A possible interaction of (volcano-) tectonic earthquakes with the continuous seismic noise recorded in the volcanic island of Tenerife was recently suggested, but existing catalogues seem to be far from being self consistent, calling for the development of automatic detection and classification algorithms. In this work we propose the adoption of a methodology based on Hidden Markov Models (HMMs), widely used already in other fields, such as speech classification.

  6. A robust probabilistic collaborative representation based classification for multimodal biometrics

    Science.gov (United States)

    Zhang, Jing; Liu, Huanxi; Ding, Derui; Xiao, Jianli

    2018-04-01

    Most of the traditional biometric recognition systems perform recognition with a single biometric indicator. These systems have suffered noisy data, interclass variations, unacceptable error rates, forged identity, and so on. Due to these inherent problems, it is not valid that many researchers attempt to enhance the performance of unimodal biometric systems with single features. Thus, multimodal biometrics is investigated to reduce some of these defects. This paper proposes a new multimodal biometric recognition approach by fused faces and fingerprints. For more recognizable features, the proposed method extracts block local binary pattern features for all modalities, and then combines them into a single framework. For better classification, it employs the robust probabilistic collaborative representation based classifier to recognize individuals. Experimental results indicate that the proposed method has improved the recognition accuracy compared to the unimodal biometrics.

  7. Machine Learning Based Localization and Classification with Atomic Magnetometers

    Science.gov (United States)

    Deans, Cameron; Griffin, Lewis D.; Marmugi, Luca; Renzoni, Ferruccio

    2018-01-01

    We demonstrate identification of position, material, orientation, and shape of objects imaged by a Rb 85 atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information extracted from the images created by the magnetometer, demonstrating the use of hidden data. Localization 2.6 times better than the spatial resolution of the imaging system and successful classification up to 97% are obtained. This circumvents the need of solving the inverse problem and demonstrates the extension of machine learning to diffusive systems, such as low-frequency electrodynamics in media. Automated collection of task-relevant information from quantum-based electromagnetic imaging will have a relevant impact from biomedicine to security.

  8. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong

    2015-12-28

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil "electrical sensitivity." Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems. © ASCE.

  9. DNA methylation-based classification of central nervous system tumours

    DEFF Research Database (Denmark)

    Capper, David; Jones, David T.W.; Sill, Martin

    2018-01-01

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter-observer variabil......Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter......-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show...

  10. Fines classification based on sensitivity to pore-fluid chemistry

    Science.gov (United States)

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  11. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    Science.gov (United States)

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  12. New classification system-based visual outcome in Eales′ disease

    Directory of Open Access Journals (Sweden)

    Saxena Sandeep

    2007-01-01

    Full Text Available Purpose: A retrospective tertiary care center-based study was undertaken to evaluate the visual outcome in Eales′ disease, based on a new classification system, for the first time. Materials and Methods: One hundred and fifty-nine consecutive cases of Eales′ disease were included. All the eyes were staged according to the new classification: Stage 1: periphlebitis of small (1a and large (1b caliber vessels with superficial retinal hemorrhages; Stage 2a: capillary non-perfusion, 2b: neovascularization elsewhere/of the disc; Stage 3a: fibrovascular proliferation, 3b: vitreous hemorrhage; Stage 4a: traction/combined rhegmatogenous retinal detachment and 4b: rubeosis iridis, neovascular glaucoma, complicated cataract and optic atrophy. Visual acuity was graded as: Grade I 20/20 or better; Grade II 20/30 to 20/40; Grade III 20/60 to 20/120 and Grade IV 20/200 or worse. All the cases were managed by medical therapy, photocoagulation and/or vitreoretinal surgery. Visual acuity was converted into decimal scale, denoting 20/20=1 and 20/800=0.01. Paired t-test / Wilcoxon signed-rank tests were used for statistical analysis. Results: Vitreous hemorrhage was the commonest presenting feature (49.32%. Cases with Stages 1 to 3 and 4a and 4b achieved final visual acuity ranging from 20/15 to 20/40; 20/80 to 20/400 and 20/200 to 20/400, respectively. Statistically significant improvement in visual acuities was observed in all the stages of the disease except Stages 1a and 4b. Conclusion: Significant improvement in visual acuities was observed in the majority of stages of Eales′ disease following treatment. This study adds further to the little available evidences of treatment effects in literature and may have effect on patient care and health policy in Eales′ disease.

  13. Probabilistic topic modeling for the analysis and classification of genomic sequences

    Science.gov (United States)

    2015-01-01

    Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734

  14. Elman RNN based classification of proteins sequences on account of their mutual information.

    Science.gov (United States)

    Mishra, Pooja; Nath Pandey, Paras

    2012-10-21

    In the present work we have employed the method of estimating residue correlation within the protein sequences, by using the mutual information (MI) of adjacent residues, based on structural and solvent accessibility properties of amino acids. The long range correlation between nonadjacent residues is improved by constructing a mutual information vector (MIV) for a single protein sequence, like this each protein sequence is associated with its corresponding MIVs. These MIVs are given to Elman RNN to obtain the classification of protein sequences. The modeling power of MIV was shown to be significantly better, giving a new approach towards alignment free classification of protein sequences. We also conclude that sequence structural and solvent accessible property based MIVs are better predictor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A comparative study of machine learning models for ethnicity classification

    Science.gov (United States)

    Trivedi, Advait; Bessie Amali, D. Geraldine

    2017-11-01

    This paper endeavours to adopt a machine learning approach to solve the problem of ethnicity recognition. Ethnicity identification is an important vision problem with its use cases being extended to various domains. Despite the multitude of complexity involved, ethnicity identification comes naturally to humans. This meta information can be leveraged to make several decisions, be it in target marketing or security. With the recent development of intelligent systems a sub module to efficiently capture ethnicity would be useful in several use cases. Several attempts to identify an ideal learning model to represent a multi-ethnic dataset have been recorded. A comparative study of classifiers such as support vector machines, logistic regression has been documented. Experimental results indicate that the logical classifier provides a much accurate classification than the support vector machine.

  16. DEEP LEARNING MODEL FOR BILINGUAL SENTIMENT CLASSIFICATION OF SHORT TEXTS

    Directory of Open Access Journals (Sweden)

    Y. B. Abdullin

    2017-01-01

    Full Text Available Sentiment analysis of short texts such as Twitter messages and comments in news portals is challenging due to the lack of contextual information. We propose a deep neural network model that uses bilingual word embeddings to effectively solve sentiment classification problem for a given pair of languages. We apply our approach to two corpora of two different language pairs: English-Russian and Russian-Kazakh. We show how to train a classifier in one language and predict in another. Our approach achieves 73% accuracy for English and 74% accuracy for Russian. For Kazakh sentiment analysis, we propose a baseline method, that achieves 60% accuracy; and a method to learn bilingual embeddings from a large unlabeled corpus using a bilingual word pairs.

  17. GA Based Optimal Feature Extraction Method for Functional Data Classification

    OpenAIRE

    Jun Wan; Zehua Chen; Yingwu Chen; Zhidong Bai

    2010-01-01

    Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper...

  18. Object-based vegetation classification with high resolution remote sensing imagery

    Science.gov (United States)

    Yu, Qian

    Vegetation species are valuable indicators to understand the earth system. Information from mapping of vegetation species and community distribution at large scales provides important insight for studying the phenological (growth) cycles of vegetation and plant physiology. Such information plays an important role in land process modeling including climate, ecosystem and hydrological models. The rapidly growing remote sensing technology has increased its potential in vegetation species mapping. However, extracting information at a species level is still a challenging research topic. I proposed an effective method for extracting vegetation species distribution from remotely sensed data and investigated some ways for accuracy improvement. The study consists of three phases. Firstly, a statistical analysis was conducted to explore the spatial variation and class separability of vegetation as a function of image scale. This analysis aimed to confirm that high resolution imagery contains the information on spatial vegetation variation and these species classes can be potentially separable. The second phase was a major effort in advancing classification by proposing a method for extracting vegetation species from high spatial resolution remote sensing data. The proposed classification employs an object-based approach that integrates GIS and remote sensing data and explores the usefulness of ancillary information. The whole process includes image segmentation, feature generation and selection, and nearest neighbor classification. The third phase introduces a spatial regression model for evaluating the mapping quality from the above vegetation classification results. The effects of six categories of sample characteristics on the classification uncertainty are examined: topography, sample membership, sample density, spatial composition characteristics, training reliability and sample object features. This evaluation analysis answered several interesting scientific questions

  19. Deep-learning-based classification of FDG-PET data for Alzheimer's disease categories

    Science.gov (United States)

    Singh, Shibani; Srivastava, Anant; Mi, Liang; Caselli, Richard J.; Chen, Kewei; Goradia, Dhruman; Reiman, Eric M.; Wang, Yalin

    2017-11-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic Alzheimer's disease (AD) patients. PET scans provide functional information that is unique and unavailable using other types of imaging. However, the computational efficacy of FDG-PET data alone, for the classification of various Alzheimers Diagnostic categories, has not been well studied. This motivates us to correctly discriminate various AD Diagnostic categories using FDG-PET data. Deep learning has improved state-of-the-art classification accuracies in the areas of speech, signal, image, video, text mining and recognition. We propose novel methods that involve probabilistic principal component analysis on max-pooled data and mean-pooled data for dimensionality reduction, and multilayer feed forward neural network which performs binary classification. Our experimental dataset consists of baseline data of subjects including 186 cognitively unimpaired (CU) subjects, 336 mild cognitive impairment (MCI) subjects with 158 Late MCI and 178 Early MCI, and 146 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. We measured F1-measure, precision, recall, negative and positive predictive values with a 10-fold cross validation scheme. Our results indicate that our designed classifiers achieve competitive results while max pooling achieves better classification performance compared to mean-pooled features. Our deep model based research may advance FDG-PET analysis by demonstrating their potential as an effective imaging biomarker of AD.

  20. A kernel-based multi-feature image representation for histopathology image classification

    International Nuclear Information System (INIS)

    Moreno J; Caicedo J Gonzalez F

    2010-01-01

    This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of latent semantic analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, support vector machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that; the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel.

  1. A KERNEL-BASED MULTI-FEATURE IMAGE REPRESENTATION FOR HISTOPATHOLOGY IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    J Carlos Moreno

    2010-09-01

    Full Text Available This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of Latent Semantic Analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, Support Vector Machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that, the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel.

  2. Organizational information assets classification model and security architecture methodology

    Directory of Open Access Journals (Sweden)

    Mostafa Tamtaji

    2015-12-01

    Full Text Available Today's, Organizations are exposed with huge and diversity of information and information assets that are produced in different systems shuch as KMS, financial and accounting systems, official and industrial automation sysytems and so on and protection of these information is necessary. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released.several benefits of this model cuses that organization has a great trend to implementing Cloud computing. Maintaining and management of information security is the main challenges in developing and accepting of this model. In this paper, at first, according to "design science research methodology" and compatible with "design process at information systems research", a complete categorization of organizational assets, including 355 different types of information assets in 7 groups and 3 level, is presented to managers be able to plan corresponding security controls according to importance of each groups. Then, for directing of organization to architect it’s information security in cloud computing environment, appropriate methodology is presented. Presented cloud computing security architecture , resulted proposed methodology, and presented classification model according to Delphi method and expers comments discussed and verified.

  3. Effective Sequential Classifier Training for SVM-Based Multitemporal Remote Sensing Image Classification

    Science.gov (United States)

    Guo, Yiqing; Jia, Xiuping; Paull, David

    2018-06-01

    The explosive availability of remote sensing images has challenged supervised classification algorithms such as Support Vector Machines (SVM), as training samples tend to be highly limited due to the expensive and laborious task of ground truthing. The temporal correlation and spectral similarity between multitemporal images have opened up an opportunity to alleviate this problem. In this study, a SVM-based Sequential Classifier Training (SCT-SVM) approach is proposed for multitemporal remote sensing image classification. The approach leverages the classifiers of previous images to reduce the required number of training samples for the classifier training of an incoming image. For each incoming image, a rough classifier is firstly predicted based on the temporal trend of a set of previous classifiers. The predicted classifier is then fine-tuned into a more accurate position with current training samples. This approach can be applied progressively to sequential image data, with only a small number of training samples being required from each image. Experiments were conducted with Sentinel-2A multitemporal data over an agricultural area in Australia. Results showed that the proposed SCT-SVM achieved better classification accuracies compared with two state-of-the-art model transfer algorithms. When training data are insufficient, the overall classification accuracy of the incoming image was improved from 76.18% to 94.02% with the proposed SCT-SVM, compared with those obtained without the assistance from previous images. These results demonstrate that the leverage of a priori information from previous images can provide advantageous assistance for later images in multitemporal image classification.

  4. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    Science.gov (United States)

    Thomas C. Edwards; D. Richard Cutler; Niklaus E. Zimmermann; Linda Geiser; Gretchen G. Moisen

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by...

  5. Gender classification in children based on speech characteristics: using fundamental and formant frequencies of Malay vowels.

    Science.gov (United States)

    Zourmand, Alireza; Ting, Hua-Nong; Mirhassani, Seyed Mostafa

    2013-03-01

    Speech is one of the prevalent communication mediums for humans. Identifying the gender of a child speaker based on his/her speech is crucial in telecommunication and speech therapy. This article investigates the use of fundamental and formant frequencies from sustained vowel phonation to distinguish the gender of Malay children aged between 7 and 12 years. The Euclidean minimum distance and multilayer perceptron were used to classify the gender of 360 Malay children based on different combinations of fundamental and formant frequencies (F0, F1, F2, and F3). The Euclidean minimum distance with normalized frequency data achieved a classification accuracy of 79.44%, which was higher than that of the nonnormalized frequency data. Age-dependent modeling was used to improve the accuracy of gender classification. The Euclidean distance method obtained 84.17% based on the optimal classification accuracy for all age groups. The accuracy was further increased to 99.81% using multilayer perceptron based on mel-frequency cepstral coefficients. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  6. Patent Keyword Extraction Algorithm Based on Distributed Representation for Patent Classification

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2018-02-01

    Full Text Available Many text mining tasks such as text retrieval, text summarization, and text comparisons depend on the extraction of representative keywords from the main text. Most existing keyword extraction algorithms are based on discrete bag-of-words type of word representation of the text. In this paper, we propose a patent keyword extraction algorithm (PKEA based on the distributed Skip-gram model for patent classification. We also develop a set of quantitative performance measures for keyword extraction evaluation based on information gain and cross-validation, based on Support Vector Machine (SVM classification, which are valuable when human-annotated keywords are not available. We used a standard benchmark dataset and a homemade patent dataset to evaluate the performance of PKEA. Our patent dataset includes 2500 patents from five distinct technological fields related to autonomous cars (GPS systems, lidar systems, object recognition systems, radar systems, and vehicle control systems. We compared our method with Frequency, Term Frequency-Inverse Document Frequency (TF-IDF, TextRank and Rapid Automatic Keyword Extraction (RAKE. The experimental results show that our proposed algorithm provides a promising way to extract keywords from patent texts for patent classification.

  7. The generalization ability of online SVM classification based on Markov sampling.

    Science.gov (United States)

    Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang

    2015-03-01

    In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.

  8. Sequence-based classification using discriminatory motif feature selection.

    Directory of Open Access Journals (Sweden)

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  9. User Classification in Crowdsourcing-Based Cooperative Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Linbo Zhai

    2017-07-01

    Full Text Available This paper studies cooperative spectrum sensing based on crowdsourcing in cognitive radio networks. Since intelligent mobile users such as smartphones and tablets can sense the wireless spectrum, channel sensing tasks can be assigned to these mobile users. This is referred to as the crowdsourcing method. However, there may be some malicious mobile users that send false sensing reports deliberately, for their own purposes. False sensing reports will influence decisions about channel state. Therefore, it is necessary to classify mobile users in order to distinguish malicious users. According to the sensing reports, mobile users should not just be divided into two classes (honest and malicious. There are two reasons for this: on the one hand, honest users in different positions may have different sensing outcomes, as shadowing, multi-path fading, and other issues may influence the sensing results; on the other hand, there may be more than one type of malicious users, acting differently in the network. Therefore, it is necessary to classify mobile users into more than two classes. Due to the lack of prior information of the number of user classes, this paper casts the problem of mobile user classification as a dynamic clustering problem that is NP-hard. The paper uses the interdistance-to-intradistance ratio of clusters as the fitness function, and aims to maximize the fitness function. To cast this optimization problem, this paper proposes a distributed algorithm for user classification in order to obtain bounded close-to-optimal solutions, and analyzes the approximation ratio of the proposed algorithm. Simulations show the distributed algorithm achieves higher performance than other algorithms.

  10. Evaluation of soft segment modeling on a context independent phoneme classification system

    International Nuclear Information System (INIS)

    Razzazi, F.; Sayadiyan, A.

    2007-01-01

    The geometric distribution of states duration is one of the main performance limiting assumptions of hidden Markov modeling of speech signals. Stochastic segment models, generally, and segmental HMM, specifically overcome this deficiency partly at the cost of more complexity in both training and recognition phases. In addition to this assumption, the gradual temporal changes of speech statistics has not been modeled in HMM. In this paper, a new duration modeling approach is presented. The main idea of the model is to consider the effect of adjacent segments on the probability density function estimation and evaluation of each acoustic segment. This idea not only makes the model robust against segmentation errors, but also it models gradual change from one segment to the next one with a minimum set of parameters. The proposed idea is analytically formulated and tested on a TIMIT based context independent phenomena classification system. During the test procedure, the phoneme classification of different phoneme classes was performed by applying various proposed recognition algorithms. The system was optimized and the results have been compared with a continuous density hidden Markov model (CDHMM) with similar computational complexity. The results show 8-10% improvement in phoneme recognition rate in comparison with standard continuous density hidden Markov model. This indicates improved compatibility of the proposed model with the speech nature. (author)

  11. Sequence-based classification and identification of Fungi.

    Science.gov (United States)

    Hibbett, David; Abarenkov, Kessy; Kõljalg, Urmas; Öpik, Maarja; Chai, Benli; Cole, James; Wang, Qiong; Crous, Pedro; Robert, Vincent; Helgason, Thorunn; Herr, Joshua R; Kirk, Paul; Lueschow, Shiloh; O'Donnell, Kerry; Nilsson, R Henrik; Oono, Ryoko; Schoch, Conrad; Smyth, Christopher; Walker, Donald M; Porras-Alfaro, Andrea; Taylor, John W; Geiser, David M

    Fungal taxonomy and ecology have been revolutionized by the application of molecular methods and both have increasing connections to genomics and functional biology. However, data streams from traditional specimen- and culture-based systematics are not yet fully integrated with those from metagenomic and metatranscriptomic studies, which limits understanding of the taxonomic diversity and metabolic properties of fungal communities. This article reviews current resources, needs, and opportunities for sequence-based classification and identification (SBCI) in fungi as well as related efforts in prokaryotes. To realize the full potential of fungal SBCI it will be necessary to make advances in multiple areas. Improvements in sequencing methods, including long-read and single-cell technologies, will empower fungal molecular ecologists to look beyond ITS and current shotgun metagenomics approaches. Data quality and accessibility will be enhanced by attention to data and metadata standards and rigorous enforcement of policies for deposition of data and workflows. Taxonomic communities will need to develop best practices for molecular characterization in their focal clades, while also contributing to globally useful datasets including ITS. Changes to nomenclatural rules are needed to enable validPUBLICation of sequence-based taxon descriptions. Finally, cultural shifts are necessary to promote adoption of SBCI and to accord professional credit to individuals who contribute to community resources.

  12. Sky camera imagery processing based on a sky classification using radiometric data

    International Nuclear Information System (INIS)

    Alonso, J.; Batlles, F.J.; López, G.; Ternero, A.

    2014-01-01

    As part of the development and expansion of CSP (concentrated solar power) technology, one of the most important operational requirements is to have complete control of all factors which may affect the quantity and quality of the solar power produced. New developments and tools in this field are focused on weather forecasting improving both operational security and electricity production. Such is the case with sky cameras, devices which are currently in use in some CSP plants and whose use is expanding in the new technology sector. Their application is mainly focused on cloud detection, estimating their movement as well as their influence on solar radiation attenuation indeed, the presence of clouds is the greatest factor involved in solar radiation attenuation. The aim of this work is the detection and analysis of clouds from images taken by a TSI-880 model sky. In order to obtain accurate image processing, three different models were created, based on a previous sky classification using radiometric data and representative sky conditions parameters. As a consequence, the sky can be classified as cloudless, partially-cloudy or overcast, delivering an average success rate of 92% in sky classification and cloud detection. - Highlights: • We developed a methodology for detection of clouds in total sky imagery (TSI-880). • A classification of sky is presented according to radiometric data and sky parameters. • The sky can be classified as cloudless, partially cloudy and overcast. • The images processing is based on the sky classification for the detection of clouds. • The average success of the developed model is around 92%

  13. Research into Financial Position of Listed Companies following Classification via Extreme Learning Machine Based upon DE Optimization

    Directory of Open Access Journals (Sweden)

    Fu Yu

    2016-01-01

    Full Text Available By means of the model of extreme learning machine based upon DE optimization, this article particularly centers on the optimization thinking of such a model as well as its application effect in the field of listed company’s financial position classification. It proves that the improved extreme learning machine algorithm based upon DE optimization eclipses the traditional extreme learning machine algorithm following comparison. Meanwhile, this article also intends to introduce certain research thinking concerning extreme learning machine into the economics classification area so as to fulfill the purpose of computerizing the speedy but effective evaluation of massive financial statements of listed companies pertain to different classes

  14. Entropy-based gene ranking without selection bias for the predictive classification of microarray data

    Directory of Open Access Journals (Sweden)

    Serafini Maria

    2003-11-01

    Full Text Available Abstract Background We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process. Results With E-RFE, we speed up the recursive feature elimination (RFE with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Conclusions Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.

  15. Secondary structure classification of amino-acid sequences using state-space modeling

    OpenAIRE

    Brunnert, Marcus; Krahnke, Tillmann; Urfer, Wolfgang

    2001-01-01

    The secondary structure classification of amino acid sequences can be carried out by a statistical analysis of sequence and structure data using state-space models. Aiming at this classification, a modified filter algorithm programmed in S is applied to data of three proteins. The application leads to correct classifications of two proteins even when using relatively simple estimation methods for the parameters of the state-space models. Furthermore, it has been shown that the assumed initial...

  16. Classification of Land Cover and Land Use Based on Convolutional Neural Networks

    Science.gov (United States)

    Yang, Chun; Rottensteiner, Franz; Heipke, Christian

    2018-04-01

    Land cover describes the physical material of the earth's surface, whereas land use describes the socio-economic function of a piece of land. Land use information is typically collected in geospatial databases. As such databases become outdated quickly, an automatic update process is required. This paper presents a new approach to determine land cover and to classify land use objects based on convolutional neural networks (CNN). The input data are aerial images and derived data such as digital surface models. Firstly, we apply a CNN to determine the land cover for each pixel of the input image. We compare different CNN structures, all of them based on an encoder-decoder structure for obtaining dense class predictions. Secondly, we propose a new CNN-based methodology for the prediction of the land use label of objects from a geospatial database. In this context, we present a strategy for generating image patches of identical size from the input data, which are classified by a CNN. Again, we compare different CNN architectures. Our experiments show that an overall accuracy of up to 85.7 % and 77.4 % can be achieved for land cover and land use, respectively. The classification of land cover has a positive contribution to the classification of the land use classification.

  17. DNA methylation-based classification of central nervous system tumours.

    Science.gov (United States)

    Capper, David; Jones, David T W; Sill, Martin; Hovestadt, Volker; Schrimpf, Daniel; Sturm, Dominik; Koelsche, Christian; Sahm, Felix; Chavez, Lukas; Reuss, David E; Kratz, Annekathrin; Wefers, Annika K; Huang, Kristin; Pajtler, Kristian W; Schweizer, Leonille; Stichel, Damian; Olar, Adriana; Engel, Nils W; Lindenberg, Kerstin; Harter, Patrick N; Braczynski, Anne K; Plate, Karl H; Dohmen, Hildegard; Garvalov, Boyan K; Coras, Roland; Hölsken, Annett; Hewer, Ekkehard; Bewerunge-Hudler, Melanie; Schick, Matthias; Fischer, Roger; Beschorner, Rudi; Schittenhelm, Jens; Staszewski, Ori; Wani, Khalida; Varlet, Pascale; Pages, Melanie; Temming, Petra; Lohmann, Dietmar; Selt, Florian; Witt, Hendrik; Milde, Till; Witt, Olaf; Aronica, Eleonora; Giangaspero, Felice; Rushing, Elisabeth; Scheurlen, Wolfram; Geisenberger, Christoph; Rodriguez, Fausto J; Becker, Albert; Preusser, Matthias; Haberler, Christine; Bjerkvig, Rolf; Cryan, Jane; Farrell, Michael; Deckert, Martina; Hench, Jürgen; Frank, Stephan; Serrano, Jonathan; Kannan, Kasthuri; Tsirigos, Aristotelis; Brück, Wolfgang; Hofer, Silvia; Brehmer, Stefanie; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Hans, Volkmar; Rozsnoki, Stephanie; Hansford, Jordan R; Kohlhof, Patricia; Kristensen, Bjarne W; Lechner, Matt; Lopes, Beatriz; Mawrin, Christian; Ketter, Ralf; Kulozik, Andreas; Khatib, Ziad; Heppner, Frank; Koch, Arend; Jouvet, Anne; Keohane, Catherine; Mühleisen, Helmut; Mueller, Wolf; Pohl, Ute; Prinz, Marco; Benner, Axel; Zapatka, Marc; Gottardo, Nicholas G; Driever, Pablo Hernáiz; Kramm, Christof M; Müller, Hermann L; Rutkowski, Stefan; von Hoff, Katja; Frühwald, Michael C; Gnekow, Astrid; Fleischhack, Gudrun; Tippelt, Stephan; Calaminus, Gabriele; Monoranu, Camelia-Maria; Perry, Arie; Jones, Chris; Jacques, Thomas S; Radlwimmer, Bernhard; Gessi, Marco; Pietsch, Torsten; Schramm, Johannes; Schackert, Gabriele; Westphal, Manfred; Reifenberger, Guido; Wesseling, Pieter; Weller, Michael; Collins, Vincent Peter; Blümcke, Ingmar; Bendszus, Martin; Debus, Jürgen; Huang, Annie; Jabado, Nada; Northcott, Paul A; Paulus, Werner; Gajjar, Amar; Robinson, Giles W; Taylor, Michael D; Jaunmuktane, Zane; Ryzhova, Marina; Platten, Michael; Unterberg, Andreas; Wick, Wolfgang; Karajannis, Matthias A; Mittelbronn, Michel; Acker, Till; Hartmann, Christian; Aldape, Kenneth; Schüller, Ulrich; Buslei, Rolf; Lichter, Peter; Kool, Marcel; Herold-Mende, Christel; Ellison, David W; Hasselblatt, Martin; Snuderl, Matija; Brandner, Sebastian; Korshunov, Andrey; von Deimling, Andreas; Pfister, Stefan M

    2018-03-22

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.

  18. Toward a Safety Risk-Based Classification of Unmanned Aircraft

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2016-01-01

    There is a trend of growing interest and demand for greater access of unmanned aircraft (UA) to the National Airspace System (NAS) as the ongoing development of UA technology has created the potential for significant economic benefits. However, the lack of a comprehensive and efficient UA regulatory framework has constrained the number and kinds of UA operations that can be performed. This report presents initial results of a study aimed at defining a safety-risk-based UA classification as a plausible basis for a regulatory framework for UA operating in the NAS. Much of the study up to this point has been at a conceptual high level. The report includes a survey of contextual topics, analysis of safety risk considerations, and initial recommendations for a risk-based approach to safe UA operations in the NAS. The next phase of the study will develop and leverage deeper clarity and insight into practical engineering and regulatory considerations for ensuring that UA operations have an acceptable level of safety.

  19. Comprehensive Study on Lexicon-based Ensemble Classification Sentiment Analysis

    Directory of Open Access Journals (Sweden)

    Łukasz Augustyniak

    2015-12-01

    Full Text Available We propose a novel method for counting sentiment orientation that outperforms supervised learning approaches in time and memory complexity and is not statistically significantly different from them in accuracy. Our method consists of a novel approach to generating unigram, bigram and trigram lexicons. The proposed method, called frequentiment, is based on calculating the frequency of features (words in the document and averaging their impact on the sentiment score as opposed to documents that do not contain these features. Afterwards, we use ensemble classification to improve the overall accuracy of the method. What is important is that the frequentiment-based lexicons with sentiment threshold selection outperform other popular lexicons and some supervised learners, while being 3–5 times faster than the supervised approach. We compare 37 methods (lexicons, ensembles with lexicon’s predictions as input and supervised learners applied to 10 Amazon review data sets and provide the first statistical comparison of the sentiment annotation methods that include ensemble approaches. It is one of the most comprehensive comparisons of domain sentiment analysis in the literature.

  20. Malware Classification Based on the Behavior Analysis and Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Pan Zhi-Peng

    2016-01-01

    Full Text Available With the development of the Internet, malwares have also been expanded on the network systems rapidly. In order to deal with the diversity and amount of the variants, a number of automated behavior analysis tools have emerged as the time requires. Yet these tools produce detailed behavior reports of the malwares, it still needs to specify its category and judge its criticality manually. In this paper, we propose an automated malware classification approach based on the behavior analysis. We firstly perform dynamic analyses to obtain the detailed behavior profiles of the malwares, which are then used to abstract the main features of the malwares and serve as the inputs of the Back Propagation (BP Neural Network model.The experimental results demonstrate that our classification technique is able to classify the malware variants effectively and detect malware accurately.

  1. Transport of cohesive sediments : Classification and requirements for turbulence modelling

    NARCIS (Netherlands)

    Bruens, A.W.

    1999-01-01

    This report describes a classification of sediment-laden flows, which gives an overview of the different transport forms of fine sediment and the interactions of the different processes as acting in an estuary. At the outs et of the proposed classification a distinction in physical states of

  2. A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2018-01-01

    Full Text Available Various studies have focused on feature extraction methods for automatic patent classification in recent years. However, most of these approaches are based on the knowledge from experts in related domains. Here we propose a hierarchical feature extraction model (HFEM for multi-label mechanical patent classification, which is able to capture both local features of phrases as well as global and temporal semantics. First, a n-gram feature extractor based on convolutional neural networks (CNNs is designed to extract salient local lexical-level features. Next, a long dependency feature extraction model based on the bidirectional long–short-term memory (BiLSTM neural network model is proposed to capture sequential correlations from higher-level sequence representations. Then the HFEM algorithm and its hierarchical feature extraction architecture are detailed. We establish the training, validation and test datasets, containing 72,532, 18,133, and 2679 mechanical patent documents, respectively, and then check the performance of HFEMs. Finally, we compared the results of the proposed HFEM and three other single neural network models, namely CNN, long–short-term memory (LSTM, and BiLSTM. The experimental results indicate that our proposed HFEM outperforms the other compared models in both precision and recall.

  3. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  4. The Zipf Law revisited: An evolutionary model of emerging classification

    Energy Technology Data Exchange (ETDEWEB)

    Levitin, L.B. [Boston Univ., MA (United States); Schapiro, B. [TINA, Brandenburg (Germany); Perlovsky, L. [NRC, Wakefield, MA (United States)

    1996-12-31

    Zipf`s Law is a remarkable rank-frequency relationship observed in linguistics (the frequencies of the use of words are approximately inversely proportional to their ranks in the decreasing frequency order) as well as in the behavior of many complex systems of surprisingly different nature. We suggest an evolutionary model of emerging classification of objects into classes corresponding to concepts and denoted by words. The evolution of the system is derived from two basic assumptions: first, the probability to recognize an object as belonging to a known class is proportional to the number of objects in this class already recognized, and, second, there exists a small probability to observe an object that requires creation of a new class ({open_quotes}mutation{close_quotes} that gives birth to a new {open_quotes}species{close_quotes}). It is shown that the populations of classes in such a system obey the Zipf Law provided that the rate of emergence of new classes is small. The model leads also to the emergence of a second-tier structure of {open_quotes}super-classes{close_quotes} - groups of classes with almost equal populations.

  5. Diagnostics of enterprise bankruptcy occurrence probability in an anti-crisis management: modern approaches and classification of models

    Directory of Open Access Journals (Sweden)

    I.V. Zhalinska

    2015-09-01

    Full Text Available Diagnostics of enterprise bankruptcy occurrence probability is defined as an important tool ensuring the viability of an organization under conditions of unpredictable dynamic environment. The paper aims to define the basic features of diagnostics of bankruptcy occurrence probability models and their classification. The article grounds the objective increasing of crisis probability in modern enterprises where such increasing leads to the need to improve the efficiency of anti-crisis enterprise activities. The system of anti-crisis management is based on the subsystem of diagnostics of bankruptcy occurrence probability. Such a subsystem is the main one for further measures to prevent and overcome the crisis. The classification of existing models of enterprise bankruptcy occurrence probability has been suggested. The classification is based on methodical and methodological principles of models. The following main groups of models are determined: the models using financial ratios, aggregates and scores, the models of discriminated analysis, the methods of strategic analysis, informal models, artificial intelligence systems and the combination of the models. The classification made it possible to identify the analytical capabilities of each of the groups of models suggested.

  6. 2D Modeling and Classification of Extended Objects in a Network of HRR Radars

    NARCIS (Netherlands)

    Fasoula, A.

    2011-01-01

    In this thesis, the modeling of extended objects with low-dimensional representations of their 2D geometry is addressed. The ultimate objective is the classification of the objects using libraries of such compact 2D object models that are much smaller than in the state-of-the-art classification

  7. Knowledge-based sea ice classification by polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Dierking, Wolfgang

    2004-01-01

    Polarimetric SAR images acquired at C- and L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne...... systems. A hierarchical classification scheme was chosen for sea ice because our knowledge about magnitudes, variations, and dependences of sea ice signatures can be directly considered. The optimal sequence of classification rules and the rules themselves depend on the ice conditions/regimes. The use...... of the polarimetric phase information improves the classification only in the case of thin ice types but is not necessary for thicker ice (above about 30 cm thickness)...

  8. Palm-vein classification based on principal orientation features.

    Directory of Open Access Journals (Sweden)

    Yujia Zhou

    Full Text Available Personal recognition using palm-vein patterns has emerged as a promising alternative for human recognition because of its uniqueness, stability, live body identification, flexibility, and difficulty to cheat. With the expanding application of palm-vein pattern recognition, the corresponding growth of the database has resulted in a long response time. To shorten the response time of identification, this paper proposes a simple and useful classification for palm-vein identification based on principal direction features. In the registration process, the Gaussian-Radon transform is adopted to extract the orientation matrix and then compute the principal direction of a palm-vein image based on the orientation matrix. The database can be classified into six bins based on the value of the principal direction. In the identification process, the principal direction of the test sample is first extracted to ascertain the corresponding bin. One-by-one matching with the training samples is then performed in the bin. To improve recognition efficiency while maintaining better recognition accuracy, two neighborhood bins of the corresponding bin are continuously searched to identify the input palm-vein image. Evaluation experiments are conducted on three different databases, namely, PolyU, CASIA, and the database of this study. Experimental results show that the searching range of one test sample in PolyU, CASIA and our database by the proposed method for palm-vein identification can be reduced to 14.29%, 14.50%, and 14.28%, with retrieval accuracy of 96.67%, 96.00%, and 97.71%, respectively. With 10,000 training samples in the database, the execution time of the identification process by the traditional method is 18.56 s, while that by the proposed approach is 3.16 s. The experimental results confirm that the proposed approach is more efficient than the traditional method, especially for a large database.

  9. Trace elements based classification on clinkers. Application to Spanish clinkers

    Directory of Open Access Journals (Sweden)

    Tamás, F. D.

    2001-12-01

    Full Text Available The qualitative identification to determine the origin (i.e. manufacturing factory of Spanish clinkers is described. The classification of clinkers produced in different factories can be based on their trace element content. Approximately fifteen clinker sorts are analysed, collected from 11 Spanish cement factories to determine their Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content. An expert system formulated by a binary decision tree is designed based on the collected data. The performance of the obtained classifier was measured by ten-fold cross validation. The results show that the proposed method is useful to identify an easy-to-use expert system that is able to determine the origin of the clinker based on its trace element content.

    En el presente trabajo se describe el procedimiento de identificación cualitativa de clínkeres españoles con el objeto de determinar su origen (fábrica. Esa clasificación de los clínkeres se basa en el contenido de sus elementos traza. Se analizaron 15 clínkeres diferentes procedentes de 11 fábricas de cemento españolas, determinándose los contenidos en Mg, Sr, Ba, Mn, Ti, Zr, Zn y V. Se ha diseñado un sistema experto mediante un árbol de decisión binario basado en los datos recogidos. La clasificación obtenida fue examinada mediante la validación cruzada de 10 valores. Los resultados obtenidos muestran que el modelo propuesto es válido para identificar, de manera fácil, un sistema experto capaz de determinar el origen de un clínker basándose en el contenido de sus elementos traza.

  10. Event-Based User Classification in Weibo Media

    Directory of Open Access Journals (Sweden)

    Liang Guo

    2014-01-01

    Full Text Available Weibo media, known as the real-time microblogging services, has attracted massive attention and support from social network users. Weibo platform offers an opportunity for people to access information and changes the way people acquire and disseminate information significantly. Meanwhile, it enables people to respond to the social events in a more convenient way. Much of the information in Weibo media is related to some events. Users who post different contents, and exert different behavior or attitude may lead to different contribution to the specific event. Therefore, classifying the large amount of uncategorized social circles generated in Weibo media automatically from the perspective of events has been a promising task. Under this circumstance, in order to effectively organize and manage the huge amounts of users, thereby further managing their contents, we address the task of user classification in a more granular, event-based approach in this paper. By analyzing real data collected from Sina Weibo, we investigate the Weibo properties and utilize both content information and social network information to classify the numerous users into four primary groups: celebrities, organizations/media accounts, grassroots stars, and ordinary individuals. The experiments results show that our method identifies the user categories accurately.

  11. Event-based user classification in Weibo media.

    Science.gov (United States)

    Guo, Liang; Wang, Wendong; Cheng, Shiduan; Que, Xirong

    2014-01-01

    Weibo media, known as the real-time microblogging services, has attracted massive attention and support from social network users. Weibo platform offers an opportunity for people to access information and changes the way people acquire and disseminate information significantly. Meanwhile, it enables people to respond to the social events in a more convenient way. Much of the information in Weibo media is related to some events. Users who post different contents, and exert different behavior or attitude may lead to different contribution to the specific event. Therefore, classifying the large amount of uncategorized social circles generated in Weibo media automatically from the perspective of events has been a promising task. Under this circumstance, in order to effectively organize and manage the huge amounts of users, thereby further managing their contents, we address the task of user classification in a more granular, event-based approach in this paper. By analyzing real data collected from Sina Weibo, we investigate the Weibo properties and utilize both content information and social network information to classify the numerous users into four primary groups: celebrities, organizations/media accounts, grassroots stars, and ordinary individuals. The experiments results show that our method identifies the user categories accurately.

  12. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  13. Treatment of esophageal motility disorders based on the chicago classification.

    Science.gov (United States)

    Maradey-Romero, Carla; Gabbard, Scott; Fass, Ronnie

    2014-12-01

    The Chicago Classification divides esophageal motor disorders based on the recorded value of the integrated relaxation pressure (IRP). The first group includes those with an elevated mean IRP that is associated with peristaltic abnormalities such as achalasia and esophagogastric junction outflow obstruction. The second group includes those with a normal mean IRP that is associated with esophageal hypermotility disorders such as distal esophageal spasm, hypercontractile esophagus (jackhammer esophagus), and hypertensive peristalsis (nutcracker esophagus). The third group includes those with a normal mean IRP that is associated with esophageal hypomotility peristaltic abnormalities such as absent peristalsis, weak peristalsis with small or large breaks, and frequent failed peristalsis. The therapeutic options vary greatly between the different groups of esophageal motor disorders. In achalasia patients, potential treatment strategies comprise medical therapy (calcium channel blockers, nitrates, and phosphodiesterase 5 inhibitors), endoscopic procedures (botulinum toxin A injection, pneumatic dilation, or peroral endoscopic myotomy) or surgery (Heller myotomy). Patients with a normal IRP and esophageal hypermotility disorder are candidates for medical therapy (nitrates, calcium channel blockers, phosphodiesterase 5 inhibitors, cimetropium/ipratropium bromide, proton pump inhibitors, benzodiazepines, tricyclic antidepressants, trazodone, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors), endoscopic procedures (botulinum toxin A injection and peroral endoscopic myotomy), or surgery (Heller myotomy). Lastly, in patients with a normal IRP and esophageal hypomotility disorder, treatment is primarily focused on controlling the presence of gastroesophageal reflux with proton pump inhibitors and lifestyle modifications (soft and liquid diet and eating in the upright position) to address patient's dysphagia.

  14. China's Classification-Based Forest Management: Procedures, Problems, and Prospects

    Science.gov (United States)

    Dai, Limin; Zhao, Fuqiang; Shao, Guofan; Zhou, Li; Tang, Lina

    2009-06-01

    China’s new Classification-Based Forest Management (CFM) is a two-class system, including Commodity Forest (CoF) and Ecological Welfare Forest (EWF) lands, so named according to differences in their distinct functions and services. The purposes of CFM are to improve forestry economic systems, strengthen resource management in a market economy, ease the conflicts between wood demands and public welfare, and meet the diversified needs for forest services in China. The formative process of China’s CFM has involved a series of trials and revisions. China’s central government accelerated the reform of CFM in the year 2000 and completed the final version in 2003. CFM was implemented at the provincial level with the aid of subsidies from the central government. About a quarter of the forestland in China was approved as National EWF lands by the State Forestry Administration in 2006 and 2007. Logging is prohibited on National EWF lands, and their landowners or managers receive subsidies of about 70 RMB (US10) per hectare from the central government. CFM represents a new forestry strategy in China and its implementation inevitably faces challenges in promoting the understanding of forest ecological services, generalizing nationwide criteria for identifying EWF and CoF lands, setting up forest-specific compensation mechanisms for ecological benefits, enhancing the knowledge of administrators and the general public about CFM, and sustaining EWF lands under China’s current forestland tenure system. CFM does, however, offer a viable pathway toward sustainable forest management in China.

  15. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  16. Semi-supervised vibration-based classification and condition monitoring of compressors

    Science.gov (United States)

    Potočnik, Primož; Govekar, Edvard

    2017-09-01

    Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.

  17. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    Science.gov (United States)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  18. Basic Hand Gestures Classification Based on Surface Electromyography

    Directory of Open Access Journals (Sweden)

    Aleksander Palkowski

    2016-01-01

    Full Text Available This paper presents an innovative classification system for hand gestures using 2-channel surface electromyography analysis. The system developed uses the Support Vector Machine classifier, for which the kernel function and parameter optimisation are conducted additionally by the Cuckoo Search swarm algorithm. The system developed is compared with standard Support Vector Machine classifiers with various kernel functions. The average classification rate of 98.12% has been achieved for the proposed method.

  19. ROOF TYPE SELECTION BASED ON PATCH-BASED CLASSIFICATION USING DEEP LEARNING FOR HIGH RESOLUTION SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    T. Partovi

    2017-05-01

    Full Text Available 3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2 for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes extracted from a Digital Surface Model (DSM, the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  20. A web-based system for neural network based classification in temporomandibular joint osteoarthritis.

    Science.gov (United States)

    de Dumast, Priscille; Mirabel, Clément; Cevidanes, Lucia; Ruellas, Antonio; Yatabe, Marilia; Ioshida, Marcos; Ribera, Nina Tubau; Michoud, Loic; Gomes, Liliane; Huang, Chao; Zhu, Hongtu; Muniz, Luciana; Shoukri, Brandon; Paniagua, Beatriz; Styner, Martin; Pieper, Steve; Budin, Francois; Vimort, Jean-Baptiste; Pascal, Laura; Prieto, Juan Carlos

    2018-07-01

    The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA). This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less than 5 years, were included as the testing dataset. For the integrative statistical model of clinical, biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age and sex matched control subjects (39.4 ± 15.4 years), who did not show any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were also collected. The technological methodologies in this study include a deep neural network classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based system for data storage, computation and integration (DSCI) of high dimensional imaging, clinical, and biological data. The DSCI system trained and tested the neural network, indicating 5 stages of structural degenerative changes in condylar morphology in the TMJ with 91% close agreement between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that computed high dimensional correlations between shape 3D coordinates, clinical pain levels and levels of biological markers, and then graphically displayed the computation results. The findings of this

  1. Binary classification of dyslipidemia from the waist-to-hip ratio and body mass index: a comparison of linear, logistic, and CART models

    Directory of Open Access Journals (Sweden)

    Paccaud Fred

    2004-04-01

    Full Text Available Abstract Background We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. Methods Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i linear regression; (ii logistic classification; (iii regression trees; (iv classification trees (iii and iv are collectively known as "CART". Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. Results Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60–80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. Conclusions There were no striking differences between either the algebraic (i, ii vs. non-algebraic (iii, iv, or the regression (i, iii vs. classification (ii, iv modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.

  2. Aspect Βased Classification Model for Social Reviews

    Directory of Open Access Journals (Sweden)

    J. Mir

    2017-12-01

    Full Text Available Aspect based opinion mining investigates deeply, the emotions related to one’s aspects. Aspects and opinion word identification is the core task of aspect based opinion mining. In previous studies aspect based opinion mining have been applied on service or product domain. Moreover, product reviews are short and simple whereas, social reviews are long and complex. However, this study introduces an efficient model for social reviews which classifies aspects and opinion words related to social domain. The main contributions of this paper are auto tagging and data training phase, feature set definition and dictionary usage. Proposed model results are compared with CR model and Naïve Bayes classifier on same dataset having accuracy 98.17% and precision 96.01%, while recall and F1 are 96.00% and 96.01% respectively. The experimental results show that the proposed model performs better than the CR model and Naïve Bayes classifier.

  3. Research on Remote Sensing Image Classification Based on Feature Level Fusion

    Science.gov (United States)

    Yuan, L.; Zhu, G.

    2018-04-01

    Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.

  4. An empirical classification-based framework for the safety criticality assessment of energy production systems, in presence of inconsistent data

    International Nuclear Information System (INIS)

    Wang, Tai-Ran; Mousseau, Vincent; Pedroni, Nicola; Zio, Enrico

    2017-01-01

    The technical problem addressed in the present paper is the assessment of the safety criticality of energy production systems. An empirical classification model is developed, based on the Majority Rule Sorting method, to evaluate the class of criticallity of the plant/system of interest, with respect to safety. The model is built on the basis of a (limited-size) set of data representing the characteristics of a number of plants and their corresponding criticality classes, as assigned by experts. The construction of the classification model may raise two issues. First, the classification examples provided by the experts may contain contradictions: a validation of the consistency of the considered dataset is, thus, required. Second, uncertainty affects the process: a quantitative assessment of the performance of the classification model is, thus, in order, in terms of accuracy and confidence in the class assignments. In this paper, two approaches are proposed to tackle the first issue: the inconsistencies in the data examples are “resolved” by deleting or relaxing, respectively, some constraints in the model construction process. Three methods are proposed to address the second issue: (i) a model retrieval-based approach, (ii) the Bootstrap method and (iii) the cross-validation technique. Numerical analyses are presented with reference to an artificial case study regarding the classification of Nuclear Power Plants. - Highlights: • We use a hierarchical framework to represent safety criticality. • We use an empirical classification model to evaluate safety criticality. • Inconsistencies in data examples are “resolved” by deleting/relaxing constraints. • Accuracy and confidence in the class assignments are computed by three methods. • Method is applied to fictitious Nuclear Power Plants.

  5. Intelligence system based classification approach for medical disease diagnosis

    Science.gov (United States)

    Sagir, Abdu Masanawa; Sathasivam, Saratha

    2017-08-01

    The prediction of breast cancer in women who have no signs or symptoms of the disease as well as survivability after undergone certain surgery has been a challenging problem for medical researchers. The decision about presence or absence of diseases depends on the physician's intuition, experience and skill for comparing current indicators with previous one than on knowledge rich data hidden in a database. This measure is a very crucial and challenging task. The goal is to predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. To achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system. A framework describes methodology for designing and evaluation of classification performances of two discrete ANFIS systems of hybrid learning algorithms least square estimates with Modified Levenberg-Marquardt and Gradient descent algorithms that can be used by physicians to accelerate diagnosis process. The proposed method's performance was evaluated based on training and test datasets with mammographic mass and Haberman's survival Datasets obtained from benchmarked datasets of University of California at Irvine's (UCI) machine learning repository. The robustness of the performance measuring total accuracy, sensitivity and specificity is examined. In comparison, the proposed method achieves superior performance when compared to conventional ANFIS based gradient descent algorithm and some related existing methods. The software used for the implementation is MATLAB R2014a (version 8.3) and executed in PC Intel Pentium IV E7400 processor with 2.80 GHz speed and 2.0 GB of RAM.

  6. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  7. Research into Financial Position of Listed Companies following Classification via Extreme Learning Machine Based upon DE Optimization

    OpenAIRE

    Fu Yu; Mu Jiong; Duan Xu Liang

    2016-01-01

    By means of the model of extreme learning machine based upon DE optimization, this article particularly centers on the optimization thinking of such a model as well as its application effect in the field of listed company’s financial position classification. It proves that the improved extreme learning machine algorithm based upon DE optimization eclipses the traditional extreme learning machine algorithm following comparison. Meanwhile, this article also intends to introduce certain research...

  8. The Discriminative validity of "nociceptive," "peripheral neuropathic," and "central sensitization" as mechanisms-based classifications of musculoskeletal pain.

    LENUS (Irish Health Repository)

    Smart, Keith M

    2012-02-01

    OBJECTIVES: Empirical evidence of discriminative validity is required to justify the use of mechanisms-based classifications of musculoskeletal pain in clinical practice. The purpose of this study was to evaluate the discriminative validity of mechanisms-based classifications of pain by identifying discriminatory clusters of clinical criteria predictive of "nociceptive," "peripheral neuropathic," and "central sensitization" pain in patients with low back (+\\/- leg) pain disorders. METHODS: This study was a cross-sectional, between-patients design using the extreme-groups method. Four hundred sixty-four patients with low back (+\\/- leg) pain were assessed using a standardized assessment protocol. After each assessment, patients\\' pain was assigned a mechanisms-based classification. Clinicians then completed a clinical criteria checklist indicating the presence\\/absence of various clinical criteria. RESULTS: Multivariate analyses using binary logistic regression with Bayesian model averaging identified a discriminative cluster of 7, 3, and 4 symptoms and signs predictive of a dominance of "nociceptive," "peripheral neuropathic," and "central sensitization" pain, respectively. Each cluster was found to have high levels of classification accuracy (sensitivity, specificity, positive\\/negative predictive values, positive\\/negative likelihood ratios). DISCUSSION: By identifying a discriminatory cluster of symptoms and signs predictive of "nociceptive," "peripheral neuropathic," and "central" pain, this study provides some preliminary discriminative validity evidence for mechanisms-based classifications of musculoskeletal pain. Classification system validation requires the accumulation of validity evidence before their use in clinical practice can be recommended. Further studies are required to evaluate the construct and criterion validity of mechanisms-based classifications of musculoskeletal pain.

  9. Model of high-tech businesses management under the trends of explicit and implicit knowledge markets: classification and business model

    Directory of Open Access Journals (Sweden)

    Guzel Isayevna Gumerova

    2015-03-01

    Full Text Available Objective to define the notion of ldquohightech businessrdquo to elaborate classification of hightech businesses to elaborate the business model for hightech business management. Methods general scientific methods of theoretical and empirical cognition. Results the research presents a business model of hightech businesses management basing on the trends of explicit and explicit knowledge market with the dominating implicit knowledge market classification of hightech businesses taking into consideration the three types of economic activity possibilities to manage hightech business basing on its market cost technological innovations costs and business indicators. Scientific novelty the interpretation of the notion of ldquohightech businessrdquo has been renewed the classification of hightech businesses has been elaborated for the first time allocating three groups of enterprises. Practical value theoretical significance ndash development of notional apparatus of hightech business management practical significancenbsp ndash grounding of the necessity to manage enterprises under development of explicit and explicit knowledge markets in Russia as a complex of capital and noncapital assets with dominating indicators of ldquomarket valuerdquo and ldquolife span of a companyrdquo. nbsp

  10. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-05-01

    Full Text Available This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs. Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  11. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.

    Science.gov (United States)

    Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong

    2018-05-24

    This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  12. Music Genre Classification using the multivariate AR feature integration model

    DEFF Research Database (Denmark)

    Ahrendt, Peter; Meng, Anders

    2005-01-01

    informative decisions about musical genre. For the MIREX music genre contest several authors derive long time features based either on statistical moments and/or temporal structure in the short time features. In our contribution we model a segment (1.2 s) of short time features (texture) using a multivariate...... autoregressive model. Other authors have applied simpler statistical models such as the mean-variance model, which also has been included in several of this years MIREX submissions, see e.g. Tzanetakis (2005); Burred (2005); Bergstra et al. (2005); Lidy and Rauber (2005)....

  13. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    Directory of Open Access Journals (Sweden)

    Inhye Yoon

    2015-03-01

    Full Text Available Since incoming light to an unmanned aerial vehicle (UAV platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i image segmentation based on geometric classes; (ii generation of the context-adaptive transmission map; and (iii intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  14. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    Science.gov (United States)

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-03-19

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  15. Fuzzy Pattern Classification Based Detection of Faulty Electronic Fuel Control (EFC Valves Used in Diesel Engines

    Directory of Open Access Journals (Sweden)

    Umut Tugsal

    2014-05-01

    Full Text Available In this paper, we develop mathematical models of a rotary Electronic Fuel Control (EFC valve used in a Diesel engine based on dynamic performance test data and system identification methodology in order to detect the faulty EFC valves. The model takes into account the dynamics of the electrical and mechanical portions of the EFC valves. A recursive least squares (RLS type system identification methodology has been utilized to determine the transfer functions of the different types of EFC valves that were investigated in this study. Both in frequency domain and time domain methods have been utilized for this purpose. Based on the characteristic patterns exhibited by the EFC valves, a fuzzy logic based pattern classification method was utilized to evaluate the residuals and identify faulty EFC valves from good ones. The developed methodology has been shown to provide robust diagnostics for a wide range of EFC valves.

  16. Toward a Reasoned Classification of Diseases Using Physico-Chemical Based Phenotypes

    Directory of Open Access Journals (Sweden)

    Laurent Schwartz

    2018-02-01

    Full Text Available Background: Diseases and health conditions have been classified according to anatomical site, etiological, and clinical criteria. Physico-chemical mechanisms underlying the biology of diseases, such as the flow of energy through cells and tissues, have been often overlooked in classification systems.Objective: We propose a conceptual framework toward the development of an energy-oriented classification of diseases, based on the principles of physical chemistry.Methods: A review of literature on the physical chemistry of biological interactions in a number of diseases is traced from the point of view of the fluid and solid mechanics, electricity, and chemistry.Results: We found consistent evidence in literature of decreased and/or increased physical and chemical forces intertwined with biological processes of numerous diseases, which allowed the identification of mechanical, electric and chemical phenotypes of diseases.Discussion: Biological mechanisms of diseases need to be evaluated and integrated into more comprehensive theories that should account with principles of physics and chemistry. A hypothetical model is proposed relating the natural history of diseases to mechanical stress, electric field, and chemical equilibria (ATP changes. The present perspective toward an innovative disease classification may improve drug-repurposing strategies in the future.

  17. A neurally inspired musical instrument classification system based upon the sound onset.

    Science.gov (United States)

    Newton, Michael J; Smith, Leslie S

    2012-06-01

    Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset.

  18. A protein and mRNA expression-based classification of gastric cancer.

    Science.gov (United States)

    Setia, Namrata; Agoston, Agoston T; Han, Hye S; Mullen, John T; Duda, Dan G; Clark, Jeffrey W; Deshpande, Vikram; Mino-Kenudson, Mari; Srivastava, Amitabh; Lennerz, Jochen K; Hong, Theodore S; Kwak, Eunice L; Lauwers, Gregory Y

    2016-07-01

    The overall survival of gastric carcinoma patients remains poor despite improved control over known risk factors and surveillance. This highlights the need for new classifications, driven towards identification of potential therapeutic targets. Using sophisticated molecular technologies and analysis, three groups recently provided genetic and epigenetic molecular classifications of gastric cancer (The Cancer Genome Atlas, 'Singapore-Duke' study, and Asian Cancer Research Group). Suggested by these classifications, here, we examined the expression of 14 biomarkers in a cohort of 146 gastric adenocarcinomas and performed unsupervised hierarchical clustering analysis using less expensive and widely available immunohistochemistry and in situ hybridization. Ultimately, we identified five groups of gastric cancers based on Epstein-Barr virus (EBV) positivity, microsatellite instability, aberrant E-cadherin, and p53 expression; the remaining cases constituted a group characterized by normal p53 expression. In addition, the five categories correspond to the reported molecular subgroups by virtue of clinicopathologic features. Furthermore, evaluation between these clusters and survival using the Cox proportional hazards model showed a trend for superior survival in the EBV and microsatellite-instable related adenocarcinomas. In conclusion, we offer as a proposal a simplified algorithm that is able to reproduce the recently proposed molecular subgroups of gastric adenocarcinoma, using immunohistochemical and in situ hybridization techniques.

  19. Toward a Reasoned Classification of Diseases Using Physico-Chemical Based Phenotypes

    Science.gov (United States)

    Schwartz, Laurent; Lafitte, Olivier; da Veiga Moreira, Jorgelindo

    2018-01-01

    Background: Diseases and health conditions have been classified according to anatomical site, etiological, and clinical criteria. Physico-chemical mechanisms underlying the biology of diseases, such as the flow of energy through cells and tissues, have been often overlooked in classification systems. Objective: We propose a conceptual framework toward the development of an energy-oriented classification of diseases, based on the principles of physical chemistry. Methods: A review of literature on the physical chemistry of biological interactions in a number of diseases is traced from the point of view of the fluid and solid mechanics, electricity, and chemistry. Results: We found consistent evidence in literature of decreased and/or increased physical and chemical forces intertwined with biological processes of numerous diseases, which allowed the identification of mechanical, electric and chemical phenotypes of diseases. Discussion: Biological mechanisms of diseases need to be evaluated and integrated into more comprehensive theories that should account with principles of physics and chemistry. A hypothetical model is proposed relating the natural history of diseases to mechanical stress, electric field, and chemical equilibria (ATP) changes. The present perspective toward an innovative disease classification may improve drug-repurposing strategies in the future. PMID:29541031

  20. SPAM CLASSIFICATION BASED ON SUPERVISED LEARNING USING MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Hamsapriya

    2011-12-01

    Full Text Available E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Spam emails are invading users without their consent and filling their mail boxes. They consume more network capacity as well as time in checking and deleting spam mails. The vast majority of Internet users are outspoken in their disdain for spam, although enough of them respond to commercial offers that spam remains a viable source of income to spammers. While most of the users want to do right think to avoid and get rid of spam, they need clear and simple guidelines on how to behave. In spite of all the measures taken to eliminate spam, they are not yet eradicated. Also when the counter measures are over sensitive, even legitimate emails will be eliminated. Among the approaches developed to stop spam, filtering is the one of the most important technique. Many researches in spam filtering have been centered on the more sophisticated classifier-related issues. In recent days, Machine learning for spam classification is an important research issue. The effectiveness of the proposed work is explores and identifies the use of different learning algorithms for classifying spam messages from e-mail. A comparative analysis among the algorithms has also been presented.

  1. Classification of urine sediment based on convolution neural network

    Science.gov (United States)

    Pan, Jingjing; Jiang, Cunbo; Zhu, Tiantian

    2018-04-01

    By designing a new convolution neural network framework, this paper breaks the constraints of the original convolution neural network framework requiring large training samples and samples of the same size. Move and cropping the input images, generate the same size of the sub-graph. And then, the generated sub-graph uses the method of dropout, increasing the diversity of samples and preventing the fitting generation. Randomly select some proper subset in the sub-graphic set and ensure that the number of elements in the proper subset is same and the proper subset is not the same. The proper subsets are used as input layers for the convolution neural network. Through the convolution layer, the pooling, the full connection layer and output layer, we can obtained the classification loss rate of test set and training set. In the red blood cells, white blood cells, calcium oxalate crystallization classification experiment, the classification accuracy rate of 97% or more.

  2. A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification

    Science.gov (United States)

    Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.

    2015-01-01

    In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898

  3. Data classification based on the hybrid intellectual technology

    Directory of Open Access Journals (Sweden)

    Demidova Liliya

    2018-01-01

    Full Text Available In this paper the data classification technique, implying the consistent application of the SVM and Parzen classifiers, has been suggested. The Parser classifier applies to data which can be both correctly and erroneously classified using the SVM classifier, and are located in the experimentally defined subareas near the hyperplane which separates the classes. A herewith, the SVM classifier is used with the default parameters values, and the optimal parameters values of the Parser classifier are determined using the genetic algorithm. The experimental results confirming the effectiveness of the proposed hybrid intellectual data classification technology have been presented.

  4. Woven fabric defects detection based on texture classification algorithm

    International Nuclear Information System (INIS)

    Ben Salem, Y.; Nasri, S.

    2011-01-01

    In this paper we have compared two famous methods in texture classification to solve the problem of recognition and classification of defects occurring in a textile manufacture. We have compared local binary patterns method with co-occurrence matrix. The classifier used is the support vector machines (SVM). The system has been tested using TILDA database. The results obtained are interesting and show that LBP is a good method for the problems of recognition and classifcation defects, it gives a good running time especially for the real time applications.

  5. Classification of Gait Types Based on the Duty-factor

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2007-01-01

    on the speed of the human, the cameras setup etc. and hence a robust descriptor for gait classification. The dutyfactor is basically a matter of measuring the ground support of the feet with respect to the stride. We estimate this by comparing the incoming silhouettes to a database of silhouettes with known...... ground support. Silhouettes are extracted using the Codebook method and represented using Shape Contexts. The matching with database silhouettes is done using the Hungarian method. While manually estimated duty-factors show a clear classification the presented system contains misclassifications due...

  6. SVM-based Partial Discharge Pattern Classification for GIS

    Science.gov (United States)

    Ling, Yin; Bai, Demeng; Wang, Menglin; Gong, Xiaojin; Gu, Chao

    2018-01-01

    Partial discharges (PD) occur when there are localized dielectric breakdowns in small regions of gas insulated substations (GIS). It is of high importance to recognize the PD patterns, through which we can diagnose the defects caused by different sources so that predictive maintenance can be conducted to prevent from unplanned power outage. In this paper, we propose an approach to perform partial discharge pattern classification. It first recovers the PRPD matrices from the PRPD2D images; then statistical features are extracted from the recovered PRPD matrix and fed into SVM for classification. Experiments conducted on a dataset containing thousands of images demonstrates the high effectiveness of the method.

  7. Improving Cross-Day EEG-Based Emotion Classification Using Robust Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Yuan-Pin Lin

    2017-07-01

    Full Text Available Constructing a robust emotion-aware analytical framework using non-invasively recorded electroencephalogram (EEG signals has gained intensive attentions nowadays. However, as deploying a laboratory-oriented proof-of-concept study toward real-world applications, researchers are now facing an ecological challenge that the EEG patterns recorded in real life substantially change across days (i.e., day-to-day variability, arguably making the pre-defined predictive model vulnerable to the given EEG signals of a separate day. The present work addressed how to mitigate the inter-day EEG variability of emotional responses with an attempt to facilitate cross-day emotion classification, which was less concerned in the literature. This study proposed a robust principal component analysis (RPCA-based signal filtering strategy and validated its neurophysiological validity and machine-learning practicability on a binary emotion classification task (happiness vs. sadness using a five-day EEG dataset of 12 subjects when participated in a music-listening task. The empirical results showed that the RPCA-decomposed sparse signals (RPCA-S enabled filtering off the background EEG activity that contributed more to the inter-day variability, and predominately captured the EEG oscillations of emotional responses that behaved relatively consistent along days. Through applying a realistic add-day-in classification validation scheme, the RPCA-S progressively exploited more informative features (from 12.67 ± 5.99 to 20.83 ± 7.18 and improved the cross-day binary emotion-classification accuracy (from 58.31 ± 12.33% to 64.03 ± 8.40% as trained the EEG signals from one to four recording days and tested against one unseen subsequent day. The original EEG features (prior to RPCA processing neither achieved the cross-day classification (the accuracy was around chance level nor replicated the encouraging improvement due to the inter-day EEG variability. This result

  8. Ensemble Classification of Data Streams Based on Attribute Reduction and a Sliding Window

    Directory of Open Access Journals (Sweden)

    Yingchun Chen

    2018-04-01

    Full Text Available With the current increasing volume and dimensionality of data, traditional data classification algorithms are unable to satisfy the demands of practical classification applications of data streams. To deal with noise and concept drift in data streams, we propose an ensemble classification algorithm based on attribute reduction and a sliding window in this paper. Using mutual information, an approximate attribute reduction algorithm based on rough sets is used to reduce data dimensionality and increase the diversity of reduced results in the algorithm. A double-threshold concept drift detection method and a three-stage sliding window control strategy are introduced to improve the performance of the algorithm when dealing with both noise and concept drift. The classification precision is further improved by updating the base classifiers and their nonlinear weights. Experiments on synthetic datasets and actual datasets demonstrate the performance of the algorithm in terms of classification precision, memory use, and time efficiency.

  9. An application-based classification to understand buyer-seller interaction in business services

    NARCIS (Netherlands)

    Valk, van der W.; Wynstra, J.Y.F.; Axelsson, B.

    2006-01-01

    Abstract: Purpose – Most existing classifications of business services have taken the perspective of the supplier as opposed to that of the buyer. To address this imbalance, the purpose of this paper is to propose a classification of business services based on how the buying company applies the

  10. Initial steps towards an evidence-based classification system for golfers with a physical impairment

    NARCIS (Netherlands)

    Stoter, Inge K.; Hettinga, Florentina J.; Altmann, Viola; Eisma, Wim; Arendzen, Hans; Bennett, Tony; van der Woude, Lucas H.; Dekker, Rienk

    2017-01-01

    Purpose: The present narrative review aims to make a first step towards an evidence-based classification system in handigolf following the International Paralympic Committee (IPC). It intends to create a conceptual framework of classification for handigolf and an agenda for future research. Method:

  11. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  12. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Directory of Open Access Journals (Sweden)

    Srdjan Sladojevic

    2016-01-01

    Full Text Available The latest generation of convolutional neural networks (CNNs has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  13. Incremental Validity of Multidimensional Proficiency Scores from Diagnostic Classification Models: An Illustration for Elementary School Mathematics

    Science.gov (United States)

    Kunina-Habenicht, Olga; Rupp, André A.; Wilhelm, Oliver

    2017-01-01

    Diagnostic classification models (DCMs) hold great potential for applications in summative and formative assessment by providing discrete multivariate proficiency scores that yield statistically driven classifications of students. Using data from a newly developed diagnostic arithmetic assessment that was administered to 2032 fourth-grade students…

  14. Comparison analysis for classification algorithm in data mining and the study of model use

    Science.gov (United States)

    Chen, Junde; Zhang, Defu

    2018-04-01

    As a key technique in data mining, classification algorithm was received extensive attention. Through an experiment of classification algorithm in UCI data set, we gave a comparison analysis method for the different algorithms and the statistical test was used here. Than that, an adaptive diagnosis model for preventive electricity stealing and leakage was given as a specific case in the paper.

  15. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2005-11-01

    Full Text Available Abstract Background The extensive use of DNA microarray technology in the characterization of the cell transcriptome is leading to an ever increasing amount of microarray data from cancer studies. Although similar questions for the same type of cancer are addressed in these different studies, a comparative analysis of their results is hampered by the use of heterogeneous microarray platforms and analysis methods. Results In contrast to a meta-analysis approach where results of different studies are combined on an interpretative level, we investigate here how to directly integrate raw microarray data from different studies for the purpose of supervised classification analysis. We use median rank scores and quantile discretization to derive numerically comparable measures of gene expression from different platforms. These transformed data are then used for training of classifiers based on support vector machines. We apply this approach to six publicly available cancer microarray gene expression data sets, which consist of three pairs of studies, each examining the same type of cancer, i.e. breast cancer, prostate cancer or acute myeloid leukemia. For each pair, one study was performed by means of cDNA microarrays and the other by means of oligonucleotide microarrays. In each pair, high classification accuracies (> 85% were achieved with training and testing on data instances randomly chosen from both data sets in a cross-validation analysis. To exemplify the potential of this cross-platform classification analysis, we use two leukemia microarray data sets to show that important genes with regard to the biology of leukemia are selected in an integrated analysis, which are missed in either single-set analysis. Conclusion Cross-platform classification of multiple cancer microarray data sets yields discriminative gene expression signatures that are found and validated on a large number of microarray samples, generated by different laboratories and

  16. New Atrophic Acne Scar Classification: Reliability of Assessments Based on Size, Shape, and Number.

    Science.gov (United States)

    Kang, Sewon; Lozada, Vicente Torres; Bettoli, Vincenzo; Tan, Jerry; Rueda, Maria Jose; Layton, Alison; Petit, Lauren; Dréno, Brigitte

    2016-06-01

    Post-acne atrophic scarring is a major concern for which standardized outcome measures are needed. Traditionally, this type of scar has been classified based on shape; but survey of practicing dermatologists has shown that atrophic scar morphology has not been well enough defined to allow good agreement in clinical classification. Reliance on clinical assessment is still needed at the current time, since objective tools are not yet available in routine practice. Evaluate classification for atrophic acne scars by shape, size, and facial location and establish reliability in assessments. We conducted a non-interventional study with dermatologists performing live clinical assessments of atrophic acne scars. To objectively compare identification of lesions, individual lesions were marked on a high-resolution photo of the patient that was displayed on a computer during the clinical evaluation. The Jacob clinical classification system was used to define three primary shapes of scars 1) icepick, 2) boxcar, and 3) rolling. To determine agreement for classification by size, independent technicians assessed the investigators' markings on digital images. Identical localization of scars was denoted if the maximal distance between their centers was ≤ 60 pixels (approximately 3 mm). Raters assessed scars on the same patients twice (morning/afternoon). Aggregate models of rater assessments were created and analyzed for agreement. Raters counted a mean scar count per subject ranging from 15.75 to 40.25 scars. Approximately 50% of scars were identified by all raters and ~75% of scars were identified by at least 2 of 3 raters (weak agreement, Kappa pairwise agreement 0.30). Agreement between consecutive counts was moderate, with Kappa index ranging from 0.26 to 0.47 (after exclusion of one outlier investigator who had significantly higher counts than all others). Shape classifications of icepick, boxcar, and rolling differed significantly between raters and even for same raters at

  17. Multi-label literature classification based on the Gene Ontology graph

    Directory of Open Access Journals (Sweden)

    Lu Xinghua

    2008-12-01

    Full Text Available Abstract Background The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. Results In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Conclusion Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate

  18. Colour based off-road environment and terrain type classification

    NARCIS (Netherlands)

    Jansen, P.; Mark, W. van der; Heuvel, J.C. van den; Groen, F.C.A.

    2005-01-01

    Terrain classification is an important problem that still remains to be solved for off-road autonomous robot vehicle guidance. Often, obstacle detection systems are used which cannot distinguish between solid obstacles such as rocks or soft obstacles such as tall patches of grass. Terrain

  19. Emotion of Physiological Signals Classification Based on TS Feature Selection

    Institute of Scientific and Technical Information of China (English)

    Wang Yujing; Mo Jianlin

    2015-01-01

    This paper propose a method of TS-MLP about emotion recognition of physiological signal.It can recognize emotion successfully by Tabu search which selects features of emotion’s physiological signals and multilayer perceptron that is used to classify emotion.Simulation shows that it has achieved good emotion classification performance.

  20. A vegetation-based hierarchical classification for seasonally pulsed ...

    African Journals Online (AJOL)

    A classification scheme is presented for seasonal floodplains of the Boro-Xudum distributary of the Okavango Delta, Botswana. This distributary is subject to an annual flood-pulse, the inundated area varying from a mean low of 3 600 km2 to a mean high of 5 400 km2 between 2000 and 2006. A stratified random sample of ...

  1. Model of Numerical Spatial Classification for Sustainable Agriculture in Badung Regency and Denpasar City, Indonesia

    Science.gov (United States)

    Trigunasih, N. M.; Lanya, I.; Subadiyasa, N. N.; Hutauruk, J.

    2018-02-01

    Increasing number and activity of the population to meet the needs of their lives greatly affect the utilization of land resources. Land needs for activities of the population continue to grow, while the availability of land is limited. Therefore, there will be changes in land use. As a result, the problems faced by land degradation and conversion of agricultural land become non-agricultural. The objectives of this research are: (1) to determine parameter of spatial numerical classification of sustainable food agriculture in Badung Regency and Denpasar City (2) to know the projection of food balance in Badung Regency and Denpasar City in 2020, 2030, 2040, and 2050 (3) to specify of function of spatial numerical classification in the making of zonation model of sustainable agricultural land area in Badung regency and Denpasar city (4) to determine the appropriate model of the area to protect sustainable agricultural land in spatial and time scale in Badung and Denpasar regencies. The method used in this research was quantitative method include: survey, soil analysis, spatial data development, geoprocessing analysis (spatial analysis of overlay and proximity analysis), interpolation of raster digital elevation model data, and visualization (cartography). Qualitative methods consisted of literature studies, and interviews. The parameters observed for a total of 11 parameters Badung regency and Denpasar as much as 9 parameters. Numerical classification parameter analysis results used the standard deviation and the mean of the population data and projections relationship rice field in the food balance sheet by modelling. The result of the research showed that, the number of different numerical classification parameters in rural areas (Badung) and urban areas (Denpasar), in urban areas the number of parameters is less than the rural areas. The based on numerical classification weighting and scores generate population distribution parameter analysis results of a standard

  2. A ROUGH SET DECISION TREE BASED MLP-CNN FOR VERY HIGH RESOLUTION REMOTELY SENSED IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP, which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  3. Ice Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery

    Science.gov (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.

    2017-09-01

    In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.

  4. QSAR classification models for the prediction of endocrine disrupting activity of brominated flame retardants.

    Science.gov (United States)

    Kovarich, Simona; Papa, Ester; Gramatica, Paola

    2011-06-15

    The identification of potential endocrine disrupting (ED) chemicals is an important task for the scientific community due to their diffusion in the environment; the production and use of such compounds will be strictly regulated through the authorization process of the REACH regulation. To overcome the problem of insufficient experimental data, the quantitative structure-activity relationship (QSAR) approach is applied to predict the ED activity of new chemicals. In the present study QSAR classification models are developed, according to the OECD principles, to predict the ED potency for a class of emerging ubiquitary pollutants, viz. brominated flame retardants (BFRs). Different endpoints related to ED activity (i.e. aryl hydrocarbon receptor agonism and antagonism, estrogen receptor agonism and antagonism, androgen and progesterone receptor antagonism, T4-TTR competition, E2SULT inhibition) are modeled using the k-NN classification method. The best models are selected by maximizing the sensitivity and external predictive ability. We propose simple QSARs (based on few descriptors) characterized by internal stability, good predictive power and with a verified applicability domain. These models are simple tools that are applicable to screen BFRs in relation to their ED activity, and also to design safer alternatives, in agreement with the requirements of REACH regulation at the authorization step. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Applying Topographic Classification, Based on the Hydrological Process, to Design Habitat Linkages for Climate Change

    Directory of Open Access Journals (Sweden)

    Yongwon Mo

    2017-11-01

    Full Text Available The use of biodiversity surrogates has been discussed in the context of designing habitat linkages to support the migration of species affected by climate change. Topography has been proposed as a useful surrogate in the coarse-filter approach, as the hydrological process caused by topography such as erosion and accumulation is the basis of ecological processes. However, some studies that have designed topographic linkages as habitat linkages, so far have focused much on the shape of the topography (morphometric topographic classification with little emphasis on the hydrological processes (generic topographic classification to find such topographic linkages. We aimed to understand whether generic classification was valid for designing these linkages. First, we evaluated whether topographic classification is more appropriate for describing actual (coniferous and deciduous and potential (mammals and amphibians habitat distributions. Second, we analyzed the difference in the linkages between the morphometric and generic topographic classifications. The results showed that the generic classification represented the actual distribution of the trees, but neither the morphometric nor the generic classification could represent the potential animal distributions adequately. Our study demonstrated that the topographic classes, according to the generic classification, were arranged successively according to the flow of water, nutrients, and sediment; therefore, it would be advantageous to secure linkages with a width of 1 km or more. In addition, the edge effect would be smaller than with the morphometric classification. Accordingly, we suggest that topographic characteristics, based on the hydrological process, are required to design topographic linkages for climate change.

  6. Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.

    Science.gov (United States)

    Liu, Da; Li, Jianxun

    2016-12-16

    Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.

  7. Attenuation relations of strong motion in Japan using site classification based on predominant period

    International Nuclear Information System (INIS)

    Toshimasa Takahashi; Akihiro Asano; Hidenobu Okada; Kojiro Irikura; Zhao, J.X.; Zhang Jian; Thio, H.K.; Somerville, P.G.; Yasuhiro Fukushima; Yoshimitsu Fukushima

    2005-01-01

    A spectral acceleration attenuation model for Japan is presented. The data set includes a very large number of strong ground motion records up to the end of 2003. Site class terms, instead of individual site correction terms, are used based on a recent study on site classification for strong motion recording stations in Japan. By using site class terms, tectonic source type effects are identified and accounted in the present model. Effects of faulting mechanism for crustal earthquakes are also accounted for. For crustal and interface earthquakes, a simple form of attenuation model is able to capture the main strong motion characteristics and achieves unbiased estimates. For subduction slab events, a simple distance modification factor is employed to achieve plausible and unbiased prediction. Effects of source depth, tectonic source type, and faulting mechanism for crustal earthquakes are significant. (authors)

  8. A Just-in-Time Learning based Monitoring and Classification Method for Hyper/Hypocalcemia Diagnosis.

    Science.gov (United States)

    Peng, Xin; Tang, Yang; He, Wangli; Du, Wenli; Qian, Feng

    2017-01-20

    This study focuses on the classification and pathological status monitoring of hyper/hypo-calcemia in the calcium regulatory system. By utilizing the Independent Component Analysis (ICA) mixture model, samples from healthy patients are collected, diagnosed, and subsequently classified according to their underlying behaviors, characteristics, and mechanisms. Then, a Just-in-Time Learning (JITL) has been employed in order to estimate the diseased status dynamically. In terms of JITL, for the purpose of the construction of an appropriate similarity index to identify relevant datasets, a novel similarity index based on the ICA mixture model is proposed in this paper to improve online model quality. The validity and effectiveness of the proposed approach have been demonstrated by applying it to the calcium regulatory system under various hypocalcemic and hypercalcemic diseased conditions.

  9. Exploring high dimensional data with Butterfly: a novel classification algorithm based on discrete dynamical systems.

    Science.gov (United States)

    Geraci, Joseph; Dharsee, Moyez; Nuin, Paulo; Haslehurst, Alexandria; Koti, Madhuri; Feilotter, Harriet E; Evans, Ken

    2014-03-01

    We introduce a novel method for visualizing high dimensional data via a discrete dynamical system. This method provides a 2D representation of the relationship between subjects according to a set of variables without geometric projections, transformed axes or principal components. The algorithm exploits a memory-type mechanism inherent in a certain class of discrete dynamical systems collectively referred to as the chaos game that are closely related to iterative function systems. The goal of the algorithm was to create a human readable representation of high dimensional patient data that was capable of detecting unrevealed subclusters of patients from within anticipated classifications. This provides a mechanism to further pursue a more personalized exploration of pathology when used with medical data. For clustering and classification protocols, the dynamical system portion of the algorithm is designed to come after some feature selection filter and before some model evaluation (e.g. clustering accuracy) protocol. In the version given here, a univariate features selection step is performed (in practice more complex feature selection methods are used), a discrete dynamical system is driven by this reduced set of variables (which results in a set of 2D cluster models), these models are evaluated for their accuracy (according to a user-defined binary classification) and finally a visual representation of the top classification models are returned. Thus, in addition to the visualization component, this methodology can be used for both supervised and unsupervised machine learning as the top performing models are returned in the protocol we describe here. Butterfly, the algorithm we introduce and provide working code for, uses a discrete dynamical system to classify high dimensional data and provide a 2D representation of the relationship between subjects. We report results on three datasets (two in the article; one in the appendix) including a public lung cancer

  10. EEG Signal Classification With Super-Dirichlet Mixture Model

    DEFF Research Database (Denmark)

    Ma, Zhanyu; Tan, Zheng-Hua; Prasad, Swati

    2012-01-01

    Classification of the Electroencephalogram (EEG) signal is a challengeable task in the brain-computer interface systems. The marginalized discrete wavelet transform (mDWT) coefficients extracted from the EEG signals have been frequently used in researches since they reveal features related...

  11. Classification criteria of syndromes by latent variable models

    DEFF Research Database (Denmark)

    Petersen, Janne

    2010-01-01

    patient's characteristics. These methods may erroneously reduce multiplicity either by combining markers of different phenotypes or by mixing HALS with other processes such as aging. Latent class models identify homogenous groups of patients based on sets of variables, for example symptoms. As no gold......The thesis has two parts; one clinical part: studying the dimensions of human immunodeficiency virus associated lipodystrophy syndrome (HALS) by latent class models, and a more statistical part: investigating how to predict scores of latent variables so these can be used in subsequent regression...... standard exists for diagnosing HALS the normally applied diagnostic models cannot be used. Latent class models, which have never before been used to diagnose HALS, make it possible, under certain assumptions, to: statistically evaluate the number of phenotypes, test for mixing of HALS with other processes...

  12. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification.

    Science.gov (United States)

    Younghak Shin; Balasingham, Ilangko

    2017-07-01

    Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.

  13. Neutral face classification using personalized appearance models for fast and robust emotion detection.

    Science.gov (United States)

    Chiranjeevi, Pojala; Gopalakrishnan, Viswanath; Moogi, Pratibha

    2015-09-01

    Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning-based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, and so on, in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as user stays neutral for majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this paper, we propose a light-weight neutral versus emotion classification engine, which acts as a pre-processer to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at key emotion (KE) points using a statistical texture model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a statistical texture model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves emotion recognition (ER) accuracy and simultaneously reduces computational complexity of the ER system, as validated on multiple databases.

  14. Geo-Proxy-Based Site Classification for Regional Zonation of Seismic Site Effects in South Korea

    Directory of Open Access Journals (Sweden)

    Chang-Guk Sun

    2018-02-01

    Full Text Available Seismic site effects and topographic effects related to ground motion occur during an earthquake due to site-specific geotechnical or geological characteristics, including the geological or geographical structure and the characteristics of near-surface sub-soil layers. Site-specific site effects due to geological conditions have been confirmed in recent earthquake events. Earthquake-induced damage has mainly occurred at accumulated soft soil layers under basins or along coasts and rivers. An alternative method has recently been proposed for evaluating regional seismic site effects and amplification factors using digital elevation models (DEM. High-quality DEMs at high resolutions may be employed to resolve finer-scale variations in topographic gradients and consequently, correlated site response parameters. Because there are many regions in South Korea lacking borehole datasets, which are insufficient for site classification only using borehole datasets, a DEM-based proxy for seismic zonation can be effective. Thus, in this study, geo-proxy-based site classification was proposed based on empirical correlations with site response parameters and conducted for regional zonation of seismic site effects to identify the amplification of characteristics in the western metropolitan areas of South Korea, depending on the site-specific geo-spatial conditions.

  15. Cell-based therapy technology classifications and translational challenges

    Science.gov (United States)

    Mount, Natalie M.; Ward, Stephen J.; Kefalas, Panos; Hyllner, Johan

    2015-01-01

    Cell therapies offer the promise of treating and altering the course of diseases which cannot be addressed adequately by existing pharmaceuticals. Cell therapies are a diverse group across cell types and therapeutic indications and have been an active area of research for many years but are now strongly emerging through translation and towards successful commercial development and patient access. In this article, we present a description of a classification of cell therapies on the basis of their underlying technologies rather than the more commonly used classification by cell type because the regulatory path and manufacturing solutions are often similar within a technology area due to the nature of the methods used. We analyse the progress of new cell therapies towards clinical translation, examine how they are addressing the clinical, regulatory, manufacturing and reimbursement requirements, describe some of the remaining challenges and provide perspectives on how the field may progress for the future. PMID:26416686

  16. Segmentation Based Classification of 3D Urban Point Clouds: A Super-Voxel Based Approach with Evaluation

    Directory of Open Access Journals (Sweden)

    Laurent Trassoudaine

    2013-03-01

    Full Text Available Segmentation and classification of urban range data into different object classes have several challenges due to certain properties of the data, such as density variation, inconsistencies due to missing data and the large data size that require heavy computation and large memory. A method to classify urban scenes based on a super-voxel segmentation of sparse 3D data obtained from LiDAR sensors is presented. The 3D point cloud is first segmented into voxels, which are then characterized by several attributes transforming them into super-voxels. These are joined together by using a link-chain method rather than the usual region growing algorithm to create objects. These objects are then classified using geometrical models and local descriptors. In order to evaluate the results, a new metric that combines both segmentation and classification results simultaneously is presented. The effects of voxel size and incorporation of RGB color and laser reflectance intensity on the classification results are also discussed. The method is evaluated on standard data sets using different metrics to demonstrate its efficacy.

  17. Support Vector Machine Based Tool for Plant Species Taxonomic Classification

    OpenAIRE

    Manimekalai .K; Vijaya.MS

    2014-01-01

    Plant species are living things and are generally categorized in terms of Domain, Kingdom, Phylum, Class, Order, Family, Genus and name of Species in a hierarchical fashion. This paper formulates the taxonomic leaf categorization problem as the hierarchical classification task and provides a suitable solution using a supervised learning technique namely support vector machine. Features are extracted from scanned images of plant leaves and trained using SVM. Only class, order, family of plants...

  18. Image Analysis and Classification Based on Soil Strength

    Science.gov (United States)

    2016-08-01

    Impact Hammer, which is light, easy to operate, and cost effective . The Clegg Impact Hammer measures stiffness of the soil surface by drop- ping a... effect on out-of-scene classifications. More statistical analy- sis should, however, be done to compare the measured field spectra, the WV2 training...DISCLAIMER: The contents of this report are not to be used for advertising , publication, or promotional purposes. Ci- tation of trade names does not

  19. Interrater reliability of a Pilates movement-based classification system.

    Science.gov (United States)

    Yu, Kwan Kenny; Tulloch, Evelyn; Hendrick, Paul

    2015-01-01

    To determine the interrater reliability for identification of a specific movement pattern using a Pilates Classification system. Videos of 5 subjects performing specific movement tasks were sent to raters trained in the DMA-CP classification system. Ninety-six raters completed the survey. Interrater reliability for the detection of a directional bias was excellent (Pi = 0.92, and K(free) = 0.89). Interrater reliability for classifying an individual into a specific subgroup was moderate (Pi = 0.64, K(free) = 0.55) however raters who had completed levels 1-4 of the DMA-CP training and reported using the assessment daily demonstrated excellent reliability (Pi = 0.89 and K(free) = 0.87). The reliability of the classification system demonstrated almost perfect agreement in determining the existence of a specific movement pattern and classifying into a subgroup for experienced raters. There was a trend for greater reliability associated with increased levels of training and experience of the raters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. SB certification handout material requirements, test methods, responsibilities, and minimum classification levels for mixture-based specification for flexible base.

    Science.gov (United States)

    2012-10-01

    A handout with tables representing the material requirements, test methods, responsibilities, and minimum classification levels mixture-based specification for flexible base and details on aggregate and test methods employed, along with agency and co...

  1. Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks.

    Science.gov (United States)

    Taamneh, Madhar; Taamneh, Salah; Alkheder, Sharaf

    2017-09-01

    Artificial neural networks (ANNs) have been widely used in predicting the severity of road traffic crashes. All available information about previously occurred accidents is typically used for building a single prediction model (i.e., classifier). Too little attention has been paid to the differences between these accidents, leading, in most cases, to build less accurate predictors. Hierarchical clustering is a well-known clustering method that seeks to group data by creating a hierarchy of clusters. Using hierarchical clustering and ANNs, a clustering-based classification approach for predicting the injury severity of road traffic accidents was proposed. About 6000 road accidents occurred over a six-year period from 2008 to 2013 in Abu Dhabi were used throughout this study. In order to reduce the amount of variation in data, hierarchical clustering was applied on the data set to organize it into six different forms, each with different number of clusters (i.e., clusters from 1 to 6). Two ANN models were subsequently built for each cluster of accidents in each generated form. The first model was built and validated using all accidents (training set), whereas only 66% of the accidents were used to build the second model, and the remaining 34% were used to test it (percentage split). Finally, the weighted average accuracy was computed for each type of models in each from of data. The results show that when testing the models using the training set, clustering prior to classification achieves (11%-16%) more accuracy than without using clustering, while the percentage split achieves (2%-5%) more accuracy. The results also suggest that partitioning the accidents into six clusters achieves the best accuracy if both types of models are taken into account.

  2. Classification of integrable two-dimensional models of relativistic field theory by means of computer

    International Nuclear Information System (INIS)

    Getmanov, B.S.

    1988-01-01

    The results of classification of two-dimensional relativistic field models (1) spinor; (2) essentially-nonlinear scalar) possessing higher conservation laws using the system of symbolic computer calculations are presented shortly

  3. Supervised Classification High-Resolution Remote-Sensing Image Based on Interval Type-2 Fuzzy Membership Function

    Directory of Open Access Journals (Sweden)

    Chunyan Wang

    2018-05-01

    Full Text Available Because of the degradation of classification accuracy that is caused by the uncertainty of pixel class and classification decisions of high-resolution remote-sensing images, we proposed a supervised classification method that is based on an interval type-2 fuzzy membership function for high-resolution remote-sensing images. We analyze the data features of a high-resolution remote-sensing image and construct a type-1 membership function model in a homogenous region by supervised sampling in order to characterize the uncertainty of the pixel class. On the basis of the fuzzy membership function model in the homogeneous region and in accordance with the 3σ criterion of normal distribution, we proposed a method for modeling three types of interval type-2 membership functions and analyze the different types of functions to improve the uncertainty of pixel class expressed by the type-1 fuzzy membership function and to enhance the accuracy of classification decision. According to the principle that importance will increase with a decrease in the distance between the original, upper, and lower fuzzy membership of the training data and the corresponding frequency value in the histogram, we use the weighted average sum of three types of fuzzy membership as the new fuzzy membership of the pixel to be classified and then integrated into the neighborhood pixel relations, constructing a classification decision model. We use the proposed method to classify real high-resolution remote-sensing images and synthetic images. Additionally, we qualitatively and quantitatively evaluate the test results. The results show that a higher classification accuracy can be achieved with the proposed algorithm.

  4. Support Vector Machine and Parametric Wavelet-Based Texture Classification of Stem Cell Images

    National Research Council Canada - National Science Library

    Jeffreys, Christopher

    2004-01-01

    .... Since colony texture is a major discriminating feature in determining quality, we introduce a non-invasive, semi-automated texture-based stem cell colony classification methodology to aid researchers...

  5. Single-labelled music genre classification using content-based features

    CSIR Research Space (South Africa)

    Ajoodha, R

    2015-11-01

    Full Text Available In this paper we use content-based features to perform automatic classification of music pieces into genres. We categorise these features into four groups: features extracted from the Fourier transform’s magnitude spectrum, features designed...

  6. [Classification of cell-based medicinal products and legal implications: An overview and an update].

    Science.gov (United States)

    Scherer, Jürgen; Flory, Egbert

    2015-11-01

    In general, cell-based medicinal products do not represent a uniform class of medicinal products, but instead comprise medicinal products with diverse regulatory classification as advanced-therapy medicinal products (ATMP), medicinal products (MP), tissue preparations, or blood products. Due to the legal and scientific consequences of the development and approval of MPs, classification should be clarified as early as possible. This paper describes the legal situation in Germany and highlights specific criteria and concepts for classification, with a focus on, but not limited to, ATMPs and non-ATMPs. Depending on the stage of product development and the specific application submitted to a competent authority, legally binding classification is done by the German Länder Authorities, Paul-Ehrlich-Institut, or European Medicines Agency. On request by the applicants, the Committee for Advanced Therapies may issue scientific recommendations for classification.

  7. Classification of fibroglandular tissue distribution in the breast based on radiotherapy planning CT

    International Nuclear Information System (INIS)

    Juneja, Prabhjot; Evans, Philip; Windridge, David; Harris, Emma

    2016-01-01

    Accurate segmentation of breast tissues is required for a number of applications such as model based deformable registration in breast radiotherapy. The accuracy of breast tissue segmentation is affected by the spatial distribution (or pattern) of fibroglandular tissue (FT). The goal of this study was to develop and evaluate texture features, determined from planning computed tomography (CT) data, to classify the spatial distribution of FT in the breast. Planning CT data of 23 patients were evaluated in this study. Texture features were derived from the radial glandular fraction (RGF), which described the distribution of FT within three breast regions (posterior, middle, and anterior). Using visual assessment, experts grouped patients according to FT spatial distribution: sparse or non-sparse. Differences in the features between the two groups were investigated using the Wilcoxon rank test. Classification performance of the features was evaluated for a range of support vector machine (SVM) classifiers. Experts found eight patients and 15 patients had sparse and non-sparse spatial distribution of FT, respectively. A large proportion of features (>9 of 13) from the individual breast regions had significant differences (p <0.05) between the sparse and non-sparse group. The features from middle region had most significant differences and gave the highest classification accuracy for all the SVM kernels investigated. Overall, the features from middle breast region achieved highest accuracy (91 %) with the linear SVM kernel. This study found that features based on radial glandular fraction provide a means for discriminating between fibroglandular tissue distributions and could achieve a classification accuracy of 91 %

  8. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    Science.gov (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  9. POLSAR LAND COVER CLASSIFICATION BASED ON HIDDEN POLARIMETRIC FEATURES IN ROTATION DOMAIN AND SVM CLASSIFIER

    Directory of Open Access Journals (Sweden)

    C.-S. Tao

    2017-09-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets’ scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy

  10. Establishing structure-property correlations and classification of base oils using statistical techniques and artificial neural networks

    International Nuclear Information System (INIS)

    Kapur, G.S.; Sastry, M.I.S.; Jaiswal, A.K.; Sarpal, A.S.

    2004-01-01

    The present paper describes various classification techniques like cluster analysis, principal component (PC)/factor analysis to classify different types of base stocks. The API classification of base oils (Group I-III) has been compared to a more detailed NMR derived chemical compositional and molecular structural parameters based classification in order to point out the similarities of the base oils in the same group and the differences between the oils placed in different groups. The detailed compositional parameters have been generated using 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopic methods. Further, oxidation stability, measured in terms of rotating bomb oxidation test (RBOT) life, of non-conventional base stocks and their blends with conventional base stocks, has been quantitatively correlated with their 1 H NMR and elemental (sulphur and nitrogen) data with the help of multiple linear regression (MLR) and artificial neural networks (ANN) techniques. The MLR based model developed using NMR and elemental data showed a high correlation between the 'measured' and 'estimated' RBOT values for both training (R=0.859) and validation (R=0.880) data sets. The ANN based model, developed using fewer number of input variables (only 1 H NMR data) also showed high correlation between the 'measured' and 'estimated' RBOT values for training (R=0.881), validation (R=0.860) and test (R=0.955) data sets

  11. Chemometric classification of Chinese lager beers according to manufacturer based on data fusion of fluorescence, UV and visible spectroscopies.

    Science.gov (United States)

    Tan, Jin; Li, Rong; Jiang, Zi-Tao

    2015-10-01

    We report an application of data fusion for chemometric classification of 135 canned samples of Chinese lager beers by manufacturer based on the combination of fluorescence, UV and visible spectroscopies. Right-angle synchronous fluorescence spectra (SFS) at three wavelength difference Δλ=30, 60 and 80 nm and visible spectra in the range 380-700 nm of undiluted beers were recorded. UV spectra in the range 240-400 nm of diluted beers were measured. A classification model was built using principal component analysis (PCA) and linear discriminant analysis (LDA). LDA with cross-validation showed that the data fusion could achieve 78.5-86.7% correct classification (sensitivity), while those rates using individual spectroscopies ranged from 42.2% to 70.4%. The results demonstrated that the fluorescence, UV and visible spectroscopies complemented each other, yielding higher synergic effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations.

    Science.gov (United States)

    Torkzaban, Bahareh; Kayvanjoo, Amir Hossein; Ardalan, Arman; Mousavi, Soraya; Mariotti, Roberto; Baldoni, Luciana; Ebrahimie, Esmaeil; Ebrahimi, Mansour; Hosseini-Mazinani, Mehdi

    2015-01-01

    Finding efficient analytical techniques is overwhelmingly turning into a bottleneck for the effectiveness of large biological data. Machine learning offers a novel and powerful tool to advance classification and modeling solutions in molecular biology. However, these methods have been less frequently used with empirical population genetics data. In this study, we developed a new combined approach of data analysis using microsatellite marker data from our previous studies of olive populations using machine learning algorithms. Herein, 267 olive accessions of various origins including 21 reference cultivars, 132 local ecotypes, and 37 wild olive specimens from the Iranian plateau, together with 77 of the most represented Mediterranean varieties were investigated using a finely selected panel of 11 microsatellite markers. We organized data in two '4-targeted' and '16-targeted' experiments. A strategy of assaying different machine based analyses (i.e. data cleaning, feature selection, and machine learning classification) was devised to identify the most informative loci and the most diagnostic alleles to represent the population and the geography of each olive accession. These analyses revealed microsatellite markers with the highest differentiating capacity and proved efficiency for our method of clustering olive acces