WorldWideScience

Sample records for based ceramic tile

  1. Online Detection Approach for Rectangle Ceramic Tile Based on Sequenced Scenery Image

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2013-06-01

    Full Text Available Image based ceramic tile detection is a way to labor liberation in the production process of ceramic tile. Shapes of ceramic tiles studied in this study are rectangle with different sizes. Many existed researches are based on a situation that only a piece of tile goes through special rail one time, resulting in one or less piece of tile hold in the image from CCD sensor. But in fact, multiple tiles with the same sizes run in a row simultaneously at most factories’ rails, and a 'scenery' image is obtained from CCD sensor. And the image processing method based on close-up images is not satisfied in such cases. To detect different rectangle ceramic tiles online according to a sequence of scenery images, this study provide a vector corner method to decide the rectangle tiles with known size information, and a valley detection method via key-image-frames strategy to distinguish the first row in images. Finally, our Online Approach for Rectangle Tile Detection (OARTD was embedded into a detection system and applied to a factory; testing results validated its good performance. Indeed, the use of such an automatic system, to control a tile plant for shape classifying has a good prospect.

  2. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  3. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  4. Repairing ceramic insulating tiles

    Science.gov (United States)

    Dunn, B. R.; Laymance, E. L.

    1980-01-01

    Fused-silica tiles containing large voids or gauges are repaired without adhesives by plug insertion method. Tiles are useful in conduits for high-temperature gases, in furnaces, and in other applications involving heat insulation.

  5. Characterization of photocatalytically active coatings based on TiO2/Zn-Al layered double hydroxide on ceramic tiles

    Directory of Open Access Journals (Sweden)

    Vulić Tatjana J.

    2013-01-01

    Full Text Available The self-cleaning function (photocatalytic activity and surface hydrophilicity/hydrophobicity is of great importance for ceramic tiles from both economic and environmental point of view. This research is focused on the preparation of suitable photocatalytic suspensions studying the influence of the photocatalyst powder amount and the molecular mass of polyethylene glycol (PEG on the self-cleaning properties of the suspensions deposited on the ceramic tile surface. Photocatalysts based on Zn-Al double layered hydroxides with TiO2 as active component, were synthesized and used for the preparation of the suspensions. The coated tiles prepared using smaller photocatalyst amount and the highest investigated molecular mass of PEG (PEG 4000 showed the highest photocatalytic activity in the Rhodamine B degradation reaction, as well as the appropriate surface properties. [Projekat Ministarstva nauke Republike Srbije, br. III45008

  6. Production Process for Strong, Light Ceramic Tiles

    Science.gov (United States)

    Holmquist, G. R.; Cordia, E. R.; Tomer, R. S.

    1985-01-01

    Proportions of ingredients and sintering time/temperature schedule changed. Production process for lightweight, high-strength ceramic insulating tiles for Space Shuttle more than just scaled-up version of laboratory process for making small tiles. Boron in aluminum borosilicate fibers allows fusion at points where fibers contact each other during sintering, thereby greatly strengthening tiles structure.

  7. Composite treatment of ceramic tile armor

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  8. Composite treatment of ceramic tile armor

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2012-01-02

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  9. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  10. Electrokinetic desalination of glazed ceramic tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Ferreira, Celia; Christensen, Iben Vernegren

    2010-01-01

    Electrokinetic desalination is a method where an applied electric DC field is the driving force for removal of salts from porous building materials. In the present paper, the method is tested in laboratory scale for desalination of single ceramic tiles. In a model system, where a tile was contami......Electrokinetic desalination is a method where an applied electric DC field is the driving force for removal of salts from porous building materials. In the present paper, the method is tested in laboratory scale for desalination of single ceramic tiles. In a model system, where a tile...

  11. Ceramic-ceramic shell tile thermal protection system and method thereof

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Smith, Marnell (Inventor); Goldstein, Howard E. (Inventor); Zimmerman, Norman B. (Inventor)

    1986-01-01

    A ceramic reusable, externally applied composite thermal protection system (TPS) is proposed. The system functions by utilizing a ceramic/ceramic upper shell structure which effectively separates its primary functions as a thermal insulator and as a load carrier to transmit loads to the cold structure. The composite tile system also prevents impact damage to the atmospheric entry vehicle thermal protection system. The composite tile comprises a structurally strong upper ceramic/ceramic shell manufactured from ceramic fibers and ceramic matrix meeting the thermal and structural requirements of a tile used on a re-entry aerospace vehicle. In addition, a lightweight high temperature ceramic lower temperature base tile is used. The upper shell and lower tile are attached by means effective to withstand the extreme temperatures (3000 to 3200F) and stress conditions. The composite tile may include one or more layers of variable density rigid or flexible thermal insulation. The assembly of the overall tile is facilitated by two or more locking mechanisms on opposing sides of the overall tile assembly. The assembly may occur subsequent to the installation of the lower shell tile on the spacecraft structural skin.

  12. Natural radioactivity in imported ceramic tiles used in Serbia

    Directory of Open Access Journals (Sweden)

    Marija M. Janković

    2013-09-01

    Full Text Available Ceramic tiles are one of the commonly used decorative building materials. Body of ceramic tiles is a mixture of different raw materials including clays, quartz materials and feldspat, and may be glazed or left unglazed. Due to the presence of zircon in the glaze, ceramic tiles can show natural radioactivity concentration significantly higher than the average values for building materials. This study presents a summary of results obtained by a survey which was consisted of measurements of activity concentrations of natural radionuclides in imported ceramic tile samples used in Serbia using a gamma spectrometer with HPGe detector. Based on the obtained concentrations, gamma index, radium equivalent activity, the indoor absorbed dose rate and the corresponding annual effective dose were evaluated to assess the potential radiological hazard associated with these building materials.

  13. Shaving Ceramic Tiles To Final Dimensions

    Science.gov (United States)

    Shaw, Ernest

    1992-01-01

    Combination of template and routing tool cuts ceramic tiles to final dimensions. Template guides router along precisely defined planes to accurately and uniformly shave chamfers on edge of tiles. Legs of template temporarily bonded to workpiece by double-backed adhesive tape. Adaptable to in-situ final machining of other nominally flat, narrow surfaces.

  14. Model Based Ceramic tile inspection using Discrete Wavelet Transform and Euclidean Distance

    CERN Document Server

    Elmougy, Samir; El-Azab, Ahmed

    2010-01-01

    Visual inspection of industrial products is used to determine the control quality for these products. This paper deals with the problem of visual inspection of ceramic tiles industry using Wavelet Transform. The third level the coefficients of two dimensions Haar Discrete Wavelet Transform (HDWT) is used in this paper to process the images and feature extraction. The proposed algorithm consists of two main phases. The first phase is to compute the wavelet transform for an image free of defects which known as reference image, and the image to be inspected which known as test image. The second phase is used to decide whether the tested image is defected or not using the Euclidean distance similarity measure. The experimentation results of the proposed algorithm give 97% for correct detection of ceramic defects.

  15. Characterization of photocatalytically active coatings based on TiO2/Zn-Al layered double hydroxide on ceramic tiles

    OpenAIRE

    Vulić Tatjana J.; Rudić Ognjen Lj.; Ranogajec Jonjaua G.

    2013-01-01

    The self-cleaning function (photocatalytic activity and surface hydrophilicity/hydrophobicity) is of great importance for ceramic tiles from both economic and environmental point of view. This research is focused on the preparation of suitable photocatalytic suspensions studying the influence of the photocatalyst powder amount and the molecular mass of polyethylene glycol (PEG) on the self-cleaning properties of the suspensions deposited on the ceramic tile...

  16. Research on Variable Structure Parametric Design System of Ceramic Tile Mould Based on Modular

    Institute of Scientific and Technical Information of China (English)

    DAI Xiao-bo; DONG Yu-de; QIN Lei

    2014-01-01

    To solve the existing problems during the ceramic mold enterprises product design and development process, the variable structure parametric design system based on modular of ceramic mold has been developed. The system uses the object-oriented technology and top-down design concept as a guide, establishes a ceramic mold parametric design process, divides the process of ceramic mold design into modules of different levels and creates a component model library based on the functional analysis. Expanding modular thinking to parts structure design level is an effective solution to the difficulty of changing the structure during the product design process. Examples show that the system can achieve a ceramic mold product design, improve design efficiency.

  17. Cutting Symmetrical Recesses In Soft Ceramic Tiles

    Science.gov (United States)

    Nesotas, Tony C.; Tyler, Brent

    1989-01-01

    Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.

  18. Fly ash of mineral coal as ceramic tiles raw material.

    Science.gov (United States)

    Zimmer, A; Bergmann, C P

    2007-01-01

    The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles.

  19. Radioactivity level in Chinese building ceramic tile.

    Science.gov (United States)

    Xinwei, L

    2004-01-01

    The activity concentrations of (226)Ra, (232)Th and (40)K have been determined by gamma ray spectrometry. The concentrations of (226)Ra, (232)Th and (40)K range from 158.3 to 1087.6, 91.7 to 1218.4, and 473.8 to 1031.3 Bq kg(-1) for glaze, and from 63.5 to 131.4, 55.4 to 106.5, and 386.7 to 866.8 Bq kg(-1) for ceramic tile, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and with the typical world values. The radium equivalent activities (Ra(eq)), external hazard index (H(ex)) and internal hazard index (H(in)) associated with the radionuclides were calculated. The Ra(eq) values of all ceramic tiles are lower than the limit of 370 Bq kg(-1). The values of H(ex) and H(in) calculated according to the Chinese criterion for ceramic tiles are less than unity. The Ra(eq) value for the glaze of glazed tile collected from some areas are >370 Bq kg(-1).

  20. Penetration dynamics of AP8 in thin ceramic tiles

    NARCIS (Netherlands)

    Abadjieva, E.; Khoe, Y.S.

    2013-01-01

    The interaction of thin ceramic tiles with AP8 (WC core, 7,62 mm) at 1000 m/s velocity has been studied experimentally and numerically. “Thin” ceramic tiles refers here to ratio of the tile thickness (t) to the projectile diameter, (d), t/d@ 1, as they are both in the same order. The method applied

  1. Chemical Composition of Ceramic Tile Glazes

    Science.gov (United States)

    Anufrik, S. S.; Kurian, N. N.; Zhukova, I. I.; Znosko, K. F.; Belkov, M. V.

    2016-11-01

    We have carried out laser emission and x-ray fluorescence spectral analysis of glaze before and after its application to ceramic tile produced by Keramin JSC (Belarus). We have studied the internal microstructure of the ceramic samples. It was established that on the surface and within the bulk interior of all the samples, there are micropores of sizes ranging from a few micrometers to tens of micrometers and microcracks as long as several hundred micrometers. The presence of micropores on the surface of the ceramic tile leads to an increase in the water absorption level and a decrease in frost resistance. It was found that a decrease in the surface tension of ceramic tile coatings is promoted by substitution of sodium by potassium, silica by boric anhydride, magnesium and barium by calcium, CaO by sodium oxide, and SiO2 by chromium oxide. We carried out a comparative analysis of the chemical composition of glaze samples using S4 Pioneer and ElvaX x-ray fluorescence spectrometers and also an LIBS laser emission analyzer.

  2. Preparation of high performance ceramic tiles using waste tile granules and ceramic polishing powder

    Institute of Scientific and Technical Information of China (English)

    WANG Gong-xun; SU Da-gen

    2008-01-01

    This paper presents an innovative approach to reusing waste tile granules (TG) and ceramic polishing powder (PP) to produce high performance ceramic tiles. We studied formulations each with a TG mass fraction of 25.0% and a different PP mass fraction between 1.0% and 7.0%. The formulations included a small amount of borax additive of a mass fracton between 0.2%and 1.2%. The effects of these industrial by-products on compressive strength, water absorption and microstructure of the new ceramic tiles were investigated. The results indicate that the compressive strength decreases and water absorption increases when TG with a mass fraction of 25.0% are added. Improvement of the compressive strength may be achieved when TG (up to 25.0%)and PP (up to 2.0%) are both used at the same time. In particular, the compressive strength improvement can be maximized and water absorption reduced when a borax additive of up to 0.5% is used as a flux. Scanning electron microscopy reveals that a certain amount of fine PP granules and a high content of fluxing oxides from borax avail the formation of glassy phase that fills up the pores in the new ceramic tiles, resulting in a dense product with high compressive strength and low water absorption.

  3. Two Views of Islam: Ceramic Tile Design and Miniatures.

    Science.gov (United States)

    Macaulay, Sara Grove

    2001-01-01

    Describes an art project focusing on Islamic art that consists of two parts: (1) ceramic tile design; and (2) Islamic miniatures. Provides background information on Islamic art and step-by-step instructions for designing the Islamic tile and miniature. Includes learning objectives and resources on Islamic tile miniatures. (CMK)

  4. Analysis of Thick Sandwich Shells with Embedded Ceramic Tiles

    Science.gov (United States)

    Davila, Carlos G.; Smith, C.; Lumban-Tobing, F.

    1996-01-01

    The Composite Armored Vehicle (CAV) is an advanced technology demonstrator of an all-composite ground combat vehicle. The CAV upper hull is made of a tough light-weight S2-glass/epoxy laminate with embedded ceramic tiles that serve as armor. The tiles are bonded to a rubber mat with a carefully selected, highly viscoelastic adhesive. The integration of armor and structure offers an efficient combination of ballistic protection and structural performance. The analysis of this anisotropic construction, with its inherent discontinuous and periodic nature, however, poses several challenges. The present paper describes a shell-based 'element-layering' technique that properly accounts for these effects and for the concentrated transverse shear flexibility in the rubber mat. One of the most important advantages of the element-layering technique over advanced higher-order elements is that it is based on conventional elements. This advantage allows the models to be portable to other structural analysis codes, a prerequisite in a program that involves the computational facilities of several manufacturers and government laboratories. The element-layering technique was implemented into an auto-layering program that automatically transforms a conventional shell model into a multi-layered model. The effects of tile layer homogenization, tile placement patterns, and tile gap size on the analysis results are described.

  5. Slipping properties of ceramic tiles / Quantification of slip resistance

    Science.gov (United States)

    Terjek, Anita

    2013-12-01

    Regarding the research and application of ceramic tiles there is a great importance of defining precisely the interaction and friction between surfaces. Measuring slip resistance of floor coverings is a complex problem; slipperiness is always interpreted relatively. In the lack of a consistent and clear EU standard, it is practical to use more method in combination. It is necessary to examine the structure of materials in order to get adequate correlation. That is why measuring techniques of surface roughness, an important contributor to slip resistance and cleaning, is fundamental in the research. By comparing the obtained test results, relationship between individual methods of analysis and values may be determined and based on these information recommendations shall be prepared concerning the selection and application of tiles.

  6. Preparation and characterization of photo chromic effect for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Atay, B.; Goktas, A.; Dogan, A.

    2011-07-01

    Ceramic tile industry is developing due to the technological researches in scientific area and new tiles which are not only a traditional ceramic also have many multiple functionalities have been marketed nowadays. These tiles like photo catalytic, photovoltaic, antibacterial and etc. improve the quality of life and provide lots of benefits such as self cleaning, energy production, climate control. The goal of this study was to enhance the photo chromic function on ceramic tiles which is the attitude of changing color in a reversible way by electromagnetic radiation and widely used in many areas because of its aesthetic and also functional properties. High response time of photo chromic features of ceramic tiles have been achieved by employing of polymeric gel with additives of photoactive dye onto the ceramic surface. Photo chromic layer with a thickness of approximately 45- 50 {mu}m was performed by using spray coating technique which provided homogeneous deposition on surface. Photo chromic ceramic tiles with high photo chromic activity such as reversibly color change between {delta}E= 0.29 and 26.31 were obtained successfully. The photo chromic performance properties and coloring-bleaching mechanisms were analyzed by spectrophotometer. The microstructures of coatings were investigated both by stereo microscopy and scanning electron microscopy (SEM). (Author) 13 refs.

  7. ASSESSMENT OF CERAMIC TILE FROST RESISTANCE BY MEANS OF THE FREQUENCY INSPECTION METHOD

    Directory of Open Access Journals (Sweden)

    MICHAL MATYSÍK

    2011-06-01

    Full Text Available The paper presents some results of our experimental analysis of ceramic cladding element frost resistance, particular attention being paid to the application of the frequency inspection method. Three different sets of ceramic tiles of the Ia class to EN 14 411 B standard made by various manufacturers have been analyzed. The ceramic tiles under investigation have been subjected to freeze-thaw-cycle-based degradation in compliance with the relevant ČSN EN ISO 10545-12 standard. Furthermore, accelerated degradation procedure has been applied to selected test specimens, consisting in reducing the temperature of water soaked ceramic tiles in the course of the degradation cycles down –70°C. To verify the correctness of the frequency inspection results, additional physical properties of the ceramic tiles under test have been measured, such as, the ceramic tile strength limit, modulus of elasticity and modulus of deformability, resulting from the flexural tensile strength tests, integrity defect and surface micro-geometry tracking. It has been proved that the acoustic method of frequency inspection is a sensitive indicator of the structure condition and can be applied to the ceramic cladding element frost resistance and service life prediction assessment.

  8. Fragment and particle size distribution of impacted ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Weerheijm, J.; Ditzhuijzen, C.; Tuinman, I.

    2014-01-01

    The fragmentation of ceramic tiles under ballistic impact has been studied. Fragments and aerosol (respirable) particles were collected and analyzed to determine the total surface area generated by fracturing (macro-cracking and comminution) of armor grade ceramics. The larger fragments were collect

  9. Correlation and principal component analysis in ceramic tiles characterization

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2015-01-01

    Full Text Available The present study deals with the analysis of the characteristics of ceramic wall and floor tiles on the basis of their quality parameters: breaking force, flexural strenght, absorption and shrinking. Principal component analysis was applied in order to detect potential similarities and dissimilarities among the analyzed tile samples, as well as the firing regimes. Correlation analysis was applied in order to find correlations among the studied quality parameters of the tiles. The obtained results indicate particular differences between the samples on the basis of the firing regimes. However, the correlation analysis points out that there is no statistically significant correlation among the quality parameters of the studied samples of the wall and floor ceramic tiles.[Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. III 45008

  10. 基于机器视觉瓷砖尺寸在线检测系统设计%System design of ceramic tile dimension online detection based on machine vision

    Institute of Scientific and Technical Information of China (English)

    郭峰林; 管庶安; 胡尧俊; 田魁

    2013-01-01

    Proposed a novelty ceramic tile dimension detection method based on machine vision using overhead light source with inclined installation,uses this method to carry on the ceramic tile image acquisition,then,according to the image characteristics designs ceramic tile vertex recognition algorithm and extracts the ceramic tile vertex position,then,adjusts the vertex position using the camera calibration parameter,finally,according to standard ceramic tile vertex position and relative deviation of testing ceramic tile vertex position indirectly computes ceramic tile size.Experiments show that the error of device online detection value and artificial measuring value of ceramic tile size is small and the repeated test precision of system is accuracy,which show that the online detection result is reliable.Meanwhile,the overall system can conveniently integrate with other detection facility,which is able to save the equipment cost,the manpower cost as well as the equipment occupying space for the equipment user.%提出一种上光源侧射式的机器视觉瓷砖尺寸检测新方法,利用该方法进行瓷砖图像获取,然后,根据图像特征设计瓷砖角点识别算法,提取瓷砖角点位置,接着,利用相机标定参数对角点位置进行校正,最后,根据标准瓷砖角点位置与待测瓷砖角点位置的相对偏差间接计算瓷砖尺寸.实验表明,瓷砖尺寸的在线检测值与人工测量值误差小,系统的.重复检测精度高,检测结果可信.同时,整个系统能够方便地与其他检测设备整合,能为设备使用者节省设备成本、人力成本以及设备占地空间.

  11. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  12. Influence of Polymer Restraint on Ballistic Performanceof Alumina Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    P.R.S. Reddy

    2008-03-01

    Full Text Available An experimental study has been carried out to evaluate the influence of confinement ofalumina ceramic tiles through polymer restraint, on its ballistic performance. Tiles of 99.5 per centpurity alumina were subjected to ballistic impact against 7.62 mm armour piercing projectiles atvelocities of about 820 m/s. The tiles of size 75 mm x 75 mm x 7 mm were confined on both facesby effectively bonding varying numbers of layers of polymer fabrics. These were then bondedto a 10 mm thick fibre glass laminate as a backing using epoxy resin. High performance polyethyleneand aramid polymer fabrics were used in the current set of experiments for restraining the tiles.Comparative effects of confinement on energy absorption of tiles with varied number of layersof fabrics were evaluated. It was observed that by providing effective confinement to the tile,energy absorption could be doubled with increase in areal density by about 13 per cent.Photographs of the damage and the effects of restraint on improvement in energy absorptionof ceramic tiles are presented and discussed.

  13. Military Curriculum Materials for Vocational and Technical Education. Builders School, Ceramic Tile Setting 3-9.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, for individualized or group instruction on ceramic tile setting, was developed from military sources for use in vocational education. The course provides students with skills in mortar preparation, surface preparation, tile layout planning, tile setting, tile cutting, and the grouting of tile joints. Both theory and shop assignments…

  14. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    flexural strength, lowest apparent porosity and water absorption of EAF slag based tile was attained at the composition of 40 wt.% EAF slag--30 wt.% ball clay--10 wt.% feldspar--20 wt.% silica. The properties of ceramic tile made with EAF slag waste (up to 40 wt.%), especially flexural strength are comparable to those of commercial ceramic tile and are, therefore, suitable as high flexural strength and heavy-duty green ceramic floor tile. Continuous development is currently underway to improve the properties of tile so that this recycling approach could be one of the potential effective, efficient and sustainable solutions in sustaining our nature.

  15. Electrospun SiO2 "necklaces" on unglazed ceramic tiles: a planarizing strategy

    Science.gov (United States)

    Di Mauro, Alessandro; Fragalà, Maria Elena

    2015-05-01

    Silica based nanofibres have been deposited on unglazed ceramic tiles by combining electrospinning and sol-gel processes. Poly(vinyl pyrrolidone) (PVP) alcoholic solutions and commercial spin on glass (Accuglass) mixtures have been used to obtain composite fibrous non-woven mats totally converted, after thermal annealing at 600 °C, to SiO2 microsphere "necklaces". The possibility to get an uniform fibres coverage onto the tile surface confirms the validity of electrospinning (easily scalable to large surface samples) as coating strategy to cover the macroscopic defects typical of the polished unglazed tile surface and improve surface planarization.

  16. Composite definition features using the eastern ornament in ceramic tiles

    OpenAIRE

    2013-01-01

    This paper was asked a series of questions for the study of composition of the artistic shaping of ceramic tile with oriental ornaments and how to use in interior design. Particular attention is paid to individual elements of ornament and use them in areas such as kitchens, bathrooms, hookah area, cafe and more.

  17. Evaluation of the effect of lichens on ceramic roofing tiles by scanning electron microscopy and energy-dispersive spectroscopy analyses.

    Science.gov (United States)

    Kiurski, Jelena S; Ranogajec, Jonjaua G; Ujhelji, Agnes L; Radeka, Miroslava M; Bokorov, Milos T

    2005-01-01

    The effect of the actions of some lichens on the quality of ceramic roofing tiles was investigated in view of textural and microstructural changes considering their biocorrosion resistance. Two types (extruded and pressed) of the real ceramic roofing tiles aged 6 to 10 years, as well as the ceramic model systems formed with the additives of the specific chemical composition Cu-slag powder (10 wt%) and CuO powder (1 wt%), treated with various concentrations of oxalic acid (0.01 wt%, 0.1 wt%, and 4 wt%) were investigated. The thalli of lichen (Verrucaria nigrescens) growth on ceramic roofing tile were examined by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Investigation by SEM and EDS gave information regarding the ultrastructure characteristics of the thallus and the lichen-ceramic tile contact zone, allowing the observation of the hyphal penetration and filling up of the fissures and cracks by the lichens' hyphae. The CuO as the raw mixture additive changed the quality of the surface of the ceramic model systems as it has increased resistance to oxalic acid actions. The textural changes in the ceramic model systems and the formation of the identified destructive crystal phase, whewellite, were slowed down. The fundamental interactions between lichens and ceramic materials of the model systems have been identified as physico-chemical processes based on oxalic acid actions, which could cause ceramic matrix deterioration and consequently aging of ceramic roofing tile systems.

  18. Modelling the viscoelasticity of ceramic tiles by finite element

    Science.gov (United States)

    Pavlovic, Ana; Fragassa, Cristiano

    2016-05-01

    This research details a numerical method aiming at investigating the viscoelastic behaviour of a specific family of ceramic material, the Grès Porcelain, during an uncommon transformation, known as pyroplasticity, which occurs when a ceramic tile bends under a combination of thermal stress and own weight. In general, the theory of viscoelasticity can be considered extremely large and precise, but its application on real cases is particularly delicate. A time-depending problem, as viscoelasticity naturally is, has to be merged with a temperature-depending situation. This paper investigates how the viscoelastic response of bending ceramic materials can be modelled by commercial Finite Elements codes.

  19. Characterization of ceramic roof tile wastes as pozzolanic admixture.

    Science.gov (United States)

    Lavat, Araceli E; Trezza, Monica A; Poggi, Mónica

    2009-05-01

    The aim of this work is to study the recycling of tile wastes in the manufacture of blended cements. Cracked or broken ceramic bodies are not accepted as commercial products and, therefore, the unsold waste of the ceramic industry becomes an environment problem. The use of powdered roof tile in cement production, as pozzolanic addition, is reported. The wastes were classified as nonglazed, natural and black glazed tiles. The mineralogy of the powders was controlled by SEM-EDX microscopy, XRD analysis and FTIR spectroscopy. Particle size was checked by laser granulometry. Once the materials were fully characterized, pozzolanic lime consumption tests and Fratini tests were carried out. Different formulations of cement-tile blends were prepared by incorporation of up to 30% weight ratios of recycled waste. The compressive strength of the resulting specimens was measured. The evolution of hydration of the cement-tile blends was analyzed by XRD and FTIR techniques. Vibrational spectroscopy presented accurate evidence of pozzolanic activity. The results of the investigation confirmed the potential use of these waste materials to produce pozzolanic cement.

  20. Automatic Defect Detection and Classification Technique from Image: A Special Case Using Ceramic Tiles

    CERN Document Server

    Rahaman, G M Atiqur

    2009-01-01

    Quality control is an important issue in the ceramic tile industry. On the other hand maintaining the rate of production with respect to time is also a major issue in ceramic tile manufacturing. Again, price of ceramic tiles also depends on purity of texture, accuracy of color, shape etc. Considering this criteria, an automated defect detection and classification technique has been proposed in this report that can have ensured the better quality of tiles in manufacturing process as well as production rate. Our proposed method plays an important role in ceramic tiles industries to detect the defects and to control the quality of ceramic tiles. This automated classification method helps us to acquire knowledge about the pattern of defect within a very short period of time and also to decide about the recovery process so that the defected tiles may not be mixed with the fresh tiles.

  1. Study of the effect of nano surface morphology on the stain-resistant property of ceramic tiles

    Science.gov (United States)

    Pan, S. P.; Hung, J. K.; Liu, Y. T.

    2014-03-01

    In this study, six types of commercially available ceramic tiles, including nano-structured ceramic tiles and regular ceramic tiles, were selected to investigate the effect of surface morphology on their stain-resistant property. The stain-resistant efficiencies of various ceramic tiles with nano-size surface were measured in order to determine the appropriate method for testing ceramic tiles with nano-structure surface.

  2. Air quality comparison between two European ceramic tile clusters

    Science.gov (United States)

    Minguillón, M. C.; Monfort, E.; Escrig, A.; Celades, I.; Guerra, L.; Busani, G.; Sterni, A.; Querol, X.

    2013-08-01

    The European ceramic tile industry is mostly concentrated in two clusters, one in Castelló (Spain) and another one in Modena (Italy). Industrial clusters may have problems to accomplish the EU air quality regulations because of the concentration of some specific pollutants and, hence, the feasibility of the industrial clusters can be jeopardised. The present work assesses the air quality in these ceramic clusters in 2008, when the new EU emission regulations where put into force. PM10 samples were collected at two sampling sites in the Modena ceramic cluster and one sampling site in the Castelló ceramic cluster. PM10 annual average concentrations were 12-14 μg m-3 higher in Modena than in Castelló, and were close to or exceeded the European limit. Air quality in Modena was mainly influenced by road traffic and, in a lower degree, the metalmechanical industry, as evidenced by the high concentrations of Mn, Cu, Zn, Sn and Sb registered. The stagnant weather conditions from Modena hindering dispersion of pollutants also contributed to the relatively high pollution levels. In Castelló, the influence of the ceramic industry is evidenced by the high concentrations of Ti, Se, Tl and Pb, whereas this influence is not seen in Modena. The difference in the impact of the ceramic industry on the air quality in the two areas was attributed to: better abatement systems in the spray-drier facilities in Modena, higher coverage of the areas for storage and handling of dusty raw materials in Modena, presence of two open air quarries in the Castelló region, low degree of abatement systems in the ceramic tile kilns in Castelló, and abundance of ceramic frit, glaze and pigment manufacture in Castelló as opposed to scarce manufacture of these products in Modena. The necessity of additional measures to fulfil the EU air quality requirements in the Modena region is evidenced, despite the high degree of environmental measures implemented in the ceramic industry. The Principal

  3. Evaluation of the thermal comfort of ceramic floor tiles

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2007-09-01

    Full Text Available In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The uncomforting can be characterized by heated floor surfaces in external environments which are exposed to sun radiation (swimming polls areas or by cold floor surfaces in internal environments (bed rooms, path rooms. The property named thermal effusivity which defines the interface temperature when two semi-infinite solids are putted in perfect contact. The introduction of the crustiness surface on the ceramic tiles interferes in the contact temperature and also it can be a strategy to obtain ceramic tiles more comfortable. Materials with low conductivities and densities can be obtained by porous inclusion are due particularly to the processing conditions usually employed. However, the presence of pores generally involves low mechanical strength. This work has the objective to evaluate the thermal comfort of ceramics floor obtained by incorporation of refractory raw materials (residue of the polishing of the porcelanato in industrial atomized ceramic powder, through the thermal and mechanical properties. The theoretical and experimental results show that the porosity and crustiness surface increases; there is sensitive improvement in the comfort by contact.

  4. 基于机器视觉的随机纹理瓷砖的分选系统%Classification System of Random Texture Ceramic Tiles Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    焦亮; 胡国清; Jahangir Alam SM

    2016-01-01

    针对日益加快的瓷砖生产速度与缓慢的人工分选速度之间不协调导致的瓷砖出产效率低下的问题,提出了以机器视觉软件HALCON 11.0为软件开发平台的结合瓷砖颜色、纹理特征提取的算法,以及针对多分类问题的改进多层感知器神经网络算法(MLPNN).首先对拍摄到的瓷砖图像进行去噪预处理,在HSI颜色空间中提取瓷砖的色调(Hue)特征并计算反映瓷砖的纹理特征的灰度共生矩阵(GLCM)和灰度幅值分布特征,再将得到的特征作为多层感知器的神经网络输入层神经元,然后设计以softmax为激活函数的多层感知器神经网络来进行模式匹配,并与BP神经网络模式匹配方法进行对比,最终搭建出具有简单人机交互界面的随机纹理瓷砖的分选实验样机.实验结果表明:本系统对实验的各类随机纹理瓷砖的分选准确率都在90%以上,具有较高的分选准确率,能应用于瓷砖生产实践.%Aiming at the problem of poor efficiency of ceramic tile production caused by the mismatch between higher and higher speed of production and slow speed of artificial classification, the paper presented an algorithm about extracting the features of color and texture of ceramic tiles and an algorithm about improved multilayer perceptron neural network (MLPNN) aiming at the problem of multi-classification based on machine vision software, HALCON 11.0, as the development platform. Firstly, the images of ceramic tiles were denoised as pretreatment. Then the system extracted the hue features of ceramic tiles in HSI color space, calculated the gray level co-occurrence matrix (GLCM) and gray level characteristics of amplitude distribution to reflect the texture feature of ceramic tiles, and put the features as input layer neurons of multilayer perceptron neural network. Next, the paper designed the multilayer perceptron neural network with putting softmax function as the activation for pattern matching, and

  5. Consolidation treatments applied to ceramic tiles: are they homogeneous?

    Directory of Open Access Journals (Sweden)

    D. Costa

    2017-01-01

    Full Text Available The mass consolidation treatment of azulejos is necessary when ceramic biscuits show signs of disaggregation. Such treatment is often used as a complementary conservation technique to the reestablishment of weakened glaze-ceramic bonds. In this research, two commonly used consolidants (ethyl silicate and acrylic resin were tested on artisanal ceramic tiles via mass consolidation and the resulting impregnation profiles were evaluated. The results indicated that after consolidation, hard zones frequently formed due to localized consolidant concentration after the polymerization and curing processes. These inhomogeneous hard zones subsequently influenced the results obtained through conventional mechanical strength testing (i.e. flexural and compression, creating a false impression of success. This research demonstrated that by using the Drilling Resistance Measuring System, impregnation characteristics such as penetration depth and distribution of consolidant could be observed that otherwise could not be discerned through the more common testing methods. As such, a more extensive evaluation of consolidation effects was achieved.

  6. Characterization of low-temperature cofired ceramic tiles as platforms for gas chromatographic separations.

    Science.gov (United States)

    Darko, Ernest; Thurbide, Kevin B; Gerhardt, Geoff C; Michienzi, Joseph

    2013-06-04

    A gas chromatography (GC) column is fabricated within a low-temperature cofired ceramic (LTCC) tile, and its analytical properties are characterized. By using a dual-spiral design, a 100 μm wide square channel up to 15 m in length is produced within an 11 cm × 5.5 cm LTCC tile. The channel is dynamically coated with an OV-101 stationary phase that is cross-linked with dicumyl peroxide. While the uncoated LTCC tiles were able to separate a mixture of n-alkanes, the peak shapes were broad (base width of ~2 min) and tailing. In contrast to this, the coated LTCC tiles produced sharp (base width of ~8-10 s), symmetrical, well-resolved peaks for the same analytes. By using a 7.5 m long channel, about 15,000 plates were obtained for a dodecane test analyte. Further, the coated LTCC tiles were found to produce plate heights that were about 3-fold smaller than those obtained from a conventional capillary GC column of similar length, dimension, and coating operated under the same conditions. As a result, test analyte separations were slightly improved in the LTCC tiles, and their overall performance fared well. In terms of temperature programming, it was found that a series of n-alkanes separated on the LTCC tile provided a cumulative peak capacity of around 54 peaks when using C₈ to C₁₃ as analyte markers. Results indicate that LTCC tiles provide a viable and useful alternative platform for performing good quality GC separations.

  7. Functionalization of ceramic tile surface by sol-gel technique.

    Science.gov (United States)

    Bondioli, F; Taurino, R; Ferrari, A M

    2009-06-15

    The aim of this investigation was the surface functionalization of industrial ceramic tiles by sol-gel technique to improve at the same time the cleanability of unglazed surfaces. This objective was pursued through the design and preparation of nanostructured coating that was deposited on polished unglazed tiles by air-brushing. In particular TiO(2)-SiO(2) binary film with 1, 2 or 5wt% of titania were prepared by using tetraethoxysilane and titania nanoparticles as precursors. The obtained films were characterized by scratch tests to verify the adhesion of the coatings to the polished tiles. To mainly evaluate the effect of the thermal treatment (temperature range 100-600 degrees C) on the photocatalicity of the coatings, the films were studied under UV exposure by contact angle measurements and cleanability test. Particular attention has been paid to preserve the aesthetical aspect of the final product and the obtained hue variation was evaluated by means of UV-visible spectroscopy and colorimetric analysis.

  8. Biofilm formation on the surface of ceramic tiles.

    Science.gov (United States)

    Sessa, R; Di Pietro, M; Zamparelli, M; Schiavoni, G; Del Piano, M

    2000-10-01

    The aim of the study was to investigate the formation of biofilm on the surface of ceramic tiles, widely present in public and private buildings, using six parallel flow chambers. Our flow system was conceived and made to compare biofilm results by parallel distributed rectangular tiles. The tiles, divided into two identical A and B sections, were placed within the flow chambers. Biofilm formation was performed after 72 h and was quantified by viable counts of bacteria. Average viable counts ranged from 1.1x10(7) to 7.3x10(7) cfu cm(-2) and from 1.1x10(7) to 5.8x10(7) cfu cm(-2) respectively for biofilm A and B sections. As statistical analysis does not show significant differences, we can conclude that biofilms obtained were so similar to each other that they confirmed the system reproducibility. Our next step will be to use our system to study Legionella pneumophila and to evaluate the efficacy of antibacterial agents.

  9. Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems

    Science.gov (United States)

    Myers, David E.; Martin, Carl J.; Blosser, Max L.

    2000-01-01

    A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.

  10. Characterization of color texture: color texture based sorting of tiles

    Science.gov (United States)

    Bourada, Y.; Lafon, Dominique; Eterradossi, O.

    1998-09-01

    Many materials used by the building industry show a color texture which affects the product commercial value. This texture can be seen as the spatial arrangement of regions of acceptable color differences. This work describes an appearance based automated sorting via color texture analysis, using ceramic tiles as example. Textural analysis of the tiles digital images expressed in CIEL*a*b* color system is performed through the analysis of intrinsic features of each region and relationships between regions. Results obtained through the automated process are compared to a visual sorting which leads to calculation of application dependant color and texture tolerances.

  11. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    Science.gov (United States)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  12. Study of dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer using CFD simulations

    Science.gov (United States)

    Kriaa, Wassim; Bejaoui, Salma; Mhiri, Hatem; Le Palec, Georges; Bournot, Philippe

    2014-02-01

    In this study, we developed a two-dimensional Computational Fluid Dynamics (CFD) model to simulate dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer (EVA 702). The carrier's motion imposed the choice of a dynamic mesh based on two methods: "spring based smoothing" and "local remeshing". The dryer airflow is considered as turbulent ( Re = 1.09 × 105 at the dryer inlet), therefore the Re-Normalization Group model with Enhanced Wall Treatment was used as a turbulence model. The resolution of the governing equation was performed with Fluent 6.3 whose capacities do not allow the direct resolution of drying problems. Thus, a user defined scalar equation was inserted in the CFD code to model moisture content diffusion into tiles. User-defined functions were implemented to define carriers' motion, thermo-physical properties… etc. We adopted also a "two-step" simulation method: in the first step, we follow the heat transfer coefficient evolution (Hc). In the second step, we determine the mass transfer coefficient (Hm) and the features fields of drying air and ceramic tiles. The found results in mixed convection mode (Fr = 5.39 at the dryer inlet) were used to describe dynamic and thermal fields of airflow and heat and mass transfer close to the ceramic tiles. The response of ceramic tiles to heat and mass transfer was studied based on Biot numbers. The evolutions of averages temperature and moisture content of ceramic tiles were analyzed. Lastly, comparison between experimental and numerical results showed a good agreement.

  13. Porosity Detection in Ceramic Armor Tiles via Ultrasonic Time-Of

    Science.gov (United States)

    Margetan, Frank J.; Richter, Nathaniel; Jensen, Terrence

    2011-06-01

    Some multilayer armor panels contain ceramic tiles as one constituent, and porosity in the tiles can affect armor performance. It is well known that porosity in ceramic materials leads to a decrease in ultrasonic velocity. We report on a feasibility study exploring the use of ultrasonic time-of-flight (TOF) to locate and characterize porous regions in armor tiles. The tiles in question typically have well-controlled thickness, thus simplifying the translation of TOF data into velocity data. By combining UT velocity measurements and X-ray absorption measurements on selected specimens, one can construct a calibration curve relating velocity to porosity. That relationship can then be used to translate typical ultrasonic C-scans of TOF-versus-position into C-scans of porosity-versus-position. This procedure is demonstrated for pulse/echo, focused-transducer inspections of silicon carbide (SiC) ceramic tiles.

  14. High-Strength, Low-Shrinkage Ceramic Tiles

    Science.gov (United States)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Addition of refractory fibers and whiskers to insulating tiles composed primarily of fibrous silica, such as those used on the skin of Space Shuttle orbiter, greatly improves properties. New composition suitable for lightweight, thermally-stable mirror blanks and as furnace and kiln insulation. Improved tiles made with current tile-fabrication processes. For given density, tiles containing silicon carbide and boron additives stronger in flexure than tiles made from silica alone. In addition, tiles with additives nearly immune to heat distortion, whereas pure-silica tiles shrink and become severely distorted.

  15. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  16. Thermal insulation attaching means. [adhesive bonding of felt vibration insulators under ceramic tiles

    Science.gov (United States)

    Leger, L. J. (Inventor)

    1978-01-01

    An improved isolation system is provided for attaching ceramic tiles of insulating material to the surface of a structure to be protected against extreme temperatures of the nature expected to be encountered by the space shuttle orbiter. This system isolates the fragile ceramic tiles from thermally and mechanically induced vehicle structural strains. The insulating tiles are affixed to a felt isolation pad formed of closely arranged and randomly oriented fibers by means of a flexible adhesive and in turn the felt pad is affixed to the metallic vehicle structure by an additional layer of flexible adhesive.

  17. Installation of Ceramic Tile: Residential Thin-Set Methods.

    Science.gov (United States)

    Short, Sam

    This curriculum guide contains materials for use in teaching a course on residential thin-set methods of tile installation. Covered in the individual units are the following topics: the tile industry; basic math; tools; measurement; safety in tile setting; installation materials and guidelines for their use; floors; counter tops and backsplashes;…

  18. Utilisation of different types of coal fly ash in the production of ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Kockal, N. U.

    2012-11-01

    The influence of varying proportions of different types of fly ash (used in place of feldspar) and different sintering temperatures on the sintered properties of ceramic tile bodies was evaluated. The results indicated that sintering ceramic tiles with a high fly ash content at a high temperature caused a decrease in the properties because of bloating. The ceramic samples containing a higher amount of fly ash that were sintered at low temperature exhibited lower water absorption, larger shrinkage and strength because of the densification observed also in microstructural investigation. (Author) 25 refs.

  19. Influência da distribuição granulométrica na estabilidade dimensional de placas cerâmicas de base vermelha Influence of particle size distribution on the dimensional stability of red ceramic tiles

    Directory of Open Access Journals (Sweden)

    A. C. A. Prado

    2008-12-01

    Full Text Available As propriedades do revestimento cerâmico queimado estão intrinsecamente ligadas às características da massa, dentre estas se encontram o tamanho, a distribuição, o formato e o arranjo das partículas. O efeito da distribuição granulométrica de partículas sobre a estabilidade dimensional de placas cerâmicas para revestimentos de base vermelha foi estudado em três massas, todas continham no mínimo 57% de material advindo da Formação Corumbataí. Foram estudadas duas distribuições granulométricas - uma parecida com aquelas usadas no Pólo Cerâmico de Santa Gertrudes e, outra, com uma massa de grés. De uma maneira geral, granulações mais grossas, semelhantes à massa de Santa Gertrudes, variaram menos dimensionalmente quando as placas apresentaram médias e altas porosidades (absorção de água entre 3,0 e 10,0%. Já, granulações mais finas, similares a massas de grés, foram necessárias para a produção de placas de baixa absorção (menor que 3,0%.The properties of final ceramic tiles are related with the mass characteristics, among them the size, shape, distribution and arrange of particles. The effect of particle size distribution on dimensional stability of red ceramic tiles was studied in three masses; all of them composed with, at minimum, 57% of Corumbataí Formation's materials. Two particle size distributions were investigated: the first was similar to the masses that are used in the Santa Gertrudes Ceramic Pole's factories and the other was similar to the stoneware mass. In general, masses with larger particle sizes, similar to that of Santa Gertrudes, had greater dimensional stability in the products with 3 to 10% of water absorption. On the other hand, in the manufacture of low porosity tiles (water absorption capacity < 3% it is recommended the use of smaller grain size.

  20. Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics.

    Science.gov (United States)

    Lynn, Ciarán J; Dhir, Ravindra K; Ghataora, Gurmel S

    2016-01-01

    The characteristics of sewage sludge ash (SSA) and its use in ceramic applications pertaining to bricks, tiles and glass ceramics have been assessed using the globally published literature in the English medium. It is shown that SSA possesses similar chemical characteristics to established ceramic materials and under heat treatment achieves the targeted densification, strength increases and absorption reductions. In brick and tile applications, technical requirements relating to strength, absorption and durability are achievable, with merely manageable performance reductions with SSA as a partial clay replacement. Fluxing properties of SSA facilitate lower firing temperatures during ceramics production, although reductions in mix plasticity leads to higher forming water requirements. SSA glass ceramics attained strengths in excess of natural materials such as granite and marble and displayed strong durability properties. The thermal treatment and nature of ceramic products also effectively restricted heavy metal leaching to low levels. Case studies, predominantly in bricks applications, reinforce confidence in the material with suitable technical performances achieved in practical conditions.

  1. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    Science.gov (United States)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  2. Contact pressure distribution during the polishing process of ceramic tiles: A laboratory investigation

    Science.gov (United States)

    Sani, A. S. A.; Sousa, F. J. P.; Hamedon, Z.; Azhari, A.

    2016-02-01

    During the polishing process of porcelain tiles the difference in scratching speed between innermost and peripheral abrasives leads to pressure gradients linearly distributed along the radial direction of the abrasive tool. The aim of this paper is to investigate such pressure gradient in laboratory scale. For this purpose polishing tests were performed on ceramic tiles according to the industrial practices using a custom-made CNC tribometer. Gradual wear on both abrasives and machined surface of the floor tile were measured. The experimental results suggested that the pressure gradient tends to cause an inclination of the abraded surfaces, which becomes stable after a given polishing period. In addition to the wear depth of the machined surface, the highest value of gloss and finest surface finish were observed at the lowest point of the worn out surface of the ceramic floor tile corresponding to the point of highest pressure and lowest scratching speed.

  3. Standard Test Method for Bond Strength of Ceramic Tile to Portland Cement Paste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the ability of glazed ceramic wall tile, ceramic mosaic tile, quarry tile, and pavers to be bonded to portland cement paste. This test method includes both face-mounted and back-mounted tile. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. Neutron activation analysis of ceramic tiles and its component and radon exhalation rate

    Institute of Scientific and Technical Information of China (English)

    A. El-Shershaby; A. Sroor; F. Ahmed; A.S. Abdel-Haleem; Z. Abdel

    2004-01-01

    The concentrations of 20 trace elements in several ceramics tiles and ceramic composites used in Egypt were elementally analyzed by neutron activation analysis(NAA) technique. The samples and standard were irradiated with reactor for 4 h( in the Second The gamma-ray spectra obtained were measured for several times by means of the hyper pure germanium detection system( HPGe).Also a solid state nuclear track detector(SSNTD) CR-39, was used to measure the emanation rate of radon for these samples. The radium concentrations were found to vary from 0.39-3.59 ppm and the emanation rates were found to vary from (0.728-5.688) x 10-4The elemental analysis of the ceramic tiles and ceramic composites have a great importance in assigning the physical properties and in turn the quality of the material.

  5. Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles

    Science.gov (United States)

    Guilherme, A.; Manso, M.; Pessanha, S.; Zegzouti, A.; Elaatmani, M.; Bendaoud, R.; Coroado, J.; dos Santos, J. M. F.; Carvalho, M. L.

    2013-02-01

    A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.

  6. Ancient Wall Tiles – The Importance of the Glaze/Ceramic Interface in Glaze Detachment

    Directory of Open Access Journals (Sweden)

    Marisa COSTA

    2014-04-01

    Full Text Available One of the most severe pathologies suffered by early industrially produced tiles in Portugal in late nineteenth century is glaze detachment in wall tiles placed in the lower part of the façade. It is known that salts crystallize provoking the glaze detachment, destroying the waterproofing and the beauty of the wall tile and this is one of the crucial factors towards this occurrence. The present work questions the importance of the thickness of glaze/ceramic body interface, in what concerns glaze detachment provoked by salt crystallization. SEM-EDS was used to perform all the observations that lead to the conclusion that the exuberance of the interface between glaze and ceramic body has no influence in the resistance of the glaze to salt crystallization though time, being the porous network more determinant. DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3815

  7. Evaluation of angle dependence in spectral emissivity of ceramic tiles measured by FT-IR

    Science.gov (United States)

    Kobayashi, C.; Ogasawara, N.; Yamada, H.; Yamada, S.; Kikuchi, T.

    2015-05-01

    Ceramic tiles are widely used for building walls. False detections are caused in inspections by infrared thermography because of the infrared reflection and angle dependence of emissivity. As the first problem, ceramic tile walls are influenced from backgrounds reflection. As the second problem, in inspection for tall buildings, the camera angles are changed against the height. Thus, to reveal the relation between the emissivity and angles is needed. However, there is very little data about it. It is impossible to decrease the false detection on ceramic tile walls without resolving these problems; background reflection and angle dependence of emissivity. In this study, the angle problem was investigated. The purpose is to establish a revision method in the angle dependence of the emissivity for infrared thermography. To reveal the relation between the emissivity and angles, the spectral emissivity of a ceramic tile at various angles was measured by FT-IR and infrared thermographic instrument. These two experimental results were compared with the emissivity-angle curves from the theoretical formula. In short wavelength range, the two experimental results showed similar behavior, but they did not agree with the theoretical curve. This will be the subject of further study. In long wavelength range, the both experimental results almost obeyed the theoretical curve. This means that it is possible to revise the angle dependence of spectral emissivity, for long wavelength range.

  8. Comparing Titanium Release from Ceramic Tiles using a waste material characterization test - Influence of Calcium and Organic Matter concentrations

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard

    2015-01-01

    Nanomaterials are beneficial in the building industry to enhance or add certain features to commonly used materials. One example is the use of nano-titanium dioxide in the surface coating of ceramic tiles, to make the tiles surface self-cleaning. At the end of life stage, ceramic tiles might...... to assess if nano-titanium dioxide coated ceramic tiles are suitable for depositing in a landfill or not. Specifically, we used compliance batch test method, which is a simple test evaluating the release from a solid material to an aqueous media during 24 hrs. If nano-Ti particles are released from solid...... of the organic matter to fully cover the surface of the particles. We evaluated the titanium release from identical ceramic tiles - with and without a nano-titanium dioxide coating - and varied the concentrations of calcium chloride (100-500 mg/l) and humic acid (25-100 mg/l). The titanium release was quantified...

  9. Modelling runoff on ceramic tile roofs using the kinematic wave equations

    Science.gov (United States)

    Silveira, Alexandre; Abrantes, João; de Lima, João; Lira, Lincoln

    2016-04-01

    Rainwater harvesting is a water saving alternative strategy that presents many advantages and can provide solutions to address major water resources problems, such as fresh water scarcity, urban stream degradation and flooding. In recent years, these problems have become global challenges, due to climatic change, population growth and increasing urbanisation. Generally, roofs are the first to come into contact with rainwater; thus, they are the best candidates for rainwater harvesting. In this context, the correct evaluation of roof runoff quantity and quality is essential to effectively design rainwater harvesting systems. Despite this, many studies usually focus on the qualitative aspects in detriment of the quantitative aspects. Laboratory studies using rainfall simulators have been widely used to investigate rainfall-runoff processes. These studies enabled a detailed exploration and systematic replication of a large range of hydrologic conditions, such as rainfall spatial and temporal characteristics, providing for a fast way to obtain precise and consistent data that can be used to calibrate and validate numerical models. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale ceramic tile roof (Lusa tiles). For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak and peak durations were very well simulated.

  10. 影响瓷质砖粘结力的因素%Factors Affecting the Ceramic Tile Adhesive Force

    Institute of Scientific and Technical Information of China (English)

    赵光岩; 郑树龙

    2015-01-01

    Ceramic tiles is an important decorative material,widely used in building decoration,but with extensive use of porcelain ceramic tiles,tiles off phenomena have occurred,how to fix ceramic tiles to avoid tiles falling off easily become urgently problem before the ceramics industry.Through experiments,we determine the different factors that affect the size of strength between the tile and mortar layer,providing assistance for ceramic enterprises to solve weak connection between the porcelain tile and mortar layer.%陶瓷砖是一种重要的建筑装饰材料,广泛应用于建筑装修中。但是,随着瓷质陶瓷砖的广泛应用,瓷质砖脱落的现象时有发生,如何解决瓷质砖容易脱落的问题已成为陶瓷行业中亟待解决的问题。笔者通过研究砖底粉、砖底防污剂、砖底纹和粘结剂对瓷砖粘结力的影响,为陶瓷企业解决瓷质砖脱落问题提供依据。

  11. Path-dependency and path-making in the energy system in the spanish ceramic tile cluster; La evolucion energetica del sector espanol de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, E.; Mezquita, A.; Vaquer, E.; Mallol, G.; Gabaldon-Estevan, D.

    2014-10-01

    This paper analyses how energy consumption and energy efficiency evolved in the Spanish ceramic tile industry in the 20th century and explores the emerging possibilities in the 21st century. In the last century, the tile industry undertook three radical transitions by switching from traditional biomass fuels to liquid hydrocarbon fuels (fuel oil and gas oil), and subsequently to gas fuels, mainly involving natural gas. Although it is difficult to obtain the information that enable the real energy efficiency in manufacturing plants to be reliably evaluated, the available data indicate that a high degree of efficiency has been achieved with current manufacturing technologies. Consequently, significant developments in this sense are not expected, even though efforts are still being made to reduce energy consumption in the production process. However, environmental regulations and impacts, and the emerging new energy sources based on agricultural biomass could open up new avenues for energy supply in the Spanish ceramic tile cluster. (Author)

  12. Laser Treatment of Nanoparticulated Metal Thin Films for Ceramic Tile Decoration.

    Science.gov (United States)

    Rico, V J; Lahoz, R; Rey-García, F; Yubero, F; Espinós, J P; de la Fuente, G F; González-Elipe, A R

    2016-09-21

    This paper presents a new method for the fabrication of metal-like decorative layers on glazed ceramic tiles. It consists of the laser treatment of Cu thin films prepared by electron-beam evaporation at glancing angles. A thin film of discontinuous Cu nanoparticles was electron-beam-evaporated in an oblique angle configuration onto ceramic tiles and an ample palette of colors obtained by laser treatment both in air and in vacuum. Scanning electron microscopy along with UV-vis-near-IR spectroscopy and time-of-flight secondary ion mass spectrometry analysis were used to characterize the differently colored layers. On the basis of these analyses, color development has been accounted for by a simple model considering surface melting phenomena and different microstructural and chemical transformations of the outmost surface layers of the samples.

  13. Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release.

    Science.gov (United States)

    Fonseca, A S; Maragkidou, A; Viana, M; Querol, X; Hämeri, K; de Francisco, I; Estepa, C; Borrell, C; Lennikov, V; de la Fuente, G F

    2016-09-15

    The ceramic industry is an industrial sector in need of significant process changes, which may benefit from innovative technologies such as laser sintering of ceramic tiles. Such innovations result in a considerable research gap within exposure assessment studies for process-generated ultrafine and nanoparticles. This study addresses this issue aiming to characterise particle formation, release mechanisms and their impact on personal exposure during a tile sintering activity in an industrial-scale pilot plant, as a follow-up of a previous study in a laboratory-scale plant. In addition, possible particle transformations in the exhaust system, the potential for particle release to the outdoor environment, and the effectiveness of the filtration system were also assessed. For this purpose, a tiered measurement strategy was conducted. The main findings evidence that nanoparticle emission patterns were strongly linked to temperature and tile chemical composition, and mainly independent of the laser treatment. Also, new particle formation (from gaseous precursors) events were detected, with nanoparticles tile sintering activity since workers would be exposed to concentrations above the nano reference value (NRV; 4×10(4)cm(-3)), with 8-hour time weighted average concentrations in the range of 1.4×10(5)cm(-3) and 5.3×10(5)cm(-3). A potential risk for nanoparticle and ultrafine particle release to the environment was also identified, despite the fact that the efficiency of the filtration system was successfully tested and evidenced a >87% efficiency in particle number concentrations removal.

  14. Standard test method for determination of breaking strength of ceramic tiles by three-point loading

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of breaking strength of ceramic tiles by three-point loading. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Managing mechanisms for collaborative new-product development in the ceramic tile design chain

    OpenAIRE

    Agost Torres, María Jesús; Company, Pedro; Romero Subirón, Fernando

    2011-01-01

    This paper focuses on improving the management of New-Product Development (NPD) processes within the particular context of a cluster of enterprises that cooperate through a network of intra- and inter-firm relations. Ceramic tile design chains have certain singularities that condition the NPD process, such as the lack of a strong hierarchy, fashion pressure or the existence of different origins for NPD projects. We have studied these particular circumstances in order to tailor ...

  16. Tile-based Level of Detail for the Parallel Age

    Energy Technology Data Exchange (ETDEWEB)

    Niski, K; Cohen, J D

    2007-08-15

    Today's PCs incorporate multiple CPUs and GPUs and are easily arranged in clusters for high-performance, interactive graphics. We present an approach based on hierarchical, screen-space tiles to parallelizing rendering with level of detail. Adapt tiles, render tiles, and machine tiles are associated with CPUs, GPUs, and PCs, respectively, to efficiently parallelize the workload with good resource utilization. Adaptive tile sizes provide load balancing while our level of detail system allows total and independent management of the load on CPUs and GPUs. We demonstrate our approach on parallel configurations consisting of both single PCs and a cluster of PCs.

  17. Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing

    Science.gov (United States)

    Peris-Fajarnés, Guillermo; Defez, Beatriz; Serrano, Ricardo; Ruiz, Oscar E.

    2013-04-01

    Finding the geometry and properties of a ceramic tile after its firing using simulations, is relevant because several defects can occur and the tile can be rejected if the conditions of the firing are inadequate for the geometry and materials of the tile. Previous works present limitations because they do not use a model characteristic of ceramics at high temperatures and they oversimplify the simulations. As a response to such shortcomings, this article presents a simulation with a three-dimensional Norton's model, which is characteristic of ceramics at high temperatures. The results of our simulated experiments show advantages with respect to the identification of the mechanisms that contribute to the final shape of the body. Our work is able to divide the history of temperatures in stages where the evolution of the thermal, elastic, and creep deformations is simplified and meaningful. That is achieved because our work found that curvature is the most descriptive parameter of the simulation. Future work is to be realized in the creation of a model that takes into account that the shrinkage is dependent on the history of temperatures.

  18. Kaolin processing waste applied in the manufacturing of ceramic tiles and mullite bodies.

    Science.gov (United States)

    Menezes, Romualdo R; Farias, Felipe F; Oliveira, Maurício F; Santana, Lisiane N L; Neves, Gelmires A; Lira, Helio L; Ferreira, Heber C

    2009-02-01

    In the last few years, mineral extraction and processing industries have been identified as sources of environmental contamination and pollution. The kaolin processing industry around the world generates large amounts of waste materials. The present study evaluated the suitability of kaolin processing waste as an alternative source of ceramic raw material for the production of ceramic tiles and dense mullite bodies. Several formulations were prepared and sintered at different temperatures. The sintered samples were characterized to determine their porosity, water absorption, firing shrinkage and mechanical strength. The fired samples were microstructurally analysed by X-ray diffraction. The results indicated that ceramic tile formulations containing up to 60% of waste could be used for the production of tiles with low water absorption (approximately 0.5%) and low sintering temperature (1150 degrees C). Mullite formulations with more than 40% of kaolin waste could be used in the production of bodies with high strength, of about 75 MPa, which can be used as refractory materials.

  19. Relationship between meanings, emotions, product preferences and personal values. Application to ceramic tile floorings.

    Science.gov (United States)

    Agost, María-Jesús; Vergara, Margarita

    2014-07-01

    This work aims to validate a conceptual framework which establishes the main relationships between subjective elements in human-product interaction, such as meanings, emotions, product preferences, and personal values. The study analyzes the relationships between meanings and emotions, and between these and preferences, as well as the influence of personal values on such relationships. The study was applied to ceramic tile floorings. A questionnaire with images of a neutral room with different ceramic tile floorings was designed and distributed via the web. Results from the study suggest that both meanings and emotions must be taken into account in the generation of product preferences. The meanings given to the product can cause the generation of emotions, and both types of subjective impressions give rise to product preferences. Personal reference values influence these relationships between subjective impressions and product preferences. As a consequence, not only target customers' demographic data but specifically their values and criteria must be taken into account from the beginning of the development process. The specific results of this paper can be used directly by ceramic tile designers, who can better adjust product design (and the subjective impressions elicited) to the target market. Consequently, the chance of product success is reinforced.

  20. Radon exhalation rates and gamma doses from ceramic tiles.

    Science.gov (United States)

    O'Brien, R S; Aral, H; Peggie, J R

    1998-12-01

    This study was carried out to assess the possible radiological hazard resulting from the use of zircon in glaze applied to tiles used in buildings. The 226Ra content of various stains and glazing compounds was measured using gamma spectroscopy and the 222Rn exhalation rates for these materials were measured using adsorption on activated charcoal. The radon exhalation rates were found to be close to or less than the minimum detectable values for the equipment used. This limit was much lower than the estimated exhalation rates, which were calculated assuming that the parameters controlling the emanation and diffusion of 222Rn in the materials studied were similar to those of soil. This implied that the 222Rn emanation coefficients and/or diffusion coefficients for most of the materials studied were very much lower than expected. Measurements on zircon powders showed that the 222Rn emanation coefficient for zircon was much lower than that for soil, indicating that only a small fraction of the 222Rn produced by the decay of 226Ra was able to escape from the zircon grains. The estimated increase in radon concentration in room air and the estimated external gamma radiation dose resulting from the use of zircon glaze are both much lower than the relevant action level and dose limit.

  1. Neutron activation analysis of ceramic tiles and its component and radon exhalation rate.

    Science.gov (United States)

    El-Shershaby, A; Sroor, A; Ahmed, F; Abdel-Haleem, A S; Abdel, Z

    2004-01-01

    The concentrations of 20 trace elements in several ceramics tiles and ceramic composites used in Egypt were elementally analyzed by neutron activation analysis(NAA) technique. The samples and standard were irradiated with reactor for 4 h (in the Second Research Egyptian Reactor(Et-RR-2)) with thermal neutron flux 5.9 x 10(13) n/(cm2 x s). The gamma-ray spectra obtained were measured for several times by means of the hyper pure germanium detection system(HPGe). Also a solid state nuclear track detector(SSNTD) CR-39, was used to measure the emanation rate of radon for these samples. The radium concentrations were found to vary from 0.39-3.59 ppm and the emanation rates were found to vary from (0.728-5.688) x 10(-4) kg/(m2 x s). The elemental analysis of the ceramic tiles and ceramic composites have a great importance in assigning the physical properties and in turn the quality of the material.

  2. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  3. Hypersensitivity pneumonitis and exposure to zirconium silicate in a young ceramic tile worker.

    Science.gov (United States)

    Liippo, K K; Anttila, S L; Taikina-Aho, O; Ruokonen, E L; Toivonen, S T; Tuomi, T

    1993-10-01

    We describe a nonsmoking ceramic tile worker 25 yr of age who developed a worsening dry cough and dyspnea after 3.5 yr as a sorter and glazer of tiles. Open lung biopsy revealed an intense granulomatous interstitial pneumonia with mild fibrosis, compatible with hypersensitivity pneumonitis, and numerous very small birefringent crystals around the terminal airways and occasionally in granulomas. Pulmonary particle analysis revealed an inhaled dust burden nearly 100-fold the normal background level, mainly consisting of clay minerals and zirconium silicate. The patient had no history or clinical or laboratory findings suggesting any organic etiologic agent. A sarcoid granulomatosis type of chronic pulmonary hypersensitivity reaction is known after long-term exposure to zirconium, but this case demonstrates that zirconium can also cause an acute and fulminant allergic alveolitislike hypersensitivity reaction.

  4. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    Science.gov (United States)

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses.

  5. Whiteness process of tile ceramics: using a synthetic flow as a modifier agent of color firing

    Science.gov (United States)

    dos Santos, G. R.; Pereira, M. C.; Olzon-Dionysio, M.; de Souza, S. D.; Morelli, M. R.

    2014-01-01

    Synthetic flow is proposed as a modifier agent of color firing in tile ceramic mass during the sinterization process, turning the red color firing into whiteness. Therefore, the 57Fe Mössbauer spectroscopy was used to understand how the interaction of the iron element in the mechanism of color firing mass occurs in this system. The results suggest that the change of color firing can be alternatively due to two main factors: (i) diluting the hematite content in the sample because of the use of synthetic flow and (ii) part of the hematite is converted in other uncolored crystal structures, which makes the final color firing lighter.

  6. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles

    Indian Academy of Sciences (India)

    Ritwik Sarkar; Nar Singh; Swapan Kumar Das

    2010-06-01

    Steel melting through electric arc furnace route is gaining popularity due to its many advantages, but generates a new waste, electric arc furnace slag, which is getting accumulated and land/mine filling and road construction are the only utilization. This slag has been tried to be value added and utilized to develop vitreous ceramic tiles. Slag, to the extent of 30–40 wt% with other conventional raw materials, were used for the development in the temperature range 1100–1150°C. The fired products showed relatively higher density with shorter firing range and good strength properties. Microstructural and EDAX studies were also done to evaluate the developed products.

  7. 陶瓷砖安全性能评价%ASSESSING THE SAFETY PERFORMANCE OF CERAMIC TILES

    Institute of Scientific and Technical Information of China (English)

    肖景红; 梁柏清; 罗喆; 刘亚民; 袁芳丽

    2011-01-01

    陶瓷砖应用领域的不断扩展,使其安全性能成为关注的焦点。本文分析比较了欧盟和中国对陶瓷砖安全性能的要求,提出可借鉴欧盟的先进经验,完善我国的陶瓷砖安全标准体系。%Along with the expanding in the construction field, the safety of ceramic tiles becomes the focus of attention. This paper analyses and compares the requirements of safety performance for ceramic tiles between European Union and China, at the same time, propose to use the advanced experience of European Union for reference, perfect the domestic safety standard system for ceramic tiles.

  8. Photocatalytic Removal of Azo Dye and Anthraquinone DyeUsing TiO2 Immobilised on Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    P. N. Palanisamy

    2011-01-01

    Full Text Available The photocatalytic activity of TiO2 immobilized on different supports; cement and ceramic tile, was studied to decolorize two commercial dyes. The catalyst was immobilised by two different techniques, namely, slurry method on ceramic tile and powder scattering on cement. The degradation of the dyes was carried out using UV and solar irradiation. The comparative efficiency of the catalyst immobilised on two different supports was determined. The photodegradation process was monitored by UV-Vis spectrophotometer. The catalyst immobilised on ceramic tile was found to be better than the catalyst immobilised on cement. Experimental results showed that both illumination and the catalyst were necessary for the degradation of the dyes and UV irradiation is more efficient compared to solar irradiation.

  9. 抛光废渣在陶瓷砖中的应用及现状%Application of Polishing Tile Waste in Ceramic Tile

    Institute of Scientific and Technical Information of China (English)

    黄惠宁; 柯善军; 张国涛; 戴永刚; 李家斌

    2012-01-01

    瓷质抛光砖生产所产生的废料日益增多,不仅对环境造成巨大的压力,还影响了陶瓷工业的可持续发展,因此抛光砖废渣的处理与利用显得非常的重要。抛光砖废渣是目前陶瓷行业最难利用,也是利用得最少的废料;对抛光砖废渣进行再利用将有着广阔的前景。本文主要对抛光废渣的组成及烧结特性进行了分析,并对抛光砖废渣在陶瓷砖中的应用研究进行了综述,重点阐述了抛光砖废渣在陶瓷砖中的发泡机理。%The increasing poreelain polishing tile waste not only polluted city environment but also affectd the sustainable development of ce- ramic industries. So, it is very indispensable to dispose and make use of ceramic waste. Polishing ceramic tile waste is the most difficult to be used, as well as the least to be used in porcelain industry. And recycle of polishing tile waste has an extensive prospect. In this paper, the composition and sintering characteristics of polishing tile waste are analyzed and its application study is reviewed in ceramic tile. Meanwhile, it was emphatically introduced the foaming mechanism the polishing waste during sintering.

  10. 墙地砖胶粘剂的研制%Preparation of ceramic tile adhesive

    Institute of Scientific and Technical Information of China (English)

    赵卫国; 俞永涵; 钱翠英; 蒋中南

    2001-01-01

    A fine water resisting styrene-acrylic emulsion was synthesized by adding silane coupling agent in the polymerization.By using this emulsion,a waterproof and weather fastness ceramic tile adhesive was produced successfully.The experimental results show that the silane dosage and its adding method have great effects on the product,and the property of the ceramic tile was good when using propylene-glycol butyl ether and methyl hydroxypropyl cellulose as film-forming agent and thickener respectively.%通过在聚合过程中加入硅烷偶联剂,制得一种耐水性优良的苯丙乳液,并用该乳液制得耐水、耐候性优良的即用型墙地砖胶粘剂。实验表明,硅烷偶联剂的加入量和加入方式对产品耐水性的影响较大,同时,以丙二醇丁醚和甲基羟丙基纤维素分别作为产品的成膜助剂及增稠剂,产品的综合性能较佳。

  11. Standard test method for measurement of light reflectance value and small color differences between pieces of ceramic tile

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the measurement of Light Reflectance Value (LRV) and visually small color difference between pieces of glazed or unglazed ceramic tile, using any spectrophotometer that meets the requirements specified in the test method. LRV and the magnitude and direction of the color difference are expressed numerically, with sufficient accuracy for use in product specification. 1.2 LRV may be measured for either solid-colored tile or tile having a multicolored, speckled, or textured surface. For tile that are not solid-colored, an average reading should be obtained from multiple measurements taken in a pattern representative of the overall sample as described in 9.2 of this test method. Small color difference between tiles should only be measured for solid-color tiles. Small color difference between tile that have a multicolored, speckled, or textured surface, are not valid. 1.3 For solid colored tile, a comparison of the test specimen and reference specimen should be made under incandescent, f...

  12. Decorative design of ceramic tiles adapted to inkjet printing employing digital image processing; Diseno decorativo de pavimentos ceramicos adaptado a inyeccion de tinta mediante tratamiento digital de imagen

    Energy Technology Data Exchange (ETDEWEB)

    Defez, B.; Santiago-Praderas, V.; Lluna, E.; Peris-Fajarnes, G.; Dunai, E.

    2013-09-01

    The ceramic tile sector is a very competitive industry. The designer's proficiency to offer new models of the decorated surface, adapted to the production means, plays a very important role in the competitiveness. In the present work, we analyze the evolution of the design process in the ceramic sector, as much as the changes experimented in parallel by the printing equipment. Afterwards, we present a new concept of ceramic design, based on digital image processing. This technique allows the generation of homogeneous and non-repetitive designs for large surfaces, especially thought for inkjet printing. With the programmed algorithms we have compiled a prototype software for the assistance of the ceramic design. This tool allows creating continuous designs for large surfaces saving developing time. (Author)

  13. Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile

    Directory of Open Access Journals (Sweden)

    M. Abo-Elmagd

    2014-10-01

    Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.

  14. Analysis of energy consumption and carbon dioxide emissions in ceramic tile manufacture; Analisis de consumos energeticos y emisiones de dioxido de carbono en la fabricacion de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, E.; Mezquita, A.; Granel, R.; Vaquer, E.; Escrig, A.; Miralles, A.; Zaera, V.

    2010-07-01

    The ceramic tile manufacturing process is energy intensive since it contains several stages in which the product is subject to thermal treatment. The thermal energy used in the process is usually obtained by combustion of natural gas, which is a fossil fuel whose oxidation produces emissions of carbon dioxide, a greenhouse gas. Energy costs account for 15% of the average direct manufacturing costs, and are strongly influenced by the price of natural gas, which has increased significantly in the last few years. Carbon dioxide emissions are internationally monitored and controlled in the frame of the Kyoto Protocol. Applicable Spanish law is based on the European Directive on emissions trading, and the assignment of emissions rights is based on historical values in the sectors involved. Legislation is scheduled to change in 2013, and the resulting changes will directly affect the Spanish ceramic tile manufacturing industry, since many facilities will become part of the emissions trading system. The purpose of this study is to determine current thermal energy consumption and carbon dioxide emissions in the ceramic tile manufacturing process. A comprehensive sectoral study has been carried out for this purpose on several levels: the first analyses energy consumption and carbon dioxide emissions in the entire industry; the second determines energy consumption and carbon dioxide emissions in industrial facilities over a long period of time (several months); while the third level breaks down these values, determining energy consumption and emissions in terms of the product made and the manufacturing stage. (Author) 8 refs.

  15. [Lead exposure in the ceramic tile industry: time trends and current exposure levels].

    Science.gov (United States)

    Candela, S; Ferri, F; Olmi, M

    1998-01-01

    There is a high density of industries for the production of ceramic tiles in the District of Scandiano (province of Reggio Emilia, Emilia Romagna region). In this area, since the beginning of 1970s, the time trend of Pb exposure in ceramic tile plants has been evaluated by means of biological monitoring (BM) data collected at the Service of Prevention and Safety in the Work Environment and its associated Toxicology Laboratory. From these data, a clear decreasing time trend of exposure levels is documented, the reduction being more evident during the seventies and in 1985-88. During the seventies BM was introduced systematically in all ceramic tile plants with the determination of delta-aminolevulinic acid in urine (ALA-U). As a consequence of the BM programme, hygienic measures for the abatement of pollution inside the plants were implemented, and a reduction, from 20.6% to 2%, of ALA-U values exceeding 10 mg/l, was observed. In 1985, the determination of lead in blood (PbB) replaced that of ALA-U in the BM programmes and highlighted the persistence of high level of exposure to Pb, which could not be outlined by means of ALA-U because of its lower sensitivity. PbB levels were 36.1 micrograms/100 ml and 25.7 micrograms/100 ml in male and female workers, respectively. These results required the implementation, within the plants, of additional hygienic measures and a significant reduction of PbB was obtained in the following three years. In 1988 PbB levels were 26.0 +/- 10.7 and 21.6 +/- 10.3 micrograms/100 ml in male and female workers, respectively. In 1993-95 Pb levels were obtained from 1328 male and 771 female workers of 56 plants, accounting for about 40% of the total number of workers in the ceramic industry, in the zones of Sassuolo and Scandiano. Exposure levels are not different from those observed in the preceding years, with PbB levels of 25.3 +/- 11.1 and 19.1 +/- 9.2 micrograms/100 ml in male and female workers, respectively.

  16. Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2.

    Science.gov (United States)

    Szczawiński, J; Tomaszewski, H; Jackowska-Tracz, A; Szczawińska, M E

    2011-01-01

    The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiO2 using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiO2 than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiO2 films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment.

  17. How Does the Innovation System in the Spanish Ceramic Tile Sector Function?

    NARCIS (Netherlands)

    Gabaldon-Estevan, D.; Hekkert, M.P.

    2013-01-01

    In this article we apply the functions of innovation systems framework to assess its appropriateness to characterise the innovation activity of the tile industry in Castellón. This framework is based on idea that a well functioning innovation system requires that a number of key activities take plac

  18. FLEXURAL TESTING MACHINE AS AN OFF-LINE CONTROL SYSTEM FOR QUALITY MONITORING IN THE PRODUCTION OF BENDED CERAMIC TILES

    Directory of Open Access Journals (Sweden)

    Cristiano Fragassa

    2016-06-01

    Full Text Available The capability to bend in a controlled manner Gres Porcelain stoneware tiles passing by a very exclusive process of pyroplastic deformation opens up entirely new opportunities in utilisation of this important family of ceramics. A bended tile can be exploited in innovative applications, such as stairs, shelves, benches and even radiators, turning this element from a simple piece of furnishing in a modern functional component. But this change in functionality also requires a different approach in the quality control, both at the product and process levels, that can no longer be limited to the use of tests specified in the regulations for traditional ceramics (e.g. colour, porosity, hygroscopic .... This article describes the first device so far devised for the verification of resistance to bending of curved tiles, discussing the correct way of use. The adoption of this particular equipment as an off-line control device can represent a valid strategy for monitoring the product and process quality.

  19. PREPARATION OF RECYCLING CERAMIC TILES USING CERAMIC INDUSTRIAL WASTE%利用陶瓷工业废料制备再生陶瓷墙地砖

    Institute of Scientific and Technical Information of China (English)

    王功勋

    2011-01-01

    Recycling ceramic tile was made from raw materials using waste ceramic polishing powder(PP),and waste tiles,and using borax was added as a supplementary flux.Effects of PP sintering property on the strength of recycling ceramic tiles were investigated.Effects of PP on microstructure were detected by SEM tests.Results show that PP is beneficial to improve the sintering property because of its fine particle and glass phase.Strength of recycling ceramic tiles is increased by adding PP and borax compound.In the experimental,borax mass fraction of 0.5%,PP mass fraction of 2% and ceramic tile granule mass fraction of 25%,the strength of recycling ceramic tiles is the highest.This treatment technology features large integrated utilization efficiency for ceramic industrial waste and high strength of recycle ceramic tiles.%以废弃陶瓷抛光砖粉、陶瓷墙地砖烧成废料为原材料,硼砂作辅助熔剂制备再生陶瓷墙地砖,研究陶瓷抛光砖粉的高温烧结性能及其对再生墙地砖强度的影响,采用SEM测试分析陶瓷抛光砖粉对再生陶瓷制品微观结构的影响。结果表明:抛光砖粉含玻璃相、颗粒细小,有利坯体烧结密实;复掺少量抛光砖粉和硼砂,可提高制品强度。在硼砂掺量为0.5%,陶瓷抛光砖粉为2%、烧成废料为25%的实验条件下,所得再生陶瓷制品强度最高。该方法具有陶瓷工业废料的综合利用率高,制得的再生陶瓷制品强度高等特点。

  20. Use the Polishing Tile Waste to Prepare Thermal Insulation Ceramic Tile%抛光废料制备隔热保温陶瓷砖

    Institute of Scientific and Technical Information of China (English)

    刘华锋; 曾令可; 王慧; 冼志勇

    2014-01-01

    抛光废渣产生量大,回收利用率低,研究大量利用抛光废渣的新途径不仅能解决抛光废渣的处理问题,也将带来巨大的经济效益。本文分析了利用抛光废渣制备隔热保温陶瓷砖的背景、废弃原料处理、抛光渣发泡原理、制备工艺、性能影响因素等。%The production of polishing tile waste is so huge ,while with a low Recovery utilization rate. Research a new way that consuming a huge mass of polishing tile waste can not only solve the problem of waste processing ,but also produce huge economic benefits. This paper analyzed the back-ground ,the waste raw material processing ,the foaming principle ,the preparation technology ,the properties affecting factors of Preparation of Thermal Insulation ceramic tile with Polishing tile Waste.

  1. [Description of several cases of preclinical lead poisoning in decorators of ceramic tiles].

    Science.gov (United States)

    Cornelio, G; De Zotti, R

    1983-05-01

    Tha AA report 10 cases of subclinical lead poisoning in a small ceramic factory for artistic painting of building tiles . The decoration was done by hand, using lead glazes . In spite of the extremely low lead air level, the decorators , whose time of exposure was 6-18 months had on average 1868 (SD: 810) micrograms Pbu EDTA/24h and 18,2 (SD: 14,8) mg ALAu /l. Hematochemical data were within the normal range, all but serum iron (144 +/- 33 micrograms %). The cases are presented as a clear example of working conditions where lead intake occurs mainly by gastrointestinal absorption. The AA emphasize the importance of biological monitoring as essential to complete the data of environmental pollution. Moreover the prevention of lead poisoning, especially in small factories, requires the implementation of those general hygienic measures recommended in the recent EEC directive.

  2. Conditioning film and initial biofilm formation on ceramics tiles in the marine environment.

    Science.gov (United States)

    Siboni, Nachshon; Lidor, Michal; Kramarsky-Winter, Esti; Kushmaro, Ariel

    2007-09-01

    The formation of biofilm on surfaces in the marine environment is believed to be an important factor driving colonization and recruitment of some sessile invertebrate communities. The present study follows the process of biofilm buildup on unglazed ceramic tiles deployed into the marine environment in the northern Gulf of Eilat. PCR-DGGE of film eluted from the tile surface indicated the presence of bacteria as early as 2 h after deployment. The makeup of the biofilm bacterial community was dynamic. Bacterial presence was apparent microscopically 6 h after deployment, though a developed biofilm was not observed until 24 h following deployment. Total organic carbon (TOC) data suggest that a conditioning film was built within the first four hours following deployment. During this time period TOC reached the highest level possibly due to adhesion of organics (e.g., sugars, proteins and humic substances) from the water column. We suggest that the primary adhering bacteria, whilst still in the reversible stage of adhesion, utilize the conditioning film as food causing the decrease in TOC. Understanding the dynamics between these primary bacterial settlers is of importance, since they may play a role on the succession of invertebrate species settlement onto artificial surfaces.

  3. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    Energy Technology Data Exchange (ETDEWEB)

    Blagoev, K., E-mail: kblagoev@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Grozeva, M., E-mail: margo@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Malcheva, G., E-mail: bobcheva@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Neykova, S., E-mail: sevdalinaneikova@abv.bg [National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 2 Saborna, 1000 Sofia (Bulgaria)

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893–972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts. - Highlights: ► LIBS, XRF and XRD analyses of medieval white-clay ceramic tiles fragments are done. ► Different elements and phases, presented in the ceramics fragments were determined. ► Differences in the tiles' raw material mineral composition are found. ► Information of the tiles' production process and the raw clay deposits is obtained.

  4. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  5. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    Science.gov (United States)

    Lin, Kae-Long

    2007-09-05

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown.

  6. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    Science.gov (United States)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893-972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts.

  7. Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials.

    Science.gov (United States)

    Baruzzo, Daniela; Minichelli, Dino; Bruckner, Sergio; Fedrizzi, Lorenzo; Bachiorrini, Alessandro; Maschio, Stefano

    2006-06-30

    Dredging spoils, due to their composition could be considered a new potential source for the production of monolithic ceramics. Nevertheless, abundance of coloured oxides in these materials preclude the possibility of obtaining white products, but not that of producing ceramics with a good mechanical behaviour. As goal of the present research we have produced and studied samples using not only dredging spoils alone, but also mixtures with other waste materials such as bottom ashes from an incinerator of municipal solid waste, incinerated seawage sludge from a municipal seawage treatment plant and steelworks slag. Blending of different components was done by attrition milling. Powders were pressed into specimens which were air sintered in a muffle furnace and their shrinkage on firing was determined. Water absorption, density, strength, hardness, fracture toughness, thermal expansion coefficient of the fired bodies were measured; XRD and SEM images were also examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their environmental compatibility. It is observed that, although the shrinkage on firing is too high for the production of tiles, in all the compositions studied the sintering procedure leads to fine microstructures, good mechanical properties and to a limitation of the release of many of the most hazardous metals contained in the starting powders.

  8. Aerodynamic Heating in Gaps among Ceramic Insulating Tiles Array%陶瓷防热瓦间缝隙气动加热规律研究

    Institute of Scientific and Technical Information of China (English)

    秦强; 马建军

    2013-01-01

    Parametric analysis of aerodynamic heating in gaps among ceramic insulating tiles array was carried out by using CFD based on analyzing gap flow characteristic. Effects of Mach number, attack angle, gap width, tile edge radius, and steps among tiles on heating rate distribution in gaps were studied. Results showed that internal heat flux in gaps is U shape distribution, and decreases with increase of Mach number, but increases as increase of attack angle, gap width, tile edge radius, and steps.%在分析缝隙内部流动特征的基础上,利用CFD技术对瓦间缝隙气动加热的参数影响规律进行了研究,着重探讨了来流马赫数、攻角、缝隙宽度、倒角半径及瓦间台阶因素对缝隙内部热流分布的影响。研究结果表明,缝隙内部热流呈U形分布,缝隙内部热流随着马赫数的增大而减小,随着攻角、缝隙宽度、倒角半径、瓦间台阶的增大而增大。

  9. How Does the Innovation System in the Spanish Ceramic Tile Sector Function?

    Energy Technology Data Exchange (ETDEWEB)

    Gabaldon-Estevan, D.; Hekkert, M. P.

    2013-06-01

    In this article we apply the functions of innovation systems framework to assess its appropriateness to characterise the innovation activity of the tile industry in Castellon. This framework is based on idea that a well functioning innovation system requires that a number of key activities take place. If this occurs innovative output is higher. Our analysis provides a deeper understanding of the role of innovation as a strategic option in a mature industry in the context of globalisation. By applying this new theoretical approach to study innovation and highlighting the functions that the system requires, we shown the constraints, inertias, challenges and opportunities that the innovation system of the tile industry in Castellon faces. The results also show that the functional approach allows higher flexibility in order to recognise and analyse the opportunities and constraints that a given innovation system presents. (Author) 20 refs.

  10. Decorative Patterns on Tangshan Building Ceramic Tiles%唐山建筑瓷砖装饰纹样分析

    Institute of Scientific and Technical Information of China (English)

    徐玉玲; 程红璞

    2012-01-01

    Firstly,decorative patterns on Tangshan building ceramic tiles were collected and arranged in accordance with their time.The results of analysis show the decorative patterns on Tangshan building ceramic tiles developed with the time,mirroring the taste and aesthetics of in different periods of time.%对不同时代的唐山建筑瓷砖装饰纹样进行了搜集与整理,通过分析比较,发现唐山的建筑瓷砖装饰纹样是随时代而嬗变的,纹样折射出了不同时期人们的审美意识和审美观念。

  11. 高硬度全抛釉的研究%Development of High Hardness Glaze for Fully Polished Ceramic Tiles

    Institute of Scientific and Technical Information of China (English)

    况学成; 殷敏; 张明珠

    2015-01-01

    At present, the problems with fully polished glazed ceramic tiles are mainly low hardness and poor wear resistance. On the basis of the existing body and surface glaze formulas, the composition of surface glaze was optimized, and then through test and trial the glaze for fully polished glazed ceramic tiles with good wear resistance and high hardness was developed, which could effectively improve the quality of the products.%针对目前全抛釉砖产品存在的硬度低、耐磨性差问题,在已知工厂坯体和底釉配方的基础上优化面釉的配方组成,并进行归纳分析,研制出耐磨性好、硬度高的全抛釉。

  12. Compressive Strength and Water Absorption of Pervious Concrete that Using the Fragments of Ceramics and Roof Tiles

    Science.gov (United States)

    Prahara, E.; Meilani

    2014-03-01

    Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.

  13. Comparative study of ceramic tiles produced in the Town of Goytacazes / RJ (Brazil); Estudo comparativo de telhas ceramicas produzidas no municipio de Campos dos Goytacazes, RJ

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, L.L.P. de; Pacheco, A.T.; Carreiro, R.S; Petrucci, L.J.T., E-mail: lezira@ig.com.br [Fundacao de Apoio a Escola Tecnica (FAETEC), Campos dos Goytacazes, RJ (Brazil). Centro Vocacional Tecnologico - Ceramica

    2011-07-01

    The city of the Campos dos Goytacazes, situated in the region north of the state of Rio de Janeiro, presents characteristics place that it enter the producing greater of blocks and ceramic roofing tiles for the domestic market. This work makes a study enters four manufacturers of ceramic roofing tiles of the city of the Campos dos Goytacazes/RJ, to analysis comparatively its results according to in agreement the characterization submitted to dilatometry, Thermogravimetry, Differential Thermal Analysis and X-ray diffraction for the physical tests the tiles were collected after burning and the tests under Bylaw NBR 15310. The results had indicated a significant variation in the values of water absorption of each manufacturer. The same ones demonstrate that the ceramic roofing tiles of Campos of the Goytacazes present a uniformity in the results, being that it needs technological accompaniment during the manufacture process, to improve its properties and its quality for adequacy to the normative parameters of the ABNT. (author)

  14. Preparation and characterization of novel glass–ceramic tile with microwave absorption properties from iron ore tailings

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Rui; Liao, SongYi [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Dai, ChangLu [Guangdong Bode Fine Building Material Co. Ltd., Foshan 528000 (China); Liu, YuChen; Chen, XiaoYu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Zheng, Feng, E-mail: fzheng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Phase diagrams and materials design center, Central South University, Changsha 410083 (China)

    2015-03-15

    A novel glass–ceramic tile consisting of one glass–ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73–99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass–ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn{sup 2+}{sub 0.17}Fe{sup 3+}{sub 0.83})[Fe{sup 3+}{sub 1.17}Fe{sup 2+}{sub 0.06}Ni{sup 2+}{sub 0.77}]O{sub 4} were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass–ceramic layer at frequency of 2–18 GHz reached peak reflection loss (RL) of −17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass–ceramic layer can meet the requirements of different level of microwave absorption. - Highlights: • Iron ore tailings (IOTs) have been used as one of the main raw materials. • Glass–ceramic tile contains spinel ferrite has been prepared. • The cation distribution of the spinel ferrite has been calculated. • The intrinsic complex permeability and permittivity have been evaluated.

  15. Analysis and Monitoring Results of a Building Integrated Photovoltaic Façade Using PV Ceramic Tiles in Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Huang

    2014-01-01

    Full Text Available Single-crystal silicon-based solar cells laminated with tempered-glass and ceramic tiles for use in a building’s façade have been developed. The optical, thermal, and electrical properties of the proposed PV module are first evaluated, and then a wind-resistance test is carried out to evaluate the feasibility of installing it in Taiwan. The electrical and deflection characteristics of the proposed PV module did not change significantly after a 50 thermal cycling test and a 200-hour humidity-freeze test, based on IEC 61215 and a wind-resistance test. Finally, the electrical power generation ability of the proposed BIPV system with 1 kWp electrical power capacity was examined. Building information modeling software tools were used to simulate the BIPV system and carry out the energy analysis. The simulation results show a very consistent trend with regard to the actual monthly electricity production of the BIPV system designed in this work. The BIPV system was able to produce an accumulative electrical power of 185 kWh during the 6-month experimental period. In addition, the exterior temperature of the demonstration house was about 10°C lower than the surface of the BIPV system, which could reduce indoor temperature.

  16. Hardware Algorithms For Tile-Based Real-Time Rendering

    NARCIS (Netherlands)

    Crisu, D.

    2012-01-01

    In this dissertation, we present the GRAphics AcceLerator (GRAAL) framework for developing embedded tile-based rasterization hardware for mobile devices, meant to accelerate real-time 3-D graphics (OpenGL compliant) applications. The goal of the framework is a low-cost, low-power, high-performance d

  17. Solar Photocatalytic Removal of Chemical and Bacterial Pollutants from Water Using Pt/TiO2-Coated Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    S. P. Devipriya

    2012-01-01

    Full Text Available Semiconductor photocatalysis has become an increasingly promising technology in environmental wastewater treatment. The present work reports a simple technique for the preparation of platinum-deposited TiO2 catalysts and its immobilization on ordinary ceramic tiles. The Pt/TiO2 is characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDAX, and diffuse reflectance spectroscopy (DRS. Deposition of Pt on TiO2 extends the optical absorption of the latter to the visible region which makes it attractive for solar energy application. Optimum loading of Pt on TiO2 was found to be 0.5%. The Pt/TiO2 is coated on ceramic tiles and immobilized. This catalyst was found effective for the solar photocatalytic removal of chemical and bacterial pollutants from water. Once the parameters are optimized, the Pt/TiO2/tile can find application in swimming pools, hospitals, water theme parks, and even industries for the decontamination of water.

  18. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    Science.gov (United States)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  19. Thermo Physical Characteristics of Vitrified Tile Polishing Waste for Use in Traditional Ceramics-An Initiative of Cgcri, Naroda Centre

    Science.gov (United States)

    Misra, S. N.; Machhoya, B. B.; Savsani, R. M.

    This paper reports the thermo physical characteristics of Vitrified tile polishing waste materials. As such growing production of vitrified tiles in the country generate large volume of this waste obtained during processing, polishing and cutting of the vitrified tiles to the tune of nearly 10-15 tonnes per day from each plant. The characteristic features of these materials are being studied and investigated to develop suitable technology for finding its gainful use especially in the traditional ceramics. It is known that ceramic as such building materials industry could be a large raw materials consumer and being heterogeneous and thus could utilize this vast quantity as the raw materials. However, the main problem would be it's firing nature as it showed thermal deformation after a particular temperature. Interestingly, the production process of most of the traditional ceramics follows a similar pattern starting from the raw materials processing up to a level of firing. Hence, to suggest suitable utility in the traditional ceramics as raw materials, it was the prime requisite that these waste must be thoroughly studied w. r. t various thermo physical characteristics to make use in this sectors. Hence, the present paper interestingly gone up to various study such as raw materials nature, particle size distribution, chemistry, XRD and DTA study for understanding typical physico chemical properties, and finally thermal properties to make it suitable for use in traditional ceramic industries. The higher fineness of the waste materials indicates its usefulness without extra grinding. The chemistry of typical sludge shows contamination from abrasive particles, sorrel cement bonding materials etc. originated from the polishing wheel and needs special precaution while suggesting use in the ceramic sectors. The firing characteristics of the sludge materials produces a foamy and spongy shapes and this could be the main guiding parameters in selecting the end use of the

  20. Moisture expansion of ceramic tiles produced using kaolin and granite wastes; Expansao por umidade de revestimentos ceramicos incorporados com residuos de granito e caulim

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, A.M.G.D.; Cartaxo, J.M.; Santana, L.N.L; Neves, G.A.; Ferreira, H.C., E-mail: ana.duartemendonca@gmail.com, E-mail: gelmires@dema.ufcg.edu.br, E-mail: lisiane@dema.ufcg.edu.br [Unidade Academica de Engenharia de Materiais, Universidade Federal de Campina Grande,Campina Grande, PB (Brazil); Menezes, R.R. [Departamento de Engenharia de Materiais, Universidade Federal da Paraiba, Joao Pessoa, PB (Brazil)

    2012-04-15

    Moisture expansion (ME) is the term used to describe the expansion of ceramic materials due to the adsorption of water. ME usually occurs slowly and is relatively small, but, it can damage the ceramic tiles adhesion to the underlayment, craze the glaze and lead to the development of cracks on ceramics bricks. In this work kaolin and granite wastes were incorporated in ceramic compositions aiming study their influence on the ME of ceramic tiles. Raw materials were processed and submitted to characterization: physical and mineralogical by laser diffraction particle size analysis, chemical analysis, thermo differential and thermogravimetric analysis and X-ray diffraction. Results showed that kaolin and granite wastes can be incorporated in ceramic composition because display characteristics similar to conventional not plastic ceramic materials, providing satisfactory ME results when compared to the ME limit value of 0.6 mm/m (0.06%) indicated by the ABNT for ceramic tiles. Compositions containing up to 20% of waste can be produced when firing above 1000 deg C. (author)

  1. 陶瓷砖产品质量分析与对策探讨%Ceramic Tile Product Quality Analysis and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    江曾杰

    2014-01-01

    针对当前市场上销售的陶瓷砖存在的主要质量问题,对江苏地区陶瓷砖进行了针对性的抽样检测,并对检测结果进行了分析,提出了解决问题的方法和建议,期望能给普通消费者对于陶瓷砖的购买与选用起到一定的帮助作用。%In order to solve the problem of ceramic tiles saled in current market, the ceramic tiles saled in Jiangsu had been sampling inspected, and the inspecting result had been analyzed. As a result, suggestions were given to consumers, and that would be helpful to choose ceramic tiles.

  2. 纳米液对瓷砖表面光洁度影响的实验研究%Experimental Study on Effect of Nanodroplets on Surface Glossiness of Ceramics Tile

    Institute of Scientific and Technical Information of China (English)

    邵俊鹏; 徐斌

    2013-01-01

    In order to investigate the surface quality of ceramics tile, structure and principle of film coating machine were analyzed. The mechanism of nanodroplets coating ceramics tile was derived. A series of comparative SEM experiments with no coating nanodroplets ceramics tile and coating nanodroplets ceramics tile were performed, the surface glossiness of coating nanodroplets ceramics tile is better than that no coating nanodroplets ceramics tile. Cracks and concave pit after refilling nanodroplets are formed the film. It is concluded that stains can be removed on the surface of coating nanodroplets ceramics tile, by a series of cleaning the stain experiments of ceramic tiles, the ability of protection is very effective.%为了研究瓷砖表面质量,分析瓷砖涂覆制膜机的结构和运行原理,提出了纳米液涂覆瓷砖机理.一系列未涂覆纳米液和涂覆纳米液瓷砖SEM对比实验表明,涂覆纳米液瓷砖表面光洁度优于未涂覆纳米液瓷砖,涂覆纳米波瓷砖的裂纹、凹坑被纳米液填充并固化成膜.实验结果表明,涂覆纳米液瓷砖不易附着污渍,有显著的防护作用.

  3. 提高陶瓷砖釉面硬度的途径%Study on Approaches to Increase the Hardness of Glazed Ceramic Tile

    Institute of Scientific and Technical Information of China (English)

    胡琨; 区卓琨

    2012-01-01

    有釉砖具有良好的装饰效果,但是釉面硬度较低,容易出现划痕。本文概述了有釉砖的釉面硬度、耐磨性的检测方法。并通过分析影响有釉砖釉面硬度的因素.提出了通过调整配方组成、引入微晶玻璃、改进工艺制度、进行表面处理等途径可提高有釉砖的釉面硬度。%Glazed ceramic tile had good decorative effect, but its low hardness leaded to surface wear in floor tile. This paper introduced the testing method of hardness and resistance to surface abrasion for glazed tiles. According to the analysis of the relation between hardness and glazed ceramic tile, this paper proposed four countermeasures: choosing suitable composition, preparing glass-ceramics, improving technique process and using sat'face treatment to increase the hardness of glazed ceramic tile.

  4. Apparent density measurement of the ceramic tiles in a quick, harmless and non-destructive way; Medida de la densidad aparente de baldosas ceramicas de forma rapida, inocua y no destructiva

    Energy Technology Data Exchange (ETDEWEB)

    Mallol, G.; Llorens, D.; Boix, J.; Aguilella, M.; Foucard, L.; Arnau, J.M.

    2010-07-01

    This study addresses the technical feasibility of using a new method of determining the bulk density distribution in ceramic tiles of all possible sizes. This new technique is based on the measurement of pressure distribution inside the press die cavity, using paper that is sensitive to the applied pressure, in addition to the composition compaction diagram. The measurement procedure and methodology have been fine-tuned, studying how this measurement, together with its precision and reproducibility, is influenced by certain external factors. After the capability of the method had been confirmed, it was used to obtain the bulk density distributions of industrially processed ceramic tiles. This new measuring method is rapid, simple to use, and neither destructive nor toxic. The developed computer application enables a bulk density map to be obtained, defective areas to be readily detected, and allows complete data analysis. (Author).

  5. Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles.

    Science.gov (United States)

    Marto, J; São Marcos, P; Trindade, T; Labrincha, J A

    2009-04-15

    In this work ZnO layers have been deposited by screen-printing in common ceramic tiles. These layers were characterized and tested for the photocatalytic degradation of the organic dye Orange II in aqueous solutions, using a batch photoreactor either under visible light provided by a Philips ML-160 W lamp or under direct exposure to sunlight. For sake of comparison, ZnO suspensions have also been evaluated for similar reacting conditions. The influence of experimental parameters such as (i) firing temperature of the printed layer; (ii) layer thickness; and (iii) operation time have been investigated. Screen-printed ZnO layers obtained in optimal processing conditions showed photocatalytic activity comparable to aqueous ZnO suspensions. The maximal attenuation degree is over 70% and decolourisation rate, assuming that reaction kinetics follows a pseudo-first order rate law, is over 0.015 min(-1). Thus these ZnO-layered ceramic tiles can be regarded as an alternative to photocatalytic suspensions of the same material with the advantage of avoiding the removal of the photocatalyst.

  6. Influence of gypsum on efflorescence in ceramic tiles; Influence da gipsita no surgimento de eflorescencia em telhas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, C.M.O.L. [Servico Nacional de Aprendizagem Industrial (SENAI), Teresina, PI (Brazil); Nascimento, R.M.; Martinelli, A.E. [Universidade Federal do Rio Grande do Norte (PPgCEM/UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2009-07-01

    The red ceramic industry is recognized as of major importance in Piaui State. The State capital, Teresina, is the greatest producer of this material, which is used mainly for masonry sealing blocks. One of the most frequent problems in this kind of products is the efflorescence.This paper has the main objective of studying the influence of gypsum on tiles, using the local industry production standards. The raw materials were characterized by FRX, DRX, thermal analysis and sulfates. Extruded test specimens were made with the addition of 1%, 3% and 5% of gypsum in the ceramic paste, burned at 850 deg C, 950 deg C and 1050 deg C and submitted to further technological and analysis for MEV. The reference ceramic paste did not show tendency to efflorescence formation after burning for samples with 1% gypsum added to the paste. The reference ceramic paste showed tendency to efflorescence formation after drying and consolidated efflorescence after burning for samples with 5% gypsum added to the paste. (author)

  7. Physical-optical effects obtention for the ceramic tiles decoration; Obtencion de efectos fisico-opticos para la decoracion de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, M. J.; Montins, V.; Solsona, D.; Sala, J. M.

    2012-07-01

    This paper presents a range of products for the ceramic tiles decoration, characterized for a microcracks structure after its application on a ceramic substrate and subsequent firing. This structure origins a multicoloured iridescent effect that confers to the ceramic tile differential aesthetics characteristics, with a final aspect similar to the rainbow quartz or iris quartz. An analysis of the state of the art is made as well as a deepening in the study and characterization of the physical optical phenomena responsible of that kind of effects in these minerals, with the aim of determining and modelling the multicoloured effect or iridescent effect, the cause of this effect, the physical-optical phenomenon that produces it, and the analysis and knowledge of the phenomenological mechanisms that origins it, so that we can try the extrapolation of that effects wit our ceramic materials. (Author)

  8. STUDY OF CERAMIC TILE PREPARATION WITH HIGH CONTENT OF CINDER%高掺量煤渣制备陶瓷釉面砖的研究

    Institute of Scientific and Technical Information of China (English)

    程小苏; 陈倩

    2011-01-01

    Ceramic glazed tile was prepared by low temperature biscuit fire and high temperature glost fire using cinder from a ceramic factory' coal gasifier as the ceramic raw material. The phase composition and microstructure of ceramic glazed tile were analyzed by testing strength, water absorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of Albite and Black Talc to strength of ceramic body were discussed. When the content of cinder was 50%, the strength of ceramic tile was more than 35Mpa.%以煤气发生炉的煤渣为主要原料,辅以钠长石和黑滑石等其他原料,经低温素烧、高温釉烧的二次烧结工艺在辊道窑烧制成陶瓷釉面砖.测试其强度和吸水率,并采用X射线衍射(XRD)仪和扫描电子显微镜(SEM)分析了煤渣陶瓷釉面砖的物相组成及微观结构,探讨了配方中钠长石和黑滑石含量对陶瓷坯体强度的影响,制备出的陶瓷釉面砖强度大于35Mpa,且煤渣利用量可达50%.

  9. 利用石墨尾矿制备建筑陶瓷%Preparation of Building Ceramic Tiles from Graphite Tailings

    Institute of Scientific and Technical Information of China (English)

    陈宝海; 杜高翔; 廖立兵; 杨敏

    2011-01-01

    Sintered ceramic tiles were prepared from the graphite tailings from Heilongjiang province, China. A proper amount of quartz and kaolin were added to the raw material to improve the properties of the ceramic tiles which were formed by pressing method. The influence of sintering temperature on properties of ceramic tiles was investigated. The results showed that the ceramic tiles possessed good color consistency and higher strength when the tiles were made with the raw materials containing 6%~8% of water, through pressing forming under 25 Mpa and sintering at 1060 -1080 ℃. The tiles are well conformed to the requirements of the national standard GB/T 4100-2006. The ceramic tiles have the highest strength when the firing temperature is 1060 ℃. Its bending strength and water absorptivity are 68.90 Mpa and 0.306%, respectively. The investigations with scanning electron microscope (SEM), thermogravimetric-differential thermal analysis (TG-DTA), and X-ray diffraction (XRD) shows that the anorthite begins to crystallize at about 950 °C and liquid appears at about 1050 ℃. The anorthite and glass phase are important to the sintering and strengthening of the ceramic tiles.%以黑龙江石墨尾矿为主要原料,辅以适量的石英和高岭土,采用压制成型法,制备烧结陶瓷砖.研究了烧成温度对陶瓷砖性能的影响.结果表明,当原料含水率为6%~8%、成型压力为25 MPa,烧成温度1060~1080℃时,制得的陶瓷砖为暗红色,颜色一致性好,强度较高,符合国家标准GB/T 4100-2006.当烧成温度为1060℃时,抗折强度最大,高达68.90 MPa,吸水率为0.306%.扫描电子显微镜、热重-差热和X射线衍射等方法分析结果表明,烧成温度为950℃左右时开始析出钙长石,1050℃左右时有大量的液相产生,钙长石和玻璃相对其成瓷及强度的提高起到了重要作用.

  10. Disk-like Tiles Derived from Complex Bases

    Institute of Scientific and Technical Information of China (English)

    Jun LUO; Zuo Ling ZHOU

    2004-01-01

    For each positive integer k, the radix representation of the complex numbers in the base-k + i gives rise to a lattice self-affine tile Tk in the plane, which consists of all the complex numbers that can be expressed in the form ∑j≥1 dj(-k + i)-j, where dj ∈ {0, 1,2,……,k2}. We prove that Tk is homeomorphic to the closed unit disk {z ∈ C: |z| ≤ 1} if and only if k ≠ 2.

  11. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    Science.gov (United States)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  12. Use of sodium carbonate as a binder in ceramic tile compositions; Uso del carbonato sodico como ligante en composiciones de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Quereda, F.; Sanchez, E.; Garcia-Ten, J.; Gozalbo, A.; Beltran, V.; Sanchez, J.; Sales, J.

    2010-07-01

    This study analyses, first, the influence of sodium carbonate content on the behaviour of the ceramic tile body composition during the different manufacturing process stages (preparation of the suspension, pressing, and firing), as well as on unfired tile mechanical strength. It has been verified that sodium carbonate can be used as a binder in ceramic tile compositions, since small percentages considerably enhance dry tile mechanical strength. It has furthermore been determined that for each composition there is an optimum addition content, with high increased mechanical strength (up to 70%), without this noticeably affecting the rheological behaviour of the suspension to be spray dried. These results are currently being patented (patent application P200930148). Once the binding effect of sodium carbonate had been verified, it was sought to establish its action mechanism. For this purpose, drops of mixtures of a standard ceramic composition and increasing quantities of sodium carbonate were prepared. The drops were rapidly dried and the granules were characterised by scanning electron microscopy. It was thus verified that the most likely sodium carbonate action mechanism was formation of solid bridges by crystallisation. (Author)

  13. Aperiodic compression and reconstruction of real-world material systems based on Wang tiles.

    Science.gov (United States)

    Doškář, Martin; Novák, Jan; Zeman, Jan

    2014-12-01

    The paper presents a concept to compress and synthesize complex material morphologies that is based on Wang tilings. Specifically, a microstructure is stored in a set of Wang tiles and its reconstruction is performed by means of a stochastic tiling algorithm. A substantial part of the study is devoted to the setup of optimal parameters of the automatic tile design by means of parametric studies with statistical descriptors at heart. The performance of the method is demonstrated on four two-dimensional two-phase target systems, monodisperse media with hard and soft disks, sandstone, and high porosity metallic foam.

  14. Application Progress of Inkjet Printing Technology in the Area of Ceramic Tile in China%浅析附着式振动器的技术特点

    Institute of Scientific and Technical Information of China (English)

    蒋章方; 邓堪谊

    2012-01-01

    Inkjet printing technology was developing rapidly in the area of China's ceramic tile companies. It can be predicted, there will more than 1000 inkjet printing machines to be came into use in the near future. The decorative technology of the ceramic tiles are happening a 'revolution'. Standardized ceramic ink will have 7.5-16 billion RMB market each year and the inkjet printing equipment will have 3-6 bil-lion RMB market each year. Inkjet printing technology was changing traditional 'format and coloring match' development and production's mode, which will bring 4-64 billion RMB added value to the China's ceramic tile enterprise.%附着式振动器由于偏心块、附着重量、物料属性等的存在,将其电机设计问题复杂化。笔者结合多年的工作体会,就激振力与电机额定功率的关系、附着式振动器总体设计特点、温升计算要点、滚动轴承可靠性计算等问题进行了介绍。

  15. 高分子材料在陶瓷砖及其相关产品中的应用及进展%The advances and applications of high polymer material used in ceramic tile and related product

    Institute of Scientific and Technical Information of China (English)

    蔡阿满

    2011-01-01

    随着新型瓷砖的发展,高分子材料在陶瓷砖中的应用越来越广泛。本文介绍了高分子材料在陶瓷砖及其相关产品中的应用,并展望了高分子材料在新型陶瓷砖中的应用发展前景。%With the development of new ceramic tile, the application of polymer materials used in ceramic tile more and more widely. This paper introduced the application of high polymer materials used in ceramic tile and related products, and prospected the development prospect of polymer materials used in new ceramic tile.

  16. 一种仿微晶玻璃面瓷质砖的研制%DEVELOPMENT OF A KIND OF CERAMIC TILE WITH SIMHAR DEVITRIFIED GLASS PLANE

    Institute of Scientific and Technical Information of China (English)

    李勇民; 薛志刚

    2001-01-01

    通过大量实验探讨,确定了坯体配方和相对应的溶液釉配比,利用溶液釉的渗透作用在坯体上获得了良好的釉层,为研制仿微晶玻璃面的瓷质砖提供了可能,并获得了效果较好的样品。%Making sure ceramic tile' s composition and a kind of solution glaze' s composition of furnish which adapts to it by means of a large scale of experiment and approach. Having got favourable layer on the tile by utilizing solution pervasive glaze and it provides a possibility of developing eeramic tile which with devitrified glass plane. Now we have got some samples with favourable effectiveness.

  17. Combustion gas cleaning in the ceramic tile industry: technical guide; Nettoyage des fumees de combustion dans l'industrie ceramique: guide technique

    Energy Technology Data Exchange (ETDEWEB)

    Lezaun, F.J. [ENAGAS-Grupo Gas Natural (Spain); Mallol, G.; Monfort, E. [instituto de Tecnologia Ceramica, ITC (Spain); Busani, G. [Agenzia Regionale per la Prevenzione e l' Amiente, ARPA (Spain)

    2000-07-01

    This document presents a summary of a technical guide drawn up on combustion gas cleaning systems in ceramic frit and tile production. The guide describes the method to be followed for selecting the best possible solutions for reducing pollutant concentrations in different emission sources, in accordance with current regulatory requirements and the CET recommendation. There are three sources of combustion gas air emissions that need to be cleaned in ceramic tile and frit production and they are usually related to the following process stages: slip spray drying, tile firing and frit melting. The different nature of the emissions means that different substances will need to be cleaned in each emission. Thus, in spray drying and frit melting, the only species to be cleaned are suspended particles, while in tile firing, it is also necessary to reduce the fluorine concentration. The systems analysed in this guide are mainly wet cleaning systems, bag filters and electrostatic precipitators. In the study, the efficiency of these cleaning systems is compared at each emission source from a technical and economic point of view, and concrete solutions are put forward in each case, together with a list of suppliers of the technologies involved. (authors)

  18. 自动液压压砖机液压油的选用%The Selection of Hydraulic Oil of Automatic Hydraulic Press for Ceramic Tiles

    Institute of Scientific and Technical Information of China (English)

    任小平; 汪建晓

    2001-01-01

    The types and characteristics of hydraulic oil are briefly introduced, and the selection methods of hydraulic oil of automatic hydraulic ress for ceramic tiles are presented.%本文简要介绍了液压油的类型和性能指标,阐述了全自动液压压砖机液压油的选用方法。

  19. Ultrasonic sensor based defect detection and characterisation of ceramics.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh; Zhang, Tonzhua; Crouch, Ian

    2014-01-01

    Ceramic tiles, used in body armour systems, are currently inspected visually offline using an X-ray technique that is both time consuming and very expensive. The aim of this research is to develop a methodology to detect, locate and classify various manufacturing defects in Reaction Sintered Silicon Carbide (RSSC) ceramic tiles, using an ultrasonic sensing technique. Defects such as free silicon, un-sintered silicon carbide material and conventional porosity are often difficult to detect using conventional X-radiography. An alternative inspection system was developed to detect defects in ceramic components using an Artificial Neural Network (ANN) based signal processing technique. The inspection methodology proposed focuses on pre-processing of signals, de-noising, wavelet decomposition, feature extraction and post-processing of the signals for classification purposes. This research contributes to developing an on-line inspection system that would be far more cost effective than present methods and, moreover, assist manufacturers in checking the location of high density areas, defects and enable real time quality control, including the implementation of accept/reject criteria.

  20. Back relief geometry of ceramic tiles: historic evolution, current considerations and new design approaches.; Geometria al dorso de baldosa ceramica: evolucion historica, consideraciones actuales y nuevos enfoques de diseno

    Energy Technology Data Exchange (ETDEWEB)

    Defez, B.; Peris-Fajarnes, G.; Santiago, V. M.; Brusola simo, F.

    2010-07-01

    Abstract Bibliography related to the design of ceramic floorings, their historic progression and current background is extensive. The investment in the research of new materials formulations, both for ceramic supports, glazes and dyes has been intensive in the last decades, in order to maximize industrial productivity. Nevertheless, there are very few works engaged with the peculiarities of the geometric and structural configuration of ceramic products, where the back relief of the tile could have an essential role. In this article, we report the development of back relief's along time, according to the technological determinants of the sector. Then, we analyze the current situation of ceramic back relief's, as well as their development opportunities with regard to new design factors, namely, the new sales market, the new environmental requirements, and the accomplishment of the international regulations in the matter of quality production and building safety. Finally, we report the new approaches undertaken in the ceramic cluster of Castellon (Spain), with the collaboration of the Universidad Politecnica de Valencia, based on computer aided design. (Author)

  1. An Effective NoSQL-Based Vector Map Tile Management Approach

    Directory of Open Access Journals (Sweden)

    Lin Wan

    2016-11-01

    Full Text Available Within a digital map service environment, the rapid growth of Spatial Big-Data is driving new requirements for effective mechanisms for massive online vector map tile processing. The emergence of Not Only SQL (NoSQL databases has resulted in a new data storage and management model for scalable spatial data deployments and fast tracking. They better suit the scenario of high-volume, low-latency network map services than traditional standalone high-performance computer (HPC or relational databases. In this paper, we propose a flexible storage framework that provides feasible methods for tiled map data parallel clipping and retrieval operations within a distributed NoSQL database environment. We illustrate the parallel vector tile generation and querying algorithms with the MapReduce programming model. Three different processing approaches, including local caching, distributed file storage, and the NoSQL-based method, are compared by analyzing the concurrent load and calculation time. An online geological vector tile map service prototype was developed to embed our processing framework in the China Geological Survey Information Grid. Experimental results show that our NoSQL-based parallel tile management framework can support applications that process huge volumes of vector tile data and improve performance of the tiled map service.

  2. Interface porcelain tile/PVA modified mortar: a novel nanostructure approach.

    Science.gov (United States)

    Mansur, Alexandra Ancelmo Piscitelli; Mansur, Herman Sander

    2009-02-01

    In ceramic tile systems, the overall result of adherence between porcelain tiles and polymer modified mortars could be explained based on the nano-order structure that is developed at the interface. Based on pull-off tests, Scanning Electron Microscopy images, and Small Angle X-ray Scattering experiments a nanostructured approach for interface tile/PVA modified mortar was built. The increase of adhesion between tile and mortar due to poly(vinyl alcohol), PVA, addition can be explained by the formation of a hybrid ceramic-polymer-ceramic interface by hydrogen bonds between PVA hydroxyl groups and silanol from tile surface and water from nanostructured C-S-H gel interlayer.

  3. Wang Tiles in Computer Graphics

    CERN Document Server

    Lagae, Ares

    2009-01-01

    Many complex signals in computer graphics, such as point distributions and textures, cannot be efficiently synthesized and stored. This book presents tile-based methods based on Wang tiles and corner tiles to solve both these problems. Instead of synthesizing a complex signal when needed, the signal is synthesized beforehand over a small set of Wang tiles or corner tiles. Arbitrary large amounts of that signal can then efficiently be generated when needed by generating a stochastic tiling, and storing only a small set of tiles reduces storage requirements. A tile-based method for generating a

  4. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.

    Directory of Open Access Journals (Sweden)

    Georgios C Antonopoulos

    Full Text Available A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR, or magnetic resonance imaging (MRI enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.

  5. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  6. 等静压瓷砖模具新工艺%A New Technology for Ceramic Tile Die with Isostatic Pressing

    Institute of Scientific and Technical Information of China (English)

    张俊; 张伟阁

    2001-01-01

    In this paper a new technology for upperpunch in ceramic tile die with isostatic pressing is introduced,static-pressure area ratio and bonding area ratio are changed into independent technological parameters and can be separately designed.%本文介绍了等静压瓷砖模具中上模芯的一种新型工艺结构, 它使静压比和粘贴比成为两个互相独立的参数, 可以分开进行设计。

  7. 某市跳水馆工程标准跳水池专用瓷砖镶贴施工%The special ceramic tile cover construction of a diving hall engineering standard diving pool

    Institute of Scientific and Technical Information of China (English)

    张毅

    2015-01-01

    通过阐述某市跳水馆工程跳水池建设中专用瓷砖面层镶贴项目,从技术和质量角度分析了施工过程中的施工工艺与需要注意的问题,以提高跳水池专用瓷砖的镶贴质量,为专用瓷砖镶贴积累一定的知识和经验。%Through the elaboration of special ceramic tile cover layer project in a city diving hall engineering diving pool construction,from the point of view of technology and quality analyzed the construction process and matters need to pay attention to in construction technology,in order to improve the cover quality of diving pool special ceramic tile,accumulated some experience and knowledge for special ceramic tile cover.

  8. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  9. Avaliação das propriedades físico-mecânicas de uma massa cerâmica para revestimento poroso (BIII Evaluation of physical-mechanical properties of a ceramic paste for porous wall tile (BIII

    Directory of Open Access Journals (Sweden)

    S. J. G. Sousa

    2005-03-01

    Full Text Available O presente trabalho teve por objetivo estudar as propriedades físico-mecânicas de uma massa para revestimento cerâmico poroso base vermelha a partir de matérias-primas da região Norte Fluminense. A massa cerâmica preparada pelo processo via seca foi caracterizada quanto a composição química, análise de tamanho de partícula, difração de raios X e comportamento térmico. Os corpos cerâmicos foram prensados sob 35 MPa e sinterizados entre 1080 e 1200 ºC usando um ciclo de queima rápido. A microestrutura sinterizada foi avaliada por microscopia eletrônica de varredura. Os corpos cerâmicos sinterizados exibiram baixos valores de retração linear, resultando em boa estabilidade dimensional. A microestrutura é caracterizada por alta porosidade. Além disso, foram atingidas as especificações para revestimento poroso (NBR 13818 em termos da tensão de ruptura à flexão e da absorção de água dos corpos cerâmicos sinterizados, indicando o potencial das matérias-primas cerâmicas do Norte Fluminense para este tipo de aplicação.The present work aimed at studying the physical-mechanical properties of a ceramic paste for red porous wall tile using raw materials from the Northern Fluminense region. The ceramic paste was prepared by dry process and characterized regarding chemical composition, particle size analysis, X-ray diffraction and thermal behavior. The ceramic bodies were pressed under 35 MPa and sintered from 1080 to 1200 ºC in a fast-firing cycle. The sintered microstructure was evaluated by scanning electron microscopy. The results showed that the sintered ceramic bodies exhibited low values of linear shrinkage, resulting in good dimensional stability. The microstructure was characterized by high porosity. In addition, the specifications for porous wall tiles (NBR 13818 were achieved in terms of the flexural strength and water absorption of the sintered ceramic bodies, indicating the potential of the ceramic raw

  10. Energy optimization in ceramic tile manufacture by using thermal oil; Optimizacion energetica en la fabricacion de baldosas ceramicas mediante el uso de aceite termico

    Energy Technology Data Exchange (ETDEWEB)

    Mezquita, A.; Monfort, E.; Vaquer, E.; Ferrer, S.; Aranal, M. A.; Toledo, J.; Cuesta, M. A.

    2012-11-01

    The ceramic tile manufacturing process consumes a great amount of energy, mainly thermal energy, which is obtained from natural gas combustion. The increased cost of this fuel and the current economic situation make cost a critical issue that can hurt company competitiveness. The ceramic tile firing process in roller kilns does not exactly stand out for its energy efficiency, because about 50% of the energy input is lost through the kiln combustion flue gas and cooling gas stacks. With a view to improving the reuse of the energy consumed in the firing operation, two heat exchangers were installed in the stacks of a kiln. In these heat exchangers, the kiln gases transfer their sensible heat to a thermal oil that then passes this on, through two other exchangers, to the drying gases in the recirculation ducts of a vertical dryer. This study presents an experimental industrial plant in a fine-tuning test phase, in which the preliminary results indicate an energy efficiency improvement in a range of 60-90%, depending on the operating conditions and processed materials. (Author) 11 refs.

  11. Effect of Workplace Noise on Hearing Ability in Tile and Ceramic Industry Workers in Iran: A 2-Year Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Mehrdad Mostaghaci

    2013-01-01

    Full Text Available Introduction. Noise as a common physical hazard may lead to noise-induced hearing loss, an irreversible but preventable disorder. Annual audiometric evaluations help detect changes in hearing status before clinically significant hearing loss develops. This study was designed to track hearing threshold changes during 2-year follow-up among tile and ceramic workers. Methods. This follow-up study was conducted on 555 workers (totally 1110 ears. Subjects were divided into four groups according to the level of noise exposure. Hearing threshold in conventional audiometric frequencies was measured and standard threshold shift was calculated for each ear. Results. Hearing threshold was increased during 2 years of follow-up. Increased hearing threshold was most frequently observed at 4000, 6000, and 3000 Hz. Standard threshold shift was observed in 13 (2.34%, 49 (8.83%, 22 (3.96%, and 63 (11.35% subjects in the first and second years of follow-up in the right and left ears, respectively. Conclusions. This study has documented a high incidence of noise-induced hearing loss in tile and ceramic workers that would put stress on the importance of using hearing protection devices.

  12. SURFACE QUALITY INSPECTION OF CERAMIC TILES BY MACHINE VISION%陶瓷砖表面质量视觉检测系统研究

    Institute of Scientific and Technical Information of China (English)

    李庆利; 郭彩玲; 张向红

    2011-01-01

    重点介绍了机器视觉技术在陶瓷砖表面质量检测中的应用.系统采用面阵摄象机作为测量工具,应用方向算子进行对目标边缘的定位和跟踪,以便获得完整、精确、封闭的目标边缘.实现了对陶瓷砖的边直度、直角度、缺边和缺角等项目的非接触检测.%In this paper, an on-line machine vision system for surface quality inspection of ceramic tiles is introduced, which grabs the images scanned by area-array cameras. The image processing algorithm which uses direction masks is used to locate the edge points exactly. The surface quality of ceramic tiles is measured by the real-time, high precision and non-contact method, which can detect straightness of sides, deviation from rectangularity, rough edge, chip and so on.

  13. STUDY ON SURFACE QUALITY OF CERAMIC TILES BY MACHINE VISION%陶瓷砖表面质量视觉检测系统研究

    Institute of Scientific and Technical Information of China (English)

    李庆利; 郭彩玲; 张向红

    2011-01-01

    In this paper an on-line machine vision system for surface quality of ceramic tiles is introduced, which grabs the images scanned by area-array camera.The image processing algorithm which uses direction masks is used to locate the edge points exactly.The surface quality of ceramic tiles is measured with the real-time, high precision and non-contact method, which includes straightness of sides,deviation from rectangularity, rough edge,chip and so on.%重点介绍了机器视觉技术在陶瓷砖表面质量检测中的应用.系统采用面阵摄像机作为测量工具,应用方向算子进行对目标边缘的定位和跟踪,以便获得完整、精确、封闭的目标边缘.实现了对陶瓷砖的边直度、直角度、缺边和缺角等项目的非接触检测.

  14. Predicting tile drainage discharge

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes;

    of the water load coming from the tile drainage system is therefore essential. This work aims at predicting tile drainage discharge using dynamic as well as a statistical predictive models. A large dataset of historical tile drain discharge data, daily discharge values as well as yearly average values were......More than 50 % of Danish agricultural areas are expected to be artificial tile drained. Transport of water and nutrients through the tile drain system to the aquatic environment is expected to be significant. For different mitigation strategies such as constructed wetlands an exact knowledge...... used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...

  15. Radiological characterization of ceramic tiles made in the community of Valencia and its use as a construction material; Caracterizacion radiologica de baldosas ceramicas fabricas en la comunidad Valenciana y su uso como material de construccion

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, J.; Ballesteros, L.; Gallardo, S.; Martorell, S.

    2014-07-01

    In this presentation, radiological characterization is done by gamma spectrometry various types of ceramic tiles and use as building material in relation to the potential radiological risk deriving from this use are discussed. The discussion includes both the rules of the countries being targeted as the new basic security policy (BSS) issued by the EU 2014. (Author)

  16. Study on Technology of the Ceramic Tiles from Ruined City of Shang Dynasty in Zhengzhou%郑州商城遗址出土商代陶板瓦的工艺研究

    Institute of Scientific and Technical Information of China (English)

    李乃胜; 李清临; 曾晓敏; 宋国定

    2012-01-01

    分析了郑州商城遗址出土的一批距今约3 500 a,时代为商代早期的陶质板瓦,讨论了这些板瓦的制作工艺和性能.对板瓦尺寸的测量表明,虽然板瓦的大小差异很大,其弦长和弧长却呈正相关.结合板瓦的外部特征,推断这些板瓦先由泥条盘筑法筑成泥圈,并经慢轮修整制成圆筒状坯体,然后经切割而成瓦坯,最后入窑焙烧而成.吸水率、抗折强度和烧成温度的分析表明,这些板瓦具有良好的工艺性能,完全符合一般意义上瓦的标准,表明我国在商代早期已经可以制作工艺性能较好的建筑用瓦.%Some flat ceramic tiles from ruined city of Shang dynasty in Zhengzhou were analyzed, and the making technique and technical quality of these tiles were discussed. The analysis of dimensions of these tiles reveals that there is a positive relation between the length of arc and the length of chord, though the dimensions of tiles are different. Considering the outer characters of these tiles, it is concluded that these tiles had complex production process. Firstly, the clay was made to a cylinder. Secondly, this clay cylinder was cut to several clay tiles. Finally, clay tiles were put into kiln and baked to earthen tiles. The analysis of water absorptivity, flexural strength and baking temperature of tiles reveal that these tiles have better technical quality than those of lots of bricks and tiles in other later historical and modern periods, and that the quality of these tiles were in accordance with the standard of tile absolutely.

  17. Mechanical Properties and Microstructure of Fast – Fired Clinker Tiles Based on Wierzbka I Raw Material

    Directory of Open Access Journals (Sweden)

    Gajek M.

    2016-03-01

    Full Text Available The article presents results of research on microstructural and mechanical properties of floor tiles clinker manufactured on the basis of Wierzbka I raw material, which is part of the deposit Wierzbka, near Suchedniów. Wierzbka I clay was added in various volume fractions to the standard tile compositions used in industrial practice. The samples were pressed in a range of from 21 MPa to 42 MPa and fired in the laboratory furnace at 1130°C to 1190°C. Selected compositions were pressed at 28 MPa and fired in a standard industrial environment. The process of firing was conducted in an industrial kiln at temperature of 1160°C for 38 minutes, with holding for 4 minutes at maximum operating temperature. The samples, which were prepared in the laboratory and industrial conditions were evaluated for the effect of addition of the Wierzbka I clay on their microstructural and mechanical properties based on the measurement results of linear shrinkage, bulk density, open porosity, water absorption and flexural strength (Ϭ of the tiles. Microstructural changes were observed with a scanning electron microscope (SEM. The results revealed that the tested tiles were characterized by a high degree of sintering, an apparent density of 2.5 g/cm3, an open porosity and water absorption below 0.5%. The measurement results of mechanical bending strength showed that the tested samples had a high strength of 50 MPa.

  18. Preparation of Ceramic Tiles with Electrolytic Manganese and Waste Glass Admicture%利用电解锰渣-废玻璃制备陶瓷砖

    Institute of Scientific and Technical Information of China (English)

    冉岚; 刘少友; 杨红芸; 张扬

    2015-01-01

    In order to solve the pollution of electrolytic manganese residue, the environment and improve the utilization of manganese slag, the preparation of ceramic tiles was studied by using electrolytic manganese and waste glass as the main raw material. The basic formulas were obtained in terms of the CaO-Al2O3-SiO2 termary system phase diagram, then they were optimized through a lot of experiments and the text of crystallization. The results indicated that the calcining temperature was 950℃electrolysis manganese when adding 32%electrolytic manganese and 10 g waste glass, the main crystals composition were quartz, cristobalite, mullite and anorthite, the shrinkage is 0.27%, it complied with the standard of GB/T 4100-2006 ceramic tiles.%为了解决电解锰渣对环境的污染,提高锰渣的利用率,研究了以电解锰渣-废玻璃为主要原料制备陶瓷砖。首先利用CaO-Al2O3-SiO2三相图获得初始配方,然后进行了大量的实验,并对产品的晶相进行分析,确定陶瓷砖的最优配方。结果证明,锰渣的添加量为32%,废玻璃含量为25%,煅烧温度为950℃,煅烧时间为30 min时,陶瓷坯的主晶相为石英、钙长石、莫来石和方石英,收缩率为0.27%,符合GB/T 4100-2006陶瓷砖的标准。

  19. Generalized quasiperiodic Rauzy tilings

    Science.gov (United States)

    Vidal, Julien; Mosseri, Rémy

    2001-05-01

    We present a geometrical description of new canonical d-dimensional codimension one quasiperiodic tilings based on generalized Fibonacci sequences. These tilings are made up of rhombi in 2d and rhombohedra in 3d as the usual Penrose and icosahedral tilings. Thanks to a natural indexing of the sites according to their local environment, we easily write down, for any approximant, the sites coordinates, the connectivity matrix and we compute the structure factor.

  20. Massas cerâmicas para telhas: características e comportamento de queima Ceramic bodies for roofing tiles: characteristics and firing behavior

    Directory of Open Access Journals (Sweden)

    C. M. F. Vieira

    2003-12-01

    Full Text Available Este trabalho tem como objetivo estudar comparativamente as características e propriedades tecnológicas de uma típica massa cerâmica para telhas do município de Campos dos Goytacazes-RJ com outras três massas cerâmicas de reconhecida qualidade técnica, provenientes dos Estados de Santa Catarina e Piauí, e de Portugal. As massas cerâmicas foram submetidas a ensaios de difração de raios X, composição química, ATD/TG, distribuição de tamanho de partícula e plasticidade. Foram confeccionados corpos de prova por prensagem uniaxial a 20 MPa para queima em temperaturas variando de 825 a 1025 ºC. As propriedades tecnológicas de queima avaliadas foram: retração linear, absorção de água e tensão de ruptura à flexão (3 pontos. Os resultados indicaram que a massa cerâmica proveniente de Campos apresenta significativas diferenças nas características avaliadas em comparação com as demais massas cerâmicas. Consequentemente, a massa cerâmica de Campos apresentou um comportamento de queima diferente, com maiores valores de absorção de água, de resistência mecânica e de retração linear.This work has for objective to study the characteristics and technological properties of a typical roofing tile ceramic body from the county of Campos of Goytacazes-RJ with other three ceramic bodies of recognized technical quality, coming from States of Santa Catarina and Piauí and of Portugal. The ceramic bodies were submitted to analysis of X-ray diffraction, chemical composition, DTA/TGA, particle size distribution and plasticity. Samples were made by uniaxial pressure at 20 MPa for firing in temperatures varying from 825 to 1075 ºC. The firing technological properties evaluated were: lineal shrinkage, water absorption and flexural strength (3 points. The results indicated that the ceramic body from Campos presents significant differences in the evaluated characteristics in comparison with the other ceramic bodies. Consequently, the

  1. Optimal inventory reallocation to customer orders in ceramic tile companies characterized by the lack of homogeneity in the product (LHP); Reasignacion optima del inventario a pedidos en empresas ceramicas caracterizadas por la falta de homogeneidad en el producto (FHP)

    Energy Technology Data Exchange (ETDEWEB)

    Alemany, M. M. E.; Alarcon, F.; Oltra, R. F.; Lario, B. C.

    2013-02-01

    The lack of homogeneity in the product (LHP) is defined as the lack of uniformity required by the customer in the products. The LHP appears in companies where the final products obtained are not homogeneous, leading to the existence of different references (subtypes) of the same product. This lack of homogeneity is a problem when the client needs to be served through homogeneous units of a product and commit orders are based on planned quantities, whose final homogeneity characteristics are unknown at the time of acquiring the customer commitments. The frequent discrepancies caused by the LHP between planned homogeneous amounts and those actually obtained and available, can prevent the delivery of committed orders. To solve this problem, we propose a mathematical programming model for the reallocation of inventory in Make to Stock (MTS) ceramic tile companies characterized by the LHP that combines multiple objectives. The proposed mathematical model has been validated by its application to a real case of a ceramic company. The analysis of the obtained results indicates significant improvements in the number of orders completed on time and in sales revenue achieved. (Author) 33 refs.

  2. Performance evaluation of tile-based Fisher Ratio analysis using a benchmark yeast metabolome dataset.

    Science.gov (United States)

    Watson, Nathanial E; Parsons, Brendon A; Synovec, Robert E

    2016-08-12

    Performance of tile-based Fisher Ratio (F-ratio) data analysis, recently developed for discovery-based studies using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS), is evaluated with a metabolomics dataset that had been previously analyzed in great detail, but while taking a brute force approach. The previously analyzed data (referred to herein as the benchmark dataset) were intracellular extracts from Saccharomyces cerevisiae (yeast), either metabolizing glucose (repressed) or ethanol (derepressed), which define the two classes in the discovery-based analysis to find metabolites that are statistically different in concentration between the two classes. Beneficially, this previously analyzed dataset provides a concrete means to validate the tile-based F-ratio software. Herein, we demonstrate and validate the significant benefits of applying tile-based F-ratio analysis. The yeast metabolomics data are analyzed more rapidly in about one week versus one year for the prior studies with this dataset. Furthermore, a null distribution analysis is implemented to statistically determine an adequate F-ratio threshold, whereby the variables with F-ratio values below the threshold can be ignored as not class distinguishing, which provides the analyst with confidence when analyzing the hit table. Forty-six of the fifty-four benchmarked changing metabolites were discovered by the new methodology while consistently excluding all but one of the benchmarked nineteen false positive metabolites previously identified.

  3. A new manufacturing plant for fired color tile

    Institute of Scientific and Technical Information of China (English)

    ZhaoZhoumin

    2005-01-01

    The article describes the new manufacturing plant for fired colour tile designed by Xian Research and Design Institute for Nei Mongolia Yinshan Ceramic Ltd. Company. The plant with an annual capacity of 10million fired color tiles.

  4. Avaliação da eficiência térmica de telha reciclada à base de embalagens longa vida Evaluation of the thermal efficiency of roof tiles made of recycled long-life packaging

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2009-04-01

    Full Text Available Neste trabalho se apresenta o estudo da influência de telha reciclada à base de embalagens longa vida (IBAPLAC® no conforto térmico de instalações zootécnicas. A pesquisa foi desenvolvida no Campus Experimental da Unesp de Dracena, SP. Foram construídos quatro protótipos, com área de 28 m² cada um, sendo um deles coberto com telha reciclada à base de embalagens longa vida e três protótipos de referência cobertos com telha cerâmica, telha cerâmica pintada de branco e telha de fibrocimento (Brasilit®. Dentro dos protótipos foram instalados termômetros de globo negro e termômetros de bulbo seco e bulbo úmido. Os dados foram coletados no verão de 2006/2007, totalizando 90 dias. Uma análise estatística por inferência e descritiva foi realizada utilizando-se valores médios de índice de temperatura de globo e umidade, carga térmica radiante e índice de temperatura e umidade, referente ao período. Pelos resultados obtidos é possível afirmar que a telha reciclada apresentou índices de conforto térmico semelhantes àqueles encontrados para as telhas cerâmicas, podendo ser indicada como opção de cobertura para instalações zootécnicas.This paper presents a study of the influence of roof tiles made of recycled long-life packaging (brand-name IBAPLAC® on the thermal comfort of zootechnical facilities. The research was conducted at UNESP's Experimental Campus at Dracena, State of São Paulo, Brazil. Four prototypes were built, each with an area of 28 m². One prototype was covered with roof tiles made of recycled long-life packing material and three reference prototypes were roofed with ceramic tiles, ceramic tiles painted white and fiber/cement tiles (Brasilit®, respectively. Black globe thermometers and dry and wet bulb thermometers were installed inside the prototypes. Temperatures inside the structures were recorded in the Summer of 2006/2007 over a 90-day period. A descriptive statistical analysis was made, based

  5. Use of the extraction residue of emeralds in a formulation mass of ceramic tiles; Utilizacao do residuo da extracao de esmeraldas em uma formulacao de massa de revestimento ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, R. F., E-mail: ronaldofcavalcante@gmail.com [Programa de Pos-Graduacao em Engenharia Mecanica - PPgEM - UFRN, Universidade Federal do Rio Grande do Norte, Lagoa Nova, RN (Brazil); Nascimento, R.M.; Paskocimas, C.A., E-mail: rmaribondo@ufrnet.br, E-mail: paskocimas_ca@hotmail.com [Departamento de Engenharia Materiais - DEMAT - Universidade Federal do Rio Grande do Norte, Lagoa Nova, RN (Brazil); Dutra, R.P.S., E-mail: ricardodutra@ct.ufpb.br [Departamento de Engenharia Materiais - DEMAT - UFPB - Universidade Federal de Pernambuco, Recife (Brazil)

    2012-04-15

    Companies involved in mining and beneficiation of emerald represent an important area of industrial development in Brazil, with a significant contribution to world production of this ore. As a result, large volumes of waste generated and emerald are constantly abandoned in the environment, contributing negatively to their preservation. On the other hand the interest in the use of mining waste as an additive in production of ceramic materials has grown among researchers in recent years. The ceramic industry is constantly seeking to expand the market for the sector and trying to improve product quality and increase the variety of applications. The technology of obtaining ceramic coating that uses waste from mining is still a largely unexplored market. Thus, the purpose of this study was to characterize the waste generated from mining emerald as well as to evaluate its potential use as raw material for production melting of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence and X-ray diffraction. Five compositions were prepared using the waste codes of emeralds from 0%, 10%, 20%, 30% and 40%. Samples were prepared by pressing, sintered at 1000, 1100 and 1200 deg C and characterized to establish their mineralogical composition, water absorption, linear shrinkage and modulus of rupture. The results showed that the residue of emeralds studied can be embedded in the mass of ceramic tiles up to 20% in replacement of feldspar without compromising the end product properties. (author)

  6. The effect of manufacturing variables on radiation doses from porcelain tiles.

    Science.gov (United States)

    Selby, J H; Strydom, R

    2008-06-01

    Previous studies have focused on the radiological properties of glazed ceramic tiles. This study was conducted to describe the radiological properties of porcelain tiles and how they were affected by variations in the manufacturing parameters. The data showed that the majority of the uranium in the tiles was attributable to the addition of zircon while less than half of the thorium in the tile was attributable to the added zircon, and the remainder came from other minerals in the formulation. The effects of firing temperatures and compressive strengths of the tiles are presented and show that higher firing temperatures increase radon emanation, while higher compressive strengths reduce radon emanation. The study also described how the addition of zircon to the tile formulation affected the radiological exposures that could be received by a member of the public from the use of such porcelain tiles. A dose assessment was conducted based on 23 different types of tile formulation. Screening procedures for building materials have been described in European Commission documents, and these limit the addition of zircon in a porcelain tile to approximately 9% by mass. The dose assessment reported in this study showed that 20% zircon could be added to a porcelain tile without exceeding the prescribed dose limits.

  7. 粉煤灰制备陶瓷地砖的研究%Study on ceramic floor tiles prepared from fly ash

    Institute of Scientific and Technical Information of China (English)

    王可桢; 王维

    2016-01-01

    本文目的在于研究原料粉末粒径大小对粉煤灰质陶瓷砖性能的影响。利用粉煤灰和滑石等普通陶瓷原料,经过模压成型成功制备了粉煤灰质陶瓷地砖。通过高倍电镜分析,研究了粒径大小对粉煤灰陶瓷地砖结晶和性能的影响规律。结果表明,粉煤灰质陶瓷坯体最佳烧成温度为1150℃,陶瓷原料粉末粒径小于250目,粉煤灰质陶瓷的性能最佳。粉煤灰中K2 O和Na2 O促进陶瓷晶化形核时生成透辉石相和降低烧成温度。本工作为粉煤灰大规模资源化及综合利用提出了新思路。%The objective of the present investigation was to study the effect of grain sizes on ceramic floor tiles prepared from fly ash .Green body of buildings ceramic can be produced from fly ash and talc by compression molding .The effect of grain sizes on crystal growth of fly ash -ceramic was studied by scanning electron microscopy ( SEM) .The result showed that when the optimal firing temperature is 1150℃.The particle size of the raw material powder being smaller than 250 mesh, the performance of the fly ash-ceramic is best .Sodium oxide and potassium oxide can improve the combining solid phase with liq-uid phase in the fly ash -ceramic successfully while crystallizing .This work is useful for the resourcing and comprehensive utilization of the red mud .

  8. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Akerstedt, Henrik; Muschter, Steffen; Drake, Gary; Anderson, Kelby; Bohm, Christian; Oreglia, Mark; Tang, Fukun

    2015-10-01

    The Tile Calorimeter at ATLAS [1] is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links, will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new readout system will be installed in one slice of the ATLAS Tile Calorimeter. This will allow the proposed upgrade to be thoroughly evaluated well before the planned 2023 deployment in all slices, especially with regard to long term reliability. Different firmware strategies alongside with their integration in the demonstrator are presented in the context of high reliability protection against hardware malfunction and radiation induced errors.

  9. Application and Development of Ink Jet Printing on Ceramic Tile%喷墨打印技术在墙地砖行业的应用现状及发展趋势

    Institute of Scientific and Technical Information of China (English)

    张柏清; 王德良; 钟树铭

    2011-01-01

    This paper gave a brief account of application developments of ink jet printing technology for ceramic tile decoration, describing in detail the history and principles of inkjet printing, types of print heads and requirements of jet printing ink for ceramics.%本文概述了陶瓷砖装饰应用喷墨打印技术的进展状况.着重介绍了喷墨打印技术的历史,工作原理,喷头和陶瓷墨水性能要求等问题.

  10. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  11. Exterior wall rock wool insulation construction technology of ceramic tile facing%外墙岩棉保温磁砖饰面施工技术

    Institute of Scientific and Technical Information of China (English)

    石海平

    2015-01-01

    the rock is basalt and other natural mineral as the main raw materials by high temperature melting into the fiber,adding proper amount of binder, good insulation, sound insulation,fire prevention effect. Rock wool construction and installation convenience,remarkable energy saving effect,has a very high price. In the construction process,we explored and summed up the wall rock wool insulation construction technology of ceramic tile facing,through the engineering practice,and achieved good economic and social benefits, and has broad application prospects.%岩棉是以玄武岩及其它天然矿石为主要原料经高温熔融成纤,加入适量粘接剂而成,具有良好的绝热、隔音、防火效果。岩棉施工及安装便利、节能效果显著,具有很高的性价比。在施工过程中,我们探索和总结出了外墙岩棉保温磁砖饰面施工技术,通过工程实践,取得了良好的经济效益和社会效益,具有广阔的应用前景。

  12. A New Retrieval Model Based on TextTiling for Document Similarity Search

    Institute of Scientific and Technical Information of China (English)

    Xiao-Jun Wan; Yu-Xin Peng

    2005-01-01

    Document similarity search is to find documents similar to a given query document and return a ranked list of similar documents to users, which is widely used in many text and web systems, such as digital library, search engine,etc. Traditional retrieval models, including the Okapi's BM25 model and the Smart's vector space model with length normalization, could handle this problem to some extent by taking the query document as a long query. In practice,the Cosine measure is considered as the best model for document similarity search because of its good ability to measure similarity between two documents. In this paper, the quantitative performances of the above models are compared using experiments. Because the Cosine measure is not able to reflect the structural similarity between documents, a new retrieval model based on TextTiling is proposed in the paper. The proposed model takes into account the subtopic structures of documents. It first splits the documents into text segments with TextTiling and calculates the similarities for different pairs of text segments in the documents. Lastly the overall similarity between the documents is returned by combining the similarities of different pairs of text segments with optimal matching method. Experiments are performed and results show:1) the popular retrieval models (the Okapi's BM25 model and the Smart's vector space model with length normalization)do not perform well for document similarity search; 2) the proposed model based on TextTiling is effective and outperforms other models, including the Cosine measure; 3) the methods for the three components in the proposed model are validated to be appropriately employed.

  13. Fixed Point and Aperiodic Tilings

    CERN Document Server

    Durand, Bruno; Shen, Alexander

    2008-01-01

    An aperiodic tile set was first constructed by R.Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals) We present a new construction of an aperiodic tile set that is based on Kleene's fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gacs in the context of error-correcting computations. The flexibility of this construction allows us to construct a ``robust'' aperiodic tile set that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. This property was not known for any of the existing aperiodic tile sets.

  14. Ceramic Polishing Slag as Foaming Material for Preparation of Light Glazed Tile%以陶瓷抛光废渣为发泡原料制备轻质釉面砖的研究

    Institute of Scientific and Technical Information of China (English)

    许林峰; 曾德朝; 钟保民

    2016-01-01

    A light ceramic tile body with outstanding non-deformability was produced by using ceramic polishing slag as foaming material and clay,silica sand,potash feldspar as raw materials.And a high temperature glaze and a low tempera-ture glaze with coefficient of thermal expansion adapting to the body were also produced.Light ceramic glazed tiles with ex-cellentglaze surface were prepared by a method of double-layer glazing.The test results indicate that the light ceramic glazed tiles show excellentantifouling property,and the flexural strength of 8.47 MPa and heat conductivity coefficient of 0. 39 W/m·K were reached.%以抛光废渣为发泡原料,结合粘土、石英、钾长石等陶瓷原料,制备出抗变形能力好的轻质陶瓷砖坯;并研制出热膨胀系数与轻质砖坯适配的高温釉料和低温釉料;采用双层布釉的方法,制备出釉面质量良好的轻质釉面砖。测试结果表明:轻质陶瓷砖釉面具有优异的防污性能,抗折强度达到8.47 MPa,导热系数为0.39 W/m·K。

  15. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    CERN Document Server

    Akerstedt, H; The ATLAS collaboration; Drake, Gary; Anderson, Kelby; Bohm, C; Oreglia, Mark; Tang, Fukun

    2015-01-01

    The Tile Calorimeter at ATLAS is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links, will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new read-out system will be installed in one slice of ...

  16. [Evaluation of long-term occupational exposure to dust and its effect on health during production of ceramic tiles].

    Science.gov (United States)

    Gielec, L; Izycki, J; Woźniak, H

    1992-01-01

    A medical examination has been carried out of 500 workers (290 men and 210 women) of a ceramic plates plant. Also, the measurements of dust concentrations were made at some standard work places . In the materials used for manufacturing the plates crystalline phases and the content of free crystalline silica were determined using the X-ray diffraction method. In the animal experiments the fibrogenic activity of all materials used in the plant was examined and compared to the fibrogenic activity of standard quartz. As a result of the medical examination 64 cases of pneumoconiosis were diagnosed (13% of the subjects). The incidence rate of pneumoconiosis was similar for men and women. The radiological changes characteristic of pneumoconiosis took approximately 24 years of the workers tenure to develop. Type q changes were most frequent (69%), types p and r were observed in 14% of workers (mostly women). In 31% of workers tuberous changes of size B were observed. In 43.8% of the subjects restrictive disorders of ventilation were found. In 30% of workers chronic bronchitis was diagnosed. Dust concentrations at 11 work places were measured using the individual dosimetry method. Total dust concentrations ranged from 0.6 mg/m3 at the electricians posts to 60.1 mg/m3 at the workposts where the furnace truck restorers worked. Dust concentrations exceeded the MACs at 7 workposts. The respirable fraction concentrations ranged from 0.1 mg/m3 to 8.4 mg/m3. During the replacement of asbestos ropes and asbestos board used for insulating the furnace trucks mineral fibres (0.1-0.5 fibre/cm3) were found in the air. The following crystalline phases were determined in the materials: kaolinite, illite, quartz, orthoclase and microline.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. RESEARCH IN EXPERT CONSULTING SYSTEM FOR FIRING FLAWS OF BUILDING CERAMIC TILES%建筑砖烧成缺陷咨询专家系统的研究

    Institute of Scientific and Technical Information of China (English)

    陈功备; 张海荣; 胡国林

    2011-01-01

    An expert consulting system for solving firing flaws of building Ceramic tiles was set up by using forward reasoning and uncertainty reasoning with weighting. A user of the system may find suggested solutions to a firing flaw by the name of a defect and the phenomenon.%将专家系统的知识应用于建筑砖烧成缺陷领域中,通过正向推理和加权的不确定推理,开发了一个建筑砖烧成缺陷咨询专家系统,方便用户查询.

  18. Study and automatic control of the ceramic tile extrusion operation; Estudio y control automatico de la operacion de extrusion de baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Aguilella, M.; Foucard, L.; Mallol, G.; Sanchez, M. J.; Lopez, M.; Benasges, R.

    2012-07-01

    The ever-larger tile sizes demanded by the market, the higher quality requirements, and the increasingly similar installation to that of pressed products make it necessary to narrow the tolerance limits of final extruded tile size in order to maintain the products competitiveness. The results of this study show that, though mixing water has a great influence on drying shrinkage, it hardly affects extruded tile firing shrinkage. This indicates that control of the water added in the extrusion process is indispensable in order avoid variations in drying shrinkage and, thus, to assure good dimensional stability of the end product. (Author)

  19. Tiled Multicore Processors

    Science.gov (United States)

    Taylor, Michael B.; Lee, Walter; Miller, Jason E.; Wentzlaff, David; Bratt, Ian; Greenwald, Ben; Hoffmann, Henry; Johnson, Paul R.; Kim, Jason S.; Psota, James; Saraf, Arvind; Shnidman, Nathan; Strumpen, Volker; Frank, Matthew I.; Amarasinghe, Saman; Agarwal, Anant

    For the last few decades Moore’s Law has continually provided exponential growth in the number of transistors on a single chip. This chapter describes a class of architectures, called tiled multicore architectures, that are designed to exploit massive quantities of on-chip resources in an efficient, scalable manner. Tiled multicore architectures combine each processor core with a switch to create a modular element called a tile. Tiles are replicated on a chip as needed to create multicores with any number of tiles. The Raw processor, a pioneering example of a tiled multicore processor, is examined in detail to explain the philosophy, design, and strengths of such architectures. Raw addresses the challenge of building a general-purpose architecture that performs well on a larger class of stream and embedded computing applications than existing microprocessors, while still running existing ILP-based sequential programs with reasonable performance. Central to achieving this goal is Raw’s ability to exploit all forms of parallelism, including ILP, DLP, TLP, and Stream parallelism. Raw approaches this challenge by implementing plenty of on-chip resources - including logic, wires, and pins - in a tiled arrangement, and exposing them through a new ISA, so that the software can take advantage of these resources for parallel applications. Compared to a traditional superscalar processor, Raw performs within a factor of 2x for sequential applications with a very low degree of ILP, about 2x-9x better for higher levels of ILP, and 10x-100x better when highly parallel applications are coded in a stream language or optimized by hand.

  20. Effect of Firing Schedule on Preparation of Lightweight Foamed Ceramic Tile by Dry Granulation Process%烧成制度对干法造粒制备轻质陶瓷砖性能的影响

    Institute of Scientific and Technical Information of China (English)

    张博烨; 黄剑锋; 陶晓文; 李康; 汪庆刚; 李转; 费杰; 闫开放; 刘纯

    2015-01-01

    以抛光废渣、高铝泥、恒峰砂、力鸿砂、黑滑石为原料,采用干法造粒工艺,在1100℃~1200℃,保温时间为10~30 min 条件下,制备轻质陶瓷砖,并研究了烧成制度对轻质陶瓷砖性能的影响。结果表明:随着烧成温度的升高,轻质陶瓷砖线膨胀率逐渐升高;吸水率呈先升高再降低而后升高的趋势,在1170℃时达到最低值;抗折强度和容重随着烧成温度的升高逐渐降低。随着保温时间的延长,试样容重和抗折强度逐渐降低,但变化不明显。烧成温度为1160℃,保温时间为15 min 时,制备的轻质陶瓷砖抗折强度为6.3 MPa,吸水率为2.3%,闭气孔率为71.2%,容重为0.64 g/cm3。%Lightweight ceramic tile was sintered at 1100~1200 ℃ with 10~30 min holding time after granulation process using polishing tile waste,high alumina clay,Hengfeng quartz,Lihong quartz and black talc.Influence of properties of lightweight ceramic tile with different firing schedule was discussed.The results showed:linear expansion ratio of was increased with the increasing sintering temperature,water absorption was increased firstly and then increased again after decreased, reached its minimum value at 1170 ℃.Bending strength and bulk density were decreased with the increase of sintering temperature.Bulk density and bending strength were decreased not obviously with the prolong of holding time.The lightweight ceramic tile was prepared at 1160 ℃,15 min,which properties were as follows:bending strength 6.3 MPa, water absorption 2.3%,closed porosity 71.2%,bulk density 0.64 g/cm3 .

  1. Thermal energy consumption and carbon dioxide emissions in ceramic tile manufacture - Analysis of the Spanish and Brazilian industries; Consumo de energia termica y emisiones de dioxido de carbono en la fabricacion de baldosas ceramicas Analisis de las industrias Espanola y Brasilena

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, E.; Mezquita, A.; Vaquer, E.; Mallol, G.; Alves, H. J.; Boschi, A. O.

    2012-11-01

    Spain and Brazil are two of the world's biggest ceramic tile producers. The tile manufacturing process consumes a great quantity of thermal energy that, in these two countries, is mainly obtained from natural gas combustion, which entails CO{sub 2} emission, a greenhouse gas. This study presents a comparative analysis of the thermal energy consumption and CO{sub 2} emissions in the ceramic tile manufacturing process in Spain and Brazil, in terms of the different production technologies and different products made. The energy consumption and CO{sub 2} emissions in ceramic tile manufacture by the wet process are very similar in both countries. In the dry process used in Brazil, less thermal energy is consumed and less CO{sub 2} is emitted than in the wet process, but it is a process that is only used in manufacturing one particular type of product, which exhibits certain technical limitations. While in Spain the use of cogeneration systems in spray-dryers improves significantly the global energy efficiency. The average energy consumption in the different process stages, in both countries, lies within the range indicated in the Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry (BREF of the Ceramic Manufacturing Industry) of the European Union. (Author) 14 refs.

  2. Modeling and simulation of the atomization process in the ceramic tile industry; Modelagem e simulacao do processo de atomizacao na industria de revestimento ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Renata Cristina

    2002-07-01

    The aim of the present work is to numerically simulate the behaviour of the drying system for several sets of operating conditions in order to improve and optimize this process. However, the mathematical modeling adopted here can be employed to simulate other systems such as the processes that occur in liquid-fueled engines with direct spray injection and ceramic spraying for hard surfacing. Then, mathematical and physical models were established to simulate the interaction of continuous and disperse phases in drying processes of ceramic slurries. Solving the set of governing coupled partial differential equations, it is possible to study the influence of drying air on the atomized droplets of alumina slurry, and vice-versa. The materials used as continuous and disperse phase, air and alumina slurry respectively, are representative since any kind of gas and slurry can be used if its thermodynamic and transport properties are known. Several experimental tests were carried out in a spray dryer in the 'Laboratorio de Insumos', at IPEN - Instituto de Pesquisas Energeticas e Nucleares for different sets of operating conditions: initial temperature of the drying air, the gas flow rate, the slurry feed rate and atomiser configuration among others. Measurements of the wet and the dry bulb temperatures were made in some experimental tests to allow the calculations of the air humidity. The dynamic pressure were also measured in order to determine the gas flow rate. Some samples of the material used in the tile industry and of the one produced at IPEN were analysed to determine: the morphology of the atomized material and the range of granules diameter through scanning electron microscopy; the amount of pores and the bulk density through porosimetry; the residual moisture of the material through thermogravimetry; and the granulometric distribution of granules and particles through laser diffraction. Important information about the process and the final material are

  3. Environmental aspects of the production process of ceramic tiles (wet process), with emphasis in liquid effluents; Aspectos ambientais do processo de fabricacao de placas de revestimentos ceramicos (via umida), com enfase nos efluentes liquidos

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Katia Regina

    2000-07-01

    Present study developed a simplified methodology to evaluate the environmental impacts of the wet process of production of ceramic tiles. In order to subsidize the development of the model of environmental evaluation and to achieve a better understanding of the productive process, there were elaborated matrices in which was correlated the stages of the productive system with the respective types and volumes of residues generated. To these matrices there were related the technical norms of the Brazilian Association of Norms and Techniques (ABNT), which determines the sampling methodologies, characterizations, monitoring and treatment of the solid residues and liquid and gaseous effluents; and the pertinent Federal and State Legislations which dispose on the control of the environmental pollution. The evaluation of the environmental impact model here proposed was developed fram the Interaction Matrix of Leopold and from the Risk Matrix proposed by Moura, in which identified the pollutant effects (critical, significant, reduced, marginal) of the stages of this productive process. The validation of these results was obtained through the accomplishment of analytic assays in the used raw materials and in the residues generated in the productive process. The results of the chemical analyses reinforce that the positive toxicity in the liquid effluent is related with the chemical composition of the synthetic raw material used in the decoration. It was concluded that the solid residues that more damage cause to the environment are those coming from the enamel and dying preparation and application sections. Concomitantly, it was performed a study of characterization of the natural raw materials and of the product, using different techniques as fluorescence X ray, differential thermal analysis with thermogravimetry, scanning electron microscopy and X ray diffraction, in order to understand the interactions of the components of the mass of the ceramic body, during the stage of

  4. Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model.

    Science.gov (United States)

    Schreck, John S; Romano, Flavio; Zimmer, Matthew H; Louis, Ard A; Doye, Jonathan P K

    2016-04-26

    We use oxDNA, a coarse-grained model of DNA at the nucleotide level, to simulate large nanoprisms that are composed of multi-arm star tiles, in which the size of bulge loops that have been incorporated into the tile design is used to control the flexibility of the tiles. The oxDNA model predicts equilibrium structures for several different nanoprism designs that are in excellent agreement with the experimental structures as measured by cryoTEM. In particular we reproduce the chiral twisting of the top and bottom faces of the nanoprisms, as the bulge sizes in these structures are varied due to the greater flexibility of larger bulges. We are also able to follow how the properties of the star tiles evolve as the prisms are assembled. Individual star tiles are very flexible, but their structures become increasingly well-defined and rigid as they are incorporated into larger assemblies. oxDNA also finds that the experimentally observed prisms are more stable than their inverted counterparts, but interestingly this preference for the arms of the tiles to bend in a given direction only emerges after they are part of larger assemblies. These results show the potential for oxDNA to provide detailed structural insight as well as to predict the properties of DNA nanostructures and hence to aid rational design in DNA nanotechnology.

  5. Peptide based diagnostics: are random-sequence peptides more useful than tiling proteome sequences?

    Science.gov (United States)

    Navalkar, Krupa Arun; Johnston, Stephan Albert; Stafford, Phillip

    2015-02-01

    Diagnostics using peptide ligands have been available for decades. However, their adoption in diagnostics has been limited, not because of poor sensitivity but in many cases due to diminished specificity. Numerous reports suggest that protein-based rather than peptide-based disease detection is more specific. We examined two different approaches to peptide-based diagnostics using Coccidioides (aka Valley Fever) as the disease model. Although the pathogen was discovered more than a century ago, a highly sensitive diagnostic remains unavailable. We present a case study where two different approaches to diagnosing Valley Fever were used: first, overlapping Valley Fever epitopes representing immunodominant Coccidioides antigens were tiled using a microarray format of presynthesized peptides. Second, a set of random sequence peptides identified using a 10,000 peptide immunosignaturing microarray was compared for sensitivity and specificity. The scientific hypothesis tested was that actual epitope peptides from Coccidioides would provide sufficient sensitivity and specificity as a diagnostic. Results demonstrated that random sequence peptides exhibited higher accuracy when classifying different stages of Valley Fever infection vs. epitope peptides. The epitope peptide array did provide better performance than the existing immunodiffusion array, but when directly compared to the random sequence peptides, reported lower overall accuracy. This study suggests that there are competing aspects of antibody recognition that involve conservation of pathogen sequence and aspects of mimotope recognition and amino acid substitutions. These factors may prove critical when developing the next generation of high-performance immunodiagnostics.

  6. Talk about Han eaves tile art in our country

    Institute of Scientific and Technical Information of China (English)

    刘泽艺

    2015-01-01

    The Han Dynasty is the first in the history of the unified and powerful country. It is a huge momentum has also affected the development of art, especially the art of eaves tile. Pattern of Han eaves tile is the art of the Chinese nation in the classic, rich artistic value for tile study of traditional ceramic art is very necessary in China. Through the research on Eave Tile Art, can be in-jected into the power of ceramic art in China's new development.

  7. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Ferrándiz-Mas, V., E-mail: v.ferrandiz@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Bond, T., E-mail: t.bond@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Zhang, Z., E-mail: zhen.zhang14@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Melchiorri, J., E-mail: jpmelchiorri@gmail.com [ARBOREA Research, Bessemer Building, Prince Consort Road, London SW7 2AZ (United Kingdom); Cheeseman, C.R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom)

    2016-09-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740 °C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700 °C, with chlorophyll-a concentrations reaching up to 11.1 ± 0.4 μg/cm{sup 2} of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. - Highlights: • Porous tiles made by sintering waste glass at variable temperatures • Bioreceptivity assessed by measuring colonisation by the algae C. vulgaris • Tiles sintered at 700 °C gave

  8. Kinetics of DNA tile dimerization.

    Science.gov (United States)

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.

  9. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  10. Reticulated porous silicon nitride-based ceramics

    OpenAIRE

    Mazzocchi, Mauro; Medri, Valentina; Guicciardi, Stefano

    2012-01-01

    The interest towards the production of porous silicon nitride originates from the unique combination of light weight, of mechanical and physical properties typical of this class of ceramics that make them attractive for many engineering applications. Although pores are generally believed to deteriorate the mechanical properties of ceramics (the strength of porous ceramics decreases exponentially with an increase of porosity), the recent literature reports that porous silicon nitride can exhib...

  11. EXPERIMENTAL STUDY ON THE EFFECT OF SURFACE TOPOGRAPHY OF CERAMICS TILE ON VIBRATION AND NOISE OF CALIBRATING MACHINEE%瓷砖形貌对瓷砖刮平机振动及噪声影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    邵俊鹏; 徐斌

    2012-01-01

    为了研究瓷砖刮平机加工机理,分析刮平机的结构和运行原理,对粗、中、精刮瓷砖进行了SEM实验,同时对刮平机进行了振动和噪音实验。通过SEM实验得出粗刮后的瓷砖表面轨迹平行,轨迹由冲击坑组成;中刮后的瓷砖表面轨迹交叉贯通;精刮后的瓷砖表面平整,少见刮痕。通过振动和噪声实验得出:粗刮阶段,平行轨迹处振动大;中、精刮阶段,交叉轨迹处振动小;空载和工作状态噪音值相差很小。%In order to investigate the polishing mechanism of calibrating machine.Structure and principle of calibrating machine was analyzed.A SEM experiment of ceramics tile was done at the rough calibrating and at the semi finish calibrating and at the finish calibrating.Vibration and noise experiment of grinding head were done.It is concluded that polishing track of ceramics tile is parallel track with consisting of funnel pit at the rough calibrating and polishing track of ceramics tile is intercrossing track at the semi finish calibrating and not many scratch tracks and smoothness on the surface of the ceramic tile at the finish calibrating,by a series of SEM experiments of ceramic tiles.A series of vibration and noise experiments of grinding head is performed,vibration increased in parallel track and vibration reduced in intercrossing track at the rough calibrating;noise value of idling and operation on calibrating machine were small enough.

  12. Ceramics based on calcium pyrophosphate nanopowders

    Directory of Open Access Journals (Sweden)

    Tatiana V. Safronova

    2013-03-01

    Full Text Available Present work is aimed at the fabrication of resorbable bioceramics based on calcium pyrophosphate (CPP from the synthesized powders of amorphous hydrated calcium pyrophosphate (AHCPP. Amorphous hydratedcalcium pyrophosphate in the form of nanopowders was precipitated from Ca(NO3 2 and (NH4 4P2O7 solutions at room temperature in the presence of PO3– ions. Crystalline CPP powder was fabricated from AHCPP by its thermal decomposition at 600 °C and consisted of β- and α- phase. Small particles, with the size less than 200 nm, were formed promoting sintering of the ceramic material. The final sample, sintered at 900 °C, exhibits microstructure with submicron grains, apparent density of 87% of theoretical density (TD and demonstrates tensile strength of 70 MPa.

  13. Development of SiPM-based scintillator tile detectors for a multi-layer fast neutron tracker

    Directory of Open Access Journals (Sweden)

    Jakubek J.

    2012-10-01

    Full Text Available We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM readout for use in a multi-layer fast-neutron tracker. The tracker is based on interleaved Timepix and plastic scintillator layers. The thin 15 × 15 × 2 mm plastic scintillators require suitable optical readout in order to detect and measure the energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used dual SiPMs, coupled to opposite edges of the scintillator tile using light-guides. An alternative readout geometry was designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The new prototype uses a larger SiPM array to cover the entire top face of the tile. This paper details the comparative performance of the two prototype designs. A deuterium-tritium (DT fast-neutron source was used to compare the relative light collection efficiency of the two designs. A collimated UV light source was scanned across the detector face to map the uniformity. The new prototype was found to have 9.5 times better light collection efficiency over the original design. Both prototypes exhibit spatial non-uniformity in their response. Methods of correcting this non-uniformity are discussed.

  14. Planejamento estatístico de experimentos aplicado ao desenvolvimento de formulações para revestimentos cerâmicos Statistical design of experiments applied to the development of formulations for ceramic tiles

    Directory of Open Access Journals (Sweden)

    R. T. Zauberas

    2004-03-01

    Full Text Available Este trabalho avalia a utilização de técnicas de planejamento estatístico de experimentos com misturas envolvendo variáveis de processo no estudo de formulações para a produção de revestimentos cerâmicos, buscando minimizar o caráter empírico encontrado industrialmente nesta etapa do processamento. Misturas de três matérias-primas (argila, feldspato e areia, utilizadas industrialmente para a produção de revestimentos, foram ensaiadas sob condições padronizadas visando à quantificação da influência de cada matéria-prima na resistência mecânica e na absorção de água das peças após a queima. As influências de duas variáveis de processo, pressão de compactação e temperatura de queima, também foram avaliadas. Os resultados obtidos demonstram o potencial de utilização das técnicas de planejamento estatístico de experimentos no estudo e desenvolvimento de formulações para revestimentos cerâmicos.This work evaluates the use of statistical design of experiment on the development of formulations for ceramic tiles production, trying to minimise the empirical character industrially found on this processing step. Mixtures of three raw materials used in tile production (clay, feldspar and quartz sand, were processed under standardised conditions, aiming at the quantification of the contribution of each raw material influence on mechanical strength and water absorption of the bodies after sintering. The influences of two process variables, pressing and sintering temperature, were also evaluated. Results obtained show the potential on utilising statistical design of experiments with mixtures and process variables techniques on the study and development of formulations for ceramic tiles.

  15. Design of an FPGA-based embedded system for the ATLAS Tile Calorimeter front-end electronics test-bench

    CERN Document Server

    Carrio, F; The ATLAS collaboration; Moreno, P; Reed, R; Sandrock, C; Shalyugin, A; Schettino, V; Solans, C; Souza, J; Usai, G; Valero, A

    2013-01-01

    The portable test bench (VME based) used for the certification of the Tile calorimeter front-end electronics has been redesigned for the LHC Long Shutdown (2013-2014) improving its portability. The new version is based on a Xilinx Virtex 5 FPGA that implements an embedded system using a hard core PowerPC 440 microprocessor and custom IP cores. The PowerPC microprocessor runs a light Linux version and handles the IP cores written in VHDL that implement the different functionalities (TTC, G-Link, CAN-Bus) Description of the system and performance measurements of the different components will be shown.

  16. A Tile-Based System for the Rapid Display of Symbolized Digital Nautical Chart Data

    Science.gov (United States)

    2010-06-01

    Research Laboratory Stennis Space Center, MS 39529 Abstract- For efficient retrieval and display of Digital Nautical Chart ( DNC ®) imagery, a...pre- generated and stored in a format needed for transmission to users. This greatly improves the performance of applications that visualize DNC ...data and allows for advanced caching of DNC ® imagery tiles. In addition, the evenly-spaced and commonly-sized images are stored in files that are

  17. Fabrication of hexagonal boron nitride based ceramics by combustion synthesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pure h-BN (hexagonal boron nitride) and h-BN based ceramic parts were fabricated by combustion synthesis technique, i.e. self-propagating high-temperature synthesis (SHS). Components were manufactured by the combustion reaction of 80  MPa nitrogen and the compact made by cool isostatic pressing. In h-BN based ceramic parts, h-BN powder was used as diluent and SiO2 powder as reinforcing phase. The density of pure h-BN and h-BN-based ceramic parts were 58% and 78% of theoretical density, respectively. With XRD and SEM, phases and microstructures of ceramic parts were analyzed. Mechanical properties were also tested.

  18. LSA glass-ceramic tiles made by powder pressing; Obtencao de placas vitroceramicas do sistema LSA utilizando a prensagem de pos

    Energy Technology Data Exchange (ETDEWEB)

    Figueira, F.C.; Bertan, F.M. [Colorminas Colorificio e Mineracao, Icara, SC (Brazil); Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Programa de Pos-Graduaco em Engenharia Quimica; Uggioni, E. [Universidade do Extremo Sul Catarinense (UFSC), Florianopolis, SC (Brazil). Curso de Engenharia de Materiais; Bernardin, A.M., E-mail: amb@unesc.ne [Servico Nacional de Aprendizagem Industrial (SENAI), Tijucas, SC (Brazil). Dept. de Tecnologia em Ceramica

    2009-07-01

    A low cost alternative for the production of glass-ceramic materials is the pressing of the matrix glass powders and its consolidation simultaneously with crystallization in a single stage of sintering. The main objective of this work was to obtain LSA glass ceramics with low thermal expansion, processed by pressing and sintering a ceramic frit powder. The raw materials were homogenized and melted (1480 deg C, 80min), and the melt was poured in water. The glass was chemically (XRF and AAS) and thermally (DTA, 10 deg C/min, air) characterized, and then ground (60min and 120min). The ground powders were characterized (laser diffraction) and compressed (35MPa and 45MPa), thus forming four systems. The compacts were dried (150 deg C, 24h) and sintered (1175 deg C and 1185 deg C, 10 deg C/min). Finally, the glass-ceramics were characterized by microstructural analysis (SEM and XRD), mechanical behavior ({sigma}bending) and thermal analysis ({alpha}). The best results for thermal expansion were those for the glass-ceramics processed with smaller particle size and greater compaction pressure. (author)

  19. Ceramic Processing

    Energy Technology Data Exchange (ETDEWEB)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  20. Integrated thick-film nanostructures based on spinel ceramics.

    Science.gov (United States)

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-03-26

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications.

  1. Integrated thick-film nanostructures based on spinel ceramics

    OpenAIRE

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for...

  2. Cellular ceramics made from porcelain tile polishing wastes: influence of sintering time; Ceramicas cellulares obtidas a partir de residuo de polimento de porcelanato: influencia do tempo de sinterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.F.; Zanelatto, C.C.; Uggioni, E. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Dept. de Engenharia de Materiais; Bernardin, A.M., E-mail: amb@unesc.ne [Servico Nacional de Aprendizagem Industrial, Tijucas, SC (Brazil). Tecnologia em Ceramica

    2009-07-01

    This paper deals with the physical, microstructural and mechanical characterization of cellular ceramics made from porcelain polishing wastes, which were expanded by the bubble formation technique during the sintering process. The microstructure, linear expansion, bulk density (mercury immersion) and mechanical behavior (compressive strength) were determined to characterize the glass foam obtained. Moreover, the porcellaneous residue was characterized by chemical and phase analyses, particle size (laser diffraction) and thermal behavior. As a result, the higher the soaking time during heat treatment at 1200 deg C the lower the density obtained for the cellular ceramic due to CO{sub 2} expansion, and lower the mechanical strength of the samples. The microstructure shows spherical cells and completely closed pores, resulting in a cheap way to obtain low density material with adequate mechanical strength, avoiding the disposal of wastes from the ceramic industry. (author)

  3. Evaluation of borax solid wastes in production of frits suitable for fast single-fired wall tile opaque glass–ceramic glazes

    Indian Academy of Sciences (India)

    K Pekkan; B Karasu

    2010-04-01

    Zircon (zirconium silicate, ZrSiO4) is the main opacifier of glossy, opaque, white-coloured, fritbased wall tile glazes. However, zirconia containing frits employed in the preparation of these glazes raise the production cost limiting zircon usage as a raw material at an industrial scale. Therefore, there have been several searches on seeking for alternative frit compositions with lower or without zirconia content. Consequently, positive outcomes were recently reported. With the present study, 1.5–5% of borax concentrator waste replaced certain level of acid boric for B2O3 content in a low zircon containing frit recipe. It is confirmed that waste contribution did not distort the surface properties of the fast single-fired wall tile opaque glazes. Zircon was found to be the main crystal phase of the glazes in laboratory trials. Industrial applications revealed that shorter firing cycles lead to zircon and petedunnite (CaZnSi2O6) formation in the CW-4 glaze.

  4. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    J.N. Bruggeman; T.R. Alcorn; R. Jeltsch; T. Mroz

    2003-01-09

    The goal of the project was to develop the ceramic based materials, technology, and necessary engineering packages to retrofit existing aluminum reduction cells in order to reduce energy consumption required for making primary aluminum. The ceramic materials would be used in a drained cathode configuration which would provide a stable, molten aluminum wetted cathode surface, allowing the reduction of the anode-cathode distance, thereby reducing the energy consumption. This multi-tasked project was divided into three major tasks: (1) Manufacturing and laboratory scale testing/evaluation of the ceramic materials, (2) Pilot scale testing of qualified compositions from the first task, and (3) Designing, retrofitting, and testing the ceramic materials in industrial cells at Kaiser Mead plant in Spokane, Washington. Specific description of these major tasks can be found in Appendix A - Project Scope. Due to the power situation in the northwest, the Mead facility was closed, thus preventing the industrial cell testing.

  5. Los Sistemas Productivos, el Aprendizaje Interno y los Resultados del Área de Producción de Baldosas-Cerámicas Production Systems, Internal Learning and Results of the Manufacturing Area of Ceramic Tile Manufacturers

    Directory of Open Access Journals (Sweden)

    Juan A Marin-Garcia

    2009-01-01

    Full Text Available El objetivo de la investigación es comprobar la validez del modelo universal de gestión en la estrategia de producción en el sector de fabricantes de pavimentos y baldosas cerámicas españoles. El trabajo se centra en las decisiones de infraestructura, y pretende resaltar el efecto de los recursos internos y externos sobre la ventaja competitiva del área de producción de las empresas. Los datos utilizados corresponden a 76 empresas españolas fabricantes de pavimentos cerámicos. Los resultados obtenidos permiten comprobar que en este sector los recursos implantados guardan poca relación con las prioridades manifestadas. Además, se demuestra que la ventaja competitiva está más explicada por el aprendizaje interno que por las prácticas de producción implantadas.The objective of this research is to check the validity of a universal management model in the production strategy in the Spanish ceramic tile industry. The work focuses on infrastructure decisions, and seeks to highlight the effect of internal and external resources on the competitive advantage of the area of production of the industry. The data used were collected from 76 Spanish tile manufacturers companies and the results show that in this sector the resources that have been implanted have little association to the manufacturing priorities. In addition, it is shown that the competitive advantage is better explained by the internal learning variables than by the manufacturing practices.

  6. Lutetium oxide-based transparent ceramic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  7. Geopolymers as potential repair material in tiles conservation

    Science.gov (United States)

    Geraldes, Catarina F. M.; Lima, Augusta M.; Delgado-Rodrigues, José; Mimoso, João Manuel; Pereira, Sílvia R. M.

    2016-03-01

    The restoration materials currently used to fill gaps in historical architectural tiles (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness or durability. The existing solutions do not fully protect Portuguese faïence tiles ( azulejos) in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for tile lacunae infill, given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in tiles or to act as "cold" cast ceramic tile surrogates reproducing missing tile fragments. The formulation of geopolymers, namely the type of activators, the alumino-silicate source, the quantity of water required for adequate workability and curing conditions, was studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor historical architectural tiles frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of tiles are also discussed. The results obtained reveal that geopolymers pastes are a promising material for the restoration of tiles, when compared to other solutions currently in use.

  8. Parallel signal identification pipeline based on Tiling Array data%一种Tiling Array信号识别流程的并行优化

    Institute of Scientific and Technical Information of China (English)

    余晓哲; 郎显宇; 陆忠华; 迟学斌

    2008-01-01

    针对一种非常有效的信号识别算法--滑窗法(sliding window,SW),在其嵌入的串行信号识别流程基础上提出并行处理方案,并基于MPI(message passing interface)平台实现并行优化版本.这在基因芯片研究领域是个崭新的思路.最后,根据公共数据Affymetrix(2005)Tiling Array,展示SW并行流程的运行性能.实验结果表明,信号识别流程的并行化对大规模的数据运算非常有效且十分必要.

  9. M dwarfs in the b201 tile of the VVV survey: Colour-based Selection, Spectral Types and Light Curves

    CERN Document Server

    Rojas-Ayala, Bárbara; Minniti, Dante; Saito, Roberto K; Surot, Francisco

    2014-01-01

    The intrinsically faint M dwarfs are the most numerous stars in the Galaxy, have main-sequence lifetimes longer than the Hubble time, and host some of the most interesting planetary systems known to date. Their identification and classification throughout the Galaxy is crucial to unravel the processes involved in the formation of planets, stars and the Milky Way. The ESO Public Survey VVV is a deep near-IR survey mapping the Galactic bulge and southern plane. The VVV b201 tile, located in the border of the bulge, was specifically selected for the characterisation of M dwarfs. We used VISTA photometry to identify M dwarfs in the VVV b201 tile, to estimate their subtypes, and to search for transit-like light curves from the first 26 epochs of the survey. UKIDSS photometry from SDSS spectroscopically identified M dwarfs was used to calculate their expected colours in the $YJHK_s$ VISTA system. A colour-based spectral subtype calibration was computed. Possible giants were identified by a $(J-K_s, H_{J})$ reduced ...

  10. Spatial index for tile map service based on Z curve%基于Z曲线的瓦片地图服务空间索引

    Institute of Scientific and Technical Information of China (English)

    聂云峰; 周文生; 舒坚; 许虎

    2012-01-01

    瓦片空间索引是提高瓦片查询效率的关键技术,其性能直接影响地理信息网络服务的整体性能.分析当前广泛应用于瓦片地图服务的格网索引和瓦片四叉树索引的基本原理,利用Z曲线的聚类和降维特性,设计一种基于Z曲线的瓦片空间索引Z-Index,并给出了具体实现.实验结果表明,Z-Index在海量瓦片数据的情况下具有优于格网索引和四叉树索引的瓦片查询效率.%Tile spatial index is a key technology to improve the tile fetching efficiency and its performance directly affects the overall performance of geographic information network services. This article analyzes the basic principles of grid index and quad-tree index which are widely used in tile map service. Because Z curve has good locality-preserving behavior and a good reduction of dimensionality behavier, we design a new tile spatial index based on Z-curve, called Z-Index. Experimental results show that the performance of Z-Index is better than grid and quad-tree indexing when applied on massive tile datasets.

  11. An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization

    Directory of Open Access Journals (Sweden)

    Linyao Qiu

    2017-01-01

    Full Text Available Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization.

  12. 一种基于TMS的瓦片金字塔切分方法%A Tile Pyramid Slicing Based on TMS

    Institute of Scientific and Technical Information of China (English)

    刘让国; 刘晓杰; 刘顺喜; 韦二龙

    2015-01-01

    为了有效提高大数据量下的切片效率, 从瓦片地图服务 ( Tile Map Service, TMS) 元文件、 瓦片划分规则和瓦片命名规则等方面对TMS技术进行了研究, 对切片算法进行了设计实现, 并结合多线程机制进行了优化改进, 从而提出一种基于TMS的瓦片金字塔切分方法. 试验结果表明, 该方法能提高瓦片的切片效率.%For raising slice efficiency effectively under of big data quantity,research is performed on TMS technology,its metafile, the rule of tile slicing,tile naming and so on.A realization of TMS slice algorithm is designed.And a kind of method is put forward that tile pyramid slicing based on TMS,which improves slice algorithm combined with multithreading.Experiment results show that this meth-od can raise the slice efficiency of tile.

  13. Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes.

    Science.gov (United States)

    Coronado, M; Segadães, A M; Andrés, A

    2015-12-15

    This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature.

  14. Análise do comportamento de queima de argilas e formulações para revestimento cerâmico Analysis of the firing behavior of clays and formulations for ceramic tiles

    Directory of Open Access Journals (Sweden)

    M. M. T. Moreno

    2009-09-01

    Full Text Available O uso de argilas de queima vermelha para a fabricação de placas cerâmicas para revestimentos tornou-se importante devido aos avanços tecnológicos e à qualidade da matéria-prima. Neste processo a moagem é feita por via seca e as temperaturas máximas de queima são maiores que 1000 ºC, ocorrendo reações de sinterização via fase líquida. Este trabalho aborda diversos aspectos que envolvem a queima deste tipo de argilas e suas misturas visando obter as melhores condições de sinterização. As argilas individuais foram analisadas usando os seguintes parâmetros: % em peso na composição, temperatura máxima de queima e absorção de água. Corpos-de-prova foram queimados em laboratório, em temperaturas de 800 a 1100 ºC, sendo que depois da caracterização das propriedades individuais, combinações binárias e ternárias foram processadas nas mesmas condições e analisadas. Os resultados obtidos permitiram elaborar uma proposta para preparar misturas com base nas características das matérias-primas. Devido a que as combinações apresentam variações, que dependem principalmente da distribuição do tamanho das partículas e conteúdo de fundentes, é necessário fazer correções na composição para alcançar as propriedades desejadas, o que é facilitado com a metodologia proposta.The use of red fired clays for the production of ceramic tiles has become important due to the technological progress and the improvement of raw material quality. In this processing, dry milling is used and the maximum firing temperatures are larger than 1000 ºC with the occurrence of sintering reactions through liquid phase. In this work, the behavior of red clays and their mixtures to obtain the best sintering conditions was studied. Individual types of clay were analyzed using the following parameters: wt.% in the composition, maximum firing temperature and absorption of water of the individual raw materials. Test specimens were fired in

  15. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  16. Isoperimetric Pentagonal Tilings

    CERN Document Server

    Chung, Ping Ngai; Li, Yifei; Mara, Michael; Morgan, Frank; Plata, Isamar Rosa; Shah, Niralee; Vieira, Luis Sordo; Wikner, Elena

    2011-01-01

    We identify least-perimeter unit-area tilings of the plane by convex pentagons, namely tilings by Cairo and Prismatic pentagons, find infinitely many, and prove that they minimize perimeter among tilings by convex polygons with at most five sides.

  17. The ATLAS tile calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Louis Rose-Dulcina, a technician from the ATLAS collaboration, works on the ATLAS tile calorimeter. Special manufacturing techniques were developed to mass produce the thousands of elements in this detector. Tile detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  18. LIMITS IN APPLICATION OF INTERNATIONAL STANDARDS TO INNOVATIVE CERAMIC SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Cristiano Fragassa

    2015-06-01

    Full Text Available Gres Porcelain stoneware is a ceramic with a compact, hard, coloured and non-porous body. It is largely used as building materials, for a quality architecture, offering high resistance to impact, stress, wear, scratching, frost, chemical attach and stains. It is produced in flat tiles, billions of tons per year. A very prominent technology, based on a pyroclastic deformation, permits to obtain bended porcelain tiles as innovative solutions for a modern architecture. This technology is grounded on a proper combination of heavy machining by cutting tools and secondary firing in a kiln. This new element, the bended tile, can be used in several innovative applications (as steps, shelves, benches, radiators.... But, new functions require a better and in-depth knowledge of these materials, especially referring to the mechanical proprieties. This paper investigates the limits of applicability of ISO standards for the quality classification of ceramics and experimental measures of their mechanical proprieties.

  19. Development of the microstructure of the silicon nitride based ceramics

    Directory of Open Access Journals (Sweden)

    Bressiani J.C.

    1999-01-01

    Full Text Available Basic regularities of silicon nitride based materials microstructure formation and development in interrelation with processing conditions, type of sintering additives, and starting powders properties are discussed. Models of abnormal or exaggerated grain growth are critically reassessed. Results of several model experiments conducted in order to determine the most important factors directing the microstructure formation processes in RE-fluxed Si3N4 ceramics are reviewed. Existing data on the mechanisms governing the microstructure development of Si3N4-based ceramics are analyzed and several principles of microstructure tailoring are formulated.

  20. Advances in resonance based NDT for ceramic components

    Science.gov (United States)

    Hunter, L. J.; Jauriqui, L. M.; Gatewood, G. D.; Sisneros, R.

    2012-05-01

    The application of resonance based non-destructive testing methods has been providing benefit to manufacturers of metal components in the automotive and aerospace industries for many years. Recent developments in resonance based technologies are now allowing the application of resonance NDT to ceramic components including turbine engine components, armor, and hybrid bearing rolling elements. Application of higher frequencies and advanced signal interpretation are now allowing Process Compensated Resonance Testing to detect both internal material defects and surface breaking cracks in a variety of ceramic components. Resonance techniques can also be applied to determine material properties of coupons and to evaluate process capability for new manufacturing methods.

  1. Metal-Supported SOFC with Ceramic-Based Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Klemensø, Trine; Persson, Åsa Helen;

    2011-01-01

    materials are infiltrated after sintering. Initial area specific resistance as low as 0.3 cm2 at 700 ºC has been obtained with power densities > 1 Wcm-2. The initial results on the chemical compatibility, electrochemical performance, and galvanostatic durability of a ceramic based (Nb-doped SrTiO3...... the metal-supported cell concept can be combined with ceramic-based anode materials, such as Nb-doped SrTiO3. The paper shows that a metal-supported cell can have excellent performance by only having electronically conducting phases in the anode backbone structure, into which electrocatalytically active...

  2. Empresas de revestimento cerâmico e suas estratégias competitivas e de produção Firms of ceramic tiles and its competitive and manufacturing strategies

    Directory of Open Access Journals (Sweden)

    Edemilson Nogueira

    2001-04-01

    Full Text Available Neste trabalho identificamos e discutimos as estratégias competitivas e de produção adotadas por doze empresas da indústria brasileira de cerâmica para revestimento. Realizamos entrevistas em empresas nos Estados de São Paulo e Santa Catarina e identificamos cinco grupos estratégicos. Os resultados obtidos mostram que existem muitas combinações possíveis de estratégias competitivas e de produção. Mesmo dentro de cada grupo estratégico, encontramos estruturas de manufatura e sistemas administrativos muito diferenciados.This paper addresses the competitive and manufacturing strategies implemented in twelve firms of Brazilian ceramic tiles industry. We have carried out interviews in the States of São Paulo and Santa Catarina and we have identified five strategic groups. It was possible to collect evidences that there are many possible combinations of competitive and manufacturing strategies. Even within each strategic group we have found very different manufacturing structures and management systems.

  3. Analysis of the impact of ISO 14001 in the economic variables of the Spanish ceramic tile industry's companies; ISO 14001 y variables economicas, hay alguna relacion? Analisis de las empresas certificadas del sector ceramico espanol

    Energy Technology Data Exchange (ETDEWEB)

    Peiro-Signes, A.; Segarra-Ona, M.; Mondejar-Jimenez, J.; Vargas-Vargas, M.

    2013-02-01

    The increased in the adoption of formally environmental certified practices through environmental management systems is a provable fact. Its implementation, which has a high cost for the companies, is expected to generate benefits, although the relation between the implementation of ISO 14001 and its influence on the improvement of economic indicators over time has not been documented. This paper analyzes the relation between the implementation of an environmental management system, the ISO 14001, and economic performance in the short, medium and long term for the companies of the Spanish ceramic tile industry. It explores the economic indicators for each of the 66 manufacturing companies which have implemented the aforementioned standard from 1996 until 2009 through a comparison with a control group. Results show that ISO 14001 does not affect the economic results of the studied companies. We have not found significant differences in the operating income values, neither in the increase in revenues in the long term in any of the three analyzed periods, contrary to the expected results. (Author) 60 refs.

  4. High-hardness ceramics based on boron carbide fullerite derivatives

    Science.gov (United States)

    Ovsyannikov, D. A.; Popov, M. Yu.; Perfilov, S. A.; Prokhorov, V. M.; Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2017-02-01

    A new type of ceramics based on the phases of fullerite derivatives and boron carbide B4C is obtained. The material is synthesized at a temperature of 1500 K and a relatively low pressure of 4 GPa; it has a high hardness of 45 GPa and fracture toughness of 15 MPa m1/2.

  5. High-performance and anti-stain coating for porcelain stoneware tiles based on nanostructured zirconium compounds.

    Science.gov (United States)

    Ambrosi, Moira; Santoni, Sergio; Giorgi, Rodorico; Fratini, Emiliano; Toccafondi, Nicola; Baglioni, Piero

    2014-10-15

    The technological characteristics of porcelain stoneware tiles make them suitable for a wide range of applications spanning far beyond traditional uses. Due to the high density, porcelain stoneware tiles show high bending strength, wear resistance, surface hardness, and high fracture toughness. Nevertheless, despite being usually claimed as stain resistant, the surface porosity renders porcelain stoneware tiles vulnerable to dirt penetration with the formation of stains that can be very difficult to remove. In the present work, we report an innovative and versatile method to realize stain resistant porcelain stoneware tiles. The tile surface is treated by mixtures of nanosized zirconium hydroxide and nano- and micron-sized glass frits that thanks to the low particle dimension are able to penetrate inside the surface pores. The firing step leads to the formation of a glass matrix that can partially or totally close the surface porosity. As a result, the fired tiles become permanently stain resistant still preserving the original esthetical qualities of the original material. Treated tiles also show a remarkably enhanced hardness due to the inclusion of zirconium compounds in the glass coating.

  6. Ceramic thin film thermocouples for SiC-based ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Wrbanek, John D., E-mail: John.D.Wrbanek@nasa.gov; Fralick, Gustave C.; Zhu Dongming

    2012-06-30

    Conductive ceramic thin film thermocouples were investigated for application to silicon carbide fiber reinforced silicon carbide ceramic matrix composite (SiC/SiC CMC) components. High temperature conductive oxides based on indium and zinc oxides were selected for testing to high temperatures in air. Sample oxide films were first sputtered-deposited on alumina substrates then on SiC/SiC CMC sample disks. Operational issues such as cold junction compensation to a 0 Degree-Sign C reference, resistivity and thermopower variations are discussed. Results show that zinc oxides have an extremely high resistance and thus increased complexity for use as a thermocouple, but thermocouples using indium oxides can achieve a strong, nearly linear response to high temperatures. - Highlights: Black-Right-Pointing-Pointer Oxide thin film thermocouples tested for SiC/SiC ceramic matrix composites (CMCs) Black-Right-Pointing-Pointer In{sub 2}O{sub 3}, N:In{sub 2}O{sub 3}, ZnO, AlZnO sputtered and tested on Al{sub 2}O{sub 3} and CMC substrates Black-Right-Pointing-Pointer ZnO, AlZnO have high resistance, complex temperature response. Black-Right-Pointing-Pointer In{sub 2}O{sub 3}, N:In{sub 2}O{sub 3} conductive at room temperature, more linear temperature response.

  7. Tilings in topological spaces

    Directory of Open Access Journals (Sweden)

    F. G. Arenas

    1999-01-01

    pairwise-disjoint interiors. Tilings of ℝ2 have received considerable attention (see [2] for a wealth of interesting examples and results as well as an extensive bibliography. On the other hand, the study of tilings of general topological spaces is just beginning (see [1, 3, 4, 6]. We give some generalizations for topological spaces of some results known for certain classes of tilings of topological vector spaces.

  8. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  9. Design of self-cleaning TiO2 coating on clay roofing tiles

    Science.gov (United States)

    Hadnadjev, Milica; Ranogajec, Jonjaua; Petrovic, Snezana; Markov, Sinisa; Ducman, Vilma; Marinkovic-Neducin, Radmila

    2010-07-01

    The phenomenon of heterogeneous photocatalysis takes place in the degradation process of many organic contaminants on solid surfaces. Photocatalysis is based on the excitation of the semiconductor by irradiation with supraband gap photons and the migration of electron-hole pairs to the surface of the photocatalysts, leading to the reaction of the holes with adsorbed H2O and OH- to form hydroxyl radicals. Due to the stability and photosensitivity of TiO2 semiconductors, this system is well studied and is of great interest from an ecological and industrial point of view for use in the field of building materials. Clay roofing tiles, due to their long-term exploitation, are subject to physical, chemical and biological degradation that leads to deterioration. Ceramic systems have a high percentage of total porosity and considering their non-tolerance of organic coating, the use of surface active materials (SAM) that induce porosity in TiO2 coatings is of vital significance. Photocatalytic coatings applied on clay roofing tiles under industrial conditions were designed by varying the quantity of TiO2 (mass/cm2) on the tile surface (thin and thick TiO2 layer). The positive changes in specific surface area and mesopore structure of the designed coatings were made by the addition of PEG 600 as a surface active material. It was shown that a thin photocatalytic layer (0.399 mg suspension/cm2 tile surface), applied onto ceramic tiles under industrial conditions, had better photocatalytic activity in methylene blue decomposition, hydrophilicity and antimicrobial activity than a thick photocatalytic coating (0.885 mg suspension/cm2).

  10. Cyclotomic Aperiodic Substitution Tilings

    Directory of Open Access Journals (Sweden)

    Stefan Pautze

    2017-01-01

    Full Text Available The class of Cyclotomic Aperiodic Substitution Tilings (CASTs is introduced. Its vertices are supported on the 2 n -th cyclotomic field. It covers a wide range of known aperiodic substitution tilings of the plane with finite rotations. Substitution matrices and minimal inflation multipliers of CASTs are discussed as well as practical use cases to identify specimen with individual dihedral symmetry D n or D 2 n , i.e., the tiling contains an infinite number of patches of any size with dihedral symmetry D n or D 2 n only by iteration of substitution rules on a single tile.

  11. Development of New Ecological Ceramic Tiles by Recycling of Waste Glass and Ceramic Materials; Incorporacion de residuos derivados de la fabricacion ceramica y del vidrio reciclado en el proceso ceramico integral

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, C.; Ramon Trilles, V.; Gomez, F.; Allepuz, S.; Fraga, D.; Carda, J. B.

    2012-07-01

    The following research work shows the results of the introduction of waste generated by the ceramic industry, such as the calcined clay from fired porcelain of stoneware and raw biscuit, sludge and cleaning water, as well as waste from other sectors like the recycling glass. In this way, it can be obtained a stoneware porcelain slab, engobe-glaze and satin glaze that contains high percentage of recyclable raw materials. (Author)

  12. Reliability of metalloceramic and zirconia-based ceramic crowns.

    Science.gov (United States)

    Silva, N R F A; Bonfante, E A; Zavanelli, R A; Thompson, V P; Ferencz, J L; Coelho, P G

    2010-10-01

    Despite the increasing utilization of all-ceramic crown systems, their mechanical performance relative to that of metal ceramic restorations (MCR) has yet to be determined. This investigation tested the hypothesis that MCR present higher reliability over two Y-TZP all-ceramic crown systems under mouth-motion fatigue conditions. A CAD-based tooth preparation with the average dimensions of a mandibular first molar was used as a master die to fabricate all restorations. One 0.5-mm Pd-Ag and two Y-TZP system cores were veneered with 1.5 mm porcelain. Crowns were cemented onto aged (60 days in water) composite (Z100, 3M/ESPE) reproductions of the die. Mouth-motion fatigue was performed, and use level probability Weibull curves were determined. Failure modes of all systems included chipping or fracture of the porcelain veneer initiating at the indentation site. Fatigue was an acceleration factor for all-ceramic systems, but not for the MCR system. The latter presented significantly higher reliability under mouth-motion cyclic mechanical testing.

  13. Parallel QR Factorization Based on Tile Algorithm%基于瓦片算法的并行 QR分解及其实现

    Institute of Scientific and Technical Information of China (English)

    曹冬冬; 赵永华; 赵莲

    2016-01-01

    本文介绍了一种基于瓦片算法的稠密矩阵并行 QR分解及其实现方法。瓦片算法的思想是将完整的矩阵分块,并使每个块内的数据连续存储。各个瓦片块先独立进行分解,其他块接收当前块分解产生的数据,来更新自身块内的矩阵。我们分别实现了串行瓦片算法和并行瓦片算法,采用基于 MPI和 OpenMP混合并行编程模型,在“元”超级计算机上验证了该并行算法,并与 PLASMA软件包进行对比,程序效率和可扩展性优于 PLASMA。在多个节点上运行时,展现了良好的扩展性。%In this paper, a dense matrix parallel QR factorization method based on tile algorithm are presented. The ideal of tile algorithm is to make the matrix storage by blocks, and each block data are continuously stored. The matrix decomposition of each tile block is executed independently, meanwhile, the other blocks receive data from the current block decomposition, and update itself matrix. We implemented a serial tile algorithm and a parallel tile algorithm respectively. Adopting MPI and OpenMP hybrid parallel programming model, our algorithm has verified on the supercomputer Era. Compared with PLASMA package, it shows that the efficiency and scalability of our algorithm are better than PLASMA package, and it has good scalability for multiple nodes.

  14. Engineering of silicon-based ceramic fibers: Novel SiTaC(O) ceramic fibers prepared from polytantalosilane

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z., E-mail: xiezhengfang@163.com [State Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China); Cao, S.; Wang, J. [State Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China); Yan, X. [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Bernard, S., E-mail: Samuel.Bernard@univ-lyon1.fr [Laboratoire des Multimateriaux et Interfaces (UMR CNRS 5615), Universite de Lyon, Universite Lyon1, 43 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Miele, P. [Laboratoire des Multimateriaux et Interfaces (UMR CNRS 5615), Universite de Lyon, Universite Lyon1, 43 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France)

    2010-10-15

    Research highlights: {yields} This paper reports the preparation and characterization of a novel variety of silicon-based ceramic fibers. {yields} In the present paper, we provide a detailed picture of the preparation process of SiTaC(O) ceramic fibers from a polytantalosilane. {yields} We have fully characterized the polymer by FT-IR, NMR, chemical composition, GPC and TGA as well as the chemical composition, the structure, the texture, and the mechanical properties of the ceramic fibers by XPS, SEM, X-ray diffraction (XRD), and mechanical tests. - Abstract: A novel variety of silicon-based ceramic fibers has been prepared from a preceramic organosilicon polymers called polytantalocarbosilane (PTaCS). This melt-spinnable polymer has been synthesized by thermally induced reactions between tantalum (V) tetraethoxyacetylacetonate (Ta(Acac)(OEt){sub 4}) and polysilacarbosilane (PSCS). The polymer in which [-Si-C-]{sub n} chains are crosslinked via Ta-containing bridges as identified by infrared spectroscopy, XPS and NMR, is decomposed in high ceramic yield (76%) and can be spun in the molten state into fibers to be cured in air then pyrolyzed in flowing nitrogen at 1200 deg. C into amorphous SiTaC(O) fibers. Complete characterization of this new generation of silicon-based ceramic fibers was made based on mechanical tests, XRD and SEM. These fibers exhibit relatively good mechanical properties and excellent high-temperature stability with good oxidation resistance.

  15. Thermomechanical Property Data Base Developed for Ceramic Fibers

    Science.gov (United States)

    1996-01-01

    A key to the successful application of metal and ceramic composite materials in advanced propulsion and power systems is the judicious selection of continuous-length fiber reinforcement. Appropriate fibers can provide these composites with the required thermomechanical performance. To aid in this selection, researchers at the NASA Lewis Research Center, using in-house state-of-the-art test facilities, developed an extensive data base of the deformation and fracture properties of commercial and developmental ceramic fibers at elevated temperatures. Lewis' experimental focus was primarily on fiber compositions based on silicon carbide or alumina because of their oxidation resistance, low density, and high modulus. Test approaches typically included tensile and flexural measurements on single fibers or on multifilament tow fibers in controlled environments of air or argon at temperatures from 800 to 1400 C. Some fiber specimens were pretreated at composite fabrication temperatures to simulate in situ composite conditions, whereas others were precoated with potential interphase and matrix materials.

  16. 2011 Las Conchas Post Fire Tile Index

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set consists of an orthophotography tile index based on multi-spectral (red, green, blue, near-infrared) digital aerial imagery, collected and processed by...

  17. GIBS Web Map Tile Service (WMTS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The WMTS implementation standard provides a standards-based solution for serviing digital maps using predefined image tiles. Through the constructs of the...

  18. Electrochemical desalination of historic Portuguese tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Dias-Ferreira, Celia; Ribeiro, Alexandra B.

    2015-01-01

    Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were...... the electrochemical treatment. The removal rate was similar for the two anions so the chloride concentration reached the lowest concentration level first. At this point the electric resistance increased, but the removal of nitrate continued unaffected till similar low concentration. The sulfate concentration...... was successful. Based on the obtained results an important step is taken towards development of an electrochemical technique for desalination of tile panels....

  19. Introductory Tiling Theory for Computer Graphics

    CERN Document Server

    Kaplan, Craig

    2009-01-01

    Tiling theory is an elegant branch of mathematics that has applications in several areas of computer science. The most immediate application area is graphics, where tiling theory has been used in the contexts of texture generation, sampling theory, remeshing, and of course the generation of decorative patterns. The combination of a solid theoretical base (complete with tantalizing open problems), practical algorithmic techniques, and exciting applications make tiling theory a worthwhile area of study for practitioners and students in computer science. This synthesis lecture introduces the math

  20. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, J. A.; Ferrari, B.; Alvaredo, P.; Gordo, E.; Sanchez-Herencia, A. J.

    2013-07-01

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  1. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  2. [Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].

    Science.gov (United States)

    Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li

    2013-07-01

    The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).

  3. Ceramic Technology Project data base: September 1992 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1993-06-01

    Data presented in this report represent an intense effort to improve processing methods, testing methods, and general mechanical properties (rupture modulus, tensile, creep, stress-rupture, dynamic and cyclic fatigue, fracture toughness) of candidate ceramics for use in advanced heat engines. This work was performed by many facilities and represents only a small part of the data generated by the Ceramic Technology Project (CTP) since 1986. Materials discussed include GTE PY6, GN-10, NT-154, NT-164, SN-260, SN-251, SN-252, AY6, silicon nitride combined with rare-earth oxides, Y-TZP, ZTA, NC-433, NT-230, Hexoloy SA, MgO-PSZ-to-MgO-PSZ joints, MgO-PSZ-to-cast iron, and a few whisker/fiber-reinforced ceramics. Information in this report was taken from the project`s semiannual and bimonthly progress reports and from final reports summarizing the results of individual studies. Test results are presented in tabular form and in graphs. All data, including test rig descriptions and material characterizations, are stored in the CTP data base and are available to all project participants on request. The objective of this report is to make available the test results from these studies but not to draw conclusions from those data.

  4. Separators - Technology review: Ceramic based separators for secondary batteries

    Science.gov (United States)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  5. Distances on Lozenge Tilings

    CERN Document Server

    Bodini, Olivier; Fernique, Thomas

    2009-01-01

    In this paper, a structural property of the set of lozenge tilings of a 2n-gon is highlighted. We introduce a simple combinatorial value called Hamming-distance, which is a lower bound for the flipdistance (i.e. the number of necessary local transformations involving three lozenges) between two given tilings. It is here proven that, for n5, We show that there is some deficient pairs of tilings for which the flip connection needs more flips than the combinatorial lower bound indicates.

  6. 论功能型建筑陶瓷的作用及其应用%Functionalized Building Ceramics

    Institute of Scientific and Technical Information of China (English)

    税安泽; 覃东; 张勇林; 朱雯莉; 吴诚; 方桂金

    2012-01-01

    The functionalization of building ceramics is one of the main development directions for ceramic industry. The present paper summa-rizes the functionalized ceramics, including self-cleaning ceramic tiles, antibacterial ceramic tiles, solar ceramic tile, far-infrared ceramic tiles, anti-static ceramic, photoluminescence ceramic, humidity-controlling ceramic, electronegative ceramic tiles, porous heat insulation ce- ramic, water permeable brick, sound absorption ceramic, radar absorption ceramic tiles and dioxide absorption ceramic tiles and so on. The principle, process and the application of each functionalized ceramic tile are also given here.%将建筑陶瓷功能化是陶瓷行业的主要发展方向之一。本文对功能型建筑陶瓷,如自洁陶瓷、抗菌陶瓷、太阳能陶瓷、远红外辐射陶瓷、防静电陶瓷、发光陶瓷、调湿陶瓷、负离子陶瓷、多孔隔热陶瓷、透水砖、吸声陶瓷、吸收电磁波陶瓷和吸收二氧化碳陶瓷等方面进行了归纳,并阐述了各种功能型瓷砖的原理、工艺和应用。

  7. Detector Control System of Tile Calorimeter

    CERN Document Server

    Arabidze, G; The ATLAS collaboration

    2009-01-01

    The subject of this presentation is to describe the Detector Control System (DCS) implementation for Tile Calorimeter sub-detector. It describes hardware layout and software components for main, infrastructure related and sub-detector calibration systems. It discusses implementation of the top level software Finite State Machine (FSM)and discusses state models of FSM objects. Presentation shows usage of Configuration and Conditions Data Bases, for Tile Calorimeter DCS.

  8. Compacidade do suporte cerâmico cru versus propriedades do revestimento cerâmico cozido Compactness of the raw artifacts versus the proprieties of sintered ceramic tiles

    Directory of Open Access Journals (Sweden)

    Ana Candida de Almeida Prado

    2012-03-01

    Full Text Available A compacidade é definida como a razão entre a densidade a seco e a densidade real, propriedade importante no processo cerâmico, pois, quanto maior a compacidade, menor é a necessidade de fechamento dos poros durante a sinterização. Os principais fatores que influenciam a compacidade são: distribuição granulométrica das partículas, tamanho e formato do grânulo, preenchimento do molde, pressão e umidade de prensagem. Com o objetivo de variar a compacidade de corpos de prova compostos, primordialmente, por argilas vermelhas da Formação Corumbataí da região de Rio Claro (SP - Brasil, foram aplicadas diferentes pressões durante a confecção de peças. Foram determinadas as propriedades físicas (absorção de água, retração linear, porosidades aberta, fechada e total, densidade aparente e módulo de ruptura à flexão das referidas peças. Conclui-se que, para essas massas compostas por argilas illíticas, albita e teores relativamente elevados de hematita (± 4,5%, quanto maior é a compacidade, menor é a temperatura de queima, para se obterem produtos com um determinado padrão de absorção de água, sendo que as compacidades entre 0,66 e 0,69 apresentaram menor risco de atingir a superqueima.Compactness is the ratio between the dry and real density of the ceramic artifact. This is an important property in the ceramic process, since the greater the compactness, the less need for pore closure in the sinter stage. The main factors that influence compactness are: particle size distribution, granule size and shape, mold filling method, humidity, and compacting pressure. The compacting pressure was modified in order to vary the compactness of the samples, which consisted primarily of red clay from the Rio Claro (SP-Brazil region in the sedimentary deposit of the Corumbataí Formation. To understand the initial compacting influence, the physical properties of water absorption, linear shrinkage, open porosity, closed porosity

  9. Recycling of porcelain tile polishing residue in portland cement: hydration efficiency.

    Science.gov (United States)

    Pelisser, Fernando; Steiner, Luiz Renato; Bernardin, Adriano Michael

    2012-02-21

    Ceramic tiles are widely used by the construction industry, and the manufacturing process of ceramic tiles generates as a major residue mud derived from the polishing step. This residue is too impure to be reused in the ceramic process and is usually discarded as waste in landfills. But the analysis of the particle size and concentration of silica of this residue shows a potential use in the manufacture of building materials based on portland cement. Tests were conducted on cement pastes and mortars using the addition of 10% and 20% (mass) of the residue. The results of compressive strength in mortars made up to 56 days showed a significant increase in compressive strength greater than 50%. The result of thermogravimetry shows that portlandite is consumed by the cement formed by the silica present in the residue in order to form calcium silicate hydrate and featuring a pozzolanic reaction. This effect improves the performance of cement, contributes to research and application of supplementary cementitious materials, and optimizes the use of portland cement, reducing the environmental impacts of carbon dioxide emissions from its production.

  10. Shuttle Upgrade Program: Tile TPS

    Science.gov (United States)

    Leiser, Daniel B.; Stewart, David A.; DiFiore, Robert; Irby, Ed; Arnold, James (Technical Monitor)

    2001-01-01

    One of the areas where the thermal protection system on the Space Shuttle Orbiter could be improved is the RSI (Reusable Surface Insulation) tile. The improvement would be in damage resistance that would reduce the resultant maintenance and inspection required. It has performed very well in every other aspect. Improving the system's damage resistance has been the subject of much research over the past several years. One of the results of that research was a new system developed for damage prone areas on the orbiter (i.e., base heat shield). That system, designated as TUFI, Toughened Uni-Piece Fibrous Insulation, was successfully demonstrated as an experiment on the Orbiter and is now baselined for the base heat shield. This paper describes the results of a current research program to further improve the TUFI tile system, thus making it applicable to more areas on the orbiter. The way to remove the current limitations of the TUFI system (i.e., weight or thermal conductivity differences between it and the baseline tile (LI-900)) is to improve the characteristics of LI-900 or AETB-8. Specifically this paper describes the results of two efforts. The first shows performance data of an improved LI-900 system involving the application of TUFI and the second describes data that shows a reduced difference in thermal conductivity between the advanced TUFI substrate (AETB-8) now used on the orbiter and LI-900.

  11. Modelling and characterization of the roof tile-shaped modes of AlN-based cantilever resonators in liquid media

    Science.gov (United States)

    Ruiz-Díez, V.; Hernando-García, J.; Toledo, J.; Manzaneque, T.; Kucera, M.; Pfusterschmied, G.; Schmid, U.; Sánchez-Rojas, J. L.

    2016-08-01

    In this work, roof tile-shaped modes of MEMS (micro electro-mechanical systems) cantilever resonators with various geometries and mode orders are analysed. These modes can be efficiently excited by a thin piezoelectric film and a properly designed top electrode. The electrical and optical characterization of the resonators are performed in liquid media and the device performance is evaluated in terms of quality factor, resonant frequency and motional conductance. A quality factor as high as 165 was measured in isopropanol for a cantilever oscillating in the seventh order roof tile-shaped mode at 2 MHz. To support the results of the experimental characterization, a 2D finite element method simulation model is presented and studied. An analytical model for the estimation of the motional conductance was also developed and validated with the experimental measurements.

  12. Ceramic colorant from untreated iron ore residue.

    Science.gov (United States)

    Pereira, Oscar Costa; Bernardin, Adriano Michael

    2012-09-30

    This work deals with the development of a ceramic colorant for glazes from an untreated iron ore residue. 6 mass% of the residue was added in suspensions (1.80 g/cm(3) density and 30s viscosity) of white, transparent and matte glazes, which were applied as thin layers (0.5mm) on engobeb and not fired ceramic tiles. The tiles were fired in laboratory roller kiln in a cycle of 35 min and maximum temperatures between 1050 and 1180°C. The residue and glazes were characterized by chemical (XRF) and thermal (DTA and optical dilatometry) analyses, and the glazed tiles by colorimetric and XRD analyses. The results showed that the colorant embedded in the transparent glaze results in a reddish glaze (like pine nut) suitable for the ceramic roof tile industry. For the matte and white glazes, the residue has changed the color of the tiles with temperature.

  13. Construction Of A Piezoelectric-Based Resonance Ceramic Pressure Sensor Designed For High-Temperature Applications

    OpenAIRE

    Belavič Darko; Bradeško Andraž; Zarnik Marina Santo; Rojac Tadej

    2015-01-01

    In this work the design aspects of a piezoelectric-based resonance ceramic pressure sensor made using low-temperature co-fired ceramic (LTCC) technology and designed for high-temperature applications is presented. The basic pressure-sensor structure consists of a circular, edge-clamped, deformable diaphragm that is bonded to a ring, which is part of the rigid ceramic structure. The resonance pressure sensor has an additional element – a piezoelectric actuator – for stimulating oscillation of ...

  14. Tiling Lattices with Sublattices, II

    CERN Document Server

    Feldman, David; Robins, Sinai

    2010-01-01

    Our earlier article proved that if $n > 1$ translates of sublattices of $Z^d$ tile $Z^d$, and all the sublattices are Cartesian products of arithmetic progressions, then two of the tiles must be translates of each other. We re-prove this Theorem, this time using generating functions. We also show that for $d > 1$, not every finite tiling of $Z^d$ by lattices can be obtained from the trivial tiling by the process of repeatedly subdividing a tile into sub-tiles that are translates of one another.

  15. Tile concrete base materials as substitutes for lead shielding installations diagnostic X-ray; Losetas de materiales con base de hormigon como blindajes sustitutivos del plomo en instalaciones de rayos X de diagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Pombar Camean, M.; Pasin, J.; Fuestes-Vazquez, V.; Alonso, E.; Pereira, B.

    2011-07-01

    In this paper we study the damping characteristics in the energy range of medical diagnostic X-ray product X-RAD trade name manufactured by Construction Radiotherapy Techniques (CTRADC) consisting of different composition tile with concrete base, for its characterization as a substitute shielding material lead.

  16. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  17. Monomer-dimer tatami tilings of square regions

    CERN Document Server

    Erickson, Alejandro

    2011-01-01

    We prove that the number of monomer-dimer tilings of an $n\\times n$ square grid, with $mtiles meet at any point is $m2^m+(m+1)2^{m+1}$, when $m$ and $n$ have the same parity. In addition, we present a new proof of the result that there are $n2^{n-1}$ such tilings with $n$ monomers, which divides the tilings into $n$ classes of size $2^{n-1}$. The sum of these tilings over all monomer counts has the closed form $2^{n-1}(3n-4)+2$ and, curiously, this is equal to the sum of the squares of all parts in all compositions of $n$. We also describe two algorithms and a Gray code ordering for generating the $n2^{n-1}$ tilings with $n$ monomers, which are both based on our new proof.

  18. Modular robotic tiles: experiments for children with autism

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Dam Pedersen, Martin; Beck, Richard

    2009-01-01

    We developed a modular robotic tile and a system composed of a number of these modular robotic tiles. The system composed of the modular robotic tiles engages the user in physical activities, e.g., physiotherapy, sports, fitness, and entertainment. The modular robotic tiles motivate the user...... to perform physical activities by providing immediate feedback based upon their physical interaction with the system. With the modular robotic tiles, the user is able to make new physical set-ups within less than a minute. The tiles are applicable for different forms of physical activities (e.g., therapeutic...... rehabilitation), and with the proper radio communication mechanism they may give unique possibilities for documentation of the physical activity (e.g., therapeutic treatment). A major point of concern in modular robotics is the connection mechanism, so we investigated different solutions for the connection...

  19. Micromechanics-Based Computational Simulation of Ceramic Matrix Composites

    Science.gov (United States)

    Murthy, Pappu L. N.; Mutal, Subodh K.; Duff, Dennis L. (Technical Monitor)

    2003-01-01

    Advanced high-temperature Ceramic Matrix Composites (CMC) hold an enormous potential for use in aerospace propulsion system components and certain land-based applications. However, being relatively new materials, a reliable design properties database of sufficient fidelity does not yet exist. To characterize these materials solely by testing is cost and time prohibitive. Computational simulation then becomes very useful to limit the experimental effort and reduce the design cycle time, Authors have been involved for over a decade in developing micromechanics- based computational simulation techniques (computer codes) to simulate all aspects of CMC behavior including quantification of scatter that these materials exhibit. A brief summary/capability of these computer codes with typical examples along with their use in design/analysis of certain structural components is the subject matter of this presentation.

  20. Non-polarisable dry electrode based on NASICON ceramic.

    Science.gov (United States)

    Gondran, C; Siebert, E; Fabry, P; Novakov, E; Gumery, P Y

    1995-05-01

    A NASICON-type ceramic (high sodium ion conductor) is proposed to record bioelectric signals. The electrode does not need gel before its application. The principle of the measurements is based on a sodium ion exchange between the skin and the material. Electrical measurements performed in saline solutions show that the electrode is slightly polarisable. The skin-electrode impedance was investigated. The impedance decreases as a function of the time of application. The resistive component is the major source of the impedance change. This can be explained by the perspiration process which occurs immediately with time after the application of the NASICON-based electrode on the skin. The skin condition is also an important parameter. NaCl saline solution or abrasion causes the resistance to decrease markedly.

  1. Challenges of Engineering Grain Boundaries in Boron-Based Armor Ceramics

    Science.gov (United States)

    Coleman, Shawn P.; Hernandez-Rivera, Efrain; Behler, Kristopher D.; Synowczynski-Dunn, Jennifer; Tschopp, Mark A.

    2016-06-01

    Boron-based ceramics are appealing for lightweight applications in both vehicle and personnel protection, stemming from their combination of high hardness, high elastic modulus, and low density as compared to other ceramics and metal alloys. However, the performance of these ceramics and ceramic composites is lacking because of their inherent low fracture toughness and reduced strength under high-velocity threats. The objective of the present article is to briefly discuss both the challenges and the state of the art in experimental and computational approaches for engineering grain boundaries in boron-based armor ceramics, focusing mainly on boron carbide (B4C) and boron suboxide (B6O). The experimental challenges involve processing these ceramics at full density while trying to promote microstructure features such as intergranular films to improve toughness during shock. Many of the computational challenges for boron-based ceramics stem from their complex crystal structure which has hitherto complicated the exploration of grain boundaries and interfaces. However, bridging the gaps between experimental and computational studies at multiple scales to engineer grain boundaries in these boron-based ceramics may hold the key to maturing these material systems for lightweight defense applications.

  2. Assessment of full ceramic solid oxide fuel cells based on modified strontium titanates

    DEFF Research Database (Denmark)

    Holtappels, Peter; Ramos, Tania; Sudireddy, Bhaskar Reddy;

    2014-01-01

    stimulated the development for full ceramic anodes based on strontium titanates. Furthermore, the Ni-cermet is primarily a hydrogen oxidation electrode and efficiency losses might occur when operating on carbon containing fuels. In the European project SCOTAS-SOFC full ceramic cells comprising CGO...

  3. Long Term Fatigue Behavior of Zirconia Based Dental Ceramics

    Directory of Open Access Journals (Sweden)

    Moustafa N. Aboushelib

    2010-04-01

    Full Text Available This study evaluated the influence of cyclic loading on zirconia bar-shaped specimens after being subjected to three different surface treatments: particle abrasion with either 50 μm or 110 μm alumina and grinding with diamond points, while polished specimens served as a control. Statistical analysis revealed significant reduction (38-67% in flexure strength (P < 0.001 after three million cycles of dynamic loading for all surface treatments. Scanning electron imaging revealed grain boundary thickening, grain pull-out, and micro-cracking as the main structural defects. The results suggest that various surface treatments of zirconia based dental ceramics may significantly influence their long term fatigue resistance in the oral environment.

  4. Fracture Behavior Characteristic of Ceramic Reinforced Metal-Base Coatings

    Institute of Scientific and Technical Information of China (English)

    MA Chong; JING Hongyang; XU Lianyong

    2009-01-01

    The fracture behavior of a ceramic reinforced metal-base coating prepared by high velocity arc spraying (HVAS)technology in three-point bending test was studied.Moreover,finite element analysis(FEA)was adopted to analyze the stress distribution in the crack front.It can be found that the crack norrnal to the interface in the coatings occurred at the location where a fixed moment of force was reached.So the critical moment can be taken as thecoating cracking criterion,which was confirmed by FEA results.In addition,the stress levels at three different locations where cracks occurred near the interface are almost the same.The results will provide reference for the design of coatings and the structure integrity evaluation of coating/substrate systems.

  5. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  6. Extended DNA Tile Actuators

    DEFF Research Database (Denmark)

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  7. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P ceramics are good potential candidates for ceramic-based dental materials.

  8. Gesture-Based, Touch-Free Multi-User Gaming on Wall-Sized, High-Resolution Tiled Displays

    Directory of Open Access Journals (Sweden)

    John Markus Bjørndalen

    2008-11-01

    Full Text Available Having to carry input devices can be inconvenient when interacting with wall-sized, high-resolution tiled displays. Such displays are typically driven by a cluster of computers. Running existing games on a cluster is non-trivial, and the performance attained using software solutions like Chromium is not good enough.This paper presents a touch-free, multi-user, human-computer interface for wall-sized displays that enables completely device-free interaction. The interface is built using 16 cameras and a cluster of computers, and is integrated with the games Quake 3 Arena (Q3A and Homeworld. The two games were parallelized using two different approaches in order to run on a 7x4 tile, 21 megapixel display wall with good performance.The touch-free interface enables interaction with a latency of 116 ms, where 81 ms are due to the camera hardware. The rendering performance of the games is compared to their sequential counterparts running on the display wall using Chromium. Parallel Q3A's framerate is an order of magnitude higher compared to using Chromium. The parallel version of Homeworld performed on par with the sequential, which did not run at all using Chromium. Informal use of the touch-free interface indicates that it works better for controlling Q3A than Homeworld.

  9. Conhecimento e inovação em sistemas locais de produção de revestimentos cerâmicos e os novos desafios da concorrência internacional Knowledge and innovation in local production systems of ceramic tiles and the new challenges of the international competition

    Directory of Open Access Journals (Sweden)

    Gabriela Scur

    2008-12-01

    Full Text Available Este trabalho tem como objetivo contribuir para a compreensão das novas dinâmicas de geração de conhecimento e inovação em sistemas locais de produção a partir dos desafios da concorrência internacional, por meio da realização de estudos em dois sistemas locais da indústria de cerâmica de revestimento no Brasil, um localizado em Santa Gertrudes/SP e outro em Criciúma/SC. O estudo mostrou que os principais movimentos que caracterizaram o cenário competitivo global no período recente foram a expansão da China no mercado internacional; a expansão da indústria espanhola, fortemente calcada na interação com seus fornecedores de colorifícios; e a perda de participação da indústria italiana, a despeito da forte presença da indústria de máquinas e equipamentos. Mesmo com esse contexto de acirramento da concorrência internacional, a indústria brasileira atravessou um período de expansão, com o crescimento concomitante do mercado doméstico e das exportações. Esse crescimento traduziu-se em um elevado dinamismo da indústria, que contou tanto com a expansão da oferta de revestimentos cerâmicos como com mudanças expressivas nos parâmetros técnico-produtivos das empresas, motivadas em grande parte por um conjunto de benefícios decorrentes da aglomeração das empresas.This paper aims to contribute for the understanding of the new dynamics of knowledge and innovation in local production systems from the strengthening of the international rivalry in the ceramic tile industry, by studying two local systems in the Brazilian ceramic tile industry, one located in Santa Gertrudes/SP and the other in Criciuma/SC. The research shows that the current international competitive scenario is being characterized by the China's expansion in the world market; the Spanish expansion embedded in the interaction among their glaze suppliers; and the Italian decreasing market share, despite the strong presence of machinery goods industry

  10. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  11. Uniform tiling with electrical resistors

    Energy Technology Data Exchange (ETDEWEB)

    Cserti, Jozsef; Szechenyi, Gabor [Department of Physics of Complex Systems, Eoetvoes University, H-1117 Budapest, Pazmany Peter setany 1/A (Hungary); David, Gyula, E-mail: cserti@elte.hu [Department of Atomic Physics, Eoetvoes University, H-1117 Budapest, Pazmany Peter setany 1/A (Hungary)

    2011-05-27

    The electric resistance between two arbitrary nodes on any infinite lattice structure of resistors that is a periodic tiling of space is obtained. Our general approach is based on the lattice Green's function of the Laplacian matrix associated with the network. We present several non-trivial examples to show how efficient our method is. Deriving explicit resistance formulas it is shown that the Kagome, diced and decorated lattice can be mapped to the triangular and square lattice of resistors. Our work can be extended to the random walk problem or to electron dynamics in condensed matter physics.

  12. Uniform tiling with electrical resistors

    CERN Document Server

    Cserti, Jozsef; David, Gyula

    2011-01-01

    Electric resistances between two arbitrary nodes on any infinite lattice structure of resistor networks that is a periodic tiling of the space is obtained. Our general approach is based on the lattice Green's function of the Laplacian matrix associated with the network. We present several and non-trivial examples to show how efficient our method is. Deriving explicit resistance formulas it is shown that the Kagom\\'e, the diced and the decorated lattice can be mapped to the triangular and square lattice of resistors. Our work can be extended to random walk problem or electron dynamics in condensed matter physics.

  13. Design of LTCC-based Ceramic Structure for Chemical Microreactor

    Directory of Open Access Journals (Sweden)

    D. Belavic

    2012-04-01

    Full Text Available The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s, mixer(s, reformer and combustor. Low-temperature co-fired ceramic (LTCC technology was used to fabricate the ceramic structures with buried cavities and channels, and thick-film technology was used to make electrical heaters, temperature sensors and pressure sensors. The final 3D ceramic structure consists of 45 LTCC tapes. The dimensions of the structure are 75 × 41 × 9 mm3 and the weight is about 73 g.

  14. A map tiles data storage technology based on NoSQL%一种基于NoSQL的地图瓦片数据存储技术

    Institute of Scientific and Technical Information of China (English)

    陈超; 王亮; 闫浩文; 仇阿根; 李玉祥; 朱芳菲

    2013-01-01

    本文首先介绍了NoSQL(非关系型数据库)的起源与发展,对比其与关系型数据库的优缺点,提出了基于NoSQL的地图瓦片数据存储策略,通过实验对比分析了面向文档型的NoSQL数据库产品Mongo DB与SQL Server 2000在瓦片入库与并发访问性能上的差异.研究结果表明,Mongo DB在海量空间数据存储与并发访问方面具有明显的高效性.%This paper described the origin and development of NoSQL, compared the advantages and disadvantages with relational database, and put forward the strategy of map tile data storage based on NoSQL Experiment was carried out on the type of document-oriented NoSQL database products Mongo DB and SQL Server 2000, and comparative analysis on the differences between them in the tile storage and concurrent access performance. The result could confirm the efficiency of Mongo DB in the mass data storage and concurrent access.

  15. The Mu3e Tile Detector

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Hans Patrick

    2015-05-06

    The Mu3e experiment is designed to search for the lepton flavour violating decay μ→e{sup +}e{sup +}e{sup -} with a sensitivity of one in 10{sup 16} decays. An observation of such a decay would be a clear sign of physics beyond the Standard Model. Achieving the targeted sensitivity requires a high precision detector with excellent momentum, vertex and time resolution. The Mu3e Tile Detector is a highly granular sub-detector system based on scintillator tiles with Silicon Photomultiplier (SiPM) readout, and aims at measuring the timing of the muon decay products with a resolution of better than 100 ps. This thesis describes the development of the Tile Detector concept and demonstrates the feasibility of the elaborated design. In this context, a comprehensive simulation framework has been developed, in order to study and optimise the detector performance. The central component of this framework is a detailed simulation of the SiPM response. The simulation model has been validated in several measurements and shows good agreement with the data. Furthermore, a 16-channel prototype of a Tile Detector module has been constructed and operated in an electron beam. In the beam tests, a time resolution up to 56 ps has been achieved, which surpasses the design goal. The simulation and measurement results demonstrate the feasibility of the developed Tile Detector design and show that the required detector performance can be achieved.

  16. Tile vaulting in the 21st century

    Directory of Open Access Journals (Sweden)

    D. López López

    2016-12-01

    Full Text Available New interactive equilibrium methods for the design and analysis of masonry structures have facilitated the construction of masonry structures with a formal language well beyond what is typically associated with compression-only architecture. These developments have also rekindled interest in tile vaulting, and led to a rediscovery of this traditional building technique. To ensure that tile vaults with new, complex shapes can still be built economically, the construction processes involved in the realisation of these structures have adapted. For example, cheaper and simpler falsework systems have been introduced. In addition, a wide variety of materials have been experimented with to be able to build more sustainable vaulted structures with local resources. This paper presents a review of the latest innovations in tile vaulting, based on the most representative works of the past few years with respect to shape, construction method and the use of materials.

  17. Study of The Technological Profile of The Red Ceramic Industry of Alagoas

    OpenAIRE

    Bruna Pinto de Cerqueira Pedrosa de Oliveira; Luciana Peixoto Santa Rita

    2015-01-01

    The red ceramic industry in Brazil is a sector that is growing every year, characterized by the production of ceramic tiles as brick, tile, ceramic blocks, which basically uses, as main raw material, the clay. Due to the constant evolution of mechanization and production increase, plus the emergence of new companies, it is clear that processing techniques as well as technological modernization are key to achieving a higher performance segment of red ceramic process thus winning, t...

  18. Hardness of resin cement cured under different thickness of lithium disilicate-based ceramic

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuan; WANG Fu

    2011-01-01

    Background The lithium disilicate-based ceramic is a newly developed all-ceramic material,which is lithium disilicate-based and could be used for fabricating almost all kinds of restorations.The extent of light attenuation by ceramic material was material-dependent.Ceramic materials with different crystal composition or crystalline content would exhibit distinct light-absorbing characteristics.The aim of this study was to analyze the influence of ceramic thickness and light-curing time on the polymerization of a dual-curing resin luting material with a lithium disilicate-based ceramic.Methods A lithium disilicate-based ceramic was used in this study.The light attenuation caused by ceramic with different thickness was determined using a spectral radiometer.The commercial dual-cured resin cement was light-cured directly or through ceramic discs with different thickness (1,2 and 3 mm,respectively) for different times (10,20,30,40,50 and 60 seconds,respectively).The polymerization efficiency of resin cement was expressed in terms as Vickers hardness (VHN) measured after 24 hours storage.Two-way analysis of variance (ANOVA) and Tukey's HSD tests were used to determine differences.Results Intensity of polymerizing light transmitted through ceramic discs was reduced from 584 mW/cm2 to about 216 mW/cm2,80 mW/cm2 and 52 mW/cm2 at thicknesses of 1 mm,2 mm and 3 mm,respectively.Resin cement specimens self-cured alone showed significantly lower hardness values.When resin cement was light-cured through ceramic discs with a thickness of 1 mm,2 mm and 3 mm,no further increasing in hardness values was observed when light-curing time was more than 30 seconds,40 seconds and 60 seconds,respectively.Conclusions Within the limitation of the present study,ceramic thickness and light-curing time had remarkable influence on the polymerization of dual-cured resin cement.When resin cement is light-cured beneath a lithium disilicate ceramic with different thickness,prolonging light

  19. Enhanced luminescence in Er3+-doped chalcogenide glass-ceramics based on selenium

    OpenAIRE

    2013-01-01

    International audience; Rare earth doped glass-ceramics transparent in the infrared region up to 16 µm have been prepared and studied. The enhancement of the emission of Er3+ ions at 1.54 µm with increasing crystallinity was demonstrated in a selenium-based glass-ceramic having a composition of 80GeSe2-20Ga2Se3+1000 ppm Er. The optical transmission, microstructure and luminescence properties of a base glass and glass-ceramics were investigated. Luminescence intensities up to 7 times greater w...

  20. Producing superhydrophobic roof tiles

    Science.gov (United States)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  1. Comparative study of physical properties of zirconia based dental ceramics

    OpenAIRE

    Pittayachawan, P.

    2009-01-01

    The aim of this project was to evaluate and compare the mechanical properties of commercial yttria partially stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics, which have generated interest in restorative dentistry because of their high strength and high resistance to fracture. Mechanical properties of three commercial Y-TZP ceramics (Lava™, Cercon® and Invizion™) were investigated including the biaxial flexural strength, hardness, fatigue, and subcritical crack growth....

  2. Preparation of Glass Ceramic Based on Granulated Slag and Cullet

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The glass-ceramic was prepared on the basis of materials of granulated slag containing high-calcium oxide and cullet.The content of granulated slag ranges from 50%-60%wt in the glass compositions. The samples were analyzed by DTA, SEM and XRD.The results show that the main crystal phase of the glass-ceramic is β-CaSiO3,Which is in scattering fiber or column form.The applying properties have also been measured.

  3. Theoretical and experimental determination of mass attenuation coefficients of lead-based ceramics and their comparison with simulation

    Directory of Open Access Journals (Sweden)

    Vejdani-Noghreiyan Alireza

    2016-01-01

    Full Text Available Mass attenuation coefficient of lead-based ceramics have been measured by experimental methods and compared with theoretical and Monte Carlo simulation results. Lead-based ceramics were prepared using mixed oxide method and the X-ray diffraction analysis was done to evaluate the crystal structure of the produced handmade ceramics. The experimental results show good agreement with theoretical and simulation results. However at two gamma ray energies, small differences between experimental and theoretical results have been observed. By adding other additives to ceramics and observing the changes in the shielding properties such as flexibility, one can synthesize and optimize ceramics as a neutron shield.

  4. Enhanced luminescence in Er3+-doped chalcogenide glass-ceramics based on selenium

    Science.gov (United States)

    Hubert, Mathieu; Calvez, Laurent; Zhang, Xiang-Hua; Lucas, Pierre

    2013-10-01

    Rare earth doped glass-ceramics transparent in the infrared region up to 16 μm have been prepared and studied. The enhancement of the emission of Er3+ ions at 1.54 μm with increasing crystallinity was demonstrated in a selenium-based glass-ceramic having a composition of 80GeSe2-20Ga2Se3 + 1000 ppm Er. The optical transmission, microstructure and luminescence properties of a base glass and glass-ceramics were investigated. Luminescence intensities up to 7 times greater were obtained in glass-ceramics in comparison to the base glass. These materials are promising candidates for the production of new laser sources in the mid-infrared region.

  5. Effects of Starch on Properties of Alumina-based Ceramic Cores

    Directory of Open Access Journals (Sweden)

    LI Fengguang

    2016-12-01

    Full Text Available In order to improve the poor leachability of alumina-based ceramic cores, different amount of starch was added to the specimens as pore former. Alumina-based ceramic cores were prepared by hot injection technology using corundum powder as base material, paraffin wax and beeswax as plasticizer, silica powder and magnesium oxide powder as mineralizing agent, wherein the parameters of the hot injection process were as follows:temperature of the slurry was 90℃, hot injection pressure was 0.5 MPa and holding time was 25 s. The effects of starch content on the properties of alumina-based ceramic cores were studied and discussed. The results indicate that during sintering period, the loss of starch in the specimens makes porosity of the alumina-based ceramic cores increase. When starch content increases, the room-temperature flexural strength of the ceramic cores reduces and the apparent porosity increases; the volatile solvent increases and the bulk density decreases. After being sintered at 1560℃ for 2.5 h, room-temperature flexural strength of the alumina-based ceramic cores with starch content of 8%(mass fraction is 24.8 MPa, apparent porosity is 47.98% when the volatile solvent is 1.92 g/h and bulk density is 1.88 g/cm3, the complex properties are optimal.

  6. Improving the oxidation resistance of diboride-based ceramics

    Science.gov (United States)

    Kazemzadeh Dehdashti, Maryam

    Oxidation behavior has restricted the development of ZrB2-based ceramics for aerospace and hypersonic flight vehicles applications. The research presented in this dissertation focuses on the effect of transition metal (TM) additives on oxidation behavior of ZrB2 ceramics. In the first stage of the research, the effect of Nb additions on the morphology of the oxide particles and stability of the protective B2O3 glassy layer, which formed on the top surface during oxidation, was investigated. Addition of Nb increased the thickness of the glassy layer and, as a result, improved the oxidation resistance of ZrB2 after oxidation at 1500°C. Next, the oxidation behavior of nominally pure ZrB2 and (Zr,W)B 2 after oxidation at temperatures ranging from 800 to 1600°C was studied. Two oxidation stages before and after significant evaporation of B2O3 at about 1100°C were recognized for nominally pure ZrB2. Higher stability for the WO3-B2O 3 glassy layer compared to pure B2O3 resulted in a shift in the onset of the second oxidation regime toward higher temperatures for (Zr,W)B2 specimens and resulted in higher oxidation resistance for (Zr,W)B2 compared to nominally pure ZrB2. In the third stage of the research, the effects of TM-oxides such as WO3, Nb2O5, or ZrO2 on weight loss and structure of B2O3 glasses was studied. Thermogravimetric analysis performed on (TM-oxide)-B2O3 glasses indicated that TM-oxide additions reduced the evaporation of B2O3. Since no change in the structure of the glasses was detected, it was concluded that the increased stability of (TM-oxide)-B2O3 glasses compared to pure B2O3 was due to the lower activity of B2O3 in (TM-oxide)-B2O3 glasses. Finally, comparison of the effects of W, Mo, or Nb on oxidation behavior of ZrB2 at 1600°C showed that Mo and Nb were the most effective additives for improving the oxidation resistance of ZrB2.

  7. Intercalated Nanocomposites Based on High-Temperature Superconducting Ceramics and Their Properties

    Directory of Open Access Journals (Sweden)

    Sevan Davtyan

    2009-12-01

    Full Text Available High temperature superconducting (SC nanocomposites based on SC ceramics and various polymeric binders were prepared. Regardless of the size of the ceramics’ grains, the increase of their amount leads to an increase of resistance to rupture and modulus and a decrease in limiting deformation, whereas an increase in the average ceramic grain size worsens resistance properties. The SC, thermo-chemical, mechanical and dynamic-mechanical properties of the samples were investigated. Superconducting properties of the polymer ceramic nanocomposites are explained by intercalation of macromolecule fragments into the interstitial layer of the ceramics’ grains. This phenomenon leads to a change in the morphological structure of the superconducting nanocomposites.

  8. Strength and corrosion behavior of SiC - based ceramics in hot coal combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Breder, K.; Parten, R.J. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    As part of an effort to evaluate the use of advanced ceramics in a new generation of coal-fired power plants, four SiC-based ceramics have been exposed to corrosive coal slag in a laboratory furnace and two pilot scale combustors. Initial results indicate that the laboratory experiments are valuable additions to more expensive pilot plant experiments. The results show increased corrosive attack with increased temperature, and that only slight changes in temperature may significantly alter the degree of strength degradation due to corrosive attack. The present results are part of a larger experimental matrix evaluating the behavior of ceramics in the coal combustion environment.

  9. Alumina-based Ceramic Material for High-voltage Ceramic Substrate

    Directory of Open Access Journals (Sweden)

    S. R. Sangawar

    2006-04-01

    Full Text Available The paper presents the study of the particle size distribution, surface area and their effecton sintering of alumina (Al2O3 using additives such as magnesium oxide (MgO and silica (SiO2,so that the samples could be sintered to high relative density (~ 97.43 % with controlled graingrowth. However, the use of MgO along with SiO2 on Al2O3 produced the powder compactshaving high Green density, sintered density with minimum porosity to achieve high dielectricstrength ceramic material, so that material can be used for high-voltage insulator applications.

  10. Utilização do resíduo da extração de esmeraldas em uma formulação de massa de revestimento cerâmico Use of the extraction residue of emeralds in a formulation mass of ceramic tiles

    Directory of Open Access Journals (Sweden)

    R. F. Cavalcante

    2012-06-01

    volumes of waste generated and emerald are constantly abandoned in the environment, contributing negatively to their preservation. On the other hand the interest in the use of mining waste as an additive in production of ceramic materials has grown among researchers in recent years. The ceramic industry is constantly seeking to expand the market for the sector and trying to improve product quality and increase the variety of applications. The technology of obtaining ceramic coating that uses waste from mining is still a largely unexplored market. Thus, the purpose of this study was to characterize the waste generated from mining emerald as well as to evaluate its potential use as raw material for production melting of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence and X-ray diffraction. Five compositions were prepared using the waste codes of emeralds from 0%, 10%, 20%, 30% and 40%. Samples were prepared by pressing, sintered at 1000, 1100 and 1200 ºC and characterized to establish their mineralogical composition, water absorption, linear shrinkage and modulus of rupture. The results showed that the residue of emeralds studied can be embedded in the mass of ceramic tiles up to 20% in replacement of feldspar without compromising the end product properties.

  11. Analysis of tiling array expression studies with flexible designs in Bioconductor (waveTiling

    Directory of Open Access Journals (Sweden)

    Beuf Kristof

    2012-09-01

    Full Text Available Abstract Background Existing statistical methods for tiling array transcriptome data either focus on transcript discovery in one biological or experimental condition or on the detection of differential expression between two conditions. Increasingly often, however, biologists are interested in time-course studies, studies with more than two conditions or even multiple-factor studies. As these studies are currently analyzed with the traditional microarray analysis techniques, they do not exploit the genome-wide nature of tiling array data to its full potential. Results We present an R Bioconductor package, waveTiling, which implements a wavelet-based model for analyzing transcriptome data and extends it towards more complex experimental designs. With waveTiling the user is able to discover (1 group-wise expressed regions, (2 differentially expressed regions between any two groups in single-factor studies and in (3 multifactorial designs. Moreover, for time-course experiments it is also possible to detect (4 linear time effects and (5 a circadian rhythm of transcripts. By considering the expression values of the individual tiling probes as a function of genomic position, effect regions can be detected regardless of existing annotation. Three case studies with different experimental set-ups illustrate the use and the flexibility of the model-based transcriptome analysis. Conclusions The waveTiling package provides the user with a convenient tool for the analysis of tiling array trancriptome data for a multitude of experimental set-ups. Regardless of the study design, the probe-wise analysis allows for the detection of transcriptional effects in both exonic, intronic and intergenic regions, without prior consultation of existing annotation.

  12. X-ray absorption fine structure analysis of molybdenum added to BaTiO3-based ceramics used for multilayer ceramic capacitors

    Science.gov (United States)

    Ogata, Yoichiro; Shimura, Tetsuo; Ryu, Minoru; Iwazaki, Yoshiki

    2017-04-01

    The effect of slight molybdenum doping of perovskite-type BaTiO3-based ceramics on the reliability of a multilayer ceramic capacitor (MLCC) and on the valence state of molybdenum in the BaTiO3-based ceramics has been investigated by highly accelerated lifetime tests and X-ray absorption fine structure analysis. The molybdenum added to the BaTiO3-based ceramics is located at Ti sites and improves the highly accelerated lifetime and lowers the initial dielectric resistivity in MLCCs. Through sintering in a reducing atmosphere, which is an important process in the fabrication of BaTiO3-based MLCCs, the oxidation state of the molybdenum added could be adjusted from +6 to a value close to +4.

  13. An Experimental Study on Mechanical Modeling of Ceramics Based on Microstructure

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang

    2015-11-01

    Full Text Available The actual grinding result of ceramics has not been well predicted by the present mechanical models. No allowance is made for direct effects of materials microstructure and almost all the mechanical models were obtained based on crystalline ceramics. In order to improve the mechanical models of ceramics, surface grinding experiments on crystalline ceramics and non-crystalline ceramics were conducted in this research. The normal and tangential grinding forces were measured to calculate single grit force and specific grinding energy. Grinding surfaces were observed. For crystalline alumina ceramics, the predictive modeling of normal force per grit fits well with the experimental result, when the maximum undeformed chip thickness is less than a critical depth, which turns out to be close to the grain size of alumina. Meanwhile, there is a negative correlation between the specific grinding energy and the maximum undeformed chip thickness. With the decreasing maximum undeformed chip thickness, the proportions of ductile removal and transgranular fracture increase. However, the grinding force models are not applicable for non-crystalline ceramic fused silica and the specific grinding energy fluctuates irregularly as a function of maximum undeformed chip thickness seen from the experiment.

  14. Structures and properties of alumina-based ceramic for reconstructive oncology

    Science.gov (United States)

    Grigoriev, M. V.; Kulkov, S. N.

    2016-08-01

    The microstructure of alumina ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in high-frequency discharge plasma were used. It is shown that the variation of the sintering temperature and morphology of the initial powders of the particles leads to a change of the pore structure of ceramics from pore isolated clusters to a structure consisting of a ceramic skeleton and a large pore space. Changing the type of pore structure occurs at about 50% of porosity. The ceramic pore size distribution is bimodal. Dependencies final density vs initial density are linear; at the same time with increasing temperature, inclination of changes from positive to negative, indicating the change of sealing mechanisms. Extrapolation of these curves showed that they intersect with the values of density of about 2 g/cm3, which indicates the possibility of producing non-shrink ceramics. It is shown that the strength increases with increasing nanocrystalline alumina content in powder mixture. A change in the character the pore structure is accompanied by a sharp decrease in strength, which corresponds to the percolation transition in ceramics. These results showed that it is possible to obtain ceramic materials with the structure and properties similar to natural bone.

  15. Aqueous dispersion of red clay-based ceramic powder with the addition of starch

    Directory of Open Access Journals (Sweden)

    Maria Victoria Alcantar Umaran

    2013-04-01

    Full Text Available The optimum dispersion and rheological properties of red clay-based ceramic suspension loaded with unary and binary starch were investigated in aqueous medium. The aqueous ceramic suspension was prepared consisting of red clay, quartz, feldspar, and distilled water. Using a polyelectrolyte dispersant (Darvan 821A, the ternary ceramic powder was initially optimized to give the smallest average particle size at 0.8 wt. (% dispersant dosage as supported by sedimentation test. This resulted into an optimum high solid loading of 55 wt. (%. The addition of either unary or binary starches to the optimized ceramic slurry increased the viscosity but maintained an acceptable fluidity. The mechanism of such viscosity increase was found to be due to an adsorption of starch granules onto ceramic surfaces causing tolerable agglomeration. Correspondingly, the rheological evaluations showed that the flow behaviors of all starch-loaded ceramic slurries can be described using Herschel-Bulkley model. The parameters from this model indicated that all ceramic slurries loaded with starch are shear thinning that is required for direct casting process.

  16. The Development of a General Purpose ARM-based Processing Unit for the ATLAS TileCal sROD

    CERN Document Server

    Cox, Mitchell Arij; The ATLAS collaboration; Mellado Garcia, Bruce Rafael

    2015-01-01

    The Large Hadron Collider at CERN generates enormous amounts of raw data which present a serious computing challenge. After Phase-II upgrades in 2022, the data output from the ATLAS Tile Calorimeter will increase by 200 times to 41 Tb/s! ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface ...

  17. The Development of a General Purpose ARM-based Processing Unit for the TileCal sROD

    CERN Multimedia

    Cox, Mitchell A

    2014-01-01

    The Large Hadron Collider at CERN generates enormous amounts of raw data which present a serious computing challenge. After planned upgrades in 2022, the data output from the ATLAS Tile Calorimeter will increase by 200 times to 41 Tb/s! ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface t...

  18. Eco-innovation an evolution of innovation? Empirical analysis at the Spanish tile ceramic industry; Eco-innovacion, una evolucion de la innovacion? Analisis empirico en la industria ceramica espanola

    Energy Technology Data Exchange (ETDEWEB)

    Segarra-Ona, M.; Peiro-Signes, A.; Miret-Pastor, L.; Albors-Garrigos, J.

    2011-07-01

    Innovation and sustainable development are considered to be economic drivers and crucial in fixing competitive position of companies. Eco-innovation, known as a synergic relation among both concepts must be an element to consider when designing the company's strategy. The objective of this paper is to analyze which are the variables that determine that innovative companies go beyond and consider the improvement of their environmental impact as an output when developing innovating activities. This research considers firms belonging to the Spanish tile industry. Data has been provided by PITEC Database. The paper identifies the moderating factors that influence the eco-innovative behavior of firms. (Author)

  19. 基于层次化重复单元的FPGA结构描述方法%Description Method for FPGA Architecture Based on Hierarchical Tile

    Institute of Scientific and Technical Information of China (English)

    胡敏; 王健; 来金梅

    2013-01-01

    Aiming at modern mainstream Field Programmable Gate Array(FPGA) with diverse logic blocks and interconnect lines,this paper proposes a universe FPGA architecture description method.Considering the fact that tiles are actually copied and pieced together to form the overall FPGA hardware layout,this paper proposes an FPGA architecture model based on hierarchical tile.According to the model,this paper also defines a set of complete and detailed syntactic rules to describe the FPGA architecture.Experimental results show that the description method can delineate FPGA hardware information,and work correctly with FPGA software system.It has common architecture and is small in size.%针对具有多种逻辑块和互连线结构的现代主流现场可编程门阵列(FPGA),给出一种通用的FPGA结构描述方法.根据FPGA硬件版图由几类重复单元在水平和垂直方向复制拼接而成的特点,提出基于层次化重复单元的FPGA结构模型,在该模型的基础上,通过定义一套完整的语法来描述FPGA.实验结果表明,该方法能正确描述FPGA硬件信息,并配合FPGA软件系统正常工作,具有结构通用和描述文件小的优点.

  20. Practice-based clinical evaluation of metal-ceramic and zirconia molar crowns: 3-year results.

    Science.gov (United States)

    Rinke, S; Schäfer, S; Lange, K; Gersdorff, N; Roediger, M

    2013-03-01

    This practice-based study evaluates the clinical performance of conventionally luted metal-ceramic and zirconia molar crowns fabricated with pronounced anatomical core design and a prolonged cooling period of the veneering porcelain. Fifty-three patients were treated from 07/2008 until 07/2009 with either metal-ceramic crowns (MCC) (high-noble alloy + low-fusing porcelain) or zirconia crowns (Cercon System, DeguDent, Germany). Forty-nine patients (30 women/19 men) with 100 restorations (metal-ceramic: 48/zirconia: 52, mean observational period: 36·5 ± 6 months) participated in a clinical follow-up examination and were included in the study. Time-dependent survival (in situ criteria), success (event-free restorations) and chipping rates (defects of the veneering ceramics) were calculated according to the Kaplan-Meier method and analysed in relation to the crown fabrication technique, using a Cox regression model (P zirconia: 2) were recorded (survival rate after 3 years: metal-ceramic: 97·6%, zirconia: 95·2%). Of the metal-ceramic restorations, 90·9% remained event-free (two ceramic fractures, one endodontic treatment), whereas the success rate for the zirconia was 86·8% (two ceramic fractures, one endodontic treatment, one secondary caries). No significant differences in survival (P = 0·53), success (P = 0·49) and ceramic fracture rates (P = 0·57) were detected. The combination of a pronounced anatomical core design and a modified firing of the veneering porcelain for the fabrication of zirconia molar crowns resulted in a 3-year survival, success and chipping rate comparable to MCC.

  1. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Directory of Open Access Journals (Sweden)

    Lu X

    2012-04-01

    Full Text Available Xiaoli Lu1,2, Yang Xia1, Mei Liu1, Yunzhu Qian3, Xuefeng Zhou4, Ning Gu4, Feimin Zhang1,41Institute of Stomatology, Nanjing Medical University, Nanjing, 2Nantong Stomatological Hospital, Nantong, 3Center of Stomatology, The Second Affiliated Hospital of Suzhou University, Suzhou, 4Suzhou Institute, Southeast University, Suzhou, People's Republic of ChinaAbstract: To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride] and anionic [poly(sodium 4-styrenesulfonate] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05. Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.Keywords: layer-by-layer, diatomite, nanoceramics, zirconia (ZrO2, dental materials

  2. Virus removal in ceramic depth filters based on diatomaceous earth.

    Science.gov (United States)

    Michen, Benjamin; Meder, Fabian; Rust, Annette; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas

    2012-01-17

    Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses. However, viruses may be retained by adsorption mechanisms due to intermolecular and surface forces. Here, we use three types of bacteriophages to investigate their removal during filtration and batch experiments conducted at different pH values and ionic strengths. Theoretical models based on DLVO-theory are applied in order to verify experimental results and assess surface forces involved in the adsorptive process. This was done by calculation of interaction energies between the filter surface and the viruses. For two small spherically shaped viruses (MS2 and PhiX174), these filters showed no significant removal. In the case of phage PhiX174, where attractive interactions were expected, due to electrostatic attraction of oppositely charged surfaces, only little adsorption was reported in the presence of divalent ions. Thus, we postulate the existence of an additional repulsive force between PhiX174 and the filter surface. It is hypothesized that such an additional energy barrier originates from either the phage's specific knobs that protrude from the viral capsid, enabling steric interactions, or hydration forces between the two hydrophilic interfaces of virus and filter. However, a larger-sized, tailed bacteriophage of the family Siphoviridae was removed by log 2 to 3, which is explained by postulating hydrophobic interactions.

  3. Study on Microstructure of Alumina Based Rare Earth Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Analysis techniques such as SEM, TEM and EDAX were used to investigate the microstructure of rare earth reinforced Al2O3/(W, Ti)C ceramic composite. Chemical and physical compatibility of the composite was analyzed and interfacial microstructure was studied in detail. It is found that both Al2O3 and (W, Ti)C phases are interlaced with each other to form the skeleton structure in the composite. A small amount of pores and glass phases are observed inside the material which will inevitably influence the physical and mechanical property of the composite. Thermal residual stresses resulted from thermal expansion mismatch can then lead to the emergence of dislocations and microcracks. Interfaces and boundaries of different types are found to exist inside the Al2O3/(W, Ti)C rare earth ceramic composite, which is concerned with the addition of rare earth element and the extent of solid solution of ceramic phases.

  4. Gas Sensors Based on Ceramic p-n Heterocontacts

    Energy Technology Data Exchange (ETDEWEB)

    Seymen Murat Aygun

    2004-12-19

    Ceramic p-n heterocontacts based on CuO/ZnO were successfully synthesized and a systematic study of their hydrogen sensitivity was conducted. The sensitivity and response rates of CuO/ZnO sensors were studied utilizing current-voltage, current-time, and impedance spectroscopy measurements. The heterocontacts showed well-defined rectifying characteristics and were observed to detect hydrogen via both dc and ac measurements. Surface coverage data were derived from current-time measurements which were then fit to a two-site Langmuir adsorption model quite satisfactorily. The fit suggested that there should be two energetically different adsorption sites in the system. The heterocontacts were doped in an attempt to increase the sensitivity and the response rate of the sensor. First, the effects of doping the p-type (CuO) on the sensor characteristics were investigated. Doping the p-type CuO with both acceptor and isovalent dopants greatly improved the hydrogen sensitivity. The sensitivity of pure heterocontact observed via I-V measurements was increased from {approx}2.3 to {approx}9.4 with Ni doping. Dopants also enhanced the rectifying characteristics of the heterocontacts. Small amounts of Li addition were shown to decrease the reverse bias (saturation) current to 0.2 mA at a bias level of -5V. No unambiguous trends were observed between the sensitivity, the conductivity, and the density of the samples. Comparing the two phase microstructure to the single phase microstructure there was no dramatic increase in the sensitivity. Kinetic studies also confirmed the improved sensor characteristics with doping. The dopants decreased the response time of the sensor by decreasing the response time of one of the adsorption sites. The n-type ZnO was doped with both acceptor and donor dopants. Li doping resulted in the degradation of the p-n junction and the response time of the sensor. However, the current-voltage behavior of Ga-doped heterocontacts showed the best rectifying

  5. Gas Sensors Based on Ceramic p-n Heterocontacts

    Energy Technology Data Exchange (ETDEWEB)

    Aygun, Seymen Murat [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Ceramic p-n heterocontacts based on CuO/ZnO were successfully synthesized and a systematic study of their hydrogen sensitivity was conducted. The sensitivity and response rates of CuO/ZnO sensors were studied utilizing current-voltage, current-time, and impedance spectroscopy measurements. The heterocontacts showed well-defined rectifying characteristics and were observed to detect hydrogen via both dc and ac measurements. Surface coverage data were derived from current-time measurements which were then fit to a two-site Langmuir adsorption model quite satisfactorily. The fit suggested that there should be two energetically different adsorption sites in the system. The heterocontacts were doped in an attempt to increase the sensitivity and the response rate of the sensor. First, the effects of doping the p-type (CuO) on the sensor characteristics were investigated. Doping the p-type CuO with both acceptor and isovalent dopants greatly improved the hydrogen sensitivity. The sensitivity of pure heterocontact observed via I-V measurements was increased from ~2.3 to ~9.4 with Ni doping. Dopants also enhanced the rectifying characteristics of the heterocontacts. Small amounts of Li addition were shown to decrease the reverse bias (saturation) current to 0.2 mA at a bias level of -5V. No unambiguous trends were observed between the sensitivity, the conductivity, and the density of the samples. Comparing the two phase microstructure to the single phase microstructure there was no dramatic increase in the sensitivity. Kinetic studies also confirmed the improved sensor characteristics with doping. The dopants decreased the response time of the sensor by decreasing the response time of one of the adsorption sites. The n-type ZnO was doped with both acceptor and donor dopants. Li doping resulted in the degradation of the p-n junction and the response time of the sensor. However, the current-voltage behavior of Ga-doped heterocontacts showed the best rectifying characteristics

  6. 一辊多色多图立体胶辊印刷技术及产品开发%Development of One-Rubber Roller Printer for 3D Multicolor Multi- Image Solution in New Ceramic Tile Production

    Institute of Scientific and Technical Information of China (English)

    余国明; 赖丽红; 梁泽荣; 王勇

    2012-01-01

    在高清三维胶辊印刷技术的基础上,通过对胶辊印刷装备进行重大改进和花釉配方组成优化,研究开发一辊多色多图立体胶辊印刷技术及凹凸拼图釉面砖产品。试验表明,采用本工作开发的一辊多色多图立体胶辊印刷技术可成功实现凹凸拼图釉面砖产品生产,大大减少印花装饰过程胶辊数量和明显提高了产品质量稳定性。%By improving the printer and optimizing the recipes of decorative glazes, 3D Multicolor multi-image printing with a single rubber roller was developed from the existing 3D high definition rubber roller printing, by which concave and convex glazed tiles for a collage image were produced. Experimental results show that the one roller printing technique can be used to produce concave and convex glazed tiles of more guaranteed quality for collage images with fewer rubber rollers.

  7. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  8. Efeito da adição de resíduo de rocha ornamental nas propriedades tecnológicas e microestrutura de piso cerâmico vitrificado Effect of the addition of ornamental rock waste on the technological properties and microstructure of vitrified ceramic floor tiles

    Directory of Open Access Journals (Sweden)

    A. J. Souza

    2011-06-01

    Full Text Available A indústria de rochas ornamentais gera grandes quantidades de resíduos sólidos na forma de pós finos. Estes resíduos, quando descartados no ambiente, provocam impacto ambiental negativo. Foi feito um estudo sobre a influência de um resíduo de rocha ornamental nas propriedades e microestrutura de piso cerâmico vitrificado. Foi preparada uma série de massas cerâmicas contendo até 30% em peso de resíduo de rocha ornamental. Peças cerâmicas foram preparadas por prensagem uniaxial e sinterizadas entre 1190 e 1250 ºC em um ciclo de queima rápida. As seguintes propriedades tecnológicas foram determinadas: retração linear, absorção de água, massa específica aparente, e tensão de ruptura a flexão. A evolução da microestrutura e a análise de fases foram acompanhadas por microscopia eletrônica de varredura e difração de raios X. Os resultados mostraram que adições de até 30% em peso de resíduo de rocha ornamental causaram variações significativas na generalidade das propriedades tecnológicas da massa cerâmica de referência. A microestrutura das peças cerâmicas também foi influenciada com a incorporação do resíduo estudado. Os resultados também mostram que a substituição de feldspato sódico por resíduo de rocha ornamental nas massas cerâmicas tende a melhorar a qualidade do piso cerâmico.The ornamental rock industries generate huge amounts of solid wastes (fine powders. These wastes as disposed in the environment generate negative environmental impacts. In this work a study was done on the influence of an ornamental rock waste in the technological properties and microstructure of vitrified floor tile. A series of ceramic pastes were prepared with additions of up to 30 wt% of waste. Ceramic pieces were prepared by uniaxial pressing and sintered between 1190 and 1250 ºC using a fast-firing cycle. The following technological properties were determined: linear shrinkage, water absorption, apparent density

  9. Ternary and senary representations using DNA double-crossover tiles

    CERN Document Server

    Kim, Byeonghoon; Son, Junyoung; Kim, Junghoon; Hwang, Si Un; Dugasani, Sreekantha Reddy; Kim, Min Hyeok; Kim, Byung-Dong; Chang, Iksoo; Liu, Wing Kam; Kim, Moon Ki; Park, Sung Ha

    2016-01-01

    The information capacity of double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure.

  10. Stability of Chromium Carbide/Chromium Oxide Based Porous Ceramics in Supercritical Water

    Science.gov (United States)

    Dong, Ziqiang

    This research was aimed at developing porous ceramics as well as ceramic-metal composites that can be potentially used in Gen-IV supercritical water reactors (SCWR). The research mainly includes two parts: 1) fabricating and engineering the porous ceramics and porous ceramic-metal composite; 2) Evaluating the stability of the porous ceramics in SCW environments. Reactive sintering in carbonaceous environments was used to fabricate porous Cr3C2/Cr2O3-based ceramic. A new process consisting of freeze casting and reactive sintering has also been successfully developed to fabricate highly porous Cr3C 2 ceramics with multiple interconnected pores. Various amounts of cobalt powders were mixed with ceramic oxides in order to modify the porous structure and property of the porous carbide obtained by reactive sintering. The hardness of the M(Cr,Co)7C3-Co composite has been evaluated and rationalized based on the solid solution of cobalt in the ceramic phase, the composite effect of soft Co metal and the porous structure of the ceramic materials. Efforts have also been made in fabricating and evaluating interpenetrating Cr3C2-Cu composites formed by infiltrating liquid copper into porous Cr3C2. The corrosion evaluation mainly focused on assessing the stability of porous Cr3C2 and Cr2O3 under various SCW conditions. The corrosion tests showed that the porous Cr3C 2 is stable in SCW at temperatures below 425°C. However, cracking and disintegrating of the porous Cr3C2 occurred when the SCW temperature increased above 425°C. Mechanisms of the corrosion attack were also investigated. The porous Cr2O3 obtained by oxidizing the porous Cr3C2 was exposed to various SCW environments. It was found that the stability of Cr 2O 3 was dependent on its morphology and the SCW testing conditions. Increasing SCW temperature increased the dissociation rate of the Cr2O 3. Adding proper amount of Y2O3 can increase the stability of the porous Cr2O3 in SCW. It was also concluded that decreasing

  11. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  12. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.;

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three...

  13. Fixed-point tile sets and their applications

    CERN Document Server

    Durand, Bruno; Shen, Alexander

    2009-01-01

    An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene's fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gacs in the context of error-correcting computations. This construction it rather flexible, so it can be used in many ways: we show how it can be used to implement substitution rules, to construct strongly aperiodic tile sets (any tiling is far from any periodic tiling), to give a new proof for the undecidability of the domino problem and related results, characterize effectively closed 1D subshift it terms of 2D shifts of finite type (improvement of a result by M. Hochman), to construct a tile set which has only complex ti...

  14. Tiled QR factorization algorithms

    CERN Document Server

    Bouwmeester, Henricus; Langou, Julien; Robert, Yves

    2011-01-01

    This work revisits existing algorithms for the QR factorization of rectangular matrices composed of p-by-q tiles, where p >= q. Within this framework, we study the critical paths and performance of algorithms such as Sameh and Kuck, Modi and Clarke, Greedy, and those found within PLASMA. Although neither Modi and Clarke nor Greedy is optimal, both are shown to be asymptotically optimal for all matrices of size p = q^2 f(q), where f is any function such that \\lim_{+\\infty} f= 0. This novel and important complexity result applies to all matrices where p and q are proportional, p = \\lambda q, with \\lambda >= 1, thereby encompassing many important situations in practice (least squares). We provide an extensive set of experiments that show the superiority of the new algorithms for tall matrices.

  15. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes

    Directory of Open Access Journals (Sweden)

    Shinichiro Kawada

    2015-11-01

    Full Text Available Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.

  16. Análise de coberturas com telhas de barro e alumínio, utilizadas em instalações animais para duas distintas alturas de pé-direito The analysis of ceramic tile and aluminum covers, used in animal facilities for two different foot-right heights

    Directory of Open Access Journals (Sweden)

    Rodrigo C. Santos

    2002-04-01

    Full Text Available Este trabalho teve como objetivo a análise de coberturas com telhas de barro e alumínio, comumente utilizadas em instalações animais, para duas distintas alturas de pé-direito, em condições de inverno no Brasil. O experimento foi realizado com modelos reduzidos de galpões avícolas, escala 1:10, e a análise foi feita quantificando-se a Carga Térmica de Radiação (CTR e o Índice de Temperatura de Globo Negro e Umidade (ITGU em diferentes horários, ao longo do período experimental. O experimento foi montado segundo um esquema de parcelas subdivididas, no delineamento em blocos casualizados. A interpretação estatística dos dados experimentais foi feita por meio da análise de variância e regressão. Para os fatores qualitativos (tipos de cobertura e pé-direito as médias foram comparadas utilizando-se o teste de Tukey e/ou F, adotando-se o nível de 5% de probabilidade; já para o fator quantitativo, os modelos foram escolhidos com base na significância dos coeficientes de regressão, utilizando-se o teste t em nível de 5% de probabilidade, o coeficiente de determinação e o fenômeno em estudo. Verificou-se, através deste experimento, que nas horas de frio mais intenso todas as coberturas causaram desconforto térmico e todos os protótipos tiveram UR acima do máximo tolerável para o conforto animal.This research had as objective the analysis of ceramic tiles and aluminum roof, commonly used in animal facilities, for two different heights, under Brazilian Winter conditions. The experiment used reduced models of poultry houses (scale 1:10 and the analysis was made by the values of Thermal Load of Radiation (TLR and of Black Globe and Humidity Index (BGHI, at different times along the experiment. The trial was conducted in randomized complete block design. The statistical interpretation of the experimental data was made through the variance and regression analysis. For the qualitative factors (roof types and height, the

  17. Crystallisation Kinetics of a β-Spodumene-Based Glass Ceramic

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2012-01-01

    Full Text Available LZSA (Li2O-ZrO2-SiO2-Al2O3 glass ceramic system has shown high potential to obtain LTCC laminate tapes at low sintering temperature (<1000°C for several applications, such as screen-printed electronic components. Furthermore, LZSA glass ceramics offer interesting mechanical, chemical, and thermal properties, which make LZSA also a potential candidate for fabricating multilayered structures processed by Laminated Objects Manufacturing (LOM technology. The crystallization kinetics of an LZSA glass ceramic with a composition of 16.9Li2O⋅5.0ZrO2⋅65.1SiO2⋅8.6Al2O3 was investigated using nonisothermal methods by differential thermal analysis and scanning electronic microscopy. Apparent activation energy for crystallization was found to be in the 274–292 kJ⋅mol−1 range, and an Avrami parameter n of 1 was obtained that is compared very favorably with SEM observations.

  18. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  19. Tiling a Rectangle with Polyominoes

    OpenAIRE

    2016-01-01

    International audience; A polycube in dimension $d$ is a finite union of unit $d$-cubes whose vertices are on knots of the lattice $\\mathbb{Z}^d$. We show that, for each family of polycubes $E$, there exists a finite set $F$ of bricks (parallelepiped rectangles) such that the bricks which can be tiled by $E$ are exactly the bricks which can be tiled by $F$. Consequently, if we know the set $F$, then we have an algorithm to decide in polynomial time if a brick is tilable or not by the tiles of...

  20. Lacunae infills for in situ treatment of historic glazed tiles

    Science.gov (United States)

    Mendes, Marta T.; Esteves, Lurdes; Ferreira, Teresa A.; Candeias, António; Tennent, Norman H.; Rodrigues, José Delgado; Pereira, Sílvia R. M.

    2016-05-01

    Knowledge of current conservation materials and methods together with those adopted in the past is essential to aid research and improve or develop better conservation options. The infill and painting of tile lacunae are subjected to special requirements mainly when used in outdoor settings. A selection of the most commonly used materials was undertaken and performed based on inquiries to practitioners working in the field. The infill pastes comprised organic (epoxy, polyester), inorganic (slaked lime, hydraulic lime and zinc hydroxychloride) and mixed organic-inorganic (slaked lime mixed with a vinylic resin) binders. The selected aggregates were those most commonly used or those already present in the commercially formulated products. The infill pastes were characterised by SEM, MIP, open porosity, water absorption by capillarity, water vapour permeability, thermal and hydric expansibilities and adhesion to the ceramic body. Their performance was assessed after curing, artificial ageing (salt ageing and UV-Temp-RH cycles) and natural ageing. The results were interpreted in terms of their significance as indicators of effectiveness, compatibility and durability.

  1. Zirconia-Based Powders Produced by Plasma-Spray Pyrolisys and Properties of Sintered Ceramics

    Science.gov (United States)

    Kulkov, S. N.; Buyakova, S.; Gömze, L. A.

    2017-01-01

    It have been studied zirconia-based powders and sintered ceramic. It was shown that in the porous structure of zirconia-based ceramics there is a critical value of porosity the material divides into two sub-systems, being variously deformable under external loading. It have been shown that m-phase in ZrO2 is formed due to increase in the microdistortion level which destabilizes the nanocrystalline t phase. It has been found out the correlation between the sizes of crystallites and porosity, which associated with transition of the isolated porous structure to the continuous one and the porosity of 20%, corresponds to the first percolation threshold.

  2. Development and sintering of alumina based mixed oxide ceramic products for sensor applications in petroleum industries

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Y.P.; Muniz, L.B.; Aguiar, L.A.R.; Sanguinetti Ferreira, R.A. [Departamento de Engenharia Mecanica, Universidade Federal de Pernambuco, CEP 50741-530, Recife-PE (Brazil); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, CEP 50670-901 Recife-PE (Brazil)

    2005-07-01

    In petroleum production, different types of sensors are required to monitor temperature, pressure, leakage of inflammable gases, etc. These sensors work in very hostile environmental conditions and frequently suffer from abrasion and corrosion problems. Presently perovskite oxide based ceramic materials are increasingly being used for such purposes, due to their highly inert behavior in hostile environment. In the present work, we have developed and characterized alumina based complex perovskite oxide ceramics, Ba{sub 2}AlSnO{sub 5.5}. These ceramics were prepared by solid state reaction process and produced in the form of circular discs by uniaxial pressure compaction technique. Green ceramic bodies were sintered at different sintering temperatures (1200 to 1500 deg. C) in air atmosphere. Structural and microstructural characteristics of sintered Ba{sub 2}AlMO{sub 5.5} were studied by XRD and SEM techniques. Mechanical properties were tested by Vickers microhardness tests. Ceramics sintered in the temperature range 1300 deg. C 1400 deg. C presented best results in terms of microstructural characteristics and mechanical performance. (authors)

  3. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation.

  4. Effect of Microwave Heating on Infrared Radiation Properties of Cordierite-Ferrites Based Composite Ceramics

    Institute of Scientific and Technical Information of China (English)

    LU; Lei; FAN; Xi’an; HU; Xiaoming; ZHANG; Jianyi

    2015-01-01

    The cordierite-ferrites based infrared radiation composite materials were synthesized with Fe2O3, Mn O2, Cu O, Co2O3, and Mg2Al4Si5O18 powders as raw materials via microwave heating. The cordierite-ferrites based composite ceramics could be obtained via microwave heating at 1173 K for 1 h or 1473 K for 10 min, respectively. The lower synthesis temperature or the shorter heating time results in the smaller grain size of the composite ceramics obtained by microwave heating. The interplanar distance of cordierite becomes greater after microwave heating, indicating that the doping effect of transitional metal oxides on the cordierite is more efficient in microwave heating. The infrared radiation composite ceramics synthesized by microwave heating at 1473 K for 1 h exhibit the maximum emissivity of 0.9 in the band range of 6-8 μm at 1073 K.

  5. Development of new ceramic materials from the waste of serpentinite and red clay; Desenvolvimento de novos materiais ceramicos a partir de residuo de serpentinito e argila vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Presotto, P., E-mail: petula.presotto@gmail.com [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mymrine, V. [Universidade Tecnologica Federal do Parana (UFTPR), Curitiba, PR (Brazil)

    2012-07-01

    The objective of this work is to develop new ceramic materials using serpentine and glass waste and clay red. The raw materials were characterized through morphological, granulometric, mineralogical and chemical analysis. Six formulations have been developed based on the serpentine and red clay, which three of the six compositions have been adjusted with the addition of residual glass. The ceramic bodies were formed by uniaxial pressing and subjected to burn in an electric oven at temperatures of 1100 ° C, 1200 ° C, 1250 ° C and 1300 ° C. The ceramic samples obtained this way were characterized according to their physical properties (specific mass and linear retraction) and the mechanical (three points bending strength). The final properties varied according to the proportions of raw materials and firing temperature. In general, the different formulations fit the standards for traditional ceramics such as tiles and ceramic blocks. (author)

  6. The Development of High-Performance Front-End Electronics Based Upon the QIE12 Custom ASIC for the ATLAS TileCal Upgrade

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2016-01-01

    We present the design of a new candidate front-end electronic readout system being developed for the ATLAS TileCal Phase 2 Upgrade. The system is based upon the QIE12 custom Application Specific Integrated Circuit. The chip features a least count sensitivity of 1.5 fC, more than 17 bits of dynamic range with logarithmic response, and an on-chip TDC with one nanosecond resolution. The design incorporates an on-board current integrator, and has several calibration systems. The new electronics will operate dead-timelessly at 40 MHz, pushing full data sets from each beam crossing to the data acquisition system that resides off-detector in the USA15 counting room using high-speed optical links. The system is one of three candidate systems for the Phase 2 Upgrade. We have built a “Demonstrator” – a fully functional prototype of the new system. Performance results from bench measurements and from a recent test beam campaign will be presented.

  7. Tile-Based Fisher Ratio Analysis of Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry (GC × GC – TOFMS) Data using a Null Distribution Approach

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Brendon A.; Marney, Luke C.; Siegler, William C.; Hoggard, Jamin C.; Wright, Bob W.; Synovec, Robert E.

    2015-04-07

    Multi-dimensional chromatographic instrumentation produces information-rich, and chemically complex data containing meaningful chemical signals and/or chemical patterns. Two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC – TOFMS) is a prominent instrumental platform that has been applied extensively for discovery-based experimentation, where samples are sufficiently volatile or amenable to derivatization. Use of GC × GC – TOFMS and associated data analysis strategies aim to uncover meaningful chemical signals or chemical patterns. However, for complex samples, meaningful chemical information is often buried in a background of less meaningful chemical signal and noise. In this report, we utilize the tile-based F-ratio software in concert with the standard addition method by spiking non-native chemicals into a diesel fuel matrix at low concentrations. While the previous work studied the concentration range of 100-1000 ppm, the current study focuses on the 0 ppm to 100 ppm analyte spike range. This study demonstrates the sensitivity and selectivity of the tile-based F-ratio software for discovery of true positives in the non-targeted analysis of a chemically complex and analytically challenging sample matrix. By exploring the low concentration spike levels, we gain a better understanding of the limit of detection (LOD) of the tile-based F-ratio software with GC × GC – TOFMS data.

  8. Low voltage varistor ceramics based on SnO2

    Indian Academy of Sciences (India)

    S R Dhage; V Ravi; O B Yang

    2007-12-01

    The nonlinear current ()–voltage () characteristics of tin dioxide doped with either Nb2O5 and CoO or Sb2O3 and CoO show promising values of nonlinear coefficient () values (∼11) with low breakdown voltages (B, ∼40 V mm-1). The pentavalent antimony or niobium acts as donor and increases the electronic conductivity. The crucial parameter for obtaining low breakdown voltage is the grain size, which depends upon sintering duration and temperature of these oxide ceramics.

  9. Construction Of A Piezoelectric-Based Resonance Ceramic Pressure Sensor Designed For High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Belavič Darko

    2015-09-01

    Full Text Available In this work the design aspects of a piezoelectric-based resonance ceramic pressure sensor made using low-temperature co-fired ceramic (LTCC technology and designed for high-temperature applications is presented. The basic pressure-sensor structure consists of a circular, edge-clamped, deformable diaphragm that is bonded to a ring, which is part of the rigid ceramic structure. The resonance pressure sensor has an additional element – a piezoelectric actuator – for stimulating oscillation of the diaphragm in the resonance-frequency mode. The natural resonance frequency is dependent on the diaphragm construction (i.e., its materials and geometry and on the actuator. This resonance frequency then changes due to the static deflection of the diaphragm caused by the applied pressure. The frequency shift is used as the output signal of the piezoelectric resonance pressure sensor and makes it possible to measure the static pressure. The characteristics of the pressure sensor also depend on the temperature, i.e., the temperature affects both the ceramic structure (its material and geometry and the properties of the actuator. This work is focused on the ceramic structure, while the actuator will be investigated later.

  10. Biomimetic synthesis of cellular SiC based ceramics from plant precursor

    Indian Academy of Sciences (India)

    O P Chakrabarti; H S Maiti; R Majumdar

    2004-10-01

    A novel biomimetic approach in designing and fabricating engineering ceramic materials has gained much interest in recent times. Following this approach, synthesis has been made of dense Si–SiC duplex ceramic composites and highly porous SiC ceramics in the image of the morphological features inherent in the caudex stem of a local monocotyledonous plant. The process route involves making of a carbonaceous biopreform and its subsequent reaction with an infiltrating silicon melt to yield the biomorphic Si–SiC ceramic composites with flexural strength and Young’s modulus of 264 MPa and 247 Gpa, respectively and loss in weight of only ∼ 9% during oxidative heating up to 1200°C in flowing air. The Si–SiC composites were transformed into porous (49 vol.%) SiC ceramics with complete preservation of microcellular anatomy of the parent plant, by depleting residual silicon phase in channel pores through reaction with carbon. SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports.

  11. Influence de la nature chimique et minéralogique des argiles et du processus de fabrication sur la qualité des carreaux céramiques Influence of chemical and mineralogical nature of clay and manufacturing process on the quality of ceramic tiles

    Directory of Open Access Journals (Sweden)

    Sadik C.

    2012-09-01

    Full Text Available La présente étude correspond à une approche pluridisciplinaire menée en étroite collaboration entre des géologues, des chimistes et des industriels de la céramique. Les résultats confirment l’étroite relation existante entre la composition des argiles et la qualité du produit céramique final. Les briquettes obtenues, dans les mêmes conditions, à partir de deux argiles marocaines assez différentes du point de vue chimique et minéralogique, présentent des caractéristiques technologiques bien distinctes. l’utilisation d’adjuvants minéraux, bien sélectionnés, contribue à l’équilibrage des argiles brutes et conduit à une nette amélioration de la qualité du produit céramique, notamment une réduction de leur retrait à la cuisson et une augmentation de leur résistance à la flexion. Concernant l’effet du processus de fabrication, l’application de l’engobe et de l’émail, s’avère être à l’origine de bombement des carreaux lors de la cuisson, en raison vraisemblablement de la différence des coefficients de dilatation des deux milieux argile et émail. This study is conducted in a multidisciplinary collaboration between geologists, chemists and industrial ceramics. The results confirm the close ralatioship existing between the composition of clays and quality of the finished ceramic pieces. The obtained specimens, under the same conditions, from two moroccan clays that are different on the chimico-mineralogical point of view, present distinct technological characteristics. The use of well selected mineral adjuvants, contributes to the balancing of raw clays and leads to a marked improvement in the quality of the ceramic product, including a reduction on their firing shrinkage and an increase of flexural strength. Concerning the effect of the manufacturing process, the application of the glaze, turns out to be the cause of bulging tiles during firing, probably because of the difference in thermal

  12. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    Science.gov (United States)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  13. The lack of homogeneity in the product (LHP) in the ceramic tile industry and its impact on the reallocation of inventories; La falta de homogeneidad del producto (FHP) en las empresas ceramicas y su impacto en la reasignacion del inventario

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, F.; Alemany, M. M. E.; Lario, F. C.; Oltra, R. F.

    2011-07-01

    The allocation of the product available- to-promise (ATP) in make-to-stock (MTS) contexts is of the utmost importance as it can influence customer satisfaction and profits of the company. However, a proper initial allocation may become inadequate for several reasons. In these case, it is necessary the reallocation of inventory, which will be more complex the more ambitious goals to achieve with it and increased the amount of information to use. In this regard, it is noteworthy that the lack of homogeneity in the product (LHP), present in different industrial sectors, causes the atomization of the inventory and increases the complexity of the reallocation, difficult to obtain optimal solutions. This paper describes the problems of the LHP, first under a generic perspective and then, particularized to MTS ceramic companies. Subsequently, situations in which a specific allocation of ATP can no longer be appropriate in this context are identified and the reassignment, as a way to search for new valid assignments, is proposed. Finally, through a case study of a ceramic company, the impact of the LHP in each of the situations identified is analyzed, noting that the LHP causes some of these situations and in all of them, complicates the reallocation of inventory to orders. (Authors) 31 refs.

  14. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  15. An adjustable flow restrictor for implantable infusion pumps based on porous ceramics.

    Science.gov (United States)

    Jannsen, Holger; Klein, Stephan; Nestler, Bodo

    2015-08-01

    This paper describes an adjustable flow restrictor for use in gas-driven implantable infusion pumps, which is based on the resistance of a flow through a porous ceramic material. The flow inside the walls of a ceramic tube can be adjusted between 270 nl/min and 1260 nl/min by changing the flow path length in the ceramic over a distance of 14 mm. The long-term stability of the flow restrictor has been analyzed. A drift of -8% from the nominal value was observed, which lies within the required tolerance of ±10% after 30 days. The average time needed to change the flow rate is 40 s. In addition, the maximum adjustment time was 110 s, which also lies within the specification.

  16. Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers

    Science.gov (United States)

    Zhang, Xiaotong; Liu, Jiliang; Chu, Mingjin; Chu, Baojin

    2016-08-01

    Conventional piezoelectric ceramics lose their piezoelectric properties near the Curie temperature (Tc), which limits their application at high temperatures. One approach to resolving this issue is to design flexoelectric piezoelectric composites or piezoelectric metamaterials by exploiting the flexoelectric effect of the ferroelectric materials. In this work, an experimental study on two designs of flexoelectric metamaterials is demonstrated. When a ferroelectric ceramic wafer is placed on a metal ring or has a domed shape, which is produced through the diffusion between two pieces of ferroelectric ceramic of different compositions at high temperatures, an apparent piezoelectric response originating from the flexoelectric effect can be measured under a stress. The apparent piezoelectric response of the materials based on the designs can be sustained well above Tc. This study provides an approach to designing materials for high-temperature electromechanical applications.

  17. Synthesis and properties of MoSi2 based engineering ceramics

    Indian Academy of Sciences (India)

    P Srikari Tantri; Anup K Bhattacharya; Sheela K Ramasesha

    2001-10-01

    Molybdenum disilicide is a high temperature structural ceramic with many attractive properties for engineering applications. Foremost amongst these is its stability in corrosive atmospheres up to about 1600°C. However, there are a few undesirable properties that need to be addressed before it can become a viable material in high temperature applications. Since MoSi2 forms thermodynamically stable composites with both metals and ceramics, many reinforcing materials are incorporated into the matrix to improve the fracture toughness and creep properties. The low temperature oxidation can be controlled by making high density (> 95% of theoretical density) compacts. This article summarizes the important attempts that are made in improving the properties of molybdenum disilicide-based ceramics by the reinforcement with other materials.

  18. Experimental Study on LTCC Glass-Ceramic Based Dual Segment Cylindrical Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Gangwar

    2013-01-01

    Full Text Available The measured characteristics in C/X bands, including material properties of a dual segment cylindrical dielectric resonator antenna (CDRA fabricated from glass-ceramic material based on B2O3–La2O3–MgO glass and La(Mg0.5Ti0.5O3 ceramic, are reported. The sintering characteristic of the ceramic in presence of glass is determined from contact angle measurement and DTA. The return loss and input impedance versus frequency characteristics and radiation patterns of CDRA at its resonant frequency of 6.31 GHz are studied. The measured results for resonant frequency and return loss bandwidth of the CDRA are also compared with corresponding theoretical ones.

  19. Validation of probabilistic fracture models in mullite based ceramics using experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Pascual Cosp, J.; Zapatero Arenzana, J.; Ramirez del Valle, A. [Dpto. de Ingenieria Civil, de Materiales y Fabricacion. E.T.S.I.I. Campus de El Ejido, s/n. Univ. de Malaga. Malaga (Spain); Galiano Serrano, J.C. [Unidad Asociada ' ' Lab. de Materiales y Superficies' ' , Inst. de Ciencia de Materiales, UNSE-CSIC-Univ. de Malaga (Spain)

    2004-07-01

    Mullite based ceramic materials of different types have been obtained using various firing conditions. Strength of ceramics has been measured in four point bending test. Weibull distribution function has been used to characterize statistically the variation of the mechanical strength. A surface flaws mapping is established by scanning electron microscopy and distributions of pore-size, orientation and shape factor are obtained for each sample. A study of strength has been done using Weibull's theory and the surface flaws mapping. (orig.)

  20. Numerical optimization of tungsten monoblock tile in EAST divertor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiahua [Harbin Engineering University, Harbin 150001 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Ding, Fang, E-mail: fding@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Mao, Hongmin; Luo, Guangnan; Hu, Zhenhua; Xu, Feng; Niu, Guojian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-10-15

    Highlights: • A method based on Kriging model and Uniform Design is developed and applied to the geometry optimization of EAST W tile. • An optimized chamfering geometry is obtained and significantly reduces the maximum temperature on W monoblock. • The incident angle of plasma flux has a strong impact on the optimized chamfering geometry. - Abstract: The ITER-like tungsten divertor with toroidally symmetric 1 mm × 1 mm chamfers on monoblock tiles has been installed in EAST in 2014. Hot spots were experimentally observed mostly along the toridial facing gaps between two columns of W/Cu monoblock units, which are often aggravated by installation misalignment. These hot spots can significantly degrade the power handling capability of W divertor and need to be alleviated. A numerical optimization model for tile chamfering design is built based on the finite element method (FEM), in which the numerical experiments are designed by the uniform table. The calculation results in ANSYS for these experiments are then processed employing the code Design and Analysis of Computer Experiments (DACE) in which the Kriging method is adopted to reconstruct a response surface. The optimum geometry can be derived from the minimum point on the surface. The results show that, under 200 MW/m{sup 2} parallel heat flux with an inclination angle of 3° with respect to tile surface, the maximum temperature on W tile with a 0.5 mm misalignment can be decreased to 2084 °C by adopting an optimized single-sided chamfer, 1.8 times lower than 1 mm × 1 mm symmetrically chamfered tile. The optimum chamfering geometry has a strong dependence on the inclination angle of plasma flux to tile surface. As a result, the monoblock tiles in a flat cassette module need to be chamfered differently to adapt to the varied inclination angles.

  1. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic.

    Science.gov (United States)

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-05

    A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr1.32Fe0.19Al0.49O4. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5wt.%), diopside (5.2wt.%), and some amorphous contents (91.2wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr2O3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that the use of affordable additives has potential in more reliably immobilizing COPR with a spinel-based glass-ceramic for safer disposal of this hazardous waste.

  2. DLP-based light engines for additive manufacturing of ceramic parts

    Science.gov (United States)

    Hatzenbichler, M.; Geppert, M.; Gruber, S.; Ipp, E.; Almedal, R.; Stampfl, J.

    2012-03-01

    In the framework of the European research project PHOCAM (http://www.phocam.eu) the involved partners are developing systems and materials for lithography-based additive manufacturing technologies (AMT) which are used for shaping advanced ceramic materials. In this approach a ceramic-filled photosensitive resin is selectively exposed layer by layer. By stacking up the individual layers with a typical layer thickness between 25 and 50μm, a three-dimensional part is built up. After structuring, a solid part consisting of a ceramic filled polymer is obtained. The polymer is afterwards burnt off and in a last step the part is sintered to obtain a fully dense ceramic part. The developed systems are based on selective exposure with DLP projection (Digital Light Processing). A key element of the developed systems is a light engine which uses digital mirror devices (DMD) in combination light emitting diodes (460nm) as light source. In the current setup DMDs with 1920x1080 pixels are used. The use of LEDs in combination with a customized optical projection system ensures a spatial and temporal homogeneity of the intensity at the build platform which is significantly better than with traditionally used light engines. The system has a resolution of 40μm and a build size of 79x43x100mm. It could be shown that this system can fabricate dense ceramic parts with excellent strength. In the case of alumina densities up to 99.6% of the theoretical density were achieved, yielding a biaxial strength of 510MPa. Besides technical ceramics like alumina it is also possible to structure bioceramics, e.g. tricalcium phosphate.

  3. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    Science.gov (United States)

    Greenberg, H. S.

    1994-12-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  4. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    Science.gov (United States)

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated.

  5. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part I. Preparation and characterisation

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, K.; Lippens Jr., B.C.; Gellings, P.J.; Burggraaf, A.J.

    1987-01-01

    A study of the preparative variables in the synthesis of ceramics based on Bi2O3-Er2O3 solid solutions has shown that the best results are obtained with a coprecipitation method. Critical parameters in the synthesis are found to be i) wet milling of the precalcined powder with an appropriate liquid

  6. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part II. Structural and mechanical properties

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, K.; Velde, van de G.M.H.; Vries, de K.J.; Burggraaf, A.J.

    1988-01-01

    Coprecipitation as a method of preparation for bismuth oxides based ceramics yields relatively strong and machineable materials in comparison with the solid state reaction. Compositions within the system (1−x)Bi2O3|xEr2O3 containing up to twenty five mole percent of erbium oxide show a slow transiti

  7. Fluorescence of ceramic color standards.

    Science.gov (United States)

    Koo, Annette; Clare, John F; Nield, Kathryn M; Deadman, Andrew; Usadi, Eric

    2010-04-20

    Fluorescence has been found in color standards available for use in calibration and verification of color measuring instruments. The fluorescence is excited at wavelengths below about 600?nm and emitted above 700?nm, within the response range of silicon photodiodes, but at the edge of the response of most photomultipliers and outside the range commonly scanned in commercial colorimeters. The degree of fluorescence on two of a set of 12 glossy ceramic tiles is enough to introduce significant error when those tiles have been calibrated in one mode of measurement and are used in another. We report the nature of the fluorescence and the implications for color measurement.

  8. Ceramics manufacturing contributes to ambient silica air pollution and burden of lung disease.

    Science.gov (United States)

    Liao, Chung-Min; Wu, Bo-Chun; Cheng, Yi-Hsien; You, Shu-Han; Lin, Yi-Jun; Hsieh, Nan-Hung

    2015-10-01

    Inhalation of silica (SiO2) in occupational exposures can cause pulmonary fibrosis (silicosis), lung function deficits, pulmonary inflammation, and lung cancer. Current risk assessment models, however, cannot fully explain the magnitude of silica-induced pulmonary disease risk. The purpose of this study was to assess human health risk exposed to airborne silica dust in Taiwan ceramics manufacturing. We conducted measurements to characterize workplace-specific airborne silica dust in tile and commodity ceramic factories and used physiologically based alveolar exposure model to estimate exposure dose. We constructed dose-response models for describing relationships between exposure dose and inflammatory responses, by which health risks among workers can be assessed. We found that silica contents were 0.22-33.04 % with mean concentration ranges of 0.11-5.48 and 0.46-1763.30 μg m(-3), respectively, in commodity and tile ceramic factories. We showed that granulation workers in tile ceramic factory had the highest total SiO2 lung burden (∼1000 mg) with cumulative SiO2 lung burden of ∼4 × 10(4) mg-year. The threshold estimates with an effect on human lung inflammation and fibrosis are 407.31 ± 277.10 (mean ± sd) and 505.91 ± 231.69 mg, respectively. For granulation workers, long-term exposure to airborne silica dust for 30-45 years was likely to pose severe adverse health risks of inflammation and fibrosis. We provide integrated assessment algorithms required to implement the analyses and maintain resulting concentration of silica dust at safety threshold level in the hope that they will stimulate further analyses and interpretation. We suggest that decision-makers take action to implement platforms for effective risk management to prevent the related long-term occupational disease in ceramics manufacturing.

  9. Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures.

    Science.gov (United States)

    Wang, Pengfei; Wu, Siyu; Tian, Cheng; Yu, Guimei; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2016-10-11

    Current tile-based DNA self-assembly produces simple repetitive or highly symmetric structures. In the case of 2D lattices, the unit cell often contains only one basic tile because the tiles often are symmetric (in terms of either the backbone or the sequence). In this work, we have applied retrosynthetic analysis to determine the minimal asymmetric units for complex DNA nanostructures. Such analysis guides us to break the intrinsic structural symmetries of the tiles to achieve high structural complexities. This strategy has led to the construction of several DNA nanostructures that are not accessible from conventional symmetric tile designs. Along with previous studies, herein we have established a set of four fundamental rules regarding tile-based assembly. Such rules could serve as guidelines for the design of DNA nanostructures.

  10. Bonding of a mica-based castable ceramic material with a tri-n-butylborane-initiated adhesive resin.

    Science.gov (United States)

    Morikawa, T; Matsumura, H; Atsuta, M

    1996-07-01

    Adhesive bonding of a mica-based castable ceramic material (Olympus Castable Ceramics, OCC) was evaluated in vitro with the use of a silane primer in conjunction with an adhesive luting material. The primer contained a silane coupler and 4-methacryloxyethyl trimellitate anhydride (4-META), while the methyl methacrylate (MMA)-based luting agent was initiated with a tri-n-butylborane derivative (TBB) and contained 4-META (4-META/MMA-TBB resin). Ceramic specimens were sanded with No. 600 silicon carbide paper followed by blasting with alumina and/or etching with ammonium bifluoride. The specimens were bonded with various combinations and shear bond strengths were determined. Both priming and alumina blasting enhanced the bond between 4-META resin and OCC. Although etching with ammonium bifluoride roughened the ceramic surface, this procedure did not improve the bond strength. Electron probe microanalysis of the ceramic surface revealed a decrease in silicon and aluminium elements after etching with ammonium bifluoride.

  11. Decorative 18th Century Blue-and-White Portuguese Tile Panels: A Type-Case of Environmental Degradation

    Directory of Open Access Journals (Sweden)

    Teresa P. Silva

    2013-01-01

    Full Text Available Decorated glazed ceramic tiles are used as an ornamental art, constituting an important cultural heritage whose preservation is mandatory. Environmental conditions are responsible for the degradation of exposed ancient tile panels originating various pathologies, related to the development of microorganisms. This is the case of a valuable 18th century blue-and-white Portuguese tile panel called “Cura do Cego,” belonging to the collection of the National Tile Museum (MNAz, where green stains are nowadays observable in the glaze. A prospective diagnosis of this green tarnishing was the aim of the present work. Small tile fragments were directly irradiated using nondestructive techniques: X-ray fluorescence spectrometry with a wavelength-dispersive system (WDXRF for chemical characterization of the tile glaze and X-ray powder diffraction (XRD to assess the phase constitution of both the glaze and the ceramic body. A destructive technique (scanning electron microscopy with energy-dispersive system (SEM/EDS was applied to tentatively infer the chemical changes induced in the glaze by the green staining and also to characterize the morphology of the microorganisms associated to this staining. The obtained results are reported and discussed, as a preliminary step for testing an innovative nondestructive decontamination technique applying gamma radiation, particularly suitable for overcoming such tile pathologies.

  12. Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges

    Science.gov (United States)

    Díaz Lantada, Andrés; de Blas Romero, Adrián; Schwentenwein, Martin; Jellinek, Christopher; Homa, Johannes

    2016-05-01

    Auxetic metamaterials are known for having a negative Poisson’s ratio (NPR) and for displaying the unexpected properties of lateral expansion when stretched and densification when compressed. Even though a wide set of micro-manufacturing resources have been used for the development of auxetic metamaterials and related devices, additional precision and an extension to other families of materials is needed for their industrial expansion. In addition, their manufacture using ceramic materials is still challenging. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of lithography-based ceramic manufacturing. The process stands out for its precision and complex three-dimensional geometries attainable, without the need of supporting structures, and for enabling the manufacture of ceramic auxetics with their geometry controlled from the design stage with micrometric precision. To our knowledge it represents the first example of application of this technology to the manufacture of auxetic geometries using ceramic materials. We have used a special three-dimensional auxetic design whose remarkable NPR has been previously highlighted.

  13. Do Ca2+-adsorbing ceramics reduce the release of calcium ions from gypsum-based biomaterials?

    Science.gov (United States)

    Belcarz, Anna; Zalewska, Justyna; Pałka, Krzysztof; Hajnos, Mieczysław; Ginalska, Grazyna

    2015-02-01

    Bone implantable materials based on calcium sulfate dihydrate dissolve quickly in tissue liquids and release calcium ions at very high levels. This phenomenon induces temporary toxicity for osteoblasts, may cause local inflammation and delay the healing process. Reduction in the calcium ion release rate by gypsum could be therefore beneficial for the healing of gypsum-filled bone defects. The aim of this study concerned the potential use of calcium phosphate ceramics of various porosities for the reduction of high Ca(2+) ion release from gypsum-based materials. Highly porous ceramics failed to reduce the level of Ca(2+) ions released to the medium in a continuous flow system. However, it succeeded to shorten the period of high calcium level. It was not the phase composition but the high porosity of ceramics that was found crucial for both the shortening of the Ca(2+) release-related toxicity period and intensification of apatite deposition on the composite. Nonporous ceramics was completely ineffective for this purpose and did not show any ability to absorb calcium ions at a significant level. Moreover, according to our observations, complex studies imitating in vivo systems, rather than standard tests, are essential for the proper evaluation of implantable biomaterials.

  14. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    Science.gov (United States)

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-08-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.

  15. Preparation and Characterization of High Temperature Resistant and High Emissivity Multi-Component Coating for Ceramic Insulation Tile%陶瓷隔热瓦耐高温高辐射率涂层的制备及表征

    Institute of Scientific and Technical Information of China (English)

    李伶; 张文苑; 隋学叶; 杨杰; 王开宇; 周长灵

    2016-01-01

    A chopped mullite fiber reinforcedMoSi2-SiC-B2O3·SiO2/MoSi2-SiC-B2O3·SiO2- SiB6 multi-component coating was prepared on the surface of .mullite insulation tile by the slurry method. The composition, microstructure and formation mechanism of the multi- component coating were studied by using XRD, XPS, SEM and EDS analysis. The results show that the main phases in the coating are MoSi2, borosilicate glass and Mo4.8Si3C0.6. The coating shows a dense structure in the surface and a porous structure close to the matrix. Such a microstructure is expected to be of benefit to the improvement of the adhesion strength between the coating and the matrix.%在短切莫来石纤维隔热瓦表面采用浆料喷涂法制备了短切莫来石纤维增韧MoSi2-SiC-B2O3-SiO2/MoSi2-SiC-B2O3-SiO2-SiB6梯度涂层,并利用XRD、XPS、SEM和EDS对涂层的组成、结构及形貌进行了分析,探讨了涂层的形成机理。分析表明涂层主要由MoSi2、硼硅玻璃及少量的Mo4.8Si3C0.6组成。涂层表面及截面的SEM照片表明涂层表层致密,靠近基体部分疏松多孔,部分涂层深入多孔的基体,提高了涂层与基体的结合力。

  16. A new Energy Saving method of manufacturing ceramic products from waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Haun Labs

    2002-07-05

    This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an

  17. Elemental mapping of Moroccan enameled terracotta tile works (Zellij) based on X-ray micro-analyses.

    Science.gov (United States)

    Bendaoud, R; Guilherme, A; Zegzouti, A; Elaatmani, M; Coroado, J; Carvalho, M L; Queralt, I

    2013-12-01

    The purpose of this work is the elemental mapping of enameled terracotta samples (Zellij), produced between the 13th and 20th centuries in Morocco, collected from five different monuments from Marrakech. These pieces were analyzed by two non-destructive micro X-Ray Fluorescence (XRF) spectrometers, aiming to obtain elemental distribution and elemental composition. From the obtained spectra we have identified the main elements present in the tin-opacified lead glaze. The identification of the decoration colors is based on the different ratios between the fluorescence lines of the main component of the glaze (Pb-Lα line) and the fluorescence lines of the main components of the pigment (Co-Kα, Mn-Kα, Ni-Kα,… lines). The semi-quantitative calculations based on these ratios revealed significant differences between modern and ancient samples.

  18. Effect of ceramic thickness and composite bases on stress distribution of inlays--a finite element analysis.

    Science.gov (United States)

    Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso

    2015-01-01

    The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.

  19. Flow through the tile gaps in the Space Shuttle Thermal Protection System

    Science.gov (United States)

    Dwoyer, D. L.; Newman, P. A.; Thames, F. C.; Melson, N. D.

    1982-01-01

    The problem of predicting aerodynamic loads on the insulating tiles of the Space Shuttle Thermal Protection System (TPS) is discussed and seen to require a method for predicting pressure and mass flux in the gaps between tiles. A mathematical model of the tile-gap flow is developed based upon a slow viscous (Stokes) flow analysis and is verified against available experimental data. This model derives the tile-gap pressure field from a solution of the two-dimensional Laplace equation; the mass flux vector is then calculated from the pressure gradient. The means for incorporating this model into a lumped-parameter network analogy for porous-media flow is also given. The flow model shows tile-gap mass flux to be very sensitive to the gap width indicating a need for coupling the TPS flow and tile displacement calculations. Finally recommendations are made concerning additional analytical and experimental work to improve TPS flow predictions.

  20. Numerical study of internal load transfer in metal/ceramic composites based on freeze-cast ceramic preforms and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Sinchuk, Yuriy [Institute of Engineering Mechanics, Karlsruhe Institute of Technology, Kaiserstr. 10, 76131 Karlsruhe (Germany); Roy, Siddhartha, E-mail: siddhartha.roy@kennametal.com [Institute for Applied Materials, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe (Germany); Gibmeier, Jens [Institute for Applied Materials, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe (Germany); Piat, Romana [Institute of Engineering Mechanics, Karlsruhe Institute of Technology, Kaiserstr. 10, 76131 Karlsruhe (Germany); Wanner, Alexander [Institute for Applied Materials, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2013-11-15

    The elastic–plastic deformation and internal load transfer in metal/ceramic composites are studied in this work both numerically and experimentally. The composite was fabricated by squeeze-casting AlSi12 melt in an open porous preform made by freeze-casting and drying of alumina suspension. Such composites exhibit a complex microstructure composed of lamellar domains. Single-domain samples were extracted from bulk material. Uniaxial compression tests were carried out parallel to the direction of the alternating metallic alloy and ceramic lamellae in the plane normal to the direction of freeze-casting. This loading mode is selected as highest load transfer occurs when loaded along the ceramic lamellae. Numerical modeling was done using the finite element method using quasi-3D microstructure based on metallographic 2D section and a modified Voigt homogenization technique assuming plastic behavior of the metallic alloy, absence of any damage and ideal interface between the phases. Internal load transfer mechanism was predicted for composites with different ceramic volume fractions. Results show that at any applied stress, as the ceramic content increases, the phase stress in alumina along the loading direction continuously decreases. Experimental validation of the numerical results is carried out by in-situ compression test along with energy dispersive synchrotron X-ray diffraction in one sample with 41 vol% ceramic. Results show that both the numerical techniques yield similar results, which match well with the experimental measurements. The ratio of the phase stress to the applied stress in alumina reaches a highest value between 2 and 2.5 up to a compressive stress of about 300 MPa. At higher applied stresses both the experimentally determined lattice microstrain and the phase stress along the loading direction in alumina decrease due to the initiation of possible damage. This study shows that the applied economic and more flexible homogenization technique is a

  1. Effects of rare earth addition on sintering process and dielectric property of cordierite based glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    陈国华; 刘心宇

    2004-01-01

    The effects of rare earth oxide on the sintering and dielectric property of cordierite-based glass-ceramics with non-stoichiometric composition prepared by quenching of molten droplets were investigated. The results show that the addition of rare earth oxide can lower the sintering temperature of cordierite glass-ceramics, improve the densification process and obviously reduce sintering activation energy. It is found that the densification of cordieritebased glass-ceramics is a liquid phase sintering process. The dielectric constant of the sintered compacts enhances with the increase of the density. When the sintering temperature is identical, the rare earth addition is found to have a noticeable effect on the dielectric loss of glass-ceramics. The properties of the glass-ceramics containing rare earth oxide appear to be correct for low firing temperature substrates.

  2. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  3. Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors

    Science.gov (United States)

    Yang, Bao; Zhang, Hong; Guo, Jia; Liu, Ya; Li, Zhicheng

    2016-09-01

    The Ti/Y modified CuO-based negative temperature coefficient (NTC) thermistors, Cu0.988-2y Y0.008Ti y O (TYCO; y = 0.01, 0.015, 0.03, 0.05 and 0.07), were synthesized through a wet-chemical method followed by a traditional ceramic sintering technology. The related phase component and electrical properties were investigated. XRD results show that the TYCO ceramics have a monoclinic structure as that of CuO crystal. The TYCO ceramics can be obtained at the sintering temperature 970°C-990°C, and display the typical NTC characteristic. The NTC thermal-sensitive constants of TYCO thermistors can be adjusted from 1112 to 3700 K by changing the amount of Ti in the TYCO ceramics. The analysis of complex impedance spectra revealed that both the bulk effect and grain boundary effect contribute to the electrical behavior and the NTC effect. Both the band conduction and electron-hopping models are proposed for the conduction mechanisms in the TYCO thermistors.

  4. Ceramic Prototypes – Design, Computation, and Digital Fabrication

    Directory of Open Access Journals (Sweden)

    M. Bechthold

    2016-12-01

    Full Text Available Research in ceramic material systems at Harvard University has introduced a range of novel applications which combine digital manufacturing technologies and robotics with imaginative design and engineering methods. Prototypes showcase the new performative qualities of ceramics and the integration of this material in today’s construction culture. Work ranges from daylight control systems to structural applications and a robotic tile placement system. Emphasis is on integrating novel technologies with tried and true manufacturing methods. The paper describes two distinct studies – one on 3D print-ing of ceramics, the other on structural use of large format thin tiles.

  5. Duality properties between spectra and tilings

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Spectra and tilings play an important role in analysis and geometry respectively.The relations between spectra and tilings have bafied the mathematicians for a long time.Many conjectures,such as the Fuglede conjecture,are placed on the establishment of relations between spectra and tilings,although there are no desired results.In the present paper we derive some characteristic properties of spectra and tilings which highlight certain duality properties between them.

  6. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  7. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  8. Life cycle assessment and product category rules for the construction sector. The floor and wall tiles sector case study; Analisis de ciclo de vida y reglas de categoria de producto en la construccion. El caso de las baldosas ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Benveniste, G.; Gazulla, C.; Fullana, P.; Celades, I.; Ros, T.; Zaera, V.; Godes, B.

    2011-07-01

    This paper illustrates the Life Cycle Analysis (LCA) activities performed during the preparation of the Spanish Product Category Rules (PCR) relative to the construction sector. Specifically, the study presents the results obtained from the life cycle analysis of the floor and wall tile sector, which served as the basis for the drafting of the PCR required for the definition of Environmental Product Declarations (EPD). More than 50 Spanish companies in the ceramic tile sector participated in the study, providing inventory data on the manufacture of their products. Additionally, bibliographic information and the GaBi 4 software database by PE International were used to complete background and generic data, such as those related to energy and transportation processes. EPDs are voluntary declarations based on LCA studies that permit the disclosure and dissemination of environmental information quantified over the life cycle of a product. The definition of PCRs for ceramic tiles was performed in accordance to the UNE EN ISO 14025 and ISO 21930 standards and they have been submitted to industries and professional association public consultations. PCRs have been developed in the context of the DAPc program (promoted by the Catalan Government and CAATEEB) and represents the first eco labelling activity for building products in Spain. (Author) 18 refs.

  9. FIBONACCI TILINGS IN FASHION DESIGN

    Directory of Open Access Journals (Sweden)

    KAZLACHEVA Zlatina

    2016-05-01

    Full Text Available The Fibonacci sequence is a symbol of beauty and harmony and by this reason geometrical objects in its proportions are used in the design. There are some versions of Fibonacci series tiling, which are constructed with equilateral geometrical figures – squares or triangles, as the sides’ lengths are equal to the numbers of the Fibonacci series, or the lengths of the sides of the squares or equilateral triangles are each to other in proportions, which are equal to Fibonacci sequence. The paper presents design of ladies’ dresses with the both ways of constructing of Fibonacci tilings with squares, the variants in a spiral pattern and the variant with squares which are put side by side, and the version of Fibonacci tiling with triangles in form of double spiral named Fibonacci rose. Nine models of ladies’ dresses are shown. As a result of the use of Fibonacci tilings for designing of aesthetic, beautiful and harmonic clothing, it can be concluded that in fashion design Fibonacci squares and Fibonacci rose can be used in different ways of color combinations, proportions toward the clothing sizes, and as a frame of creations of design elements. The different position, proportions and color combinations of use of Fibonacci squares and Fibonacci rose in fashion design according to the body type and size can cover some bodily defects and enhance the beautiful forms.

  10. Numerical investigation of the spatial scale and time dependency of tile drainage contribution to stream flow

    Science.gov (United States)

    Thomas, Nicholas W.; Arenas, Antonio A.; Schilling, Keith E.; Weber, Larry J.

    2016-07-01

    Tile drainage systems are pervasive in the Central U.S., significantly altering the hydrologic system. The purpose of this study was to assess the effects of tile drainage systems on streamflow. A physically based coupled hydrologic model was applied to a 45 km2 agricultural Iowa watershed. Tile drainage was incorporated though an equivalent porous medium approach, calibrated though numerical experimentation. Experimental results indicated that a significant increase in hydraulic conductivity of the equivalent medium layer was needed to achieve agreement in total outflow with an explicit numerical representation of a tiled system. Watershed scale analysis derived the tile drainage contribution to stream flow (QT/Q) from a numerical tracer driven analysis of instream surface water. During precipitation events tile drainage represented 30% of stream flow, whereas during intervals between precipitations events, 61% of stream flow originated from the tile system. A division of event and non-event periods produced strong correlations between QT/Q and drainage area, positive for events, and negative for non-events. The addition of precipitation into the system acted to saturate near surface soils, increase lateral soil water movement, and dilute the relatively stable instream tile flow. Increased intensity precipitation translated the QT/Q relationship downward in a consistent manner. In non-event durations, flat upland areas contributed large contributions of tile flow, diluted by larger groundwater (non-tile) contribution to stream flow in the downstream steeper portion of the watershed. Study results provide new insights on the spatiotemporal response of tile drainage to precipitation and contributions of tile drainage to streamflow at a watershed scale, with results having important implications for nitrate transport.

  11. Multilayer Membranes Based on Ceramic Materials—Sol-gel Synthesis, Characterization and Membrane Performance

    Institute of Scientific and Technical Information of China (English)

    Sun Qianyao; Xu Chunming

    2007-01-01

    In nearly all chemical and petrochemical systems, separation of products generally accounts for more than 50% of the capital cost and the greatest part of the energy consumption. It is generally believed that membrane systems can offer benefits in both reducing the energy consumption of the separation stages and lowering the capital expenditure (CAPEX). Microporous ceramic membranes have the potential to overcome the limitation in polymer membranes operation, which has been the subject of a large amount of research worldwide in the last two decades. And most of the research has aimed at the production of the asymmetric multilayered membrane based on amorphous oxides by sol-gel techniques. The paper is to give an overview of publications on ceramic membranes, including less common materials of titania, zirconia, which can be used for pervaporation in corrosive media. Commercially available microporous membranes based on these membrane materials and the membrane economics are also summarized.

  12. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2015-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  13. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter.

  14. Integrated microfluidic devices based on low-temperature co-fired ceramic (LTCC) technology

    OpenAIRE

    Maeder, Thomas; Birol, Hansu; Jacq, Caroline; Ryser, Peter

    2004-01-01

    This paper reviews recent developments in integrated fluidic mesosystems, based on low-temperature co-fired ceramic (LTCC) technology, in this laboratory and elsewhere. LTCC is shown to be an advantageous technique for integrated fluidic systems, due to its simplicity, low cost and ease of integration with other technologies and components (silicon, polymer, circuit boards. Also, the techniques utilized in making the structures are presented.

  15. The influence of {gamma}-irradiation on electrophysical properties of spinel-based oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kovalskiy, A.P.; Shpotyuk, O.I. E-mail: karat@ipm.lviv.ua; Hadzaman, I.V.; Mrooz, O.Ya.; Vakiv, M.M

    2000-05-02

    The influence of {sup 60}Co {gamma}-irradiation with 1.25 MeV average energy and 1 MGy absorbed dose on electrophysical properties of Cu-, Ni-, Co- and Mn-based spinel ceramic materials in the Cu{sub x}Ni{sub 1-x-y}Co{sub 2y}Mn{sub 2-y}O{sub 4} (0,1{<=}x{<=}0,8;0,1{<=}y{<=}0,9-x) system is investigated. The {gamma}-induced increasing of the electrical resistance is observed for the investigated samples of various compositions. It is supposed that these changes are explained by cationic redistribution in the spinel sublattices of the ceramics.

  16. Alumina ceramic based high-temperature performance of wireless passive pressure sensor

    Science.gov (United States)

    Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin

    2016-12-01

    A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.

  17. Alumina ceramic based high-temperature performance of wireless passive pressure sensor

    Science.gov (United States)

    Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin

    2016-07-01

    A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.

  18. Yb:YAG ceramic-based laser driver for Inertial Fusion Energy (IFE)

    Science.gov (United States)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.

    2016-03-01

    We report on a new class of laser amplifiers for inertial confinement fusion (ICF) drivers based on a Yb:YAG ceramic disk in an edge-pumped configuration and cooled by a high-velocity gas flow. The Yb lasant offers very high efficiency and low waste heat. The ceramic host material has a thermal conductivity nearly 15-times higher than the traditionally used glass and it is producible in sizes suitable for a typical 10- to 20-kJ driver beam line. The combination of high lasant efficiency, low waste heat, edge-pumping, and excellent thermal conductivity of the host, enable operation at 10 to 20 Hz at over 20% wall plug efficiency while being comparably smaller and less costly than recently considered face-pumped alternative drivers using Nd:glass, Yb:S-FAP, and cryogenic Yb:YAG. Scalability of the laser driver over a broad range of sizes is presented.

  19. Development of NZP ceramic based {open_quotes}cast-in-place{close_quotes} diesel engine port liners

    Energy Technology Data Exchange (ETDEWEB)

    Nagaswaran, R.; Limaye, S.Y.

    1996-02-01

    BSX (Ba{sub 1+x}Zr{sub 4}P{sub 6-2x}Si{sub 2x}O{sub 24}) and CSX (Ca{sub l-x}Sr{sub x}Zr{sub 4}P{sub 6}O{sub 24}) type NZP ceramics were fabricated and characterized for: (i) thermal properties viz., thermal conductivity, thermal expansion, thermal stability and thermal shock resistance; (ii) mechanical properties viz., flexure strength and elastic modulus; and (iii) microstructures. Results of these tests and analysis indicated that the BS-25 (x=0.25 in BSX) and CS-50 (x=0.50 in CSX) ceramics had the most desirable properties for casting metal with ceramic in place. Finite element analysis (FEA) of metal casting (with ceramic in place) was conducted to analyze thermomechanical stresses generated and determine material property requirements. Actual metal casting trials were also conducted to verify the results of finite element analysis. In initial trials, the ceramic cracked because of the large thermal expansion mismatch (hoop) stresses (predicted by FEA also). A process for introduction of a compliant layer between the metal and ceramic to alleviate such destructive stresses was developed. The compliant layer was successful in preventing cracking of either the ceramic or the metal. In addition to these achievements, pressure slip casting and gel-casting processes for fabrication of NZP components; and acoustic emission and ultrasonics-based NDE techniques for detection of microcracks and internal flaws, respectively, were successfully developed.

  20. Shear Bond Strength of Ceramic Brackets with Different Base Designs: Comparative In-vitro Study

    Science.gov (United States)

    Ansari, Mohd. Younus; Agarwal, Deepak K; Bhattacharya, Preeti; Ansar, Juhi; Bhandari, Ravi

    2016-01-01

    Introduction Knowledge about the Shear Bond Strength (SBS) of ceramic brackets with different base design is essential as it affects bond strength to enamel. Aim The aim of the present study was to evaluate and compare the effect of base designs of different ceramic brackets on SBS, and to determine the fracture site after debonding. Materials and Methods Four groups of ceramic brackets and one group of metal brackets with different base designs were used. Adhesive precoated base of Clarity Advanced (APC Flash-free) (Unitek/3M, Monrovia, California), microcrystalline base of Clarity Advanced (Unitek/3M, Monrovia, California), polymer mesh base of InVu (TP Orthodontics, Inc., La Porte, IN, United States), patented bead ball base of Inspire Ice (Ormco, Glendora, California), and a mechanical mesh base of Gemini Metal bracket (Unitek/3M, Monrovia, California). Ten brackets of each type were bonded to 50 maxillary premolars with Transbond XT (Unitek/3M). Samples were stored in distilled water at room temperature for 24 hours and subsequently tested in shear mode on a universal testing machine (Model 3382; Instron Corp., Canton, Massachusetts, USA) at a cross head speed of 1mm/minute with the help of a chisel. The debonded interface was recorded and analyzed to determine the predominant bond failure site under an optical microscope (Stereomicroscope) at 10X magnification. One way analysis of variance (ANOVA) was used to compare SBS. Tukey’s significant differences tests were used for post-hoc comparisons. The Adhesive Remnant Index (ARI) scores were compared by chi-square test. Results Mean SBS of microcrystalline base (27.26±1.73), was the highest followed by bead ball base (23.45±5.09), adhesive precoated base (20.13±5.20), polymer mesh base (17.54±1.91), and mechanical mesh base (17.50±2.41) the least. Comparing the frequency (%) of ARI Score among the groups, chi-square test showed significantly different ARI scores among the groups (χ2 = 34.07, p<0

  1. MULTIRESOLUTION ANALYSIS, SELF-SIMILAR TILINGS AND HAAR WAVELETS ON THE HEISENBERG GROUP

    Institute of Scientific and Technical Information of China (English)

    Liu Heping; Liu Yu; Wang Haihui

    2009-01-01

    In this article, the properties of multiresolution analysis and self-similar tilings on the Heisenberg group are studied. Moreover, we establish a theory to construct an orthonormal Haar wavelet base in L~2(H~d) by using self-similar tilings for the acceptable dilations on the Heisenberg group.

  2. Microstructure development of a drying tile mortar containing methylhydroxy-ethylcellulose (MHEC)

    NARCIS (Netherlands)

    Faiyas, A.P.A.; Erich, S.J.F.; Nijland, T.G.; Hunnink, H.P.; Adan, O.C.G.

    2015-01-01

    Cement based mortars are widely used as adhesive for tiles in building and construction. They have a limited timespan during which a tile can be placed effectively in order to develop sufficient bond strength. This timespan, usually called ’open time’, is controlled, amongst others, by adding water

  3. Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites.

    Science.gov (United States)

    Palmero, Paola; Kern, Frank; Sommer, Frank; Lombardi, Mariangela; Gadow, Rainer; Montanaro, Laura

    2014-12-30

    Ceramic nanocomposites, containing at least one phase in the nanometric dimension, have received special interest in recent years. They have, in fact, demonstrated increased performance, reliability and lifetime with respect to monolithic ceramics. However, a successful approach to the production of tailored composite nanostructures requires the development of innovative concepts at each step of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering.This review aims to deepen understanding of some of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on alumina-based composite systems. Two case studies are presented and briefly discussed. The former illustrates the benefits, in terms of sintered microstructure and related mechanical properties, resulting from the application of an engineering approach to a laboratory-scale protocol for the elaboration of nanocomposites in the system alumina-ZrO2-YAG (yttrium aluminium garnet). The latter illustrates the manufacturing of alumina-based composites for large-scale applications such as cutting tools, carried out by an injection molding process. The need for an engineering approach to be applied in all processing steps is demonstrated also in this second case study, where a tailored manufacturing process is required to obtain the desired results.

  4. Characterization of Waste Material Derived Willemite-Based Glass-Ceramics Doped with Erbium

    Directory of Open Access Journals (Sweden)

    G. V. Sarrigani

    2015-01-01

    Full Text Available We reported, for the first time, to the best of our knowledge, the production of erbium doped willemite-based glass-ceramic using waste material. In this work, a willemite-based glass-ceramic was prepared from waste material to obtain excellent crystallinity and then doped with trivalent erbium (Er3+ to yield ([(ZnO0.5(SLS0.5]1−x[Er2O3]x final composition where x=3 wt%. The samples were sintered at various temperatures (500–1100°C to study the effects of sintering temperatures on microstructure and physical properties of the samples. X-ray diffraction (XRD and Fourier transform infrared (FTIR were used to determine structural changes and functional groups in the samples, respectively. Field-emission scanning electron microscopy (FE-SEM equipped with energy dispersive X-ray was used to observe surface morphology and to detect presence of elements in the samples. Findings showed that average grain size of the Er3+ doped glass-ceramic sample increased as a function of the sintering temperature and the optimum temperature was 900°C.

  5. The Level-1 Tile-Muon Trigger in the Tile Calorimeter upgrade program

    Science.gov (United States)

    Ryzhov, A.

    2016-12-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers due to slow charged particles (typically protons) without degrading the efficiency of the trigger. The main activity of the Tile-Muon Trigger in the ATLAS Phase-0 upgrade program was to install and to activate the TileCal signal processor module for providing trigger inputs to the Level-1 Muon Trigger. This report describes the Tile-Muon Trigger, focusing on the new detector electronics such as the Tile Muon Digitizer Board (TMDB) that receives, digitizes and then provides the signal from eight TileCal modules to three Level-1 muon endcap Sector-Logic Boards.

  6. Mechanical properties of microwave sintered Si3N4-based ceramics

    Directory of Open Access Journals (Sweden)

    Getman O.I.

    2002-01-01

    Full Text Available The mechanical properties and microstructure formation processes in Si3N4+3% AI2O3+5% Y2O3(Yb2O3 ceramic compacts sintered under microwave heating (MWH and under traditional heating (TH were investigated. The initial ceramic materials were powder blends of silicon nitride with oxides. The mean powder particle sizes were 0.5-1.0 mim. The content of alfa-phase in the Si3N4 powder was more than 95 %. The samples were sintered at 1800BC in nitrogen at normal pressure, the heating rate in all experiments was 60BC/min. The Vickers hardness (HV, fracture toughness (K1C and bending strength (on were determined. The microstructures of fracture surfaces of samples were studied by SEM. Quantitative microstructure analysis was carried out. It was shown that the values of HV and Kic of ceramic samples sintered under MWH at 1800BC rose steadily with the sintering time. This caused an increase in density, which reached maximum as fast as after 30 min of the MWH sintering; the mass loss at that time amounted to 3-4 %. The porosity of sintered samples with an addition of yttria was less than 1 %, that of ytterbia was greater, 2.4 %. For similar values of relative density, the hardness and fracture toughness of ceramic samples produced under MWH were higher as compared with those of samples sintered under TH. The microstructure of samples had the form of elongated grains in a matrix of polyhedral grains of the beta-Si3N4 phase. Measurements showed the mean size of grains in samples produced by MWH to be greater that in samples produced by TH. A larger number of elongated grains were formed. It was concluded that for sintering under MWH of Si3N4-based ceramics the growth of elongated beta-Si3N4 grains and formation of a "reinforced" microstructure were promoted and thereby improved the mechanical properties of such ceramics.

  7. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders

    Energy Technology Data Exchange (ETDEWEB)

    Khattab, R.M. [Refractories, Ceramics and Building Materials Dept., National Research Centre, Dokki, 12622 Giza (Egypt); Wahsh, M.M.S., E-mail: mmswahsh@yahoo.com [Refractories, Ceramics and Building Materials Dept., National Research Centre, Dokki, 12622 Giza (Egypt); Khalil, N.M. [Refractories, Ceramics and Building Materials Dept., National Research Centre, Dokki, 12622 Giza (Egypt); Department of Chemistry, Faculty of Sciences and Arts, Khulais, University of Jeddah (Saudi Arabia)

    2015-09-15

    According to the wide applications in the field of chemical and engineering industries, forsterite (Mg{sub 2}SiO{sub 4})/spinel (MgAl{sub 2}O{sub 4}) ceramic compositions were the matter of interest of several research works during the last three decades. This work aims at preparation and characterization of improved ceramic bodies based on forsterite and spinel nano powders through controlling the forsterite and spinel contents in the prepared mixes. These prepared ceramic compositions have been investigated through measuring the densification parameters, cold crushing strength as well as volume resistively. Nano spinel was added from 0 to 30 mass% on expense of nano forsterite matrix and fired at 1550 °C for 2 h. The phase composition of the fired samples was examined using x-ray diffraction (XRD) technique. The microstructure of some selected samples was shown using scanning electron microscope (SEM). A pronounced improvement in the sintering, mechanical properties and volume resistively were achieved with increasing of nano spinel addition up to 15 mass%. This is due to the improvement in the matrix of the prepared forsterite/spinel bodies as a result of well distribution of spinel in the forsterite matrix as depicted by SEM analysis. - Highlights: • Ceramic compositions based on nano forsterite/nano-MgAl{sub 2}O{sub 4} spinel were synthesized. • CCS was improved (333.78 MPa) through 15 mass% of nano-MgAl{sub 2}O{sub 4} spinel addition. • Volume resistivity was enhanced to 203*10{sup 13} Ohm cm with 15 mass% of spinel addition. • Beyond 15 mass% spinel, CCS and volume resistivity were decreased.

  8. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.

    Science.gov (United States)

    Souza, A E; Teixeira, S R; Santos, G T A; Costa, F B; Longo, E

    2011-10-01

    Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 °C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 °C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible.

  9. Damage formation, fatigue behavior and strength properties of ZrO2-based ceramics

    Science.gov (United States)

    Kozulin, A. A.; Narikovich, A. S.; Kulkov, S. N.; Leitsin, V. N.; Kulkov, S. S.

    2016-08-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91-0.98, 0.8-0.83, and 0.73-0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 105 stress cycles is in the range 33-34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  10. Research on Micro-Flow Self-Sensing Actuators Based on Piezoelectric Ceramic Stack

    Institute of Scientific and Technical Information of China (English)

    Yan-Bo Wei; Li-Ping Shi; Xi-Wen Wei; Jie Huang

    2014-01-01

    The paper is concerned with the micro-flow self-sensing actuators, the work of which is based on the secondary piezoelectric effect. The piezoelectric ceramic stack can yield micro-displacement due to its first inverse piezoelectric effect. Therefore, we apply this micro-displacement to cell micro-flow injection. Moreover, due to the charge of the secondary direct piezoelectric effect, the piezoelectric ceramic stack is able to detect the force and displacement in the injection by itself. The experiments of first inverse piezoelectric effect and secondary direct piezoelectric effect are conducted. The experiment results show that, subjected to 0-60 V input, the piezoelectric ceramic stack can generate 13�45 μm displacement, and control accuracy can achieve 2 nm. It can completely meet the needs of cell micro-flow injection. Also, the experiments demonstrate that the micro-displacement due to the first inverse piezoelectric effect can be well self-sensed by the electric charge due to the secondary direct piezoelectric effect.

  11. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  12. Residual Stress Analysis of Ceramic Thermal Barrier Coating Based on Thermal Spray Process

    Science.gov (United States)

    Arai, Masayuki; Wada, Eiji; Kishimoto, Kikuo

    Residual stress is generated in ceramic thermal barrier coatings (TBCs), which were sprayed by a plasma spray technology, due to the difference in coefficients of thermal expansion between the coating and the substrate. Previous experimental results obtained by the X-ray diffraction method indicated that the residual stress at the ceramic coating surface is tensile and could lead to TBC failure such as cracking and spalling of the ceramic coating. In this study, a numerical model that can predict the residual stress exactly is proposed by taking into account a thermal spray process. This numerical model is a layer-buildup model based on a shear-lag theory, and the residual stress contribution comes from two kinds of the following stress components: (1) quenching stress, which was generated in molten spray particles impinged onto the substrate, and (2) thermal stress, which was generated due to differences in thermal expansion between the deposited particle and the underlying substrate. It is shown herein that residual stress predicted by the proposed numerical model coincided with the experimental one obtained by the strain gage technique, with a good level of accuracy.

  13. Tricalcium phosphate based resorbable ceramics: Influence of NaF and CaO addition

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary; Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Bose, Susmita [W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States)], E-mail: sbose@wsu.edu

    2008-01-10

    Resorbable bioceramics have gained much attention due to their time-varying mechanical properties in-vivo. Implanted ceramics degrade allowing bone in-growth and eventual replacement of the artificial material with natural tissue. Calcium phosphate based materials have caught the most significant attention because of their excellent biocompatibility and compositional similarities to natural bone. Doping these ceramics with various metal ions has significantly influenced their properties. In this study, tricalcium phosphate (TCP) compacts were fabricated via uniaxial compression with five compositions: (i) pure TCP, (ii) TCP with 2.0 wt.% NaF, (iii) TCP with 3.0 wt.% CaO, (iv) TCP with a binary of 2.0 wt.% NaF and 0.5 wt.% Ag{sub 2}O, and (v) TCP with a quaternary of 1.0 wt.% TiO{sub 2}, 0.5 wt.% Ag{sub 2}O, 2.0 wt.% NaF, and 3.0 wt.% CaO. These compacts were sintered at 1250 deg. C for 4 h to obtain dense ceramic structures. Phase analyses were carried out using X-ray diffraction. The presence of NaF in TCP improved densification and increased compression strength from 70 ({+-} 25) to 130 ({+-} 40) MPa. Addition of CaO had no influence on density or strength. Human osteoblast cell growth behavior was studied using an osteoprecursor cell line (OPC 1) to assure that the biocompatibility of these ceramics was not altered due to the dopants. For long-term biodegradation studies, density, weight change, surface microstructure, and uniaxial compression strength were measured as a function of time in a simulated body fluid (SBF). Weight gain in SBF correlated strongly with precipitation viewed in the inter-connected pores of the samples. After 3 months in SBF, all samples displayed a reduction in strength. NaF, CaO and the quaternary compositions maintained the most steady strength loss under SBF.

  14. Tile Calorimete Pre-Assembly Summary and Barrel Assembly Plan

    CERN Document Server

    Proudfoot, J; Liablin, M V; Topilin, N D

    2004-01-01

    The barrel survey results from the pre-assembly in Building 185 are reviewed. From these and the models developed to calculate the cylinder geometry we propose a minimal modification to the shimming plan for the barrel calorimeter assembly in the Atlas cavern. At the precision of this calculation, we expect the tile calorimeter to be almost entirely within it design envelope. The focus of this note is the radial envelope. Based on the pre-assembly experience the tile calorimeter will fit comfortably within its envelope along the beam line.

  15. Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety

    Science.gov (United States)

    Jung, Yun-Chae; Kim, Seul-Ki; Kim, Moon-Sung; Lee, Jeong-Hye; Han, Man-Seok; Kim, Duck-Hyun; Shin, Woo-Cheol; Ue, Makoto; Kim, Dong-Won

    2015-10-01

    Flexible ceramic separators based on Li+-conducting lithium lanthanum zirconium oxide are prepared as thin films and directly applied onto negative electrode to produce a separator-electrode assembly with good interfacial adhesion and low interfacial resistances. The ceramic separators show an excellent thermal stability and high ionic conductivity as compared to conventional polypropylene separator. The lithium-ion batteries assembled with graphite negative electrode, Li+-conducting ceramic separator and LiCoO2 positive electrode exhibit good cycling performance in terms of discharge capacity, capacity retention and rate capability. It is also demonstrated that the use of a ceramic separator can greatly improve safety over cells employing a polypropylene separator, which is highly desirable for lithium-ion batteries with enhanced safety.

  16. Electrical Response of Cement-Based Piezoelectric Ceramic Composites under Mechanical Loadings

    Directory of Open Access Journals (Sweden)

    Biqin Dong

    2011-01-01

    Full Text Available Electrical responses of cement-based piezoelectric ceramic composites under mechanical loadings are studied. A simple high order model is presented to explain the nonlinear phenomena, which is found in the electrical response of the composites under large mechanical loadings. For general situation, this nonlinear piezoelectric effect is quite small, and the composite is suitable for dynamic mechanical sensor as holding high static stability. The experimental results are consistent with the relationship quite well. The study shows that cement-based piezoelectric composite is suitable for potential application as dynamic mechanical sensor with excellent dynamic response and high static stability.

  17. Study of the adherence between polymer-modified mortars and porcelain stoneware tiles

    Directory of Open Access Journals (Sweden)

    Alessandra Etuko Feuzicana de Souza Almeida

    2005-09-01

    Full Text Available Despite the excellent characteristics of porcelain tiles, their application on building facades requires special attention, since this material differs from conventional ceramics and because facades are exposed to weathering that can damage ceramic revetments. The combination of polymer and silica fume to produce mortars results in excellent properties, which are ideal for repairs and revetments requiring high performance. Such improvements justify its study for the installation of porcelain tiles. This article presents bond strength results for mortars containing different amounts of polymer and silica indicating the applicability of these mortars as a construction material. To complement this study, the interface between the porcelain and the mortars was analyzed by scanning electron microscopy (SEM.

  18. Desempenho de telhas de escória de alto forno e fibras vegetais em protótipos de galpões Performance of tiles composed of blast furnace slag and vegetable fiber in prototype barns

    Directory of Open Access Journals (Sweden)

    Maristela N. da Conceição

    2008-10-01

    Full Text Available Busca-se, em todo o mundo, a substituição do cimento amianto por alternativas seguras para o ambiente e para a saúde do trabalhador, além de econômicas, razão por que o uso de fibras vegetais como aglomerado em países tropicais onde estes resíduos são abundantes, tem-se mostrado bastante viável. No presente experimento foram comparadas telhas de cimento amianto pintadas com tinta reflexiva, telhas cerâmicas e telhas compostas de uma matriz à base de cimento Portland CPII 32Z (ABNT NBR-5735, escória de alto-forno (EAF e sílica ativa, reforçadas com fibras de polpa celulósica de sisal (Agave sisalana. Utilizaram-se protótipos de galpões avícolas nos quais o calor produzido pelas aves foi simulado por lâmpadas incandescentes. Para caracterização do ambiente térmico lançou-se mão dos índices de conforto: ITU (índice de temperatura e umidade, ITGU (índice de temperatura de globo e umidade, CTR (carga térmica radiante e entalpia (H em que os resultados demonstraram que as telhas compostas apresentaram comportamento térmico semelhante ao das telhas cerâmicas, podendo ser utilizadas em substituição às telhas de cimento amianto.The substitution of cement asbestos by safer and equally economical alternatives has being searched for throughout the world. The usage of vegetal staple fiber as agglomerate in tropical countries where these residues are abundant has shown it self to be viable. In this study, roofing tiles fabricated with cement base Portland CPII 32Z (ABNT NBR-5735, blast furnace slag (EAF, active silica reinforced with cellulose pulp staple fibers of sisal (Agave sisalana were compared with cement asbestos roofing tiles with white paint and ceramic roofing tiles. Prototypes of poultry facilities were used and lamps simulated the heat produced by the birds. Indices ITU, ITGU, CTR and entalpy (H were employed for the characterization of the thermal atmospheric comfort and the results showed that the alternative

  19. Flexible and efficient genome tiling design with penalized uniqueness score

    Directory of Open Access Journals (Sweden)

    Du Yang

    2012-12-01

    Full Text Available Abstract Background As a powerful tool in whole genome analysis, tiling array has been widely used in the answering of many genomic questions. Now it could also serve as a capture device for the library preparation in the popular high throughput sequencing experiments. Thus, a flexible and efficient tiling array design approach is still needed and could assist in various types and scales of transcriptomic experiment. Results In this paper, we address issues and challenges in designing probes suitable for tiling array applications and targeted sequencing. In particular, we define the penalized uniqueness score, which serves as a controlling criterion to eliminate potential cross-hybridization, and a flexible tiling array design pipeline. Unlike BLAST or simple suffix array based methods, computing and using our uniqueness measurement can be more efficient for large scale design and require less memory. The parameters provided could assist in various types of genomic tiling task. In addition, using both commercial array data and experiment data we show, unlike previously claimed, that palindromic sequence exhibiting relatively lower uniqueness. Conclusions Our proposed penalized uniqueness score could serve as a better indicator for cross hybridization with higher sensitivity and specificity, giving more control of expected array quality. The flexible tiling design algorithm incorporating the penalized uniqueness score was shown to give higher coverage and resolution. The package to calculate the penalized uniqueness score and the described probe selection algorithm are implemented as a Perl program, which is freely available at http://www1.fbn-dummerstorf.de/en/forschung/fbs/fb3/paper/2012-yang-1/OTAD.v1.1.tar.gz.

  20. Densification and Thermal Properties of Zirconium Diboride Based Ceramics

    Science.gov (United States)

    2012-01-01

    ZrB2 powder was added to that solution, with stirring, for complete dispersion. After dispersion, the solvent was extracted by rotary evaporation...sintering was reported to occur at 2150°C.18 With additives like carbon, boron carbide, or molybdenum disilicide that react with and remove oxygen...attrition milled ZrB2 was ~5 wt% based on total batch weight. The solvent was removed by rotary evaporation. Particle sizes were measured by laser

  1. Optical properties of the new TileCal scintillating tiles. Comparison with 1999 production.

    CERN Document Server

    Zenine, A

    2000-01-01

    A few samples of the scintillating tiles made of BASF polystyrol for ATLAS Tile Calorimeter have been measured with a radioactive source. The results are represented in comparison with the first 1999 year batch produced of PSM-115 polystyrene.

  2. Analysis of gap heating due to stepped tiles in the shuttle thermal protection system

    Science.gov (United States)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Carlson, A. B.

    1983-01-01

    Analytical methods used to investigate entry gap heating in the Shuttle orbiter thermal protection system are described. Analytical results are given for a fuselage lower-surface location and a wing lower-surface location. These are locations where excessive gap heating occurred on the first flight of the Shuttle. The results of a study to determine the effectiveness of a half-height ceramic fiber gap filler in preventing hot-gas flow in the tile gaps are also given.

  3. Heart-pulse Biofeedback in Playful Exercise using a Wearable device and Modular Interactive Tiles

    DEFF Research Database (Denmark)

    Shimokakimoto, Tomoya; Lund, Henrik Hautop; Suzuki, Kenji

    2014-01-01

    interactive tiles. The system consists of a wearable device that measures heart-pulse via ear-mounted sensor, and modular interactive tiles which are used for physical rehabilitation exercise through playing a game. The wearable devise enables detection of heart pulse in real-time and therefore provides heart...... beat rate during playful activities, even if the heart pulse wave have motion artifacts. The tiles are designed to build flexible structures and to provide immediate feedback based on the users’ physical interaction with the tiles. We combine the two systems to provide users with heart pulse...... biofeedback in playful exercise. We show that using the developed system it is possible for the users to regulate the exercise intensity on their own with biofeedback, and also possible to analyze exercise activity using number of steps on the tiles and heart beat rate....

  4. Compaction behavior of dry granulated red wall tile paste prepared using raw materials from Rio de Janeiro State Comportamento de compactação de massa de revestimento poroso base vermelha granulada a seco preparada com matérias-primas do estado do Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    S. J. G. Sousa

    2011-03-01

    Full Text Available This work presents the results of a study about on the compaction behavior of a dry granulated red wall tile paste. The ceramic paste was formulated using raw materials of the Rio de Janeiro state. The raw materials were dry-ground and then microgranulated using a mixer of high intensity. The produced powder was characterized regarding X-ray diffraction, chemical composition, granule size analysis and morphology. The moisture content of the granulated powder (moisture mass/dry mass varied between 0 and 10%. The granulated powder with different moisture contents was submitted to cold compaction process using a uniaxial die-pressing technique with compaction pressure up to 60 MPa. The compaction behavior of the wall tile powder was evaluated through compaction response and compaction rate diagrams. The development of the microstructure during compaction process was followed by scanning electron microscopy. The experimental results show that the green density of the tile compacts behaves as a function of moisture content. It was also found that the compaction process is ruled, at the applied pressure range, by two dominant mechanisms including granule rearrangement and plastic deformation. The rate of densification is high initially, but then decreases rapidly for pressures above apparent yield pressure (2.44 - 5.38 MPa. In addition, the better compaction efficiency was found to be influenced by the moisture content.Este trabalho apresenta os resultados de um estudo sobre o comportamento de compactação de uma massa de revestimento cerâmico poroso base vermelha granulada pelo processo via seca. A massa cerâmica foi formulada usando matérias-primas do estado do Rio de Janeiro. As matérias-primas foram moídas a seco e em seguida microgranuladas usando um microgranulador de alta intensidade. O pó obtido foi caracterizado em termos de difração de raios X, composição química, análise de tamanho de grânulos e morfologia. O conteúdo de

  5. Phase transition and piezoelectric properties of Nd3+ doped nonstoichiometric (K,Na)NbO3-based lead free ceramics

    Science.gov (United States)

    Xing, Jie; Tan, Zhi; Jiang, Laiming; Wu, Yangjie; Yue, Yang; Chen, Qiang; Wu, Jiagang; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2017-01-01

    0.968[(K0.48Na0.52)]1-3xNdxNb0.95+ySb0.05O3-0.032(Bi0.5Na0.5)ZrO3[KNNdxNb0.95+yS-BNZ] lead-free piezoelectric ceramics were prepared via conventional solid state technique for improving the piezoelectric properties. The influences of Nd3+ with excess Nb5+ on the phase structure, electrical properties, and temperature stability were investigated systematically. The rhombohedral-tetragonal phase boundary was observed in the ceramics with 0.001 ≤ x ≤ 0.004, y ≥ 0.01 at room temperature. Rietveld refinement is performed to explore the phase evolution in ceramics. There is a piezoelectric property enhancement in the ceramic with x = 0.001 y = 0.01: d33 = 414 pC/N, kp ˜ 48%, and TC ˜ 227 °C. All results suggest that KNNdxNb0.95+yS-BNZ ceramics developed in this study are expected to be suitable substitutes for lead-based ceramics.

  6. FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna

    2016-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  7. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu

    2015-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  8. Microstructural and Electrical Characterization of Barium Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition

    Science.gov (United States)

    2003-04-03

    Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition DISTRIBUTION: Approved for public...Society H2.4 Microstructural and Electrical Characterization of Barium Strontium Titanate- based Solid Solution Thin Films Deposited on Ceramic...investigated and report the microstructural and electrical characterization of selected barium strontium titanate-based solid solution thin films

  9. Electrical resistivity of NiFe2O4 ceramic and NiFe2O4 based cermets

    Institute of Scientific and Technical Information of China (English)

    田忠良; 赖延清; 李劼; 张刚; 刘业翔

    2004-01-01

    NiFe2O4 ceramic and NiFe2O4 based cermets, expected to be used as the inert anodes in aluminum electrolysis, were prepared and their electrical resistivities were measured at different temperatures. The effects of temperature and composition on their electrical resistivities were investigated. The results indicate that the electrical resistivities of NiFe2O4 based cermets mainly depend on temperature, resistivity of ceramic matrix, composition and dispersion of the metal phase among ceramic matrix. The electrical resistivity of NiFe2O4 ceramic decreases from 10. 094 Ω · cm to 0. 475 Ω · em with increasing temperature from 573 K to 1 233 K. The electrical resistivities of NiFe2O4 based cermets are greatly lowered, but decrease with increasing the temperature with similar trend compared to that of NiFe2O4 ceramic. The resistivities of NiFe2O4 based cermets containing 5 % Ni, 5 % Cu and 5 % CuNi alloy are 0. 046 8, 0.066 8 and 0. 0532 Ω · cm at 1 233 K, respectively, which are all acceptable as inert anode materials compared to that of the current carbon anode used for aluminum electrolysis.

  10. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  11. Beryllium coating on Inconel tiles

    Energy Technology Data Exchange (ETDEWEB)

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M. [Association EURATOM-MEC Romania, National Institute of Laser, Plasma and Radiation Physics, Bucharest (Romania); Rubel, M. [Alfven Laboratory, Royal Institute of Technology, Stockholm (Sweden); Coad, J.P. [Culham Science Centre, EURATOM-UKAEA Fusion Association, Abingdon, OX, Oxon (United Kingdom); Matthews, G.; Pedrick, L.; Handley, R. [UKAEA Fusion, Association Euratom-UKAEA, Culham Science and Engineering Centre, OX 3DB ABINGDON, Oxon (United Kingdom)

    2007-07-01

    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 {mu}m of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  12. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser

    Science.gov (United States)

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-03-01

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.

  13. Análise da expansão por umidade e absorção de água de pisos cerâmicos comerciais em relação à composição química e à quantidade estimada de fase vítrea Analysis of moisture expansion and water absorption of commercial ceramic tiles in relation with chemical composition and estimated glassy phase content

    Directory of Open Access Journals (Sweden)

    R. R. Menezes

    2003-04-01

    Full Text Available Expansão por umidade (EPU é o aumento das dimensões do corpo cerâmico devido à adsorção de água, podendo ter grande influência na vida útil dos materiais cerâmicos. Este trabalho tem por objetivo relacionar a EPU e a absorção de água de pisos cerâmicos comerciais, com a sua composição química e a quantidade estimada de fase vítrea, calculada utilizando-se o diagrama de equilíbrio de fases do sistema SiO2.Al2O3.K2 O e a regra da alavanca. Foram estudadas amostras de vinte e três tipos de pisos cerâmicos comerciais. Foi realizada a análise química das amostras (via úmida e determinada a sua EPU e absorção de água (ensaios realizados de acordo com a norma Brasileira NBR 13818. Foi também determinada a área superficial específica de algumas amostras por adsorção de nitrogênio (BET. Os resultados obtidos mostram genericamente uma proporcionalidade inversa entre a EPU e a absorção de água, para a maioria das amostras, e a análise utilizando o diagrama de fases sugere uma relação decrescente entre a absorção de água e a quantidade estimada de fase vítrea, e uma relação crescente entre a EPU e a quantidade estimada de fase vítrea.Moisture expansion is the size increase of the ceramic body due to water adsorption and can have a great influence in the ceramic material service life. This work aims to relate the moisture expansion and water absorption of commercial ceramic tiles with their chemical composition and estimated glassy phase content, calculated from the phase equilibrium diagram of the system SiO2.Al2O3.K2 O using the lever rule. Samples of twenty three commercial ceramic tiles were studied. The chemical composition of the samples was obtained (wet route and their moisture expansion and water absorption were determined (according to the Brazilian standard NBR 13818. The specific surface area of some samples was also determined, using the nitrogen adsorption methodology (BET. The results obtained

  14. Ferroelectromagnetic solid solutions on the base piezoelectric ceramic materials for components of micromechatronics

    Science.gov (United States)

    Bochenek, Dariusz; Zachariasz, Radosław; Niemiec, Przemysław; Ilczuk, Jan; Bartkowska, Joanna; Brzezińska, Dagmara

    2016-10-01

    In the presented work, a ferroelectromagnetic solid solutions based on PZT and ferrite powders have been obtained. The main aim of combination of ferroelectric and magnetic powders was to obtain material showing both electric and magnetic properties. Ferroelectric ceramic powder (in amount of 90%) was based on the doped PZT type solid solution while magnetic component was nickel-zinc ferrite Ni1-xZnxFe2O4 (in amount of 10%). The synthesis of components of ferroelectromagnetic solid solutions was performed using the solid phase sintering. Final densification of synthesized powder has been done using free sintering. The aim of the work was to obtain and examine in the first multicomponent PZT type ceramics admixed with chromium with the following chemical composition Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3 and next ferroelectromagnetic solid solution based on a PZT type ferroelectric powder (Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3) and nickel-zinc ferrite (Ni0.64Zn0.36Fe2O4), from the point of view of their mechanical and electric properties, such as: electric permittivity, ε; dielectric loss, tanδ; mechanical losses, Q-1; and Young modulus, E.

  15. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  16. 硅基陶瓷型芯的研究进展%Research Progress of Silica-Base Ceramic Core

    Institute of Scientific and Technical Information of China (English)

    潘继勇; 刘孝福; 何立明; 郭新力; 刘东辉; 李长春

    2012-01-01

    硅基陶瓷型芯广泛用于1 550℃以下的Ni、Co基高温合金的精密铸造.综述了硅基陶瓷型芯的研究现状.重点介绍了影响硅基陶瓷型芯的主要因素:方石英含量、矿化剂、粉料粒度、烧成温度,并对脱芯工艺进行了阐述.%Silica-base ceramic core is widely used in the investment casting of Ni- and Co-base superalloys below 1 550 ℃. The research status of silica-base ceramic core was reviewed in this paper. Key factors influencing the properties of the ceramic core, such as cristobalite content, mineralizer, granularity and sintering temperature, were presented. Core removal process was also introduced.

  17. Garuda: a scalable tiled display wall using commodity PCs.

    Science.gov (United States)

    Nirnimesh; Harish, Pawan; Narayanan, P J

    2007-01-01

    Cluster-based tiled display walls can provide cost-effective and scalable displays with high resolution and a large display area. The software to drive them needs to scale too if arbitrarily large displays are to be built. Chromium is a popular software API used to construct such displays. Chromium transparently renders any OpenGL application to a tiled display by partitioning and sending individual OpenGL primitives to each client per frame. Visualization applications often deal with massive geometric data with millions of primitives. Transmitting them every frame results in huge network requirements that adversely affect the scalability of the system. In this paper, we present Garuda, a client-server-based display wall framework that uses off-the-shelf hardware and a standard network. Garuda is scalable to large tile configurations and massive environments. It can transparently render any application built using the Open Scene Graph (OSG) API to a tiled display without any modification by the user. The Garuda server uses an object-based scene structure represented using a scene graph. The server determines the objects visible to each display tile using a novel adaptive algorithm that culls the scene graph to a hierarchy of frustums. Required parts of the scene graph are transmitted to the clients, which cache them to exploit the interframe redundancy. A multicast-based protocol is used to transmit the geometry to exploit the spatial redundancy present in tiled display systems. A geometry push philosophy from the server helps keep the clients in sync with one another. Neither the server nor a client needs to render the entire scene, making the system suitable for interactive rendering of massive models. Transparent rendering is achieved by intercepting the cull, draw, and swap functions of OSG and replacing them with our own. We demonstrate the performance and scalability of the Garuda system for different configurations of display wall. We also show that the

  18. 拼铺法快速合成大规模植物分布%Tile-Based Rapid Authoring of Large-scale Plants

    Institute of Scientific and Technical Information of China (English)

    林琳; 杨刚; 杨猛

    2015-01-01

    为了在构建大规模森林场景时快速而有效地在森林区域内分布大量的植物,提出一种基于Poisson disk tiles模型,通过样本块拼铺的方式快速合成大面积植物分布的方法。在样本集生成阶段,采用一种角匹配的方式,并配合Relaxation dart throwing算法来生成植物分布的样本块集合,从而克服了传统方法中的圆盘越界问题和顶角问题;在合成阶段,按照角匹配的方式,并采用直接随机拼铺的模式来快速合成视域范围内的植物分布,可满足大规模植被场景的实时合成与漫游要求。此外,提出一种合成植物多密度变化、多物种混合分布的方法,其采用一种分离策略,通过从高密度样本块中分离提取一部分样本点来生成多密度等级及多物种等级的子样本块集;根据所合成地区的密度信息和物种信息来选取合适的样本块集进行拼铺,从而合成带有密度变化及多物种混合的植物分布。在此基础上,实现了一个大规模森林场景的构建与漫游系统。实验结果表明,文中方法在构建大规模植物场景上是非常有效的,即使植物规模达到千万级,其合成效率也可以满足交互式应用的需求。%In order to synthesize large-scale plants in a virtual forest scene, this paper presents a real-time synthe-sis method of large-scale plants by tilling the pre-generated samples based on Poisson disk tiles. In the sample generation phase, we adopt a corner matching manner and use the relaxation dart throwing algorithm to generate the plants distribution in samples, with which we overcome the corner problem and disk crossing-border problem existed in the traditional border matching method. In the synthesis phase, a corner-based direct stochastic tilling method is used to rapidly synthesize the distribution info in the current camera view, which can achieve a real-time performance when synthesizing large

  19. Fluorescence Effect of SrAl2O4:Eu and Diffuse Reflectivity of SrAl2O4:Eu Based Ceramics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    SrAl2O4:Eu was adopted as main phase to prepare the ceramic pumping cavity material with ultraviolet(UV) converting function in order to match with laser absorption spectra. The relationship between SrAl2O4:Eu powder processing and fluorescence effect was studied. The glass material with lower refractive index was added to the SrAl2O4:Eu based ceramics. The diffusive reflectivity and the influence of fluorescence effect on reflection spectra of the ceramics were investigated. Some experimental results can be used for evaluating technical feasibility of the SrAl2O4:Eu based ceramics used for laser reflectors.

  20. Technical note: comparing von Luschan skin color tiles and modern spectrophotometry for measuring human skin pigmentation.

    Science.gov (United States)

    Swiatoniowski, Anna K; Quillen, Ellen E; Shriver, Mark D; Jablonski, Nina G

    2013-06-01

    Prior to the introduction of reflectance spectrophotometry into anthropological field research during the 1950s, human skin color was most commonly classified by visual skin color matching using the von Luschan tiles, a set of 36 standardized, opaque glass tiles arranged in a chromatic scale. Our goal was to establish a conversion formula between the tile-based color matching method and modern reflectance spectrophotometry to make historical and contemporary data comparable. Skin pigmentation measurements were taken on the forehead, inner upper arms, and backs of the hands using both the tiles and a spectrophotometer on 246 participants showing a broad range of skin pigmentation. From these data, a second-order polynomial conversion formula was derived by jackknife analysis to estimate melanin index (M-index) based on tile values. This conversion formula provides a means for comparing modern data to von Luschan tile measurements recorded in historical reports. This is particularly important for populations now extinct, extirpated, or admixed for which tile-based measures of skin pigmentation are the only data available.

  1. Analysis of Toxicity of Ceramic Nanoparticles and Functional Nanocomposites Based on Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Bellucci Felipe Silva

    2015-01-01

    Full Text Available Nanocomposites are multiphase materials of which, at least one of the phases, has a dimension smaller than 100 nm. These materials have attracted technological and scientific interest due to their multifunctional characteristics and potential, which allow them to combine unique properties which are not found in traditional commercial materials, such as natural rubber alone. The objective of this work is to analyse the toxicity of nanoparticles and nanocomposites when applied to mammal cells in order to obtain bioactive agents, as well as to evaluate the potential to be applied in biological systems. Ferroelectric ceramic nanoparticles of KSr2Nb5O15 (KSN and paramagnetic ceramic nanoparticles Ni0.5Zn0.5Fe2O4 (NZF were prepared and utilized to produce functional and multifunctional nanocomposites based on vulcanized natural rubber (NR/KSN and NR/NZF with different nanoparticle concentrations. For both kinds of nanoparticles and both classes of nanocomposites, independently of the nanoparticle concentration, it is not possible to observe any reduction of the cellular viability until the incubation time is finished. In this way, these results point to the possibility of using these nanoparticles and nanocomposites, from the toxicity point of view, as bioactivity agents in biological systems based on mammalian cells.

  2. Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders.

    Science.gov (United States)

    Wang, G X; Yang, L; Wang, J Z; Liu, H K; Dou, S X

    2005-07-01

    The ionic conductivity of polyethylene oxide (PEO) based solid polymer electrolytes (SPEs) has been improved by the addition of nanosize ceramic powders (TiO2 and AL2O3). The PEO based solid polymer electrolytes were prepared by the solution-casting method. Electrochemical measurement shows that the 10 wt% TiO2 PEO-LiClO4 polymer electrolyte has the best ionic conductivity (about 10(-4) S cm(-1) at 40-60 degrees C). The lithium transference number of the 10 wt% TiO2 PEO-LiClO4 polymer electrolyte was measured to be 0.47, which is much higher than that of bare PEO polymer electrolyte. Ac impedance testing shows that the interface resistance of ceramic-added PEO polymer electrolyte is stable. Linear sweep voltammetry measurement shows that the PEO polymer electrolytes are electrochemically stable in the voltage range of 2.0-5.0 V versus a Li/Li+ reference electrode.

  3. Latest news from the Tiles

    CERN Multimedia

    Costanzo, D

    The Tile hadronic calorimeter will be installed in the central region of ATLAS with an inner radius of 2.28 m, an outer radius of 4.25 m, a total length of about 12 m and a weight of about 2300 tons. The calorimeter is mechanically divided in one central barrel and two extended barrels, with a gap in between for the services of the internal part of ATLAS. The construction of the calorimeter is advanced, and installation in the ATLAS pit is foreseen to start in December 2003. After mechanical assembly the modules are instrumented with all the optical components. Scintillating tiles are inserted into the slots, and the read-out Wave Length Shifting fibers are coupled to scintillators and bundled to achieve the quasi-projective cell geometry of the calorimeter. The final modules are stored in bldg 185, shown in the first photo, and in bldg 175 at CERN. The barrel modules are mechanically assembled in Dubna and then transported to CERN to be optically instrumented, while the extended barrels are constructed in t...

  4. Microfabrication of a Novel Ceramic Pressure Sensor with High Sensitivity Based on Low-Temperature Co-Fired Ceramic (LTCC) Technology

    OpenAIRE

    Chen Li; Qiulin Tan; Wendong Zhang; Chenyang Xue; Yunzhi Li; Jijun Xiong

    2014-01-01

    In this paper, a novel capacitance pressure sensor based on Low-Temperature Co-Fired Ceramic (LTCC) technology is proposed for pressure measurement. This approach differs from the traditional fabrication process for a LTCC pressure sensor because a 4J33 iron-nickel-cobalt alloy is applied to avoid the collapse of the cavity and to improve the performance of the sensor. Unlike the traditional LTCC sensor, the sensitive membrane of the proposed sensor is very flat, and the deformation of the se...

  5. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  6. Tiling Problems on Baumslag-Solitar groups.

    Directory of Open Access Journals (Sweden)

    Nathalie Aubrun

    2013-09-01

    Full Text Available We exhibit a weakly aperiodic tile set for Baumslag-Solitar groups, and prove that the domino problem is undecidable on these groups. A consequence of our construction is the existence of an arecursive tile set on Baumslag-Solitar groups.

  7. Optimal Partial Tiling of Manhattan Polyominoes

    CERN Document Server

    Bodini, Olivier

    2009-01-01

    Finding an efficient optimal partial tiling algorithm is still an open problem. We have worked on a special case, the tiling of Manhattan polyominoes with dominoes, for which we give an algorithm linear in the number of columns. Some techniques are borrowed from traditional graph optimisation problems.

  8. The Level-1 Tile-Muon Trigger in the Tile Calorimeter Upgrade Program

    CERN Document Server

    Ryzhov, Andrey; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's last radial layer can assist in muon tagging using Level-1 muon trigger. It can help in the rejection of fake muon triggers arising from background radiation (slow charged particles - protons) without degrading the efficiency of the trigger. The TileCal main activity for Phase-0 upgrade ATLAS program (2013-2014) was the activation of the TileCal third layer signal for assisting the muon trigger at 1.0<|η|<1.3 (Tile-Muon Trigger). This report describes the Tile-Muon Trigger at TileCal upgrade activities, focusing on the new on-detector electronics such as Tile Muon Digitizer Board (TMDB) to provide (receive and digitize) the signal from eight TileCal modules to three Level-1 muon endcap sector logic blocks.

  9. Solid-liquid state pressure bonding of Si3N4 ceramics with aluminum based alloys and its mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Solid-liquid state pressure bonding of Si3N4 ceramics with aluminum based alloys, which contain a small amount of intermetallic compounds Al3Ti or Al3Zr, was investigated. With this new method, the heat resistant properties of the bonding zone metal are improved, and the joints' strengths at high temperature is increased. The joints' shear strength at room temperature and at 600  ℃ reach 126~133  MPa and 32~34  MPa, respectively, with suitable bonding pressure. The reaction between aluminum and Si3N4 ceramics, which produces Al-Si-N-O type compounds is the dominant interfacial reaction, while the reactions between the second active element Ti or Zr in the aluminum based alloys and Si3N4 ceramics also occur to some extend.

  10. Consistency and Derangements in Brane Tilings

    CERN Document Server

    Hanany, Amihay; Ramgoolam, Sanjaye; Seong, Rak-Kyeong

    2015-01-01

    Brane tilings describe Lagrangians (vector multiplets, chiral multiplets, and the superpotential) of four dimensional $\\mathcal{N}=1$ supersymmetric gauge theories. These theories, written in terms of a bipartite graph on a torus, correspond to worldvolume theories on $N$ D$3$-branes probing a toric Calabi-Yau threefold singularity. A pair of permutations compactly encapsulates the data necessary to specify a brane tiling. We show that geometric consistency for brane tilings, which ensures that the corresponding quantum field theories are well behaved, imposes constraints on the pair of permutations, restricting certain products constructed from the pair to have no one-cycles. Permutations without one-cycles are known as derangements. We illustrate this formulation of consistency with known brane tilings. Counting formulas for consistent brane tilings with an arbitrary number of chiral bifundamental fields are written down in terms of delta functions over symmetric groups.

  11. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  12. Ceramic laser materials

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin

    2008-12-01

    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  13. Elliptically distributed lozenge tilings of a hexagon

    CERN Document Server

    Betea, Dan

    2011-01-01

    We present a detailed study of a 4 parameter family of elliptic weights on tilings of a hexagon introduced by Borodin, Gorin and Rains, and generalize some of their results. In the process, we connect the combinatorics of the model with the theory of elliptic special functions. We first analyze some properties of the measure and introduce canonical coordinates that are useful for combinatorially interpreting results. We then show how the computed $n$-point function (called the elliptic Selberg density) and transitional probabilities connect to the theory of $BC_n$-symmetric multivariate elliptic special functions and difference operators discovered by Rains. In particular, the difference operators intrinsically capture the combinatorial model under study, while the elliptic Selberg density is a generalization (deformation) of probability distributions pervasive in the theory of random matrices and interacting particle systems. Based on quasi-commutation relations between elliptic difference operators, we cons...

  14. Wollastonite based-Chemically Bonded Phosphate Ceramics with lead oxide contents under gamma irradiation

    Science.gov (United States)

    Colorado, H. A.; Pleitt, J.; Hiel, C.; Yang, J. M.; Hahn, H. T.; Castano, C. H.

    2012-06-01

    The shielding properties to gamma rays as well as the effect of lead concentration incorporated into Chemically Bonded Phosphate Ceramics (CBPCs) composites are presented. The Wollastonite-based CBPC was fabricated by mixing a patented aqueous phosphoric acid formulation with Wollastonite powder. CBPC has been proved to be good structural material, with excellent thermal resistant properties, and research already showed their potential for radiation shielding applications. Wollastonite-based CBPC is a composite material itself with several crystalline and amorphous phases. Irradiation experiments were conducted on different Wollastonite-based CBPCs with lead oxide. Radiation shielding potential, attenuation coefficients in a broad range of energies pertinent to engineering applications and density experiments showing the effect of the PbO additions (to improve gamma shielding capabilities) are also presented. Microstructure was identified by using scanning electron microscopy and X-ray diffraction.

  15. THz imaging of majolica tiles and biological attached marble fragments

    Science.gov (United States)

    Catapano, Ilaria; Soldovieri, Francesco

    2016-04-01

    Devices exploiting waves in the frequency range from 0.1 THz to 10 THz (corresponding to a free-space wavelength ranging from 30 μm to 3 mm) deserve attention as diagnostic technologies for cultural heritage. THz waves are, indeed, non-ionizing radiations capable of penetrating into non-metallic materials, which are opaque to both visible and infrared waves, without implying long term risks to the molecular stability of the exposed objects and humans. Moreover, THz surveys involve low poewr probing waves, are performed without contact with the object and, thanks to the recent developments, which have allowed the commercialization of compact, flexible and portable systems, maybe performed in loco (i.e. in the place where the artworks are usually located). On the other hand, THz devices can be considered as the youngest among the sensing and imaging electromagnetic techniques and their actual potentialities in terms of characterization of artworks is an ongoing research activity. As a contribution within this context, we have performed time of flight THz imaging [1,2] on ceramic and marble objects. In particular, we surveyed majolica tiles produced by Neapolitan ceramists in the 18th and 19th centuries with the aim to gather information on their structure, constructive technique and conservation state. Moreover, we investigated a Marmo di Candoglia fragment in order to characterize the biological attach affecting it. All the surveys were carried out by using the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega and available at the Institute of Electromagnetic Sensing of the Environment (IREA). This system is equipped with fiber optic coupled transmitting and receiving probes and with an automatic positioning system enabling to scan a 150 mm x 150 mm area under a reflection measurement configuration. Based on the obtained results we can state that the use of THz waves allows: - the reconstruction of the object topography; - the geometrical

  16. Optical thermometry based on luminescence behavior of Dy{sup 3+}-doped transparent LaF{sub 3} glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Y.Y. [Nanjing University of Posts and Telecommunications, College of Electronic Science and Engineering, Nanjing (China); Nanjing University of Posts and Telecommunications, College of Science, Nanjing (China); Cheng, S.J.; Wang, X.F. [Nanjing University of Posts and Telecommunications, College of Electronic Science and Engineering, Nanjing (China); Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing, Jiangsu (China); Yan, X.H. [Nanjing University of Posts and Telecommunications, College of Electronic Science and Engineering, Nanjing (China); Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing, Jiangsu (China); Nanjing University of Aeronautics and Astronautics, College of Science, Nanjing (China)

    2015-11-15

    Dy{sup 3+}-doped transparent LaF{sub 3} glass ceramics were fabricated, and its structures of resulting glass ceramics are studied by the X-ray diffraction and transmission electron microscopy. Optical temperature sensing of the resulting glass ceramics in the temperature range from 298 to 523 K is studied based on the down-conversion luminescence of Dy{sup 3+} ion. By using fluorescence intensity ratio method, the {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} of Dy{sup 3+} ions are verified as thermally coupled levels. A minimum S{sub R} = 1.16 x 10{sup -4} K{sup -1} is obtained at T = 294 K. By doping Eu{sup 3+} ion, the overall emission color of Eu{sup 3+}-Dy{sup 3+} co-doped transparent glass ceramics can be tuned from white to yellow with the temperature increase through energy transfer between Eu{sup 3+} and Dy{sup 3+}. Additionally, the thermal stability of the Dy{sup 3+} single-doped transparent glass ceramics becomes higher after doping Eu{sup 3+} ion. (orig.)

  17. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  18. Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy).

    Science.gov (United States)

    Giacomucci, Lucia; Bertoncello, Renzo; Salvadori, Ornella; Martini, Ilaria; Favaro, Monica; Villa, Federica; Sorlini, Claudia; Cappitelli, Francesca

    2011-08-01

    The Grande Albergo Ausonia & Hungaria (Venice Lido, Italy) has an Art Nouveau polychrome ceramic coating on its façade, which was restored in 2007. Soon after the conservation treatment, many tiles of the façade decoration showed coloured alterations putatively attributed to the presence of microbial communities. To confirm the presence of the biological deposit and the stratigraphy of the Hungaria tiles, stereomicroscope, optical and environmental scanning electron microscope observations were made. The characterisation of the microbial community was performed using a PCR-DGGE approach. This study reported the first use of a culture-independent approach to identify the total community present in biodeteriorated artistic tiles. The case study examined here reveals that the coloured alterations on the tiles were mainly due to the presence of cryptoendolithic cyanobacteria. In addition, we proved that the microflora present on the tiles was generally greatly influenced by the environment of the Hungaria hotel. We found several microorganisms related to the alkaline environment, which is in the range of the tile pH, and related to the aquatic environment, the presence of the acrylic resin Paraloid B72® used during the 2007 treatment and the pollutants of the Venice lagoon.

  19. Development of ceramic support the base of cordierite for one-side welding; Desenvolvimento de suporte ceramico a base de cordierita para soldagem unilateral

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, L.L.P. de; Vieira, C.M.F.; Paranhos, R.P.R.; Tatagiba, L.C.S. [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Materiais Avancados

    2009-07-01

    This work has as objective develops ceramic backing for the execution of one side welds in steel. The backing consists the mixture of refractory mineral (Cordierite), adhesive (sodium silicate) and water. Test coupons produced by uniaxial pressing and burned to 1100 deg C they were submitted to physical and mechanical tests for determination the water absorption and flexion strength, respectively. The microstructure of ceramics produced was evaluated by diffraction of X-Ray, scanning electron microscopy and optical microscopy. After the production of the ceramic backing, welding tests were accomplished by the process MIG-MAG to evaluate the format of the weld bead. Based on the results obtained, during and after the welding accomplished with the employment of the ceramic backing, has shown that it is technically feasible for one-side welding. (author)

  20. Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hui Zhang; Raman P. Singh

    2008-11-30

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

  1. A novel electrolytic ignition monopropellant microthruster based on low temperature co-fired ceramic tape technology.

    Science.gov (United States)

    Wu, Ming-Hsun; Yetter, Richard A

    2009-04-07

    A planar 2-D liquid monopropellant microthruster fabricated from low temperature co-fired ceramic tapes and ignited by electrolysis is reported. The volume of the combustion chamber was 820 nL (0.82 mm(3)). Silver electrodes were screen printed and positioned on the top and bottom surfaces of the combustion chamber. A DC voltage potential applied across the electrodes was used to initiate decomposition of hydroxylammonium nitrate (HAN) based liquid monopropellants. A thrust output of 150 mN was obtained using a voltage input of 45 V. Measured ignition energies were as small as 1.9 J. Ignition delays, as short as a few hundred milliseconds, were found dependent on the type of HAN-based propellant and the voltage potential.

  2. Microstructural and electrical properties of cordierite-based ceramics obtained after two-step sintering technique

    Directory of Open Access Journals (Sweden)

    Obradović Nina

    2016-01-01

    Full Text Available Cordierite-based ceramic materials are attracting much interest for their various applications in industry, for manufacturing multilayer circuit boards, catalytic converters, filters, thermal insulation, kiln furniture, components of portable electronic devices, etc. In order to reduce production costs and modify cordierite-based materials, mechanical activation can be used. In this study, microstructural and electrical properties of mechanically activated MgO-Al2O3-SiO2 system have been analyzed. The mixtures of MgO-Al2O3-SiO2 powders were mechanically activated in a planetary ball mill for the time periods from 0 to 160 min. Morphological investigations have been performed on the obtained powders. The effects of activation and two-step sintering process on microstructure were investigated by scanning electron microscopy (SEM. Electrical measurements showed variations of the dielectric constant (εr and loss tangent (tan δ as a function of time of mechanical treatment.

  3. Influência da cinética de oxidação no controle da atmosfera de fornos de revestimentos cerâmicos Influence of the oxidation kinetics for control of the atmosphere of kilns for production of ceramic tiles

    Directory of Open Access Journals (Sweden)

    S. Cava

    2000-06-01

    Full Text Available No processo de monoqueima para produção de revestimentos cerâmicos, o aparecimento do "coração negro" ocorre sob determinadas condições de matérias-primas utilizadas e parâmetros do processo industrial. Neste sentido, decidimos pesquisar os efeitos de uma atmosfera enriquecida com oxigênio para minimizar defeitos como o "coração negro", com o objetivo de reduzir o ciclo de queima. Foram realizadas uma completa caracterização física e química das matérias-primas utilizadas. Os corpos de prova foram queimados em um forno de laboratório tipo câmara, eletricamente aquecido, com controle de atmosfera, e simulação do processo de queima rápida. Fluxos de uma mistura de oxigênio e/ou misturas de oxigênio foram continuamente adicionados no forno por dois diferentes métodos. A tendência da eliminação do coração negro em função da atmosfera do forno foi avaliada pela medida da relação de volumes de coração negro e volume total da amostra. Os resultados, conforme o modelo proposto, mostram que o efeito da atmosfera enriquecida com oxigênio segue as equações determinadas pelos modelos cinéticos de reação de oxi-redução, que neste caso, determina a evolução da eliminação do defeito "coração negro" em função da atmosfera modificada com oxigênio introduzida no forno. Isto indica que além de melhorar a qualidade do produto final, pode-se aumentar a produtividade, reduzindo o ciclo de queima.In the single firing process for the production of ceramic tiles, the appearance of the "black core" defect occurs under determined conditions of raw materials and parameters of the industrial process. It was then decided to investigate the effects of an oxygen enriched atmosphere for minimizing the occurrence of defects such as "black core", with the goal of reducing the firing cycle. A complete physical and chemical characterization of the used raw materials was carried out. Raw material samples were fired in an

  4. Análise da co-utilização do resíduo do beneficiamento do caulim e serragem de granito para produção de blocos e telhas cerâmicos Analysis of the use of kaolin processing waste and granite sawing waste together for the production of ceramic bricks and roof tiles

    Directory of Open Access Journals (Sweden)

    R. R. Menezes

    2007-06-01

    high amounts of wastes. This work has as aim the characterization of the kaolin processing waste and granite sawing waste and the evaluation of their use together for the production of bricks and roof tiles. The wastes were characterized by chemical composition determination, X-ray diffraction, differential thermal and gravimetric analyses, particle size distribution determination, and morphological analysis by electronic scanning microscopy. Several formulations were prepared and samples bodies were prepared by extrusion. The sample bodies were fired at 800, 900 and 1000 ºC. Fired samples were characterized in terms of water absorption and mechanical strength. The results showed that the kaolin waste is composed by kaolinite, mica and quartz and that the granite waste is composed by quartz, mica, albite and calcite, and that, the wastes have significantly distinct particles size distributions. It could also be concluded that are possible incorporations of up to 50% of wastes in formulation for the production of ceramic bricks and roof tiles, and that, the use of the kaolin waste and granite waste together provide better physical properties than those observed in samples bodies with incorporations of only kaolin waste.

  5. Developing porous ceramics on the base of zirconia oxide with thin and permeable pores by crystallization of organic additive method

    Science.gov (United States)

    Kamyshnaya, K. S.; Khabas, T. A.

    2016-11-01

    In this paper porous ceramics on the base of ZrO2 nanopowders and micropowders has been developed by freeze-casting method. A zirconia/carbamide slurry was frozen in mold and dehydrated in CaCl2 at room temperature. This simple process enabled the formation of porous ceramics with highly aligned pores as a replica of the carbamide crystals. The samples showed higher porosity of 47.9%. In addition, these materials could be used as membrane for air cleaning.

  6. The Level-1 Tile-Muon Trigger in the Tile Calorimeter Upgrade Program

    CERN Document Server

    Ryzhov, Andrey; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). The TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers arising from background radiation (slow charged particles - protons) without degrading the efficiency of the trigger. The TileCal main activity for the ATLAS Phase-0 upgrade program (2013-2014) was the activation of the TileCal outermost D-layer signal for assisting the Level-1 Muon Trigger at 1.0<|η|<1.3. This report describes the Tile-Muon Trigger within the TileCal upgrade activities, focusing on the new on-detector electronics such as the Tile Muon Digitizer Board (TMDB) providing (receive and digitize) the signal from eight TileCal modules to three Level-1 muon end-cap sector logic blocks.

  7. Some Aspects of the Failure Mechanisms in BaTiO3-Based Multilayer Ceramic Capacitors

    Science.gov (United States)

    Liu, David Donhang; Sampson, Michael J.

    2012-01-01

    The objective of this presentation is to gain insight into possible failure mechanisms in BaTiO3-based ceramic capacitors that may be associated with the reliability degradation that accompanies a reduction in dielectric thickness, as reported by Intel Corporation in 2010. The volumetric efficiency (microF/cm3) of a multilayer ceramic capacitor (MLCC) has been shown to not increase limitlessly due to the grain size effect on the dielectric constant of ferroelectric ceramic BaTiO3 material. The reliability of an MLCC has been discussed with respect to its structure. The MLCCs with higher numbers of dielectric layers will pose more challenges for the reliability of dielectric material, which is the case for most base-metal-electrode (BME) capacitors. A number of MLCCs manufactured using both precious-metal-electrode (PME) and BME technology, with 25 V rating and various chip sizes and capacitances, were tested at accelerated stress levels. Most of these MLCCs had a failure behavior with two mixed failure modes: the well-known rapid dielectric wearout, and so-called 'early failures." The two failure modes can be distinguished when the testing data were presented and normalized at use-level using a 2-parameter Weibull plot. The early failures had a slope parameter of Beta >1, indicating that the early failures are not infant mortalities. Early failures are triggered due to external electrical overstress and become dominant as dielectric layer thickness decreases, accompanied by a dramatic reduction in reliability. This indicates that early failures are the main cause of the reliability degradation in MLCCs as dielectric layer thickness decreases. All of the early failures are characterized by an avalanche-like breakdown leakage current. The failures have been attributed to the extrinsic minor construction defects introduced during fabrication of the capacitors. A reliability model including dielectric thickness and extrinsic defect feature size is proposed in this

  8. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shuo [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Wu, Bolin, E-mail: wubolin3211@gmail.com [College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004 (China)

    2011-12-30

    Graphical abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation level has clear change regularity that the radioactivity levels of red mud (6360 Bq) are obvious declined, and can be reduced to that of the natural radioactive background of Guilin Karst landform, China (3600 Bq). It will not only consume large quantities of red mud, but also decrease the production cost of self-glazing RMCM. And the statement of this paper will offer effective ways to reduce the radioactivity level of red mud. Highlights: Black-Right-Pointing-Pointer The self-glazing phenomenon in red mud system was first discovered in our research. Black-Right-Pointing-Pointer Radiation levels of red mud can be reduced efficiently by self-glazing layer. Black-Right-Pointing-Pointer Red mud based ceramic materials will not cause harm to environment and humans. Black-Right-Pointing-Pointer This research possesses important economic significances to aluminum companies. - Abstract: Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm{sup 3}; compressive strength, 78.12 MPa). The radiation

  9. Evaluation of failure characteristics and bond strength after ceramic and polycarbonate bracket debonding: effect of bracket base silanization.

    Science.gov (United States)

    Ozcan, M; Finnema, K; Ybema, A

    2008-04-01

    The objectives of this study were to evaluate the effect of silanization on the failure type and shear-peel bond strength (SBS) of ceramic and polycarbonate brackets, and to determine the type of failure when debonded with either a universal testing machine or orthodontic pliers. Silanized and non-silanized ceramic and polycarbonate brackets (N = 48, n = 24 per bracket type) were bonded to extracted caries-free human maxillary central incisors using an alignment apparatus under a weight of 750 g. All bonded specimens were thermocycled 1000 times (5-55 degrees C). Half of the specimens from each group were debonded with a universal testing machine (1 mm/minute) to determine the SBS and the other half by an operator using orthodontic debonding pliers. Failure types of the enamel surface and the bracket base were identified both from visual inspection and digital photographs using the adhesive remnant index (ARI) and base remnant index (BRI). As-received ceramic brackets showed significantly higher bond strength values (11.5 +/- 4.1 MPa) than polycarbonate brackets [6.3 +/- 2.7 MPa; (P = 0.0077; analysis of variance (ANOVA)]. Interaction between bracket types and silanization was not significant (P = 0.4408). Silanization did not significantly improve the mean SBS results either for the ceramic or polycarbonate brackets (12.9 +/- 3.7 and 6.3 +/- 2.7 MPa, respectively; P = 0.4044; two-way ANOVA, Tukey-Kramer adjustment). There was a significant difference between groups in ARI scores for ceramic (P = 0.0991) but not polycarbonate (P = 0.3916; Kruskall-Wallis) brackets. BRI values did not vary significantly for ceramic (P = 0.1476) or polycarbonate (P = 0.0227) brackets. Failure type was not significantly different when brackets were debonded with a universal testing machine or with orthodontic debonding pliers. No enamel damage was observed in any of the groups.

  10. Microstructural evaluation of rare-earth-zinc oxide-based varistor ceramics

    OpenAIRE

    2005-01-01

    Zinc oxide varistors are nonlinear voltage dependent ceramic resistors used to suppress and limit transient voltage surges. The work reported in this paper involves the relationship between microstructural characteristics and the varistor performance of ZnO ceramics doped with rare-earth oxides. Samples of these ceramics with different nonlinear current-voltage characteristics, according to the specific chemical composition and sintering parameters, were prepared and microstructurally analyze...

  11. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration

    OpenAIRE

    Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki

    2009-01-01

    Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of t...

  12. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  13. Ancient Technologies: The Egyptian Sintered-Quartz Ceramics

    OpenAIRE

    Sparavigna, Amelia Carolina

    2014-01-01

    To physicists and engineers, ceramics represent materials demonstrating excellent strength and hardness, materials that can serve as electrical insulators or conductors, some of them being able of a high-temperature superconductivity. To researchers working in archaeology and art history, ceramics mean objects such as figurines, tiles and tableware helping understanding cultures and technologies of the past. They are among the most common artifacts to be found in archaeological sites, because...

  14. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    Science.gov (United States)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  15. Research on micro-displacement driving technology based on piezoelectric ceramic

    Science.gov (United States)

    Hu, Bo; Tang, Xiaoping; Hu, Song; Yan, Wei; Hu, Zhicheng

    2012-10-01

    Piezoelectric ceramic driving power is one critical technology of achieving the piezoelectric ceramic nano-precision positioning, which has been widely used in precision manufacturing, optical instruments, aerospace and other fields. In this paper, piezoelectric ceramic driving power will be summarized on micro-displacement driving technical development and research. The domestic and overseas piezoelectric-driven ways will be compared and control model algorithms will be discussed. Describe the advantages and disadvantages of piezoelectric ceramic driving power in a different driving and control model, and then show the scope of application of driving power.

  16. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos.

  17. Ceramic Forum International yearbook 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reh, H. (ed.)

    2004-12-01

    This is the second English-language edition of our 'ceramic forum international Yearbook'. In this year's 'Ceramics World', the perpetually updated textbook section, you will find papers surveying the already in technical ceramics established fields of 'bioceramics' and 'ceramic armouring'. From the traditional ceramics sector, from which news of more and more innovations have been reaching us in recent months, we have picked out 'decorating processes for ceramic tiles' as these are currently enjoying an undreamt-of boom thanks to the development of completely new shaping processes. A soundly researched study on 'rheology in ceramics' completes this section of the yearbook. Interested ceramists will again find everything they need for their day-to-day work - the index will help them to find the information they need fast. This information is available under the following headings: (A) Product News: Short notes on outstanding new machines, kilns, plants and equipment as well as new raw materials on the market, supplied by both European and overseas suppliers. (B) Abstracts: A compilation of abridged articles, all of which published during the last 12 months, discussing interesting processes and products or new directions in research. (C) ESD - European Suppliers Directory: Who supplies what? In English, German, Spanish, Italian and French with about 220 company entries. (D) Appendix: Listing ceramics laboratories in Europe; the periodic system; the most important physical units and the conversion of older ones to SI units (and vice versa); essential formulas for use in the ceramist's daily practice. (orig.)

  18. Tile-Packing Tomography Is NP-hard

    DEFF Research Database (Denmark)

    Chrobak, Marek; Dürr, Christoph; Guíñez, Flavio;

    2010-01-01

    Discrete tomography deals with reconstructing finite spatial objects from their projections. The objects we study in this paper are called tilings or tile-packings, and they consist of a number of disjoint copies of a fixed tile, where a tile is defined as a connected set of grid points. A row pr...

  19. Effect of Rare Earths on Mechanical Properties and Microstructures of Si3N4-based Ceramics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of Y2O3, La2O3 and Nd2O3 on the mechanical properties and microstructures of Si3N4-based ceramics were studied. It shows that a significant improvement in mechanical properties can be obtained by adding rare earths oxides in Si3N4. The fracture toughness and the flexural strength of Si3N4 added with both Y2O3 and La2O3 are 7.8 MPa.m1/2 and 962 MPa, respectively. The main reason is that adding rare earths in Si3N4 can improve the microstructure of the material and increase the aspect ratio of β-Si3N4 grain.

  20. Elevated Temperature Properties of Titanium Carbide Base Ceramals Containing Nickel or Iron

    Science.gov (United States)

    Cooper, A L; Colteryahn, L E

    1951-01-01

    Elevated-temperature properties of titanium carbide base ceramals containing nickel or iron were determined in oxidation, modulus of rupture, tensile strength, and thermal-shock resistance. These materials followed the general growth law and exhibited two stages in oxidation. The following tensile strengths were found at 2000 degrees F: 13.3 weight percent nickel, 16, 150 pounds per square inch; 11.8 weight percent iron, 12,500 pounds per square inch; unalloyed titanium carbide, 16,450 pounds per square inch. Nickel or iron additions to titanium carbide improved the thermal-shock resistance, nickel more. The path of fracture in tensile and thermal-shock specimens was found to progress approximately 50 percent intergranularly and 50 percent transgranularly.

  1. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    Science.gov (United States)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Wu, Jingshen

    2016-01-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes. PMID:28083098

  2. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    Science.gov (United States)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  3. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials.

    Science.gov (United States)

    Qin, Shuo; Wu, Bolin

    2011-12-30

    Self-glazing red mud based ceramic materials (RMCM) were produced by normal pressure sintering process using the main raw materials of red mud. The properties of the RMCM samples were investigated by the measurements of mechanical properties, radiation measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the self-glazing RMCM have good mechanical properties (water absorption and apparent porosity approached zero; bulk density, 2.94 g/cm(3); compressive strength, 78.12 MPa). The radiation level has clear change regularity that the radioactivity levels of red mud (6360 Bq) is obvious declined, and can be reduced to that of the natural radioactive background of Guilin Karst landform, China (3600 Bq). It will not only consume large quantities of red mud, but also decrease the production cost of self-glazing RMCM. And the statement of this paper will offer effective ways to reduce the radioactivity level of red mud.

  4. A new lutetia-based ceramic scintillator for X-ray imaging

    CERN Document Server

    Lempicki, A; Szupryczynski, P; Lingertat, H; Nagarkar, V V; Tipnis, S V; Miller, S R

    2002-01-01

    We report a new scintillator based on a transparent ceramic of Lu sub 2 O sub 3 :Eu. The material has an extremely high density of 9.4 g/cm sup 3 , a light output comparable to CsI:Tl, and a narrow band emission at 610 nm that falls close to the maximum of the response curve of CCDs. Pixelation of the scintillator to prevent lateral spread of light enhances the spatial and contrast resolution, providing imaging performance that equals or surpasses all other currently known scintillators. Upon further development of readout technologies to take full advantage of its transparency, the new scintillator should play a major role in digital radiographic systems.

  5. Physics-Based Design Tools for Lightweight Ceramic Composite Turbine Components with Durable Microstructures

    Science.gov (United States)

    DiCarlo, James A.

    2011-01-01

    Under the Supersonics Project of the NASA Fundamental Aeronautics Program, modeling and experimental efforts are underway to develop generic physics-based tools to better implement lightweight ceramic matrix composites into supersonic engine components and to assure sufficient durability for these components in the engine environment. These activities, which have a crosscutting aspect for other areas of the Fundamental Aero program, are focusing primarily on improving the multi-directional design strength and rupture strength of high-performance SiC/SiC composites by advanced fiber architecture design. This presentation discusses progress in tool development with particular focus on the use of 2.5D-woven architectures and state-of-the-art constituents for a generic un-cooled SiC/SiC low-pressure turbine blade.

  6. High-strength zirconium diboride-based ceramic composites consolidated by low-temperature hot pressing

    Directory of Open Access Journals (Sweden)

    Shuqi Guo and Yutaka Kagawa

    2012-01-01

    Full Text Available Two compositions of ZrB2-based ceramic composites containing Si3N4, Al2O3 and Y2O3 have been hot-pressed at different temperatures between 1673 and 1773 K for 60 min in vacuum. The densification behavior of the composites was examined during the sintering process. The microstructures of the composites were characterized by scanning electron microscopy, and the crystalline phases were identified by x-ray diffraction. The effects of Al2O3 and Y2O3 additives on the densification behavior and flexural strength were assessed. A relative density of ~95% was obtained after sintering at 1723 K or higher temperatures. The microstructures of the composites consisted of (Zr,YB2, α-Si3N4 and Y3(Al,Si5O12 phases. The room-temperature flexural strength increased with the amount of additives and approached 1 GPa.

  7. Modeling of water transport in roof tiles by removal of moisture at isothermal conditions

    Science.gov (United States)

    da Silva, Wilton Pereira; de Oliveira Farias, Vera Solange; de Araújo Neves, Gelmires; de Lima, Antonio Gilson Barbosa

    2012-05-01

    The main objective of this article is to describe the drying process of ceramic roof tiles, shaped from red clay, using diffusion models. Samples of the product with initial moisture content of 0.24 (db) were placed inside an oven in the temperatures of 55.6, 69.7, 82.7 and 98.6°C; and the data of the drying kinetics were obtained. The analytical solutions of the diffusion equation for the parallelepiped with boundary conditions of the first and third kinds were used to describe the drying processes. The process parameters were determined using an optimization algorithm based on inverse method coupled to the analytical solutions. The analysis of the results makes it possible to affirm that the boundary condition of the third kind satisfactorily describes the drying processes. The values obtained for the convective mass transfer coefficient were between 8.25 × 10-7 and 1.64 × 10-6 m s-1, and for the effective water diffusivity were between 9.21 × 10-9 and 1.80 × 10-8 m2 s-1.

  8. Real-Time Texture Synthesis Using s-Tile Set

    Institute of Scientific and Technical Information of China (English)

    Feng Xue; You-Sheng Zhang; Ju-Lang Jiang; Min Hu; Xin-Dong Wu; Rong-Gui Wang

    2007-01-01

    This paper presents a novel method of generating a set of texture tiles from samples, which can be seamlessly tiled into arbitrary size textures in real-time. Compared to existing methods, our approach is simpler and more advantageous in eliminating visual seams that may exist in each tile of the existing methods, especially when the samples have elaborate features or distinct colors. Texture tiles generated by our approach can be regarded as single-colored tiles on each orthogonal direction border, which are easier for tiling and more suitable for sentence tiling. Experimental results demonstrate the feasibility and effectiveness of our approach.

  9. Relevance of magnetic properties for the characterisation of burnt clays and archaeological tiles

    Science.gov (United States)

    Beatrice, C.; Coïsson, M.; Ferrara, E.; Olivetti, E. S.

    The archaeomagnetism of pottery, bricks and tiles is typically employed for dating inferences, yet the magnetic properties of ancient ceramics can also be convenient for their characterisation, to evaluate the technological conditions applied for their production (temperature, atmosphere, and duration of firing), as well as to distinguish groups of sherds having different provenance. In this work, the measurement of hysteresis loops has been applied and combined with colour survey to characterise the magnetic properties of burnt clays and archaeological tiles. Four calcareous and non-calcareous clays, along with seventeen tile fragments excavated from the sites of the ancient Roman towns of Pompeii and Gravina di Puglia, in Southern Italy, are examined. The ferrimagnetic character of the clays, in general, enhances with increasing firing temperatures until vitrification processes occur (900-1000 °C) dissolving iron oxides and dispersing the colour and magnetic properties they provide. High values of saturation magnetization are observed in clays with relevant calcareous content after firing above 900 °C, which results in the formation of Ca-silicates able to delay the onset of the vitrification processes. Magnetic properties of the tiles have been evaluated in terms of the high coercivity (i.e. mainly ferrimagnetic) or low coercivity behaviour (i.e. including relevant paramagnetic and superparamagnetic contributions). Enhanced ferrimagnetic character, mostly depending on the growth in number and volume of iron oxide particles, is associated with the development of an intense reddish hue.

  10. Electrochemical desalination of historic Portuguese tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Dias-Ferreira, Celia; Ribeiro, Alexandra B.

    2015-01-01

    Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were...... and glaze, where salt crystals were clearly identified by SEM-EDX before desalination. The concentrations of chloride and especially nitrate were very high in the tiles (around 280 mmol Cl−/kg and 450 mmol NO3−/kg respectively). Both anions were successfully removed to below 6 mmol/kg during...... was initially very low, but nevertheless, sulfate removal started at the point where chloride and nitrate concentrations were very low in the tiles. Investigating the interface between biscuit and glaze after the treatment showed no signs of crystallized salts, so also in this important point, the desalination...

  11. VB Platinum Tile & Carpet, Inc. Information Sheet

    Science.gov (United States)

    VB Platinum Tile & Carpet, Inc. (the Company) is located in Bristow, Virginia. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Washington, DC.

  12. Applied physics: The virtues of tiling

    Science.gov (United States)

    Fratzl, Peter

    2014-12-01

    A cracked metal film on an elastic substrate has been shown to provide ultrahigh sensitivity in detecting mechanical vibrations. The result draws inspiration from principles of tiling that apply to many biological systems. See Letter p.222

  13. The ATLAS Tile Calorimeter performance at LHC

    CERN Document Server

    Cuciuc, M; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the readout system exploiting different signal sources: laser light, charge injection and a radioactive source. The calorimeter performance and its stability has been evaluated with the rich sample of collision data in 2011 but also with calibration data, random triggered data, cosmic muons and splash events. Results on the absolute energy scale calibration precision, on the energy and timing uniformity, on the time resolution and on the synchronization precision are presented...

  14. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  15. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  16. On reconfigurable tiled multi-core programming

    NARCIS (Netherlands)

    Rovers, Kenneth C.; Burgwal, van de Marcel D.; Kuper, Jan; Kokkeler, Andre B.J.; Smit, Gerard J.M.

    2009-01-01

    For a generic flexible efficient array antenna receiver platform a hierarchical reconfigurable tiled architecture has been proposed. The architecture provides a flexible reconfigurable solution, but partitioning, mapping, modelling and programming such systems remains an issue. A semantic model has

  17. Notch sensitivity of space shuttle tile materials

    Science.gov (United States)

    Newman, J. C., Jr.

    1980-01-01

    Tests were conducted at room temperature to determine the notch sensitivity of the thermal protection tile for the space shuttle. Two types of RSI tile were studied: LI-900 and LI-2200. Three point bend specimens were cut from discarded tiles in the in-plane (ip) and through-the-thickness (ttt) directions. They were tested with or without a sharp notch. The LI-900 (ip and ttt) specimens were not very notch sensitive, but the LI-2200 (ip and ttt) specimens were. The LI-2200 material showed about a 35 percent reduction in strength due to the presence of the notch. This reduction in strength should be considered in the design of mechanically fastened tile concepts.

  18. Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range

    Directory of Open Access Journals (Sweden)

    Ashish Saini

    2016-06-01

    Full Text Available In the present study, indium doped nano sized nickel zinc cobalt based ferrite ceramics with composition Ni0.5Zn0.3Co0.2InxFe2-xO4 (x = 0.2 and 0.4 were synthesized by a co-precipitation technique. Powdered sample has been pre-sintered at 800 °C, pressed into toroids and finally sintered at 1000 °C. The single phase formation of the presintered powder has been confirmed by X ray diffraction (XRD. The average particle size of the presintered powder has been estimated by field emission scanning electron microscope (FESEM and found to be about ~60 nm for x = 0.2 and ~80 nm at x = 0.4. The electromagnetic characterization has been made using vector network analyzer. High value of permeability (17.3 and 15.2 for x = 0.2 and 0.4 respectively with low magnetic loss tangent of 10−1 order were obtained. Permittivity of 8.2 and 10, and dielectric loss tangent of the order of 10−2 were also achieved. With the measured electromagnetic parameters, miniaturization factor of 12.32 and normalized characteristic impedance close to unity (1.23 were obtained up to 100 MHz frequency. These fascinating parameters definitely propose Ni0.5Zn0.3Co0.2In0.4Fe1.6O4 ceramics as a substrate material for miniaturized antenna in very high frequency band. Possible reasons and mechanisms of electromagnetic properties for different concentrations of indium are discussed in the paper.

  19. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  20. Internal defect inspection in magnetic tile by using acoustic resonance technology

    Science.gov (United States)

    Xie, Luofeng; Yin, Ming; Huang, Qinyuan; Zhao, Yue; Deng, Zhenbo; Xiang, Zhaowei; Yin, Guofu

    2016-11-01

    This paper focuses on the validity of a nondestructive methodology for magnetic tile internal defect inspection based on acoustic resonance. The principle of this methodology is to analyze the acoustic signal collected from the collision of magnetic tile with a metal block. To accomplish the detection process, the separating part of the detection system is designed and discussed in detail in this paper. A simplified mathematical model is constructed to analyze the characteristics of the impact of magnetic tile with a metal block. The results demonstrate that calculating the power spectrum density (PSD) can diagnose the internal defect of magnetic tile. Two different data-driven multivariate algorithms are adopted to obtain the feature set, namely principal component analysis (PCA) and hierarchical nonlinear principal component analysis (h-NLPCA). Three different classifiers are then performed to deal with magnetic tile classification problem based on features extracted by PCA or h-NLPCA. The classifiers adopted in this paper are fuzzy neural networks (FNN), variable predictive model based class discrimination (VPMCD) method and support vector machine (SVM). Experimental results show that all six methods are successful in identifying the magnetic tile internal defect. In this paper, the effect of environmental noise is also considered, and the classification results show that all the methods have high immunity to background noise, especially PCA-SVM and h-NLPCA-SVM. Considering the accuracy rate, computation cost problem and the ease of implementation, PCA-SVM turns out to be the best method for this purpose.

  1. On the structure of quadrilateral brane tilings

    CERN Document Server

    de Medeiros, Paul

    2011-01-01

    Brane tilings provide the most general framework in string and M-theory for matching toric Calabi-Yau singularities probed by branes with superconformal fixed points of quiver gauge theories. The brane tiling data consists of a bipartite tiling of the torus which encodes both the classical superpotential and gauge-matter couplings for the quiver gauge theory. We consider the class of tilings which contain only tiles bounded by exactly four edges and present a method for generating any tiling within this class by iterating combinations of certain graph-theoretic moves. In the context of D3-branes in IIB string theory, we consider the effect of these generating moves within the corresponding class of supersymmetric quiver gauge theories in four dimensions. Of particular interest are their effect on the superpotential, the vacuum moduli space and the conditions necessary for the theory to reach a superconformal fixed point in the infrared. We discuss the general structure of physically admissible quadrilateral b...

  2. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  3. The sROD Demonstrator for the ATLAS Tile Calorimeter Upgrade

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal) program for the phase-2 upgrade of the ATLAS detector at the LHC aims at a complete replacement of the read-out electronics. The new architecture is planned in order to provide digitized information for the first-level trigger with improved precision and detail. The demonstrator project for TileCal phase-2 upgrade consists of the installation of the new system with the upgrade architecture in a small part of the TileCal in order to evaluate its performance. The part of the demonstrator described here, the sROD demonstrator, is an ATCA-based module, designed to process data from 48 channels of this new system. The sROD demonstrator uses pipeline memories with programmable latency and provide level-1 digital trigger signals. It will also be interfaced to the front-end in order to transmit detector and trigger control as well as timing information.

  4. Self-Assembly of Arbitrary Shapes with RNA and DNA tiles (extended abstract)

    CERN Document Server

    Demaine, Erik D; Schweller, Robert T; Summers, Scott M

    2010-01-01

    Staged self-assembly with RNA removal is a model of tile-based algorithmic self-assembly that was introduced by Abel, Benbernou, Damian, Demaine, Demaine, Flatland, Kominers and Schweller (Shape Replication through Self-Assembly and RNase Enzymes, SODA 2010) and is a model that allows for the periodic removal of all tiles in a given assembly that belong to a specially designated group of (RNA) tiles. In this paper, we study the self-assembly of arbitrary shapes in staged assembly systems with RNA removal. We analyze the performance of our assembly systems with respect to their tile complexity, stage complexity as well as the scale factor, connectivity and addressability of the uniquely produced final assembly.

  5. Commissioning of the new multi-layer integration prototype of the CALICE tile hadron calorimeter

    CERN Document Server

    Ebrahimi, Aliakbar

    2016-01-01

    The basic prototype of a tile hadron calorimeter (HCAL) for the International Linear Collider (ILC) has been realised and extensively tested. A major aspect of the proposed concept is the improvement of the jet energy resolution by measuring details of the shower development and combining them with the data of the tracking system (particle flow). The prototype utilises scintillating tiles that are read out by novel Silicon Photomultipliers (SiPMs) and takes into account all design aspects that are demanded by the intended operation at the ILC. Currently, a new 12 layer prototype with about 3400 detector channels is under development. Alternative architectures for the scintillating tiles with and without wavelength-shifting fibres and tiles with individual wrapping with reflector foil is tested as well as different types of SiPMs. The new prototype was used for the first time at the CERN Proton Synchrotron test facility in fall 2014. Additionally, detector modules for the CALICE scintillator-based Electromagne...

  6. Microfabrication of a Novel Ceramic Pressure Sensor with High Sensitivity Based on Low-Temperature Co-Fired Ceramic (LTCC Technology

    Directory of Open Access Journals (Sweden)

    Chen Li

    2014-06-01

    Full Text Available In this paper, a novel capacitance pressure sensor based on Low-Temperature Co-Fired Ceramic (LTCC technology is proposed for pressure measurement. This approach differs from the traditional fabrication process for a LTCC pressure sensor because a 4J33 iron-nickel-cobalt alloy is applied to avoid the collapse of the cavity and to improve the performance of the sensor. Unlike the traditional LTCC sensor, the sensitive membrane of the proposed sensor is very flat, and the deformation of the sensitivity membrane is smaller. The proposed sensor also demonstrates a greater responsivity, which reaches as high as 13 kHz/kPa in range of 0–100 kPa. During experiments, the newly fabricated sensor, which is only about 6.5 cm2, demonstrated very good performance: the repeatability error, hysteresis error, and nonlinearity of the sensor are about 4.25%, 2.13%, and 1.77%, respectively.

  7. Chemical characterization of the acid alteration of diesel fuel: Non-targeted analysis by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry with tile-based Fisher ratio and combinatorial threshold determination

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Brendon A.; Pinkerton, David K.; Wright, Bob W.; Synovec, Robert E.

    2016-04-01

    The illicit chemical alteration of petroleum fuels is of scientific interest, particularly to regulatory agencies which set fuel specifications, or excises based on those specifications. One type of alteration is the reaction of diesel fuel with concentrated sulfuric acid. Such reactions are known to subtly alter the chemical composition of the fuel, particularly the aromatic species native to the fuel. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC–TOFMS) is ideally suited for the analysis of diesel fuel, but may provide the analyst with an overwhelming amount of data, particularly in sample-class comparison experiments comprised of many samples. The tile-based Fisher-ratio (F-ratio) method reduces the abundance of data in a GC × GC–TOFMS experiment to only the peaks which significantly distinguish the unaltered and acid altered sample classes. Three samples of diesel fuel from different filling stations were each altered to discover chemical features, i.e., analyte peaks, which were consistently changed by the acid reaction. Using different fuels prioritizes the discovery of features which are likely to be robust to the variation present between fuel samples and which will consequently be useful in determining whether an unknown sample has been acid altered. The subsequent analysis confirmed that aromatic species are removed by the acid alteration, with the degree of removal consistent with predicted reactivity toward electrophilic aromatic sulfonation. Additionally, we observed that alkenes and alkynes were also removed from the fuel, and that sulfur dioxide or compounds that degrade to sulfur dioxide are generated by the acid alteration. In addition to applying the previously reported tile-based F-ratio method, this report also expands null distribution analysis to algorithmically determine an F-ratio threshold to confidently select only the features which are sufficiently class-distinguishing. When

  8. DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.

    Science.gov (United States)

    Göpfrich, Kerstin; Zettl, Thomas; Meijering, Anna E C; Hernández-Ainsa, Silvia; Kocabey, Samet; Liedl, Tim; Keyser, Ulrich F

    2015-05-13

    Self-assembled DNA nanostructures have been used to create man-made transmembrane channels in lipid bilayers. Here, we present a DNA-tile structure with a nominal subnanometer channel and cholesterol-tags for membrane anchoring. With an outer diameter of 5 nm and a molecular weight of 45 kDa, the dimensions of our synthetic nanostructure are comparable to biological ion channels. Because of its simple design, the structure self-assembles within a minute, making its creation scalable for applications in biology. Ionic current recordings demonstrate that the tile structures enable ion conduction through lipid bilayers and show gating and voltage-switching behavior. By demonstrating the design of DNA-based membrane channels with openings much smaller than that of the archetypical six-helix bundle, our work showcases their versatility inspired by the rich diversity of natural membrane components.

  9. BoxLib with Tiling: An AMR Software Framework

    CERN Document Server

    Zhang, Weiqun; Day, Marcus; Nguyen, Tan; Shalf, John; Unat, Didem

    2016-01-01

    In this paper we introduce a block-structured adaptive mesh refinement (AMR) software framework that incorporates tiling, a well-known loop transformation. Because the multiscale, multiphysics codes built in BoxLib are designed to solve complex systems at high resolution, performance on current and next generation architectures is essential. With the expectation of many more cores per node on next generation architectures, the ability to effectively utilize threads within a node is essential, and the current model for parallelization will not be sufficient. We describe a new version of BoxLib in which the tiling constructs are embedded so that BoxLib-based applications can easily realize expected performance gains without extra effort on the part of the application developer. We also discuss a path forward to enable future versions of BoxLib to take advantage of NUMA-aware optimizations using the TiDA portable library.

  10. Thermal diffusivity of Al-Mg based metallic matrix composite reinforced with Al2O3 ceramic particles

    Science.gov (United States)

    Cruz-Orea, A.; Morales, J. E.; Saavedra S, R.; Carrasco, C.

    2010-03-01

    Thermal diffusivities of Al-Mg based metallic matrix composite reinforced with ceramic particles of Al2O3 are reported in this article. The samples were produced by rheocasting and the studied operational condition in this case is the shear rate: 800, 1400 and 2000 rpm. Additionally, the AlMg base alloy was tested. Measurements of thermal diffusivity were performed at room temperature by using photoacoustic technique.

  11. Study on Ferroelectric and Dielectric Properties of La-Doped CaBi4Ti4O15-Based Ceramics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lanthanum doped bismuth layer structured ferroelectrics (BLSFs) Ca1-xLaxBi4(Ti0.9W0.1)4O15 (x=0, 0.2, 0.3, 0.4, 0.6) ceramics were prepared by solid-state reaction method. X-ray diffraction(XRD) patterns showed that single phase was formed when x=0~0.6. The effects of La3+ doping on dielectric, piezoelectric and ferroelectric properties of Ca1-xLaxBi4(Ti0.9W0.1)4O15 ceramics were studied. Ca0.7La0.3Bi4(Ti0.9W0.1)4O15 ceramic had optimal properties, its dielectric constant was 166.85, dielectric loss was 0.0063, piezoelectric strain constant was 11 pc·N-1, remanent polarization was 18.1 μC·cm-2 and coercive field was 118 kV·cm-1. SEM micrographs showed that the grains of CaBi4Ti4O15-based ceramics were plate-like. The results of energy spectrum analysis (EDS) showed that La3+ incorporation could increase Bi/Ca ratio.

  12. Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic.

    Science.gov (United States)

    Zogheib, Lucas Villaça; Bona, Alvaro Della; Kimpara, Estevão Tomomitsu; McCabe, John F

    2011-01-01

    The aim of this study was to examine the effect of different acid etching times on the surface roughness and flexural strength of a lithium disilicate-based glass ceramic. Ceramic bar-shaped specimens (16 mm x 2 mm x 2 mm) were produced from ceramic blocks. All specimens were polished and sonically cleaned in distilled water. Specimens were randomly divided into 5 groups (n=15). Group A (control) no treatment. Groups B-E were etched with 4.9% hydrofluoric acid (HF) for 4 different etching periods: 20 s, 60 s, 90 s and 180 s, respectively. Etched surfaces were observed under scanning electron microscopy. Surface profilometry was used to examine the roughness of the etched ceramic surfaces, and the specimens were loaded to failure using a 3-point bending test to determine the flexural strength. Data were analyzed using one-way ANOVA and Tukey's test (?=0.05). All etching periods produced significantly rougher surfaces than the control group (p<0.05). Roughness values increased with the increase of the etching time. The mean flexural strength values were (MPa): A=417 ± 55; B=367 ± 68; C=363 ± 84; D=329 ± 70; and E=314 ± 62. HF etching significantly reduced the mean flexural strength as the etching time increased (p=0.003). In conclusion, the findings of this study showed that the increase of HF etching time affected the surface roughness and the flexural strength of a lithium disilicate-based glass ceramic, confirming the study hypothesis.

  13. A comparison of shear bond strength of ceramic and resin denture teeth on different acrylic resin bases.

    Science.gov (United States)

    Corsalini, Massimo; Di Venere, Daniela; Pettini, Francesco; Stefanachi, Gianluca; Catapano, Santo; Boccaccio, Antonio; Lamberti, Luciano; Pappalettere, Carmine; Carossa, Stefano

    2014-01-01

    The purpose of this study is to compare the shear bond strength of different resin bases and artificial teeth made of ceramic or acrylic resin materials and whether tooth-base interface may be treated with aluminium oxide sandblasting. Experimental measurements were carried on 80 specimens consisting of a cylinder of acrylic resin into which a single tooth is inserted. An ad hoc metallic frame was realized to measure the shear bond strength at the tooth-base interface. A complete factorial plan was designed and a three-way ANalysis Of VAriance (ANOVA) was carried out to investigate if shear bond strength is affected by the following factors: (i) tooth material (ceramic or resin); (ii) base material (self-curing or thermal-curing resin); (iii) presence or absence of aluminium oxide sandblasting treatment at the tooth-base interface. Tukey post hoc test was also conducted to evaluate any statistically significant difference between shear strength values measured for the dif-ferently prepared samples. It was found from ANOVA that the above mentioned factors all affect shear strength. Furthermore, post hoc analysis indi-cated that there are statistically significant differences (p-value=0.000) between measured shear strength values for: (i) teeth made of ceramic material vs. teeth made of acrylic resin material; (ii) bases made of self-curing resin vs. thermal-curing resin; (iii) specimens treated with aluminium oxide sandblasting vs. untreated specimens. Shear strength values measured for acryl-ic resin teeth were on average 70% higher than those measured for ceramic teeth. The shear bond strength was maximized by preparing samples with thermal-curing resin bases and resin teeth submitted to aluminium oxide sandblasting.

  14. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.

    Science.gov (United States)

    Wu, Chengtie

    2009-05-01

    CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.

  15. Synthesis of steel slag ceramics:chemical composition and crystalline phases of raw materials

    Institute of Scientific and Technical Information of China (English)

    Li-hua Zhao; Wei Wei; Hao Bai; Xu Zhang; Da-qiang Cang

    2015-01-01

    Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO–Al2O3–SiO2 and CaO–MgO–SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite,α-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.

  16. ATLAS Rewards Russian Supplier for Scintillating Tile Production

    CERN Multimedia

    2001-01-01

    At a ceremony held at CERN on 30 July, the ATLAS collaboration awarded Russian firm SIA Luch from Podolsk in the Moscow region an ATLAS Suppliers Award. This follows delivery by the company of the final batch of scintillating tiles for the collaboration's Tile Calorimeter some six months ahead of schedule.   Representatives of Russian firm Luch Podolsk received the ATLAS Suppliers Award in the collaboration's Tile Calorimeter instrumentation plant at CERN on 30 July. In front of one Tile Calorimeter module instrumented by scintillating tiles are (left to right) IHEP physicists Evgueni Startchenko and Andrei Karioukhine, Luch Podolsk representatives Igor Karetnikov and Yuri Zaitsev, Tile Calorimeter Project Leader Rupert Leitner, ATLAS spokesperson Peter Jenni, and CERN Tile Calorimeter group leader Ana Henriques-Correia. Scintillating tiles form the active part of the ATLAS hadronic Tile Calorimeter, which will measure the energy and direction of particles produced in LHC collisions. They are emb...

  17. Effect of DNA Hairpin Loops on the Twist of Planar DNA Origami Tiles

    Science.gov (United States)

    Li, Zhe; Wang, Lei; Yan, Hao; Liu, Yan

    2012-01-01

    The development of scaffolded DNA origami, a technique in which a long single-stranded viral genome is folded into arbitrary shapes by hundreds of short synthetic oligonucleotides, represents an important milestone in DNA nanotechnology. Recent findings have revealed that two-dimensional (2D)DNA origami structures based on the original design parameters adopt a global twist with respect to the tile plane, which may be because the conformation of the constituent DNA (10.67 bp/turn) deviates from the natural B-type helical twist (10.4 bp/turn). Here we aim to characterize the effects of DNA hairpin loops on the overall curvature of the tile and explore their ability to control, and ultimately eliminate any unwanted curvature. A series of dumbbell-shaped DNA loops were selectively displayed on the surface of DNA origami tiles with the expectation that repulsive interactions among the neighboring dumbbell loops and between the loops and the DNA origami tile would influence the structural features of the underlying tiles. A systematic, atomic force microscopy (AFM) study of how the number and position of the DNA loops influenced the global twist of the structure was performed, and several structural models to explain the results were proposed. The observations unambiguously revealed that the first generation of rectangular shaped origami tiles adopt a conformation in which the upper right (corner 2) and bottom left (corner 4) corners bend upward out of the plane, causing linear superstructures attached by these corners to form twisted ribbons. Our experimental observations are consistent with the twist model predicted by the DNA mechanical property simulation software CanDo. Through the systematic design and organization of various numbers of dumbbell loops on both surfaces of the tile, a nearly planar rectangular origami tile was achieved. PMID:22126326

  18. Joining of Silicon Carbide-Based Ceramics for MEMS-LDI Fuel Injector Applications

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2012-01-01

    Deliver the benefits of ceramics in turbine engine applications- increased efficiency, performance, horsepower, range, operating temperature, and payload and reduced cooling and operation and support costs for future engines.

  19. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin

    2015-01-01

    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  20. Estimation of Tile Drainage Contribution to Streamflow and Nutrient Export Loads

    Science.gov (United States)

    Schilling, K. E.; Arenas Amado, A.; Jones, C. S.; Weber, L. J.

    2015-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.